
<$nopage>ActiveX	Automation	interface:automation	projects.
<$nopage>AutoCAD	Color	Index	numbers.	<$nopage>Color	property:
<$nopage>TrueColor	property:<$nopage>VB:automation	projects.
<$nopage>VBA:automation	projects.	<$nopage>Visual	Basic	for	Applications.
<$nopage>Visual	Basic.	<$nopage>automation	projects:migrating	to	AutoCAD
2004:<$nopage>projects:automation.	<$nopage>standard	color	names.

	

Introduction
	
	
	

This	introduction	describes	the	concept	of	exposing	AutoCAD	objects	through
an	ActiveX	Automation	interface	and	programming	those	objects	using	the
Visual	Basic	for	Applications	programming	environment.

Topics	in	this	section

Overview	of	AutoCAD	ActiveX	Technology
Overview	of	AutoCAD	Visual	Basic	for	Applications	(VBA)
Interface
AutoCAD	ActiveX	and	VBA	Together
How	This	Guide	Is	Organized
For	More	Information
Sample	Code
Migrate	Automation	Projects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

Overview	of	AutoCAD	ActiveX	Technology
	
	
	

AutoCAD®	ActiveX®	enables	you	to	manipulate	AutoCAD	programmatically
from	within	or	outside	AutoCAD.	It	does	this	by	exposing	AutoCAD	objects	to
the	“outside	world.”	Once	these	objects	are	exposed,	they	can	be	accessed	by
many	different	programming	languages	and	environments	and	by	other
applications	such	as	Microsoft®	Word	VBA	or	Excel	VBA.

There	are	two	advantages	to	implementing	an	ActiveX	interface	for	AutoCAD:

Programmatic	access	to	AutoCAD	drawings	is	opened	up	to	many	more
programming	environments.	Before	ActiveX	Automation,	developers
were	limited	to	an	AutoLISP®	or	C++	interface.

Sharing	data	with	other	Windows®	applications,	such	as	Microsoft
Excel	and	Word,	is	made	dramatically	easier.

An	object	is	the	main	building	block	of	any	ActiveX	application.	Each	exposed
object	represents	a	precise	part	of	AutoCAD.	There	are	many	different	types	of
objects	in	the	AutoCAD	ActiveX	interface.	For	example:

Graphical	objects	such	as	lines,	arcs,	text,	and	dimensions	are	objects.

Style	settings	such	as	linetypes	and	dimension	styles	are	objects.

Organizational	structures	such	as	layers,	groups,	and	blocks	are	objects.

The	drawing	displays	such	as	view	and	viewport	are	objects.

Even	the	drawing	and	the	AutoCAD	application	are	considered	objects.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

Overview	of	AutoCAD	Visual	Basic	for	Applications
(VBA)	Interface
	
	
	

Microsoft	VBA	is	an	object-oriented	programming	environment	designed	to
provide	rich	development	capabilities	similar	to	those	of	Visual	Basic	6	(VB).
The	main	difference	between	VBA	and	VB	is	that	VBA	runs	in	the	same	process
space	as	AutoCAD,	providing	an	AutoCAD-intelligent	and	very	fast
programming	environment.

VBA	also	provides	application	integration	with	other	VBA-enabled	applications.
This	means	that	AutoCAD,	using	other	application	object	libraries,	can	be	an
Automation	controller	for	other	applications	such	as	Microsoft	Word	or	Excel.

The	standalone	development	editions	of	Visual	Basic	6,	which	must	be
purchased	separately,	complement	AutoCAD	VBA	with	additional	components,
such	as	an	external	database	engine	and	report-writing	capabilities.

There	are	four	advantages	to	implementing	VBA	for	AutoCAD:

VBA	and	its	environment	are	easy	to	learn	and	use.

VBA	runs	in-process	with	AutoCAD.	This	translates	to	very	fast
program	execution.

Dialog	box	construction	is	quick	and	effective.	This	allows	developers	to
prototype	applications	and	quickly	receive	feedback	on	designs.

Projects	can	be	standalone	or	embedded	in	drawings.	This	choice	allows
developers	great	flexibility	in	the	distribution	of	their	applications.

Note Microsoft	has	not	promised	to	provide	64-bit	VBA	SDK	libraries	(.dll).
Subsequently,	64-bit	AutoCAD	can	no	longer	run	VBA	as	an	in-proc
component;	VBA	components	now	run	as	32-bit	out-of-process	COM
components,	and	provides	a	stopgap	arrangement	for	64-bit	AutoCAD	VBA
users.	This	arrangement	might	require	a	few	changes	to	existing	VBA	code.	This

stopgap	provision	would	be	deprecated	in	future	versions	of	AutoCAD	and	it	is
advisable	for	the	users	to	port	their	exisiting	VBA	code	to	VB.	NET.

Topics	in	this	section

How	VBA	Is	Implemented	in	AutoCAD

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Overview	of	AutoCAD	Visual	Basic	for	Applications	(VBA)
Interface	>	

How	VBA	Is	Implemented	in	AutoCAD
	
	
	

VBA	sends	messages	to	AutoCAD	by	the	AutoCAD	ActiveX	Automation
interface.	AutoCAD	VBA	permits	the	VBA	environment	to	run	simultaneously
with	AutoCAD	and	provides	programmatic	control	of	AutoCAD	through	the
ActiveX	Automation	interface.	This	coupling	of	AutoCAD,	ActiveX
Automation,	and	VBA	provides	an	extremely	powerful	interface	not	only	for
manipulating	AutoCAD	objects,	but	for	sending	data	to	or	retrieving	data	from
other	applications.

There	are	three	fundamental	elements	that	define	ActiveX	and	VBA
programming	in	AutoCAD.The	first	is	AutoCAD	itself,	which	has	a	rich	set	of
objects	that	encapsulates	AutoCAD	entities,	data,	and	commands.	Because
AutoCAD	was	designed	as	an	open-architecture	application	with	multiple	levels
of	interface,	familiarity	with	AutoCAD	programmability	is	highly	desirable	in
order	to	use	VBA	effectively.	If	you've	used	AutoLISP	to	control	AutoCAD
programmatically,	you	already	have	a	good	understanding	of	the	AutoCAD
facilities.	However,	you	will	find	the	VBA	object-based	approach	to	be	quite
different	from	that	of	AutoLISP.

The	second	element	is	the	AutoCAD	ActiveX	Automation	interface,	which
establishes	messages	(communication)	with	AutoCAD	objects.Programming	in
VBA	requires	a	fundamental	understanding	of	ActiveX	Automation.	A
description	of	the	AutoCAD	ActiveX	Automation	interface	can	be	found	in	the
ActiveX	and	VBA	Reference.	Even	the	experienced	VB	programmer	will	find	the
AutoCAD	ActiveX	Automation	interface	invaluable	for	understanding	and
developing	AutoCAD	VBA	applications.

The	third	element	is	the	VBA	programming	environment,	which	has	its	own	set
of	objects,	keywords,	constants,	and	so	forth	that	provides	program	flow,	control,
debugging,	and	execution.	Microsoft's	own	extensive	Help	for	VBA	is	included
with	the	AutoCAD	VBA	Help	and	is	accessible	from	the	VBA	IDE	by	any	of	the

following	methods:

Pressing	F1	on	the	keyboard

Choosing	Help	from	the	VBA	IDE	menu	bar

Clicking	the	Question	Mark	icon	on	the	VBA	IDE	toolbar

Topics	in	this	section

Use	the	Microsoft	.NET	Framework
Dependencies	and	Restrictions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Overview	of	AutoCAD	Visual	Basic	for	Applications	(VBA)
Interface	>	How	VBA	Is	Implemented	in	AutoCAD	>	

Use	the	Microsoft	.NET	Framework
	
	
	

To	fully	access	AutoCAD	automation	objects	from	Microsoft	Visual	Studio®
.NET,	create	references	to	the	following	files:

The	AutoCAD	2009	type	library,	acax17enu.tlb,	located	at	c:\program
files\common	files\autodesk	shared.

The	AutoCAD/ObjectDBX	Common	17.0	type	library,	axdb17enu.tlb,
located	at	c:\program	files\common	files\autodesk	shared.

These	references	will	make	available	the	following	primary	interop	assemblies:
Autodesk.AutoCAD.Interop.dll	(for	AutoCAD-specific	types),	and
Autodesk.AutoCAD.Interop.Common.dll	(for	types	shared	by	ObjectDBXTM
host	applications).	The	interop	assemblies	are	located	in	the	global	assembly
cache;	they	map	automation	objects	to	.NET	counterparts.

After	you	reference	the	type	libraries,	you	can	declare	AutoCAD-based	variables
in	Microsoft	Visual	Studio	.NET,	as	in	the	following	examples:

Dim	objAcad	As	Autodesk.AutoCAD.Interop.AcadApplication

Dim	objLine	As	Autodesk.AutoCAD.Interop.Common.AcadLine

You	can	load	a	.NET	application	using	the	NETLOAD	command	in	AutoCAD.

Additional	information	about	using	a	.NET	application	with	AutoCAD	is
available	from	the	Developer	Center	section	of	the	Autodesk	website.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Overview	of	AutoCAD	Visual	Basic	for	Applications	(VBA)
Interface	>	How	VBA	Is	Implemented	in	AutoCAD	>	

Dependencies	and	Restrictions
	
	
	

If	you	install,	reinstall,	or	uninstall	Microsoft	Office	or	other	VBA	applications
after	installing	AutoCAD,	reinstall	AutoCAD	and	reboot	your	system.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

AutoCAD	ActiveX	and	VBA	Together
	
	
	

The	AutoCAD	ActiveX/VBA	interface	represents	several	advantages	over	other
AutoCAD	API	environments:

Speed.	Running	in-process	with	VBA,	ActiveX	applications	are	faster
than	AutoLISP	applications.

Ease	of	Use.	The	programming	language	and	development	environment
are	easy	to	use	and	come	installed	with	AutoCAD.

Windows	Interoperability.	ActiveX	and	VBA	are	designed	to	be	used
with	other	Windows	applications	and	provide	an	excellent	path	for
communication	of	information	across	applications.

Rapid	Prototyping.	The	rapid	interface	development	of	VBA	provides
the	perfect	environment	for	prototyping	applications,	even	if	those
applications	will	-eventually	be	developed	in	another	language.

Programmer	Base.	AutoCAD	ActiveX	and	VBA	technology	provide
Visual	Basic	6	programmers	with	the	ability	to	customize	AutoCAD	and
develop	applications	for	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

How	This	Guide	Is	Organized
	
	
	

This	guide	provides	information	regarding	the	development	of	ActiveX	and
VBA	applications	for	use	with	AutoCAD.	Information	specific	to	developing
applications	using	VBA	can	be	found	in	“Getting	Started	with	VBA”	and
“Develop	Applications	with	VBA.”	Programmers	using	ActiveX	from	a
development	environment	other	than	VBA	can	skip	these	two	chapters.
However,	be	aware	that	all	of	the	example	code	in	this	guide	is	presented	in
VBA.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

For	More	Information
	
	
	

This	guide	assumes	that	you	have	a	working	knowledge	of	the	Visual	Basic	6
programming	language,	and	does	not	attempt	to	duplicate	or	replace	the
abundance	of	documentation	available	on	Visual	Basic	6.	If	you	need	more
information	on	the	Visual	Basic	6	language	or	development	environment	usage,
see	the	Visual	Basic	for	Applications	Help	file	developed	by	Microsoft,	available
from	the	Help	menu	in	the	interactive	development	environment	(IDE).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

Sample	Code
	
	
	

This	manual	and	the	ActiveX	and	VBA	Reference	together	contain	over	800
example	VBA	subroutines	that	demonstrate	the	usage	of	ActiveX	methods,
properties,	and	events.

There	are	also	many	sample	applications	provided	in	the	AutoCAD	Sample
directory.	These	sample	applications	show	a	wide	range	of	fuctionality,	from
extracting	AutoCAD	drawing	data	into	Microsoft	Excel	spreadsheets	to	drawing
and	performing	stress	analysis	on	an	electrical	transmission	tower.

These	samples	also	show	how	to	combine	the	versatility	of	the	Visual	Basic	for
Applications	programming	environment	with	the	power	of	the	AutoCAD
ActiveX	interface	to	create	customized	applications.

Additionally,	example	code	in	the	ActiveX	and	VBA	Developer's	Guide	and
ActiveX	and	VBA	Reference	can	be	copied	from	the	Help	files,	pasted	directly
into	the	AutoCAD	VBA	environment,	and	then	executed	with	one	requirement:
the	current	active	drawing	in	AutoCAD	must	be	a	blank	drawing	open	to	model
space.

To	run	the	examples	from	the	Help	files

1.	 Copy	the	example	from	the	Help	file	into	an	empty	VBA	code	module.

2.	 Verify	that	AutoCAD	has	a	blank	drawing	open	to	model	space.

3.	 Open	the	Macros	dialog	box	by	entering	the	command	VBARUN.

4.	 Choose	the	macro	and	press	Run.
More	information	on	running	macros	and	the	Macros	dialog	box	is
available	in	the	topic	“Run	a	Macro.”

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	

Migrate	Automation	Projects
	
	
	

You	can	use	AutoCAD	features	by	using	the	objects	and	methods	added	to	the
ActiveX	Automation	interface.	This	section	includes	the	changes	that	apply	to
automation	projects	created	with	Visual	Basic	for	Applications	(VBA),	Visual
Basic	6	(VB),	and	other	automation-compatible	environments.

For	additional	information	about	using	features	in	AutoCAD,	see	“Use
AutoCAD	Features”.

Topics	in	this	section

New	Objects
Changed	Items
How	to	Migrate	Projects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Migrate	Automation	Projects	>	

New	Objects
	
	
	

The	following	objects	are	new	in	AutoCAD	2009.	For	more	information	about
these	objects,	see	the	ActiveX	and	VBA	Reference	and	the	Object	Browser	in	the
VBA	IDE.

SortentsTable.	Contains	and	manipulates	draw	order	information.

Table.	Adds	and	modifies	tables	in	a	drawing.

TableStyle.	Adds	and	modifies	formatting	for	tables,	such	as	grid
visibility,	lineweight,	and	color.

In	addition,	AutoCAD	2009	contains	objects	for	the	automation	of	the	Sheet	Set
Manager.	For	information	about	these	objects,	see	the	Sheet	Set	Objects
Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Migrate	Automation	Projects	>	

Changed	Items
	
	
	

This	section	describes	existing	items	that	have	changed.

Changed	Items 	 	

AutoCAD	2004
item

AutoCAD	2009
item

Description	of	change

BeginClose	event BeginDocClose
event

You	can	use	the	BeginDocClose
event	to	prevent	a	drawing	from
being	closed

Layer	object Layer	object Addition	of	the	Description
property	and	Used	property

Layers	collection Layers	collection Addition	of	the
GenerateUsageData	method

ModelSpace
collection
PaperSpace
collection
Block	object

ModelSpace
collection
PaperSpace
collection
Block	object

Addition	of	the	AddTable
method	to	all	the	collections	and
to	the	object;	addition	of	the	Path
property	to	the	Block	object

MText	object,
Text	object

MText	object,
Text	object

Addition	of	the	BackgroundFill
property	to	the	MText	object;
addition	of	FieldCode	method	to
the	MText	object	and	Text	object

Plot	object Plot	object The	BatchPlotProgress	property
and	StartBatchMode	property	are
obsolete.	It	is	recommended	that
Microsoft	.NET	applications	be
used	for	batch	plotting.	The
DisplayPlotPreview	method	no
longer	supports	partial	preview

PreferencesFiles
object

PreferencesFiles
object

Addition	of	the	PlotLogFilePath
property,
PageSetupOverridesTemplateFile
property,	and	QNewTemplateFile
property

PreferencesOutput
object

PreferencesOutput
object

Addition	of	the
AutomaticPlotLog	property,
DefaultPlotToFilePath	property,
and	ContinuousPlotLog	property

Viewport	object Viewport	object Addition	of	the	ModelView
property,	SheetView	property,
LabelBlockId	property,
HasSheetView	property,	and
SyncModelView	method

View	object View	object Addition	of	the	CategoryName
property,	LayoutId	property,
LayerState	property,	and
HasVpAssociation	property

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction	>	Migrate	Automation	Projects	>	

How	to	Migrate	Projects
	
	
	

In	general,	an	AutoCAD	automation	project	created	in	the	VBA	IDE	or	created
with	Visual	Basic	6	should	work	with	AutoCAD	2009.

AutoCAD	2009	automation	projects	use	the	same	type	library	(acax17enu.tlb)	as
AutoCAD	automation	projects.	The	type	library	is	located	in	C:\Program
Files\Common	Files\Autodesk	Shared.

AutoCAD	2009	automation	projects	also	use	the	same	version-dependent
ProgID	for	the	CreateObject,	GetObject,	and	GetInterfaceObject	methods.	For
example,	if	you	are	using	the	CreateObject	function	in	an	AutoCAD	automation
project,	you	use	CreateObject	("AutoCAD.Application.17").	If	an	automation
project	uses	version-independent	ProgIDs,	change	the	project	to	use	version-
dependent	ProgIDs.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>properties.	<$nopage>objects:

	

Getting	Started	with	VBA
	
	
	

This	chapter	introduces	you	to	AutoCAD	Visual	Basic	for	Applications	(VBA)
projects	and	the	VBA	interactive	development	environment	(IDE).	Although
most	VBA	environments	are	similar	in	behavior,	the	AutoCAD	VBA	IDE	has
some	unique	features.	There	are	also	several	AutoCAD	commands	that	can	be
used	to	load	projects,	run	projects,	or	open	the	VBA	IDE.	This	chapter	defines
the	use	of	VBA	projects,	VBA	commands,	and	the	VBA	IDE	in	general.

Topics	in	this	section

Understand	Embedded	and	Global	VBA	Projects
Organize	Your	Projects	with	the	VBA	Manager
Handle	Your	Macros
Edit	Your	Projects	with	the	VBA	IDE
Perform	an	Introductory	Exercise
More	Information
AutoCAD	VBA	Project	Terms
AutoCAD	VBA	Commands

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

Understand	Embedded	and	Global	VBA	Projects
	
	
	

An	AutoCAD®	VBA	project	is	a	collection	of	code	modules,	class	modules,	and
forms	that	work	together	to	perform	a	given	function.	Projects	can	be	stored
within	an	AutoCAD	drawing,	or	as	a	separate	file.

Embedded	projects	are	stored	within	an	AutoCAD	drawing.	These	projects	are
automatically	loaded	whenever	the	drawing	in	which	they	are	contained	is
opened	in	AutoCAD,	making	the	distribution	of	projects	very	convenient.
Embedded	projects	are	limited	and	not	able	to	open	or	close	AutoCAD	drawings
because	they	function	only	within	the	document	where	they	reside.	Users	of
embedded	projects	are	no	longer	required	to	find	and	load	project	files	before
they	run	a	program.	A	time	log	that	is	triggered	when	the	drawing	is	opened	is	an
example	of	a	project	embedded	in	a	drawing.	With	this	macro	users	can	log	in
and	record	the	length	of	time	they	worked	on	the	drawing.	The	user	does	not
have	to	remember	to	load	the	project	before	opening	the	drawing;	it	simply	is
done	automatically.

Global	projects	are	stored	in	separate	files	and	are	more	versatile	because	they
can	work	in,	open,	and	close	any	AutoCAD	drawing,	but	are	not	automatically
loaded	when	a	drawing	is	opened.	Users	must	know	which	project	file	contains
the	macro	they	need	and	then	load	that	project	file	before	they	can	run	the
macro.	However,	global	projects	are	easier	to	share	with	other	users,	and	they
make	excellent	libraries	for	common	macros.	An	example	of	a	project	you	may
store	in	a	project	file	is	a	macro	that	collects	a	bill	of	materials	from	many
drawings.	This	macro	can	be	run	by	an	administrator	at	the	end	of	a	work	cycle
and	can	collect	information	from	many	drawings.

At	any	given	time,	users	can	have	both	embedded	and	global	projects	loaded	into
their	AutoCAD	session.

AutoCAD	VBA	projects	are	not	binary	compatible	with	standalone	Visual	Basic
6	projects.	However,	the	forms,	modules,	and	classes	can	be	exchanged	between
projects	using	the	IMPORT	and	EXPORT	VBA	commands	in	the	VBA	IDE.	For

more	information	about	the	VBA	IDE,	see	Edit	Your	Projects	with	the	VBA
IDE.

The	use	of	Visual	Studio	.NET	to	drive	and	customize	AutoCAD	through	COM
Automation	is	supported.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>properties.	<$nopage>objects:

Getting	Started	with	VBA	>	

Organize	Your	Projects	with	the	VBA	Manager
	
	
	

You	can	view	all	the	VBA	projects	loaded	in	the	current	AutoCAD	session	by
using	the	VBA	Manager.	It	is	an	AutoCAD	tool	that	allows	you	to	load,	unload,
save,	create,	embed,	and	extract	VBA	projects.

To	open	the	VBA	Manager

You	can	open	the	VBA	Manager	from	the	Tools	menu	or,	in	AutoCAD,	by
invoking	the	VBAMAN	command.

Topics	in	this	section

Load	an	Existing	Project
Unload	a	Project
Embed	a	Project	into	a	Drawing
Extract	a	Project	from	a	Drawing
Create	a	New	Project
Save	Your	Project

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>properties.	<$nopage>objects:

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Load	an	Existing	Project
	
	
	

When	you	load	a	project	into	AutoCAD,	all	the	public	subroutines,	also	called
macros,	become	available	for	use.	Projects	embedded	in	a	drawing	are	loaded
whenever	the	drawing	is	opened.	Projects	stored	in	DVB	files	must	be	loaded
explicitly.

Anytime	a	project	is	loaded,	any	other	projects	that	are	referenced	by	the	first
project	will	be	loaded	automatically.	Additionally,	AutoCAD	will	automatically
load	at	startup	any	project	file	with	the	name	acad.dvb.

To	load	an	existing	VBA	project	file

1.	 In	the	VBA	Manager,	use	the	Load	option	to	bring	up	the	Open	VBA
Project	dialog	box.

2.	 In	the	Open	VBA	Project	dialog	box,	select	the	project	file	to	open.	The
VBA	Project	dialog	box	will	allow	you	to	open	only	valid	DVB	files.	If
you	attempt	to	open	a	different	type	of	file,	you	will	receive	an	error
message.

3.	 Select	Open.

You	can	also	load	a	project	file	using	one	of	the	following	methods:

Enter	the	VBALOAD	command,	which	opens	the	Open	VBA	Project
dialog	box.

Drag	a	DVB	file	from	Windows	Explorer	and	drop	it	into	an	open
drawing	in	the	AutoCAD	window.

Topics	in	this	section

Virus	Alert

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA
Manager	>	Load	an	Existing	Project		>	

Virus	Alert
	
	
	

Each	time	you	load	a	project	you	are	given	the	option	of	enabling	or	disabling
the	code	within	that	project	as	a	protection	against	viruses.	If	you	enable	the
code,	viruses	in	the	code	can	begin	executing.	If	you	disable	the	code,	the	project
will	still	be	loaded,	but	all	code	within	that	project	is	prevented	from	running.
The	virus	alert	is	not	displayed	when	you	load	a	project	by	dragging	a	DVB	file
from	Windows	Explorer	and	dropping	it	into	an	open	drawing	in	the	AutoCAD
window.

More	information	about	the	virus	alert	is	available	in	Set	the	Project	Options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Unload	a	Project
	
	
	

Unloading	a	project	frees	up	memory	and	keeps	the	list	of	loaded	projects	at	a
length	that	is	easy	to	manage.

You	cannot	unload	embedded	projects	or	projects	that	are	referenced	by	other
loaded	projects.

To	unload	a	VBA	project

You	can	unload	a	VBA	project	by	selecting	the	project	you	want	to	unload	and
choosing	Unload,	or	by	using	the	VBAUNLOAD	command,	which	prompts	you
for	the	project	to	be	unloaded.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Embed	a	Project	into	a	Drawing
	
	
	

When	you	embed	a	project	you	place	a	copy	of	the	project	in	the	drawing
database.	The	project	is	then	loaded	or	unloaded	whenever	the	drawing
containing	it	is	opened	or	closed.

A	drawing	can	contain	only	one	embedded	project	at	a	time.	If	a	drawing	already
contains	an	embedded	project	you	must	extract	it	before	a	different	project	can
be	embedded	into	the	drawing.

To	embed	a	project	in	an	AutoCAD	drawing

1.	 Open	the	VBA	Manager	and	select	the	project	you	want	to	embed.

2.	 Choose	Embed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Extract	a	Project	from	a	Drawing
	
	
	

When	you	extract	a	project	you	remove	the	project	from	the	drawing	database
and	are	given	the	opportunity	to	save	the	project	in	an	external	project	file.	If
you	do	not	save	the	file	in	an	external	project	file,	the	project	data	will	be
deleted.

To	extract	a	project	from	an	AutoCAD	drawing

1.	 Open	the	VBA	Manager	and	select	the	drawing	from	which	the	project	is
to	be	extracted.

2.	 Choose	Extract.

3.	 If	you	want	to	save	the	project	information	in	an	external	project	file,
choose	Yes	to	the	prompt	“Do	you	want	to	export	the	VBA	project
before	removing	it?”	The	Save	As	dialog	box	will	be	displayed,	allowing
you	to	save	the	file.
If	you	do	not	want	to	save	the	project	information	in	an	external	file,
choose	No	to	the	prompt	“Do	you	want	to	export	the	VBA	project	before
removing	it?”	The	project	information	will	be	removed	from	the	drawing
and	will	not	be	saved.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Create	a	New	Project
	
	
	

New	projects	are	created	as	unsaved	global	projects.	Once	a	project	has	been
created,	you	can	then	embed	the	project	in	a	drawing,	or	save	the	project	out	to	a
project	file.

To	create	a	new	VBA	project

1.	 Open	the	VBA	Manager.

2.	 Choose	New.
A	new	project	will	be	created	with	the	default	name	of	ACADProject.	To
change	the	project	name	you	must	go	into	the	VBA	IDE.	For	more
information	on	naming	your	project	in	the	VBA	IDE,	see	Name	Your
Project.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Organize	Your	Projects	with	the	VBA	Manager	>	

Save	Your	Project
	
	
	

Embedded	projects	are	saved	whenever	the	drawing	is	saved.	Global	projects
must	be	saved	using	the	VBA	Manager	or	the	VBA	IDE.

To	save	your	project	using	the	VBA	Manager

1.	 Open	the	VBA	Manager	and	select	the	project	to	be	saved.

2.	 Choose	Save	As.	The	Save	As	dialog	box	will	open.

3.	 Select	the	file	name	for	the	project	to	be	saved	in.

4.	 Choose	Save.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

Handle	Your	Macros
	
	
	

A	macro	is	a	public	(executable)	subroutine.	Each	project	usually	contains	at
least	one	macro.

Topics	in	this	section

Use	the	Macros	Dialog	Box
Run	a	Macro
Edit	a	Macro
Step	into	a	Macro
Set	the	Project	Options

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Handle	Your	Macros		>	

Use	the	Macros	Dialog	Box
	
	
	

The	Macros	dialog	box	allows	you	to	run,	edit,	delete,	and	create	macros	as	well
as	set	the	VBA	project	options.	Open	the	Macros	dialog	box	from	the	AutoCAD
Tools	menu	by	choosing	Macro	 	Macros,	or	issue	VBARUN	at	the	AutoCAD
Command	prompt.

The	names	of	all	macros	in	the	valid	range	are	displayed	in	this	dialog	box.	You
can	change	the	valid	range	by	using	the	Macros	In	drop-down	list.	This	list
specifies	the	projects	or	drawings	whose	macros	are	displayed.	You	can	choose
to	display	the	macros	in

All	drawings	and	projects

All	drawings

All	projects

Any	individual	drawing	currently	open	in	AutoCAD

Any	individual	project	currently	loaded	in	AutoCAD

By	limiting	the	valid	range	you	can	control	how	many	macro	names	appear	in
the	list.	This	will	help	you	in	the	cases	when	many	macros	are	available	in	the
loaded	drawings	and	projects.

To	create	a	new	macro

1.	 Open	the	Macros	dialog	box	and	enter	the	name	for	the	new	macro.

2.	 In	the	Macros	In	drop-down	list,	select	a	project	to	create	the	new	macro
in.

3.	 Choose	Create.

If	a	macro	with	the	specified	name	already	exists,	you	will	be	asked	if	you	want

to	replace	the	existing	macro.

If	you	select	Yes	at	the	prompt,	the	code	in	the	existing	macro	will	be	deleted
and	a	new,	empty	macro	will	be	created	with	the	specified	name.

If	you	select	No	at	the	prompt,	you	will	be	returned	to	the	Macros	dialog	box	to
enter	a	new	name	for	the	macro.

If	you	select	Cancel	at	the	prompt,	the	Macros	dialog	box	will	be	dismissed	and
no	new	macro	will	be	created.

To	delete	a	macro

1.	 Open	the	Macros	dialog	box	and	select	the	macro	to	delete.

2.	 Choose	Delete.	You	will	be	prompted	to	confirm	the	delete.

3.	 At	the	prompt,	choose	Yes	to	delete	the	macro,	or	No	to	cancel	the
delete.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Handle	Your	Macros		>	

Run	a	Macro
	
	
	

Running	a	macro	executes	the	macro	code	within	the	context	of	the	current
AutoCAD	session.	The	current	active	drawing	is	considered	to	be	the	open
drawing	that	has	the	focus	when	macro	execution	begins.	All	VBA	references	to
the	ThisDrawing	object	will	refer	to	the	current	active	drawing	for	macros	in
global	projects.	For	macros	in	embedded	projects,	the	ThisDrawing	object
always	refers	to	the	drawing	in	which	the	macro	is	embedded.

To	run	a	macro	from	the	Macros	dialog	box

1.	 Open	the	Macros	dialog	box	and	select	the	macro	to	run.

2.	 Choose	Run.

To	run	a	macro	from	the	VBA	IDE

From	the	Run	menu,	use	the	Run	Macro	menu	option.
If	no	macro	or	form	is	current,	a	dialog	box	is	displayed,	allowing	you	to
choose	the	macro	to	run.
If	a	given	macro	is	current	(the	cursor	is	in	a	procedure),	that	macro	will
be	executed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Handle	Your	Macros		>	

Edit	a	Macro
	
	
	

Editing	a	macro	will	open	the	VBA	IDE	with	the	chosen	macro	open	in	the	Code
window.	For	more	information	on	editing	macros	in	the	VBA	IDE	see	Edit	Your
Projects	with	the	VBA	IDE.

To	edit	a	macro

1.	 Open	the	Macros	dialog	box	and	select	the	macro	to	edit.

2.	 Choose	Edit.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Handle	Your	Macros		>	

Step	into	a	Macro
	
	
	

Stepping	into	a	macro	begins	execution	of	the	macro	and	then	halts	the
execution	on	the	first	line	of	code.	The	VBA	IDE	is	opened	with	the	chosen
macro	open	in	the	Code	window	at	the	line	of	execution.

To	step	into	a	macro

1.	 In	the	Macros	dialog	box,	select	the	macro	to	step	into.

2.	 Choose	Step	Into.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Handle	Your	Macros		>	

Set	the	Project	Options
	
	
	

There	are	three	options	that	can	be	set	for	AutoCAD	VBA	projects:

Enable	Auto	Embedding

Allow	Break	on	Errors

Enable	Macro	Virus	Protection

Enable	Auto	Embedding

The	auto	embed	feature	automatically	creates	an	embedded	VBA	project	for	all
drawings	when	the	drawing	is	opened.

Allow	Break	on	Errors

This	option	allows	VBA	to	enter	Break	mode	when	an	error	is	encountered.
Break	mode	is	a	temporary	suspension	of	program	execution	in	the	interactive
development	environment.	In	Break	mode,	you	can	examine,	debug,	reset,	step
through,	or	continue	program	execution.

When	this	option	is	enabled,	unhandled	errors	found	during	the	execution	of	a
VBA	macro	will	suspend	the	execution	of	the	macro	and	display	the	VBA	IDE	at
the	point	of	the	error	in	the	macro.

When	this	option	is	disabled,	untrapped	errors	found	during	the	execution	of	a
VBA	macro	will	display	a	message	box	alerting	you	to	the	error,	and	then	end
execution	of	the	macro.

Enable	Macro	Virus	Protection

The	virus	protection	mechanism	displays	a	built-in	warning	message	whenever
you	open	a	drawing	that	may	contain	macro	viruses.

To	set	the	AutoCAD	VBA	project	options

1.	 From	the	Tools	menu	choose	Macro	 	Macros	to	open	the	VBA	Macros
dialog	box.

2.	 From	the	VBA	Macros	dialog	box,	choose	Options	to	open	the	Options
dialog	box.

3.	 From	the	Options	dialog	box,	select	the	options	you	want	to	enable.

4.	 Choose	OK.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

Edit	Your	Projects	with	the	VBA	IDE
	
	
	

Once	a	project	has	been	loaded	into	AutoCAD,	you	can	edit	the	code,	forms,	and
references	for	that	project	using	the	VBA	interactive	development	environment.
You	can	also	debug	and	run	projects	from	the	VBA	IDE.	Once	open,	the	VBA
IDE	provides	access	to	all	loaded	projects.

To	open	the	VBA	IDE	on	demand

You	can	open	the	VBA	IDE	from	the	command	line	or	from	the	menu	bar.

From	the	command	line,	enter	VBAIDE,	or	from	the	Tools	menu,
choose	Macro	 	Visual	Basic	Editor.

Topics	in	this	section

View	Project	Information
Define	the	Components	in	a	Project
Import	Existing	Components
Edit	Components
Name	Your	Project
Save	Your	Project
Reference	Other	VBA	Projects
Set	the	VBA	IDE	Options

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

View	Project	Information
	
	
	

The	VBA	IDE	contains	a	window	called	the	Project	window,	which	displays	a
list	of	all	loaded	VBA	projects.	It	also	displays	the	code,	class,	and	form
modules	included	in	the	project,	the	document	associated	with	the	project,	all
other	VBA	projects	referenced	from	the	project,	and	the	physical	location	(path)
of	the	project.

The	Project	window	has	its	own	toolbar,	which	can	be	used	to	open	various
project	components	for	editing.	Use	the	View	Code	button	to	open	the	code	for	a
selected	module.	Use	the	View	Object	button	to	display	selected	objects	such	as
forms.

The	Project	window	is	visible	by	default.	If	it	is	not	visible,	select	Project
window	from	the	View	menu,	or	press	CTRL+R.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Define	the	Components	in	a	Project
	
	
	

Each	project	can	contain	many	different	components.	The	different	components
a	project	can	contain	are	objects,	forms,	standard	modules,	class	modules,	and
references.

Topics	in	this	section

Objects
Forms
Standard	Modules
Class	Modules
References
Add	New	Components

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

Objects
	
	
	

The	object	component	represents	the	type	of	object,	or	document,	that	the	VBA
code	will	access.	For	AutoCAD	VBA	projects,	this	object	represents	the	current
AutoCAD	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

Forms
	
	
	

The	form	component	contains	the	custom	dialog	boxes	you	constructed	for	use
with	your	project.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

Standard	Modules
	
	
	

The	code	module	component	contains	your	generic	procedures	and	functions.	A
standard	module	is	also	referred	to	as	a	code	module,	or	as	simply	a	module.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

Class	Modules
	
	
	

The	class	module	component	contains	all	your	own	objects,	which	are	defined	as
classes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

References
	
	
	

The	reference	component	contains	all	your	references	to	other	projects	or
libraries.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Define	the
Components	in	a	Project	>	

Add	New	Components
	
	
	

Adding	new	components	creates	a	blank	component	in	your	project.	You	can	add
new	modules,	forms,	and	class	modules	to	your	project.	You	are	responsible	for
updating	all	the	properties	of	the	component	(such	as	the	name	of	the
component)	and	for	filling	in	the	appropriate	code.	When	naming	new
components,	remember	that	other	developers	may	want	to	use	your	components
in	future	applications.	Follow	the	appropriate	naming	conventions	for	your
development	team.

To	add	a	new	component	to	your	project

1.	 In	the	Project	window	of	the	VBA	IDE,	select	the	project	to	which	you
will	be	adding	the	component.

2.	 From	the	Insert	menu,	select	UserForm,	Module,	or	Class	Module	to	add
the	new	component	to	your	project.
The	new	component	will	be	added	to	your	project	and	will	appear	in	the
Project	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Import	Existing	Components
	
	
	

Importing	allows	you	to	add	an	existing	component	to	your	project.	You	can
import	forms,	modules,	or	class	modules.	Forms	are	imported	as	FRM	files,
modules	are	imported	as	BAS	files,	and	class	modules	are	imported	as	CLS	files.

When	you	import	a	component	file,	a	copy	of	the	file	you	are	importing	is	added
to	the	project.	The	original	file	is	left	intact.	Changes	you	make	to	the	imported
component	do	not	alter	the	original	component	file.

If	you	import	a	component	with	the	same	name	as	an	existing	one,	the	file	is
added	to	your	project	with	a	number	appended	to	it.

The	imported	component	will	be	added	to	your	project	and	will	appear	in	the
Project	window.	To	edit	the	properties	of	the	component,	select	that	component
in	the	Project	window.	The	properties	for	the	selected	component	will	be	listed
and	can	be	edited	in	the	Properties	window.

To	import	an	existing	component	to	your	project

1.	 In	the	Project	window	of	the	VBA	IDE,	select	the	project	to	which	you
will	be	adding	the	component.

2.	 From	the	File	menu,	select	Import	File	to	open	the	Import	File	dialog
box.

3.	 From	the	Import	File	dialog	box,	select	the	file	to	import	and	press
Open.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Edit	Components
	
	
	

You	can	edit	standard	modules,	class	modules,	and	forms	in	the	VBA	IDE.
Standard	and	class	modules	are	edited	in	a	Code	window.	Forms	are	edited	in	the
UserForm	window	using	a	special	toolbox.

You	can	open	as	many	Code	windows	as	you	have	modules,	so	you	can	easily
view	the	code	in	different	forms	or	modules,	and	copy	and	paste	between	them.

To	edit	a	component	in	your	project

1.	 In	the	Project	window	of	the	VBA	IDE,	select	the	component	you	want
to	edit.

2.	 Select	the	View	Code	button	in	the	Project	window	to	open	a	Code
window.

3.	 Select	the	View	Object	button	in	the	Project	window	to	open	a	UserForm
window	and	associated	toolbox.

To	access	the	code	associated	with	a	form

To	access	the	code	associated	with	a	control,	double-click	on	any	control
in	the	Form	window.	The	code	associated	with	that	control	will	open	in	a
Code	window.

Topics	in	this	section

Use	the	Code	Window
Use	the	UserForm	Window

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Edit
Components	>	

Use	the	Code	Window
	
	
	

The	Code	window	contains	two	drop-down	lists,	a	split	bar,	a	margin	indicator
bar,	and	the	Full	View	and	Procedure	View	icons.

The	two	drop-down	lists	at	the	top	of	the	Code	window	display	the	current
object	and	procedure.	You	can	move	about	your	project	by	changing	the	object
or	procedure	in	these	drop-down	lists.

The	split	bar	on	the	right	side	of	the	Code	window	allows	you	to	split	the
window	horizontally.	Simply	drag	this	bar	down	to	create	another	window	pane.
This	feature	allows	you	to	view	two	parts	of	code	simultaneously	in	the	same
module.	To	close	the	pane,	drag	the	split	bar	back	to	its	original	location.

The	margin	indicator	bar	is	located	down	the	left	side	of	the	Code	window.	It	is
used	to	display	margin	indicators	that	are	used	during	code	editing	and
debugging.

The	Full	View	and	Procedure	View	icons	are	located	at	the	bottom-left	corner	of
the	Code	window	and	toggle	the	display	from	only	one	procedure	at	a	time	to
viewing	the	entire	module	at	one	time.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Edit
Components	>	

Use	the	UserForm	Window
	
	
	

The	UserForm	window	allows	you	to	create	custom	dialog	boxes	in	your	project.

To	add	a	control	simply	drag	the	desired	control	from	the	toolbox	and	place	it	on
the	form.	You	can	set	your	controls	to	align	with	the	grid	of	your	form	from	the
General	tab	of	the	Options	dialog	box.	You	can	view	the	form	grid	and
determine	the	size	of	the	gridlines	from	the	General	tab	of	the	Options	dialog
box.	(See	Set	the	VBA	IDE	Options	for	more	information	on	the	Options	dialog
box.)

Each	form	you	design	will	automatically	have	a	Maximize,	Minimize,	and	Close
button.	These	buttons	have	already	been	implemented	for	you.

To	add	code	to	the	control,	simply	double-click	on	the	control	once	it	has	been
placed	on	the	form.	This	will	open	a	Code	window	for	the	control.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Name	Your	Project
	
	
	

The	project	name	and	the	name	of	the	.dvb	file	where	the	project	is	stored	are
two	different	values.	You	establish	the	name	of	the	.dvb	file	the	project	is	stored
in	when	you	save	the	project.	The	project	name	is	set	in	the	Properties	window
of	the	VBA	IDE.

If	you	do	not	set	the	project	name	and	file	name,	AutoCAD	automatically
assigns	the	following	default	names:

Project	name:	ACADProject

File	name:	Project.dvb

To	change	the	name	of	a	project

1.	 In	the	Project	window	of	the	VBA	IDE,	select	the	project	to	change.

2.	 In	the	Properties	window,	edit	the	Name	property	for	the	project.

To	change	the	file	name	for	a	project

1.	 In	the	VBA	IDE,	select	the	Save	option	from	the	File	menu.

2.	 In	the	Save	As	dialog	box,	enter	the	new	name	and	location	for	the
project	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Save	Your	Project
	
	
	

There	is	no	explicit	SAVE	command	in	AutoCAD	for	VBA	projects.	Instead,	the
SAVE	command	resides	in	the	File	menu	of	the	VBA	IDE	and	in	the	VBA
Manager.	Any	changes	to	a	VBA	project	will	access	a	standard	Save	VBA
Project	dialog	box	when	one	of	these	events	occurs:

You	select	the	SAVE	command	from	the	VBA	IDE.

You	choose	the	Save	As	option	in	the	VBA	Manager.

Your	AutoCAD	session	is	about	to	end	or	quit	and	the	VBA	project	is
not	saved.

Note Before	you	save	a	project,	it	is	assigned	the	default	file	name	project.dvb.	It
is	important	that	you	assign	a	new	name	to	your	project	file	when	you	save	the
project.	If	you	save	a	project	with	the	default	file	name	project.dvb,	you	will	no
longer	be	able	to	create	new	empty	projects.	Each	time	you	create	a	new	project,
you	will	actually	be	loading	the	saved	project	called	project.dvb.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Reference	Other	VBA	Projects
	
	
	

Referencing	one	VBA	project	from	another	allows	developers	to	share	code
more	easily.	Developers	can	create	libraries	of	commonly	used	macros	and	then
reference	the	library	when	needed.	This	keeps	the	shared	code	centrally	located
and	supported,	while	allowing	a	large	number	of	developers	to	utilize	the	code.

Once	another	project	has	been	successfully	referenced,	you	will	notice	a	new
folder	in	the	Projects	window	of	the	VBA	IDE.	This	new	folder	is	titled
References	and	contains	the	name	of	the	project	referenced.

Once	you	have	referenced	a	project,	you	can	use	any	public	code	or	form
component	in	that	project.

When	a	project	that	references	another	project	is	loaded	into	AutoCAD,	the
referenced	project	is	automatically	loaded	into	AutoCAD	as	well.	The
referenced	project	cannot	be	closed	until	all	projects	that	reference	it	are	closed
first.

You	cannot	make	circular	references.	That	is,	you	cannot	reference	a	project	that
contains	a	reference	back	to	the	first	project.	If	you	accidentally	create	a	circular
reference,	you	will	be	notified	by	VBA.

Project	referencing	is	a	standard	feature	of	Microsoft	VBA.	There	is	no
additional	work	in	AutoCAD	to	extend	this	functionality.	You	can	find	more
information	on	referencing	projects	in	the	Microsoft	VBA	Help.	You	can	open
the	Microsoft	VBA	Help	from	the	Help	menu	in	the	VBA	IDE.

Note You	cannot	reference	embedded	projects	or	VBA	projects	from	other
applications.

To	reference	another	VBA	project

1.	 In	the	Project	window	of	the	VBA	IDE,	select	the	project	to	which	you
will	be	adding	the	reference.

2.	 From	the	Tools	menu,	select	the	References	option	to	open	the
References	dialog	box.

3.	 From	the	References	dialog	box,	press	the	Browse	button	to	open	the
Add	Reference	dialog	box.

4.	 From	the	Add	Reference	dialog	box,	select	the	project	file	you	want	to
reference	and	then	press	the	Open	button.

5.	 From	the	Add	Reference	dialog	box,	select	the	OK	button	to	complete
the	reference	addition.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	

Set	the	VBA	IDE	Options
	
	
	

You	can	change	the	characteristics	of	the	VBA	IDE	using	the	Options	dialog
box.	To	open	the	Options	dialog	box,	use	the	Tools	menu	and	select	Options.

The	Options	dialog	box	contains	four	tabs:	Editor,	Editor	Format,	General,	and
Docking.

Topics	in	this	section

Editor
Editor	Format
General
Docking

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Set	the
VBA	IDE	Options	>	

Editor
	
	
	

The	Editor	tab	specifies	the	Code	window	and	Project	window	settings.

Code	settings	include

Auto	Syntax	Check

Require	Variable	Declaration

Auto	List	Member

Auto	Quick	Info

Auto	Data	Tips

Auto	Indent

Tab	Width

Window	settings	include

Drag	and	Drop	Text	Editing

Default	to	Full	Module	View

Procedure	Separator	Display

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Set	the
VBA	IDE	Options	>	

Editor	Format
	
	
	

The	Editor	Format	tab	specifies	the	appearance	of	your	code.

You	can

Change	color	of	the	code

Change	text	list	items

Change	foreground

Change	background

Change	margin	indicators

Change	text	font	and	size

Display	or	hide	the	margin	indicator

Display	or	hide	sample	text	for	your	settings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Set	the
VBA	IDE	Options	>	

General
	
	
	

The	General	tab	specifies	the	settings,	error	handling,	and	compile	settings	for
your	current	VBA	project.

You	can

Change	the	grid	settings	for	the	form	grid

Display	or	hide	tooltips

Set	the	automatic	collapse	of	windows

Choose	to	receive	state	loss	notifications

Determine	how	errors	are	handled

Set	the	project	to	compile	on	demand	or	perform	background
compilations

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	Edit	Your	Projects	with	the	VBA	IDE	>	Set	the
VBA	IDE	Options	>	

Docking
	
	
	

The	Docking	tab	allows	you	to	choose	which	windows	you	want	to	be	dockable.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

Perform	an	Introductory	Exercise
	
	
	

Now	that	you	have	learned	the	basics	of	programming	in	AutoCAD	VBA,	let's
try	creating	a	simple	“Hello	World”	exercise.	In	this	exercise	you	will	create	a
new	AutoCAD	drawing,	add	a	line	of	text	to	that	drawing,	then	save	the
drawing,	all	from	VBA.

To	create	the	“Hello	World”	text	object

1.	 Open	the	VBA	IDE	by	entering	the	following	command	from	the
AutoCAD	command	line:
Command:	VBAIDE

2.	 Open	the	Code	window	by	selecting	the	Code	option	from	the	View
menu	in	the	VBA	IDE.

3.	 Create	a	new	procedure	in	the	project	by	selecting	the	Procedure	option
from	the	Insert	menu	in	the	VBA	IDE.

4.	 When	prompted	for	the	procedure	information,	enter	a	name	such	as
HelloWorld.	Make	sure	the	Type	selected	is	Sub,	and	the	Scope	selected
is	Public.

5.	 Choose	OK.

6.	 Enter	the	following	code	(that	opens	a	new	drawing)	between	the	lines
Public	Sub	HelloWorld()	and	End	Sub.

ThisDrawing.Application.Documents.Add

7.	 Enter	the	following	code	(that	creates	the	text	string	and	defines	its
insertion	location)	immediately	following	the	code	entered	in	step	6.

Dim	insPoint(0	To	2)	As	Double	'Declare	insertion	point

Dim	textHeight	As	Double							'Declare	text	height

Dim	textStr	As	String										'Declare	text	string

Dim	textObj	As	AcadText								'Declare	text	object

insPoint(0)	=	2						'Set	insertion	point	x	coordinate

insPoint(1)	=	4						'Set	insertion	point	y	coordinate

insPoint(2)	=	0						'Set	insertion	point	z	coordinate

textHeight	=	1																		'Set	text	height	to	1.0

textStr	=	"Hello	World!"								'Set	the	text	string

'Create	the	Text	object

Set	textObj	=	ThisDrawing.ModelSpace.AddText	_

	(textStr,	insPoint,	textHeight)

8.	 Enter	the	code	(that	saves	the	drawing)	immediately	following	the	code
entered	in	step	7.

ThisDrawing.SaveAs("Hello.dwg")

9.	 Run	your	program	by	selecting	the	Run	Sub/UserForm	option	from	the
Run	menu	in	the	VBA	IDE.
When	the	program	finishes	running,	bring	the	AutoCAD	application	to
the	front.	You	should	see	your	text	“Hello	World!”	visible	in	your
drawing.	The	drawing	name	should	be	Hello.dwg.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

More	Information
	
	
	

More	information	on	the	VBA	IDE	and	the	VBA	programming	language	is
available	in	the	Help	files	provided	by	Microsoft.	To	access	the	Microsoft	Help
files,	choose	Microsoft	Visual	Basic	Help	from	the	Help	menu	in	the	VBA	IDE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

AutoCAD	VBA	Project	Terms
	
	
	

Global	Project

A	VBA	project	stored	in	a	.dvb	file.

Embedded	Project

A	VBA	project	stored	in	an	AutoCAD	drawing.

Regular	Document

An	AutoCAD	drawing	that	does	not	contain	VBA	embedded	projects.

Smart	Document

An	AutoCAD	drawing	that	contains	one	or	more	VBA	embedded	projects.

Current	Project

The	project	currently	selected	in	the	VBA	IDE.

ThisDrawing

ThisDrawing	is	a	VBA	programming	term	used	to	represent	the	current
drawing.	For	global	projects,	ThisDrawing	always	refers	to	the	active
document	in	AutoCAD.	For	embedded	projects,	ThisDrawing	always	refers
to	the	document	containing	the	project.

VBA	IDE

The	VBA	interactive	development	environment.	This	application	allows	you
to	edit	the	code	and	forms	in	your	project,	or	copy	code	and	forms	from	other
projects.	It	also	allows	you	to	set	references	to	other	application	Object
Models.

VBA	Manager

The	VBA	Manager	allows	you	to	manage	your	projects.	You	can	create,
delete,	embed,	or	extract	projects.	You	can	also	view	which	projects,	if	any,

are	embedded	in	an	open	drawing.

Macros	Dialog	Box

The	Macros	dialog	box	allows	you	to	run,	delete,	and	create	new	macros,	and
provides	access	to	the	VBA	project	options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started	with	VBA	>	

AutoCAD	VBA	Commands
	
	
	

VBAIDE

Brings	up	the	VBA	IDE.
The	VBA	IDE	allows	you	to	edit,	run,	and	debug	programs	interactively.
Although	the	VBA	IDE	is	invoked	only	when	AutoCAD	is	running,	it	can	be
minimized,	opened,	and	closed	independent	of	the	AutoCAD	Application
window.

VBALOAD

Loads	a	VBA	project	into	the	current	AutoCAD	session.

VBARUN

Runs	a	VBA	macro	from	the	Macros	dialog	box	or	from	the	AutoCAD
command	line.

VBAUNLOAD

Unloads	a	VBA	project	from	the	current	AutoCAD	session.
If	the	VBA	project	is	modified	but	not	saved,	the	user	is	asked	to	save	it	with
the	Save	Project	dialog	box	(or	command	line	equivalent).

VBAMAN

Displays	the	VBA	Manager	allowing	you	to	view,	create,	load,	close,	embed,
and	extract	projects.

VBASTMT

Executes	a	VBA	statement	from	the	AutoCAD	command	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>xdata.	<$nopage>root	object:

	

ActiveX	Automation	Basics
	
	
	

To	use	AutoCAD	ActiveX	Automation	effectively	you	should	be	familiar	with
the	AutoCAD	entities,	objects,	and	features	relating	to	the	type	of	application
you	are	developing.	The	greater	your	knowledge	of	an	object's	graphical	and
nongraphical	properties,	the	easier	it	is	for	you	to	manipulate	them	through
AutoCAD	ActiveX	Automation.

Remember	that	the	AutoCAD	ActiveX	Automation	Help	file	is	available—just
press	F1.	If	you	are	having	trouble	with	a	particular	object,	method,	or	property,
highlight	the	object,	method,	or	property	in	the	VBA	IDE	and	press	F1.

Topics	in	this	section

Understand	the	AutoCAD	Object	Model
Access	the	Object	Hierarchy
Collection	Objects
Understand	Properties	and	Methods
Understand	Parent	Objects
Locate	the	Type	Library
Use	Variants	in	Methods	and	Properties
Using	Other	Programming	Languages

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>xdata.

ActiveX	Automation	Basics	>	

Understand	the	AutoCAD	Object	Model
	
	
	

An	object	is	the	main	building	block	of	the	AutoCAD®	ActiveX®	interface.
Each	exposed	object	represents	a	precise	part	of	AutoCAD.	There	are	many
different	types	of	objects	in	the	AutoCAD	ActiveX	interface.	For	example:

Graphical	objects	such	as	lines,	arcs,	text,	and	dimensions	are	objects.

Style	settings	such	as	linetypes	and	dimension	styles	are	objects.

Organizational	structures	such	as	layers,	groups,	and	blocks	are	objects.

The	drawing	display	such	as	view	and	viewport	are	objects.

Even	the	drawing	and	the	AutoCAD	application	are	considered	objects.

The	objects	are	structured	in	a	hierarchical	fashion,	with	the	Application	object
at	the	root.	The	view	of	this	hierarchical	structure	is	referred	to	as	the	Object
Model.	The	Object	Model	shows	you	which	object	provides	access	to	the	next
level	of	objects.

Topics	in	this	section

The	Application	Object
The	Document	Object
The	Collection	Objects
The	Graphical	and	Nongraphical	Objects
The	Preferences,	Plot,	and	Utility	Objects
Use	New	AutoCAD	Features

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

The	Application	Object
	
	
	

The	Application	object	is	the	Root	object	for	the	AutoCAD	ActiveX	Automation
Object	Model.	From	the	Application	object,	you	can	access	any	of	the	other
objects,	or	the	properties	or	methods	assigned	to	any	object.

For	example,	the	Application	object	has	a	Preferences	property	that	returns	the
Preferences	object.	This	object	provides	access	to	the	registry-stored	settings	in
the	Options	dialog	box.	(Drawing-stored	settings	are	contained	in	the
DatabasePreferences	object,	which	will	be	discussed	later.)	Other	properties	of
the	Application	object	give	you	access	to	application-specific	data	such	as	the
application	name	and	version,	and	the	AutoCAD	size,	location,	and	visibility.
The	methods	of	the	Application	object	perform	application-specific	actions	such
as	listing,	loading,	and	unloading	ADS	and	ARX	applications,	and	quitting
AutoCAD.

The	Application	object	also	provides	links	to	the	AutoCAD	drawings	through
the	Documents	collection,	the	AutoCAD	menus	and	toolbars	through	the
MenuBar	and	MenuGroups	collections,	and	the	VBA	IDE	through	a	property
called	VBE.

The	Application	object	is	also	the	Global	object	for	the	ActiveX	interface.	This
means	that	all	the	methods	and	properties	for	the	Application	object	are	available
in	the	global	name	space.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

The	Document	Object
	
	
	

The	Document	object,	which	is	actually	an	AutoCAD	drawing,	is	found	in	the
Documents	collection	and	provides	access	to	all	of	the	graphical	and	most	of	the
nongraphical	AutoCAD	objects.	Access	to	the	graphical	objects	(lines,	circles,
arcs,	and	so	forth)	is	provided	through	the	ModelSpace	and	PaperSpace
collections,	and	access	to	nongraphical	objects	(layers,	linetypes,	text	styles,	and
so	forth)	is	provided	through	like-named	collections	such	as	Layers,	Linetypes,
and	TextStyles.	The	Document	object	also	provides	access	to	the	Plot	and	Utility
objects.

To	access	drawing	properties,	use	the	SummaryInfo	property	of	the	Document
object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

The	Collection	Objects
	
	
	

AutoCAD	groups	most	objects	in	collections.	Although	these	collections	contain
different	types	of	data,	they	can	be	processed	using	similar	techniques.	Each
collection	has	a	method	for	adding	an	object	to	the	collection.	Most	collections
use	the	Add	method	for	this	purpose.	However,	entity	objects	are	usually	added
using	a	method	titled	Add<Entityname>.	For	example,	to	add	a	line	you	would
use	the	AddLine	method.

Collections	also	have	some	other	methods	and	properties	in	common.	The	Count
property	can	be	used	to	obtain	a	zero-based	count	of	the	objects	in	a	collection.
The	Item	method	can	be	used	to	obtain	any	object	within	a	collection.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>xdata.

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

The	Graphical	and	Nongraphical	Objects
	
	
	

Graphical	objects,	also	known	as	entities,	are	the	visible	objects	(lines,	circles,
raster	images,	and	so	forth)	that	make	up	a	drawing.	To	create	these	objects,	use
the	appropriate	Add<Entityname>	method.	To	modify	or	query	these	objects,	use
the	methods	or	properties	of	the	object	itself.	Each	graphical	object	has	methods
that	allow	an	application	to	perform	most	of	the	AutoCAD	editing	commands
such	as	Copy,	Erase,	Move,	Mirror,	and	so	forth.	These	objects	also	have
methods	for	setting	and	retrieving	extended	data	(xdata),	highlighting	and
updating,	and	retrieving	the	bounding	box	of	the	object.	Graphical	objects	have
typical	properties	such	as	Layer,	Linetype,	Color,	and	Handle.	They	also	have
specific	properties,	depending	on	their	object	type,	such	as	Center,	Radius,	and
Area.

Nongraphical	objects	are	the	invisible	(informational)	objects	that	are	part	of	a
drawing,	such	as	Layers,	Linetypes,	DimStyles,	SelectionSets,	and	so	forth.	To
create	these	objects,	use	the	Add	method	of	the	parent	Collection	object.	To
modify	or	query	these	objects,	use	the	methods	or	properties	of	the	object	itself.
Each	nongraphical	object	has	methods	and	properties	specific	to	its	purpose;	all
have	methods	for	setting	and	retrieving	extended	data	(xdata),	and	deleting
themselves.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

The	Preferences,	Plot,	and	Utility	Objects
	
	
	

Under	the	Preferences	object	is	a	set	of	objects,	each	corresponding	to	a	tab	in
the	Options	dialog	box.	Together,	these	objects	provide	access	to	all	the	registry-
stored	settings	in	the	Options	dialog	box.	Drawing-stored	settings	are	contained
in	the	DatabasePreferences	object.	You	can	also	set	and	modify	options	(and
system	variables	that	are	not	part	of	the	Options	dialog	box)	with	the	SetVariable
and	GetVariable	methods.	For	more	information	about	setting	options	see	Set
AutoCAD	Preferences.

The	Plot	object	provides	access	to	settings	in	the	Plot	dialog	box	and	gives	an
application	the	ability	to	plot	the	drawing	using	various	methods.	For	more
information	on	plotting,	see	Plot	Your	Drawing.

The	Utility	object	provides	user	input	and	conversion	functions.	The	user	input
functions	are	methods	that	prompt	the	user	on	the	AutoCAD	command	line	for
input	of	various	types	of	data,	such	as	strings,	integers,	reals,	points,	and	so
forth.	The	conversion	functions	are	methods	that	operate	on	AutoCAD-specific
data	types	such	as	points	and	angles,	in	addition	to	string	and	number	handling.
For	more	information	on	the	user	input	functions,	see	Prompt	for	User	Input.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Understand	the	AutoCAD	Object	Model	>	

Use	New	AutoCAD	Features
	
	
	

If	your	Automation	project	uses	a	feature	that	was	not	in	a	previous	AutoCAD
version,	you	must	explicitly	declare	the	AutoCAD	interface	you	are	using	in	the
project.

If	an	Automation	project	contains	explicit	declarations	of	interfaces	that	are	new
in	a	specific	version	of	AutoCAD,	do	not	use	that	project	with	earlier	versions	of
AutoCAD.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>root	object:

ActiveX	Automation	Basics	>	

Access	the	Object	Hierarchy
	
	
	

Accessing	the	object	hierarchy	is	easy	from	within	VBA.	This	is	because	VBA	is
running	in-process	with	the	current	AutoCAD	session	so	there	is	no	additional
step	needed	to	connect	it	to	the	application.

VBA	provides	a	link	to	the	active	drawing	in	the	current	AutoCAD	session
through	the	ThisDrawing	object.	By	using	ThisDrawing	you	gain
immediate	access	to	the	current	Document	object	and	all	of	its	methods	and
properties,	and	all	of	the	other	objects	in	the	hierarchy.

When	used	in	global	projects,	ThisDrawing	always	refers	to	the	active
document	in	AutoCAD.	When	used	in	embedded	projects,	ThisDrawing
always	refers	to	the	document	containing	the	project.	For	example,	the	following
line	of	code	in	a	global	project	saves	whatever	drawing	is	currently	active	in
AutoCAD:

ThisDrawing.Save

Topics	in	this	section

Reference	Objects	in	the	Object	Hierarchy
Access	the	Application	Object

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Access	the	Object	Hierarchy	>	

Reference	Objects	in	the	Object	Hierarchy
	
	
	

You	can	reference	objects	directly	or	through	a	user-defined	variable.	To
reference	the	objects	directly,	include	the	object	in	the	calling	hierarchy.	For
example,	the	following	statement	adds	a	line	in	modelspace.	Notice	that	the
hierarchy	starts	with	ThisDrawing,	goes	to	the	ModelSpace	object,	and	then
calls	the	AddLine	method:

Dim	startPoint(0	To	2)	As	Double,	endPoint(0	To	2)	As	Double

Dim	LineObj	as	AcadLine

startPoint(0)	=	0:	startPoint(1)	=	0:	startPoint(2)	=	0

endPoint(0)	=	30:	endPoint(1)	=	20:	endPoint(2)	=	0

Set	LineObj	=	ThisDrawing.ModelSpace.AddLine(startPoint,endPoint)

To	reference	the	objects	through	a	user-defined	variable,	define	the	variable	as
the	desired	type,	then	set	the	variable	to	the	appropriate	object.	For	example,	the
following	code	defines	a	variable	(moSpace)	of	typeAcadModelSpace	and
sets	the	variable	equal	to	the	current	model	space:

Dim	moSpace	As	AcadModelSpace

Set	moSpace	=	ThisDrawing.ModelSpace

The	following	statement	then	adds	a	line	to	the	model	space	using	the	user-
defined	variable:

Dim	startPoint(0	To	2)	As	Double,	endPoint(0	To	2)	As	Double

Dim	LineObj	as	AcadLine

startPoint(0)	=	0:	startPoint(1)	=	0:	startPoint(2)	=	0

endPoint(0)	=	30:	endPoint(1)	=	20:	endPoint(2)	=	0

Set	LineObj	=	moSpace.AddLine(startPoint,endPoint)

Retrieving	the	first	entity	in	model	space

The	following	example	returns	the	first	entity	object	in	model	space.	Similar
code	can	do	the	same	for	paper	space	entities.	Note	that	all	drawing	objects	can

be	defined	as	AcadEntity	objects:

Sub	Ch2_FindFirstEntity()

				'	This	example	returns	the	first	entity	in	model	space

				On	Error	Resume	Next

				Dim	entity	As	AcadEntity

				If	ThisDrawing.ModelSpace.count	<>	0	Then

								Set	entity	=	ThisDrawing.ModelSpace.Item(0)

								MsgBox	entity.ObjectName	+	_

	"	is	the	first	entity	in	model	space."

				Else

								MsgBox	"There	are	no	objects	in	model	space."

				End	If

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>root	object:

ActiveX	Automation	Basics	>	Access	the	Object	Hierarchy	>	

Access	the	Application	Object
	
	
	

The	Application	property	of	the	Document	object	provides	access	to	the
Application	object.	The	Application	object	is	above	the	Document	object	in	the
object	hierarchy.

The	ThisDrawing	object	provides	access	to	the	Document	object.	For
example,	the	following	line	of	code	updates	the	application:

ThisDrawing.Application.Update

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Collection	Objects
	
	
	

A	Collection	object	is	a	predefined	object	that	contains	(is	a	parent	object	for)	all
instances	of	a	similar	object.The	following	is	a	list	of	collection	objects:

Collection

Contains	all	documents	open	in	the	current	AutoCAD	session.

ModelSpace	Collection

Contains	all	graphical	objects	(entities)	in	model	space.

PaperSpace	Collection

Contains	all	graphical	objects	(entities)	in	the	active	paper	space	layout.

Block	Object

Contains	all	entities	within	a	specific	block	definition.

Blocks	Collection

Contains	all	blocks	in	the	drawing.

Dictionaries	Collection

Contains	all	dictionaries	in	the	drawing.

DimStyles	Collection

Contains	all	dimension	styles	in	the	drawing.

FileDependencies	Collection

Contains	all	items	in	the	File	Dependency	List.

Groups	Collection

Contains	all	groups	in	the	drawing.

Hyperlinks	Collection

Contains	all	hyperlinks	for	a	given	entity.

Layers	Collection

Contains	all	layers	in	the	drawing.

Layouts	Collection

Contains	all	layouts	in	the	drawing.

Linetypes	Collection

Contains	all	linetypes	in	the	drawing.

MenuBar	Collection

Contains	all	menus	currently	displayed	in	AutoCAD.

MenuGroups	Collection

Contains	all	menus	and	toolbars	currently	loaded	in	AutoCAD.

PlotConfigurations	Collection

Contains	named	plot	settings	in	the	drawing.

RegisteredApplications	Collection

Contains	all	registered	applications	in	the	drawing.

SelectionSets	Collection

Contains	all	selection	sets	in	the	drawing.

TextStyles	Collection

Contains	all	text	styles	in	the	drawing.

UCSs	Collection

Contains	all	user	coordinate	systems	(UCS's)	in	the	drawing.

Views	Collection

Contains	all	views	in	the	drawing.

Viewports	Collection

Contains	all	viewports	in	the	drawing.

Topics	in	this	section

Access	a	Collection
Add	a	New	Member	to	a	Collection	Object
Iterate	through	a	Collection	Object
Delete	a	Member	of	a	Collection	Object

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Collection	Objects	>	

Access	a	Collection
	
	
	

Most	collection	objects	are	accessed	through	the	Document	object.	The
Document	object	contains	a	property	for	each	of	the	Collection	objects.	For
example,	the	following	code	defines	a	variable	and	sets	it	to	the	Layers
collection	of	the	current	drawing:

Dim	layerCollection	as	AcadLayers

Set	layerCollection	=	ThisDrawing.Layers

The	Documents	collection,	MenuBar	collection,	and	MenuGroups	collection	are
accessed	through	the	Application	object.	The	Application	object	contains	a
property	for	each	of	these	collections.	For	example,	the	following	code	defines	a
variable	and	sets	it	to	the	MenuGroups	collection	for	the	application:

Dim	MenuGroupsCollection	as	AcadMenuGroups

Set	MenuGroupsCollection	=	ThisDrawing.Application.MenuGroups

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Collection	Objects	>	

Add	a	New	Member	to	a	Collection	Object
	
	
	

To	add	a	new	member	to	the	collection,	use	the	Add	method.	For	example,	the
following	code	creates	a	new	layer	and	adds	it	to	the	Layers	collection:

Dim	newLayer	as	AcadLayer

Set	newLayer	=	ThisDrawing.Layers.Add("MyNewLayer")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Collection	Objects	>	

Iterate	through	a	Collection	Object
	
	
	

To	select	a	specific	member	of	a	Collection	object,	use	the	Item	method.	The
Item	method	requires	an	identifier	as	either	an	index	number	specifying	the
location	of	the	item	within	the	collection	or	a	string	representing	the	name	of	the
item.

The	Item	method	is	the	default	method	for	a	collection.	If	you	do	not	specify	a
method	name	when	referring	to	a	collection,	Item	is	assumed.	The	following
statements	are	equivalent:

ThisDrawing.Layers.Item("ABC")

ThisDrawing.Layers("ABC")

Note Do	not	use	the	entity	edit	methods	(Copy,	Array,	Mirror,	and	so	forth)	on
any	object	while	simultaneously	iterating	through	a	collection	using	the	For
Each	mechanism.	Either	finish	your	iteration	before	you	attempt	to	edit	an	object
in	the	collection	or	create	a	temporary	array	and	set	it	equal	to	the	collection.
Then	you	can	iterate	through	the	copied	array	and	perform	your	edits.

Iteratethrough	the	Layers	collection

The	following	example	iterates	through	a	collection	and	displays	the	names	of
all	layers	in	the	collection:

Sub	Ch2_IterateLayer()

				'	Iterate	through	the	collection

				On	Error	Resume	Next

				Dim	I	As	Integer

				Dim	msg	As	String

				msg	=	""

				For	I	=	0	To	ThisDrawing.Layers.count	-	1

								msg	=	msg	+	ThisDrawing.Layers.Item(I).Name	+	vbCrLf

				Next

				MsgBox	msg

End	Sub

Find	the	layer	named	MyLayer

The	following	example	refers	to	layer	named	MyLayer,	and	issues	a	message	if
the	layer	does	not	exist:

Sub	Ch2_FindLayer()

				'	Use	the	Item	method	to	find	a	layer	named	MyLayer

				On	Error	Resume	Next

				Dim	ABCLayer	As	AcadLayer

				Set	ABCLayer	=	ThisDrawing.Layers("MyLayer")

				If	Err	<>	0	Then

								MsgBox	"The	layer	'MyLayer'	does	not	exist."

				End	If

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Collection	Objects	>	

Delete	a	Member	of	a	Collection	Object
	
	
	

To	delete	a	specific	dimension	style,	use	the	Delete	method	found	on	the
member	object.	For	example,	the	following	code	deletes	the	layer	ABC:

Dim	ABCLayer	as	AcadLayer

Set	ABCLayer	=	ThisDrawing.Layers.Item("ABC")

ABCLayer.Delete

Once	an	object	has	been	deleted,	you	must	never	attempt	to	access	the	object
again	later	in	the	program.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Understand	Properties	and	Methods
	
	
	

Each	object	has	associated	properties	and	methods.	Properties	describe	aspects
of	the	individual	object,	while	methods	are	actions	that	can	be	performed	on	the
individual	object.	Once	an	object	is	created,	you	can	query	and	edit	the	object
through	its	properties	and	methods.

For	example,	a	Circle	object	has	the	Center	property.	This	property	represents
the	3D	world	coordinate	system	coordinate	at	the	center	of	that	circle.	To	change
the	center	of	the	circle,	simply	set	this	property	to	the	new	coordinate.	The	Circle
object	also	has	a	method	called	Offset.	This	method	creates	a	new	object	at	a
specified	offset	distance	from	the	existing	circle.	To	see	a	list	of	all	properties
and	methods	for	the	Circle	object,	refer	to	the	Circle	object	in	the	AutoCAD
ActiveX	and	VBA	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Understand	Parent	Objects
	
	
	

Each	object	has	a	parent	object	to	which	it	is	permanently	linked.	All	objects
originate	from	a	single	parent	object	called	the	Root	object.	You	can	access	all
the	objects	in	the	interface	by	following	the	links	from	the	root	to	the	child
objects.	Additionally,	objects	have	a	property	called	Application	that	links
directly	back	to	the	Root	object.

The	Root	object	for	the	AutoCAD	interface	is	the	AutoCAD	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Locate	the	Type	Library
	
	
	

The	objects,	properties,	and	methods	exposed	by	Automation	objects	are
contained	in	a	type	library.	A	type	library	is	a	file	or	part	of	a	file	that	describes
the	type	of	one	or	more	objects.

Type	libraries	do	not	store	objects;	they	store	information.	By	accessing	a	type
library,	applications	and	browsers	can	determine	the	characteristics	of	an	object,
such	as	the	interfaces	supported	by	the	object	and	the	names	and	addresses	of	the
members	of	each	interface.

Before	you	can	use	the	Automation	object	exposed	by	an	application,	you	must
reference	its	type	library.	The	reference	is	automatically	set	in	the	VBA	IDE.	For
other	interactive	development	environments	you	must	create	a	reference	to	the
AutoCAD	type	library	file,	acax17enu.tlb,	which	is	located	at	c:\program
files\common	files\autodesk	shared.	To	access	Sheet	Set	Manager	objects	in	the
VBA	IDE	or	in	other	environments,	you	must	create	a	reference	to	the
AcSmComponents17	1.0	type	library	file,	AcSmComponents17.tlb,	which	is
located	at	c:\program	files\common	files\autodesk	shared.

You	can	use	an	application's	objects	without	referencing	the	application's	type
library.	However,	it	is	preferable	to	add	the	type	library	reference	for	the
following	reasons:

Globally	accessible	functions	may	be	accessed	directly	without
qualification.

Invocation	of	functions,	properties,	and	methods	can	be	checked	at
compile	time	for	correctness,	and	therefore	will	execute	more	quickly	at
runtime.

It	is	possible	to	declare	variables	of	the	types	defined	in	the	library,
which	increases	runtime	reliability	and	readability.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Use	Variants	in	Methods	and	Properties
	
	
	

ActiveX	Automation	uses	variants	to	pass	arrays	of	data.	Although	this	may
seem	confusing	to	a	novice	user,	it	is	not	difficult	once	you	learn	the	basics.	In
addition,	AutoCAD	ActiveX	Automation	provides	utilities	to	help	you	convert
your	data	types.

Topics	in	this	section

What	Is	a	Variant?
Use	Variants	for	Array	Data
Convert	Arrays	to	Variants
Interpret	Variant	Arrays

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Use	Variants	in	Methods	and	Properties	>	

What	Is	a	Variant?
	
	
	

A	variant	is	a	special	data	type	that	can	contain	any	kind	of	data	except	fixed-
length	string	data	and	user-defined	types.	A	variant	can	also	contain	the	special
values	Empty,	Error,	Nothing,	and	NULL.	You	can	determine	how	the	data
in	a	variant	is	treated	using	the	VarType	or	TypeName	VBA	function.

You	can	use	the	Variant	data	type	in	place	of	most	any	data	type	to	work	with
data	in	a	more	flexible	way.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Use	Variants	in	Methods	and	Properties	>	

Use	Variants	for	Array	Data
	
	
	

Variants	are	used	to	pass	array	data	in	and	out	of	AutoCAD	ActiveX
Automation.	This	means	that	your	array	must	be	a	variant	to	be	accepted	by
AutoCAD	ActiveX	Automation	methods	and	properties.	In	addition,	array	data
output	from	AutoCAD	ActiveX	Automation	must	be	handled	as	a	variant.

Note In	AutoCAD,	VBA	input	arrays	are	automatically	converted	to	variants.
This	means	that	you	don't	have	to	provide	a	variant	array	as	input	to	the	ActiveX
Automation	methods	and	properties	when	using	them	from	VBA.	However,	all
the	output	arrays	will	be	in	the	form	of	variants,	so	remember	to	handle	them
appropriately.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Use	Variants	in	Methods	and	Properties	>	

Convert	Arrays	to	Variants
	
	
	

AutoCAD	ActiveX	Automation	provides	a	utility	method	to	convert	an	array	of
data	into	a	variant.	This	method	is	the	CreateTypedArray	method,	which	creates
a	variant	that	contains	an	array	of	integers,	floating	numbers,	doubles,	and	so
forth.	You	can	pass	the	resulting	variant	into	any	AutoCAD	method	or	property
that	accepts	an	array	of	numbers	as	a	variant.

The	CreateTypedArray	method	takes	as	input	the	type	of	values	that	are	in	the
array,	and	the	array	of	data	to	be	converted.	It	returns	the	array	of	values	as	a
variant.

Create	a	spline	with	the	CreateTypedArray	method

The	following	code	converts	three	arrays	using	CreateTypedArray:	the
coordinates	for	a	spline's	fit	points,	and	the	start	and	end	tangent	of	the	spline.	It
then	passes	the	variant	into	the	AddSpline	method	to	create	the	spline.

Sub	Ch2_CreateSplineUsingTypedArray()

				'	This	example	creates	a	spline	object	in	model	space

				'	using	the	CreateTypedArray	method.

				Dim	splineObj	As	AcadSpline

				Dim	startTan	As	Variant

				Dim	endTan	As	Variant

				Dim	fitPoints	As	Variant

				Dim	utilObj	As	Object			'	late	bind	the	Utility	object

				Set	utilObj	=	ThisDrawing.Utility

				'	Define	the	Spline	Object

				utilObj.CreateTypedArray	_

	startTan,	vbDouble,	0.5,	0.5,	0

				utilObj.CreateTypedArray	_

	endTan,	vbDouble,	0.5,	0.5,	0

				utilObj.CreateTypedArray	_

	fitPoints,	vbDouble,	0,	0,	0,	5,	5,	0,	10,	0,	0

				Set	splineObj	=	ThisDrawing.ModelSpace.AddSpline	_

	(fitPoints,	startTan,	endTan)

				'	Zoom	in	on	the	newly	created	spline

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Use	Variants	in	Methods	and	Properties	>	

Interpret	Variant	Arrays
	
	
	

Array	information	passed	back	from	AutoCAD	ActiveX	Automation	is	passed
back	as	a	variant.	If	you	know	the	data	type	of	the	array,	you	can	simply	access
the	variant	as	an	array.	If	you	don't	know	the	data	type	contained	in	the	variant,
use	the	VBA	functions	VarType	or	Typename.	These	functions	return	the
type	of	data	in	the	variant.	If	you	need	to	iterate	through	the	array,	you	can	use
the	VBA	For	Eachstatement.

Calculate	the	distance	between	two	points

The	following	code	demonstrates	calculating	the	distance	between	two	points
input	by	the	user.	In	this	example,	the	data	type	is	known	because	all	coordinates
are	doubles.	3D	coordinates	are	a	three-element	array	of	doubles	and	2D
coordinates	are	a	two-element	array	of	doubles.

Sub	Ch2_CalculateDistance()

				Dim	point1	As	Variant

				Dim	point2	As	Variant

				'	Get	the	points	from	the	user

				point1	=	ThisDrawing.Utility.GetPoint	_

	(,	vbCrLf	&	"First	point:	")

				point2	=	ThisDrawing.Utility.GetPoint	_

	(point1,	vbCrLf	&	"Second	point:	")

				'	Calculate	the	distance	between	point1	and	point2

				Dim	x	As	Double,	y	As	Double,	z	As	Double

				Dim	dist	As	Double

				x	=	point1(0)	-	point2(0)

				y	=	point1(1)	-	point2(1)

				z	=	point1(2)	-	point2(2)

				dist	=	Sqr((Sqr((x	^	2)	+	(y	^	2))	^	2)	+	(z	^	2))

				'Display	the	resulting	distance

				MsgBox	"The	distance	between	the	points	is:	"	_

	&	dist,	,	"Calculate	Distance"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	

Using	Other	Programming	Languages
	
	
	

This	manual	is	written	for	the	VBA	programming	language.	The	programming
examples	and	sample	applications	are	written	in	VBA.	To	use	the	code	in	other
programming	environments,	you	must	update	it	for	the	chosen	environment.

Use	the	documentation	for	your	development	environment	to	help	you	convert
the	example	code.

Note The	registry	key	for	COM	application	access	for	AutoCAD	2009	is
AutoCAD.Application.17.

Topics	in	this	section

Convert	the	VBA	Code	to	VB

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX	Automation	Basics	>	Using	Other	Programming	Languages		>	

Convert	the	VBA	Code	to	VB
	
	
	

To	update	a	code	example	for	use	with	VB,	you	must	first	reference	the
AutoCAD	type	library.	To	do	this	in	VB,	select	the	References	option	from	the
Project	menu	to	launch	the	References	dialog	box.	From	the	References	dialog
box,	choose	the	type	library	for	AutoCAD,	and	then	click	OK.

Next,	in	the	code	example,	replace	all	references	to	ThisDrawing	with	a	user-
specified	variable	referencing	the	active	document.	To	do	this,	define	a	variable
for	the	AutoCAD	application	(acadApp)	and	for	the	current	document
(acadDoc).	Then,	set	the	application	variable	to	the	current	AutoCAD
application.

If	AutoCAD	is	running,	the	VB	GetObject	function	retrieves	the	AutoCAD
Application	object	when	you	specify	the	AutoCAD	version	number.	If
AutoCAD	is	not	running,	an	error	occurs	that	(in	this	example)	is	trapped,	then
cleared.	The	CreateObject	function	then	attempts	to	create	an	AutoCAD
Application	object.	If	it	succeeds,	AutoCAD	is	started;	if	it	fails,	a	message	box
displays	a	description	of	the	error.

When	running	multiple	sessions	of	AutoCAD,	the	GetObject	function	will	return
the	first	instance	of	AutoCAD	in	the	Windows	Running	Object	Table.	See	the
Microsoft	VBA	documentation	on	the	Running	Object	Table	(ROT)	and	the
GetObject	function	for	more	information	on	verifying	the	session	returned	by
GetObject.

You	must	set	the	AutoCAD	application's	Visible	property	to	TRUE	in	order	to
display	the	AutoCAD	drawing	window.

If	GetObject	creates	a	new	instance	of	AutoCAD	(that	is,	AutoCAD	was	not
already	running	when	you	issued	GetObject),	failure	to	set	Visible	to	TRUE
results	in	an	invisible	AutoCAD	application;	AutoCAD	will	not	even	appear	on
the	Windows	taskbar.

Note Use	version-dependent	ProgIDs.	If	a	CreateObject	or	GetObject	function
uses	a	version-independent	ProgID,	change	the	function	to	use	a	version-
dependent	ProgID.	For	example,	if	you	are	using	CreateObject,	you	change
CreateObject	("AutoCAD.Application")	to	CreateObject
("AutoCAD.Application.17").	Additionally,	if	a	GetInterfaceObject	method	uses
a	version-independent	ProgID,	the	method	must	be	changed	to	use	a	version-
dependent	ProgID.

Connect	to	AutoCAD	from	Visual	Basic	6

The	following	code	example	uses	the	Clear	and	Description	properties	of	Err.	If
your	coding	environment	does	not	support	these	properties,	you	will	need	to
modify	the	example	appropriately:

Sub	Ch2_ConnectToAcad()

				Dim	acadApp	As	AcadApplication

				On	Error	Resume	Next

				Set	acadApp	=	GetObject(,	"AutoCAD.Application.17")

				If	Err	Then

								Err.Clear

								Set	acadApp	=	CreateObject("AutoCAD.Application.17")

								If	Err	Then

	MsgBox	Err.Description

	Exit	Sub

								End	If

				End	If

				MsgBox	"Now	running	"	+	acadApp.Name	+	_

	"	version	"	+	acadApp.Version

End	Sub

Next,	set	the	document	variable	to	the	Document	object	in	the	AutoCAD
application.	The	Document	object	is	returned	by	the	ActiveDocument	property
of	the	Application	object.

Dim	acadDoc	as	AcadDocument

Set	acadDoc	=	acadApp.ActiveDocument

From	this	point	on,	use	the	acadDoc	variable	to	reference	the	current
AutoCAD	drawing.

VBA	versus	VB	Comparison	Code	Example

The	following	code	example	demonstrates	creating	a	line	in	both	VBA	and	VB.

Creating	a	line	using	VBA:

Sub	Ch2_AddLineVBA()

				'	This	example	adds	a	line

				'	in	model	space

				Dim	lineObj	As	AcadLine

				Dim	startPoint(0	To	2)	As	Double

				Dim	endPoint(0	To	2)	As	Double

				'	Define	the	start	and	end

				'	points	for	the	line

				startPoint(0)	=	1

				startPoint(1)	=	1

				startPoint(2)	=	0

				endPoint(0)	=	5

				endPoint(1)	=	5

				endPoint(2)	=	0

				'	Create	the	line	in	model	space

				Set	lineObj	=	ThisDrawing.	_

								ModelSpace.AddLine	_

								(startPoint,	endPoint)

				'	Zoom	in	on	the	newly	created	line

				ZoomAll

End	Sub

Creating	a	line	using	VB:

Sub	Ch2_AddLineVB()

				On	Error	Resume	Next

				'	Connect	to	the	AutoCAD	application

				Dim	acadApp	As	AcadApplication

				Set	acadApp	=	GetObject	_

	(,	"AutoCAD.Application.17")

				If	Err	Then

								Err.Clear

								Set	acadApp	=	CreateObject	_

	("AutoCAD.Application.17")

								If	Err	Then

	MsgBox	Err.Description

	Exit	Sub

								End	If

				End	If

				'	Connect	to	the	AutoCAD	drawing

				Dim	acadDoc	As	AcadDocument

				Set	acadDoc	=	acadApp.ActiveDocument

				'	Establish	the	endpoints	of	the	line

				Dim	lineObj	As	AcadLine

				Dim	startPoint(0	To	2)	As	Double

				Dim	endPoint(0	To	2)	As	Double

				startPoint(0)	=	1

				startPoint(1)	=	1

				startPoint(2)	=	0

				endPoint(0)	=	5

				endPoint(1)	=	5

				endPoint(2)	=	0

				'	Create	a	Line	object	in	model	space

				Set	lineObj	=	acadDoc.ModelSpace.AddLine	_

	(startPoint,	endPoint)

				ZoomAll

				acadApp.visible	=	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>methods.

	

Control	the	AutoCAD	Environment
	
	
	

This	chapter	describes	the	fundamentals	for	developing	an	application	in
AutoCAD.	It	explains	how	to	control	and	work	effectively	in	the	AutoCAD
environment.

Topics	in	this	section

Open,	Save,	and	Close	Drawings
Set	AutoCAD	Preferences
Control	the	Application	Window
Control	the	Drawing	Windows
Reset	Active	Objects
Set	and	Return	System	Variables
Draw	with	Precision
Prompt	for	User	Input
Access	the	AutoCAD	Command	Line
Work	with	No	Documents	Open
Import	Other	File	Formats
Export	to	Other	File	Formats

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Open,	Save,	and	Close	Drawings
	
	
	

The	Documents	collection	and	Document	object	provide	access	to	the
AutoCAD®	file	functions.

To	create	a	new	drawing,	or	open	an	existing	drawing,	use	the	methods	on	the
Documents	collection.	The	Add	method	creates	a	new	drawing	and	adds	that
drawing	to	the	Documents	collection.	The	Open	method	opens	an	existing
drawing.	There	is	also	a	Close	method	on	the	Documents	collection	that	closes
all	the	drawings	open	in	the	AutoCAD	session.

Use	either	the	Save	or	SaveAs	method	to	save	a	drawing.	Occasionally	you	will
want	to	check	if	the	active	drawing	has	any	unsaved	changes.	It	is	a	good	idea	to
do	this	before	you	quit	the	AutoCAD	session	or	start	a	new	drawing.	Use	the
Saved	property	to	make	sure	that	the	current	drawing	does	not	contain	any
unsaved	changes.

To	import	and	export	drawings,	use	the	Import	and	Export	methods	on	the
Document	object.

Open	an	existing	drawing

This	example	uses	the	Open	method	to	open	an	existing	drawing.	The	VBA	Dir
function	is	used	to	check	for	the	existence	of	the	file	before	trying	to	open	it.
You	should	change	the	drawing	file	name	or	path	to	specify	an	existing
AutoCAD	drawing	file	on	your	system.

Sub	Ch3_OpenDrawing()

	Dim	dwgName	As	String

	dwgName	=	"c:\campus.dwg"

	If	Dir(dwgName)	<>	""	Then

	ThisDrawing.Application.Documents.Open	dwgName

	Else

	MsgBox	"File	"	&	dwgName	&	"	does	not	exist."

	End	If

End	Sub

Create	a	new	drawing

This	example	uses	the	Add	method	to	create	a	new	drawing	based	on	the	default
template.

Sub	Ch3_NewDrawing()

	Dim	docObj	As	AcadDocument

	Set	docObj	=	ThisDrawing.Application.Documents.Add

End	Sub

Save	the	active	drawing

This	example	saves	the	active	drawing	under	its	current	name	and	again	under	a
new	name.

Sub	Ch3_SaveActiveDrawing()

	'	Save	the	active	drawing	under	the	current	name

	ThisDrawing.Save

	'	Save	the	active	drawing	under	a	new	name

	ThisDrawing.SaveAs	"MyDrawing.dwg"

End	Sub

Test	if	a	drawing	has	unsaved	changes

This	example	checks	to	see	if	there	are	unsaved	changes	and	verifies	with	the
user	that	it	is	OK	to	save	the	drawing	(if	it	is	not	OK,	skip	to	the	end).	If	OK,	use
the	Save	method	to	save	the	current	drawing,	as	shown	here:

Sub	Ch3_TestIfSaved()

	If	Not	(ThisDrawing.Saved)	Then

	If	MsgBox("Do	you	wish	to	save	this	drawing?",	_

	vbYesNo)	=	vbYes	Then

	ThisDrawing.Save

	End	If

	End	If

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Set	AutoCAD	Preferences
	
	
	

There	are	nine	objects	pertaining	to	options,	each	representing	a	tab	in	the
Options	dialog	box.	These	objects	provide	access	to	all	of	the	registry-stored
options	in	the	Options	dialog	box.	You	can	customize	many	of	the	AutoCAD
settings	by	using	properties	found	on	these	objects.	These	objects	are

PreferencesDisplay

PreferencesDrafting

PreferencesFiles

PreferencesOpenSave

PreferencesOutput

PreferencesProfiles

PreferencesSelection

PreferencesSystem

PreferencesUser

These	objects	are	accessible	with	the	Preferences	object.	To	gain	access	to	the
Preferences	object,	use	the	Preferences	property	of	the	Application	object:

Dim	acadPref	as	AcadPreferences

Set	acadPref	=	ThisDrawing.Application.Preferences

You	can	then	access	any	of	the	specific	Preferences	objects	using	the	Display,
Drafting,	Files,	OpenSave,	Output,	Profile,	Selection,	System,	and	User
properties.

Set	the	crosshairs	to	full	screen

Sub	Ch2_PrefsSetCursor()

	'	This	example	sets	the	crosshairs	of	the	AutoCAD	drawing	cursor

	'	to	full	screen.

	'	Access	the	Preferences	object

	Dim	acadPref	As	AcadPreferences

	Set	acadPref	=	ThisDrawing.Application.Preferences

	'	Use	the	CursorSize	property	to	set	the	size	of	the	crosshairs

	acadPref.Display.CursorSize	=	100

End	Sub

Display	the	screen	menu	and	scroll	bars

Sub	Ch2_PrefsSetDisplay()

	'	This	example	enables	the	screen	menu	and	disables	the	scroll

	'	bars	with	the	DisplayScreenMenu	and	DisplayScrollBars

	'	properties.

	'	Access	the	Preferences	object

	Dim	acadPref	As	AcadPreferences

	Set	acadPref	=	ThisDrawing.Application.Preferences

	'	Display	the	screen	menu	and	disable	scroll	bars

	acadPref.Display.DisplayScreenMenu	=	True

	acadPref.Display.DisplayScrollBars	=	False

End	Sub

Topics	in	this	section

Database	Preferences

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Set	AutoCAD	Preferences	>	

Database	Preferences
	
	
	

In	addition	to	the	nine	Preferences	objects,	the	DatabasePreferences	object
contains	all	the	options	stored	in	the	drawing.	This	separate	object	was	provided
to	make	the	drawing-stored	options	available	to	applications	accessing
AutoCAD	drawings	without	first	starting	the	AutoCAD	application	(ObjectDBX
applications).

The	DatabasePreferences	object	is	found	under	the	Document	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Control	the	Application	Window
	
	
	

The	ability	to	control	the	Application	window	allows	developers	the	flexibility
to	create	effective	and	intelligent	applications.	There	will	be	times	when	it	is
appropriate	for	your	application	to	minimize	the	AutoCAD	window,	perhaps
while	your	code	is	performing	work	in	another	application	such	as	Excel.
Additionally,	you	will	often	want	to	verify	the	state	of	the	AutoCAD	window
before	performing	such	tasks	as	prompting	for	input	from	the	user.

Using	methods	and	properties	found	on	the	Application	object,	you	can	change
the	position,	size,	and	visibility	of	the	Application	window.	You	can	also	use	the
WindowState	property	to	minimize,	maximize,	and	check	the	current	state	of	the
Application	window.

Position	and	size	the	Application	window

This	example	uses	the	WindowTop,	WindowLeft,	Width,	and	Height	properties
to	position	the	AutoCAD	Application	window	in	the	upper-left	corner	of	the
screen	and	size	it	to	400	pixels	wide	by	400	pixels	high.

Sub	Ch3_PositionApplicationWindow()

	ThisDrawing.Application.WindowTop	=	0

	ThisDrawing.Application.WindowLeft	=	0

	ThisDrawing.Application.width	=	400

	ThisDrawing.Application.height	=	400

End	Sub

Maximize	the	Application	window

Sub	Ch3_MaximizeApplicationWindow()

	ThisDrawing.Application.WindowState	=	acMax

End	Sub

Minimize	the	Application	window

Sub	Ch3_MinimizeApplicationWindow()

	ThisDrawing.Application.WindowState	=	acMin

End	Sub

Find	the	current	state	of	the	Application	window

This	example	queries	the	state	of	the	Application	window	and	displays	the	state
in	a	message	box	to	the	user.

Sub	Ch3_CurrentWindowState()

	Dim	CurrWindowState	As	Integer

	Dim	msg	As	String

	CurrWindowState	=	ThisDrawing.Application.WindowState

	msg	=	Choose(CurrWindowState,	"normal",	_

	"minimized",	"maximized")	

	MsgBox	"The	application	window	is	"	+	msg

End	Sub

Make	the	Application	window	invisible

The	following	code	uses	the	Visible	property	to	make	the	AutoCAD	application
invisible	to	the	end	user.

Sub	Ch3_HideWindowState()

	ThisDrawing.Application.Visible	=	False

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Control	the	Drawing	Windows
	
	
	

Like	the	AutoCAD	Application	window,	you	can	minimize,	maximize,
reposition,	resize,	and	check	the	state	of	any	Document	window.	But	you	can
also	change	the	way	the	drawing	is	displayed	within	a	window	by	using	views,
viewports,	and	zooming	methods.

AutoCAD	ActiveX	provides	many	ways	to	display	views	of	your	drawing.	You
can	control	the	drawing	display	to	move	quickly	to	different	areas	of	your
drawing	while	you	track	the	overall	effect	of	your	changes.	You	can	zoom	to
change	magnification	or	pan	to	reposition	the	view	in	the	graphics	area,	save	a
view	and	then	restore	it	when	you	need	to	plot	or	refer	to	specific	details,	or
display	several	views	at	one	time	by	splitting	the	screen	into	several	tiled
viewports.

Topics	in	this	section

Position	and	Size	the	Document	Window
Use	Zoom
Use	Named	Views
Use	Tiled	Viewports
Update	the	Geometry	in	the	Document	Window

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	

Position	and	Size	the	Document	Window
	
	
	

Use	the	Document	object	to	modify	the	position	and	size	of	any	document
window.	The	Document	window	can	be	minimized	or	maximized	by	using	the
WindowState	property,	and	you	can	find	the	current	state	of	the	Document
window	by	using	the	WindowState	property.

Position	a	Document	window

This	example	uses	the	Width	and	Height	properties	to	set	the	active	Document
window	to	400	pixels	wide	by	400	pixels	high.

Sub	Ch3_SizeDocumentWindow()

ThisDrawing.Width	=	400

ThisDrawing.Height	=	400

End	Sub

Maximize	the	active	Document	window

Sub	Ch3_MaximizeDocumentWindow()

ThisDrawing.WindowState	=	acMax

End	Sub

Minimize	the	active	Document	window

Sub	Ch3_MinimizeDocumentWindow()

ThisDrawing.WindowState	=	acMin

End	Sub

Find	the	current	state	of	the	active	Document	window

Sub	Ch3_CurrentWindowState()

	Dim	CurrWindowState	As	Integer

	Dim	msg	As	String

	CurrWindowState	=	ThisDrawing.WindowState

	msg	=	Choose(CurrWindowState,	"normal",	_

	"minimized",	"maximized")	

	MsgBox	"The	document	window	is	"	+	msg

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	

Use	Zoom
	
	
	

A	view	is	a	specific	magnification,	position,	and	orientation	of	a	drawing.	The
most	common	way	to	change	a	view	is	to	use	one	of	the	many	AutoCAD	Zoom
options,	which	increases	or	decreases	the	size	of	the	image	displayed	in	the
graphics	area.	For	more	information	on	zooming	in	AutoCAD,	see	“Magnify	a
View	(Zoom)”	in	the	User's	Guide.

Topics	in	this	section

Define	a	Zoom	Window
Scale	a	View
Center	Objects
Display	Drawing	Limits	and	Extents

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Zoom	>	

Define	a	Zoom	Window
	
	
	

You	can	quickly	zoom	in	on	an	area	by	specifying	the	corners	that	define	it.	To
zoom	in	on	an	area	by	specifying	its	boundaries,	use	either	the	ZoomWindow	or
ZoomPickWindow	method.	The	ZoomWindow	method	allows	you	to	define	two
points	representing	the	Zoom	window	programmatically.	The	ZoomPickWindow
method	requires	the	user	to	pick	two	points.	These	two	picked	points	become	the
Zoom	window.

Zoom	the	active	drawing	to	a	window	defined	by	two	points

Sub	Ch3_ZoomWindow()

	'	ZoomWindow

	MsgBox	"Perform	a	ZoomWindow	with:"	&	vbCrLf	&	_

	"1.3,	7.8,	0"	&	vbCrLf	&	_

	"13.7,	-2.6,	0",	,	"ZoomWindow"

	Dim	point1(0	To	2)	As	Double

	Dim	point2(0	To	2)	As	Double

	point1(0)	=	1.3:	point1(1)	=	7.8:	point1(2)	=	0

	point2(0)	=	13.7:	point2(1)	=	-2.6:	point2(2)	=	0

	ThisDrawing.Application.ZoomWindow	point1,	point2

	'	ZoomPickWindow

	MsgBox	"Perform	a	ZoomPickWindow",	,	"ZoomPickWindow"

	ThisDrawing.Application.ZoomPickWindow

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Zoom	>	

Scale	a	View
	
	
	

If	you	need	to	increase	or	decrease	the	magnification	of	the	image	by	a	precise
scale,	you	can	specify	a	zoom	scale	in	three	ways:

Relative	to	the	drawing	limits

Relative	to	the	current	view

Relative	to	paper	space	units

To	scale	a	view,	use	the	ZoomScaled	method.	This	method	takes	two	parameters
as	input:	the	scale	and	the	type	of	scale.	The	scale	is	simply	a	number.	How	that
number	gets	interpreted	by	AutoCAD	depends	on	the	type	of	scale	you	choose.

The	type	of	scale	determines	if	the	scale	value	is	created	relative	to	the	drawing
limits,	the	current	view,	or	the	paper	space	units.	To	scale	relative	to	the	drawing
limits,	use	the	constant	acZoomScaledAbsolute.	To	scale	the	view	relative
to	the	current	view,	use	the	constant	acZoomScaledRelative.	To	scale
relative	to	paper	space	units,	use	the	constant
acZoomScaledRelativePSpace.

Zoom	in	on	the	active	drawing	using	a	specified	scale

Sub	Ch3_ZoomScaled()

	MsgBox	"Perform	a	ZoomScaled	using:"	&	vbCrLf	&	_

	"Scale	Type:	acZoomScaledRelative"	&	vbCrLf	&	_

	"Scale	Factor:	2",	,	"ZoomScaled"

	Dim	scalefactor	As	Double

	Dim	scaletype	As	Integer

	scalefactor	=	2

	scaletype	=	acZoomScaledRelative

	ThisDrawing.Application.ZoomScaled	scalefactor,	scaletype

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Zoom	>	

Center	Objects
	
	
	

Zoom	in	on	the	active	drawing	to	a	specified	center	You	can	move	a	specific
point	in	your	drawing	to	the	center	of	the	graphics	area.	The	ZoomCenter
method	is	useful	for	resizing	an	object	and	bringing	it	to	the	center	of	the
viewport.	With	ZoomCenter,	you	can	specify	a	scale	size	by	entering	a
magnification	relative	to	the	current	view.

Zoom	in	on	the	active	drawing	to	a	specified	center

The	following	example	shows	the	effects	of	using	ZoomCenter	to	display	a	view
at	the	same	size	and	at	twice	the	size:

Sub	Ch3_ZoomCenter()

	MsgBox	"Perform	a	ZoomCenter	using:"	&	vbCrLf	&	_

	"Center	3,	3,	0"	&	vbCrLf	&	_

	"Magnification:	10",	,	"ZoomCenter"

	Dim	Center(0	To	2)	As	Double

	Dim	magnification	As	Double

	Center(0)	=	3:	Center(1)	=	3:	Center(2)	=	0

	magnification	=	10

	ThisDrawing.Application.ZoomCenter	Center,	magnification

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Zoom	>	

Display	Drawing	Limits	and	Extents
	
	
	

To	display	a	view	based	on	the	drawing	boundaries	or	the	extents	of	the	objects
in	the	drawing,	use	the	ZoomAll	,	ZoomExtents,	or	ZoomPrevious	method.

ZoomAll	displays	the	entire	drawing.	If	the	objects	extend	beyond	the	limits,
ZoomAll	displays	the	extents	of	the	objects.	If	the	objects	are	drawn	within	the
limits,	ZoomAll	displays	the	limits.

ZoomExtents	calculates	zooms	based	on	the	extents	of	the	active	viewport,	not
the	current	view.	Usually	the	active	viewport	is	entirely	visible,	so	the	results	are
obvious	and	intuitive.	However,	when	using	the	Zoom	methods	in	model	space
while	working	in	a	paper	space	viewport,	if	you	are	zoomed	in	beyond	the	paper
space	viewport's	borders,	some	of	the	area	zoomed	may	not	be	visible.

ZoomExtents	changes	the	view	to	encompass	the	entity	extents	for	the	current
drawing.	In	some	cases	(for	both	ZoomAll	and	ZoomExtents),	this	may	cause	a
regeneration.	Regeneration	will	not	occur	on	layers	that	are	frozen	or	turned	off.
If	your	drawing	has	no	objects,	ZoomExtents	displays	the	drawing	limits.

For	3D	views,	ZoomAll	and	ZoomExtents	have	the	same	effect.	Infinite
construction	lines	(xlines)	and	rays	do	not	affect	either	option.

ZoomPrevious	zooms	the	current	viewport	to	its	previous	extents.

See	“Magnify	a	View	(Zoom)”	in	the	User's	Guide	for	illustrations	of	how
zooming	works.

Zoom	in	on	the	active	drawing	to	all	contents	and	to	the	drawing	extents

Sub	Ch3_ZoomAll()

'	ZoomAll

	MsgBox	"Perform	a	ZoomAll",	,	"ZoomAll"

	ThisDrawing.Application.ZoomAll

'	ZoomExtents

	MsgBox	"Perform	a	ZoomExtents",	,	"ZoomExtents"

	ThisDrawing.Application.ZoomExtents

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	

Use	Named	Views
	
	
	

You	can	name	and	save	a	view	you	want	to	reuse.	When	you	no	longer	need	the
view,	you	can	delete	it.

To	create	a	new	view,	use	the	Add	method	to	add	a	new	view	to	the	Views
collection.	When	you	save	the	drawing,	the	viewing	position	and	scale	of	the
view	are	saved.

You	name	the	view	when	you	create	it.	The	name	of	the	view	can	be	up	to	255
characters	long	and	contain	letters,	digits,	and	the	special	characters	dollar	sign
($),	hyphen	(-),	and	underscore	(_).

To	delete	a	named	view,	simply	use	the	Delete	method.	The	Delete	method	for
the	View	object	lies	on	the	View	object,	not	its	parent.

Add	a	View	object

The	following	example	adds	a	View	object	(viewObj).

Sub	Ch3_AddView()

	'	Add	a	named	view	to	the	views	collection

	Dim	viewObj	As	AcadView

	Set	viewObj	=	ThisDrawing.Views.Add("View1")

End	Sub

Delete	a	View	object

The	following	example	deletes	a	View	object	(viewObj).

Sub	Ch3_DeleteView()

	Dim	viewObj	As	AcadView

	Set	viewObj	=	ThisDrawing.Views("View1")

	'	Delete	the	view

	viewObj.Delete

End	Sub

Delete	a	named	view	from	the	Views	collection

This	example	deletes	a	named	view	from	the	Views	collection.

Sub	Ch3_DeleteViewFromCollection()

	ThisDrawing.Views("View1").Delete

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	

Use	Tiled	Viewports
	
	
	

AutoCAD	usually	begins	a	new	drawing	using	a	single	viewport	that	fills	the
entire	graphics	area.	You	can	split	the	drawing	area	to	display	several	viewports
simultaneously.	For	example,	if	you	keep	both	the	full	and	the	detail	views
visible,	you	can	see	the	effects	of	your	detail	changes	on	the	entire	drawing.	In
each	tiled	viewport,	you	can	do	the	following:

Zoom,	set	the	Snap,	Grid,	and	UCS	icon	modes,	and	restore	named
views	in	individual	viewports

Draw	from	one	viewport	to	another	when	executing	a	command

Name	a	configuration	of	viewports	so	you	can	reuse	it

You	can	display	tiled	viewports	in	various	configurations.	How	you	display	the
viewports	depends	on	the	number	and	size	of	the	views	you	need	to	see.

For	further	information	and	illustrations	describing	viewports,	see	“Set	Model
Space	Viewports”	in	the	User's	Guide.

Topics	in	this	section

Split	the	Active	Viewport
Make	Another	Tiled	Viewport	Current

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Tiled	Viewports	>	

Split	the	Active	Viewport
	
	
	

To	split	the	active	viewport,	use	the	Split	method.	This	method	takes	one
parameter,	the	type	of	configuration	to	split	the	viewport	into.	To	specify	the
window	configuration,	use	one	of	the	following	constants	that	correspond	to	the
default	configurations	previously	shown:	acViewport2Horizontal,
acViewport2Vertical,	acViewport3Left,	acViewport3Right,
acViewport3Horizontal,	acViewport3Vertical,
acViewport3Above,	acViewport3Below,	or	acViewport4.

For	further	information	on	changing	viewport	configuration,	see	“Set	Model
Space	Viewports”	in	the	User's	Guide.

Split	a	viewport	into	two	horizontal	windows

The	following	example	creates	a	new	viewport	and	then	splits	the	viewport	into
two	horizontal	windows.

Sub	Ch3_SplitAViewport()

	'	Create	a	new	viewport

	Dim	vportObj	As	AcadViewport

	Set	vportObj	=	ThisDrawing.Viewports.Add("TEST_VIEWPORT")

	'	Split	vportObj	into	2	horizontal	windows

	vportObj.Split	acViewport2Horizontal

	'	Now	set	vportObj	to	be	the	active	viewport

	ThisDrawing.ActiveViewport	=	vportObj

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	Use
Tiled	Viewports	>	

Make	Another	Tiled	Viewport	Current
	
	
	

You	enter	points	and	select	objects	in	the	current	viewport.	To	make	a	viewport
current,	use	the	ActiveViewport	property.

You	can	iterate	through	existing	viewports	to	find	a	particular	viewport.	To	do
this,	first	identify	the	name	of	the	viewport	configuration	on	which	the	desired
viewport	resides	using	the	Name	property.	Additionally,	if	the	viewport
configuration	has	been	split,	each	individual	viewport	on	the	configuration	can
be	identified	through	the	LowerLeftCorner	and	UpperRightCorner	properties.

The	LowerLeftCorner	and	UpperRightCorner	properties	represent	the	graphic
placement	of	the	viewport	on	the	display.	These	properties	are	defined	as	follows
(using	a	four-way	split	as	an	example):

In	this	example:

Viewport	1-LowerLeftCorner	=	(0,	.5),	UpperRightCorner	=	(.5,	1)

Viewport	2-LowerLeftCorner	=	(.5,	.5),	UpperRightCorner	=	(1,	1)

Viewport	3-LowerLeftCorner	=	(0,	0),	UpperRightCorner	=	(.5,	.5)

Viewport	4-LowerLeftCorner	=	(.5,	0),	UpperRightCorner	=	(1,	.5)

Split	a	viewport,	then	iterate	through	the	windows

This	example	splits	a	viewport	into	four	windows.	It	then	iterates	through	all	the
viewports	in	the	drawing	and	displays	the	viewport	name	and	the	lower-left	and

upper-right	corner	for	each	viewport.

Sub	Ch3_IteratingViewportWindows()

	'	Create	a	new	viewport	and	make	it	active

	Dim	vportObj	As	AcadViewport

	Set	vportObj	=	ThisDrawing.Viewports.Add("TEST_VIEWPORT")

	ThisDrawing.ActiveViewport	=	vportObj

	'	Split	vport	into	4	windows

	vportObj.Split	acViewport4

	'	Iterate	through	the	viewports,

	'	highlighting	each	viewport	and	displaying

	'	the	upper	right	and	lower	left	corners

	'	for	each.

	Dim	vport	As	AcadViewport

	Dim	LLCorner	As	Variant

	Dim	URCorner	As	Variant

	For	Each	vport	In	ThisDrawing.Viewports

	ThisDrawing.ActiveViewport	=	vport

	LLCorner	=	vport.LowerLeftCorner

	URCorner	=	vport.UpperRightCorner

	MsgBox	"Viewport:	"	&	vport.Name	&	"	is	now	active."	&	_

	vbCrLf	&	"Lower	left	corner:	"	&	_

	LLCorner(0)	&	",	"	&	LLCorner(1)	&	vbCrLf	&	_

	"Upper	right	corner:	"	&	_

	URCorner(0)	&	",	"	&	URCorner(1)

	Next	vport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Control	the	Drawing	Windows	>	

Update	the	Geometry	in	the	Document	Window
	
	
	

Many	of	the	actions	you	perform	through	AutoCAD	ActiveX	Automation
modify	what	is	displayed	in	the	AutoCAD	drawing.	Not	all	of	these	actions
immediately	update	the	display	of	the	drawing.	This	is	designed	so	you	can
make	several	changes	to	the	drawing	without	waiting	for	the	display	to	be
updated	after	every	single	action.	Instead,	you	can	bundle	your	actions	together
and	make	a	single	call	to	update	the	display	when	you	have	finished.

The	methods	that	will	update	the	display	are	Update	and	Regen.

The	Update	method	updates	the	display	of	a	single	object	only.	The	Regen
method	regenerates	the	entire	drawing	and	recomputes	the	screen	coordinates
and	view	resolution	for	all	objects.	It	also	reindexes	the	drawing	database	for
optimum	display	and	object	selection	performance.

Update	the	display	of	a	single	object

This	example	creates	a	circle.	It	then	updates	the	circle	using	the	Update	method
so	the	circle	is	visible	in	AutoCAD.

Sub	Ch3_UpdateDisplay()

	Dim	circleObj	As	AcadCircle

	Dim	center(0	To	2)	As	Double

	Dim	radius	As	Double

	center(0)	=	1:	center(1)	=	1:	center(2)	=	0

	radius	=	1

	'	Create	the	circle

	Set	circleObj	=	ThisDrawing.ModelSpace.AddCircle(center,	radius)

	'	Update	the	circle

	circleObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Reset	Active	Objects
	
	
	

Changes	to	most	active	objects,	such	as	the	active	layer	and	active	linetype,	will
appear	immediately.	However,	there	are	several	active	objects	that	must	be	reset
for	changes	to	appear.	These	objects	are	the	active	text	style,	the	active	user
coordinate	system	(UCS),	and	the	active	viewport.	If	changes	are	made	to	any	of
these	objects,	the	object	must	be	reset,	and	the	Regen	method	must	be	called	for
the	changes	to	appear.

To	reset	these	objects,	simply	set	the	ActiveTextStyle,	ActiveUCS,	or
ActiveViewport	property,	using	the	updated	object.

Reset	the	active	viewport

The	following	example	changes	the	display	of	the	grid	in	the	active	viewport	and
then	resets	the	viewport	as	the	active	viewport	to	display	the	change.

Sub	Ch3_ResetActiveViewport()

	'	Toggle	the	setting	of	the	grid	display

	'	for	the	active	viewport

	ThisDrawing.ActiveViewport.GridOn	=	_

	Not	(ThisDrawing.ActiveViewport.GridOn)

	'	Reset	the	active	viewport

	ThisDrawing.ActiveViewport	=	ThisDrawing.ActiveViewport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Set	and	Return	System	Variables
	
	
	

The	Document	object	provides	the	SetVariable	and	GetVariable	methods	for
setting	and	retrieving	AutoCAD	system	variables.	For	example,	to	assign	an
integer	to	the	MAXSORT	system	variable,	use	the	following	code:

ThisDrawing.SetVariable	"MAXSORT",	100

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>methods.

Control	the	AutoCAD	Environment	>	

Draw	with	Precision
	
	
	

With	AutoCAD	you	can	create	your	drawings	with	precise	geometry	without
performing	tedious	calculations.	Often	you	can	specify	precise	points	without
knowing	the	coordinates.	Without	leaving	the	drawing	screen,	you	can	perform
calculations	on	your	drawing	and	display	various	types	of	status	information.

At	this	time,	AutoCAD	ActiveX	Automation	does	not	provide	a	method	for	the
following	AutoCAD	capabilities:

Setting	object	snaps

Specifying	measured	intervals	on	objects	or	dividing	objects	into
segments

Topics	in	this	section

Adjust	Snap	and	Grid	Alignment
Use	Ortho	Mode
Draw	Construction	Lines
Calculate	Points	and	Values
Calculate	Areas

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	

Adjust	Snap	and	Grid	Alignment
	
	
	

You	can	use	the	grid	as	a	visual	guideline	and	turn	on	Snap	mode	to	restrict
cursor	movement.	In	addition	to	setting	the	spacing,	you	can	adjust	the	snap	and
grid	alignment.	You	can	rotate	the	alignment,	or	you	can	set	it	for	use	with
isometric	drawings.

If	you	need	to	draw	along	a	specific	alignment	or	angle,	you	can	rotate	the	snap
angle.	The	center	point	of	the	snap	angle	rotation	is	the	snap	base	point.	If	you
need	to	align	a	hatch	pattern,	you	can	change	this	point,	which	is	normally	set	to
0,0.

To	rotate	the	snap	angle,	use	the	SnapRotationAngle	property.	To	change	the
base	point	of	the	snap	angle	rotation,	use	the	SnapBasePoint	property.

Note Both	properties	require	a	call	to	the	Update	method	to	update	the	AutoCAD
display.

See	“Adjust	Grid	and	Grid	Snap”	in	the	User's	Guide	for	more	information	on
using	and	setting	snaps	and	grids.

Change	the	snap	base	point	and	rotation	angle

This	example	changes	the	snap	base	point	to	(1,1)	and	the	snap	rotation	angle	to
30	degrees.	The	grid	is	turned	on	so	that	the	changes	are	visible.

Sub	Ch3_ChangeSnapBasePoint()

	'	Turn	on	the	grid	for	the	active	viewport

	ThisDrawing.ActiveViewport.GridOn	=	True

	'	Change	the	snap	base	point	to	1,	1

	Dim	newBasePoint(0	To	1)	As	Double

	newBasePoint(0)	=	1:	newBasePoint(1)	=	1

	ThisDrawing.ActiveViewport.SnapBasePoint	=	newBasePoint

	'	Change	the	snap	rotation	angle	to	30	degrees	(0.575	radians)

	Dim	rotationAngle	As	Double

	rotationAngle	=	0.575

	ThisDrawing.ActiveViewport.SnapRotationAngle	=	rotationAngle

	'	reset	the	viewport

	ThisDrawing.ActiveViewport	=	ThisDrawing.ActiveViewport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	

Use	Ortho	Mode
	
	
	

As	you	draw	lines	or	move	objects,	you	can	use	Ortho	mode	to	restrict	the	cursor
to	the	horizontal	or	vertical	axis.	(The	orthogonal	alignment	depends	on	the
current	snap	angle	or	the	UCS.)	Ortho	mode	works	with	activities	that	require
you	to	specify	a	second	point.	You	can	use	Ortho	not	only	to	establish	vertical	or
horizontal	alignment	but	also	to	enforce	parallelism	or	create	regular	offsets.

By	allowing	AutoCAD	to	impose	orthogonal	restraints,	you	can	draw	more
quickly.	For	example,	you	can	create	a	series	of	perpendicular	lines	by	turning
on	Ortho	mode	before	you	start	drawing.	Because	the	lines	are	constrained	to	the
horizontal	and	vertical	axes,	you	can	draw	faster,	knowing	that	the	lines	are
perpendicular.

As	you	move	the	cursor,	a	rubber-band	line	that	defines	the	displacement	follows
the	horizontal	or	vertical	axis,	depending	on	which	axis	is	nearest	to	the	cursor.
AutoCAD	ignores	Ortho	mode	in	perspective	views,	or	when	you	enter
coordinates	on	the	command	line	or	specify	an	object	snap.

To	turn	Ortho	mode	on	or	off,	use	the	OrthoOn	property.	This	property	requires	a
Boolean	for	input.	Set	to	TRUE	to	turn	Ortho	mode	on,	and	to	FALSE	to	turn
Ortho	mode	off.	For	example,	the	following	statement	turns	Ortho	mode	on	for
the	active	viewport:

ThisDrawing.ActiveViewport.OrthoOn	=	True

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>methods.

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	

Draw	Construction	Lines
	
	
	

You	can	create	construction	lines	that	extend	to	infinity	in	one	or	both	directions.
Construction	lines	that	extend	in	one	direction	are	known	as	rays.	Construction
lines	that	extend	in	both	directions	are	known	as	xlines.	These	construction	lines
can	be	used	as	a	reference	for	creating	other	objects.	For	example,	you	can	use
construction	lines	to	find	the	center	of	a	triangle,	prepare	multiple	views	of	the
same	item,	or	create	temporary	intersections	that	you	can	use	for	object	snaps.

Topics	in	this	section

Create	Construction	XLines
Query	Construction	XLines
Create	Rays
Query	Rays

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>methods.

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	Draw	Construction
Lines	>	

Create	Construction	XLines
	
	
	

A	construction	xline	can	be	placed	anywhere	in	3D	space	and	extends	to	infinity
in	both	directions.	To	create	an	xline,	use	the	AddXLine	method.	This	method
specifies	the	line	by	the	two-point	method;	you	enter	or	select	two	points	to
define	the	orientation.	The	first	point,	the	root,	is	considered	the	midpoint	of	the
construction	line.

Add	a	construction	line

The	following	example	code	creates	an	XLine	object	using	the	two	points	(5,	0,
0)	and	(1,	1,	0).

Sub	Ch3_AddXLine()

	Dim	xlineObj	As	AcadXline

	Dim	basePoint(0	To	2)	As	Double

	Dim	directionVec(0	To	2)	As	Double

	'	Define	the	xline

	basePoint(0)	=	2#:	basePoint(1)	=	2#:	basePoint(2)	=	0#

	directionVec(0)	=	1#:	directionVec(1)	=	1#:	directionVec(2)	=	0#

	'	Create	the	xline	in	model	space

	Set	xlineObj	=	ThisDrawing.ModelSpace.AddXLine	_

	(basePoint,	directionVec)

	ThisDrawing.Application.ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	Draw	Construction
Lines	>	

Query	Construction	XLines
	
	
	

Once	created,	you	can	query	the	first	point	of	a	constuction	xline	using	the
BasePoint	property.	The	second	point	used	to	create	the	xline	is	not	stored	with
the	object.	Instead,	use	the	DirectionVector	property	to	obtain	the	directional
vector	for	the	xline.

Query	a	construction	line

This	example	finds	the	base	point	and	directional	vector	for	the	xline	created	in
Add	a	construction	line

Dim	BPoint	As	Variant

Dim	Vector	As	Variant

BPoint	=	xlineObj.basePoint

Vector	=	xlineObj.DirectionVector

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	Draw	Construction
Lines	>	

Create	Rays
	
	
	

A	ray	is	a	line	in	3D	space	that	starts	at	a	point	you	specify	and	extends	to
infinity.	Unlike	xline	construction	lines,	which	extend	in	two	directions,	rays
extend	in	only	one	direction.	As	a	result,	rays	help	reduce	the	visual	clutter
caused	by	numerous	construction	lines.

Like	construction	lines,	rays	are	ignored	by	commands	that	display	the	drawing
extents.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	Draw	Construction
Lines	>	

Query	Rays
	
	
	

Once	created,	you	can	query	the	first	point	of	a	ray	using	the	BasePoint	property.
The	second	point	used	to	create	the	ray	is	not	stored	with	the	object.	Instead,	use
the	DirectionVector	property	to	obtain	the	directional	vector	for	the	ray.

Add,	query,	and	edit	a	Ray	object

The	following	example	code	creates	a	Ray	object	using	the	two	points	(5,	0,	0)
and	(1,	1,	0).	It	then	queries	the	current	base	point	and	direction	vector	and
displays	the	results	in	a	message	box.	The	direction	vector	is	then	changed	and
the	base	point	and	new	direction	vector	are	queried	and	displayed.

Sub	Ch3_EditRay()

	Dim	rayObj	As	AcadRay

	Dim	basePoint(0	To	2)	As	Double

	Dim	secondPoint(0	To	2)	As	Double

	'	Define	the	ray

	basePoint(0)	=	3#:	basePoint(1)	=	3#:	basePoint(2)	=	0#

	secondPoint(0)	=	4#:	secondPoint(1)	=	4#:	secondPoint(2)	=	0#

	'	Creates	a	Ray	object	in	model	space

	Set	rayObj	=	ThisDrawing.ModelSpace.AddRay	_

	(basePoint,	secondPoint)

	ThisDrawing.Application.ZoomAll

	'	Find	the	current	status	of	the	Ray

	MsgBox	"The	base	point	of	the	ray	is:	"	&	_

	rayObj.basePoint(0)	&	",	"	&	_

	rayObj.basePoint(1)	&	",	"	&	_

	rayObj.basePoint(2)	&	vbCrLf	&	_

	"The	directional	vector	for	the	ray	is:	"	&	_

	rayObj.DirectionVector(0)	&	",	"	&	_

	rayObj.DirectionVector(1)	&	",	"	&	_

	rayObj.DirectionVector(2),	,	"Edit	Ray"

	'	Change	the	directional	vector	for	the	ray

	Dim	newVector(0	To	2)	As	Double

	newVector(0)	=	-1

	newVector(1)	=	1

	newVector(2)	=	0

	rayObj.DirectionVector	=	newVector

	ThisDrawing.Regen	False

	MsgBox	"The	base	point	of	the	ray	is:	"	&	_

	rayObj.basePoint(0)	&	",	"	&	_

	rayObj.basePoint(1)	&	",	"	&	_

	rayObj.basePoint(2)	&	vbCrLf	&	_

	"The	directional	vector	for	the	ray	is:	"	&	_

	rayObj.DirectionVector(0)	&	",	"	&	_

	rayObj.DirectionVector(1)	&	",	"	&	_

	rayObj.DirectionVector(2),	,	"Edit	Ray"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	

Calculate	Points	and	Values
	
	
	

By	using	the	methods	provided	by	the	Utility	object,	you	can	quickly	solve	a
mathematical	problem	or	locate	points	on	your	drawing.	By	using	methods	on
the	Utility	object,	you	can	do	the	following:

Find	the	angle	of	a	line	from	the	X	axis	with	the	AngleFromXAxis
method

Convert	an	angle	as	a	string	to	a	real	(double)	value	with	the
AngleToReal	method

Convert	an	angle	from	a	real	(double)	value	to	a	string	with	the
AngleToString	method

Convert	a	distance	from	a	string	to	a	real	(double)	value	with	the
DistanceToReal	method

Create	a	variant	that	contains	an	array	of	integers,	floating	numbers,
doubles,	and	so	forth,	with	the	CreateTypedArray	method

Find	the	point	at	a	specified	angle	and	distance	from	a	given	point	with
the	PolarPoint	method

Translate	a	point	from	one	coordinate	system	to	another	coordinate
system	with	the	TranslateCoordinates	method

Find	the	distance	between	two	points	entered	by	the	user	with	the
GetDistance	method

Find	the	distance	between	two	points	with	the	GetDistance	method

This	example	uses	the	GetDistance	method	to	obtain	the	point	coordinates,	and
the	MsgBox	function	to	display	the	calculated	distance.

Sub	Ch3_GetDistanceBetweenTwoPoints()

	Dim	returnDist	As	Double

	'	Return	the	value	entered	by	user.	A	prompt	is	provided.

	returnDist	=	ThisDrawing.Utility.GetDistance	_

	(,	"Pick	two	points.")

	MsgBox	"The	distance	between	the	two	points	is:	"	&	returnDist

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	

Calculate	Areas
	
	
	

Calculate	the	area	defined	by	points	entered	from	the	user	You	can	find	the	area
of	an	arc,	circle,	ellipse,	lightweight	polyline,	polyline,	region,	or	planar-closed
spline	by	using	the	Area	property.

If	you	need	to	calculate	the	combined	area	of	more	than	one	object,	you	can	keep
a	running	total	as	you	add	or	use	the	Boolean	method	on	a	series	of	regions	to
obtain	a	single	region	representing	the	desired	area.	From	this	single	region	you
can	use	the	Area	property	to	obtain	its	area.

The	calculated	area	differs	according	to	the	type	of	object	you	query.	For	an
explanation	of	how	area	is	calculated	for	each	object	type,	see	“Obtain	Area
Information”	in	the	User's	Guide.

Topics	in	this	section

Calculate	a	Defined	Area

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Draw	with	Precision	>	Calculate	Areas	>	

Calculate	a	Defined	Area
	
	
	

Calculate	the	area	defined	by	points	entered	from	the	user	To	obtain	the	area
specified	by	points	from	the	userYou	can	measure	an	arbitrary	closed	region
defined	by	the	2D	or	3D	points	specified	by	the	user.	The	points	must	be
coplanar.

To	obtain	the	area	specified	by	points	from	the	user

1.	 Use	the	GetPoint	method	in	a	loop	to	obtain	the	points	from	the	user.

2.	 Create	a	lightweight	polyline	from	the	points	provided	by	the	user.	Use
the	AddLightweightPolyline	method	to	create	the	polyline.

3.	 Use	the	Area	property	to	obtain	the	area	of	the	newly	created	polyline.

4.	 Erase	the	polyline	using	the	Erase	method.

Calculate	the	area	defined	by	points	entered	from	the	user

This	example	prompts	the	user	to	enter	five	points.	A	polyline	is	then	created	out
of	the	points	entered.	The	polyline	is	closed,	and	the	area	of	the	polyline	is
displayed	in	a	message	box.

Sub	Ch3_CalculateDefinedArea()

	Dim	p1	As	Variant

	Dim	p2	As	Variant

	Dim	p3	As	Variant

	Dim	p4	As	Variant

	Dim	p5	As	Variant

	'	Get	the	points	from	the	user

	p1	=	ThisDrawing.Utility.GetPoint(,	vbCrLf	&	"First	point:	")

	p2	=	ThisDrawing.Utility.GetPoint(p1,	vbCrLf	&	"Second	point:	")

	p3	=	ThisDrawing.Utility.GetPoint(p2,	vbCrLf	&	"Third	point:	")

	p4	=	ThisDrawing.Utility.GetPoint(p3,	vbCrLf	&	"Fourth	point:	")

	p5	=	ThisDrawing.Utility.GetPoint(p4,	vbCrLf	&	"Fifth	point:	")

	'	Create	the	2D	polyline	from	the	points

	Dim	polyObj	As	AcadLWPolyline

	Dim	vertices(0	To	9)	As	Double

	vertices(0)	=	p1(0):	vertices(1)	=	p1(1)

	vertices(2)	=	p2(0):	vertices(3)	=	p2(1)

	vertices(4)	=	p3(0):	vertices(5)	=	p3(1)

	vertices(6)	=	p4(0):	vertices(7)	=	p4(1)

	vertices(8)	=	p5(0):	vertices(9)	=	p5(1)

	Set	polyObj	=	ThisDrawing.ModelSpace.AddLightWeightPolyline	_

	(vertices)

	polyObj.Closed	=	True

	ThisDrawing.Application.ZoomAll

	'	Display	the	area	for	the	polyline

	MsgBox	"The	area	defined	by	the	points	is	"	&	_

	polyObj.Area,	,	"Calculate	Defined	Area"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Prompt	for	User	Input
	
	
	

The	Utility	object,	which	is	a	child	of	the	Document	object,	defines	the	user
input	methods.	The	user	input	methods	display	a	prompt	on	the	AutoCAD
command	line	and	request	input	of	various	types.	This	type	of	user	input	is	most
useful	for	interactive	input	of	screen	coordinates,	entity	selection,	and	short-
string	or	numeric	values.	If	your	application	requires	the	input	of	numerous
options	or	values,	a	dialog	box	may	be	more	appropriate	than	individual
prompts.

Each	user	input	method	displays	a	prompt	on	the	AutoCAD	command	line	and
returns	a	value	specific	to	the	type	of	input	requested.	For	example,	GetString
returns	a	string,	GetPoint	returns	a	variant	(which	contains	a	three-element	array
of	doubles),	and	GetInteger	returns	an	integer	value.	You	can	further	control	the
input	from	the	user	with	the	InitializeUserInput	method.	This	method	lets	you
control	things	such	as	NULL	input	(pressing	ENTER),	input	of	zero	or	negative
numbers,	and	input	of	arbitrary	text	values.

To	force	the	prompt	to	be	displayed	on	a	line	by	itself,	use	the	carriage
return/linefeed	constant	(vbCrLf)	at	the	beginning	of	your	prompt	strings.

Topics	in	this	section

GetString	Method
GetPoint	Method
GetKeyword	Method
Control	User	Input

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Prompt	for	User	Input	>	

GetString	Method
	
	
	

The	GetString	method	prompts	the	user	for	input	of	a	string	at	the	AutoCAD
Command	prompt.	This	method	accepts	two	parameters.	The	first	parameter
controls	the	input	of	spaces	in	the	input	string.	If	it	is	set	to	0,	spaces	are	not
allowed	(SPACEBAR	terminates	the	input);	if	set	to	1,	the	string	can	contain
spaces	(ENTER	must	be	used	to	terminate	the	input).	The	second	parameter	is
the	prompt	string.

Get	a	string	value	from	the	user	at	the	AutoCAD	command	line

The	following	example	displays	the	Enter	Your	Name	prompt,	and	requires	that
the	input	from	the	user	be	terminated	by	pressing	ENTER	(spaces	are	allowed	in
the	input	string).	The	string	value	is	stored	in	the	retVal	variable	and	is
displayed	using	a	message	box.

Sub	Ch3_GetStringFromUser()

	Dim	retVal	As	String

	retVal	=	ThisDrawing.Utility.GetString	_

	(1,	vbCrLf	&	"Enter	your	name:	")

	MsgBox	"The	name	entered	was:	"	&	retVal

End	Sub

The	GetString	method	does	not	honor	a	prior	call	to	the	InitializeUserInput
method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Prompt	for	User	Input	>	

GetPoint	Method
	
	
	

The	GetPoint	method	prompts	the	user	for	the	specification	of	a	point	at	the
AutoCAD	Command	prompt.	This	method	accepts	two	parameters,	an	optional
from	point	and	the	prompt	string.	If	the	from	point	is	provided,	AutoCAD	draws
a	rubber-band	line	from	that	point.	To	control	the	user	input,	this	method	can	be
preceded	by	a	call	to	the	InitializeUserInput	method.

Get	a	point	selected	by	the	user

The	following	example	prompts	the	user	for	two	points,	then	draws	a	line	using
those	points	as	the	start	point	and	endpoint.

Sub	Ch3_GetPointsFromUser()

	Dim	startPnt	As	Variant

	Dim	endPnt	As	Variant

	Dim	prompt1	As	String

	Dim	prompt2	As	String

	prompt1	=	vbCrLf	&	"Enter	the	start	point	of	the	line:	"

	prompt2	=	vbCrLf	&	"Enter	the	end	point	of	the	line:	"

	'	Get	the	first	point	without	entering	a	base	point

	startPnt	=	ThisDrawing.Utility.GetPoint(,	prompt1)

	'	Use	the	point	entered	above	as	the	base	point

	endPnt	=	ThisDrawing.Utility.GetPoint(startPnt,	prompt2)

	'	Create	a	line	using	the	two	points	entered

	ThisDrawing.ModelSpace.AddLine	startPnt,	endPnt

	ThisDrawing.Application.ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Prompt	for	User	Input	>	

GetKeyword	Method
	
	
	

The	GetKeyword	method	prompts	the	user	for	input	of	a	keyword	at	the
AutoCAD	Command	prompt.	This	method	accepts	only	one	parameter,	which	is
the	prompt	string.	The	keywords	and	input	parameters	are	defined	with	a	call	to
the	InitializeUserInput	method.

Get	a	keyword	from	the	user	at	the	AutoCAD	command	line

The	following	example	forces	the	user	to	enter	a	keyword	by	setting	the	first
parameter	of	InitializeUserInput	to	1,	which	disallows	NULL	input	(pressing
ENTER).	The	second	parameter	establishes	the	list	of	valid	keywords.

Sub	Ch3_KeyWord()

	Dim	keyWord	As	String

	ThisDrawing.Utility.InitializeUserInput	1,	"Line	Circle	Arc"

	keyWord	=	ThisDrawing.Utility.GetKeyword	_

	(vbCrLf	&	"Enter	an	option	(Line/Circle/Arc):	")

	MsgBox	keyWord,	,	"GetKeyword	Example"

End	Sub

A	more	user-friendly	keyword	prompt	is	one	that	provides	a	default	value	if	the
user	presses	ENTER	(NULL	input).	Notice	the	minor	modifications	to	the
following	example:

Sub	Ch3_KeyWord2()

	Dim	keyWord	As	String

	ThisDrawing.Utility.InitializeUserInput	0,	"Line	Circle	Arc"

	keyWord	=	ThisDrawing.Utility.GetKeyword	_

	(vbCrLf	&	"Enter	an	option	(Line/Circle/<Arc>):	")

	If	keyWord	=	""	Then	keyWord	=	"Arc"

	MsgBox	keyWord,	,	"GetKeyword	Example"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	Prompt	for	User	Input	>	

Control	User	Input
	
	
	

You	can	use	the	InitializeUserInput	method	to	define	keywords	or	restrict	the
type	of	input	to	the	user	input	method.	The	use	and	parameter	values	are	similar
to	the	AutoLISP	initget	function.	InitializeUserInput	can	be	used	with	the
following	methods:	GetAngle,	GetCorner,	GetDistance,	GetInteger,
GetKeyword,	GetOrientation,	GetPoint,	and	GetReal.	InitializeUserInput	cannot
be	used	with	the	GetString	method.	Use	the	GetInput	method	to	retrieve	the
string	value	(keyword	or	arbitrary	input)	when	the	user	input	method	does	not
return	a	string	value.

The	InitializeUserInput	method	accepts	two	parameters.	The	first	parameter	is	a
bit-coded	integer	value	that	determines	the	input	options	for	the	user	input
method.	The	second	parameter	is	a	string	that	defines	the	valid	keywords.

Get	an	integer	value	or	a	keyword	from	the	user	at	the	AutoCAD
command	line

The	following	example	prompts	the	user	for	a	positive,	non-negative	integer
value	or	a	keyword:

Sub	Ch3_UserInput()

	'	The	first	parameter	of	InitializeUserInput	(6)

	'	restricts	input	to	positive	and	non-negative

	'	values.	The	second	parameter	is	the	list	of

	'	valid	keywords.

	ThisDrawing.Utility.InitializeUserInput	6,	"Big	Small	Regular"

	'	Set	the	prompt	string	variable

	Dim	promptStr	As	String

	promptStr	=	vbCrLf	&	"Enter	the	size	or	(Big/Small/<Regular>):"

	'	At	the	GetInteger	prompt,	entering	a	keyword	or	pressing

	'	ENTER	without	entering	a	value	results	in	an	error.	To	allow

	'	your	application	to	continue	and	check	for	the	error

	'	description,	you	must	set	the	error	handler	to	resume	on	error.

	On	Error	Resume	Next

	'	Get	the	value	entered	by	the	user

	Dim	returnInteger	As	Integer

	returnInteger	=	ThisDrawing.Utility.GetInteger(promptStr)

	'	Check	for	an	error.	If	the	error	number	matches	the

	'	one	shown	below,	then	use	GetInput	to	get	the	returned

	'	string;	otherwise,	use	the	value	of	returnInteger.

	If	Err.Number	=	-2145320928	Then

	Dim	returnString	As	String

	Debug.Print	Err.Description

	returnString	=	ThisDrawing.Utility.GetInput()

	If	returnString	=	""	Then								'ENTER	returns	null	string

	returnString	=	"Regular"					'Set	to	default

	End	If

	Err.Clear

	Else																																	'Otherwise,

	returnString	=	returnInteger					'Use	the	value	entered

	End	If

	'	Display	the	result

	MsgBox	returnString,	,	"InitializeUserInput	Example"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Access	the	AutoCAD	Command	Line
	
	
	

You	can	send	commands	directly	to	the	AutoCAD	command	line	by	using	the
SendCommand	method.	The	SendCommand	method	sends	a	single	string	to	the
command	line.	The	string	must	contain	the	arguments	to	the	command	listed	in
the	order	expected	by	the	prompt	sequence	of	the	executed	command.	A	blank
space	or	the	ASCII	equivalent	of	a	carriage	return	in	the	string	is	equivalent	to
pressing	ENTER	on	the	keyboard.	Unlike	the	AutoLISP	environment,	invoking
the	SendCommand	method	with	no	argument	is	invalid.

Send	a	command	to	the	AutoCAD	command	line

The	following	example	creates	a	circle	with	a	center	of	(2,	2,	0)	and	a	radius	of
4.	The	drawing	is	then	zoomed	to	all	the	geometry	in	the	drawing.	Notice	that
there	is	a	space	at	the	end	of	the	string	which	represents	the	final	ENTER	to
begin	execution	of	the	command.

Sub	Ch3_SendACommandToAutoCAD()

	ThisDrawing.SendCommand	"_Circle	2,2,0	4	"

	ThisDrawing.SendCommand	"_zoom	a	"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Work	with	No	Documents	Open
	
	
	

AutoCAD	always	starts	up	with	a	new	or	existing	document	open.	It	is	possible,
however,	to	close	all	documents	during	the	current	session.

If	you	close	all	the	documents	in	the	AutoCAD	user	interface,	you	will	notice	a
few	changes	to	the	application	window.	The	available	menus	are	reduced	to
simply	the	File,	View,	Window,	and	Help	menus.	These	menus	also	have
reduced	available	options	on	them.	You	will	also	notice	that	there	is	no
command	line.

Similarly,	the	ActiveX	interface	only	allows	the	following	actions	when	no
documents	are	open:

You	can	open	a	document.

You	can	create	a	new	document.

You	can	import	a	document.

You	can	exit	out	of	AutoCAD.

These	actions	are	all	available	from	the	Documents	collection.	The	methods	and
properties	of	the	Documents	collection,	in	addition	to	a	limited	set	of	methods
and	properties	of	the	Application	object,	are	the	only	valid	interface	available
when	there	are	no	documents	open.	If	you	perform	any	other	action,	such	as
attempting	to	access	user	options,	your	actions	will	result	in	an	error.

Use	the	Count	property	on	the	Documents	collection	to	determine	if	AutoCAD	is
in	a	zero	document	state.	If	Documents.Count	=	0,	then	AutoCAD	is	in	a
zero	document	state.	If	Documents.Count	>	0,	then	there	is	at	least	one
drawing	open.

It	is	also	important	to	note	that	in	VBA	the	ThisDrawing	object	is	not	defined
when	AutoCAD	is	in	a	zero	document	state.	This	makes	sense	since
ThisDrawing	normally	refers	to	the	active	drawing	and	in	the	zero	document

state	there	are	no	drawings	open.	Attempting	to	execute	a	macro	that	uses
ThisDrawing	will	result	in	a	runtime	error.	To	avoid	the	error,	use	the	VBA
GetObject	function,	and	specify	the	AutoCAD	version,	to	obtain	a	connection
to	AutoCAD	when	there	are	no	documents	open.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Import	Other	File	Formats
	
	
	

You	can	use	drawings	or	images	from	other	applications	by	opening	them	in
specific	formats.	AutoCAD	handles	some	form	of	conversion	for	drawing
interchange	format	(DXF)TM	,	SAT,	and	WMF	files.	For	all	versions,	you	can
import	the	file	by	using	the	Import	method.	This	method	takes	three	values	as
input:	the	name	of	the	file	to	import,	the	insertion	point	in	the	drawing	to	place
the	file,	and	the	scale	factor	to	use	when	placing	the	imported	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Control	the	AutoCAD	Environment	>	

Export	to	Other	File	Formats
	
	
	

If	you	need	to	use	an	AutoCAD	drawing	in	another	application,	you	can	convert
it	to	a	specific	format	by	using	the	Export	method.	This	method	exports	the
AutoCAD	drawing	to	a	WMF,	SAT,	EPS,	DXF,	or	BMP	format.	The	Export
method	takes	three	values	as	input:	the	name	for	the	new	file	to	be	created,	the
extension	for	the	new	file,	and	the	selection	set	of	objects	to	export.

When	exporting	to	WMF,	SAT,	or	BMP	format,	you	must	provide	a	nonempty
selection	set.	This	selection	set	specifies	the	objects	from	the	drawing	to	export.
If	no	selection	set	is	specified,	nothing	is	exported	and	a	trappable	invalid
argument	error	results.

When	exporting	to	EPS	and	DXF	formats,	Export	ignores	the	selection	set
argument,	but	it	is	still	required.	The	entire	drawing	is	automatically	exported	for
these	formats.

Export	a	drawing	as	a	DXF	file	and	import	it	again

This	example	creates	a	circle	in	the	current	drawing.	It	then	exports	the	drawing
to	a	file	called	DXFExprt.DXF,	opens	a	new	drawing,	and	imports	the	file.	Note
that	an	empty	selection	set	is	provided	as	an	argument	to	Export.	The	Export
method	ignores	selection	set	information	when	exporting	a	DXF	file,	but	a
syntax	error	results	if	the	argument	is	omitted.

Sub	Ch3_ImportingAndExporting()

	'	Create	the	circle	for	visual	representation

	Dim	circleObj	As	AcadCircle

	Dim	centerPt(0	To	2)	As	Double

	Dim	radius	As	Double

	centerPt(0)	=	2:	centerPt(1)	=	2:	centerPt(2)	=	0

	radius	=	1

	Set	circleObj	=	ThisDrawing.ModelSpace.AddCircle	_

	(centerPt,	radius)

	ThisDrawing.Application.ZoomAll

	'	Create	an	empty	selection	set

	Dim	sset	As	AcadSelectionSet

	Set	sset	=	ThisDrawing.SelectionSets.Add("NEWSSET")

	'Export	the	current	drawing	to	a	DXF	file	in	the

	'	AutoCAD	temporary	file	directory

	Dim	tempPath	As	String

	Dim	exportFile	As	String

	Const	dxfname	As	String	=	"DXFExprt"

	tempPath	=	_

	ThisDrawing.Application.preferences.Files.TempFilePath

	exportFile	=	tempPath	&	dxfname

	ThisDrawing.Export	exportFile,	"DXF",	sset	

	'	Delete	the	empty	selection	set

	ThisDrawing.SelectionSets.Item("NEWSSET").Delete

	'	Open	a	new	drawing

	ThisDrawing.Application.Documents.Add	"acad.dwt"

	'	Define	the	import

	Dim	importFile	As	String

	Dim	insertPoint(0	To	2)	As	Double

	Dim	scalefactor	As	Double

	importFile	=	tempPath	&	dxfname	&	".dxf"

	insertPoint(0)	=	0:	insertPoint(1)	=	0:	insertPoint(2)	=	0

	scalefactor	=	2#

	'	Import	the	file

	ThisDrawing.Import	importFile,	insertPoint,	scalefactor

	ThisDrawing.Application.ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>solid-filled	areas:<$startrange>selection	sets:filter	lists,
<$startrange>filter	lists,	<$startrange>filtering:selection	sets,	DXF	codes,	and
filter	types	(table),	filter	types,	and	DXF	codes	(table),	<$startrange>filter
lists:example	code,	SelectionSet	object:example	code,	filtering:example	code,
<$endrange>selection	sets:filter	lists,	<$endrange>filter	lists,
<$endrange>filtering:selection	sets,	<$endrange>filter	lists:example	code,
selection	sets:removing	objects,	objects:removing	from	selection	sets,
RemoveItems	method:in	selection	sets,	Clear	method:in	selection	sets,	Erase
method:in	selection	sets,	Delete	method:in	selection	sets,	objects:existing,
modifying,	Update	method:redrawing	objects,	2D	objects:editing,	editing:2D
objects,	nongraphical	objects,	editing,	editing:nongraphical	objects,	named
objects:specifying,	objects:named,	specifying	,	named	objects:purging,	purging,
named	objects,	PurgeAll	method:example	code,	named	objects:renaming,	named
objects:character	length,	Name	property:example	code,	Add	method:layers,
example	code,	Layer	object:example	code,	copying:offsetting,
copying:mirroring,	copying:arraying,	offsetting,	objects,	mirroring:objects,
arraying,	patterns,	Copy	method,	copying:single	object,	CopyObjects	method,
copying:multiple	objects,	copying:from	one	drawing	to	another,	copying:objects
to	other	drawings,	CopyObjects	method:example	code,	Circle	object:example
code,	CopyObjects	method:example	code,	copying:from	one	drawing	to	another,
copying:objects	to	other	drawings,	objects:offsetting,	Offset	method,
AddLightweightPolyline	method:example	code,	LightweightPolyline
object:example	code,	Offset	method:example	code,	Offset	method:example
code,	Mirror	method,	mirroring:with	two	coordinates,	Mirror
method:illustration,	Erase	method,	MIRRTEXT	system	variable,	Text
object:mirroring	text,	mirroring:Text	objects,	mirroring:example	code,
LightweightPolyline	object:example	code,	Mirror	method:example	code,
arrays:polar	arrays,	arrays:rectangular	arrays,	ArrayPolar	method:creating	arrays,
polar	arrays:creating,	polar	arrays:center	point,	specifying,	polar	arrays:reference
points,	reference	points,	in	polar	arrays,	polar	arrays:example	code,
ArrayRectangular	method,	arrays:rectangular,	rectangular	arrays,	snap	rotation
angle:rectangular	arrays,	rectangular	arrays:snap	rotation	angle,
SnapRotationAngle	property,	rectangular	arrays:example	code,	vectors:moving
objects,	objects:moving	along	a	vector,	Move	method:vectors,	displacement
vector,	Move	object:illustration,	Move	object:example	code,	rotating
objects:illustration,	base	point,	rotating	objects,	Rotate	method,	rotating	objects,
Rotate	method:example	code,	Delete	method:collections,	scaling:objects,
objects:scaling,	ScaleEntity	method,	scale	factor:object	dimensions,
objects:scale	factor,	scale	factor:illustration,	ScaleEntity	method:example	code,

TransformBy	method,	objects:transforming,	<$nopage>matrix:<$nopage>layer
properties,	saving.	<$endrange>layer	settings:storing,	layer
settings:saving:example	code,	layer	settings:renaming	saved	settings:example
code,	layer	settings:deleting	saved	settings:example	code,	layer	settings:restoring
saved	settings,	layer	settings:restoring	saved	settings:example	code,	layer
settings:exporting	saved	settings,	layer	settings:importing	saved	settings,	Export
method:for	saved	layer	settings,	Import	method:for	saved	layer	settings,	layer
settings:exporting	saved	settings:example	code,	layer	settings:importing	saved
settings:example	code,	Text	object:used	in	drawings,	Text	object:line	text,	Text
object:mtext,	mtext:in	drawings,	drawings:text	styles,	text	styles:properties
(table),	text	styles:current,	text	styles:default,	text	styles:creating,	Add
method:text	styles,	TextStyles	collection,	TextStyle	object,	TextStyle
object:properties	(list),	FontFile	property,	BigFontFile	property:TextStyle	object,
Height	property,	Width	property,	ObliqueAngle	property,	TextGenerationFlag
property,	text	styles:changing	properties,	Regen	method:for	text	styles,	Update
method:for	text	styles,	fonts:assigning	in	drawings,	TextGenerationFlag
property,	GetFont	method:example	code,	SetFont	method:example	code,
fonts:TrueType,	fonts:SHX	fonts,	fonts:exporting	in	drawings,	fonts:TEXTFILL
system	variable,	TrueType	fonts,	SHX	fonts,	TEXTFILL	system	variable,
fonts:Unicode,	Unicode	fonts,	fonts:Big	Font	files,	Big	Font	files,	FontFile
property,	BigFontFile	property:example	code,	FontFile	property:example	code,
TextStyle	object:example	code,	Text	object:height	settings,	TrueType
fonts:height	settings,	Height	property,	Height	property:example	code,	Text
object:example	code,	AddText	method:example	code,	Text	object:angles,	setting,
rotation	angles,	obliquing	angles,	in	text:illustration,	ObliqueAngle	property,
Text	object:ObliqueAngle	property,	TextGenerationFlag	property:example	code,
Text	object:text	generation	flag,	Text	object:displaying	backward,	Text
object:displaying	upside	down,	TextGenerationFlag	property,
TextGenerationFlag	property:example	code,	Text	object:example	code,	Text
object:line	text,	creating,	Text	object:formatting,	StyleName	property,	Text
object:properties	(list),	Alignment	property,	InsertionPoint	property,
ObliqueAngle	property,	Rotation	property,	ScaleFactor	property,
TextAlignmentPoint	property,	TextGenerationFlag	property,	TextString	property,
Update	method:Text	object,	Alignment	property:in	text,	Text	object:aligning	in
drawings	(illustration),	Text	object:example	code,	SetVariable	method:example
code,	Alignment	property:example	code,	TextAlignmentPoint	property:example
code,	Text	object:modifying,	MIRRTEXT	system	variable,	Text	object:methods
(list),	ArrayPolar	method:Text	object,	ArrayRectangular	method:Text	object,
Copy	method,	Erase	method,	Mirror	method,	Move	method,	Rotate	method,

mtext:uses	for,	mtext:modifying,	<$nopage>multiline	text.

	

Create	and	Edit	AutoCAD	Entities
	
	
	

You	can	create	a	range	of	objects,	from	simple	lines	and	circles	to	spline	curves,
ellipses,	and	associative	hatch	areas.	In	general,	you	add	objects	to	model	space
using	one	of	the	Add	methods.	You	can	also	create	objects	in	paper	space,	or	in	a
block.

Once	an	object	is	created,	you	can	change	the	layer,	color,	and	linetype	of	the
object.	You	can	also	add	text	to	annotate	your	drawing.

Topics	in	this	section

Create	Objects
Work	with	Selection	Sets
Edit	Objects
Use	Layers,	Colors,	and	Linetypes
Save	and	Restore	Layer	Settings
Add	Text	to	Drawings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>solid-filled	areas:

Create	and	Edit	AutoCAD	Entities	>	

Create	Objects
	
	
	

While	there	are	often	several	different	ways	to	create	the	same	graphical	object
in	AutoCAD®,	ActiveX	Automation	offers	only	one	creation	method	per	object.
For	example,	in	AutoCAD	there	are	four	different	ways	you	can	create	a	circle:
(1)	by	specifying	the	center	and	radius,	(2)	by	two	points	defining	the	diameter,
(3)	by	three	points	defining	the	circumference,	or	(4)	by	two	tangents	and	a
radius.	However,	in	ActiveX	Automation	there	is	only	one	creation	method
provided	to	create	a	circle,	and	that	method	uses	the	center	and	radius.

Note The	VB	and	VBA	methods	of	creating	objects	using	either	CreateObject	or
Dim	with	the	New	keyword	can	only	be	used	to	create	the	AutoCAD
Application	object.	All	other	AutoCAD	objects	must	be	created	using	the	Add	or
Add<objectname>	method	provided	in	the	AutoCAD	interface.

Topics	in	this	section

Determine	the	Container	Object
Create	Lines
Create	Curved	Objects
Create	Point	Objects
Create	Solid-Filled	Areas
Work	with	Regions
Create	Hatches

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Determine	the	Container	Object
	
	
	

Graphical	objects	are	created	in	either	the	ModelSpace	collection,	the
PaperSpace	collection,	or	a	Block	object.

The	ModelSpace	collection	is	returned	by	the	ModelSpace	property	and	the
PaperSpace	collection	by	the	PaperSpace	property.

You	can	reference	these	objects	directly,	or	through	a	user-defined	variable.	To
reference	the	objects	directly,	include	the	object	in	the	calling	hierarchy.	For
example,	the	following	statement	adds	a	line	to	the	model	space:

Set	lineObj	=	ThisDrawing.ModelSpace.AddLine(startPoint,endPoint)

To	reference	the	objects	through	a	user-defined	variable,	define	the	variable	as
type	AcadModelSpace	or	AcadPaperSpace,	and	then	set	the	variable	to
the	appropriate	property	of	the	active	document.	The	following	example	defines
two	variables	and	sets	them	equal	to	the	current	model	space	and	paper	space,
respectively:

Dim	moSpace	As	AcadModelSpace

Dim	paSpace	As	AcadPaperSpace

Set	moSpace	=	ThisDrawing.ModelSpace

Set	paSpace	=	ThisDrawing.PaperSpace

The	following	statement	adds	a	line	to	the	model	space	using	the	user-defined
variable:

Set	lineObj	=	moSpace.AddLine(startPoint,endPoint)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Create	Lines
	
	
	

The	line	is	the	most	basic	object	in	AutoCAD.	You	can	create	a	variety	of	lines
—single	lines,	and	multiple	line	segments	with	and	without	arcs.	In	general,	you
draw	lines	by	specifying	coordinate	points.	The	default	linetype	is
CONTINUOUS,	an	unbroken	line,	but	various	linetypes	are	available	that	use
dots	and	dashes.

To	create	a	line,	use	one	of	the	following	methods:

AddLine

Creates	a	line	passing	through	two	points.

AddLightweightPolyline

Creates	a	2D	lightweight	polyline	from	a	list	of	vertices.

AddMLine

Creates	a	multiline.

AddPolyline

Creates	a	2D	or	3D	polyline.

Standard	lines	and	multilines	are	created	on	the	XY	plane	of	the	world	coordinate
system.	Polylines	and	Lightweight	Polylines	are	created	in	the	object	coordinate
system	(OCS).	For	information	about	converting	OCS	coordinates,	see	Convert
Coordinates.

Create	a	Polyline	object

This	example	uses	the	AddLightweightPolyline	method	to	create	a	simple	two-
segment	polyline	using	the	2D	coordinates	(2,4),	(4,2),	and	(6,4).

Sub	Ch4_AddLightWeightPolyline()

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	5)	As	Double

				'	Define	the	2D	polyline	points

				points(0)	=	2:	points(1)	=	4

				points(2)	=	4:	points(3)	=	2

				points(4)	=	6:	points(5)	=	4

				'	Create	a	light	weight	Polyline	object	in	model	space

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				ThisDrawing.Application.ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Create	Curved	Objects
	
	
	

You	can	create	a	variety	of	curved	objects	with	AutoCAD,	including	spline
curves,	circles,	arcs,	and	ellipses.	All	curves	are	created	on	the	XY	plane	of	the
current	WCS.

To	create	a	curve,	use	one	of	the	following	methods:

AddArc

Creates	an	arc	given	the	center,	radius,	start	and	end	angles.

AddCircle

Creates	a	circle	given	the	center	point	and	radius.

AddEllipse

Creates	an	ellipse	given	the	center	point,	a	point	on	the	major	axis,	and	the
radius	ratio.

AddSpline

Creates	a	quadratic	or	cubic	NURBS	(nonuniform	rational	B-spline)	curve.

Create	a	Spline	object

This	example	creates	a	spline	in	model	space	using	three	points	(0,	0,	0),	(5,	5,
0),	and	(10,	0,	0).	The	spline	has	start	and	end	tangents	of	(0.5,	0.5,	0.0).

Sub	Ch4_CreateSpline()

				'	This	example	creates	a	spline	object	in	model	space.

				'	Declare	the	variables	needed

				Dim	splineObj	As	AcadSpline

				Dim	startTan(0	To	2)	As	Double

				Dim	endTan(0	To	2)	As	Double

				Dim	fitPoints(0	To	8)	As	Double

				'	Define	the	variables

				startTan(0)	=	0.5:	startTan(1)	=	0.5:	startTan(2)	=	0

				endTan(0)	=	0.5:	endTan(1)	=	0.5:	endTan(2)	=	0

				fitPoints(0)	=	1:	fitPoints(1)	=	1:	fitPoints(2)	=	0

				fitPoints(3)	=	5:	fitPoints(4)	=	5:	fitPoints(5)	=	0

				fitPoints(6)	=	10:	fitPoints(7)	=	0:	fitPoints(8)	=	0

				'	Create	the	spline

				Set	splineObj	=	ThisDrawing.ModelSpace.AddSpline	_

	(fitPoints,	startTan,	endTan)

				ZoomAll

End	Sub

For	more	information	about	splines,	see	the	Spline	object	and	AddSpline	method
documentation	in	the	AutoCAD	ActiveX	and	VBA	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Create	Point	Objects
	
	
	

Point	objects	can	be	useful,	for	example,	as	node	or	reference	points	that	you	can
snap	to	and	offset	objects	from.	You	can	set	the	style	of	the	point	and	its	size
relative	to	the	screen	or	in	absolute	units.

The	PDMODE	and	PDSIZE	system	variables	control	the	appearance	of	Point
objects.	The	PDMODE	values	0,	2,	3,	and	4	specify	a	figure	to	draw	through	the
point.	A	value	of	1	selects	nothing	to	be	displayed.

Adding	32,	64,	or	96	to	the	previous	value	selects	a	shape	to	draw	around	the
point	in	addition	to	the	figure	drawn	through	it:

PDSIZE	controls	the	size	of	the	point	figures,	except	for	PDMODE	values	0	and
1.	A	0	setting	generates	the	point	at	5	percent	of	the	graphics	area	height.	A
positive	PDSIZE	value	specifies	an	absolute	size	for	the	point	figures.	A
negative	value	is	interpreted	as	a	percentage	of	the	viewport	size.	The	size	of	all
points	is	recalculated	when	the	drawing	is	regenerated.

After	you	change	PDMODE	and	PDSIZE,	the	appearance	of	existing	points
changes	the	next	time	the	drawing	is	regenerated.

To	set	PDMODE	and	PDSIZE,	use	the	SetVariable	method.

Create	a	Point	object	and	change	its	appearance

The	following	code	example	creates	a	Point	object	in	model	space	at	the
coordinate	(5,	5,	0).	The	PDMODE	and	PDSIZE	system	variables	are	then
updated.

Sub	Ch4_CreatePoint()

				Dim	pointObj	As	AcadPoint

				Dim	location(0	To	2)	As	Double

				'	Define	the	location	of	the	point

				location(0)	=	5#:	location(1)	=	5#:	location(2)	=	0#

				'	Create	the	point

				Set	pointObj	=	ThisDrawing.ModelSpace.AddPoint(location)

				ThisDrawing.SetVariable	"PDMODE",	34

				ThisDrawing.SetVariable	"PDSIZE",	1

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>solid-filled	areas:

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Create	Solid-Filled	Areas
	
	
	

You	can	create	triangular	and	quadrilateral	areas	filled	with	a	color.	For	quicker
results,	create	these	areas	with	the	FILLMODE	system	variable	off,	then	turn
FILLMODE	on	to	fill	the	finished	area.

When	you	create	a	quadrilateral	solid-filled	area,	the	sequence	of	the	third	and
fourth	points	determines	its	shape.	Compare	the	following	illustrations:

The	first	two	points	define	one	edge	of	the	polygon.	The	third	point	is	defined
diagonally	opposite	from	the	second.	If	the	fourth	point	is	set	equal	to	the	third
point,	then	a	filled	triangle	is	created.

To	create	a	solid-filled	area,	use	the	AddSolid	method.

For	more	information	about	filling	solids,	see	“Create	Solid-Filled	Areas”	in	the
User's	Guide.

Create	a	solid-filled	object

The	following	code	example	creates	a	quadrilateral	solid	in	model	space	using
the	coordinates	(0,	0,	0),	(5,	0,	0),	(5,	8,	0),	and	(0,	8,	0).

Sub	Ch4_CreateSolid()

				Dim	solidObj	As	AcadSolid

				Dim	point1(0	To	2)	As	Double

				Dim	point2(0	To	2)	As	Double

				Dim	point3(0	To	2)	As	Double

				Dim	point4(0	To	2)	As	Double

				'	Define	the	solid

				point1(0)	=	0#:	point1(1)	=	0#:	point1(2)	=	0#

				point2(0)	=	5#:	point2(1)	=	0#:	point2(2)	=	0#

				point3(0)	=	5#:	point3(1)	=	8#:	point3(2)	=	0#

				point4(0)	=	0#:	point4(1)	=	8#:	point4(2)	=	0#

				'	Create	the	solid	object	in	model	space

				Set	solidObj	=	ThisDrawing.ModelSpace.AddSolid	_

	(point1,	point2,	point3,	point4)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Work	with	Regions
	
	
	

Regions	are	two-dimensional	enclosed	areas	you	create	from	closed	shapes
called	loops.	A	loop	is	a	curve	or	a	sequence	of	connected	curves	that	defines	an
area	on	a	plane	with	a	boundary	that	does	not	intersect	itself.	Loops	can	be
combinations	of	lines,	lightweight	polylines,	circles,	arcs,	ellipses,	elliptical	arcs,
splines,	3D	faces,	traces,	and	solids.	The	objects	that	make	up	the	loops	must
either	be	closed	or	form	closed	areas	by	sharing	endpoints	with	other	objects.
They	must	also	be	coplanar	(on	the	same	plane).	The	loops	that	make	up	a	region
must	be	defined	as	an	array	of	objects.

For	more	information	about	working	with	regions,	see	“Create	and	Combine
Areas	(Regions)	in	the	User's	Guide.

Topics	in	this	section

Create	Regions
Create	Composite	Regions
Unite	Regions
Find	the	Intersection	of	Two	Regions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Work	with	Regions	>	

Create	Regions
	
	
	

To	create	a	region,	use	the	AddRegion	method.	This	method	will	create	a	region
out	of	every	closed	loop	formed	by	the	input	array	of	curves.	AutoCAD	converts
closed	2D	and	planar	3D	polylines	to	separate	regions,	then	converts	polylines,
lines,	and	curves	that	form	closed	planar	loops.	If	more	than	two	curves	share	an
endpoint,	the	resulting	region	might	be	arbitrary.	Because	of	this,	several	regions
may	actually	be	created	when	using	the	AddRegion	method.	Use	a	variant	to
hold	the	newly	created	array	of	regions.

To	calculate	the	total	number	of	Region	objects	created,	use	the	UBound	and
LBound	VBA	functions,	as	in	the	following	example:

UBound(objRegions)	-	LBound(objRegions)	+	1

where	objRegions	is	a	variant	containing	the	return	value	from	AddRegion.
This	statement	will	calculate	the	total	number	of	regions	created.

Create	a	simple	region

The	following	code	example	creates	a	region	from	a	single	circle.

Sub	Ch4_CreateRegion()

				'	Define	an	array	to	hold	the

				'	boundaries	of	the	region.

				Dim	curves(0	To	0)	As	AcadCircle

				'	Create	a	circle	to	become	a

				'	boundary	for	the	region.

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2

				center(1)	=	2

				center(2)	=	0

				radius	=	5#

				Set	curves(0)	=	ThisDrawing.ModelSpace.AddCircle	_

	(center,	radius)

				'	Create	the	region

				Dim	regionObj	As	Variant

				regionObj	=	ThisDrawing.ModelSpace.AddRegion(curves)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Work	with	Regions	>	

Create	Composite	Regions
	
	
	

You	can	create	composite	regions	by	subtracting,	combining,	or	finding	the
intersection	of	regions	or	3D	solids.	You	can	then	extrude	or	revolve	composite
regions	to	create	complex	solids.	To	create	a	composite	region,	use	the	Boolean
method.

When	you	subtract	one	region	from	another,	you	call	the	Boolean	method	from
the	first	region.	This	is	the	region	from	which	you	want	to	subtract.	For	example,
to	calculate	how	much	carpeting	is	needed	for	a	floorplan,	call	the	Boolean
method	from	the	outer	boundary	of	the	floor	space	and	use	the	uncarpeted	areas,
such	as	pillars	and	counters,	as	the	object	in	the	Boolean	parameter	list.

Create	a	composite	region

Sub	Ch4_CreateCompositeRegions()

				'	Create	two	circles,	one	representing	a	room,

				'	the	other	a	pillar	in	the	center	of	the	room

				Dim	RoomObjects(0	To	1)	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	4

				center(1)	=	4

				center(2)	=	0

				radius	=	2#

				Set	RoomObjects(0)	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				radius	=	1#

				Set	RoomObjects(1)	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Create	a	region	from	the	two	circles

				Dim	regions	As	Variant

				regions	=	ThisDrawing.ModelSpace.AddRegion(RoomObjects)

				'	Copy	the	regions	into	the	region	variables	for	ease	of	use

				Dim	RoundRoomObj	As	AcadRegion

				Dim	PillarObj	As	AcadRegion

				If	regions(0).Area	>	regions(1).Area	Then

								'	The	first	region	is	the	room

								Set	RoundRoomObj	=	regions(0)

								Set	PillarObj	=	regions(1)

				Else

								'	The	first	region	is	the	pillar

								Set	PillarObj	=	regions(0)

								Set	RoundRoomObj	=	regions(1)

				End	If

'	Subtract	the	pillar	space	from	the	floor	space	to

				'	get	a	region	that	represents	the	total	carpet	area.

				RoundRoomObj.Boolean	acSubtraction,	PillarObj

				'	Use	the	Area	property	to	determine	the	total	carpet	area

				MsgBox	"The	carpet	area	is:	"	&	RoundRoomObj.Area

End	Sub

Find	the	area	of	the	resulting	region	with	the	Area	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Work	with	Regions	>	

Unite	Regions
	
	
	

To	unite	regions,	call	the	Boolean	method	and	enter	the	constant	acUnion	for
the	operation	instead	of	acSubtraction.	You	can	combine	regions	in	any
order	to	unite	them.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Work	with	Regions	>	

Find	the	Intersection	of	Two	Regions
	
	
	

To	find	the	intersection	of	two	regions,	use	the	constant	acIntersection.
You	can	combine	regions	in	any	order	to	intersect	them.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	

Create	Hatches
	
	
	

Hatching	fills	a	specified	area	in	a	drawing	with	a	pattern.

When	creating	a	hatch,	you	do	not	initially	specify	the	area	to	be	filled.	First	you
must	create	the	Hatch	object.	Once	this	is	done,	you	can	specify	the	outer	loop,
which	is	the	outermost	boundary	for	the	hatch.	You	can	then	continue	to	specify
any	inner	loops	that	may	exist	in	the	hatch.

For	more	information	about	working	with	hatches,	see	“Overview	of	Hatch
Patterns	and	Fills”	in	the	User's	Guide.

Topics	in	this	section

Create	the	Hatch	Object
Associate	a	Hatch
Assign	the	Hatch	Pattern	Type	and	Name
Define	the	Hatch	Boundaries

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Create	Hatches	>	

Create	the	Hatch	Object
	
	
	

When	creating	the	Hatch	object,	you	specify	the	hatch	pattern	type,	the	hatch
pattern	name,	and	the	associativity.	Once	the	Hatch	object	has	been	created,	you
will	not	be	able	to	change	the	hatch	associativity.

To	create	a	Hatch	object,	use	the	AddHatch	method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Create	Hatches	>	

Associate	a	Hatch
	
	
	

You	can	create	associative	or	nonassociative	hatches.	Associative	hatches	are
linked	to	their	boundaries	and	updated	when	the	boundaries	are	modified.
Nonassociative	hatches	are	independent	of	their	boundaries.

Associativity	can	only	be	set	when	a	hatch	is	created.	Once	a	hatch	has	been
created,	you	can	unassociate	it,	but	you	cannot	associate	it	again.

To	make	a	hatch	associative,	set	the	Associativity	parameter	of	the
AddHatch	method	to	TRUE.	To	make	a	hatch	nonassociative,	set	the
Associativity	parameter	of	the	AddHatch	method	to	FALSE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Create	Hatches	>	

Assign	the	Hatch	Pattern	Type	and	Name
	
	
	

AutoCAD	supplies	a	solid-fill	and	more	than	fifty	industry-standard	hatch
patterns.	Hatch	patterns	highlight	a	particular	feature	or	area	of	a	drawing.	For
example,	patterns	can	help	differentiate	the	components	of	a	3D	object	or
represent	the	materials	that	make	up	an	object.

You	can	use	a	pattern	supplied	with	AutoCAD	or	one	from	an	external	pattern
library.	For	a	table	of	the	hatch	patterns	supplied	with	AutoCAD,	see	the
AutoCAD	Command	Reference.

To	specify	a	unique	pattern,	you	must	enter	both	a	pattern	type	and	a	pattern
name	when	creating	the	Hatch	object.	The	pattern	type	specifies	where	to	look
up	the	pattern	name.	When	entering	the	pattern	type,	use	one	of	the	following
constants:

acHatchPatternTypePredefined

Selects	the	pattern	name	from	those	defined	in	the	acad.pat	file.

acHatchPatternTypeUserDefined

Defines	a	pattern	of	lines	using	the	current	linetype.

acHatchPatternTypeCustomDefined

Selects	the	pattern	name	from	a	PAT	other	than	the	acad.pat	file.

When	entering	the	pattern	name,	use	a	name	that	is	valid	for	the	file	specified	by
the	pattern	type.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Create	Objects	>	Create	Hatches	>	

Define	the	Hatch	Boundaries
	
	
	

Once	the	Hatch	object	is	created,	the	hatch	boundaries	can	be	added.	Boundaries
can	be	any	combination	of	lines,	arcs,	circles,	2D	polylines,	ellipses,	splines,	and
regions.

The	first	boundary	added	must	be	the	outer	boundary,	which	defines	the
outermost	limits	to	be	filled	by	the	hatch.	To	add	the	outer	boundary,	use	the
AppendOuterLoop	method.

Once	the	outer	boundary	is	defined,	you	can	continue	adding	inner	boundaries.
Add	inner	boundaries	with	the	AppendInnerLoop	method.

Inner	boundaries	define	islands	within	the	hatch.	How	these	islands	are	handled
by	the	Hatch	object	depends	on	the	setting	of	the	HatchStyle	property.	The
HatchStyle	property	can	be	set	to	one	of	the	following	conditions:

Hatch	style	definitions

HatchStyle Condition Description

Normal Specifies	standard	style,
or	normal.	This	option
hatches	inward	from	the
outermost	area	boundary.
If	AutoCAD	encounters
an	internal	boundary,	it
turns	off	hatching	until	it
encounters	another
boundary.	This	is	the
default	setting	for	the
HatchStyle	property.

Outer Fills	the	outermost	areas
only.	This	style	also
hatches	inward	from	the
area	boundary,	but	it
turns	off	hatching	if	it
encounters	an	internal
boundary	and	does	not
turn	it	back	on	again.

Ignore Ignores	internal	structure.
This	option	hatches
through	all	internal
objects.

When	you	have	finished	defining	the	hatch	it	must	be	evaluated	before	it	can	be
displayed.	Use	the	Evaluate	method	to	do	this.

Create	a	Hatch	object

This	example	creates	an	associate	hatch	in	model	space.	Once	the	hatch	has	been
created,	you	can	change	the	size	of	the	circle	that	the	hatch	is	associated	with.
The	hatch	will	change	to	match	the	current	circle	size.

Sub	Ch4_CreateHatch()

				Dim	hatchObj	As	AcadHatch

				Dim	patternName	As	String

				Dim	PatternType	As	Long

				Dim	bAssociativity	As	Boolean

				'	Define	the	hatch

				patternName	=	"ANSI31"

				PatternType	=	0

				bAssociativity	=	True

				'	Create	the	associative	Hatch	object

				Set	hatchObj	=	ThisDrawing.ModelSpace.AddHatch	_

	(PatternType,	patternName,	bAssociativity)

				'	Create	the	outer	boundary	for	the	hatch.	(a	circle)

				Dim	outerLoop(0	To	0)	As	AcadEntity

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	3:	center(1)	=	3:	center(2)	=	0

				radius	=	1

				Set	outerLoop(0)	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Append	the	outerboundary	to	the	hatch

				'	object,	and	display	the	hatch

				hatchObj.AppendOuterLoop	(outerLoop)

				hatchObj.Evaluate

				ThisDrawing.Regen	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$startrange>selection	sets:filter	lists,	<$startrange>filter	lists,
<$startrange>filtering:selection	sets,	DXF	codes,	and	filter	types	(table),	filter
types,	and	DXF	codes	(table),	<$startrange>filter	lists:example	code,
SelectionSet	object:example	code,	filtering:example	code,	<$endrange>selection
sets:filter	lists,	<$endrange>filter	lists,	<$endrange>filtering:selection	sets,
<$endrange>filter	lists:example	code,	selection	sets:removing	objects,
objects:removing	from	selection	sets,	RemoveItems	method:in	selection	sets,
Clear	method:in	selection	sets,	Erase	method:in	selection	sets,	Delete	method:in
selection	sets,">

Create	and	Edit	AutoCAD	Entities	>	

Work	with	Selection	Sets
	
	
	

A	selection	set	can	consist	of	a	single	object,	or	it	can	be	a	more	complex
grouping:	for	example,	the	set	of	objects	of	a	certain	layer.

Defining	a	selection	set	is	a	two-step	process.	First,	you	must	create	a	new
selection	set	and	add	it	to	the	SelectionSets	collection.	Once	created,	you	then
populate	the	selection	set	with	the	objects	you	want	to	process.

Topics	in	this	section

Create	a	Selection	Set
Add	Objects	to	a	Selection	Set
Define	Rules	for	Selection	Sets
Display	Information	About	a	Selection	Set
Remove	Objects	from	a	Selection	Set

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	

Create	a	Selection	Set
	
	
	

To	create	a	named	selection	set,	use	the	Add	method.	This	method	requires	only
a	single	parameter—the	name	of	the	selection	set.

If	a	selection	set	of	the	same	name	already	exists,	AutoCAD	returns	an	error
message.	It	is	a	good	programming	practice	to	delete	a	selection	set	when	you	no
longer	need	it.	Use	the	Delete	method	to	delete	a	selection	set,	as	in	the
following	example:

ThisDrawing.SelectionSets.Item("NewSelectionSet").Delete

Create	an	empty	selection	set

This	example	creates	a	new	selection	set.

Sub	Ch4_CreateSelectionSet()

				Dim	selectionSet1	As	AcadSelectionSet

				Set	selectionSet1	=	ThisDrawing.SelectionSets.	_

	Add("NewSelectionSet")

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	

Add	Objects	to	a	Selection	Set
	
	
	

You	can	add	objects	to	the	active	selection	set	by	using	any	of	the	following
methods:

AddItems

Adds	one	or	more	objects	to	the	specified	selection	set.

Select

Selects	objects	and	places	them	into	the	active	selection	set.	You	can	select
all	objects,	objects	within	and	crossing	a	rectangular	area,	objects	within	and
crossing	a	polygon	area,	all	objects	crossing	a	fence,	the	most	recently
created	object,	the	objects	in	the	most	recent	selection	set,	objects	within	a
window,	or	objects	within	a	window	polygon.

SelectAtPoint

Selects	objects	passing	through	a	given	point	and	places	them	into	the	active
selection	set.

SelectByPolygon

Selects	objects	within	a	fence	and	adds	them	to	the	active	selection	set.

SelectOnScreen

Prompts	the	user	to	pick	objects	from	the	screen	and	adds	them	into	the
active	selection	set.

Add	selected	objects	to	a	selection	set

This	example	prompts	the	user	to	select	objects,	then	adds	those	objects	to	the
selection	set.

Sub	Ch4_AddToASelectionSet()

				'	Create	a	new	selection	set

				Dim	sset	As	AcadSelectionSet

				Set	sset	=	ThisDrawing.SelectionSets.Add("SS1")

				'	Prompt	the	user	to	select	objects

				'	and	add	them	to	the	selection	set.

				'	To	finish	selecting,	press	ENTER.

				sset.SelectOnScreen

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$startrange>selection	sets:filter	lists,	<$startrange>filter	lists,
<$startrange>filtering:selection	sets,	DXF	codes,	and	filter	types	(table),	filter
types,	and	DXF	codes	(table),	<$startrange>filter	lists:example	code,
SelectionSet	object:example	code,	filtering:example	code,	<$endrange>selection
sets:filter	lists,	<$endrange>filter	lists,	<$endrange>filtering:selection	sets,
<$endrange>filter	lists:example	code,">

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	

Define	Rules	for	Selection	Sets
	
	
	

You	can	limit	selection	sets	by	property	or	by	object	type	using	filter	lists.	For
example,	you	can	copy	only	the	blue	objects	in	a	circuit	board	drawing,	or	only
objects	on	a	certain	layer.	You	can	also	combine	selection	criteria	in	your	filter
list.	For	example,	you	can	tell	AutoCAD	to	include	an	object	in	a	selection	set
only	if	it	is	a	blue	circle	on	a	specific	layer.	Filter	lists	can	be	specified	for	the
Select	,	SelectAtPoint	,	SelectByPolygon	,	and	SelectOnScreen	methods.

Note Filtering	recognizes	only	linetypes	explicitly	assigned	to	objects,	not	those
inherited	by	the	layer.

Topics	in	this	section

Use	Filter	Lists	to	Define	Selection	Set	Rules
Specify	Multiple	Criteria	in	a	Selection	Set	Filter	List
Add	Complexity	to	Your	Filter	List	Conditions
Use	Wild-Card	Patterns	in	Selection	Set	Filter	Criteria
Filter	for	Extended	Data

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$startrange>filter	lists:example	code,	SelectionSet	object:example	code,
filtering:example	code,">

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	Define	Rules
for	Selection	Sets	>	

Use	Filter	Lists	to	Define	Selection	Set	Rules
	
	
	

Filter	lists	are	composed	of	pairs	of	arguments.	The	first	argument	identifies	the
type	of	filter	(for	example,	an	object),	and	the	second	argument	specifies	the
value	you	are	filtering	on	(for	example,	circles).	The	filter	type	is	a	DXF	group
code	that	specifies	which	filter	to	use.	A	few	of	the	most	common	filter	types	are
listed	here.

DXF	codes	for	common	filters

DXF
code Filter	type

0 Object	Type	(String)
Such	as	“Line,”	“Circle,”	“Arc,”	and	so
forth.

2 Object	Name	(String)
The	table	(given)	name	of	a	named
object.

8 Layer	Name	(String)
Such	as	“Layer	0.”

60 Object	Visibility	(Integer)
Use	0	=	visible,	1	=	invisible.

62 Color	Number	(Integer)
Numeric	index	values	ranging	from	0	to
256.
Zero	indicates	BYBLOCK.	256
indicates	BYLAYER.	A	negative	value
indicates	that	the	layer	is	turned	off.

67 Model/paper	space	indicator	(Integer)
Use	0	or	omitted	=	model	space,	1	=
paper	space.

For	a	complete	list	of	DXF	group	codes,	see	Group	Code	Value	Types	in	the
DXF	Reference.

The	filter	arguments	are	declared	as	arrays.	The	filter	type	is	declared	as	an
integer	and	the	filter	value	as	a	variant.	Each	filter	type	must	be	paired	with	a
filter	value.	For	example:

FilterType(0)	=	0												'Indicates	filter	refers	to	an	object	type

FilterData(0)	=	"Circle"					'Indicates	the	object	type	is	"Circle"

Specify	a	single	selection	criterion	for	a	selection	set

The	following	code	prompts	users	to	select	objects	to	be	included	in	a	selection
set,	but	only	adds	the	selected	object	if	it	is	a	circle:

Sub	Ch4_FilterMtext()

			Dim	sstext	As	AcadSelectionSet

			Dim	FilterType(0)	As	Integer

			Dim	FilterData(0)	As	Variant

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS2")

			FilterType(0)	=	0

			FilterData(0)	=	"Circle"

			sstext.SelectOnScreen	FilterType,	FilterData

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	Define	Rules
for	Selection	Sets	>	

Specify	Multiple	Criteria	in	a	Selection	Set	Filter	List
	
	
	

To	specify	multiple	selection	criteria,	declare	an	array	containing	enough
elements	to	represent	each	criterion,	and	assign	each	criterion	to	an	element.

Select	objects	that	meet	three	criteria

The	following	code	specifies	two	criteria:	the	object	must	be	a	circle	and	it	must
reside	on	layer	0.	The	code	declares	FilterType	and	FilterData	as	arrays	of	two
elements,	and	assigns	each	criterion	to	an	element:

Sub	Ch4_FilterBlueCircleOnLayer0()

			Dim	sstext	As	AcadSelectionSet

			Dim	FilterType(1)	As	Integer

			Dim	FilterData(1)	As	Variant

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS4")

			FilterType(0)	=	0

			FilterData(0)	=	"Circle"

			FilterType(1)	=	8

			FilterData(1)	=	"0"

			sstext.SelectOnScreen	FilterType,	FilterData

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	Define	Rules
for	Selection	Sets	>	

Add	Complexity	to	Your	Filter	List	Conditions
	
	
	

When	you	specify	multiple	selection	criteria,	AutoCAD	assumes	the	selected
object	must	meet	each	criterion.	But	you	can	qualify	your	criteria	in	other	ways.
For	numeric	items,	you	can	specify	relational	operations	(for	example,	the	radius
of	a	circle	must	be	greater	than	or	equal	to	5.0).	And	for	all	items,	you	can
specify	logical	operations	(for	example,	Text	or	Mtext).

Use	a	-4	DXF	code	to	indicate	a	relational	operator	in	your	filter	specification.
Specify	the	operator	as	a	string.	The	allowable	relational	operators	are	shown	in
the	following	table.

Relational	operators	for	selection	set
filter	lists

Operator Description

"*" Anything	goes	(always
true)

"=" Equals

"!=" Not	equal	to

"/=" Not	equal	to

"<>" Not	equal	to

"<" Less	than

"<=" Less	than	or	equal	to

">" Greater	than

">=" Greater	than	or	equal	to

"&" Bitwise	AND	(integer
groups	only)

"&=" Bitwise	masked	equals
(integer	groups	only)

Logical	operators	in	filter	lists	are	also	indicated	by	a	-4	group	code,	and	the
operator	is	a	string,	but	the	operators	must	be	paired.	The	opening	operator	is
preceded	by	a	less-than	symbol	(<),	and	the	closing	operator	is	followed	by	a
greater-than	symbol	(>).	The	following	table	lists	the	logical	operators	allowed
in	selection	set	filtering.

Logical	grouping	operators	for	selection
set	filter	lists

Starting

operator
Encloses

Ending

operator

"<AND" One	or	more
operands

"AND>"

"<OR" One	or	more
operands

"OR>"

"<XOR" Two	operands "XOR>"

"<NOT" One	operand "NOT>"

Select	a	circle	whose	radius	is	greater	than	or	equal	to	5.0

The	following	code	specifies	that	the	selected	object	must	be	a	circle	whose

radius	is	greater	than	or	equal	to	5.0:

Sub	Ch4_FilterRelational()

			Dim	sstext	As	AcadSelectionSet

			Dim	FilterType(2)	As	Integer

			Dim	FilterData(2)	As	Variant

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS5")

			FilterType(0)	=	0

			FilterData(0)	=	"Circle"

			FilterType(1)	=	-4

			FilterData(1)	=	">="

			FilterType(2)	=	40

			FilterData(2)	=	5#

			sstext.SelectOnScreen	FilterType,	FilterData

End	Sub

Select	either	Text	or	Mtext

The	following	example	specifies	that	either	Text	or	Mtext	objects	can	be
selected:

Sub	Ch4_FilterOrTest()

			Dim	sstext	As	AcadSelectionSet

			Dim	FilterType(3)	As	Integer

			Dim	FilterData(3)	As	Variant

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS6")

			FilterType(0)	=	-4

			FilterData(0)	=	"<or"

			FilterType(1)	=	0

			FilterData(1)	=	"TEXT"

			FilterType(2)	=	0

			FilterData(2)	=	"MTEXT"

			FilterType(3)	=	-4

			FilterData(3)	=	"or>"

			sstext.SelectOnScreen	FilterType,	FilterData

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	Define	Rules
for	Selection	Sets	>	

Use	Wild-Card	Patterns	in	Selection	Set	Filter	Criteria
	
	
	

Symbol	names	and	strings	in	filter	lists	can	include	wild-card	patterns.

The	following	table	identifies	the	wild-card	characters	recognized	by	AutoCAD,
and	what	each	means	in	the	context	of	a	string:

Wild-card	characters

Character Definition

# (pound) Matches	any	single	numeric	digit

@ (at) Matches	any	single	alphabetic
character

. (period) Matches	any	single
nonalphanumeric	character

* 
(asterisk)

Matches	any	character	sequence,
including	an	empty	one,	and	it
can	be	used	anywhere	in	the
search	pattern:	at	the	beginning,
middle,	or	end

? 
(question
mark)

Matches	any	single	character

~ (tilde) If	it	is	the	first	character	in	the

pattern,	it	matches	anything
except	the	pattern

[...] Matches	any	one	of	the
characters	enclosed

[~...] Matches	any	single	character	not
enclosed

- (hyphen) Used	inside	brackets	to	specify	a
range	for	a	single	character

, 
(comma)

Separates	two	patterns

` (reverse
quote)

Escapes	special	characters	(reads
next	character	literally)

Use	a	single	quote	(`)	to	indicate	that	a	character	is	not	a	wildcard,	but	is	to	be
taken	literally.	For	example,	to	specify	that	only	an	anonymous	block	named
“*U2”	be	included	in	the	selection	set,	use	the	following	filter	arguments:

FilterType(0)	=	2

FilterData(0)	=	"`*U2"

Select	Mtext	where	a	specific	word	appears	in	the	text

The	following	code	defines	the	selection	criteria	as	any	Mtext	in	which	“The”
appears	in	the	text	string.	This	example	also	demonstrates	use	of	the
SelectByPolygon	selection	method:

Sub	Ch4_FilterPolygonWildcard()

			Dim	sstext	As	AcadSelectionSet

			Dim	FilterType(1)	As	Integer

			Dim	FilterData(1)	As	Variant

			Dim	pointsArray(0	To	11)	As	Double

			Dim	mode	As	Integer

			mode	=	acSelectionSetWindowPolygon

			pointsArray(0)	=	-12#:	pointsArray(1)	=	-7#:	pointsArray(2)	=	0

			pointsArray(3)	=	-12#:	pointsArray(4)	=	10#:	pointsArray(5)	=	0

			pointsArray(6)	=	10#:	pointsArray(7)	=	10#:	pointsArray(8)	=	0

			pointsArray(9)	=	10#:	pointsArray(10)	=	-7#:	pointsArray(11)	=	0

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS10")

			FilterType(0)	=	0

			FilterData(0)	=	"MTEXT"

			FilterType(1)	=	1

			FilterData(1)	=	"*The*"

			sstext.SelectByPolygon	mode,	pointsArray,	FilterType,	FilterData

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$endrange>selection	sets:filter	lists,	<$endrange>filter	lists,
<$endrange>filtering:selection	sets,	<$endrange>filter	lists:example	code,">

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	Define	Rules
for	Selection	Sets	>	

Filter	for	Extended	Data
	
	
	

External	applications	can	attach	data	such	as	text	strings,	numeric	values,	3D
points,	distances,	and	layer	names	to	AutoCAD	objects.	This	data	is	referred	to
as	extended	data,	or	xdata.	You	can	filter	entities	containing	extended	data	for	a
specified	application.

See	Filter	for	Extended	Data	for	more	information	about	extended	data.

Select	circles	that	contain	xdata

The	following	example	filters	for	circles	containing	xdata	added	by	the
“MY_APP”	application:

Sub	Ch4_FilterXdata()

			Dim	sstext	As	AcadSelectionSet

			Dim	mode	As	Integer

			Dim	pointsArray(0	To	11)	As	Double

			mode	=	acSelectionSetWindowPolygon

			pointsArray(0)	=	-12#:	pointsArray(1)	=	-7#:	pointsArray(2)	=	0

			pointsArray(3)	=	-12#:	pointsArray(4)	=	10#:	pointsArray(5)	=	0

			pointsArray(6)	=	10#:	pointsArray(7)	=	10#:	pointsArray(8)	=	0

			pointsArray(9)	=	10#:	pointsArray(10)	=	-7#:	pointsArray(11)	=	0

			Dim	FilterType(1)	As	Integer

			Dim	FilterData(1)	As	Variant

			Set	sstext	=	ThisDrawing.SelectionSets.Add("SS9")

			FilterType(0)	=	0

			FilterData(0)	=	"Circle"

			FilterType(1)	=	1001

			FilterData(1)	=	"MY_APP"

			sstext.SelectByPolygon	mode,	pointsArray,	FilterType,	FilterData

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	

Display	Information	About	a	Selection	Set
	
	
	

To	refer	to	an	existing	selection	set	whose	name	you	know,	refer	to	it	by	name.
The	following	example	refers	to	a	selection	set	named	“SS10:”

Sub	GetObjInSet()

		Dim	selset	As	AcadSelectionSet

		Set	selset	=	ThisDrawing.SelectionSets("SS10")

		MsgBox	("Selection	set	"	&	selset.Name	&	"	contains	"	&	_

				selset.Count	&	"	items")

End	Sub

Each	selection	set	in	a	drawing	is	a	member	of	the	SelectionSets	collection.	You
can	use	the	For	Each	statement	to	iterate	through	a	drawing's	SelectionSets
collection	and	collect	information	about	each	selection	set.

Display	the	name	of	each	selection	set	in	a	drawing

The	following	code	displays	the	name	of	each	selection	set	in	a	drawing,	and
lists	the	types	of	objects	included	in	each	selection	set:

Sub	ListSelectionSets()

		Dim	selsetCollection	As	AcadSelectionSets

		Dim	selset	As	AcadSelectionSet

		Dim	ent	As	Object

		Dim	i,	j	As	Integer

		Set	selsetCollection	=	ThisDrawing.SelectionSets

		'	Find	each	selection	set	in	the	drawing

		i	=	0

		For	Each	selset	In	selsetCollection

				MsgBox	"Selection	set	"	&	CStr(i)	&	"	is:	"	&	selset.Name

				'	Now	find	each	object	in	the	selection	set,	and	say	what	it	is

				j	=	0

				For	Each	ent	In	selset

							MsgBox	"Item	"	&	CStr(j	+	1)	&	"	in	"	&	selset.Name	_	

									&	"is:	"	&	ent.EntityName

							j	=	j	+	1

				Next

				i	=	i	+	1

		Next

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Work	with	Selection	Sets	>	

Remove	Objects	from	a	Selection	Set
	
	
	

After	you	create	a	selection	set,	you	can	choose	to	remove	individual	objects,	or
all	the	objects	from	that	set.	For	example,	you	can	select	an	entire	group	of
densely	grouped	objects	and	remove	specific	objects	within	the	group,	leaving
only	the	objects	you	want	to	be	in	the	set.

Use	the	following	methods	to	remove	items	from	the	selection	set:

RemoveItems

The	RemoveItems	method	removes	one	or	more	items	from	a	selection	set.
The	removed	items	still	exist,	but	they	no	longer	reside	in	the	selection	set.

Clear

The	Clear	method	will	empty	the	selection	set.	The	selection	set	will	still
exist,	but	contains	no	items.	The	items	that	previously	resided	in	the	selection
still	exist,	but	they	no	longer	reside	in	the	selection	set.

Erase

The	Erase	method	deletes	all	items	in	a	selection	set.	The	selection	set	still
exists,	but	will	contain	no	items.	The	items	that	previously	resided	in	the
selection	set	no	longer	exist.

Delete

The	Delete	method	deletes	a	selection	set	and	all	items	in	the	selection	set.
Neither	the	selection	set	nor	the	items	previously	in	the	selection	set	will
exist	after	a	call	to	the	Delete	method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>matrix:

Create	and	Edit	AutoCAD	Entities	>	

Edit	Objects
	
	
	

To	modify	an	existing	object,	use	the	methods	and	properties	associated	with	that
object.	If	you	modify	a	visible	property	of	a	graphic	object,	use	the	Update
method	to	redraw	the	object	on	screen.

This	section	describes	how	to	edit	2D	objects.

Topics	in	this	section

Work	with	Named	Objects
Copy	Objects
Offset	Objects
Mirror	Objects
Array	Objects
Move	Objects
Rotate	Objects
Delete	Objects
Scale	Objects
Transform	Objects
Extend	and	Trim	Objects
Explode	Objects
Edit	Polylines
Edit	Splines
Edit	Hatches

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Work	with	Named	Objects
	
	
	

In	addition	to	the	graphic	objects	used	by	AutoCAD,	there	are	several	types	of
nongraphic	objects	stored	in	drawing	files.	These	objects	have	descriptive
designations	associated	with	them,	for	example,	blocks,	layers,	groups,	and
dimension	styles.	In	most	cases,	you	name	objects	as	you	create	them,	and
rename	them	later.	Names	are	stored	in	symbol	tables.	When	you	specify	a
named	object,	you	are	referencing	the	name	and	associated	data	of	the	object	in
the	symbol	table.

Topics	in	this	section

Purge	Named	Objects
Rename	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Work	with	Named
Objects	>	

Purge	Named	Objects
	
	
	

You	can	purge	unused,	unreferenced	named	objects	from	a	drawing	at	any	time
during	an	editing	session.	Purging	reduces	drawing	size.	You	cannot	purge
objects	that	are	referenced	by	other	objects.	For	example,	a	font	file	might	be
referenced	by	a	text	style.	A	layer	is	referenced	by	the	objects	on	the	layer.

To	purge	a	drawing,	use	the	PurgeAll	method,	as	follows:

ThisDrawing.PurgeAll

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Work	with	Named
Objects	>	

Rename	Objects
	
	
	

As	your	drawings	become	more	complex,	you	can	rename	objects	to	keep	the
names	meaningful	or	to	avoid	conflicts	with	names	in	other	drawings	you	have
inserted	in	the	main	drawings.

You	can	rename	any	named	object	except	those	that	AutoCAD	names	by	default,
for	example,	layer	0	or	the	CONTINUOUS	linetype.

Names	can	be	up	to	255	characters	long.	In	addition	to	letters	and	numbers,
names	can	contain	spaces	(although	AutoCAD	removes	spaces	that	appear
directly	before	and	after	a	name)	and	any	special	character	not	used	by	Microsoft
Windows	or	AutoCAD	for	other	purposes.	Special	characters	that	you	cannot	use
include	less-than	and	greater-than	symbols	(<	>),	forward	slashes	and
backslashes	(/	\),	quotation	marks	("),	colons	(:),	semicolons	(;),	question	marks
(?),	commas	(,),	asterisks	(*),	vertical	bars	(|),	equal	signs	(=),	and	single	quotes
(').	You	also	cannot	use	special	characters	created	with	Unicode	fonts.

To	rename	an	object,	use	the	Name	property	for	that	object.

Rename	a	layer

This	example	creates	a	layer	called	“NewLayer”	and	then	renames	the	layer	to
“MyLayer”.

Sub	Ch4_RenamingLayer()

				'	Create	a	layer

				Dim	layerObj	As	AcadLayer

				Set	layerObj	=	ThisDrawing.Layers.Add("NewLayer")

				'	Change	the	name	of	the	layer

				layerObj.Name	=	"MyLayer"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Copy	Objects
	
	
	

You	can	copy	single	or	multiple	objects	within	the	current	drawing.	Offsetting
creates	new	objects	at	a	specified	distance	from	selected	objects,	or	through	a
specified	point.	Mirroring	creates	a	mirror	image	of	objects	in	a	specified	mirror
line.	Arraying	creates	sets	of	copied	objects	in	a	rectangular	or	circular	pattern.

For	more	information	about	copying	objects,	see	“Copy,	Offset,	or	Mirror
Objects”	in	the	User's	Guide.

Note You	cannot	perform	any	of	the	copy	methods	while	simultaneously	iterating
through	a	collection.	An	iteration	will	open	the	workspace	for	a	read-only
operation	while	these	methods	attempt	to	perform	a	read-write	operation.
Complete	any	iteration	of	a	collection	before	you	call	these	methods.

Topics	in	this	section

Copy	an	Object	to	the	Same	Location
Copy	Multiple	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Copy	Objects	>	

Copy	an	Object	to	the	Same	Location
	
	
	

To	copy	a	single	object,	use	the	Copy	method	provided	for	that	object.	This
method	creates	a	new	object	that	is	a	duplicate	of	the	original	object.	The	new
object	is	located	at	the	same	position	as	the	original,	and	is	returned	by	the
method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Copy	Objects	>	

Copy	Multiple	Objects
	
	
	

To	copy	multiple	objects,	use	the	CopyObjects	method	or	create	an	array	of
objects	to	use	with	the	Copy	method.	(To	copy	the	objects	in	a	selection	set,
iterate	through	the	selection	set	and	save	the	objects	into	an	array.)	Iterate
through	the	array,	copying	each	object	individually,	and	collect	the	newly	created
objects	in	a	second	array.

To	copy	multiple	objects	to	a	different	drawing,	use	the	CopyObjects	method
and	set	the	Owner	parameter	to	the	drawing's	model	space.

Copy	two	Circle	objects

This	example	creates	two	Circle	objects	and	uses	the	CopyObjects	method	to
make	a	copy	of	the	circles.

Sub	Ch4_CopyCircleObjects()

				Dim	DOC1	As	AcadDocument

				Dim	circleObj1	As	AcadCircle

				Dim	circleObj2	As	AcadCircle

				Dim	circleObj1Copy	As	AcadCircle

				Dim	circleObj2Copy	As	AcadCircle

				Dim	centerPoint(0	To	2)	As	Double

				Dim	radius1	As	Double

				Dim	radius2	As	Double

				Dim	radius1Copy	As	Double

				Dim	radius2Copy	As	Double

				Dim	objCollection(0	To	1)	As	Object

				Dim	retObjects	As	Variant

				'	Define	the	Circle	object

				centerPoint(0)	=	0:	centerPoint(1)	=	0:	centerPoint(2)	=	0

				radius1	=	5#:	radius2	=	7#

				radius1Copy	=	1#:	radius2Copy	=	2#

							'	Create	a	new	drawing

				Set	DOC1	=	ThisDrawing.Application.Documents.Add

				'	Add	two	circles	to	the	drawing

				Set	circleObj1	=	DOC1.ModelSpace.AddCircle	_

	(centerPoint,	radius1)

				Set	circleObj2	=	DOC1.ModelSpace.AddCircle	_

	(centerPoint,	radius2)

				ZoomAll

				'	Put	the	objects	to	be	copied	into	a	form

				'	compatible	with	CopyObjects

				Set	objCollection(0)	=	circleObj1

				Set	objCollection(1)	=	circleObj2

				'	Copy	object	and	get	back	a	collection	of

				'	the	new	objects	(copies)

				retObjects	=	DOC1.CopyObjects(objCollection)

				'	Get	newly	created	object	and	apply

				'	new	properties	to	the	copies

				Set	circleObj1Copy	=	retObjects(0)

				Set	circleObj2Copy	=	retObjects(1)

				circleObj1Copy.radius	=	radius1Copy

				circleObj1Copy.Color	=	acRed

				circleObj2Copy.radius	=	radius2Copy

				circleObj2Copy.Color	=	acRed

				ZoomAll

End	Sub

Copy	objects	to	another	drawing

This	example	creates	Circle	objects,	then	uses	the	CopyObjects	method	to	copy
the	circles	into	a	new	drawing.

Sub	Ch4_Copy_to_New_Drawing()

				Dim	DOC0	As	AcadDocument

				Dim	circleObj1	As	AcadCircle,	circleObj2	As	AcadCircle

				Dim	centerPoint(0	To	2)	As	Double

				Dim	radius1	As	Double,	radius2	As	Double

				Dim	radius1Copy	As	Double,	radius2Copy	As	Double

				Dim	objCollection(0	To	1)	As	Object

				Dim	retObjects	As	Variant

				'	Define	the	Circle	object

				centerPoint(0)	=	0:	centerPoint(1)	=	0:	centerPoint(2)	=	0

				radius1	=	5#:	radius2	=	7#

				radius1Copy	=	1#:	radius2Copy	=	2#

				'	Add	two	circles	to	the	current	drawing

				Set	circleObj1	=	ThisDrawing.ModelSpace.AddCircle	_

	(centerPoint,	radius1)

				Set	circleObj2	=	ThisDrawing.ModelSpace.AddCircle	_

	(centerPoint,	radius2)

				ThisDrawing.Application.ZoomAll

				'	Save	pointer	to	the	current	drawing

				Set	DOC0	=	ThisDrawing.Application.ActiveDocument

				'	Copy	objects

				'

				'	First	put	the	objects	to	be	copied	into	a	form	compatible

				'	with	CopyObjects

				Set	objCollection(0)	=	circleObj1

				Set	objCollection(1)	=	circleObj2

				'	Create	a	new	drawing	and	point	to	its	model	space

				Dim	Doc1MSpace	As	AcadModelSpace

				Dim	DOC1	As	AcadDocument

				Set	DOC1	=	Documents.Add

				Set	Doc1MSpace	=	DOC1.ModelSpace

				'	Copy	the	objects	into	the	model	space	of	the	new	drawing.	A

				'	collection	of	the	new	(copied)	objects	is	returned.

				retObjects	=	DOC0.CopyObjects(objCollection,	Doc1MSpace)

				Dim	circleObj1Copy	As	AcadCircle,	circleObj2Copy	As	AcadCircle

				'	Get	the	newly	created	object	collection	and	apply	new

				'	properties	to	the	copies.

				Set	circleObj1Copy	=	retObjects(0)

				Set	circleObj2Copy	=	retObjects(1)

				circleObj1Copy.radius	=	radius1Copy

				circleObj1Copy.Color	=	acRed

				circleObj2Copy.radius	=	radius2Copy

				circleObj2Copy.Color	=	acRed

				ThisDrawing.Application.ZoomAll

				MsgBox	"Circles	copied."

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Offset	Objects
	
	
	

Offsetting	an	object	creates	a	new	object	at	a	specified	offset	distance	from	the
original	object.	You	can	offset	arcs,	circles,	ellipses,	lines,	lightweight	polylines,
polylines,	splines,	and	xlines.

To	offset	an	object,	use	the	Offset	method	provided	for	that	object.	The	only
input	to	this	method	is	the	distance	to	offset	the	object.	If	this	distance	is
negative,	it	is	interpreted	by	AutoCAD	as	being	an	offset	to	make	a	“smaller”
curve	(that	is,	for	an	arc	it	would	offset	to	a	radius	that	is	the	given	distance	less
than	the	starting	curve's	radius).	If	“smaller”	has	no	meaning,	then	AutoCAD
would	offset	in	the	direction	of	smaller	X,Y,Z	WCS	coordinates.	If	the	offset
distance	is	invalid,	then	an	error	is	returned.

For	many	objects,	the	result	of	this	operation	will	be	a	single	new	curve	(which
may	not	be	of	the	same	type	as	the	original	curve).	For	example,	offsetting	an
ellipse	will	result	in	a	spline	because	the	result	does	fit	the	equation	of	an	ellipse.
In	some	cases	it	may	be	necessary	for	the	offset	result	to	be	several	curves.
Because	of	this,	the	method	returns	the	new	object,	or	array	of	objects,	as	a
variant.

For	more	information	about	offsetting	objects,	see	“Copy,	Offset,	or	Mirror
Objects”	in	the	User's	Guide.

Offset	a	polyline

This	example	creates	a	lightweight	polyline	and	then	offsets	the	polyline.

Sub	Ch4_OffsetPolyline()

				'	Create	the	polyline

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	11)	As	Double

				points(0)	=	1:	points(1)	=	1

				points(2)	=	1:	points(3)	=	2

				points(4)	=	2:	points(5)	=	2

				points(6)	=	3:	points(7)	=	2

				points(8)	=	4:	points(9)	=	4

				points(10)	=	4:	points(11)	=	1

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				plineObj.Closed	=	True

				ZoomAll

				'	Offset	the	polyline

				Dim	offsetObj	As	Variant

				offsetObj	=	plineObj.Offset(0.25)

ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Mirror	Objects
	
	
	

Mirroring	creates	a	mirror	image	copy	of	an	object	around	an	axis	or	mirror	line.
You	can	mirror	all	drawing	objects.

To	mirror	an	object,	use	the	Mirror	method	provided	for	that	object.	This	method
requires	two	coordinates	as	input.	The	two	coordinates	specified	become	the
endpoints	of	the	mirror	line	around	which	the	base	object	is	reflected.	In	3D,	this
line	orients	a	mirroring	plane	perpendicular	to	the	XY	plane	of	the	UCS
containing	the	mirror	line.

Unlike	the	mirror	command	in	AutoCAD,	this	method	places	the	reflected	image
into	the	drawing	and	retains	the	original	object.	(To	remove	the	original	object,
use	the	Erase	method.)

To	manage	the	reflection	properties	of	Text	objects,	use	the	MIRRTEXT	system
variable.	The	default	setting	of	MIRRTEXT	is	On	(1),	which	causes	Text	objects
to	be	mirrored	just	as	any	other	object.	When	MIRRTEXT	is	Off	(0),	text	is	not
mirrored.	Use	the	GetVariable	and	SetVariable	methods	to	query	and	set	the
MIRRTEXT	setting.

You	can	mirror	a	Viewport	object	in	paper	space,	although	doing	so	has	no	effect
on	its	model	space	view	or	on	model	space	objects.

For	more	information	about	mirroring	objects,	see	“Copy,	Offset,	or	Mirror
Objects”	in	the	User's	Guide.

Mirror	a	polyline	about	an	axis

This	example	creates	a	lightweight	polyline	and	mirrors	that	polyline	about	an
axis.	The	newly	created	polyline	is	colored	blue.

Sub	Ch4_MirrorPolyline()

				'	Create	the	polyline

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	11)	As	Double

				points(0)	=	1:	points(1)	=	1

				points(2)	=	1:	points(3)	=	2

				points(4)	=	2:	points(5)	=	2

				points(6)	=	3:	points(7)	=	2

				points(8)	=	4:	points(9)	=	4

				points(10)	=	4:	points(11)	=	1

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				plineObj.Closed	=	True

				ZoomAll

				'	Define	the	mirror	axis

				Dim	point1(0	To	2)	As	Double

				Dim	point2(0	To	2)	As	Double

				point1(0)	=	0:	point1(1)	=	4.25:	point1(2)	=	0

				point2(0)	=	4:	point2(1)	=	4.25:	point2(2)	=	0

				'	Mirror	the	polyline

				Dim	mirrorObj	As	AcadLWPolyline

				Set	mirrorObj	=	plineObj.Mirror(point1,	point2)

				Dim	col	As	New	AcadAcCmColor

				Call	col.SetRGB(125,	175,	235)

				mirrorObj.TrueColor	=	col

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Array	Objects
	
	
	

You	can	copy	an	object	in	polar	or	rectangular	arrays.	For	polar	arrays,	you
control	the	number	of	copies	of	the	object	and	the	angle	to	fill	the	array	to.	For
rectangular	arrays,	you	control	the	number	of	rows	and	columns	and	the	distance
between	them.

For	more	information	about	arrays,	see	“Create	an	Array	of	Objects”	in	the
User's	Guide.

Topics	in	this	section

Create	Polar	Arrays
Create	Rectangular	Arrays

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Array	Objects	>	

Create	Polar	Arrays
	
	
	

You	can	array	all	drawing	objects.	To	create	a	polar	array,	use	the	ArrayPolar
method	provided	for	that	object.	This	method	requires	you	to	provide	the
number	of	objects	to	create,	the	angle-to-fill,	and	the	center	point	for	the	array.
The	number	of	objects	must	be	a	positive	integer	greater	than	1.	The	angle-to-fill
must	be	in	radians.	A	positive	value	specifies	counterclockwise	rotation.	A
negative	value	specifies	clockwise	rotation.	An	error	is	returned	for	an	angle	that
equals	0.	The	center	point	is	a	variant	array	containing	three	doubles.	These
doubles	represent	the	3D	WCS	coordinate	specifying	the	center	point	for	the
polar	array.

AutoCAD	determines	the	distance	from	the	array's	center	point	to	a	reference
point	on	the	original	object.	The	reference	point	used	depends	on	the	type	of
object.	AutoCAD	uses	the	center	point	of	a	circle	or	arc,	the	insertion	point	of	a
block	or	shape,	the	start	point	of	text,	and	one	endpoint	of	a	line	or	trace.

This	method	does	not	support	the	Rotate	While	Copying	option	of	the	AutoCAD
ARRAY	command.

Create	a	polar	array

This	example	creates	a	circle,	and	then	performs	a	polar	array	of	the	circle.	This
creates	four	circles	filling	180	degrees	around	a	base	point	of	(4,	4,	0).

Sub	Ch4_ArrayingACircle()

				'	Create	the	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2#:	center(1)	=	2#:	center(2)	=	0#

				radius	=	1

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				ZoomAll

				'	Define	the	polar	array

				Dim	noOfObjects	As	Integer

				Dim	angleToFill	As	Double

				Dim	basePnt(0	To	2)	As	Double

				noOfObjects	=	4

				angleToFill	=	3.14										'	180	degrees

				basePnt(0)	=	4#:	basePnt(1)	=	4#:	basePnt(2)	=	0#

				'	The	following	example	will	create	4	copies

				'	of	an	object	by	rotating	and	copying	it	about

				'	the	point	(3,3,0).

				Dim	retObj	As	Variant

				retObj	=	circleObj.ArrayPolar	_

	(noOfObjects,	angleToFill,	basePnt)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Array	Objects	>	

Create	Rectangular	Arrays
	
	
	

To	create	a	2D	or	3D	rectangular	array,	use	the	ArrayRectangular	method
provided	for	that	object.	This	method	requires	you	to	provide	the	number	of
rows,	number	of	columns,	distance	between	rows,	and	distance	between
columns.	When	creating	a	3D	array,	you	must	also	specify	the	number	of	levels
and	distance	between	levels	as	well.

A	rectangular	array	is	constructed	by	replicating	the	object	in	the	selection	set
the	appropriate	number	of	times.	If	you	define	one	row,	you	must	specify	more
than	one	column	and	vice	versa.

The	original	object	is	assumed	to	be	in	the	lower-left	corner,	and	the	array	is
generated	up	and	to	the	right.	If	the	distance	between	rows	is	a	negative	number,
rows	are	added	downward.	If	the	distance	between	columns	is	a	negative
number,	the	columns	are	added	to	the	left.

AutoCAD	builds	the	rectangular	array	along	a	baseline	defined	by	the	current
snap	rotation	angle.	This	angle	is	0	by	default,	so	the	rows	and	columns	of	a
rectangular	array	are	orthogonal	with	respect	to	the	X	and	Y	drawing	axes.	You
can	change	this	angle	and	create	a	rotated	array	by	setting	the	snap	rotation	angle
to	a	nonzero	value.	To	do	this,	use	the	SnapRotationAngle	property.

Create	a	rectangular	array

This	example	creates	a	circle	and	then	performs	a	rectangular	array	of	the	circle,
creating	five	rows	and	five	columns	of	circles.

Sub	Ch4_ArrayRectangularExample()

				'	Create	the	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2#:	center(1)	=	2#:	center(2)	=	0#

				radius	=	0.5

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				ZoomAll

				'	Define	the	rectangular	array

				Dim	numberOfRows	As	Long

				Dim	numberOfColumns	As	Long

				Dim	numberOfLevels	As	Long

				Dim	distanceBwtnRows	As	Double

				Dim	distanceBwtnColumns	As	Double

				Dim	distanceBwtnLevels	As	Double

				numberOfRows	=	5

				numberOfColumns	=	5

				numberOfLevels	=	2

				distanceBwtnRows	=	1

				distanceBwtnColumns	=	1

				distanceBwtnLevels	=	1

				'	Create	the	array	of	objects

				Dim	retObj	As	Variant

				retObj	=	circleObj.ArrayRectangular	_

								(numberOfRows,	numberOfColumns,	numberOfLevels,	_

								distanceBwtnRows,	distanceBwtnColumns,	distanceBwtnLevels)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Move	Objects
	
	
	

You	can	move	objects	along	a	vector	without	changing	their	orientation	or	size.
You	can	also	rotate	objects	around	a	base	point.

For	more	information	about	moving	objects,	see	“Move	Objects”	in	the	User's
Guide.

Topics	in	this	section

Move	Objects	Along	a	Vector

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Move	Objects	>	

Move	Objects	Along	a	Vector
	
	
	

You	can	move	all	drawing	objects	and	attribute	reference	objects	along	a
specified	vector.

To	move	an	object,	use	the	Move	method	provided	for	that	object.	This	method
requires	two	coordinates	as	input.	These	coordinates	define	a	displacement
vector	indicating	how	far	the	given	object	is	to	be	moved	and	in	what	direction.

Move	a	circle	along	a	vector

This	example	creates	a	circle	and	then	moves	that	circle	two	units	along	the	X
axis.

Sub	Ch4_MoveCircle()

				'	Create	the	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2#:	center(1)	=	2#:	center(2)	=	0#

				radius	=	0.5

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				ZoomAll

				'	Define	the	points	that	make	up	the	move	vector.

				'	The	move	vector	will	move	the	circle	2	units

				'	along	the	x	axis.

				Dim	point1(0	To	2)	As	Double

				Dim	point2(0	To	2)	As	Double

				point1(0)	=	0:	point1(1)	=	0:	point1(2)	=	0

				point2(0)	=	2:	point2(1)	=	0:	point2(2)	=	0

				'	Move	the	circle

				circleObj.Move	point1,	point2

				circleObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Rotate	Objects
	
	
	

You	can	rotate	all	drawing	objects	and	attribute	reference	objects.

To	rotate	an	object,	use	the	Rotate	method	provided	for	that	object.	This	method
requires	as	input	a	base	point	and	a	rotation	angle.	The	base	point	is	a	variant
array	with	three	doubles.	These	doubles	represent	a	3D	WCS	coordinate
specifying	the	point	through	which	the	axis	of	rotation	is	defined.	The	angle	of
rotation	is	specified	in	radians.	This	angle	determines	how	far	an	object	rotates
around	the	base	point	relative	to	its	current	location.

For	more	information	about	rotating	objects,	see	“Rotate	Objects”	in	the	User's
Guide.

Rotate	a	polyline	about	a	base	point

This	example	creates	a	closed	lightweight	polyline,	and	then	rotates	the	polyline
45	degrees	about	the	base	point	(4,	4.25,	0).

Sub	Ch4_RotatePolyline()

				'	Create	the	polyline

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	11)	As	Double

				points(0)	=	1:	points(1)	=	2

				points(2)	=	1:	points(3)	=	3

				points(4)	=	2:	points(5)	=	3

				points(6)	=	3:	points(7)	=	3

				points(8)	=	4:	points(9)	=	4

				points(10)	=	4:	points(11)	=	2

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				plineObj.Closed	=	True

				ZoomAll

				'	Define	the	rotation	of	45	degrees	about	a

				'	base	point	of	(4,	4.25,	0)

				Dim	basePoint(0	To	2)	As	Double

				Dim	rotationAngle	As	Double

				basePoint(0)	=	4:	basePoint(1)	=	4.25:	basePoint(2)	=	0

				rotationAngle	=	0.7853981			'	45	degrees

				'	Rotate	the	polyline

				plineObj.Rotate	basePoint,	rotationAngle

				plineObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Delete	Objects
	
	
	

You	can	delete	individual	objects	by	using	the	Delete	method.

Note The	Collection	objects	in	ActiveX	Automation	have	a	Delete	method	due	to
the	manner	in	which	these	objects	have	been	defined	in	the	type	library.
However,	the	Collection	objects,	such	as	ModelSpace	collection,	Layers
collection,	and	Dictionaries	collection,	should	never	be	deleted.	An	error	will
result	if	you	attempt	to	delete	a	collection.

Create	and	delete	a	polyline

This	example	creates	a	lightweight	polyline,	then	deletes	it.

Sub	Ch4_DeletePolyline()

				'	Create	the	polyline

				Dim	lwpolyObj	As	AcadLWPolyline

				Dim	vertices(0	To	5)	As	Double

				vertices(0)	=	2:	vertices(1)	=	4

				vertices(2)	=	4:	vertices(3)	=	2

				vertices(4)	=	6:	vertices(5)	=	4

				Set	lwpolyObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(vertices)

				ZoomAll

'	Erase	the	polyline

				lwpolyObj.Delete

				ThisDrawing.Regen	acActiveViewport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Scale	Objects
	
	
	

You	scale	an	object	by	specifying	a	base	point	and	a	length,	which	is	used	as	a
scale	factor	based	on	the	current	drawing	units.	You	can	scale	all	the	drawing
objects,	as	well	as	attribute	reference	objects.

To	scale	an	object,	use	the	ScaleEntity	method	provided	for	that	object.	This
method	scales	the	object	equally	in	the	X,	Y,	and	Z	directions.	It	takes	as	input
the	base	point	for	the	scale	and	a	scale	factor.	The	base	point	is	a	variant	array
with	three	doubles.	These	doubles	represent	a	3D	WCS	coordinate	specifying	the
point	from	which	the	scale	begins.	The	scale	factor	is	the	factor	by	which	to
scale	the	object.	The	dimensions	of	the	object	are	multiplied	by	the	scale	factor.
A	scale	factor	greater	than	1	enlarges	the	object.	A	scale	factor	between	0	and	1
reduces	the	object.

For	more	information	about	scaling,	see	“Resize	or	Reshape	Objects”	in	the
User's	Guide.

Scale	a	polyline

This	example	creates	a	closed	lightweight	polyline	and	then	scales	the	polyline
by	0.5.

Sub	Ch4_ScalePolyline()

				'	Create	the	polyline

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	11)	As	Double

				points(0)	=	1:	points(1)	=	2

				points(2)	=	1:	points(3)	=	3

				points(4)	=	2:	points(5)	=	3

				points(6)	=	3:	points(7)	=	3

				points(8)	=	4:	points(9)	=	4

				points(10)	=	4:	points(11)	=	2

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				plineObj.Closed	=	True

				ZoomAll

				'	Define	the	scale

				Dim	basePoint(0	To	2)	As	Double

				Dim	scalefactor	As	Double

				basePoint(0)	=	4:	basePoint(1)	=	4.25:	basePoint(2)	=	0

				scalefactor	=	0.5

				'	Scale	the	polyline

				plineObj.ScaleEntity	basePoint,	scalefactor

				plineObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>matrix:

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Transform	Objects
	
	
	

You	move,	scale,	or	rotate	an	object	given	a	4	by	4	transformation	matrix	using
the	TransformBy	method.

The	following	table	demonstrates	the	transformation	matrix	configuration,	where
R	=	Rotation	and	T	=	Translation:

Transformation	matrix
configuration

R00 R01 R02 T0

R10 R11 R12 T1

R20 R21 R22 T2

0 0 0 1

To	transform	an	object,	first	initialize	the	transformation	matrix.	The	following
example	shows	a	transformation	matrix,	assigned	to	the	variable	tMatrix,
which	will	rotate	an	entity	by	90	degrees	about	the	point	(0,	0,	0):

tMatrix(0,0)	=	0.0

tMatrix(0,1)	=	-1.0

tMatrix(0,2)	=	0.0

tMatrix(0,3)	=	0.0

tMatrix(1,0)	=	1.0

tMatrix(1,1)	=	0.0

tMatrix(1,2)	=	0.0

tMatrix(1,3)	=	0.0

tMatrix(2,0)	=	0.0

tMatrix(2,1)	=	0.0

tMatrix(2,2)	=	1.0

tMatrix(2,3)	=	0.0

tMatrix(3,0)	=	0.0

tMatrix(3,1)	=	0.0

tMatrix(3,2)	=	0.0

tMatrix(3,3)	=	1.0

After	the	transformation	matrix	is	complete,	apply	the	matrix	to	the	object	using
the	TransformBy	method.	The	following	line	of	code	demonstrates	applying	a
matrix	(tMatrix)	to	an	object	(anObj):

anObj.TransformBy	tMatrix

Rotate	a	line	with	a	transformation	matrix

This	example	creates	a	line	and	rotates	it	90	degrees	using	a	transformation
matrix.

Sub	Ch4_TransformBy()

				'	Create	a	line

				Dim	lineObj	As	AcadLine

				Dim	startPt(0	To	2)	As	Double

				Dim	endPt(0	To	2)	As	Double

				startPt(0)	=	2

				startPt(1)	=	1

				startPt(2)	=	0

				endPt(0)	=	5

				endPt(1)	=	1

				endPt(2)	=	0

				Set	lineObj	=	ThisDrawing.ModelSpace.	_

	AddLine(startPt,	endPt)

				ZoomAll

				'	Initialize	the	transMat	variable	with	a

				'	transformation	matrix	that	will	rotate

				'	an	object	by	90	degrees	about	the	point(0,0,0)

				Dim	transMat(0	To	3,	0	To	3)	As	Double

				transMat(0,	0)	=	0#:	transMat(0,	1)	=	-1#

				transMat(0,	2)	=	0#:	transMat(0,	3)	=	0#

				transMat(1,	0)	=	1#:	transMat(1,	1)	=	0#

				transMat(1,	2)	=	0#:	transMat(1,	3)	=	0#

				transMat(2,	0)	=	0#:	transMat(2,	1)	=	0#

				transMat(2,	2)	=	1#:	transMat(2,	3)	=	0#

				transMat(3,	0)	=	0#:	transMat(3,	1)	=	0#

				transMat(3,	2)	=	0#:	transMat(3,	3)	=	1#

				'	Transform	the	line	using	the	defined	transformation	matrix

				lineObj.TransformBy	transMat

				lineObj.Update

End	Sub

The	following	are	more	examples	of	transformation	matrices:

Rotation	Matrix:	90	degrees
about	point	(0,	0,	0)

0.0 -1.0 0.0 0.0

1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

Rotation	Matrix:	45	degrees	about	point	(5,
5,	0)

0.707107 -0.707107 0.0 5.0

0.707107 0.707107 0.0 -2.071068

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

Translation	Matrix:	move	an
entity	by	(10,	10,	0)

1.0 0.0 0.0 10.0

0.0 1.0 0.0 10.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

Scaling	Matrix:	scale	by	10,10	at
point	(0,	0,	0)

10.0 0.0 0.0 0.0

0.0 10.0 0.0 0.0

0.0 0.0 10.0 0.0

0.0 0.0 0.0 1.0

Scaling	Matrix:	scale	by	10,10	at
point	(2,	2,	0)

10.0 0.0 0.0 -18.0

0.0 10.0 0.0 -18.0

0.0 0.0 10.0 0.0

0.0 0.0 0.0 1.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Extend	and	Trim	Objects
	
	
	

You	can	change	the	angle	of	arcs	and	you	can	change	the	length	of	open	lines,
arcs,	open	polylines,	elliptical	arcs,	and	open	splines.	The	results	are	similar	to
both	extending	and	trimming	objects.

You	can	extend	or	trim	an	object	by	editing	its	properties.	For	example,	to
lengthen	a	line,	simply	change	the	coordinates	of	the	StartPoint	or	EndPoint
properties.	To	change	the	angle	of	an	arc,	change	the	StartAngle	or	EndAngle
property	of	the	arc.	Once	you	have	altered	an	object's	property	or	properties,	use
the	Update	method	to	see	your	changes	in	the	drawing.

For	more	information	about	extending	and	trimming	objects,	see	“Resize	or
Reshape	Objects”	in	the	User's	Guide.

Lengthen	a	line

This	example	creates	a	line	and	then	changes	the	endpoint	of	that	line,	resulting
in	a	longer	line.

Sub	Ch4_LengthenLine()

				'	Define	and	create	the	line

				Dim	lineObj	As	AcadLine

				Dim	startPoint(0	To	2)	As	Double

				Dim	endPoint(0	To	2)		As	Double

				startPoint(0)	=	0

				startPoint(1)	=	0

				startPoint(2)	=	0

				endPoint(0)	=	1

				endPoint(1)	=	1

				endPoint(2)	=	1

				Set	lineObj	=	ThisDrawing.ModelSpace.	_

	AddLine(startPoint,	endPoint)

				lineObj.Update

				'	Lengthen	the	line	by	changing	the

				'	endpoint	to	4,	4,	4

				endPoint(0)	=	4

				endPoint(1)	=	4

				endPoint(2)	=	4

				lineObj.endPoint	=	endPoint

				lineObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Explode	Objects
	
	
	

Exploding	objects	converts	the	objects	from	single	objects	to	their	constituent
parts	but	has	no	visible	effect.	For	example,	exploding	forms	simple	lines	and
arcs	from	3D	polygons,	polylines,	polygon	meshes,	and	regions.	It	replaces	a
block	reference	with	copies	of	the	simple	objects	that	compose	the	block.

For	more	information	about	exploding	objects,	see	“Disassociate	Compound
Objects	(Explode)”	in	the	User's	Guide.

Explode	a	polyline

This	example	creates	a	lightweight	polyline	object.	It	then	explodes	the	polyline
into	separate	objects.	The	example	then	loops	through	the	resulting	objects	and
displays	a	message	box	containing	the	name	of	each	object	and	its	index	in	the
list	of	exploded	objects.

Sub	Ch4_ExplodePolyline()

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	11)	As	Double

				'	Define	the	2D	polyline	points

				points(0)	=	1:	points(1)	=	1

				points(2)	=	1:	points(3)	=	2

				points(4)	=	2:	points(5)	=	2

				points(6)	=	3:	points(7)	=	2

				points(8)	=	4:	points(9)	=	4

				points(10)	=	4:	points(11)	=	1

				'	Create	a	light	weight	Polyline	object

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				'	Set	the	bulge	on	one	segment	to	vary	the

				'	type	of	objects	in	the	polyline

				plineObj.SetBulge	3,	-0.5

				plineObj.Update

				'	Explode	the	polyline

				Dim	explodedObjects	As	Variant

				explodedObjects	=	plineObj.Explode

				'	Loop	through	the	exploded	objects

				'	and	display	a	message	box	with

				'	the	type	of	each	object

				Dim	I	As	Integer

				For	I	=	0	To	UBound(explodedObjects)

				explodedObjects(I).Update

								MsgBox	"Exploded	Object	"	&	I	&	":	"	&	_

	explodedObjects(I).ObjectName

								explodedObjects(I).Update

				Next

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Edit	Polylines
	
	
	

2D	and	3D	polylines,	rectangles,	polygons,	and	3D	polygon	meshes	are	all
polyline	variants	and	are	edited	in	the	same	way.

AutoCAD	recognizes	both	fit	polylines	and	spline-fit	polylines.	A	spline-fit
polyline	uses	a	curve	fit,	similar	to	a	B-spline.	There	are	two	kinds	of	spline-fit
polylines:	quadratic	and	cubic.	Both	polylines	are	controlled	by	the
SPLINETYPE	system	variable.	A	fit	polyline	uses	standard	curves	for	curve	fit
and	utilizes	any	tangent	directions	set	on	any	given	vertex.

To	edit	a	polyline,	use	the	properties	and	methods	of	the	LightweightPolyline	or
Polyline	object.	Use	the	following	properties	and	methods	to	open	or	close	a
polyline,	change	the	coordinates	of	a	polyline	vertex,	or	add	a	vertex:

Closed	property

Opens	or	closes	the	polyline.

Coordinates	property

Specifies	the	coordinates	for	each	vertex	in	the	polyline.

AddVertex	method

Adds	a	vertex	to	a	lightweight	polyline.

Use	the	following	methods	to	update	the	bulge	or	width	of	a	polyline:

SetBulge

Sets	the	bulge	of	a	polyline,	given	the	segment	index.

SetWidth

Sets	the	start	and	end	width	of	a	polyline,	given	the	segment	index.

For	more	information	about	editing	polylines,	see	“Modify	or	Join	Polyline”	in

the	User's	Guide.

Edit	a	polyline

This	example	creates	a	lightweight	polyline.	It	then	adds	a	bulge	to	the	third
segment	of	the	polyline,	appends	a	vertex	to	the	polyline,	changes	the	width	of
the	last	segment,	and	finally	closes	the	polyline.

Sub	Ch4_EditPolyline()

				Dim	plineObj	As	AcadLWPolyline

				Dim	points(0	To	9)	As	Double

				'	Define	the	2D	polyline	points

				points(0)	=	1:	points(1)	=	1

				points(2)	=	1:	points(3)	=	2

				points(4)	=	2:	points(5)	=	2

				points(6)	=	3:	points(7)	=	2

				points(8)	=	4:	points(9)	=	4

				'	Create	a	light	weight	Polyline	object

				Set	plineObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

				'	Add	a	bulge	to	segment	3

				plineObj.SetBulge	3,	-0.5

				'	Define	the	new	vertex

				Dim	newVertex(0	To	1)	As	Double

				newVertex(0)	=	4:	newVertex(1)	=	1

				'	Add	the	vertex	to	the	polyline

				plineObj.AddVertex	5,	newVertex

				'	Set	the	width	of	the	new	segment

				plineObj.SetWidth	4,	0.1,	0.5

				'	Close	the	polyline

				plineObj.Closed	=	True

				plineObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Edit	Splines
	
	
	

Use	the	following	editable	properties	to	change	splines:

ControlPoints

Specifies	the	control	points	of	a	spline.

EndTangent

Specifies	the	end	tangent	of	the	spline	as	a	directional	vector.

FitPoints

Specifies	all	the	fit	points	of	a	spline.

FitTolerance

Refits	the	spline	to	the	existing	points	with	new	tolerance	values.

Knots

Specifies	the	knots	vector	for	the	spline.

StartTangent

Specifies	the	start	tangent	for	the	spline.

In	addition,	you	can	use	the	following	methods	to	edit	splines:

AddFitPoint

Adds	a	single	fit	point	to	the	spline	at	a	given	index.

DeleteFitPoint

Deletes	the	fit	point	of	a	spline	at	a	given	index.

ElevateOrder

Elevates	the	order	of	the	spline	to	the	given	order.

GetFitPoint

Gets	the	fit	point	of	the	spline	at	a	given	index.	(Gets	one	fit	point	only.	To
query	all	the	fit	points	of	the	spline,	use	the	FitPoints	property.)

Reverse

Reverses	the	direction	of	a	spline.

SetControlPoint

Sets	the	control	point	of	the	spline	at	a	given	index.

SetFitPoint

Sets	the	fit	point	of	the	spline	at	a	given	index.	(Sets	one	fit	point	only.	To
change	all	the	fit	points	of	the	spline,	use	the	FitPoints	property.)

SetWeight

Sets	the	weight	of	the	control	point	at	a	given	index.

Use	the	following	read-only	properties	to	query	splines:

Area

Gets	the	enclosed	area	of	a	spline.

Closed

Indicates	whether	the	spline	is	open	or	closed.

Degree

Gets	the	degree	of	the	spline's	polynomial	representation.

IsPeriodic

Specifies	if	the	given	spline	is	periodic.

IsPlanar

Specifies	if	the	given	spline	is	planar.

IsRational

Specifies	if	the	given	spline	is	rational.

NumberOfControlPoints

Gets	the	number	of	control	points	of	the	spline.

NumberOfFitPoints

Gets	the	number	of	fit	points	of	the	spline.

For	more	information	about	editing	splines,	see	“Modify	Splines”	in	the	User's
Guide.

Change	a	control	point	on	a	spline

This	example	creates	a	spline	and	then	changes	the	first	control	point	for	the
spline.

Sub	Ch4_ChangeSplineControlPoint()

				'	Create	the	spline

				Dim	splineObj	As	AcadSpline

				Dim	startTan(0	To	2)	As	Double

				Dim	endTan(0	To	2)	As	Double

				Dim	fitPoints(0	To	8)	As	Double

				startTan(0)	=	0.5:	startTan(1)	=	0.5:	startTan(2)	=	0

				endTan(0)	=	0.5:	endTan(1)	=	0.5:	endTan(2)	=	0

				fitPoints(0)	=	1:	fitPoints(1)	=	1:	fitPoints(2)	=	0

				fitPoints(3)	=	5:	fitPoints(4)	=	5:	fitPoints(5)	=	0

				fitPoints(6)	=	10:	fitPoints(7)	=	0:	fitPoints(8)	=	0

				Set	splineObj	=	ThisDrawing.ModelSpace.	_

	AddSpline(fitPoints,	startTan,	endTan)

				splineObj.Update

				'	Change	the	coordinate	of	the	first	fit	point

				Dim	controlPoint(0	To	2)	As	Double

				controlPoint(0)	=	0

				controlPoint(1)	=	3

				controlPoint(2)	=	0

				splineObj.SetControlPoint	0,	controlPoint

				splineObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	

Edit	Hatches
	
	
	

You	can	edit	both	hatch	boundaries	and	hatch	patterns.	If	you	edit	the	boundary
of	an	associative	hatch,	the	pattern	is	updated	as	long	as	the	editing	results	in	a
valid	boundary.	Associative	hatches	are	updated	even	if	they're	on	layers	that	are
turned	off.	You	can	modify	hatch	patterns	or	choose	a	new	pattern	for	an	existing
hatch,	but	associativity	can	only	be	set	when	a	hatch	is	created.	You	can	check	to
see	if	a	Hatch	object	is	associative	by	using	the	AssociativeHatch	property.	(See
the	AddHatch	method	for	more	information	on	creating	a	hatch.)

You	must	re-evaluate	a	hatch	using	the	Evaluate	method	to	see	any	edits	to	the
hatch.

For	more	information	about	editing	hatches,	see	“Modify	Hatches	and	Solid-
Filled	Areas”	in	the	User's	Guide.

Topics	in	this	section

Edit	Hatch	Boundaries
Edit	Hatch	Patterns

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Edit	Hatches	>	

Edit	Hatch	Boundaries
	
	
	

You	can	append	or	insert	loops	into	the	hatch	boundaries.	Associative	hatches
are	updated	to	match	any	changes	made	to	their	boundaries.	Non-associative
hatches	are	not	updated.

To	edit	a	hatch	boundary,	use	one	of	the	following	methods:

AppendInnerLoop

Appends	an	inner	loop	to	the	hatch.

AppendOuterLoop

Appends	an	outer	loop	to	the	hatch.

InsertLoopAt

Inserts	a	loop	at	a	given	index	of	a	hatch.

Append	an	inner	loop	to	a	hatch

This	example	creates	an	associative	hatch.	It	then	creates	a	circle	and	appends
the	circle	as	an	inner	loop	to	the	hatch.

Sub	Ch4_AppendInnerLoopToHatch()

				Dim	hatchObj	As	AcadHatch

				Dim	patternName	As	String

				Dim	PatternType	As	Long

				Dim	bAssociativity	As	Boolean

				'	Define	and	create	the	hatch

				patternName	=	"ANSI31"

				PatternType	=	0

				bAssociativity	=	True

				Set	hatchObj	=	ThisDrawing.ModelSpace.	_

								AddHatch(PatternType,	patternName,	bAssociativity)

				'	Create	the	outer	loop	for	the	hatch.

				Dim	outerLoop(0	To	1)	As	AcadEntity

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				Dim	startAngle	As	Double

				Dim	endAngle	As	Double

				center(0)	=	5:	center(1)	=	3:	center(2)	=	0

				radius	=	3

				startAngle	=	0

				endAngle	=	3.141592

				Set	outerLoop(0)	=	ThisDrawing.ModelSpace.	_

							AddArc(center,	radius,	startAngle,	endAngle)

				Set	outerLoop(1)	=	ThisDrawing.ModelSpace.	_

							AddLine(outerLoop(0).startPoint,	outerLoop(0).endPoint)

				'	Append	the	outer	loop	to	the	hatch	object

				hatchObj.AppendOuterLoop	(outerLoop)

				'	Create	a	circle	as	the	inner	loop	for	the	hatch.

				Dim	innerLoop(0)	As	AcadEntity

				center(0)	=	5:	center(1)	=	4.5:	center(2)	=	0

				radius	=	1

				Set	innerLoop(0)	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Append	the	circle	as	an	inner	loop	to	the	hatch

				hatchObj.AppendInnerLoop	(innerLoop)

				'	Evaluate	and	display	the	hatch

				hatchObj.Evaluate

				ThisDrawing.Regen	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Edit	Objects	>	Edit	Hatches	>	

Edit	Hatch	Patterns
	
	
	

You	can	change	the	angle	or	spacing	of	an	existing	hatch	pattern	or	replace	it
with	a	solid-fill	or	one	of	the	predefined	patterns	that	AutoCAD	offers.	The
Pattern	option	in	the	Boundary	Hatch	dialog	box	displays	a	list	of	these	patterns.
To	reduce	file	size,	the	hatch	is	defined	in	the	drawing	as	a	single	graphic	object.

Use	the	following	properties	and	methods	to	edit	the	hatch	patterns:

PatternAngle

Specifies	the	angle	of	the	hatch	pattern.

PatternDouble

Specifies	if	the	user-defined	hatch	is	double-hatched.

PatternName

Specifies	the	hatch	pattern	name	(does	not	change	the	pattern	type).

PatternScale

Specifies	the	hatch	pattern	scale.

PatternSpace

Specifies	the	user-defined	hatch	pattern	spacing.

SetPattern

Sets	the	pattern	name	and	pattern	type	for	the	hatch.

Change	the	pattern	spacing	of	a	hatch

This	example	creates	a	hatch.	It	then	adds	two	to	the	current	pattern	spacing	for
the	hatch.

Sub	Ch4_ChangeHatchPatternSpace()

				Dim	hatchObj	As	AcadHatch

				Dim	patternName	As	String

				Dim	PatternType	As	Long

				Dim	bAssociativity	As	Boolean

				'	Define	the	hatch

				patternName	=	"ANSI31"

				PatternType	=	0

				bAssociativity	=	True

				'	Create	the	associative	Hatch	object

				Set	hatchObj	=	ThisDrawing.ModelSpace.	_

								AddHatch(PatternType,	patternName,	bAssociativity)

				'	Create	the	outer	loop	for	the	hatch.

				Dim	outerLoop(0	To	0)	As	AcadEntity

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	5

				center(1)	=	3

				center(2)	=	0

				radius	=	3

				Set	outerLoop(0)	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				hatchObj.AppendOuterLoop	(outerLoop)

				hatchObj.Evaluate

				'	Change	the	spacing	of	the	hatch	pattern	by

				'	adding	2	to	the	current	spacing

				hatchObj.patternSpace	=	hatchObj.patternSpace	+	2

				hatchObj.Evaluate

				ThisDrawing.Regen	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	

Use	Layers,	Colors,	and	Linetypes
	
	
	

Layers	are	like	transparent	overlays	on	which	you	organize	and	group	different
kinds	of	drawing	information.	The	objects	you	create	have	properties	including
layers,	colors,	and	linetypes.	Color	helps	you	distinguish	similar	elements	in
your	drawings,	and	linetypes	help	you	differentiate	easily	between	different
drafting	elements,	such	as	centerlines	or	hidden	lines.	Organizing	layers	and
objects	on	layers	makes	it	easier	to	manage	the	information	in	your	drawings.

For	more	information	about	this	topic,	see	“Control	the	Properties	of	Objects”	in
the	User's	Guide.

Topics	in	this	section

Work	with	Layers
Work	with	Colors
Work	with	Linetypes
Assign	Layers,	Colors,	and	Linetypes	to	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	

Work	with	Layers
	
	
	

You	are	always	drawing	on	a	layer.	It	may	be	the	default	layer	or	a	layer	you
create	and	name	yourself.	Each	layer	has	an	associated	color	and	linetype.	For
example,	you	can	create	a	layer	on	which	you	draw	only	centerlines	and	assign
the	color	blue	and	the	linetype	CENTER	to	that	layer.	Then,	whenever	you	want
to	draw	centerlines	you	can	switch	to	that	layer	and	start	drawing.

All	layers	and	linetypes	are	kept	within	their	parent	Collection	objects.	Layers
are	kept	within	the	Layers	collection,	and	linetypes	are	kept	within	the	Linetypes
collection.

For	more	information	about	working	with	layers,	see	“Work	with	Layers”	in	the
User's	Guide.

Topics	in	this	section

Sort	Layers	and	Linetypes
Create	and	Name	Layers
Make	a	Layer	Active
Turn	Layers	On	and	Off
Freeze	and	Thaw	Layers
Lock	and	Unlock	Layers
Assign	Color	to	a	Layer
Assign	a	Linetype	to	a	Layer
Delete	Layers

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Sort	Layers	and	Linetypes
	
	
	

You	can	iterate	through	the	Layers	and	Linetypes	collections	to	find	all	the
layers	and	linetypes	in	a	drawing.

Iterate	through	the	Layers	collection

The	following	code	iterates	through	the	Layers	collection	to	gather	the	names	of
all	the	layers	in	the	drawing.	The	names	are	then	displayed	in	a	message	box.

Sub	Ch4_IteratingLayers()

				Dim	layerNames	As	String

				Dim	entry	As	AcadLayer

				layerNames	=	""

				For	Each	entry	In	ThisDrawing.Layers

								layerNames	=	layerNames	+	entry.Name	+	vbCrLf

				Next

				MsgBox	"The	layers	in	this	drawing	are:	"	+	_

	vbCrLf	+	layerNames

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Create	and	Name	Layers
	
	
	

You	can	create	new	layers	and	assign	color	and	linetype	properties	to	those
layers.	Each	individual	layer	is	part	of	the	Layers	collection.	Use	the	Add
method	to	create	a	new	layer	and	add	it	to	the	Layers	collection.

You	can	assign	a	name	to	a	layer	when	it	is	created.	To	change	the	name	of	a
layer	after	it	has	been	created,	use	the	Name	property.	Layer	names	can	include
up	to	thirty-one	characters	and	contain	letters,	digits,	and	the	special	characters
dollar	sign	($),	hyphen	(-),	and	underscore	(_)	but	cannot	include	blank	spaces.

For	more	information	about	creating	layers,	see	“Create	and	Name	Layers”	in
the	User's	Guide.

Create	a	new	layer,	assign	it	the	color	red,	and	add	an	object	to	the	layer

The	following	code	creates	a	circle	and	a	new	layer.	The	new	layer	is	assigned
the	color	red.	The	circle	is	assigned	to	the	layer,	and	the	color	of	the	circle
changes	accordingly.

Sub	Ch4_NewLayer()

				'	Create	a	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2:	center(1)	=	2:	center(2)	=	0

				radius	=	1

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Create	a	color	object

				Dim	col	As	New	AcadAcCmColor

				col.ColorMethod	=	AutoCAD.acColorMethodForeground

				'	Set	the	layer	to	the	color

				Dim	layColor	As	AcadAcCmColor

				Set	layColor	=

						AcadApplication.GetInterfaceObject("AutoCAD.AcCmColor.17")

				Call	layColor.SetRGB(122,	199,	25)

				ThisDrawing.ActiveLayer.TrueColor	=	layColor

				col.ColorMethod	=	AutoCAD.acColorMethodByLayer

				'	Assign	the	circle	the	color	"ByLayer"	so

				'	that	the	circle	will	automatically	pick

				'	up	the	color	of	the	layer	on	which	it	resides

				circleObj.Color	=	acByLayer

				circleObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Make	a	Layer	Active
	
	
	

You	are	always	drawing	on	the	active	layer.	When	you	make	a	layer	active,	you
can	create	new	objects	on	that	layer.	If	you	make	a	different	layer	active,	any
new	objects	you	create	are	created	on	that	new	active	layer	and	use	its	color	and
linetype.	You	cannot	make	a	layer	active	if	it	is	frozen.

To	make	a	layer	active,	use	the	ActiveLayer	property.	This	property	is	set	on	the
current	drawing.	For	example:

Dim	newlayer	As	AcadLayer

Set	newlayer	=	ThisDrawing.Layers.Add("LAYER1")

ThisDrawing.ActiveLayer	=	newlayer

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Turn	Layers	On	and	Off
	
	
	

Turned-off	layers	are	regenerated	with	the	drawing	but	are	not	displayed	or
plotted.	By	turning	layers	off,	you	avoid	regenerating	the	drawing	every	time
you	thaw	a	layer.	When	you	turn	a	layer	on	that	has	been	turned	off,	AutoCAD
redraws	the	objects	on	that	layer.

To	turn	layers	on	and	off,	use	the	LayerOn	property.	If	you	input	a	value	of
TRUE	to	this	property,	the	layer	is	turned	on.	If	you	input	a	value	of	FALSE,	the
layer	is	turned	off.

Turn	off	a	layer

This	example	creates	a	new	layer,	adds	a	circle	to	the	layer,	then	turns	off	the
layer	so	that	the	circle	is	no	longer	visible.

Sub	Ch4_LayerInvisible()

				'	Create	a	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2:	center(1)	=	2:	center(2)	=	0

				radius	=	1

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Create	a	new	layer	called	"ABC"

				Dim	layerObj	As	AcadLayer

				Set	layerObj	=	ThisDrawing.Layers.Add("ABC")

				'	Assign	the	circle	to	the	"ABC"	layer

				circleObj.Layer	=	"ABC"

				circleObj.Update

				'	Turn	off	layer	"ABC"

				layerObj.LayerOn	=	False

				ThisDrawing.Regen	acActiveViewport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Freeze	and	Thaw	Layers
	
	
	

You	can	freeze	layers	to	speed	up	display	changes,	improve	object	selection
performance,	and	reduce	regeneration	time	for	complex	drawings.	AutoCAD
does	not	display,	plot,	or	regenerate	objects	on	frozen	layers.	Freeze	layers	that
you	want	to	be	invisible	for	long	periods.	When	you	“thaw”	a	frozen	layer,
AutoCAD	regenerates	and	displays	the	objects	on	that	layer.

To	freeze	or	thaw	a	layer,	use	the	Freeze	property.	If	you	input	a	value	of	TRUE
to	this	property,	the	layer	is	frozen.	If	you	input	a	value	of	FALSE,	the	layer	is
thawed.

Freeze	a	layer

This	example	creates	a	new	layer	called	“ABC”	and	then	freezes	the	layer.

Sub	Ch4_LayerFreeze()

				'	Create	a	new	layer	called	"ABC"

				Dim	layerObj	As	AcadLayer

				Set	layerObj	=	ThisDrawing.Layers.Add("ABC")

				'	Freeze	layer	"ABC"

				layerObj.Freeze	=	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Lock	and	Unlock	Layers
	
	
	

You	cannot	edit	the	objects	on	a	locked	layer;	however,	they	are	still	visible	if
the	layer	is	on	and	thawed.	You	can	make	a	locked	layer	current	and	you	can	add
objects	to	it.	You	can	freeze	and	turn	off	locked	layers	and	change	their
associated	colors	and	linetypes.

To	lock	or	unlock	a	layer,	use	the	Lock	property.	If	you	input	a	value	of	TRUE	to
this	property,	the	layer	is	locked.	If	you	input	a	value	of	FALSE,	the	layer	is
unlocked.

Lock	a	layer

This	example	creates	a	new	layer	called	“ABC”	and	then	locks	the	layer.

Sub	Ch4_LayerLock()

				'	Create	a	new	layer	called	"ABC"

				Dim	layerObj	As	AcadLayer

				Set	layerObj	=	ThisDrawing.Layers.Add("ABC")

				'	Lock	layer	"ABC"

				layerObj.Lock	=	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Assign	Color	to	a	Layer
	
	
	

You	can	assign	color	to	a	layer.	Colors	are	identified	by	the	AcCmColor	object.
This	object	can	hold	an	RGB	value,	an	ACI	number	(an	integer	from	1	to	255),
or	a	named	color.

To	assign	color	to	a	layer,	use	the	TrueColor	property.

Constants	have	been	provided	for	the	standard	seven	colors	and	the	BYBLOCK
and	BYLAYER	designations.

If	you	use	acByBlock,	AutoCAD	draws	new	objects	in	the	default	color
(white	or	black,	depending	on	your	configuration)	until	they	are	grouped	into	the
block.	When	the	block	is	inserted	in	the	drawing,	the	objects	in	the	block	inherit
the	current	setting.

If	you	use	acByLayer,	new	objects	assume	the	color	of	the	layer	upon	which
they	are	drawn.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Assign	a	Linetype	to	a	Layer
	
	
	

When	you're	defining	layers,	linetypes	provide	another	way	to	convey	visual
information.	A	linetype	is	a	repeating	pattern	of	dashes,	dots,	and	blank	spaces
you	can	use	to	distinguish	the	purpose	of	one	line	from	another.

The	linetype	name	and	definition	describe	the	particular	dash-dot	sequence,	the
relative	lengths	of	dashes	and	blank	spaces,	and	the	characteristics	of	any
included	text	or	shapes.

To	assign	a	linetype	to	a	layer,	use	the	Linetype	property.	This	property	takes	the
name	of	the	linetype	as	input.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>		Work
with	Layers	>	

Delete	Layers
	
	
	

To	delete	a	layer,	use	the	Delete	method.

You	can	delete	a	layer	at	any	time	during	a	drawing	session.	You	cannot	delete
the	current	layer,	layer	0,	an	xref-dependent	layer,	or	a	layer	that	contains
objects.

Note Layers	referenced	by	block	definitions,	along	with	the	special	layer	named
DEFPOINTS,	cannot	be	deleted	even	if	they	do	not	contain	visible	objects.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	

Work	with	Colors
	
	
	

You	can	assign	true	colors	to	individual	objects	in	a	drawing	using	the
AcCmColor	object.	Using	an	RGB	value	in	the	AcCmColor	object,	you	can
choose	from	millions	of	colors	when	you	set	the	color	of	lines,	circles,	and	other
individual	objects.	The	AcCmColor	object	also	contains	methods	and	properties
for	specifying	color	names,	color	books,	color	indexes,	color	values,	and	color
methods.

You	can	also	assign	colors	to	layers.	Each	color	can	be	identified	by	a	name	or
an	AutoCAD	Color	Index	(ACI)	number,	an	integer	from	1	through	255.	Any
number	of	objects	and	layers	can	have	the	same	color	number.	You	can	assign
each	color	number	to	a	different	pen	on	a	pen	plotter	or	use	the	color	numbers	to
identify	certain	objects	in	the	drawing,	even	though	you	cannot	see	the	colors	on
your	screen.

When	specifying	a	color,	you	can	enter	the	name	of	the	color	or	its	ACI	number.
The	ACI	provides	255	color	numbers.	Standard	color	names	are	available	only
for	colors	1	through	7.

Colors	1	through	7

Color
number Color	name

1 Red

2 Yellow

3 Green

4 Cyan

5 Blue

6 Magenta

7 Black/White

Colors	8	through	255	must	be	assigned	by	a	number	or	by	selecting	the	color	in	a
dialog	box.	The	default	color	(7)	is	either	white	or	black,	depending	on	your
background	color.

For	more	information	about	working	with	colors,	see	“Work	with	Colors”	in	the
User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	

Work	with	Linetypes
	
	
	

A	linetype	is	a	repeating	pattern	of	dashes,	dots,	and	blank	spaces.	A	complex
linetype	is	a	repeating	pattern	of	symbols.	To	use	a	linetype	you	must	first	load	it
into	your	drawing.	A	linetype	definition	must	exist	in	a	LIN	library	file	before	a
linetype	can	be	loaded	into	a	drawing.	To	load	a	linetype	into	your	drawing,	use
the	Load	method.

For	more	information	about	working	with	linetypes,	see	“Overview	of
Linetypes”	in	the	User's	Guide.

Note The	linetypes	used	internally	by	AutoCAD	should	not	be	confused	with	the
hardware	linetypes	provided	by	some	plotters.	The	two	types	of	dashed	lines
produce	similar	results.	Do	not	use	both	types	at	the	same	time,	however,
because	the	results	can	be	unpredictable.

Load	a	linetype	into	AutoCAD

This	example	attempts	to	load	the	linetype	“CENTER”	from	the	acad.lin	file.	If
the	linetype	already	exists,	or	the	file	does	not	exist,	then	a	message	is	displayed.

Sub	Ch4_LoadLinetype()

				On	Error	GoTo	ERRORHANDLER

				Dim	linetypeName	As	String

				linetypeName	=	"CENTER"

				'	Load	"CENTER"	line	type	from	acad.lin	file

				ThisDrawing.Linetypes.Load	linetypeName,	"acad.lin"

				Exit	Sub

ERRORHANDLER:

				MsgBox	Err.Description

End	Sub

Topics	in	this	section

Make	a	Linetype	Active

Rename	Linetypes
Delete	Linetypes
Change	Linetype	Descriptions
Specify	Linetype	Scale

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	Work
with	Linetypes	>	

Make	a	Linetype	Active
	
	
	

To	use	a	linetype	to	draw	on	the	current	layer,	you	must	make	it	active.	All
newly	created	objects	are	drawn	using	the	active	linetype.

Note Xref-dependent	linetypes	cannot	be	made	active.

To	make	a	linetype	active,	use	the	ActiveLinetype	property.	This	property	is	set
on	the	current	drawing.	For	example:

ThisDrawing.ActiveLinetype	=	ThisDrawing.	_

Linetypes.Item("CONTINUOUS")

For	more	information	about	activating	a	linetype,	see	“Set	the	Current	Linetype”
in	the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	Work
with	Linetypes	>	

Rename	Linetypes
	
	
	

To	rename	a	linetype,	use	the	Name	property.	When	you	rename	a	linetype,	you
are	renaming	only	the	linetype	definition	in	your	drawing.	The	name	in	the	LIN
library	file	is	not	being	updated	to	reflect	the	new	name.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	Work
with	Linetypes	>	

Delete	Linetypes
	
	
	

To	delete	a	linetype,	use	the	Delete	method.	You	can	delete	a	linetype	at	any	time
during	a	drawing	session;	however,	linetypes	that	cannot	be	deleted	include
BYLAYER,	BYBLOCK,	CONTINUOUS,	the	current	linetype,	and	xref-
dependent	linetypes.	Also,	linetypes	referenced	by	block	definitions	cannot	be
deleted,	even	if	they	are	not	used	by	any	objects.

For	more	information	about	deleting	linetypes,	see	“Set	the	Current	Linetype”	in
the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	Work
with	Linetypes	>	

Change	Linetype	Descriptions
	
	
	

Linetypes	can	have	a	description	associated	with	them.	The	description	provides
an	ASCII	representation	of	the	linetype.	You	can	assign	or	change	a	linetype
description	by	using	the	Description	property.

A	linetype	description	can	have	up	to	47	characters.	The	description	can	be	a
comment	or	a	series	of	underscores,	dots,	dashes,	and	spaces	to	show	a	simple
representation	of	the	linetype	pattern.	For	example:

ThisDrawing.ActiveLinetype.Description	=	"Exterior	Wall"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	Work
with	Linetypes	>	

Specify	Linetype	Scale
	
	
	

You	can	specify	the	linetype	scale	for	objects	you	create.	The	smaller	the	scale,
the	more	repetitions	of	the	pattern	are	generated	per	drawing	unit.	By	default,
AutoCAD	uses	a	global	linetype	scale	of	1.0,	which	is	equal	to	one	drawing	unit.
You	can	change	the	linetype	scale	for	all	drawing	objects,	attribute	references,
and	groups.

To	change	the	linetype	scale,	use	the	LinetypeScale	property.

The	CELTSCALE	system	variable	sets	the	linetype	scale	for	newly	created
objects.	LTSCALE	globally	changes	the	linetype	scale	of	existing	objects	as	well
as	new	objects.	To	change	the	values	of	system	variables	using	AutoCAD
ActiveX	Automation,	use	the	SetVariable	method.

For	more	information	about	linetype	scales,	see	“Control	Linetype	Scale”	in	the
User's	Guide.

Change	the	linetype	scale	for	a	circle

Sub	Ch4_ChangeLinetypeScale()

		'	Save	the	current	linetype

		Set	currLineType	=	ThisDrawing.ActiveLinetype

		'	Change	the	active	linetype	to	Border,	so	the	scale	change	will

		'	be	visible.

		'	First	see	if	the	Border	linetype	is	already	loaded

		On	Error	Resume	Next										'Turn	on	error	trapping

		ThisDrawing.ActiveLinetype	=	ThisDrawing.Linetypes.Item("BORDER")

		If	Err.Number	=	-2145386476	Then

				'	Error	indicates	linetype	is	not	currently	loaded,	so	load	it.

				ThisDrawing.Linetypes.Load	"BORDER",	"acad.lin"

				ThisDrawing.ActiveLinetype	=	_

										ThisDrawing.Linetypes.Item("BORDER")

		End	If

		On	Error	GoTo	0															'Turn	off	error	trapping

		'	Create	a	circle	object	in	model	space

		Dim	center(0	To	2)	As	Double

		Dim	radius	As	Double

		Dim	circleObj	As	AcadCircle

		center(0)	=	2

		center(1)	=	2

		center(2)	=	0

		radius	=	4

		Set	circleObj	=	ThisDrawing.ModelSpace.AddCircle(center,	radius)

		circleObj.Update

		MsgBox	("Here	is	the	circle	with	the	original	linetype")

		'	Set	the	linetype	scale	of	a	circle	to	3

		circleObj.LinetypeScale	=	3#

		circleObj.Update

		MsgBox	("Here	is	the	circle	with	the	new	linetype")

		'	Restore	original	active	linetype

		ThisDrawing.ActiveLinetype	=	currLineType

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and	Linetypes	>	

Assign	Layers,	Colors,	and	Linetypes	to	Objects
	
	
	

Once	you've	defined	layers,	colors,	and	linetypes,	you	can	assign	them	to	objects
in	your	drawing.	You	can	group	associated	components	of	a	drawing	by
assigning	objects	to	layers.	You	can	control	layer	visibility,	color,	and	linetype
and	specify	whether	objects	on	a	layer	can	be	edited.	You	can	move	objects	from
one	layer	to	another	and	change	the	name	of	a	layer.

The	number	of	layers	in	a	drawing	and	the	number	of	objects	per	layer	are
virtually	unlimited.	You	can	assign	a	name	to	each	layer	and	select	any
combination	of	layers	for	display.

You	can	define	blocks	from	objects	that	were	originally	drawn	on	different
layers	with	different	colors	and	linetypes.	You	can	preserve	the	layer,	color,	and
linetype	information	of	objects	in	a	block.	Then,	each	time	you	insert	the	block,
you	have	each	object	drawn	on	its	original	layer	with	its	original	color	and
linetype.

Topics	in	this	section

Change	an	Object's	Layer
Change	an	Object's	Color
Change	an	Object's	Linetype

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and
Linetypes	>	Assign	Layers,	Colors,	and	Linetypes	to	Objects	>	

Change	an	Object's	Layer
	
	
	

Once	you	have	created	an	object	and	assigned	layer,	color,	and	linetype
properties	to	it,	you	may	wish	to	change	the	object's	layer.	Changing	an	object's
layer	is	useful	if	you	accidentally	create	an	object	on	the	wrong	layer	or	decide
to	change	your	layer	organization	later.

To	change	an	object's	layer,	use	the	Layer	property	provided	for	that	object.	The
Layer	property	takes	the	name	of	the	layer	as	input.

Move	an	object	to	a	different	layer

This	example	creates	a	circle	on	the	active	layer	and	then	creates	a	new	layer
called	“ABC”.	It	then	moves	the	circle	to	the	new	layer.

Sub	Ch4_MoveObjectNewLayer()

				'	Create	a	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2:	center(1)	=	2:	center(2)	=	0

				radius	=	1

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Create	a	new	layer	called	"ABC"

				Dim	layerObj	As	AcadLayer

				Set	layerObj	=	ThisDrawing.Layers.Add("ABC")

				'	Assign	the	circle	to	the	"ABC"	layer

				circleObj.Layer	=	"ABC"

				circleObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and
Linetypes	>	Assign	Layers,	Colors,	and	Linetypes	to	Objects	>	

Change	an	Object's	Color
	
	
	

To	change	an	object's	color,	use	the	TrueColor	property	provided	for	that	object.
You	can	assign	colors	to	individual	objects	in	a	drawing.	Each	color	is	identified
by	an	AcCmColor	object.	This	object	can	hold	an	RGB	value,	an	ACI	number
(an	integer	from	1	to	255),	or	a	named	color.	Using	an	RGB	value,	you	can
choose	from	millions	of	colors.

Setting	a	color	for	the	object	overrides	the	color	setting	for	the	layer	on	which
the	object	resides.	If	you	want	to	retain	an	object	on	a	specific	layer	but	you
don't	want	it	to	keep	the	color	of	that	layer,	you	can	change	the	object's	color.

Change	the	color	of	a	circle

This	example	creates	a	circle	and	then	colors	the	circle	blue.

Sub	Ch4_ColorCircle()

				Dim	color	As	AcadAcCmColor

				Set	color	=	_

				AcadApplication.GetInterfaceObject("AutoCAD.AcCmColor.17")

				Call	color.SetRGB(80,	100,	244)

				Dim	circleObj	As	AcadCircle

				Dim	centerPoint(0	To	2)	As	Double

				Dim	radius	As	Double

				centerPoint(0)	=	0#:	centerPoint(1)	=	0#:	centerPoint(2)	=	0#

				radius	=	5#

				Set	circleObj	=	_

				ThisDrawing.ModelSpace.AddCircle(centerPoint,	radius)

				circleObj.TrueColor	=	color

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Use	Layers,	Colors,	and
Linetypes	>	Assign	Layers,	Colors,	and	Linetypes	to	Objects	>	

Change	an	Object's	Linetype
	
	
	

By	default,	objects	inherit	the	linetype	of	the	layer	on	which	they	are	created.	To
change	an	object's	linetype,	use	the	Linetype	property	provided	for	that	object.
The	Linetype	property	takes	the	name	of	the	linetype	to	assign	to	the	object	as
input.

Note Before	you	can	assign	a	linetype	to	an	object,	the	linetype	must	be	loaded
into	the	current	drawing.	To	load	a	linetype	into	the	drawing,	use	the	Load
method.

For	more	information	about	linetypes,	see	“Overview	of	Linetypes”	in	the	User's
Guide.

Change	the	linetype	of	a	circle

This	example	creates	a	circle.	It	then	attempts	to	load	the	linetype	“CENTER”
from	the	acad.lin	file.	If	the	linetype	already	exists,	or	the	file	does	not	exist,
then	a	message	is	displayed.	Finally,	it	sets	the	linetype	for	the	circle	to	be
“CENTER.”

Sub	Ch4_ChangeCircleLinetype()

				On	Error	Resume	Next

				'	Create	a	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2:	center(1)	=	2:	center(2)	=	0

				radius	=	1

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				Dim	linetypeName	As	String

				linetypeName	=	"CENTER"

				'	Load	"CENTER"	line	type	from	acad.lin	file

				ThisDrawing.Linetypes.Load	linetypeName,	"acad.lin"

				If	Err.Description	<>	""	Then	MsgBox	Err.Description

				'	Assign	the	circle	the	linetype	"CENTER"

				circleObj.Linetype	=	"CENTER"

				circleObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>layer	properties,	saving.	<$endrange>layer	settings:storing,	layer
settings:saving:example	code,	layer	settings:renaming	saved	settings:example
code,	layer	settings:deleting	saved	settings:example	code,	layer	settings:restoring
saved	settings,	layer	settings:restoring	saved	settings:example	code,	layer
settings:exporting	saved	settings,	layer	settings:importing	saved	settings,	Export
method:for	saved	layer	settings,	Import	method:for	saved	layer	settings,	layer
settings:exporting	saved	settings:example	code,	layer	settings:importing	saved
settings:example	code,">

Create	and	Edit	AutoCAD	Entities	>	

Save	and	Restore	Layer	Settings
	
	
	

You	can	save	layer	settings	in	a	drawing	and	restore	them	later.	This	makes	it
easy	to	return	to	specified	settings	for	all	layers	during	different	stages	when
completing	a	drawing	or	when	plotting	a	drawing.

Layer	settings	include	whether	or	not	a	layer	is	turned	on,	frozen,	locked,
plotted,	and	automatically	frozen	in	new	viewports,	and	the	layer's	color,
linetype,	lineweight,	and	plot	style.	You	can	specify	which	settings	you	want	to
save,	and	you	can	save	different	groups	of	settings	for	a	drawing.

A	special	object,	the	LayerStateManager,	provides	functions	for	working	with
layer	settings	using	ActiveX.

For	more	information	about	saving	layer	settings,	see	“Save	and	Restore	Layer
Settings”	in	the	User's	Guide.

Topics	in	this	section

Understand	How	AutoCAD	Saves	Layer	Settings
Use	the	LayerStateManager	to	Manage	Layer	Settings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Save	and	Restore	Layer	Settings	>	

Understand	How	AutoCAD	Saves	Layer	Settings
	
	
	

AutoCAD	saves	layer	setting	information	in	an	extension	dictionary	in	a
drawing's	Layers	collection.	When	you	first	save	layer	settings	in	a	drawing,
AutoCAD	does	the	following:

Creates	an	extension	dictionary	in	the	Layers	collection.

Creates	a	Dictionary	object	named	ACAD_LAYERSTATE	in	the
extension	dictionary.

Stores	the	properties	of	each	layer	in	the	drawing	in	an	XRecord	object
in	the	ACAD_LAYERSTATE	dictionary.	AutoCAD	stores	all	layer
settings	in	the	XRecord,	but	identifies	the	specific	settings	you	chose	to
save.	When	you	restore	the	layer	settings,	AutoCAD	restores	only	the
settings	you	chose	to	save.

Each	time	you	save	another	layer	setting	in	the	drawing,	AutoCAD	creates
another	XRecord	object	describing	the	saved	settings	and	stores	the	XRecord	in
the	ACAD_LAYERSTATE	dictionary.	The	following	diagram	illustrates	the
process.

You	do	not	need	(and	should	not	try)	to	interpret	XRecords	when	working	with
layer	settings	using	ActiveX.	Use	the	functions	of	the	LayerStateManager	object
to	access	saved	layer	settings.

List	the	saved	layer	settings	in	a	drawing

If	layer	settings	have	been	saved	in	the	current	drawing,	the	following	code	lists
the	names	of	all	saved	layer	settings:

Sub	Ch4_ListStates()

					On	Error	Resume	Next

				Dim	oLSMDict	As	AcadDictionary

				Dim	XRec	As	Object

				Dim	layerstateNames	As	String

				layerstateNames	=	""

				'	Get	the	ACAD_LAYERSTATES	dictionary,	which	is	in	the

				'	extension	dictionary	in	the	Layers	object.

				Set	oLSMDict	=	ThisDrawing.Layers.	_

	GetExtensionDictionary.Item("ACAD_LAYERSTATES")

				'	List	the	name	of	each	saved	layer	setting.	Settings	are

				'	stored	as	XRecords	in	the	dictionary.

				For	Each	XRec	In	oLSMDict

							layerstateNames	=	layerstateNames	+	XRec.Name	+	vbCrLf

				Next	XRec

				MsgBox	"The	saved	layer	settings	in	this	drawing	are:	"	+	_

	vbCrLf	+	layerstateNames

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$endrange>layer	settings:storing,	layer	settings:saving:example	code,	layer
settings:renaming	saved	settings:example	code,	layer	settings:deleting	saved
settings:example	code,	layer	settings:restoring	saved	settings,	layer
settings:restoring	saved	settings:example	code,	layer	settings:exporting	saved
settings,	layer	settings:importing	saved	settings,	Export	method:for	saved	layer
settings,	Import	method:for	saved	layer	settings,	layer	settings:exporting	saved
settings:example	code,	layer	settings:importing	saved	settings:example	code,">

Create	and	Edit	AutoCAD	Entities	>	Save	and	Restore	Layer	Settings	>	

Use	the	LayerStateManager	to	Manage	Layer	Settings
	
	
	

The	LayerStateManager	object	is	similar	to	the	AutoCAD	Utility	object	in	that	it
provides	a	set	of	functions	for	manipulating	data.	These	functions	are	methods
for	working	with	saved	layer	settings.	Use	the	following	LayerStateManager
methods	to	work	with	saved	layer	settings:

Delete

Deletes	a	saved	layer	setting.

Export

Exports	the	specified	saved	layer	setting	to	a	file.

Import

Imports	a	saved	layer	setting	from	the	specified	file.

Rename

Renames	a	saved	layer	setting.

Restore

Restores	the	specified	layer	setting	in	the	current	drawing.

Save

Saves	the	specified	layer	states	and	properties.

SetDataBase

Associates	an	AutoCAD	database	with	the	LayerStateManager.

To	access	the	LayerStateManager	object,	use	the	GetInterfaceObject	method.

Dim	oLSM	As	AcadLayerStateManager

Set	oLSM	=	ThisDrawing.Application.	_

			GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

After	you	retrieve	the	LayerStateManager	object,	you	must	associate	a	database
with	it	before	you	can	access	the	object's	methods.	Use	the	SetDatabase	method
to	associate	a	database	with	the	LayerStateManager.

oLSM.SetDatabase	ThisDrawing.Database

Topics	in	this	section

Save	Layer	Settings
Restore	Layer	Settings
Export	and	Import	Saved	Layer	Settings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$endrange>layer	settings:storing,	layer	settings:saving:example	code,	layer
settings:renaming	saved	settings:example	code,	layer	settings:deleting	saved
settings:example	code,">

Create	and	Edit	AutoCAD	Entities	>	Save	and	Restore	Layer	Settings	>	Use	the
LayerStateManager	to	Manage	Layer	Settings	>	

Save	Layer	Settings
	
	
	

Use	the	Save	method	to	save	a	set	of	layer	settings	in	a	drawing.	The	Save
method	accepts	two	parameters.	The	first	parameter	is	a	string	naming	the	layer
settings	you	are	saving.	The	second	parameter	identifies	the	layer	properties	you
want	to	save.	Use	the	constants	in	the	following	table	to	identify	layer	properties.

Constants	for	layer	properties

Constant	name Layer	property

acLsAll All	layer	settings

acLsColor Color

acLsFrozen Frozen	or	thawed

acLsLineType Linetype

acLsLineWeight Lineweight

acLsLocked Locked	or	unlocked

acLsNewViewport New	viewport	layers
frozen	or	thawed

acLsNone None

acLsOn On	or	off

acLsPlot Plotting	on	or	off

acLsPlotStyle Plot	style

Add	the	constants	together	to	specify	multiple	properties.

If	you	try	to	save	layer	settings	under	a	name	that	already	exists,	an	error	is
returned.	You	must	rename	or	delete	the	existing	saved	layer	settings	before	you
can	reuse	the	name.

Save	a	layer's	color	and	linetype	settings

The	following	code	saves	the	color	and	linetype	settings	of	the	current	layer
under	the	name	ColorLinetype.

Sub	Ch4_SaveLayerColorAndLinetype()

				Dim	oLSM	As	AcadLayerStateManager

				'	Access	the	LayerStateManager	object

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				'	Associate	the	current	drawing	database	with	LayerStateManager

				oLSM.SetDatabase	ThisDrawing.Database

				oLSM.Save	"ColorLinetype",	acLsColor	+	acLsLineType

End	Sub

Rename	a	saved	layer	setting

The	following	code	renames	the	ColorLinetype	layer	settings	to
OldColorLinetype.

Sub	Ch4_RenameLayerSettings()

				Dim	oLSM	As	AcadLayerStateManager

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				oLSM.SetDatabase	ThisDrawing.Database

				oLSM.Rename	"ColorLinetype",	"OldColorLinetype"

End	Sub

Delete	a	saved	layer	setting

The	following	code	deletes	layer	settings	that	were	saved	under	the	name
ColorLinetype.

Sub	Ch4_DeleteColorAndLinetype()

				Dim	oLSM	As	AcadLayerStateManager

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				oLSM.SetDatabase	ThisDrawing.Database

				oLSM.Delete	"ColorLinetype"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Save	and	Restore	Layer	Settings	>	Use	the
LayerStateManager	to	Manage	Layer	Settings	>	

Restore	Layer	Settings
	
	
	

The	Restore	method	resets	all	layer	settings	in	the	current	drawing	to	values	that
were	saved	earlier.	For	example,	if	you	save	the	drawing's	color	and	linetype
settings	under	the	name	“ColorLinetype”	and	subsequently	change	those
settings,	restoring	“ColorLinetype”	resets	the	layers	to	the	colors	and	linetypes
they	had	when	“ColorLinetype”	was	saved.	If	you	add	new	layers	to	the	drawing
after	saving	“ColorLinetype,”	those	new	layers	are	not	affected	when	you	restore
“ColorLinetype.”

Restore	the	color	and	linetype	settings	of	a	drawing's	layers

Assuming	that	the	color	and	linetype	settings	of	the	layers	in	the	current	drawing
were	previously	saved	under	the	name	“ColorLinetype,”	the	following	code
resets	the	color	and	linetype	settings	of	each	layer	in	the	drawing	to	the	value
they	had	when	“ColorLinetype”	was	saved.

Sub	Ch4_RestoreLayerSettings()

				Dim	oLSM	As	AcadLayerStateManager

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				oLSM.SetDatabase	ThisDrawing.Database

				oLSM.Restore	"ColorLinetype"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Save	and	Restore	Layer	Settings	>	Use	the
LayerStateManager	to	Manage	Layer	Settings	>	

Export	and	Import	Saved	Layer	Settings
	
	
	

You	can	export	and	import	saved	layer	settings	to	use	those	settings	in	other
drawings.	Use	the	LayerStateManager's	Export	method	to	save	layer	settings	to	a
file;	use	the	Import	method	to	import	saved	layer	settings	into	a	drawing.

Note Importing	layer	settings	does	not	restore	them;	you	must	use	the	Restore
method	to	set	the	layers	in	your	drawing	to	the	imported	settings.

The	Export	method	accepts	two	parameters.	The	first	parameter	is	a	string
identifying	the	saved	layer	settings	you	are	exporting.	The	second	parameter	is
the	name	of	the	file	you	are	exporting	the	settings	to.	If	you	do	not	specify	a	path
for	the	file,	it	is	saved	in	the	AutoCAD	installation	directory.	If	the	file	name	you
specified	already	exists,	the	existing	file	is	overwritten.	Use	a	.las	extension
when	naming	files;	this	is	the	extension	AutoCAD	recognizes	for	exported	layer
setting	files.

The	Import	method	accepts	one	parameter:	a	string	naming	the	file	that	contains
the	layer	settings	you	are	importing.

When	you	are	importing	layer	settings,	an	error	condition	is	raised	if	any
properties	referenced	in	the	saved	settings	are	not	available	in	the	drawing	you're
importing	to.	The	import	is	completed,	however,	and	default	properties	are	used.
For	example,	if	an	exported	layer	is	set	to	a	linetype	that	is	not	loaded	in	the
drawing	it	is	being	imported	into,	an	error	condition	is	raised	and	the	drawing's
default	linetype	is	substituted.	Your	code	should	account	for	this	error	condition
and	continue	processing	if	it	is	raised.

If	the	imported	file	defines	settings	for	layers	that	do	not	exist	in	the	current
drawing,	those	layers	are	created	in	the	current	drawing.	When	you	use	the
Restore	method,	the	properties	specified	when	the	settings	were	saved	are
assigned	to	the	new	layers;	all	other	properties	of	the	new	layers	are	assigned
default	settings.

Export	saved	layer	settings

The	following	code	exports	saved	layer	settings	to	a	file	named	Colortype.las.

Sub	Ch4_ExportLayerSettings()

				Dim	oLSM	As	AcadLayerStateManager

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				oLSM.SetDatabase	ThisDrawing.Database

				oLSM.Export	"ColorLinetype",	"c:\my	documents\ColorLType.las"

End	Sub

Import	saved	layer	settings

The	following	code	imports	layer	settings	from	a	file	named	Colortype.las.

Sub	Ch4_ImportLayerSettings()

				Dim	oLSM	As	AcadLayerStateManager

				Set	oLSM	=	ThisDrawing.Application.	_

							GetInterfaceObject("AutoCAD.AcadLayerStateManager.17")

				oLSM.SetDatabase	ThisDrawing.Database

				'	If	the	drawing	you're	importing	to	does	not	contain

				'	all	the	linetypes	referenced	in	the	saved	settings,

				'	an	error	is	returned.	The	import	is	completed,	though,

				'	and	the	default	linetype	is	used.

				On	Error	Resume	Next

				oLSM.Import	"c:\my	documents\ColorLType.las"

				If	Err.Number	=	-2145386359	Then

							'	Error	indicates	a	linetype	is	not	defined

							MsgBox	("One	or	more	linetypes	specified	in	the	imported	"	+	_

	"settings	is	not	defined	in	your	drawing")

				End	If

				On	Error	GoTo	0

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>multiline	text.

Create	and	Edit	AutoCAD	Entities	>	

Add	Text	to	Drawings
	
	
	

Text	conveys	important	information	in	your	drawing.	Use	text	for	title	blocks,	to
label	parts	of	the	drawing,	to	give	specifications,	or	to	make	annotations.

AutoCAD	provides	various	ways	to	create	text.	For	short,	simple	entries,	use
line	text.	For	longer	entries	with	internal	formatting,	use	multiline	text	(mtext).
Although	all	entered	text	uses	the	current	text	style,	which	establishes	the	default
font	and	format	settings,	you	can	use	several	methods	to	customize	the	text
appearance.

For	more	information	about	working	with	text,	see	“Create	Text”	in	the	User's
Guide.

Topics	in	this	section

Work	with	Text	Styles
Use	Line	Text	(Text)
Use	Multiline	Text	(Mtext)
Use	Unicode	Characters,	Control	Codes,	and	Special	Characters
Substitute	Fonts
Check	Spelling

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Work	with	Text	Styles
	
	
	

All	text	in	an	AutoCAD	drawing	has	a	style	associated	with	it.	When	you	enter
text,	AutoCAD	uses	the	current	text	style,	which	sets	the	font,	size,	angle,
orientation,	and	other	text	characteristics.	You	can	use	or	modify	the	default	style
or	create	and	load	a	new	style.	Once	you've	created	a	style,	you	can	modify	its
attributes	or	delete	it	when	you	no	longer	need	it.

Topics	in	this	section

Create	and	Modify	Text	Styles
Assign	Fonts
Use	TrueType	Fonts
Use	Unicode	and	Big	Fonts
Set	Text	Height
Set	Obliquing	Angle
Set	Text	Generation	Flag

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Create	and	Modify	Text	Styles
	
	
	

New	text	inherits	height,	width	factor,	obliquing	angle,	and	text	generation
properties	from	the	current	text	style.	To	create	a	text	style,	use	the	Add	method
to	create	a	new	TextStyle	object	and	add	it	to	the	TextStyles	collection.	The	Add
method	takes	a	TextStyle	name	as	input.	Once	created,	you	cannot	change	the
name	of	a	text	style	through	AutoCAD	ActiveX	Automation.

Style	names	can	contain	letters,	numbers,	and	the	special	characters	dollar	sign
($),	underscore	(_),	and	hyphen	(-).	AutoCAD	converts	the	characters	to
uppercase.	If	you	don't	enter	a	style	name,	AutoCAD	automatically	names	the
style	Stylen,	where	n	is	a	number	that	starts	at	1.	Each	new	style	is	shown	in
increments	of	1.

You	can	modify	an	existing	style	by	changing	the	properties	of	the	TextStyle
object.	You	can	also	update	existing	text	of	that	style	type	to	reflect	the	changes.
Use	the	following	properties	to	modify	a	TextStyle	object:

FontFile

Specifies	the	file	associated	with	a	font	(character	style).

BigFontFile

Specifies	the	special	shape	definition	file	used	for	a	non-ASCII	character	set.

Height

Specifies	the	character	height.

Width

Specifies	the	expansion	or	compression	of	the	characters.

ObliqueAngle

Specifies	the	slant	of	the	characters.

TextGenerationFlag

Specifies	backward	text,	upside-down	text,	or	both.

If	you	change	an	existing	style's	font	or	orientation,	all	text	using	that	style	is
changed	to	use	the	new	font	or	orientation.	Changing	text	height,	width	factor,
and	oblique	angle	does	not	change	existing	text	but	does	change	subsequently
created	text	objects.

Note You	must	call	the	Regen	or	Update	method	to	see	any	changes	to	the	above
properties.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Assign	Fonts
	
	
	

Fonts	define	the	shapes	of	the	text	characters	that	make	up	each	character	set.	A
single	font	can	be	used	by	more	than	one	style.	To	assign	a	font	to	a	text	style,
use	the	FontFile	property	of	the	TextStyle	object.	By	entering	the	font	file
containing	an	AutoCAD-compiled	SHX	font,	you	assign	that	font	to	the	text
style.

Set	text	fonts

This	example	gets	the	current	font	values	for	the	active	text	style	and	then
changes	the	typeface	for	the	font	to	“PlayBill.”	The	new	font	is	then	set	using	the
SetFont	method.	To	see	the	effects	of	changing	the	typeface,	add	some	Mtext	or
Text	to	your	current	drawing	before	running	the	example.	Note	that,	if	you	don't
have	the	PlayBill	font	on	your	system,	you	need	to	substitute	a	font	you	do	have
in	order	for	this	example	to	work.

Sub	Ch4_UpdateTextFont()

				MsgBox	("Look	at	the	text	now...")

				Dim	typeFace	As	String

				Dim	SavetypeFace	As	String

				Dim	Bold	As	Boolean

				Dim	Italic	As	Boolean

				Dim	charSet	As	Long

				Dim	PitchandFamily	As	Long

				'	Get	the	current	settings	to	fill	in	the

				'	default	values	for	the	SetFont	method

				ThisDrawing.ActiveTextStyle.GetFont	typeFace,	_

	Bold,	Italic,	charSet,	PitchandFamily

				'	Change	the	typeface	for	the	font

				SavetypeFace	=	typeFace

				typeFace	=	"PlayBill"

				ThisDrawing.ActiveTextStyle.SetFont	typeFace,	_

	Bold,	Italic,	charSet,	PitchandFamily

				ThisDrawing.Regen	acActiveViewport

				MsgBox	("Now	see	how	it	looks	after	changing	the	font...")

				'Restore	the	original	typeface

				ThisDrawing.ActiveTextStyle.SetFont	SavetypeFace,	_

	Bold,	Italic,	charSet,	PitchandFamily

				ThisDrawing.Regen	acActiveViewport

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Use	TrueType	Fonts
	
	
	

TrueType	fonts	always	appear	filled	in	your	drawing;	however,	when	you	plot,
the	TEXTFILL	system	variable	controls	whether	the	fonts	are	filled.	By	default
TEXTFILL	is	set	to	1	to	plot	the	filled-in	fonts.	When	you	export	the	drawing	to
PostScript® format	with	the	Export	method	and	print	it	on	a	PostScript	device,
the	font	is	plotted	as	designed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Use	Unicode	and	Big	Fonts
	
	
	

AutoCAD	supports	the	Unicode	character-encoding	standard.	A	Unicode	font
can	contain	65,535	characters,	with	shapes	for	many	languages.	All	AutoCAD
SHX	shape	fonts	are	now	Unicode	fonts.

The	text	files	for	some	alphabets	contain	thousands	of	non-ASCII	characters.	To
accommodate	such	text,	AutoCAD	supports	a	special	type	of	shape	definition
known	as	a	Big	Font	file.	You	can	set	a	style	to	use	both	regular	and	Big	Font
files.	Specify	normal	fonts	using	the	FontFile	property.	Specify	Big	Fonts	using
the	BigFontFile	property.

Note Font	file	names	cannot	contain	commas.

AutoCAD	provides	ways	to	substitute	one	font	for	another	or	to	specify	a	default
font.	For	more	information	see	Substitute	Fonts.

Change	font	files

This	example	changes	the	FontFile	and	BigFontFile	properties.	You	need	to
replace	the	path	information	listed	in	this	example	with	path	and	file	names
appropriate	for	your	system.

Sub	Ch4_ChangeFontFiles()

				ThisDrawing.ActiveTextStyle.BigFontFile	=	_

	"C:/AutoCAD/Fonts/bigfont.shx"

				ThisDrawing.ActiveTextStyle.fontFile	=	_

	"C:/AutoCAD/Fonts/italic.shx"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Set	Text	Height
	
	
	

Text	height	determines	the	size	in	drawing	units	of	the	letters	in	the	font	you	are
using.	The	value	usually	represents	the	size	of	the	uppercase	letters,	with	the
exception	of	TrueType	fonts.

For	TrueType	fonts,	the	value	specified	for	text	height	might	not	represent	the
height	of	uppercase	letters.	The	height	specified	represents	the	height	of	a	capital
letter	plus	an	accent	area	reserved	for	accent	marks	and	other	marks	used	in	non-
English	languages.	The	relative	portion	of	areas	assigned	to	capital	letters	and
accent	characters	is	determined	by	the	font	designer	at	the	time	the	font	is
designed,	and,	consequently,	will	vary	from	font	to	font.

In	addition	to	the	height	of	a	capital	letter	and	the	ascent	area	that	make	up	the
height	specified	by	the	user,	TrueType	fonts	have	a	descent	area	for	portions	of
characters	that	extend	below	the	text	insertion	line.	Examples	of	such	characters
are	y,	j,	p,	g,	and	q.

You	specify	the	text	height	using	the	Height	property.	This	property	accepts
positive	numbers	only.

Change	the	height	of	a	Text	object

This	example	creates	a	line	of	text	and	then	changes	the	height	of	the	text.

Sub	Ch4_ChangeTextHeight()

				Dim	textObj	As	AcadText

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	height	As	Double

				'	Define	the	text	object

				textString	=	"Hello,	World."

				insertionPoint(0)	=	3

				insertionPoint(1)	=	3

				insertionPoint(2)	=	0

				height	=	0.5

				'	Create	the	text	object	in	model	space

				Set	textObj	=	ThisDrawing.ModelSpace.	_

	AddText(textString,	insertionPoint,	height)

				'	Change	the	value	of	the	Height	to	1

				textObj.height	=	1

				textObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Set	Obliquing	Angle
	
	
	

The	obliquing	angle	determines	the	forward	or	backward	slant	of	the	text.	The
angle	represents	the	offset	from	its	vertical	axis	(90	degrees).	To	set	the
obliquing	angle,	use	the	ObliqueAngle	property.	The	obliquing	angle	must	be
provided	in	radians.	A	positive	angle	denotes	a	lean	to	the	right,	a	negative	value
will	have	2*PI	added	to	it	to	convert	it	to	its	positive	equivalent.

Create	oblique	text

This	example	creates	a	Text	object	then	slants	the	text	45	degrees.

Sub	Ch4_ObliqueText()

				Dim	textObj	As	AcadText

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	height	As	Double

				'	Define	the	text	object

				textString	=	"Hello,	World."

				insertionPoint(0)	=	3

				insertionPoint(1)	=	3

				insertionPoint(2)	=	0

				height	=	0.5

				'	Create	the	text	object	in	model	space

				Set	textObj	=	ThisDrawing.ModelSpace.	_

	AddText(textString,	insertionPoint,	height)

				'	Change	the	value	of	the	ObliqueAngle

				'	to	45	degrees	(.707	radians)

				textObj.ObliqueAngle	=	0.707

				textObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Work	with	Text
Styles	>	

Set	Text	Generation	Flag
	
	
	

The	text	generation	flag	specifies	if	the	text	is	displayed	backward	or	upside-
down.	To	set	the	text	generation	flag,	use	the	TextGenerationFlag	property.	To
display	the	text	backward,	enter	acTextFlagBackward	for	this	property.	To
display	the	text	upside-down,	enter	acTextFlagUpsideDown	for	this
property.	To	display	the	text	both	backward	and	upside-down,	add	the	two
constants	together	by	entering
acTextFlagBackward+acTextFlagUpsidedown	for	this	property.

Display	text	backward

This	example	creates	a	line	of	text,	then	sets	it	to	be	displayed	backward	using
the	TextGenerationFlag	property.

Sub	Ch4_ChangingTextGenerationFlag()

				Dim	textObj	As	AcadText

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	height	As	Double

				'	Create	the	text	object

				textString	=	"Hello,	World."

				insertionPoint(0)	=	3

				insertionPoint(1)	=	3

				insertionPoint(2)	=	0

				height	=	0.5

				Set	textObj	=	ThisDrawing.ModelSpace.	_

	AddText(textString,	insertionPoint,	height)

				'	Change	the	value	of	the	TextGenerationFlag

				textObj.TextGenerationFlag	=	acTextFlagBackward

				textObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Use	Line	Text	(Text)
	
	
	

The	text	you	add	to	your	drawings	conveys	a	variety	of	information.	It	may	be	a
complex	specification,	title	block	information,	a	label,	or	even	part	of	the
drawing.	For	shorter	entries	that	do	not	require	multiple	fonts	or	lines,	create	line
Text	using	the	Text	object.	Line	text	is	more	convenient	for	labels.

Topics	in	this	section

Create	Line	Text
Format	Line	Text
Align	Line	Text
Change	Line	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Line	Text
(Text)	>	

Create	Line	Text
	
	
	

Each	individual	line	of	text	is	a	distinct	object	when	using	line	text.	To	create	a
line	text	object,	use	the	AddText	method.	This	method	requires	three	values	as
input:	the	text	string,	the	insertion	point,	and	the	height	of	the	text.

The	text	string	is	the	actual	text	to	be	displayed.	Unicode,	control	code,	and
special	characters	are	accepted.	The	insertion	point	is	a	variant	array	containing
three	doubles	representing	the	3D	WCS	coordinate	in	the	drawing	to	place	the
text.	The	height	of	the	text	is	a	positive	number	representing	the	height	of	the
uppercase	text.	Height	is	measured	in	the	current	units.

To	Create	Line	Text

This	example	creates	a	line	of	text	in	model	space,	at	the	coordinate	(2,	2,	0).

Sub	Ch4_CreateText()

				Dim	textObj	As	AcadText

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	height	As	Double

				'	Create	the	text	object

				textString	=	"Hello,	World."

				insertionPoint(0)	=	2

				insertionPoint(1)	=	2

				insertionPoint(2)	=	0

				height	=	0.5

				Set	textObj	=	ThisDrawing.ModelSpace.	_

	AddText(textString,	insertionPoint,	height)

				textObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Line	Text
(Text)	>	

Format	Line	Text
	
	
	

A	Text	object	is	created	using	the	active	text	style.	You	can	change	the
formatting	of	the	Text	object	by	changing	the	text	style	associated	with	it,	or	by
editing	the	properties	of	the	Text	object.	You	cannot	apply	formats	to	individual
words	and	characters.

To	change	a	text	style	associated	with	an	individual	Text	object,	set	the
StyleName	property	to	a	new	text	style.	Once	you	have	changed	the	text	style,
use	the	Update	method	for	the	Text	object	to	see	the	changes	in	your	drawing.

In	addition	to	the	standard	editable	properties	for	entities	(color,	layer,	linetype,
and	so	forth),	other	properties	that	you	can	change	on	a	Text	object	include	the
following:

Alignment

Specifies	the	horizontal	and	vertical	alignment	for	the	text.

InsertionPoint

Specifies	the	insertion	point	for	the	text.

ObliqueAngle

Specifies	the	oblique	angle	of	the	individual	text	object.

Rotation

Specifies	the	rotation	angle	in	radians	for	the	text.

ScaleFactor

Specifies	the	scale	factor	for	the	text.

TextAlignmentPoint

Specifies	the	alignment	point	for	the	text.

TextGenerationFlag

Specifies	whether	the	text	is	displayed	backward,	upside-down,	or	both
simultaneously.

TextString

Specifies	the	actual	text	string	displayed.

Once	you	have	changed	a	property,	use	the	Update	method	to	see	the	changes	in
your	drawing.

Note For	a	complete	list	of	methods	and	properties,	see	the	Text	object
documentation	in	the	AutoCADActiveX	and	VBA	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Line	Text
(Text)	>	

Align	Line	Text
	
	
	

You	can	justify	line	text	horizontally	and	vertically.	Left	alignment	is	the	default.
To	set	the	horizontal	and	vertical	alignment	options,	use	the	Alignment	property.

Realign	text

This	example	creates	a	Text	object	and	a	Point	object.	The	Point	object	is	set	to
the	text	alignment	point,	and	is	changed	to	a	red	crosshair	so	that	it	is	visible.
The	text	alignment	is	changed	and	a	message	box	is	displayed	so	that	the	macro
execution	is	halted.	This	allows	you	to	see	the	impact	of	changing	the	text
alignment.

Sub	Ch4_TextAlignment()

				Dim	textObj	As	AcadText

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	height	As	Double

				'	Define	the	new	Text	object

				textString	=	"Hello,	World."

				insertionPoint(0)	=	3

				insertionPoint(1)	=	3

				insertionPoint(2)	=	0

				height	=	0.5

				'	Create	the	Text	object	in	model	space

				Set	textObj	=	ThisDrawing.ModelSpace.	_

	AddText(textString,	insertionPoint,	height)

				'	Create	a	point	over	the	text	alignment	point,

				'	so	we	can	better	visualize	the	alignment	process

				Dim	pointObj	As	AcadPoint

				Dim	alignmentPoint(0	To	2)	As	Double

				alignmentPoint(0)	=	3

				alignmentPoint(1)	=	3

				alignmentPoint(2)	=	0

				Set	pointObj	=	ThisDrawing.ModelSpace.	_

	AddPoint(alignmentPoint)

				pointObj.Color	=	acRed

				'	Set	the	point	style	to	crosshair

				ThisDrawing.SetVariable	"PDMODE",	2

			'	Align	the	text	to	the	Left

				textObj.Alignment	=	acAlignmentLeft

				ThisDrawing.Regen	acActiveViewport

				MsgBox	"The	Text	object	is	now	aligned	left"

				'	Align	the	text	to	the	Center

				textObj.Alignment	=	acAlignmentCenter

				'	Align	the	text	to	the	point	(necessary	for

				'	all	but	left	aligned	text.)

				textObj.TextAlignmentPoint	=	alignmentPoint

				ThisDrawing.Regen	acActiveViewport

				MsgBox	"The	Text	object	is	now	centered"

				'	Align	the	text	to	the	Right

				textObj.Alignment	=	acAlignmentRight

				ThisDrawing.Regen	acActiveViewport

				MsgBox	"The	Text	object	is	now	aligned	right"

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Line	Text
(Text)	>	

Change	Line	Text
	
	
	

Like	any	other	object,	Text	objects	can	be	moved,	rotated,	erased,	and	copied.
You	also	can	mirror	text.	If	you	do	not	want	the	text	to	be	reversed	when	you
mirror	it,	you	can	set	the	MIRRTEXT	system	variable	to	0.

The	following	list	represents	a	few	of	the	methods	a	Text	object	has	for	use	in
editing.	For	a	complete	list,	see	the	Text	object	documentation	in	the	AutoCAD
ActiveX	and	VBA	Reference.

ArrayPolar

Creates	a	polar	array.

ArrayRectangular

Creates	a	rectangular	array.

Copy

Copies	the	Text	object.

Erase

Erases	the	Text	object.

Mirror

Mirrors	the	Text	object.

Move

Moves	the	Text	object.

Rotate

Rotates	the	Text	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>multiline	text.

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Use	Multiline	Text	(Mtext)
	
	
	

For	long,	complex	entries,	create	multiline	text	(mtext).	Multiline	text	fits	a
specified	width	but	can	extend	vertically	to	an	indefinite	length.	You	can	format
individual	words	or	characters	within	the	mtext.

Topics	in	this	section

Create	Multiline	Text
Format	Multiline	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Multiline	Text
(Mtext)	>	

Create	Multiline	Text
	
	
	

You	can	create	a	multiline	text	object	(MText	object)	by	using	the	AddMText
method.	This	method	requires	three	values	as	input:	the	text	string,	the	insertion
point	in	the	drawing	to	place	the	text,	and	the	width	of	the	text	bounding	box.

The	text	string	is	the	actual	text	to	be	displayed.	Unicode,	control	code,	and
special	characters	are	accepted.	The	insertion	point	is	a	variant	array	containing
three	doubles	representing	the	3D	WCS	coordinate	in	the	drawing	to	place	the
text.	The	width	of	the	text	is	a	positive	number	representing	the	width	of	the
bounding	box	for	the	text.	Width	is	measured	in	the	current	units.

After	the	MText	object	is	created,	you	can	apply	the	text	height,	justification,
rotation	angle,	and	style	to	the	MText	object,	or	apply	character	formatting	to
selected	characters.

Refer	to	the	entry	on	MText	in	the	ActiveX	and	VBA	Reference	for	a	list	of
methods	and	properties	that	apply	to	the	MText	object.

To	Create	Multiline	Text

The	following	code	creates	an	MText	object	in	model	space,	at	the	coordinate	(2,
2,	0).

Sub	Ch4_CreateMText()

				Dim	mtextObj	As	AcadMText

				Dim	insertPoint(0	To	2)	As	Double

				Dim	width	As	Double

				Dim	textString	As	String

				insertPoint(0)	=	2

				insertPoint(1)	=	2

				insertPoint(2)	=	0

				width	=	4

				textString	=	"This	is	a	text	string	for	the	mtext	object."

				'	Create	a	text	Object	in	model	space

				Set	mtextObj	=	ThisDrawing.ModelSpace.	_

	AddMText(insertPoint,	width,	textString)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Use	Multiline	Text
(Mtext)	>	

Format	Multiline	Text
	
	
	

New	text	automatically	assumes	the	characteristics	of	the	current	text	style.	The
STANDARD	text	style	is	the	default.	You	can	override	the	default	text	style	by
applying	formatting	to	individual	characters	and	applying	properties	to	the	Text
object.	You	also	can	indicate	formatting	or	special	characters	using	the	methods
described	in	this	section.

Orientation	options	such	as	style,	justification,	width,	and	rotation	affect	all	text
within	the	mtext	text	boundary,	not	specific	words	or	characters.	Use	the
AttachmentPoint	property	to	change	the	justification	of	mtext,	and	the	Rotation
property	to	control	the	angle	of	rotation	of	the	text	boundary.

The	StyleName	property	sets	the	default	fonts	and	formatting	characteristics	for
new	text.	As	you	create	text,	you	can	select	which	style	you	want	to	use	from	a
list	of	existing	styles.	When	you	change	the	style	of	an	MText	object	that	has
character	formatting	applied	to	any	portion	of	the	text,	the	style	is	applied	to	the
entire	object,	and	some	formatting	of	characters	might	not	be	retained.	For
instance,	changing	from	a	TrueType	style	to	a	style	using	an	SHX	font	or	to
another	TrueType	font	causes	the	text	to	use	the	new	font	for	the	entire	object,
and	any	character	formatting	is	lost.

Formatting	options	such	as	underlining,	stacked	text,	or	fonts	can	be	applied	to
individual	words	or	characters	within	a	paragraph.	You	also	can	change	color,
font,	and	text	height.	You	can	change	the	spaces	between	text	characters	or
increase	the	width	of	the	characters.

Use	curly	braces	({	})	to	apply	a	format	change	only	to	the	text	within	the
braces.	You	can	nest	braces	up	to	eight	levels	deep.

You	also	can	enter	the	ASCII	equivalent	for	control	codes	within	lines	or
paragraphs	to	indicate	formatting	or	special	characters,	such	as	tolerance	or
dimensioning	symbols.

The	following	control	characters	can	be	used	to	create	the	text	in	the	illustration.
(For	the	ASCII	equivalent	of	this	string	see	the	example	following	the
illustration.)

{{\H1.5x;	Big	text}	\A2;	over	text\A1;/\A0;	under	text}

For	more	information	about	formatting	multiline	text,	see	“Format	Characters
Within	Multiline	Text”	in	the	User's	Guide.

Use	control	characters	to	format	text

This	example	creates	and	formats	an	MText	object.

Sub	Ch4_FormatMText()

				Dim	mtextObj	As	AcadMText

				Dim	insertPoint(0	To	2)	As	Double

				Dim	width	As	Double

				Dim	textString	As	String

				insertPoint(0)	=	2

				insertPoint(1)	=	2

				insertPoint(2)	=	0

				width	=	4

				'	Define	the	ASCII	characters	for	the	control	characters

				Dim	OB	As	Long		'	Open	Bracket		{

				Dim	CB	As	Long		'	Close	Bracket	}

				Dim	BS	As	Long		'	Back	Slash				\

				Dim	FS	As	Long		'	Forward	Slash	/

				Dim	SC	As	Long		'	Semicolon					;

				OB	=	Asc("{")

				CB	=	Asc("}")

				BS	=	Asc("\")

				FS	=	Asc("/")

				SC	=	Asc(";")

				'	Assign	the	text	string	the	following	line	of	control

				'	characters	and	text	characters:

				'	{{\H1.5x;	Big	text}\A2;	over	text\A1;/\A0;	under	text}

				textString	=	Chr(OB)	+	Chr(OB)	+	Chr(BS)	+	"H1.5x"	_

				+	Chr(SC)	+	"Big	text"	+	Chr(CB)	+	Chr(BS)	+	"A2"	_

				+	Chr(SC)	+	"over	text"	+	Chr(BS)	+	"A1"	+	Chr(SC)	_

				+	Chr(FS)	+	Chr(BS)	+	"A0"	+	Chr(SC)	+	"under	text"	_

				+	Chr(CB)

				'	Create	a	text	Object	in	model	space

				Set	mtextObj	=	ThisDrawing.ModelSpace.	_

	AddMText(insertPoint,	width,	textString)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Use	Unicode	Characters,	Control	Codes,	and	Special
Characters
	
	
	

You	can	use	Unicode	characters,	control	codes,	and	special	characters	in	your
text	string	to	represent	symbols.	(All	nontext	characters	must	be	entered	as	their
ASCII	equivalent.)

You	can	create	special	characters	by	entering	the	following	Unicode	character
strings:

Unicode	character	descriptions

Unicode
character Description

\U+00B0 Degree	symbol

\U+00B1 Plus/minus
tolerance
symbol

\U+2205 Diameter
dimensioning
symbol

In	addition	to	using	Unicode	characters	for	special	characters,	you	can	specify	a
special	character	by	including	control	information	in	the	text	string.	Use	a	pair	of
percent	signs	(%%)	to	introduce	each	control	sequence.	For	example,	the
following	control	code	works	with	standard	AutoCAD	text	and	PostScript	fonts
to	draw	character	number	nnn:

%%nnn

In	a	VB	or	VBA	text	string,	this	example	would	be	entered	as

Dim	percent	as	Long

percent	=	ASC("%")

TextString	=	chr(percent)	+	chr(percent)	+	"nnn"

These	control	codes	work	with	standard	AutoCAD	text	fonts	only:

Control	code	descriptions

Control	code Description

%%o Toggles	overscore	mode
on	and	off

%%u Toggles	underscore
mode	on	and	off

%%d Draws	degree	symbol

%%p Draws	plus	and	minus
tolerance	symbol

%%c Draws	diameter
dimensioning	symbol

%%% Draws	single	percent
sign

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Substitute	Fonts
	
	
	

You	can	designate	fonts	to	be	substituted	for	other	fonts	or	as	defaults	when
AutoCAD	cannot	find	a	font	specified	in	a	drawing.

The	fonts	used	for	the	text	in	your	drawing	are	determined	by	the	text	style	and,
for	mtext,	by	individual	font	formats	applied	to	sections	of	text.

You	can	use	font	mapping	tables	to	ensure	that	your	drawing	uses	only	certain
fonts,	or	to	convert	the	fonts	you	used	to	other	fonts.	You	can	use	these	font
mapping	tables	to	enforce	corporate	font	standards,	or	to	facilitate	offline
printing.	AutoCAD	comes	with	a	default	font	mapping	table.	You	can	edit	this
file	using	any	ASCII	text	editor.	You	also	can	specify	a	different	font	mapping
table	file	by	using	the	FontFileMap	property	on	the	Preferences	object.

For	more	information	about	font	mapping	tables	and	substituting	fonts,	see
“Substitute	Fonts”	in	the	User's	Guide.

Topics	in	this	section

Specify	an	Alternative	Default	Font

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	Substitute	Fonts	>	

Specify	an	Alternative	Default	Font
	
	
	

If	your	drawing	specifies	a	font	that	is	not	currently	on	your	system,	AutoCAD
automatically	substitutes	the	font	designated	as	your	alternate	font.	By	default,
AutoCAD	uses	the	simplex.shx	file.	However,	you	can	specify	a	different	font	if
necessary.	Use	the	AltFontFile	property	on	the	Preferences	object	to	set	the
alternative	font	file	name.

If	you	use	a	text	style	that	uses	a	Big	Font,	you	can	map	it	to	another	font	using
the	AltFontFile	property.	This	system	variable	uses	a	default	font	file	pair	of
txt.shx,	bigfont.shx.

If	AutoCAD	cannot	find	a	font	file	when	a	drawing	is	opened,	it	applies	a	default
set	of	font	substitution	rules.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Create	and	Edit	AutoCAD	Entities	>	Add	Text	to	Drawings	>	

Check	Spelling
	
	
	

During	a	spelling	check,	AutoCAD	matches	the	words	in	the	drawing	to	the
words	in	the	current	main	dictionary.	Any	words	you	add	are	stored	in	the
custom	dictionary	that	is	current	at	the	time	of	the	spelling	check.	For	example,
you	can	add	proper	names	so	that	AutoCAD	no	longer	identifies	them	as
misspelled	words.

To	check	spelling	in	another	language,	you	can	change	to	a	different	main
dictionary.

There	is	no	method	for	checking	spelling	provided	in	AutoCAD	ActiveX
Automation.	However,	you	can	specify	a	different	main	dictionary	using	the
MainDictionary	property,	or	a	different	custom	dictionary	using	the
CustomDictionary	property	on	the	Preferences	object.

For	more	information	about	spellings	checks,	see	“Check	Spelling”	in	the	User's
Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Dimensions	and	Tolerances
	
	
	

Dimensions	add	measurements	to	a	drawing.	Tolerances	specify	by	how	much	a
dimension	can	vary.	With	ActiveX	Automation,	dimensions	can	be	managed
with	dimension	styles	and	overrides.

Topics	in	this	section

Dimensioning	Concepts
Create	Dimensions
Edit	Dimensions
Work	with	Dimension	Styles
Dimension	in	Model	Space	and	Paper	Space
Create	Leaders	and	Annotation
Use	Geometric	Tolerances

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Dimensioning	Concepts
	
	
	

Dimensions	show	the	geometric	measurements	of	objects,	the	distances	or
angles	between	objects,	or	the	X	and	Y	coordinates	of	a	feature.	AutoCAD®

provides	three	basic	types	of	dimensioning:	linear,	radial,	and	angular.	Linear
dimensions	include	aligned,	rotated,	and	ordinate	dimensions.

You	can	create	dimensions	for	lines,	multilines,	arcs,	circles,	and	polyline
segments,	or	you	can	create	dimensions	that	stand	alone.

AutoCAD	draws	dimensions	on	the	current	layer.	Every	dimension	has	a
dimension	style	associated	with	it,	whether	it's	the	default	or	one	you	define.	The
style	controls	characteristics	such	as	color,	text	style,	and	linetype	scale.
Thickness	information	is	not	supported.	Style	families	allow	for	subtle
modifications	to	a	base	style	for	different	types	of	dimensions.	Overrides	allow
for	style	modifications	to	a	specific	dimension.

For	more	information	about	dimensions,	see	“Change	Existing	Objects”	in	the
User's	Guide.

Topics	in	this	section

Parts	of	a	Dimension

Define	the	Dimension	System	Variables
Set	Dimension	Text	Styles
Understand	Leader	Lines
Understand	Associative	Dimensions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Dimensioning	Concepts	>	

Parts	of	a	Dimension
	
	
	

This	section	briefly	defines	the	parts	of	a	dimension.

A	dimension	line	is	a	line	that	indicates	the	direction	and	extent	of	a	dimension.
For	an	angular	dimension,	the	dimension	line	is	an	arc.	Extension	lines,	also
called	projection	lines	or	witness	lines,	extend	from	the	feature	being
dimensioned	to	the	dimension	line.	Arrowheads,	also	called	symbols	of
termination	or	just	termination,	are	added	to	each	end	of	the	dimension	line.
Dimension	text	is	a	text	string	that	usually	indicates	the	actual	measurement.	The
text	may	also	include	prefixes,	suffixes,	and	tolerances.	A	leader	is	a	solid	line
leading	from	some	annotation	to	the	referenced	feature.	A	center	mark	is	a	small
cross	that	marks	the	center	of	a	circle	or	arc.	Centerlines	are	broken	lines	that
mark	the	center	of	a	circle	or	arc.

See	“Parts	of	a	Dimension”in	the	User's	Guide	for	more	information	about	the
parts	of	a	dimension.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Dimensioning	Concepts	>	

Define	the	Dimension	System	Variables
	
	
	

The	dimensioning	system	variables	control	the	appearance	of	dimensions.	The
dimension	system	variables	include	DIMAUNIT,	DIMUPT,	DIMTOFL,
DIMFIT,	DIMTIH,	DIMTOH,	DIMJUST,	and	DIMTAD.	You	can	set	these
variables	by	using	the	SetVariable	method.	For	example,	the	following	line	of
code	sets	the	DIMAUNIT	system	variable	(the	units	format	for	angular
dimensions)	to	radians	(3):

ThisDrawing.SetVariable	"DIMAUNIT",	3

See	“Use	Dimension	Styles”	in	the	User's	Guide	for	more	information	about	the
dimensioning	system	variables.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Dimensioning	Concepts	>	

Set	Dimension	Text	Styles
	
	
	

Dimension	text	refers	to	any	kind	of	text	associated	with	dimensions,	including
measurements,	tolerances	(both	lateral	and	geometric),	prefixes,	suffixes,	and
textual	notes	in	single-line	or	paragraph	form.	You	can	use	the	default
measurement	computed	by	AutoCAD	as	the	text,	supply	your	own	text,	or
suppress	the	text	entirely.	You	can	use	dimension	text	to	add	information,	such
as	special	manufacturing	procedures	or	assembly	instructions.

Single-line	dimension	text	uses	the	active	text	style	as	specified	by	the
ActiveTextStyle	property.	Paragraphs	of	text	use	the	active	text	style	with	any
modifications	you	make	in	your	text	string.

For	more	information	about	dimension	text,	see	“Control	Dimension	Text”	in	the
User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Dimensioning	Concepts	>	

Understand	Leader	Lines
	
	
	

A	default	leader	line	is	a	straight	line	with	an	arrowhead	that	refers	to	a	feature
in	a	drawing.	Usually,	a	leader's	function	is	to	connect	annotation	with	the
feature.	Annotation	in	this	case	means	paragraph	text,	blocks,	or	feature	control
frames.	Such	leader	lines	are	different	from	the	simple	leader	lines	AutoCAD
creates	automatically	for	radial,	diameter,	and	linear	dimensions	whose	text
won't	fit	between	extension	lines.

Leader	objects	are	associated	with	the	annotation,	so	when	the	annotation	is
edited,	the	leader	is	updated	accordingly.	You	can	copy	annotation	used
elsewhere	in	a	drawing	and	append	it	to	a	leader,	or	you	can	create	a	new
annotation.	You	can	also	create	a	leader	with	no	annotation	appended.

For	more	information	about	leaders,	see	“Overview	of	Creating	Text	and
Leaders”	in	the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Dimensioning	Concepts	>	

Understand	Associative	Dimensions
	
	
	

Associative	dimensions	automatically	adjust	their	locations,	orientations,	and
measurement	values	when	the	geometric	objects	associated	with	them	are
modified.	The	DIMASSOC	system	variable	controls	associative	dimensioning.
Set	DIMASSOC	to	2	to	turn	on	associative	dimensioning.

For	more	information	about	associative	dimensions,	see	“Associative
Dimensions”	in	the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Create	Dimensions
	
	
	

You	can	create	linear,	radial,	angular,	and	ordinate	dimensions.

When	creating	dimensions,	the	active	dimension	style	is	used.	Once	created,	you
can	modify	the	extension	line	origins,	the	dimension	text	location,	and	the
dimension	text	content	and	its	angle	relative	to	the	dimension	line.	You	can	also
change	the	dimension	style	used	by	the	dimension.

For	more	information	about	creating	dimensions,	see	“Change	Existing	Objects”
in	the	User's	Guide.

Topics	in	this	section

Create	Linear	Dimensions
Create	Radial	Dimensions
Create	Angular	Dimensions
Create	Ordinate	Dimensions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Dimensions	>	

Create	Linear	Dimensions
	
	
	

Linear	dimensions	can	be	aligned	or	rotated.	Aligned	dimensions	have	the
dimension	line	parallel	to	the	line	along	which	the	extension	line	origins	lie.
Rotated	dimensions	have	the	dimension	line	placed	at	an	angle	to	the	extension
line	origins.

To	create	a	linear	dimension,	use	the	AddDimAligned	or	AddDimRotated
method.	After	you	create	linear	dimensions,	you	can	modify	the	text,	the	angle
of	the	text,	or	the	angle	of	the	dimension	line.	In	the	following	illustrations,	the
extension	line	origins	are	designated	explicitly.	The	resulting	dimension	line
location	is	also	shown:

To	create	an	aligned	dimension,	use	the	AddDimAligned	method.	This	method
requires	three	coordinates	as	input:	the	origin	of	both	extension	lines	and	the	text
position.

To	create	a	rotated	dimension,	use	the	AddDimRotated	method.	This	method
requires	three	coordinates	and	the	angle	of	the	dimension	line	as	input.	The	three
coordinates	are	the	origin	of	both	extension	lines	and	the	text	position.	The	angle
must	be	provided	in	radians	and	represents	the	angle	of	rotation	for	the
dimension	line.

For	additional	information	about	creating	linear	dimensions,	see	“Create	Linear

Dimensions”	in	the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Dimensions	>	

Create	Radial	Dimensions
	
	
	

Radial	dimensions	measure	the	radii	and	diameters	of	arcs	and	circles.	To	create
a	radial	dimension,	use	the	AddDimRadial	method.

Different	types	of	radial	dimensions	are	created	depending	on	the	size	of	the
circle	or	arc,	the	TextPosition	property,	and	the	values	in	the	DIMUPT,
DIMTOFL,	DIMFIT,	DIMTIH,	DIMTOH,	DIMJUST,	and	DIMTAD	dimension
system	variables.	(System	variables	can	be	queried	or	set	using	the	GetVariable
and	SetVariable	methods.)

For	horizontal	dimension	text,	if	the	angle	of	the	dimension	line	is	more	than	15
degrees	from	horizontal,	and	is	outside	the	circle	or	arc,	AutoCAD	draws	a	hook
line,	also	called	a	landing	or	dogleg.	The	hook	line	is	one	arrowhead	long,	and	is
placed	next	to	the	dimension	text,	as	shown	in	the	following	illustrations:

To	create	radial	dimensions,	use	the	AddDimRadial	or	AddDimDiametric
method.	These	methods	require	three	values	as	input:	the	coordinate	of	the	circle
or	arc's	center,	the	coordinate	for	the	leader	attachment,	and	the	length	of	the
leader.

These	methods	use	the	LeaderLength	parameter	as	the	distance	from	the
ChordPoint	to	the	point	where	the	dimension	will	do	a	horizontal	hook	line	to
the	annotation	text	(or	stop	if	no	hook	line	is	necessary).

For	additional	information	about	creating	radial	dimensions,	see	“Create	Radial
Dimensions”	in	the	User's	Guide.

Create	a	radial	dimension

This	example	creates	a	radial	dimension	in	model	space.

Sub	Ch5_CreateRadialDimension()

				Dim	dimObj	As	AcadDimRadial

				Dim	center(0	To	2)	As	Double

				Dim	chordPoint(0	To	2)	As	Double

				Dim	leaderLen	As	Integer

				'	Define	the	dimension

				center(0)	=	0

				center(1)	=	0

				center(2)	=	0

				chordPoint(0)	=	5

				chordPoint(1)	=	5

				chordPoint(2)	=	0

				leaderLen	=	5

				'	Create	the	radial	dimension	in	model	space

				Set	dimObj	=	ThisDrawing.ModelSpace.	_

	AddDimRadial(center,	chordPoint,	leaderLen)

				ZoomAll

End	Sub

Note The	LeaderLength	setting	is	only	used	during	the	creation	of	the	dimension
(and	even	then	only	if	the	dimension	is	set	to	use	the	default	text	position	value).
After	the	dimension	is	closed	for	the	first	time,	changing	the	LeaderLength	value
will	not	affect	how	the	dimension	is	displayed,	but	the	new	setting	will	be	stored
and	will	show	up	in	DXF,	LISP,	and	ADSRX	applications.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Dimensions	>	

Create	Angular	Dimensions
	
	
	

Angular	dimensions	measure	the	angle	between	two	lines	or	three	points.	For
example,	you	can	use	them	to	measure	the	angle	between	two	radii	of	a	circle.
The	dimension	line	forms	an	arc.

To	create	an	angular	dimension,	use	the	AddDimAngular	method.	This	method
requires	three	values	as	input:	the	angle	vertex,	the	origins	of	the	extension	lines,
and	the	text	location.	The	AngleVertex	is	the	center	of	the	circle	or	arc,	or	the
common	vertex	between	the	two	lines	being	dimensioned.	The	origins	of	the
extension	lines	are	the	points	through	which	the	two	extension	lines	pass.

The	AngleVertex	can	be	the	same	as	one	of	the	origin	points.	If	you	need
extension	lines	they	will	be	added	automatically.

For	additional	information	about	creating	angular	dimensions,	see	“Create
Angular	Dimensions”	in	the	User's	Guide.

Create	an	angular	dimension

This	example	creates	an	angular	dimension	in	model	space.

Sub	Ch5_CreateAngularDimension()

				Dim	dimObj	As	AcadDimAngular

				Dim	angVert(0	To	2)	As	Double

				Dim	FirstPoint(0	To	2)	As	Double

				Dim	SecondPoint(0	To	2)	As	Double

				Dim	TextPoint(0	To	2)	As	Double

				'	Define	the	dimension

				angVert(0)	=	0

				angVert(1)	=	5

				angVert(2)	=	0

				FirstPoint(0)	=	1

				FirstPoint(1)	=	7

				FirstPoint(2)	=	0

				SecondPoint(0)	=	1

				SecondPoint(1)	=	3

				SecondPoint(2)	=	0

				TextPoint(0)	=	3

				TextPoint(1)	=	5

				TextPoint(2)	=	0

				'	Create	the	angular	dimension	in	model	space

				Set	dimObj	=	ThisDrawing.ModelSpace.	_

					AddDimAngular(angVert,	FirstPoint,	SecondPoint,	TextPoint)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Dimensions	>	

Create	Ordinate	Dimensions
	
	
	

Ordinate,	or	datum,	dimensions	measure	the	perpendicular	distance	from	an
origin	point,	called	the	datum,	to	a	dimensioned	feature,	such	as	a	hole	in	a	part.
These	dimensions	prevent	escalating	errors	by	maintaining	accurate	offsets	of
the	features	from	the	datum.

Ordinate	dimensions	consist	of	an	X	or	Y	ordinate	with	a	leader	line.	X-datum
ordinate	dimensions	measure	the	distance	of	a	feature	from	the	datum	along	the
X	axis.	Y-datum	ordinate	dimensions	measure	the	same	distance	along	the	Y	axis.
AutoCAD	uses	the	origin	of	the	current	user	coordinate	system	(UCS)	to
determine	the	measured	coordinates.	The	absolute	value	of	the	coordinate	is
used.

The	text	is	aligned	with	the	ordinate	leader	line	regardless	of	the	text	orientation
defined	by	the	current	dimension	style.	You	can	accept	the	default	text	or	supply
your	own.

To	create	an	ordinate	dimension,	use	the	AddDimOrdinate	method.	This	method
requires	three	values	as	input:	a	coordinate	specifying	the	point	to	be
dimensioned	(A),	a	coordinate	specifying	the	end	of	the	leader	(B),	and	a
Boolean	flag	specifying	whether	the	dimension	is	an	X-datum	ordinate
dimension	or	a	Y-datum	ordinate	dimension.	If	you	enter	TRUE	for	the	Boolean
flag,	the	method	will	create	an	X-datum	ordinate	dimension.	If	you	enter	FALSE,
it	will	create	a	Y-datum	ordinate	dimension.

For	additional	information	about	creating	ordinate	dimensions,	see	“Create
Ordinate	Dimensions”	in	the	User's	Guide.

Create	an	ordinate	dimension

This	example	creates	an	ordinate	dimension	in	model	space.

Sub	Ch5_CreatingOrdinateDimension()

				Dim	dimObj	As	AcadDimOrdinate

				Dim	definingPoint(0	To	2)	As	Double

				Dim	leaderEndPoint(0	To	2)	As	Double

				Dim	useXAxis	As	Long

				'	Define	the	dimension

				definingPoint(0)	=	5

				definingPoint(1)	=	5

				definingPoint(2)	=	0

				leaderEndPoint(0)	=	10

				leaderEndPoint(1)	=	5

				leaderEndPoint(2)	=	0

				useXAxis	=	5

				'	Create	an	ordinate	dimension	in	model	space

				Set	dimObj	=	ThisDrawing.ModelSpace.	_

	AddDimOrdinate(definingPoint,	_

	leaderEndPoint,	useXAxis)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Edit	Dimensions
	
	
	

As	with	other	graphical	objects	in	AutoCAD,	you	can	edit	dimensions	using	the
standard	methods	and	properties	provided	for	the	object.

The	following	properties	are	available	for	most	dimension	objects:

Rotation

Specifies	the	rotation	angle	in	radians	for	the	dimension	line.

StyleName

Specifies	the	name	of	the	dimension	style.

TextOverride

Specifies	the	text	string	for	the	dimension.

TextPosition

Specifies	the	dimension	text	position.

TextRotation

Specifies	the	rotation	angle	of	the	dimension	text.

Measurement

Specifies	the	actual	measurement	for	the	dimension.

In	addition,	certain	dimension	objects	provide	properties	for	editing	the
extension	line	origins	and	leader	length.

The	following	methods	are	included	for	dimension	object	editing:

ArrayPolar

Creates	a	polar	array.

ArrayRectangular

Creates	a	rectangular	array.

Copy

Copies	the	dimension	object.

Erase

Erases	the	dimension	object.

Mirror

Mirrors	the	dimension	object.

Move

Moves	the	dimension	object.

Rotate

Rotates	the	dimension	object.

ScaleEntity

Scales	the	dimension	object.

For	more	information	about	editing	dimensions,	see	“Modify	Existing
Dimensions”	in	the	User's	Guide.

Topics	in	this	section

Override	Dimension	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Edit	Dimensions	>	

Override	Dimension	Text
	
	
	

The	dimension	value	that	is	displayed	can	be	replaced	using	the	TextOverride
property.	Using	this	property	you	can	completely	replace	the	displayed	value	of
the	dimension,	or	you	can	append	text	to	the	value.

Modify	dimension	text

This	example	appends	some	text	to	the	value	so	that	both	the	string	and	the
dimension	value	are	displayed.

Sub	Ch5_OverrideDimensionText()

				Dim	dimObj	As	AcadDimAligned

				Dim	point1(0	To	2)	As	Double

				Dim	point2(0	To	2)	As	Double

				Dim	location(0	To	2)	As	Double

				'	Define	the	dimension

				point1(0)	=	5#:	point1(1)	=	3#:	point1(2)	=	0#

				point2(0)	=	10#:	point2(1)	=	3#:	point2(2)	=	0#

				location(0)	=	7.5:	location(1)	=	5#:	location(2)	=	0#

				'	Create	an	aligned	dimension	object	in	model	space

				Set	dimObj	=	ThisDrawing.ModelSpace.	_

	AddDimAligned(point1,	point2,	location)

				'	Change	the	text	string	for	the	dimension

				dimObj.TextOverride	=	"The	value	is	<>"

				dimObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Work	with	Dimension	Styles
	
	
	

A	named	dimension	style	is	a	group	of	settings	that	determines	the	appearance	of
the	dimension.	Using	named	dimension	styles,	you	can	establish	and	enforce
drafting	standards	for	drawings.

All	dimensions	are	created	using	the	active	dimension	style.	If	you	don't	define
or	apply	a	style	before	creating	dimensions,	AutoCAD	applies	the	default	style,
STANDARD.	To	set	the	active	dimension	style,	use	the	ActiveDimStyle
property.

To	set	up	a	parent	dimension	style,	you	begin	by	naming	and	saving	a	style.	The
new	style	is	based	on	the	current	style	and	includes	all	subsequent	changes	to	the
layout	of	the	dimension	parts,	the	positioning	of	text,	and	the	appearance	of
annotation.	Annotation	in	this	case	means	primary	and	alternate	units,
tolerances,	and	text.

For	more	information	about	dimension	styles,	see	“Use	Dimension	Styles”	in	the
User's	Guide.

Topics	in	this	section

Create,	Modify,	and	Copy	Dimension	Styles
Override	the	Dimension	Style

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Work	with	Dimension	Styles	>	

Create,	Modify,	and	Copy	Dimension	Styles
	
	
	

To	create	a	new	dimension	style,	use	the	Add	method.	This	method	requires	as
input	the	name	of	the	new	dimension	style.

AutoCAD	ActiveX	Automation	allows	you	to	add	new	dimension	styles,	and	to
change	the	active	dimension	style.	You	can	also	change	the	dimension	style
associated	with	a	given	dimension	through	the	StyleName	property.

You	can	also	copy	an	existing	style	or	set	of	overrides.	Use	the	CopyFrom
method	to	copy	a	dimension	style	from	a	source	object	to	a	new	dimension	style.
The	source	object	can	be	another	DimStyle	object,	a	dimension,	Tolerance,	or
Leader	object,	or	even	a	Document	object.	If	you	copy	the	style	settings	from
another	dimension	style,	the	style	is	duplicated	exactly.	If	you	copy	the	style
settings	from	a	dimension,	Tolerance,	or	Leader	object,	the	current	settings,
including	any	object	overrides,	are	copied	to	the	new	style.	If	you	copy	the	style
of	a	Document	object,	the	active	dimension	style,	plus	any	drawing	overrides,	is
copied	to	the	new	style.

Copy	dimension	styles	and	overrides

This	example	creates	three	new	dimension	styles	and	copies	the	current	settings
for	the	document,	a	given	dimension	style,	and	a	given	dimension	to	each	new
dimension	style	respectively.	By	following	the	appropriate	setup	before	running
this	example,	you	will	find	that	different	dimension	styles	have	been	created.

1.	 Create	a	new	drawing	and	make	it	the	active	drawing.

2.	 Create	a	linear	dimension	in	the	new	drawing.	This	dimension	should	be
the	only	object	in	the	drawing.

3.	 Change	the	color	of	the	dimension	line	to	yellow.

4.	 Change	the	DIMCLRD	system	variable	to	5	(blue).

5.	 Run	the	following	example:

Sub	Ch5_CopyDimStyles()

				Dim	newStyle1	As	AcadDimStyle

				Dim	newStyle2	As	AcadDimStyle

				Dim	newStyle3	As	AcadDimStyle

				Set	newStyle1	=	ThisDrawing.DimStyles.Add	_

	("Style	1	copied	from	a	dim")

				Call	newStyle1.CopyFrom(ThisDrawing.ModelSpace(0))

				Set	newStyle2	=	ThisDrawing.DimStyles.Add	_

	("Style	2	copied	from	Style	1")

				Call	newStyle2.CopyFrom(ThisDrawing.DimStyles.Item	_

	("Style	1	copied	from	a	dim"))

				Set	newStyle2	=	ThisDrawing.DimStyles.Add	_

	("Style	3	copied	from	the	running	drawing	values")

				Call	newStyle2.CopyFrom(ThisDrawing)

End	Sub

Open	the	DIMSTYLE	dialog	box.	You	should	now	have	three	dimension	styles
listed.	Style	1	should	have	a	yellow	dimension	line.	Style	2	should	be	the	same
as	Style	1.	Style	3	should	have	a	blue	dimension	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Work	with	Dimension	Styles	>	

Override	the	Dimension	Style
	
	
	

Each	dimension	has	the	capability	of	overriding	settings	in	the	dimension	style
for	that	dimension.	The	following	properties	are	available	for	most	dimension
objects:

AltRoundDistance

Specifies	the	rounding	of	alternate	units.

AngleFormat

Specifies	the	unit	format	for	angular	dimensions.

Arrowhead1Block,	Arrowhead2Block

Specifies	the	block	to	use	as	the	custom	arrowhead	for	the	dimension	line.

Arrowhead1Type,	Arrowhead2Type

Specifies	the	type	of	arrowhead	for	the	dimension	line.

ArrowheadSize

Specifies	the	size	of	dimension	line	arrowheads,	leader	line	arrowheads,	and
hook	lines.

CenterMarkSize

Specifies	the	size	of	the	center	mark	for	radial	and	diameter	dimensions.

CenterType

Specifies	the	type	of	center	mark	for	radial	and	diameter	dimensions.

DecimalSeparator

Specifies	the	character	to	be	used	as	the	decimal	separator	in	decimal
dimension	and	tolerance	values.

DimensionLineColor

Specifies	the	color	of	the	dimension	line	for	a	dimension,	leader,	or	tolerance
object.

DimensionLineWeight

Specifies	the	lineweight	for	the	dimension	lines.

DimLine1Suppress,	DimLine2Suppress

Specifies	the	suppression	of	the	dimension	lines.

DimLineInside

Specifies	the	display	of	dimension	lines	inside	the	extension	lines	only.

ExtensionLineColor

Specifies	the	color	for	dimension	extension	lines.

ExtensionLineExtend

Specifies	the	distance	the	extension	line	extends	beyond	the	dimension	line.

ExtensionLineOffset

Specifies	the	distance	the	extension	lines	are	offset	from	the	origin	points.

ExtensionLineWeight

Specifies	the	lineweight	for	the	extension	lines.

ExtLine1EndPoint,	ExtLine2EndPoint

Specifies	the	endpoint	of	extension	lines.

ExtLine1StartPoint,	ExtLine2StartPoint

Specifies	the	start	point	of	extension	lines.

ExtLine1Suppress,	ExtLine2Suppress

Specifies	the	suppression	of	extension	lines.

Fit

Specifies	the	placement	of	text	and	arrowheads	inside	or	outside	extension
lines.

ForceLineInside

Specifies	if	a	dimension	line	is	drawn	between	the	extension	lines	even	when
the	text	is	placed	outside	the	extension	lines.

FractionFormat

Specifies	the	format	of	fractional	values	in	dimensions	and	tolerances.

HorizontalTextPosition

Specifies	the	horizontal	justification	for	dimension	text.

LinearScaleFactor

Specifies	a	global	scale	factor	for	linear	dimensioning	measurements.

PrimaryUnitsPrecision

Specifies	the	number	of	decimal	places	displayed	for	the	primary	units	of	a
dimension	or	tolerance.

SuppressLeadingZeros,	SuppressTrailingZeros

Specifies	the	suppression	of	leading	and	trailing	zeros	in	dimension	values.

SuppressZeroFeet,	SuppressZeroInches

Specifies	the	suppression	of	a	zero	foot	and	zero	inch	measurement	in
dimension	values.

TextColor

Specifies	the	color	of	the	text	for	dimension	and	tolerance	objects.

TextGap

Specifies	the	distance	between	the	dimension	text	and	the	dimension	line
when	you	break	the	dimension	line	to	accommodate	dimension	text.

TextHeight

Specifies	the	height	for	the	dimension	or	tolerance	text.

TextInside

Specifies	if	the	dimension	text	is	to	be	drawn	inside	the	extension	lines.

TextInsideAlign

Specifies	the	position	of	dimension	text	inside	the	extension	lines	for	all

dimension	types	except	ordinate.

TextMovement

Specifies	how	dimension	text	is	drawn	when	text	is	moved.

TextOutsideAlign

Specifies	the	position	of	dimension	text	outside	the	extension	lines	for	all
dimension	types	except	ordinate.

TextPosition

Specifies	the	dimension	text	position.

TextPrecision

Specifies	the	precision	of	angular	dimension	text.

TextPrefix

Specifies	the	dimension	value	prefix.

TextRotation

Specifies	the	rotation	angle	of	the	dimension	text.

TextSuffix

Specifies	the	dimension	value	suffix.

ToleranceDisplay

Specifies	if	tolerances	are	displayed	with	the	dimension	text.

ToleranceHeightScale

Specifies	a	scale	factor	for	the	text	height	of	tolerance	values	relative	to	the
dimension	text	height.

ToleranceJustification

Specifies	the	vertical	justification	of	tolerance	values	relative	to	the	nominal
dimension	text.

ToleranceLowerLimit

Specifies	the	minimum	tolerance	limit	for	dimension	text.

TolerancePrecision

Specifies	the	precision	of	tolerance	values	in	primary	dimensions.

ToleranceSuppressLeadingZeros

Specifies	the	suppression	of	leading	zeros	in	tolerance	values.

ToleranceSuppressTrailingZeros

Specifies	the	suppression	of	trailing	zeros	in	dimension	values.

ToleranceUpperLimit

Specifies	the	maximum	tolerance	limit	for	dimension	text.

UnitsFormat

Specifies	the	unit	format	for	all	dimensions	except	angular.

VerticalTextPosition

Specifies	the	vertical	position	of	text	in	relation	to	the	dimension	line.

Enter	a	user-defined	suffix	for	an	aligned	dimension

This	example	creates	an	aligned	dimension	in	model	space	and	uses	the
TextSuffix	property	to	allow	the	user	to	change	the	text	suffix	for	the	dimension.

Sub	Ch5_AddTextSuffix()

				Dim	dimObj	As	AcadDimAligned

				Dim	point1(0	To	2)	As	Double

				Dim	point2(0	To	2)	As	Double

				Dim	location(0	To	2)	As	Double

				Dim	suffix	As	String

				'	Define	the	dimension

				point1(0)	=	0:	point1(1)	=	5:	point1(2)	=	0

				point2(0)	=	5:	point2(1)	=	5:	point2(2)	=	0

				location(0)	=	5:	location(1)	=	7:	location(2)	=	0

				'	Create	an	aligned	dimension	object	in	model	space

				Set	dimObj	=	ThisDrawing.ModelSpace.	_

	AddDimAligned(point1,	point2,	location)

				ThisDrawing.Application.ZoomAll

				'	Allow	the	user	to	change	the	text	suffix	for	the	dimension

				suffix	=	InputBox("Enter	a	new	text	suffix	for	the	dimension"	_

	,	"Set	Dimension	Suffix",	":SUFFIX")

				'	Apply	the	change	to	the	dimension

				dimObj.TextSuffix	=	suffix

				ThisDrawing.Regen	acAllViewports

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Dimension	in	Model	Space	and	Paper	Space
	
	
	

You	can	draw	dimensions	in	both	paper	space	and	model	space.	However,	if	the
geometry	you're	dimensioning	is	in	model	space,	it's	better	to	draw	dimensions
in	model	space,	because	AutoCAD	places	the	definition	points	in	the	space
where	the	geometry	is	drawn.

If	you	draw	a	dimension	in	paper	space	that	describes	geometry	in	your	model,
the	paper	space	dimension	does	not	change	when	you	use	editing	commands	or
change	the	magnification	of	the	display	in	the	model	space	viewport.	The
location	of	the	paper	space	dimensions	also	stays	the	same	when	you	change	a
view	from	paper	space	to	model	space.

If	you're	dimensioning	in	paper	space	and	the	global	scale	factor	for	linear
dimensioning	(the	DIMLFAC	system	variable)	is	set	at	less	than	0,	the	distance
measured	is	multiplied	by	the	absolute	value	of	DIMLFAC.	If	you're
dimensioning	in	model	space,	the	value	of	1.0	is	used	even	if	DIMLFAC	is	less
than	0.	AutoCAD	computes	a	value	for	DIMLFAC	if	you	change	the	variable	at
the	Dim	prompt	and	select	the	Viewport	option.	AutoCAD	calculates	the	scaling
of	model	space	to	paper	space	and	assigns	the	negative	of	this	value	to
DIMLFAC.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Create	Leaders	and	Annotation
	
	
	

A	leader	is	a	line	that	connects	some	annotation	to	a	feature	in	a	drawing.
Leaders	and	their	annotation	are	associative,	which	means	if	you	modify	the
annotation,	the	leader	updates	accordingly.	Don't	confuse	the	Leader	object	with
the	leader	line	AutoCAD	automatically	generates	as	part	of	a	dimension	line.

For	more	information	about	leaders,	see	“Create	Text	with	Leaders”	in	the	User's
Guide.

Topics	in	this	section

Create	Leader	Lines
Add	the	Annotation	to	a	Leader	Line
Leader	Associativity
Edit	Leader	Associativity
Edit	Leaders

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Leaders	and	Annotation	>	

Create	Leader	Lines
	
	
	

You	can	create	a	leader	line	from	any	point	or	feature	in	a	drawing	and	control
its	appearance	as	you	draw	it.	Leaders	can	be	straight	line	segments	or	smooth
spline	curves.	Leader	color	is	controlled	by	the	current	dimension	line	color.
Leader	scale	is	controlled	by	the	overall	dimension	scale	set	in	the	active
dimension	style.	The	type	and	size	of	the	arrowhead,	if	one	is	present,	is
controlled	by	the	first	arrowhead	defined	in	the	active	style.

A	small	line	known	as	a	hook	line	usually	connects	the	annotation	to	the	leader.
Hook	lines	appear	with	mtext	and	feature	control	frames	if	the	last	leader	line
segment	is	at	an	angle	greater	than	15	degrees	from	horizontal.	The	hook	line	is
the	length	of	a	single	arrowhead.	If	the	leader	has	no	annotation,	it	has	no	hook
line.

To	create	a	leader	line,	use	the	AddLeader	method.	This	method	requires	three
values	as	input:	the	array	of	coordinates	specifying	where	to	create	the	leader,
the	annotation	object	(or	NULL	if	the	leader	is	to	have	no	annotation),	and	the
type	of	leader	to	create.	The	type	of	leader	specifies	whether	the	leader	is	to	be	a
straight	line	or	a	smooth	spline	curve.	It	also	determines	whether	or	not	the
leader	is	to	have	arrows.	Use	one	of	the	following	constants	to	specify	the	type
of	leader:	acLineNoArrow,	acLineWithArrow,	acSplineNoArrow,	or
acSplineWithArrow.	These	constants	are	mutually	exclusive.

Create	a	leader	line

This	example	creates	a	leader	line	in	model	space.	There	is	no	annotation
associated	with	the	leader	line.

Sub	Ch5_CreateLeader()

				Dim	leaderObj	As	AcadLeader

				Dim	points(0	To	8)	As	Double

				Dim	leaderType	As	Integer

				Dim	annotationObject	As	AcadObject

				points(0)	=	0:	points(1)	=	0:	points(2)	=	0

				points(3)	=	4:	points(4)	=	4:	points(5)	=	0

				points(6)	=	4:	points(7)	=	5:	points(8)	=	0

				leaderType	=	acLineWithArrow

				Set	annotationObject	=	Nothing

				'	Create	the	leader	object	in	model	space

				Set	leaderObj	=	ThisDrawing.ModelSpace.	_

										AddLeader(points,	annotationObject,	leaderType)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Leaders	and	Annotation	>	

Add	the	Annotation	to	a	Leader	Line
	
	
	

A	leader	annotation	can	be	a	Tolerance,	MText,	or	BlockRef	object.	You	can
create	a	new	annotation,	or	you	can	append	a	copy	of	an	existing	annotation.
Annotation	is	added	to	the	leader	only	when	it	is	created.

To	add	an	annotation	when	a	leader	is	being	created,	input	the	annotation	to	the
AddLeader	method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Leaders	and	Annotation	>	

Leader	Associativity
	
	
	

Leaders	are	associated	with	their	annotation	so	that	when	the	annotation	moves,
the	endpoint	of	the	leader	moves	with	it.	As	you	move	text	and	feature	control
frame	annotation,	the	final	leader	line	segment	alternates	between	attaching	to
the	left	side	and	to	the	right	side	of	the	annotation	according	to	the	relation	of	the
annotation	to	the	penultimate	(second	to	last)	point	of	the	leader.	If	the	midpoint
of	the	annotation	is	to	the	right	of	the	penultimate	leader	point,	then	the	leader
attaches	to	the	right;	otherwise,	it	attaches	to	the	left.

Removing	either	object	from	the	drawing	using	either	the	Erase,	Add	(to	add	a
block),	or	WBlock	method	will	break	associativity.	If	the	leader	and	its
annotation	are	copied	together	in	a	single	operation,	the	new	copy	is	associative.
If	they	are	copied	separately,	they	will	not	be	associative.	If	associativity	is
broken	for	any	reason,	for	example,	by	copying	only	the	Leader	object	or	by
erasing	the	annotation,	the	hook	line	will	be	removed	from	the	leader.

Associate	a	leader	to	the	annotation

This	example	creates	an	MText	object.	A	leader	line	is	then	created	using	the
MText	object	as	its	annotation.

Sub	Ch5_AddAnnotation()

				Dim	leaderObj	As	AcadLeader

				Dim	mtextObj	As	AcadMText

				Dim	points(0	To	8)	As	Double

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	width	As	Double

				Dim	leaderType	As	Integer

				Dim	annotationObject	As	Object

				Dim	textString	As	String,	msg	As	String

				'	Create	the	MText	object	in	model	space

				textString	=	"Hello,	World."

				insertionPoint(0)	=	5

				insertionPoint(1)	=	5

				insertionPoint(2)	=	0

				width	=	2

				Set	mtextObj	=	ThisDrawing.ModelSpace.	_

	AddMText(insertionPoint,	width,	textString)

				'	Data	for	Leader

				points(0)	=	0:	points(1)	=	0:	points(2)	=	0

				points(3)	=	4:	points(4)	=	4:	points(5)	=	0

				points(6)	=	4:	points(7)	=	5:	points(8)	=	0

				leaderType	=	acLineWithArrow

				'	Create	the	Leader	object	in	model	space	and	associate

				'	the	MText	object	with	the	leader

				Set	annotationObject	=	mtextObj

				Set	leaderObj	=	ThisDrawing.ModelSpace.	_

	AddLeader(points,	annotationObject,	leaderType)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Leaders	and	Annotation	>	

Edit	Leader	Associativity
	
	
	

Except	for	the	associativity	relation	between	the	leader	and	annotation,	the
leader	and	its	annotation	are	entirely	separate	objects	in	your	drawing.	Editing	of
the	leader	does	not	affect	the	annotation,	and	editing	of	the	annotation	does	not
affect	the	leader.

Although	text	annotation	is	created	using	the	DIMCLRT,	DIMTXT,	and
DIMTXSTY	system	variables	to	define	its	color,	height,	and	style,	it	cannot	be
changed	by	these	system	variables	because	it	is	not	a	true	dimension	object.	Text
annotation	must	be	edited	the	same	way	as	any	other	Mtext	object.

Use	the	Evaluate	method	to	evaluate	the	relation	of	the	leader	to	its	associated
annotation.	This	method	will	update	the	leader	geometry	if	necessary.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Create	Leaders	and	Annotation	>	

Edit	Leaders
	
	
	

Any	modifications	to	leader	annotation	that	change	its	position	affect	the
position	of	the	endpoint	of	the	associated	leader.	Also,	rotating	the	annotation
causes	the	leader	hook	line	(if	any)	to	rotate.

To	resize	a	leader,	you	can	scale	it.	Scaling	updates	only	the	scale	of	the	selected
object.	For	example,	if	you	scale	the	leader,	the	annotation	stays	in	the	same
position	relative	to	the	leader	endpoint	but	isn't	scaled.

In	addition	to	scaling,	you	can	also	move,	mirror,	and	rotate	a	leader.	Use	the
ScaleEntity,	Move,	Mirror,	and	Rotate	methods	to	edit	the	leader.	You	can	also
change	the	text	style	associated	with	the	annotation	by	using	the	StyleName
property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	

Use	Geometric	Tolerances
	
	
	

Geometric	tolerancing	shows	deviations	of	form,	profile,	orientation,	location,
and	runout	of	a	feature.	You	add	geometric	tolerances	in	feature	control	frames.
These	frames	contain	all	the	tolerance	information	for	a	single	dimension.

For	more	information	about	using	feature	control	frames	and	working	with
geometric	tolerances,	see	“Add	Geometric	Tolerances”	in	the	User's	Guide.

Topics	in	this	section

Create	Geometric	Tolerances
Edit	Tolerances

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Use	Geometric	Tolerances	>	

Create	Geometric	Tolerances
	
	
	

To	create	a	geometric	tolerance,	use	the	AddTolerance	method.	This	method
requires	three	values	as	input:	the	text	string	comprising	the	tolerance	symbol,
the	location	in	the	drawing	to	place	the	tolerance,	and	a	directional	vector
specifying	the	direction	of	the	tolerance.	You	can	also	copy,	move,	erase,	scale,
and	rotate	tolerances.

Create	a	geometric	tolerance

This	example	creates	a	simple	geometric	tolerance	in	model	space.

Sub	Ch5_CreateTolerance()

				Dim	toleranceObj	As	AcadTolerance

				Dim	textString	As	String

				Dim	insertionPoint(0	To	2)	As	Double

				Dim	direction(0	To	2)	As	Double

				'	Define	the	tolerance	object

				textString	=	"Here	is	the	Feature	Control	Frame"

				insertionPoint(0)	=	5

				insertionPoint(1)	=	5

				insertionPoint(2)	=	0

				direction(0)	=	1

				direction(1)	=	1

				direction(2)	=	0

				'	Create	the	tolerance	object	in	model	space

				Set	toleranceObj	=	ThisDrawing.ModelSpace.	_

								AddTolerance(textString,	insertionPoint,	direction)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Dimensions	and	Tolerances	>	Use	Geometric	Tolerances	>	

Edit	Tolerances
	
	
	

Tolerances	are	influenced	by	several	system	variables:	DIMCLRD	controls	the
color	of	the	feature	control	frame;	DIMCLRT	controls	the	color	of	the	tolerance
text;	DIMGAP	controls	the	gap	between	the	feature	control	frame	and	the	text;
DIMTXT	controls	the	size	of	the	tolerance	text;	and	DIMTXTSTY	controls	the
style	of	the	tolerance	text.	Use	the	SetVariable	method	to	set	the	values	of
system	variables.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>MenuGroups	collection:<$nopage>menu	objects:
<$startrange>InsertInMenuBar	method:example	code,	separators:adding	to
menus,	PopupMenuItem	object:AddSeparator	method,	AddSeparator	method,
using	Type	property,	Label	property:accelerator	key,	PopupMenuItem	object:
accelerator	keys,	assigning,	submenus:adding,	submenus:positioning,
PopupMenu	object:creating	submenus,	menus:creating	submenus,
<$nopage>cascading	menus.	<$endrange>InsertInMenuBar	method:example
code,	menus:deleting,	PopupMenu	object:deleting	menu	items,	PopupMenuItem
object:deleting	menu	items,	Delete	method:example	code,	PopupMenuItem
object:Tag	property,	PopupMenuItem	object:Label	property,	PopupMenuItem
object:Caption	property,	PopupMenuItem	object:Macro	property,
PopupMenuItem	object:HelpString	property,	PopupMenuItem	object:Enable
property,	PopupMenuItem	object:Check	property,	menus:enabling,
menus:disabling,	menus:checking,	menus:positioning,	PopupMenuItem
object:Index	property,	PopupMenuItem	object:Type	property,	PopupMenuItem
object:Submenu	property,	PopupMenuItem	object:Parent	property,
PopupMenuItem	object:Parent	property,	menus:type	of	menu	item,
menus:returning	submenus,	menus:assigning	menu	items,	menus:menu	macros,
special	characters,	InsertInMenuBar	method:example	code,	Toolbars
collection:Add	method,	Toolbars	collection:Name	property,	Name
property:toolbars,	Toolbar	object:	naming,	Add	method:toolbars,	example	code,
Toolbar	object:example	code,	AddToolbarButton	method,	Toolbar
object:AddToolbarButton	method,	ToolbarItem	object,	ToolbarItem
object:positioning	toolbar	buttons,	ToolbarItem	object:Name	property,	Name
property:ToolbarItem	object,	ToolbarItem	object:HelpString	property,
HelpString	property:ToolbarItem	object,	ToolbarItem	object:Macro	property,
Macro	property:ToolbarItem	object,	ToolbarItem	object:creating	flyout	button,
flyout	button,	Toolbar	object:example	code,	AddToolbarButton	method:example
code,	ToolbarItem	object:example	code,	Toolbar	object:AddSeparator	method,
Toolbar	object:using	Type	property,	separators:adding	to	toolbars,	SetBitmaps
method,	ToolbarItem	object:SetBitmaps	method,	GetBitmaps	method,
ToolbarItem	object:GetBitmaps,	SetBitmaps	method:SmallIconName	parameter,
SetBitmaps	method:LargeIconName	parameter,	Type	property:example	code,
GetBitmaps	method:example	code,	ToolbarItem	object:example	code,	flyout
toolbars:AddToolbarButton	method,	AddToolbarButton	method:creating	flyout
toolbars,	Toolbar	object:flyout	toolbars,	creating,	AddToolbarButton
method:example	code,	Toolbar	object:example	code,	ToolbarItem
object:example	code,	flyout	toolbars:example	code,	AttachToolbarToFlyout
method,	example	code,	Visible	property:example	code,	Toolbar	object:Float

method,	Float	method:floating	toolbars,	Toolbar	object:Dock	method,	Dock
method:docking	toolbars,	Toolbar	object:Docked	property,	Dock
method:example	code,	Toolbar	object:example	code,	ToolbarItem
object:deleting,	ToolbarItem	object:Tag	property,	Tag	property:ToolbarItem
object,	ToolbarItem	object:Name	property,	Name	property:ToolbarItem	object,
ToolbarItem	object:Macro	property,	Macro	property:ToolbarItem	object,
ToolbarItem	object:HelpString	property,	HelpString	property:ToolbarItem
object,	ToolbarItem	object:Index	property,	Index	property:ToolbarItem	object,
ToolbarItem	object:Type	property,	Type	property:ToolbarItem	object,
ToolbarItem	object:Flyout	property,	Flyout	property:ToolbarItem	object,
ToolbarItem	object:Parent	property,	Parent	property:ToolbarItem	object,
PopupMenuItem	object:writing	macros,	ToolbarItem	object:writing	macros,
macros:in	menus,	macros:in	toolbars,	macros:guidelines	for	writing,
PICKAUTO	system	variable,	PICKADD	system	variable,	macros:special
characters	(table),	menu	macros:special	characters	(table),	toolbar	macros:special
characters	(table),	macros:terminating,	terminating	macros:code	examples,
macros:user	input,	user	input	pausing	macros,	LAYER	command:macros,
macros:LAYER	command,	SELECT	command:macros,	macros:SELECT
command,	backslash	(\\):in	macros,	macros:backslash	character,	macros:delays
(list),	pausing	macros:delays	(list),	macros:canceling	commands,
macros:command	handling,	macros:use	of	repetition,	macros:object	selection,
single,	Single	object	selection	in	macros,	ERASE	command:macros,
macros:ERASE	command,	ToolbarItem	object:status-line	Help	message,
PopupMenuItem	object:status-line	Help	message,	status-line	Help,	for	menus
and	toolbars,	Help,	status	line:for	menus	and	toolbars,	InsertInMenuBar
method:example	code,	cursor	menus:Shortcut	menu	property,	cursor
menus:adding	new	items,	<$nopage>right-click	menu.

	

Customize	Toolbars	and	Menus
	
	
	

AutoCAD	ActiveX	Automation	gives	you	extensive	control	over	the
customization	of	menus	and	toolbars	in	the	current	AutoCAD	session.

Using	AutoCAD	ActiveX/VBA,	you	can	edit	or	augment	the	existing	menu

structure,	or	you	can	completely	replace	the	current	menu	structure.	You	can	also
manipulate	toolbars	and	right-click	menus.

Menu	customization	can	improve	productivity	by	exposing	application-specific
tasks	or	by	condensing	tasks	with	multiple	steps	into	a	single	menu	selection.

For	information	about	customizing	menus	and	toolbars	in	addition	to	the
information	in	this	section,	see	the	Customization	Guide.

Topics	in	this	section

Understand	the	MenuBar	and	MenuGroups	Collections
Load	Menu	Groups
Change	the	Menu	Bar
Create	and	Edit	Pull-Down	and	Shortcut	Menus
Create	and	Edit	Toolbars
Create	Macros
Create	Status-Line	Help	for	Menu	Items	and	Toolbar	Items
Add	Entries	to	the	Right-Click	Menu

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	

Understand	the	MenuBar	and	MenuGroups	Collections
	
	
	

AutoCAD®	ActiveX®	provides	several	menu-related	objects.	The	two	most
important	are	the	MenuBar	collection	and	the	MenuGroups	collection.	The
MenuBar	collection	contains	all	the	menus	that	are	displayed	in	the	AutoCAD
menu	bar.

The	MenuGroups	collection	contains	the	menu	groups	that	are	loaded	in	the
current	AutoCAD	session.	These	menu	groups	contain	all	the	menus	that	are
available	to	the	AutoCAD	session,	some	or	all	of	which	may	be	displayed	on	the
AutoCAD	menu	bar.	In	addition	to	the	menus,	the	menu	groups	also	contain	all
the	toolbars	that	are	available	to	the	current	AutoCAD	session.	Menu	groups
may	also	represent	tile	menus,	screen	menus,	or	tablet	menus.

Each	menu	group	contains	a	PopupMenus	collection	and	a	Toolbars	collection.
The	PopupMenus	collection	contains	all	the	menus	within	the	menu	group.
Likewise,	the	Toolbars	collection	contains	all	the	toolbars	within	the	menu
group.

Each	PopupMenu	is	actually	a	collection	that	contains	an	individual	object	for
each	menu	item	that	appears	on	that	menu.	Likewise,	each	Toolbar	is	also	a
collection	that	contains	an	individual	object	for	each	toolbar	item	that	appears	on
that	toolbar.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>MenuGroups	collection:

Customize	Toolbars	and	Menus	>	

Load	Menu	Groups
	
	
	

Menu	groups	are	loaded	into	AutoCAD	using	the	Load	method.	For	example,
the	following	code	loads	the	customization	file	acad.cui:

ThisDrawing.Application.MenuGroups.Load	"acad.cui"

When	using	the	Load	method,	set	the	BaseMenu	parameter	to	TRUE	to	load	a
new	menu	group	to	the	menu	bar.	This	will	load	the	menu	group	as	a	base	menu
in	the	same	manner	as	the	MENU	command	in	AutoCAD.

To	load	a	new	menu	group	as	a	partial	menu,	omit	the	BaseMenu	parameter.
This	will	load	the	menu	group	in	the	same	manner	as	the	MENULOAD
command	in	AutoCAD.	Once	loaded	into	the	MenuGroups	collection,	partial
menus	can	be	inserted	into	the	menu	bar	by	using	the	InsertMenuInMenuBar
method	or	the	InsertInMenuBar	method.

Once	a	menu	group	has	been	loaded,	all	the	menus	and	toolbars	defined	by	that
menu	group	are	available	for	use.	You	can

Add	new	menus	to	the	menu	bar

Remove	menus	from	the	menu	bar

Rearrange	menus	on	the	menu	bar

Add	new	items	to	an	existing	menu	or	toolbar

Remove	items	from	an	existing	menu	or	toolbar

Create	new	menus	and	toolbars

Float	or	dock	toolbars

Enable	or	disable	menu	and	toolbar	items

Check	or	uncheck	a	menu	item

Change	the	tag,	label,	or	help	string	of	a	menu	or	toolbar	item

Reassign	the	macros	associated	to	a	menu	or	toolbar	item

Note You	can	only	edit	popup	menus	and	toolbars	using	ActiveX	Automation.
However,	you	can	use	ActiveX	Automation	to	load	and	unload	other	menu	types
such	as	image	tile	menu	items,	screen	menus,	or	tablet	menus.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	

Change	the	Menu	Bar
	
	
	

As	you	have	already	seen,	the	menu	bar	can	be	completely	replaced	by	a	new
menu	group	if	that	group	is	loaded	as	the	base	menu.	Additionally,	individual
menus	on	the	menu	bar	can	be	added,	removed,	or	rearranged.

Topics	in	this	section

Insert	Menus	in	the	Menu	Bar
Remove	Menus	from	the	Menu	Bar
Rearrange	Menu	Items	on	the	Menu	Bar

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Change	the	Menu	Bar	>	

Insert	Menus	in	the	Menu	Bar
	
	
	

To	insert	an	existing	menu	in	the	menu	bar,	use	the	InsertMenuInMenuBar	or	the
InsertInMenuBar	method.	Both	methods	accomplish	the	same	goal—they	insert
an	existing	menu	into	the	menu	bar.

The	difference	between	the	two	methods	is	the	object	from	which	they	are
called.	The	InsertMenuInMenuBar	method	is	called	from	the	PopupMenus
collection.	Using	this	method	you	can	insert	any	menu	from	the	collection	into	a
specified	location	on	the	menu	bar.	This	method	requires	as	input	the	name	of
the	menu	to	insert	and	the	location	on	the	menu	bar	to	insert	it.

The	InsertInMenuBar	method	is	called	directly	from	the	PopupMenu	object	to
be	inserted.	The	only	input	this	method	requires	is	a	location	on	the	menu	bar.
The	name	of	the	menu	is	not	needed	because	you	are	calling	the	method	directly
from	the	object	to	be	inserted.

You	should	use	whichever	method	is	more	convenient	for	your	application.

Insert	a	menu	in	the	menu	bar

This	example	creates	a	new	menu	called	TestMenu	and	inserts	a	menu	item	into
it.	The	menu	item	is	assigned	the	OPEN	command.	The	menu	is	then	displayed
on	the	menu	bar.

Sub	Ch6_InsertMenu()

	'	Define	a	variable	for	the	current	menu	group

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.	_

	MenuGroups.Item(0)

	'	Create	a	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add("TestMenu")

	'	Declare	the	variables	for	the	menu	item

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	string	the	VB	equivalent	of

	'	"ESC	ESC	_open	"	and	create	the	menu	item

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	newMenu.AddMenuItem(newMenu.Count	+	1,	_

	"Open",	openMacro)

	'	Display	the	menu	on	the	menu	bar

	currMenuGroup.Menus.InsertMenuInMenuBar	"TestMenu",	""

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Change	the	Menu	Bar	>	

Remove	Menus	from	the	Menu	Bar
	
	
	

To	remove	a	menu	from	the	menu	bar,	use	the	RemoveMenuFromMenuBar	or
the	RemoveFromMenuBar	method.	Both	methods	accomplish	the	same	goal—
they	remove	a	menu	from	the	menu	bar.

The	difference	between	the	two	methods	is	the	object	from	which	they	are
called.	The	RemoveMenuFromMenuBar	method	is	called	from	the	PopupMenus
collection.	This	method	requires	as	input	the	name	of	the	menu	to	remove,	or	the
location	on	the	menu	bar	of	the	menu	to	remove.	For	example,	the	following
statement	removes	the	menu	added	in	Insert	a	menu	in	the	menu	bar:

currMenuGroup.Menus.RemoveMenuFromMenuBar	("TestMenu")

The	RemoveFromMenuBar	method	is	called	directly	from	the	PopupMenu
object	to	be	removed.	This	method	does	not	require	any	input.	The	name	of	the
menu	is	not	needed	because	you	are	calling	the	method	directly	from	the	object
to	be	removed.

You	should	use	whichever	method	is	more	convenient	for	your	application.

Note Menus	that	have	been	removed	from	the	menu	bar	are	still	available	in	their
designated	menu	group.	They	are	simply	no	longer	visible	to	the	user.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Change	the	Menu	Bar	>	

Rearrange	Menu	Items	on	the	Menu	Bar
	
	
	

To	rearrange	menus	on	the	menu	bar,	insert	and	remove	menus	until	the	desired
configuration	is	achieved.

Move	the	first	menu	to	the	end	of	the	menu	bar

This	example	removes	the	first	menu	on	the	menu	bar	and	inserts	it	as	the	last
menu	on	the	menu	bar.

Sub	Ch6_MoveMenu()

	'	Define	a	variable	to	hold	the	menu	to	be	moved

	Dim	moveMenu	As	AcadPopupMenu

	Dim	MyMenuBar	As	AcadMenuBar

	Set	MyMenuBar	=	ThisDrawing.Application.menuBar

	'	Set	moveMenu	equal	to	the	first	menu	displayed

	'	on	the	menu	bar

	Set	moveMenu	=	MyMenuBar.Item(0)

	'	Remove	the	first	menu	from	the	menu	bar

	MyMenuBar.Item(0).RemoveFromMenuBar

	'	Add	the	menu	back	into	the	menu	bar

	'	in	the	last	position	on	the	bar

	moveMenu.InsertInMenuBar	(MyMenuBar.count)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>menu	objects:<$startrange>InsertInMenuBar	method:example	code,
separators:adding	to	menus,	PopupMenuItem	object:AddSeparator	method,
AddSeparator	method,	using	Type	property,	Label	property:accelerator	key,
PopupMenuItem	object:	accelerator	keys,	assigning,	submenus:adding,
submenus:positioning,	PopupMenu	object:creating	submenus,	menus:creating
submenus,	<$nopage>cascading	menus.	<$endrange>InsertInMenuBar
method:example	code,	menus:deleting,	PopupMenu	object:deleting	menu	items,
PopupMenuItem	object:deleting	menu	items,	Delete	method:example	code,
PopupMenuItem	object:Tag	property,	PopupMenuItem	object:Label	property,
PopupMenuItem	object:Caption	property,	PopupMenuItem	object:Macro
property,	PopupMenuItem	object:HelpString	property,	PopupMenuItem
object:Enable	property,	PopupMenuItem	object:Check	property,	menus:enabling,
menus:disabling,	menus:checking,	menus:positioning,	PopupMenuItem
object:Index	property,	PopupMenuItem	object:Type	property,	PopupMenuItem
object:Submenu	property,	PopupMenuItem	object:Parent	property,
PopupMenuItem	object:Parent	property,	menus:type	of	menu	item,
menus:returning	submenus,	menus:assigning	menu	items,	menus:menu	macros,
special	characters,	InsertInMenuBar	method:example	code,">

Customize	Toolbars	and	Menus	>	

Create	and	Edit	Pull-Down	and	Shortcut	Menus
	
	
	

AutoCAD	ActiveX/VBA	has	the	ability	to	customize	two	types	of	AutoCAD
menus:	pull-down	menus	and	shortcut	menus	(sometimes	called	cursor	menus).
Both	pull-down	and	shortcut	menus	are	displayed	as	cascading	menus.	The
shortcut	menu	can	provide	quick	access	to	frequently	used	menu	items	such	as
Object	Snap	modes.

A	pull-down	menu	can	contain	up	to	999	menu	items.	A	shortcut	menu	can
contain	up	to	499	menu	items.	Both	limits	include	all	menus	in	the	hierarchy.	If
the	number	of	menu	items	in	a	menu	exceeds	these	limits,	AutoCAD	ignores	the
extra	items.	If	a	pull-down	or	shortcut	menu	is	taller	than	the	available	space	on
the	graphics	screen,	it	is	truncated	to	fit	on	the	screen.

Pull-down	menus	are	always	pulled	down	from	the	menu	bar,	but	the	shortcut

menu	is	always	displayed	at	or	near	the	crosshairs	on	the	graphics	screen.	The
handling	for	both	menu	types	is	the	same	except	the	shortcut	menu	caption	isn't
included	on	the	menu	bar.	The	shortcut	menu	caption	is	not	displayed	at	all.
Access	to	the	shortcut	menu	is	through	a	single	menu	in	the	base	menu	group.
The	shortcut	menu	can	be	identified	with	the	ShortcutMenu	property.	If	the
ShortcutMenu	property	returns	TRUE,	then	the	queried	menu	is	the	shortcut
menu	for	the	group.

Topics	in	this	section

Create	New	Menus
Add	New	Menu	Items	to	a	Menu
Add	Separators	to	a	Menu
Assign	an	Accelerator	Key	to	a	Menu	Item
Create	Cascading	Submenus
Delete	Menu	Items	from	a	Menu
Explore	the	Properties	of	Menu	Items

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Create	New	Menus
	
	
	

To	create	a	new	menu,	use	the	Add	method	to	add	a	new	PopupMenu	object	to
the	PopupMenus	collection.

To	create	a	new	shortcut	menu,	you	must	delete	an	existing	shortcut	menu.	There
can	be	only	one	shortcut	menu	per	menu	group.	If	there	is	no	other	shortcut
menu	in	a	menu	group,	you	can	add	a	menu	with	the	label	“POP0”.	This	will	tell
AutoCAD	you	want	to	create	a	shortcut	menu.

The	Add	method	requires	as	input	the	name	(label)	of	the	menu	to	add.	This
name	becomes	the	title	for	the	menu	when	it	is	loaded	on	the	menu	bar.	The
name	is	also	the	easiest	way	of	identifying	the	menu	within	the	collection.

The	menu	name	can	be	a	simple	string	or	it	can	contain	special	codes.	You	can
change	the	name	of	a	menu	once	it	has	been	created.	To	change	the	name	of	an
existing	menu,	use	the	Name	property	for	that	menu.

Create	a	new	popup	menu

This	example	creates	a	new	popup	menu	called	“TestMenu”	in	the	first	menu
group	of	the	MenuGroups	collection.

Sub	Ch6_CreateMenu()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add("TestMenu")

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>menu	objects:<$startrange>InsertInMenuBar	method:example
code,">

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Add	New	Menu	Items	to	a	Menu
	
	
	

To	add	a	new	menu	item	to	a	menu,	use	the	AddMenuItem	method.	This	method
creates	a	new	PopupMenuItem	object	and	adds	it	to	the	designated	menu.

The	AddMenuItem	method	takes	four	parameters	as	input:	Index,	Label,
Tag,	and	Macro.

Topics	in	this	section

Specify	the	Index	Parameter
Specify	the	Label	Parameter
Specify	the	Tag	Parameter
Specify	the	Macro	Parameter

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	Add	New	Menu	Items	to	a	Menu	>	

Specify	the	Index	Parameter
	
	
	

The	Index	parameter	is	an	integer	that	specifies	the	position	of	the	new	menu
item	within	the	menu.	The	index	begins	with	position	zero	(0)	as	the	first
position	on	the	menu	after	the	title.	To	add	the	new	menu	item	to	the	end	of	a
menu,	set	the	Index	parameter	equal	to	the	Count	property	of	the	menu.	(The
Count	property	of	the	menu	represents	the	total	number	of	menu	items	on	that
menu.)

The	first	index	position	is	zero	(0)	and	the	separators	are	listed	as	individual
menu	items	with	their	own	index	position.	The	Count	property	for	the	menu
pictured	would	be	six	(6).	To	add	a	menu	item	between	Tile	Horizontally	and
Tile	Vertically,	set	the	Index	parameter	to	two	(2),	which	is	the	index	of	the
Tile	Vertically	menu	item.	This	inserts	your	new	menu	item	into	index	two	(2)
and	bumps	all	the	remaining	menu	items	down	one	index	position.

Once	a	menu	item	has	been	created,	you	cannot	change	the	index	of	the	menu
item	through	the	Index	property.	To	change	the	index	of	an	existing	menu	item
you	must	delete	and	re-add	the	menu	item	to	a	different	position,	or	add	or	delete
surrounding	menu	items	until	a	proper	placement	is	achieved.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	Add	New	Menu	Items	to	a	Menu	>	

Specify	the	Label	Parameter
	
	
	

A	label	is	a	string	that	defines	the	content	and	formatting	of	menu	items.	Menu
item	labels	can	contain	DIESEL	string	expressions	that	conditionally	alter	the
labels	each	time	they	are	displayed.

In	addition	to	the	DIESEL	string	expressions,	the	label	may	contain	special
codes.	For	example,	an	ampersand	(&)	placed	directly	before	a	character
specifies	that	character	as	the	accelerator	key.

The	text	the	user	sees	displayed	for	the	menu	item	is	called	the	Caption,	and	it	is
derived	from	the	label	by	interpreting	all	the	DIESEL	string	expressions	and
special	codes	contained	in	the	label.	For	example,	the	label	“&Edit”	produces	the
caption	“Edit.”

Once	a	menu	item	has	been	created,	you	can	change	the	label	for	the	menu	item
using	the	Label	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	Add	New	Menu	Items	to	a	Menu	>	

Specify	the	Tag	Parameter
	
	
	

The	tag,	or	name	tag,	is	a	string	consisting	of	alphanumeric	and	underscore	(_)
characters.	This	string	uniquely	identifies	the	menu	item	within	a	given	menu.

Once	a	menu	item	has	been	created,	you	can	change	the	tag	for	the	menu	item
using	the	TagString	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$startrange>InsertInMenuBar	method:example	code,">

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	Add	New	Menu	Items	to	a	Menu	>	

Specify	the	Macro	Parameter
	
	
	

A	macro	is	a	series	of	commands	that	executes	specific	actions	when	a	menu
item	is	selected.	Menu	macros	can	simply	be	recordings	of	keystrokes	that
accomplish	a	task,	or	they	can	be	a	complex	combination	of	commands,
AutoLISP,	DIESEL,	or	ActiveX	programming	code.

Once	a	menu	item	has	been	created,	you	can	change	the	macro	for	the	menu	item
using	the	Macro	property.

Add	menu	items	to	a	popup	menu

This	example	creates	a	new	menu	called	“TestMenu”	and	inserts	a	menu	item.
The	menu	item	is	given	the	name	“Open,”	and	the	macro	assigned	to	the	menu
item	is	the	OPEN	command.

Sub	Ch6_AddAMenuItem()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add("TestMenu")

	'	Add	a	menu	item	to	the	new	menu

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VBA	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	newMenu.AddMenuItem	_

	(newMenu.count	+	1,	"Open",	openMacro)

	'	Display	the	menu	on	the	menu	bar

	newMenu.InsertInMenuBar	_

	(ThisDrawing.Application.menuBar.count	+	1)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Add	Separators	to	a	Menu
	
	
	

To	add	a	separator	to	a	menu,	use	the	AddSeparator	method.	This	method	creates
a	new	PopupMenuItem	object	and	adds	it	to	the	designated	menu.	This	kind	of
PopupMenuItem	object	is	assigned	the	type	of	acSeparator.	The	type	of	a
menu	item	can	be	found	through	the	Type	property.

The	AddSeparator	method	takes	the	Index	parameter	as	its	only	input.	The
Index	parameter	is	an	integer	that	specifies	the	position	of	the	separator	within
the	menu.	The	index	begins	with	position	zero	(0)	as	the	first	position	on	the
menu	after	the	title.

See	Enable	and	disable	menu	items	for	an	example	of	adding	separators	to	a
menu.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Assign	an	Accelerator	Key	to	a	Menu	Item
	
	
	

To	assign	the	accelerator	key	for	a	menu	item	through	AutoCAD	ActiveX/VBA,
use	the	Label	property	of	the	given	menu	item.	To	specify	an	accelerator	key,
insert	the	ASCII	equivalent	of	an	ampersand	(&)	in	the	label	directly	in	front	of
the	character	to	be	used	as	the	accelerator.	For	example,	the	label
Chr(Asc("&"))	+	"Edit"	will	be	displayed	as	“Edit,”	with	the	character
“E”	being	used	as	the	accelerator	key.

Add	accelerator	keys	to	menus

This	example	repeats	the	example	from	Add	menu	items	to	a	popup	menu,
adding	accelerator	keys	for	both	the	“TestMenu”	and	“Open”	menus.	The	“s”	is
used	as	the	accelerator	key	for	the	“TestMenu”	menu	and	the	“O”	is	used	as	the
accelerator	key	for	the	“Open”	menu.

Sub	Ch6_AddAMenuItem()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add	_

	("Te"	+	Chr(Asc("&"))	+	"stMenu")

	'	Add	a	menu	item	to	the	new	menu

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VBA	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	newMenu.AddMenuItem	_

	(newMenu.count	+	1,	Chr(Asc("&"))	_

	+	"Open",	openMacro)

	'	Display	the	menu	on	the	menu	bar

	newMenu.InsertInMenuBar	_

	(ThisDrawing.Application.menuBar.count	+	1)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>cascading	menus.	<$endrange>InsertInMenuBar	method:example
code,">

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Create	Cascading	Submenus
	
	
	

To	add	a	cascading	submenu,	create	a	submenu	using	the	AddSubmenu	method.
This	method	creates	a	new	PopupMenuItem	object	and	adds	it	to	the	designated
menu.	This	special	kind	of	PopupMenuItem	object	is	assigned	the	type	of
acSubmenu.

The	AddSubmenu	method	takes	three	parameters	as	input:	Index,	Label,	and
Tag.

The	Index	parameter	is	an	integer	that	specifies	the	position	of	the	new	menu
item	within	the	menu.	The	index	begins	with	position	zero	(0)	as	the	first
position	on	the	menu	after	the	title.	To	add	the	new	menu	item	to	the	end	of	a
menu,	set	the	Index	parameter	equal	to	the	Count	property	of	the	menu.	(The
Count	property	of	the	menu	represents	the	total	number	of	menu	items	on	that
menu.)

The	Label	parameter	is	a	string	that	defines	the	content	and	formatting	of	menu
items.	The	text	that	the	user	sees	displayed	for	the	menu	item	is	called	the
Caption,	and	it	is	derived	from	the	label	by	interpreting	all	the	DIESEL	string
expressions	and	special	codes	contained	in	the	label.	For	example,	the	label
“&Edit”	produces	the	caption	“Edit.”

The	Tag	parameter,	or	name	tag,	is	a	string	consisting	of	alphanumeric	and
underscore	(_)	characters.	This	string	uniquely	identifies	the	menu	item	within	a
given	menu.

The	AddSubmenu	method	does	not	return	the	PopupMenuItem	object	that	it
creates.	Instead,	it	returns	the	new	menu	that	the	submenu	points	to.	The	new
menu,	which	is	returned	as	a	PopupMenu	object,	can	then	be	populated	as	a
normal	menu	would	be.	For	information	on	populating	a	menu,	see	Add	New

Menu	Items	to	a	Menu.

Create	and	populate	a	submenu

This	example	creates	a	new	menu	called	“TestMenu”	and	adds	it	to	a	submenu
called	“OpenFile.”	The	submenu	is	then	populated	with	a	menu	item	called
“Open,”	which	opens	a	drawing	when	executed.	Finally,	the	menu	is	displayed
on	the	menu	bar.

Sub	Ch6_AddASubMenu()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add("TestMenu")

	'	Add	the	submenu

	Dim	FileSubMenu	As	AcadPopupMenu

	Set	FileSubMenu	=	newMenu.AddSubMenu("",	"OpenFile")

	'	Add	a	menu	item	to	the	sub	menu

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	FileSubMenu.AddMenuItem	_

	(newMenu.count	+	1,	"Open",	openMacro)

	'	Display	the	menu	on	the	menu	bar

	newMenu.InsertInMenuBar	_

	(ThisDrawing.Application.menuBar.count	+	1)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Delete	Menu	Items	from	a	Menu
	
	
	

To	remove	menu	items	from	a	menu,	use	the	Delete	method	found	on	the	menu
item.

Warning If	you	delete	a	menu	item,	do	not	call	another	method	or	property	that
would	directly	or	indirectly	cause	the	same	CUI	file	to	be	loaded	again	within
the	same	macro.	For	example,	after	deleting	a	menu	item,	do	not	use	the
MenuGroup.Load	method	or	the	Preferences.Profiles.ActiveProfile	property,	or
issue	a	"Menuload"	command	using	the	Document.SendCommand	method.
These	items	directly	or	indirectly	cause	the	loading	of	CUI	files.	You	should
only	use	these	methods	or	properties	in	a	separate	macro.

Delete	a	menu	item	from	a	menu

This	example	adds	a	menu	item	to	the	end	of	the	last	menu	displayed	on	the
menu	bar.	It	then	deletes	the	menu	item.

Sub	Ch6_DeleteMenuItem()

	Dim	LastMenu	As	AcadPopupMenu

	Set	LastMenu	=	ThisDrawing.Application.menuBar.	_

	Item(ThisDrawing.Application.menuBar.count	-	1)

	'	Add	a	menu	item

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	LastMenu.AddMenuItem	_

	(LastMenu.count	+	1,	"Open",	openMacro)

	'	Remove	the	menu	item	from	the	menu

	newMenuItem.Delete

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Pull-Down	and	Shortcut
Menus	>	

Explore	the	Properties	of	Menu	Items
	
	
	

All	menu	items	share	the	following	properties:

TagString

A	tag,	or	name	tag,	is	a	string	consisting	of	alphanumeric	and	underscore	(_)
characters.	This	string	uniquely	identifies	the	menu	item	within	a	given
menu.	Tags	identify	the	accelerator	keys	(keyboard	key	sequences)	that
correspond	to	the	menu	item.
You	can	read	or	write	the	value	of	a	tag	by	using	the	TagString	property.

Label

A	label	is	a	string	that	defines	the	content	and	formatting	of	menu	items.
Menu	item	labels	can	contain	DIESEL	string	expressions	that	conditionally
alter	the	labels	each	time	they	are	displayed.
You	can	read	or	write	the	value	of	a	label	by	using	the	Label	property.

Caption

A	caption	is	the	text	that	the	user	sees	displayed	on	the	menu.	This	property
is	read-only	and	is	derived	from	the	Label	property	by	removing	any	DIESEL
string	expressions.
You	can	read	the	value	of	a	caption	by	using	the	Caption	property.

Macro

A	macro	is	a	series	of	commands	that	executes	specific	actions	when	a	menu
item	is	selected.	Menu	macros	can	simply	be	recordings	of	keystrokes	that
accomplish	a	task,	or	they	can	be	a	complex	combination	of	commands,
AutoLISP,	DIESEL,	or	ActiveX	programming	code.
You	can	read	or	write	the	value	of	a	menu	macro	by	using	the	Macro
property.

HelpString

A	help	string	is	the	text	string	that	appears	in	the	AutoCAD	status	line	when
a	user	highlights	a	menu	item	for	selection.
You	can	read	or	write	the	value	of	a	help	string	by	using	the	HelpString
property.

Enable

Using	the	Enable	property,	you	can	enable	or	disable	a	menu	item.	You	can
also	read	the	Enable	property	to	determine	if	a	menu	item	is	currently
enabled	or	disabled.	Using	this	property	to	enable	or	disable	a	menu	item
overrides	any	setting	for	enabling	in	the	DIESEL	expression	of	the	menu
item.
See	Explore	the	Properties	of	Menu	Items	for	an	example	of	disabling	menu
items.

Check

Using	the	Check	property	you	can	check	or	uncheck	a	menu	item.	You	can
also	read	the	Check	property	to	determine	if	a	menu	item	is	currently	checked
or	unchecked.	Using	this	property	to	check	or	uncheck	a	menu	item	overrides
any	setting	for	checking	in	the	DIESEL	expression	of	the	menu	item.

Index

The	index	of	a	menu	item	specifies	the	position	of	that	menu	item	on	the
menu	on	which	it	belongs.	The	index	position	of	a	menu	always	begins	with
position	0.	For	example,	if	the	item	is	the	first	item	on	a	menu,	it	returns	an
index	position	of	0.	If	it	is	the	second	item	on	a	menu,	it	returns	an	index
position	of	1	and	so	on.

Type

You	can	determine	the	type	of	a	menu	item	by	using	the	Type	property.	A
menu	item	can	be	one	of	the	following	types:	a	regular	menu,	a	separator,	or
the	heading	for	a	submenu.	If	the	item	is	a	regular	menu	item,	this	property
returns	acMenuItem.	If	the	item	is	a	separator,	this	property	returns
acMenuSeparator.	If	the	item	is	a	heading	for	a	submenu,	this	property
returns	acSubMenu.

SubMenu

You	can	find	the	submenu	by	using	the	SubMenu	property.	If	the	menu	item

is	of	the	type	acSubMenu,	this	property	returns	the	menu	that	is	attached	as
the	submenu,	or	embedded	menu.	The	embedded	menu	is	returned	as	a
PopupMenu	object.
If	the	menu	item	is	not	of	the	type	acSubMenu,	this	property	returns	an
error.

Parent

You	can	find	the	menu	to	which	a	menu	item	belongs	by	using	the	Parent
property.	This	property	returns	the	menu	on	which	the	menu	item	resides.
The	parent	menu	is	returned	as	a	PopupMenu	object.

Enable	and	disable	menu	items

This	example	creates	a	new	menu	called	“TestMenu”	and	inserts	two	menu
items.	The	second	menu	item	is	then	disabled	using	the	Enable	property	and	the
menu	is	displayed	on	the	menu	bar.

Sub	Ch6_DisableMenuItem()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add("TestMenu")

	'	Add	two	menu	items	and	a	menu	separator	to	the	new	menu

	Dim	MenuEnable	As	AcadPopupMenuItem

	Dim	MenuDisable	As	AcadPopupMenuItem

	Dim	MenuSeparator	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	MenuEnable	=	newMenu.AddMenuItem	_

	(newMenu.count	+	1,	"OpenEnabled",	openMacro)

	Set	MenuSeparator	=	newMenu.AddSeparator("")

	Set	MenuDisable	=	newMenu.AddMenuItem	_

	(newMenu.count	+	1,	"OpenDisabled",	openMacro)

	'	Disable	the	second	menu	item

	MenuDisable.Enable	=	False

	'	Display	the	menu	on	the	menu	bar

	newMenu.InsertInMenuBar	_

	(ThisDrawing.Application.menuBar.count	+	1)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	

Create	and	Edit	Toolbars
	
	
	

Using	AutoCAD	ActiveX/VBA	you	can	create	and	edit	toolbars	within	an
existing	menu	group.

Topics	in	this	section

Create	New	Toolbars
Add	New	Toolbar	Buttons	to	a	Toolbar
Add	Separators	to	a	Toolbar
Define	the	Toolbar	Button	Image
Create	Flyout	Toolbars
Float	and	Dock	Toolbars
Delete	Toolbar	Buttons	from	a	Toolbar
Explore	the	Properties	of	Toolbar	Items

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Create	New	Toolbars
	
	
	

To	create	a	new	toolbar,	use	the	Add	method	to	add	a	new	Toolbar	object	to	the
Toolbars	collection.

The	Add	method	requires	as	input	the	name	of	the	toolbar	to	add.	The	name	is	a
string	of	alphanumeric	characters	with	no	punctuation	other	than	a	dash	(-)	or	an
underscore	(_).	The	name	is	the	easiest	way	of	identifying	the	toolbar	within	the
collection.

You	can	change	the	name	of	a	toolbar	once	it	has	been	created.	To	change	the
name	of	an	existing	toolbar,	use	the	Name	property	for	that	toolbar.

Create	a	new	toolbar

This	example	creates	a	new	toolbar	called	“TestToolbar”	in	the	first	menu	group
in	the	MenuGroups	collection.

Sub	Ch6_CreateToolbar()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	toolbar

	Dim	newToolbar	As	AcadToolbar

	Set	newToolbar	=	currMenuGroup.Toolbars.Add("TestToolbar")

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Add	New	Toolbar	Buttons	to	a	Toolbar
	
	
	

To	add	a	new	toolbar	button	to	a	toolbar,	use	the	AddToolbarButton	method.
This	method	creates	a	new	ToolbarItem	object	and	adds	it	to	the	designated
toolbar.	You	should	only	add	buttons	to	a	toolbar	while	the	toolbar	is	visible.

The	AddToolbarButton	method	takes	five	parameters	as	input:	Index,	Name,
HelpString,	Macro,	and	FlyoutButton.

Index

The	Index	parameter	is	an	integer	that	specifies	the	position	of	the	new
Toolbar	item	within	the	toolbar.	The	index	begins	with	position	zero	(0)	as
the	first	position	on	the	toolbar	after	the	title.	To	add	the	new	toolbar	button
to	the	end	of	a	toolbar,	set	the	Index	parameter	equal	to	the	Count	property
of	the	toolbar.	(The	Count	property	of	the	toolbar	represents	the	total	number
of	toolbar	buttons	on	that	toolbar.)
Once	a	toolbar	button	has	been	created,	you	cannot	change	the	index	of	the
button	through	the	Index	property.	To	change	the	index	of	an	existing	toolbar
button,	you	must	delete	and	re-add	the	toolbar	button	to	a	different	position,
or	add	or	delete	surrounding	toolbar	buttons	until	a	proper	placement	is
achieved.

Name

A	name	is	a	string	that	identifies	the	toolbar	button.	The	string	must	comprise
alphanumeric	characters	with	no	punctuation	other	than	a	dash	(-)	or	an
underscore	(_).	This	string	is	displayed	as	the	tooltip	when	the	cursor	is
placed	over	the	toolbar	button.
Once	a	toolbar	button	has	been	created,	you	can	change	the	name	using	the
Name	parameter.

HelpString

A	help	string	is	the	text	string	that	appears	in	the	AutoCAD	status	line	when

a	user	highlights	a	menu	item	for	selection.
Once	a	toolbar	button	has	been	created,	you	can	change	the	help	string	for	the
button	using	the	HelpString	parameter.

Macro

A	macro	is	a	series	of	commands	that	executes	specific	actions	when	a
toolbar	button	is	selected.	Toolbar	macros	can	be	simply	recordings	of
keystrokes	that	accomplish	a	task,	or	they	can	be	a	complex	combination	of
commands,	AutoLISP,	DIESEL,	or	ActiveX	programming	code.
Once	a	Toolbar	button	has	been	created,	you	can	change	the	macro	for	the
button	using	the	Macro	parameter.

FlyoutButton

The	FlyoutButton	parameter	is	an	optional	flag	stating	whether	or	not	the
new	button	is	to	be	a	flyout	button.	If	the	new	button	is	to	be	a	flyout	button,
this	parameter	must	be	set	to	TRUE.	If	the	new	button	is	not	to	be	a	flyout
button,	this	parameter	can	be	set	to	FALSE	or	it	can	be	ignored.

Add	buttons	to	a	new	toolbar

This	example	creates	a	new	toolbar	and	adds	a	button	to	the	toolbar.	The	button
is	assigned	a	macro	that	will	execute	the	OPEN	command	when	the	button	is
selected.

Sub	Ch6_AddButton()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	toolbar

	Dim	newToolbar	As	AcadToolbar

	Set	newToolbar	=	currMenuGroup.Toolbars.Add("TestToolbar")

	'	Add	a	button	to	the	new	toolbar

	Dim	newButton	As	AcadToolbarItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newButton	=	newToolbar.AddToolbarButton	_

	("",	"NewButton",	"Open	a	file.",	openMacro)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Add	Separators	to	a	Toolbar
	
	
	

To	add	a	separator	to	a	toolbar,	use	the	AddSeparator	method.	This	method
creates	a	new	ToolbarItem	object	and	adds	it	to	the	designated	toolbar.	This	kind
of	ToolbarItem	object	is	assigned	the	type	of	acSeparator.	The	type	of	a
Toolbar	button	can	be	found	through	the	Type	property.

The	AddSeparator	method	takes	one	parameter	as	input:	Index.	The	Index
parameter	is	an	integer	that	specifies	the	position	of	the	separator	within	the
toolbar.	The	index	begins	with	position	zero	(0)	as	the	first	position	on	the
toolbar	after	the	title.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Define	the	Toolbar	Button	Image
	
	
	

To	define	the	images	to	be	used	on	a	toolbar	button,	use	the	SetBitmaps	and
GetBitmaps	methods.

The	SetBitmaps	method	takes	two	parameters:	SmallIconName	and
LargeIconName.

SmallIconName

The	small	icon	name	identifies	the	ID	string	of	the	small-image	resource
(16×15	bitmap).	The	string	must	comprise	alphanumeric	characters	with	no
punctuation	other	than	a	dash	(-)	or	an	underscore	(_),	and	should	include	the
.bmp	extension.	The	resource	can	be	either	a	system	bitmap	or	a	user-defined
bitmap.	User-defined	bitmaps	must	be	of	the	appropriate	size	and	must	reside
in	the	Support	path.

LargeIconName

The	large	icon	name	identifies	the	ID	string	of	the	large-image	resource
(24×22	bitmap).	The	string	must	comprise	alphanumeric	characters	with	no
punctuation	other	than	a	dash	(-)	or	an	underscore	(_),	and	should	include	the
.bmp	extension.	The	resource	can	be	either	a	system	bitmap	or	a	user-defined
bitmap.	User-defined	bitmaps	must	be	of	the	appropriate	size	and	must	reside
in	the	Support	path.

Query	an	existing	toolbar	to	find	the	name	of	the	icons	for	the	buttons

Sub	Ch6_GetButtonImages()

	Dim	Button	As	AcadToolbarItem

	Dim	Toolbar0	As	AcadToolbar

	Dim	MenuGroup0	As	AcadMenuGroup

	Dim	SmallButtonName	As	String

	Dim	LargeButtonName	As	String

	Dim	msg	As	String

	Dim	ButtonType	As	String

	'	Get	the	first	toolbar	in	the	first	menu	group

	Set	MenuGroup0	=	ThisDrawing.Application.	_

	MenuGroups.Item(0)

	Set	Toolbar0	=	MenuGroup0.Toolbars.Item(0)

	'	Clear	the	string	variables

	SmallButtonName	=	""

	LargeButtonName	=	""

	'	Create	a	header	for	the	message	box	and

	'	display	the	toolbar	to	be	queried

	msg	=	"Toolbar:	"	+	Toolbar0.Name	+	vbCrLf

	Toolbar0.Visible	=	True

	'	Iterate	through	the	toolbar	and	collect	data

	'	for	each	button	in	the	toolbar.	If	the	toolbar	is

	'	a	normal	button	or	a	flyout,	collect	the	small

	'	and	large	button	names	for	the	button.

	For	Each	Button	In	Toolbar0

	ButtonType	=	Choose(Button.Type	+	1,	"Button",	_

	"Separator",	"Control",	"Flyout")

	msg	=	msg	&	ButtonType	&	":			"

	If	Button.Type	=	acToolbarButton	Or	_

	Button.Type	=	acToolbarFlyout	Then

	Button.GetBitmaps	SmallButtonName,	_

	LargeButtonName

	msg	=	msg	+	SmallButtonName	+	",	"	_

	+	LargeButtonName

	End	If

	msg	=	msg	+	vbCrLf

	Next	Button

	'	Display	the	results

	MsgBox	msg

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Create	Flyout	Toolbars
	
	
	

To	add	a	flyout	toolbar	button	to	a	toolbar,	use	the	AddToolbarButton	method.
This	method	creates	a	new	ToolbarItem	object	and	adds	it	to	the	designated
toolbar.

The	AddToolbarButton	method	takes	five	parameters	as	input:	Index,	Name,
HelpString,	Macro,	and	FlyoutButton.	By	setting	the	FlyoutButton
parameter	to	TRUE,	the	new	button	will	be	created	as	a	flyout	button.	The	return
value	from	this	method	will	be	the	new	flyout	toolbar.	The	flyout	toolbar	can
then	be	populated	as	a	normal	toolbar	would	be.

For	more	information	about	populating	a	toolbar,	see	Add	New	Toolbar	Buttons
to	a	Toolbar.

Create	a	flyout	toolbar	button

This	example	creates	two	toolbars.	The	first	toolbar	contains	a	flyout	button.	The
second	toolbar	is	attached	to	the	flyout	button	on	the	first	toolbar.

Sub	Ch6_AddFlyoutButton()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.	_

	MenuGroups.Item(0)

	'	Create	the	first	toolbar

	Dim	FirstToolbar	As	AcadToolbar

	Set	FirstToolbar	=	currMenuGroup.Toolbars.	_

	Add("FirstToolbar")

	'	Add	a	flyout	button	to	the	first	menu	on	the	menu	bar

	Dim	FlyoutButton	As	AcadToolbarItem

	Set	FlyoutButton	=	FirstToolbar.AddToolbarButton	_

	("",	"Flyout",	"Demonstrates	a	flyout	button",	_

	"OPEN",	True)

	'	Create	the	second	toolbar.	This	will	be	attached	to

	'	the	first	toolbar	through	the	flyout	button.

	Dim	SecondToolbar	As	AcadToolbar

	Set	SecondToolbar	=	currMenuGroup.Toolbars.	_

	Add("SecondToolbar")

	'	Add	a	button	to	the	next	toolbar

	Dim	newButton	As	AcadToolbarItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newButton	=	SecondToolbar.AddToolbarButton	_

	("",	"NewButton",	"Open	a	file.",	openMacro)

	'	Attach	the	second	toolbar	to	the	flyout

	'	button	on	the	first	toolbar

	FlyoutButton.AttachToolbarToFlyout	currMenuGroup.Name,	_

	SecondToolbar.Name

	'	Display	the	first	toolbar,	hide	the	second	toolbar

	FirstToolbar.Visible	=	True

	SecondToolbar.Visible	=	False

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Float	and	Dock	Toolbars
	
	
	

Toolbars	can	be	docked	or	floated	programmatically.

To	float	a	toolbar,	use	the	Float	method	for	the	toolbar.	The	Float	method	takes
three	parameters	as	input:	Top,	Left,	and	NumberFloatRows.	The	Top
and	Left	parameters	specify	the	pixel	location	for	the	top	and	left	edge	of	the
toolbar.	The	NumberFloatRows	parameter	specifies	the	number	of	rows	with
which	to	create	a	horizontal	toolbar.	This	number	must	be	equal	to	or	greater
than	one.	The	buttons	of	the	toolbar	will	be	distributed	equally	across	the
number	of	rows	specified.	For	vertically	aligned	toolbars,	this	value	specifies	the
number	of	columns.

To	dock	a	toolbar,	use	the	Dock	method	for	the	toolbar.	The	Dock	method	takes
three	parameters	as	input:	Side,	Row,	and	Column.	The	Side	parameter
specifies	the	side	of	the	toolbar	that	you	will	be	positioning	in	the	docking
maneuver.	You	can	specify	the	top,	bottom,	left,	or	right	side	of	the	toolbar.	The
Row	and	Column	parameters	specify	a	number	on	the	existing	rows	and
columns	of	docked	toolbars	at	which	to	dock	the	toolbar.

You	can	query	a	toolbar	to	see	if	it	is	docked	by	using	the	DockStatus	property.
The	DockStatus	property	will	return	TRUE	if	the	toolbar	is	docked	and	FALSE	if
the	toolbar	is	floating.

Dock	a	toolbar

This	example	creates	a	new	toolbar	with	three	buttons	on	it.	The	toolbar	is	then
displayed	and	docked	on	the	left	side	of	the	screen.

Sub	Ch6_DockToolbar()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.	_

	MenuGroups.Item(0)

	'	Create	the	new	toolbar

	Dim	newToolbar	As	AcadToolbar

	Set	newToolbar	=	currMenuGroup.Toolbars.	_

	Add("TestToolbar")

	'	Add	three	buttons	to	the	new	toolbar.

	'	All	three	buttons	will	have	the	same	macro	attached.

	Dim	newButton1	As	AcadToolbarItem

	Dim	newButton2	As	AcadToolbarItem

	Dim	newButton3	As	AcadToolbarItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VB	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newButton1	=	newToolbar.AddToolbarButton	_

	("",	"NewButton1",	"Open	a	file.",	openMacro)

	Set	newButton2	=	newToolbar.AddToolbarButton	_

	("",	"NewButton2",	"Open	a	file.",	openMacro)

	Set	newButton3	=	newToolbar.AddToolbarButton	_

	("",	"NewButton3",	"Open	a	file.",	openMacro)

	'	Display	the	toolbar

	newToolbar.Visible	=	True

	'	Dock	the	toolbar	to	the	left	of	the	screen.

	newToolbar.Dock	acToolbarDockLeft

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Delete	Toolbar	Buttons	from	a	Toolbar
	
	
	

To	remove	toolbar	buttons	from	a	toolbar,	use	the	Delete	method	found	on	the
toolbar	button.	You	should	only	delete	buttons	from	a	toolbar	while	the	toolbar	is
visible.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	and	Edit	Toolbars	>	

Explore	the	Properties	of	Toolbar	Items
	
	
	

All	toolbar	items	share	the	following	properties:

Tagstring

A	tag,	or	name	tag,	is	a	string	consisting	of	alphanumeric	and	underscore	(_)
characters.	This	string	uniquely	identifies	the	toolbar	item	within	a	given
toolbar.	A	new	tag	is	assigned	automatically	when	a	toolbar	item	is	created.
You	can	read	or	write	the	value	of	a	tag	by	using	the	Tagstring	property.

Name

A	name	is	a	string	identifying	the	toolbar	item.	It	is	also	the	string	used	for
the	tooltip	text,	which	is	the	text	string	that	pops	up	in	AutoCAD	when	a	user
holds	the	mouse	or	another	pointing	device	over	the	toolbar	item.
You	can	read	or	write	the	value	of	a	name	by	using	the	Name	property.

Macro

A	macro	is	a	series	of	commands	that	executes	specific	actions	when	a
toolbar	item	is	selected.	Macros	can	simply	be	recordings	of	keystrokes	that
accomplish	a	task,	or	they	can	be	a	complex	combination	of	commands,
AutoLISP,	DIESEL,	or	ActiveX	programming	code.
You	can	read	or	write	the	value	of	a	macro	by	using	the	Macro	property.

HelpString

A	help	string	is	the	text	string	that	appears	in	the	AutoCAD	status	line	for	a
toolbar	button.
You	can	read	or	write	the	value	of	a	help	string	by	using	the	HelpString
property.

Index

The	index	of	a	toolbar	item	specifies	the	position	of	that	toolbar	item	on	the

toolbar	to	which	it	belongs.	The	index	position	of	a	toolbar	always	begins
with	position	0.	For	example,	if	the	item	is	the	first	item	on	a	toolbar,	it	will
have	an	index	position	of	0.	If	it	is	the	second	item	on	a	toolbar,	it	will	have
an	index	position	of	1,	and	so	on.
You	can	read	the	index	position	of	a	toolbar	item	by	using	the	Index	property.

Type

A	toolbar	item	can	be	one	of	the	following	types:	a	regular	toolbar	button,	a
separator,	a	flyout	toolbar	button,	or	a	special	control	element.	If	the	item	is	a
regular	toolbar	button,	this	property	returns	acButton.	If	the	item	is	a
separator,	this	property	returns	acToolButtonSeparator.	If	the	item	is
a	flyout	button,	this	property	returns	acFlyout.	If	the	item	is	a	special
control	element,	this	property	returns	acControl.
You	can	determine	the	type	of	a	toolbar	item	by	using	the	Type	property.

Flyout

If	the	toolbar	item	is	of	the	type	acFlyout,	this	property	returns	the	toolbar
that	is	attached	as	the	flyout	toolbar.	The	flyout	toolbar	is	returned	as	a
Toolbar	object.
If	the	menu	item	is	not	of	the	type	acFlyout,	this	property	returns	NULL.
You	can	find	the	flyout	toolbar	of	a	toolbar	item	by	using	the	Flyout	property.

Parent

This	property	returns	the	toolbar	on	which	the	toolbar	item	resides.	The
Parent	toolbar	is	returned	as	a	Toolbar	object.
You	can	find	the	toolbar	to	which	a	toolbar	item	belongs	by	using	the	Parent
property.

Toolbar	Properties

There	are	other	properties	that	apply	to	all	toolbar	items	on	the	toolbar.	Such
properties	include	whether	the	toolbar	is	docked	or	floating,	visible	or
hidden,	and	whether	the	toolbar	uses	large	buttons	or	small	buttons.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	

Create	Macros
	
	
	

A	macro	is	a	series	of	commands	that	executes	specific	actions	when	a	toolbar
item	is	selected.	Macros	can	simply	be	recordings	of	keystrokes	that	accomplish
a	task,	or	they	can	be	a	complex	combination	of	commands,	AutoLISP,	DIESEL,
or	ActiveX	programming	code.

If	you	intend	to	include	command	parameters	in	a	menu	macro,	you	must	know
the	sequence	in	which	that	command	expects	its	parameters.	Every	character	in	a
menu	macro	is	significant,	even	the	blank	spaces.	As	AutoCAD	is	revised	and
enhanced,	the	sequence	of	prompts	for	various	commands	(and	sometimes	even
the	command	names)	might	change.	Therefore,	your	custom	menus	might
require	minor	changes	when	you	upgrade	to	a	new	release	of	AutoCAD.

When	command	input	comes	from	a	menu	item,	the	settings	of	the	PICKADD
and	PICKAUTO	system	variables	are	assumed	to	be	1	and	0,	respectively.	This
preserves	compatibility	with	previous	releases	of	AutoCAD	and	makes
customization	easier	because	you	are	not	required	to	check	the	settings	of	these
variables.

Topics	in	this	section

Macro	Characters	Mapped	to	ASCII	Equivalents
Macro	Termination
Pause	for	User	Input
Cancel	a	Command
Macro	Repetition
Use	of	Single	Object	Selection	Mode

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Macro	Characters	Mapped	to	ASCII	Equivalents
	
	
	

The	following	table	provides	a	synopsis	of	special	characters	used	in	menu
macros	and	their	equivalent	ASCII	numbers	as	they	are	used	in	VB	and	VBA.
Use	the	ASCII	equivalent	for	these	special	characters	when	creating	the	string
for	the	Macro	property.

Special	characters	used	in	menu	and	toolbar	macros

Character ASCII
equivalent Description

; chr(59) Issues	ENTER

^M chr(13) Issues	ENTER

^| chr(94)	+
chr(124)

Issues	TAB

SPACEBAR chr(32) Enters	a	space;	blank
space	between
command	sequences
in	a	menu	item	is
equivalent	to	pressing
the	SPACEBAR

\ chr(92) Pauses	for	user	input

_ chr(95) Translates	AutoCAD
commands	and	key

words	that	follow

+ chr(43) Continues	menu
macro	to	the	next	line
(if	last	character)

=* chr(61)	+
chr(42)

Displays	the	current
top-level	image,
pull-down,	or
shortcut	menu

*^C^C chr(42)	+
chr(3)	+
chr(3)

Prefix	for	a	repeating
item

$ chr(36) Loads	a	menu	section
or	introduces	a
conditional	DIESEL
macro	expression

^B chr(2) Toggles	Snap	on	or
off	(CTRL+B)

^C chr(3) Cancels	command
(CTRL+C)

ESC chr(3) Cancels	command
(ESC)

^D chr(4) Toggles	Coords	on	or
off	(CTRL+D)

^E chr(5) Sets	the	next
isometric	plane
(CTRL+E)

^G chr(7) Toggles	Grid	on	or

off	(CTRL+G)

^H chr(8) Issues	backspace

^O chr(15) Toggles	Ortho	on	or
off	(CTRL+O)

^P chr(16) Toggles
MENUECHO	on	or
off

^Q chr(17) Echoes	all	prompts,
status	listings,	and
input	to	the	printer
(CTRL+Q)

^T chr(20) Toggles	Tablet	on	or
off	(CTRL+T)

^V chr(22) Changes	current
viewport	(CTRL+V)

^Z chr(26) Null	character	that
suppresses	the
automatic	addition	of
SPACEBAR	at	the
end	of	a	menu	item

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Macro	Termination
	
	
	

When	a	macro	is	executed,	AutoCAD	places	a	space	at	the	end	of	the	macro
before	processing	the	command	sequence.	AutoCAD	processes	the	following
menu	macro	as	though	you	had	entered	line	SPACEBAR.

line

Sometimes	this	is	undesirable;	for	example,	the	TEXT	or	DIM	command	must
be	terminated	by	ENTER,	not	by	a	space.	Also,	it	sometimes	takes	more	than
one	space	(or	ENTER)	to	complete	a	command,	but	some	text	editors	don't	let
you	create	a	line	with	trailing	blanks.	Two	special	conventions	get	around	these
problems.

When	a	semicolon	(;)	appears	in	a	macro,	AutoCAD	substitutes	an
ENTER.

If	a	line	ends	with	a	control	character,	a	backslash	(\),	a	plus	sign	(+),	or
a	semicolon	(;),	AutoCAD	does	not	add	a	blank	after	it.

Look	at	the	following	macro:

erase	\;

If	this	item	simply	ended	with	the	backslash	(which	indicates	user	input),	it
would	fail	to	complete	the	ERASE	operation,	because	AutoCAD	doesn't	add	a
blank	after	the	backslash.	Therefore,	this	macro	uses	a	semicolon	(;)	to	force	an
ENTER	after	the	user	input.	Here	are	more	examples:

ucs	

ucs	;	

text	\.4	0	DRAFT	Inc;;;Main	St.;;;City,	State;

Selecting	the	first	macro	enters	ucs	and	SPACEBAR	on	the	command	line,	and
the	following	prompt	appears:

Enter	an	option	[New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World]	<World>:

Selecting	the	second	macro	enters	ucs,	SPACEBAR,	and	semicolon	(;)	at	the
command	line,	which	accepts	the	default	value,	World.	No	difference	between
the	first	and	second	item	would	be	evident	on	the	screen;	naturally,	you	wouldn't
put	both	on	the	same	menu.

Selecting	the	third	macro	displays	a	prompt	for	a	starting	point	and	then	draws
the	address	on	three	lines.	In	the	triple-semicolon	(;;;),	the	first	semicolon	ends
the	text	string,	the	second	causes	repetition	of	the	TEXT	command,	and	the	third
calls	for	the	default	placement	below	the	previous	line.

Note All	special	characters	must	be	input	using	their	ASCII	equivalents.	For	a	list
of	ASCII	equivalents,	see	Macro	Characters	Mapped	to	ASCII	Equivalents.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Pause	for	User	Input
	
	
	

Sometimes	it	is	useful	to	accept	input	from	the	keyboard	or	the	pointing	device
in	the	midst	of	a	macro	by	placing	a	backslash	(\)	at	the	point	where	you	want
input.

circle	\1

layer	off	\;

The	first	macro	pauses	to	ask	the	user	for	the	center	point	and	then	reads	a	radius
of	1	from	the	macro.	Note	that	there	is	no	space	after	the	backslash	character	(\).
The	next	macro	pauses	to	ask	the	user	to	enter	one	layer	name,	then	turns	that
layer	off	and	exits	the	LAYER	command.	The	LAYER	command	normally
prompts	for	another	operation	and	exits	only	if	you	press	SPACEBAR	(blank)	or
ENTER	(;).

Normally,	the	macro	resumes	after	one	item	is	entered.	Therefore,	it	isn't
possible	to	construct	a	macro	that	accepts	a	variable	number	of	inputs	(as	in
object	selection)	and	then	continues.	However,	an	exception	is	made	for	the
SELECT	command;	a	backslash	suspends	the	macro	until	object	selection	has
completed.	For	example,	consider	the	following	macro:

select	\change	previous	;properties	color	red	;

This	macro	uses	the	SELECT	command	to	create	a	selection	set	of	one	or	more
objects.	It	then	issues	the	CHANGE	command,	references	this	selection	set
using	the	Previous	option,	and	changes	the	color	of	all	selected	objects	to	red.

Because	the	backslash	character	(\)	causes	a	macro	to	pause	for	user	input,	you
cannot	use	a	backslash	for	any	other	purpose	in	a	macro.	When	specifying	file
directory	paths,	use	a	forward	slash	(/)	as	the	path	delimiter:	for	example,
/direct/file.

The	following	circumstances	delay	resumption	of	a	macro:

If	input	of	a	point	is	expected,	Object	Snap	modes	may	precede	entry	of
the	actual	point.

If	X/Y/Z	point	filters	are	used,	the	macro	remains	suspended	until	the
entire	point	has	been	accumulated.

For	the	SELECT	command	only,	the	macro	doesn't	resume	until	object
selection	has	been	completed.

If	the	user	responds	with	a	transparent	command,	the	suspended	macro
remains	suspended	until	the	transparent	command	is	completed	and	the
originally	requested	input	is	received.

If	the	user	responds	by	choosing	another	macro	(to	supply	options	or	to
execute	a	transparent	command),	the	original	macro	is	suspended,	and
the	newly	selected	item	is	processed	to	completion	before	the	suspended
macro	is	resumed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Cancel	a	Command
	
	
	

To	make	sure	you	have	no	previous	incomplete	commands,	use	^C^C	in	a
macro.	This	is	the	same	as	pressing	ESC	twice	from	the	keyboard.	Although	a
single	^C	cancels	most	commands,	^C^C	is	required	to	return	to	the	Command
prompt	from	a	DIM	command.	Therefore,	^C^C	ensures	that	AutoCAD	returns
to	the	Command	prompt	in	most	cases.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Macro	Repetition
	
	
	

Once	you	have	selected	a	command,	you	are	likely	to	use	it	several	times	before
moving	on	to	another	command.	That	is	how	most	people	use	tools;	you	pick	up
a	tool,	do	several	things	with	it,	then	pick	up	another	tool,	and	so	on.	To	avoid
picking	up	the	tool	before	each	use,	AutoCAD	provides	a	command	repetition
capability,	triggered	by	a	null	response.	However,	you	cannot	use	this	feature	to
specify	command	options.

This	feature	makes	it	possible	for	you	to	repeat	frequently	used	commands	until
you	choose	another	command.	If	a	macro	begins	with	*^C^C	immediately
following	the	item	label,	the	macro	is	saved	in	memory.	Subsequent	Command
prompts	are	answered	by	that	macro	until	it	is	terminated	by	ESC	or	by	the
selection	of	another	macro.

Do	not	use	^C	(Cancel)	within	a	macro	that	begins	with	the	string	*^C^C;	this
cancels	the	macro	repetition.

The	following	is	an	example	of	the	repetitive,	or	modal,	approach	to	command
handling.

*^C^CMOVE	Single	

*^C^CCOPY	Single	

*^C^CERASE	Single	

*^C^CSTRETCH	Single	Crossing

*^C^CROTATE	Single	

*^C^CSCALE	Single	

Macro	repetition	does	not	work	for	items	in	image	tile	menus.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	Create	Macros	>	

Use	of	Single	Object	Selection	Mode
	
	
	

Single	object	selection	puts	object	selection	in	single	selection	mode,	disables
the	normal	dialog	conducted	by	object	selection,	and	causes	the	selection	to
return	the	first	object(s)	selected	by	a	subsequent	option.	This	can	be	quite	handy
in	a	macro.	For	example,	consider	the	following	macro:

*^C^CERASE	single	

This	macro	terminates	the	current	command	and	activates	the	ERASE	command
with	the	single	selection	option.	After	you	select	this	item,	you	either	point	to	the
single	object	to	be	erased	or	point	to	a	blank	area	and	specify	a	window.	The
object(s)	selected	in	this	way	are	erased,	and	the	macro	is	repeated	(due	to	the
leading	asterisk)	so	that	you	can	erase	something	else.	Single	selection	mode
leads	to	more	dynamic	interaction	with	AutoCAD.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Customize	Toolbars	and	Menus	>	

Create	Status-Line	Help	for	Menu	Items	and	Toolbar
Items
	
	
	

Status-line	help	messages	are	an	important	aspect	of	native	help	support.	These
are	the	simple,	descriptive	messages	that	appear	in	the	status	line	when	a	menu
or	toolbar	item	is	highlighted.	The	status-line	help	for	all	menu	and	toolbar	items
is	contained	in	the	HelpString	property	for	that	item.

The	HelpString	property	is	empty	when	the	menu	or	toolbar	item	is	first	created.

Add	status-line	help	to	a	menu	item

This	example	creates	a	new	menu	called	“TestMenu”	and	then	creates	a	menu
item	called	“Open.”	The	menu	item	is	then	assigned	status-line	help	with	the
HelpString	property.

Sub	Ch6_AddHelp()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Create	the	new	menu

	Dim	newMenu	As	AcadPopupMenu

	Set	newMenu	=	currMenuGroup.Menus.Add	_

	("Te"	+	Chr(Asc("&"))	+	"stMenu")

	'	Add	a	menu	item	to	the	new	menu

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VBA	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	'	Create	the	menu	item

	Set	newMenuItem	=	newMenu.AddMenuItem	_

	(newMenu.count	+	1,	Chr(Asc("&"))	_

	+	"Open",	openMacro)

	'	Add	the	status	line	help	to	the	menu	item

	newMenuItem.HelpString	=	"Opens	an	AutoCAD	drawing	file."

	'	Display	the	menu	on	the	menu	bar

	newMenu.InsertInMenuBar	_

	(ThisDrawing.Application.menuBar.count	+	1)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>right-click	menu.

Customize	Toolbars	and	Menus	>	

Add	Entries	to	the	Right-Click	Menu
	
	
	

The	right-click	menu,	or	shortcut	menu,	is	a	special	menu	included	in	the
AutoCAD	base	menu	group.	This	menu	appears	when	the	user	holds	SHIFT	and
clicks	the	right	mouse	button.

AutoCAD	finds	the	shortcut	menu	by	looking	in	the	base	menu	group	for	a	menu
with	the	ShortcutMenu	property	equal	to	TRUE.	You	can	add	new	menu	items	to
the	shortcut	menu	by	following	the	steps	listed	in	Add	New	Menu	Items	to	a
Menu.

New	menu	groups	may	or	may	not	have	a	shortcut	menu	available.	To	create	a
shortcut	menu	for	a	menu	group,	follow	the	guidelines	listed	in	Create	New
Menus,	and	use	POP0	as	the	label	for	the	new	menu.

Add	a	menu	item	to	the	end	of	the	right-click	menu

This	example	adds	the	menu	item	“OpenDWG”	to	the	end	of	the	right-click
menu.

Sub	Ch6_AddMenuItemToshortcutMenu()

	Dim	currMenuGroup	As	AcadMenuGroup

	Set	currMenuGroup	=	ThisDrawing.Application.MenuGroups.Item(0)

	'	Find	the	shortcut	menu	and	assign	it	to	the

	'	shortcutMenu	variable

	Dim	scMenu	As	AcadPopupMenu

	Dim	entry	As	AcadPopupMenu

	For	Each	entry	In	currMenuGroup.Menus

	If	entry.shortcutMenu	=	True	Then

	Set	scMenu	=	entry

	End	If

	Next	entry

	'	Add	a	menu	item	to	the	shortcut	menu

	Dim	newMenuItem	As	AcadPopupMenuItem

	Dim	openMacro	As	String

	'	Assign	the	macro	the	VBA	equivalent	of	"ESC	ESC	_open	"

	openMacro	=	Chr(3)	+	Chr(3)	+	"_open	"

	Set	newMenuItem	=	scMenu.AddMenuItem	_

	("",	Chr(Asc("&"))	_

	+	"OpenDWG",	openMacro)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Use	Events
	
	
	

Events	are	notifications,	or	messages,	that	are	sent	out	by	AutoCAD	to	inform
you	about	the	current	state	of	the	session,	or	alert	you	that	something	has
happened.	For	example,	when	a	drawing	is	opened	the	BeginOpen	event	is
triggered.	This	event	contains	the	name	of	the	AutoCAD	drawing	that	was
opened.	There	is	another	event	triggered	when	a	drawing	is	closed.	Given	this
information	you	could	write	a	subroutine,	or	event	handler,	that	uses	these	events
to	track	the	amount	of	time	a	user	spends	working	on	a	particular	drawing.

Topics	in	this	section

Understand	the	Events	in	AutoCAD
Guidelines	for	Event	Handlers
Handle	Application	Level	Events
Handle	Document	Level	Events
Handle	Object	Level	Events

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	

Understand	the	Events	in	AutoCAD
	
	
	

There	are	three	types	of	events	in	AutoCAD®	:

Application	level	events	respond	to	changes	in	the	AutoCAD	application
and	its	environment.	These	events	respond	to	the	opening,	saving,
closing	and	printing	of	drawings,	creation	of	new	drawings,	issuing	of
AutoCAD	commands,	loading	or	unloading	of	ARX	and	LISP
applications,	changes	to	system	variables,	and	changes	to	the
Application	window.

Document	level	events	respond	to	the	changes	of	a	specific	document	or
its	contents.	These	events	respond	to	the	addition,	deletion,	or
modification	of	objects,	activation	of	a	shortcut	menu,	changes	in	the
pickfirst	selection	set,	changes	to	the	Drawing	window,	and	regeneration
of	the	drawing.	There	are	also	document	level	events	for	the	opening,
closing,	and	printing	of	a	drawing,	and	the	loading	or	unloading	of	ARX
and	LISP	applications	from	the	drawing.

Object	level	events	respond	to	the	changes	of	a	specific	object.	Currently
there	is	only	one	object	level	event.	It	is	triggered	whenever	an	object	is
modified.

Subroutines	that	respond	to	events	are	called	event	handlers	and	are	executed
automatically	each	and	every	time	their	designated	event	is	triggered.
Information	contained	in	events,	such	as	the	drawing	name	in	the	BeginOpen
event,	are	passed	to	event	handlers	through	parameters.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	

Guidelines	for	Event	Handlers
	
	
	

It	is	important	to	remember	that	events	simply	provide	information	on	the	state
or	activities	taking	place	within	AutoCAD.	Although	event	handlers	can	be
written	to	respond	to	those	events,	AutoCAD	is	often	in	the	middle	of	processing
commands	when	the	event	handler	is	triggered.	Event	handlers,	therefore,	have
some	restrictions	on	what	they	can	do	if	they	are	to	provide	safe	operations	in
conjunction	with	AutoCAD	and	its	database.

Do	not	rely	on	the	sequence	of	events.
When	writing	event	handlers,	do	not	rely	on	the	sequence	of	events	to
happen	in	the	exact	order	you	think	they	occur.	For	example,	if	you	issue
an	OPEN	command,	the	events	BeginCommand,	BeginOpen,	EndOpen,
and	EndCommand	will	all	be	triggered.	However,	they	may	not	occur	in
that	order.	The	only	event	sequence	you	can	safely	rely	on	is	that	a	Begin
event	will	occur	before	the	corresponding	End	event.	In	the	previous
example,	the	events	may	get	triggered	in	the	following	order:
BeginCommand,	BeginOpen,	EndCommand,	and	EndOpen,	or	even
BeginCommand,	EndCommand,	BeginOpen,	and	EndOpen.

Do	not	rely	on	the	sequence	of	operations.
If	you	delete	object1	and	then	object2,	do	not	rely	on	the	fact	that	you
will	receive	the	ObjectErased	event	for	object1	and	then	for	object2.	You
may	receive	the	ObjectErased	event	for	object2	first.

Do	not	attempt	any	interactive	functions	from	an	event	handler.
Attempting	to	execute	interactive	functions	from	within	an	event	handler
can	cause	serious	problems,	as	AutoCAD	may	still	be	processing	a
command	at	the	time	the	event	is	triggered.	Therefore,	you	should
always	avoid	the	use	of	input-acquisition	methods	such	as	GetPoint,
GetEntity,	GetKeyword,	and	so	on,	as	well	as	selection	set	operations
and	the	SendCommand	method	from	within	event	handlers.

Do	not	launch	a	dialog	box	from	within	an	event	handler.
Dialog	boxes	are	considered	interactive	functions	and	can	interfere	with
the	current	operation	of	AutoCAD.	Message	boxes	and	alert	boxes	are
not	considered	interactive	and	can	be	issued	safely;	however	issuing	a
message	box	within	an	event	handler	for	the	BeginModal,	EndModal,
Activate,	Deactivate,	and	BeginRightClick	events	results	in	unexpected
sequencing.

You	can	write	data	to	any	object	in	the	database,	except	the	object	that
issued	the	event.
Obviously,	any	object	causing	an	event	to	be	triggered	could	still	be
open	for	use	with	AutoCAD	and	the	operation	currently	in	progress.
Therefore,	avoid	writing	any	information	to	an	object	from	an	event
handler	for	the	same	object.	However,	you	can	safely	read	information
from	the	object	triggering	an	event.	For	example,	suppose	you	have	a
floor	that	is	filled	with	tiles	and	you	create	an	event	handler	attached	to
the	border	of	the	floor.	If	you	change	the	size	of	the	floor,	the	event
handler	will	automatically	add	or	subtract	tiles	to	fill	the	new	area.	The
event	handler	will	be	able	to	read	the	new	area	of	the	border,	but	it
cannot	attempt	any	changes	on	the	border	itself.

Do	not	perform	any	action	from	an	event	handler	that	will	trigger	the
same	event.
If	you	perform	the	same	action	in	an	event	handler	that	triggers	that
same	event,	you	will	create	an	infinite	loop.	For	example,	you	should
never	attempt	to	open	a	drawing	from	within	the	BeginOpen	event,	or
AutoCAD	will	simply	continue	to	open	more	drawings	until	the
maximum	number	of	open	drawings	is	reached.

Remember	that	no	events	will	be	fired	while	AutoCAD	is	displaying	a
modal	dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	

Handle	Application	Level	Events
	
	
	

Application	level	events	are	not	persistent	in	AutoCAD	VBA.	That	is,	they	are
not	automatically	enabled	when	a	VBA	project	is	loaded.	Application	level
events	must	therefore	be	enabled	for	VBA	and	all	other	ActiveX®	Automation
controllers.

Once	the	application	level	events	are	enabled,	you	have	a	wide	range	of	events
available	to	you.	These	events	include:

AppActivate

Triggered	just	before	the	main	Application	window	is	activated.

AppDeactivate

Triggered	just	before	the	main	Application	window	is	deactivated.

ARXLoaded

Triggered	when	an	ObjectARX	application	has	been	loaded.

ARXUnloaded

Triggered	when	an	ObjectARX	application	has	been	unloaded.

BeginCommand

Triggered	immediately	after	a	command	is	issued,	but	before	it	completes.

BeginFileDrop

Triggered	when	a	file	is	dropped	on	the	main	Application	window.

BeginLISP

Triggered	immediately	after	AutoCAD	receives	a	request	to	evaluate	a	LISP
expression.

BeginModal

Triggered	just	before	a	modal	dialog	box	is	displayed.

BeginOpen

Triggered	immediately	after	AutoCAD	receives	a	request	to	open	an	existing
drawing.

BeginPlot

Triggered	immediately	after	AutoCAD	receives	a	request	to	print	a	drawing.

BeginQuit

Triggered	just	before	an	AutoCAD	session	ends.

BeginSave

Triggered	immediately	after	AutoCAD	receives	a	request	to	save	the
drawing.

EndCommand

Triggered	immediately	after	a	command	completes.

EndLISP

Triggered	upon	completion	of	evaluating	a	LISP	expression.

EndModal

Triggered	just	after	a	modal	dialog	box	is	dismissed.

EndOpen

Triggered	immediately	after	AutoCAD	finishes	opening	an	existing	drawing.

EndPlot

Triggered	after	a	document	has	been	sent	to	the	printer.

EndSave

Triggered	when	AutoCAD	has	finished	saving	the	drawing.

LISPCancelled

Triggered	when	the	evaluation	of	a	LISP	expression	is	canceled.

NewDrawing

Triggered	just	before	a	new	drawing	is	created.

SysVarChanged

Triggered	when	the	value	of	a	system	variable	is	changed.

WindowChanged

Triggered	when	there	is	a	change	to	the	Application	window.

WindowMovedOrResized

Triggered	just	after	the	Application	window	has	been	moved	or	resized.

Topics	in	this	section

Enable	Application	Level	Events

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	Handle	Application	Level	Events	>	

Enable	Application	Level	Events
	
	
	

Before	you	can	use	application	level	events	you	must	create	a	new	class	module
and	declare	an	object	of	type	AcadApplication	with	events.	For	example,	assume
that	a	new	class	module	is	created	and	called	EventClassModule.	The	new	class
module	contains	the	declaration	of	the	application	with	the	VBA	keyword
WithEvents.

To	create	a	new	class	and	declare	an	Application	object	with	events

1.	 In	the	VBA	IDE,	insert	a	class	module.	From	the	Insert	menu,	choose
Class	Module.

2.	 Select	the	new	class	module	in	the	Project	window.

3.	 Change	the	name	of	the	class	in	the	Properties	window	to	EventClass-
Module.

4.	 Open	the	Code	window	for	the	class	using	F7,	or	by	selecting	the	menu
option	View	 	Code.

5.	 In	the	Code	window	for	the	class,	add	the	following	line:

Public	WithEvents	App	As	AcadApplication

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object	in	the	class	module.	(When	you	select	the	new	object	in	the
Object	box,	the	valid	events	for	that	object	are	listed	in	the	Procedure	drop-down
list	box.)

Before	the	procedures	will	run,	however,	you	must	connect	the	declared	object	in
the	class	module	with	the	Application	object.	You	can	do	this	with	the	following
code	from	any	module.

To	connect	the	declared	object	to	the	Application	object

1.	 In	the	Code	window	for	your	main	module,	add	the	following	line	to	the
declarations	section:

Dim	X	As	New	EventClassModule

2.	 In	the	same	window,	add	the	following	subroutine:

Sub	InitializeEvents()

Set	X.App	=	ThisDrawing.Application

End	Sub

3.	 In	the	code	for	your	main	module,	add	a	call	to	the	InitializeEvents
subroutine:

Call	InitializeEvents

Once	the	InitializeEvents	procedure	has	been	run,	the	App	object	in	the	class
module	points	to	the	Application	object	specified,	and	any	event	procedures	in
the	class	module	will	run	when	the	events	occur.

Prompt	to	continue	when	a	drawing	is	dropped	into	AutoCAD

This	example	intercepts	the	load	process	when	a	file	has	been	dragged	and
dropped	into	AutoCAD.	A	message	box	containing	the	name	of	the	file	that	was
dropped	and	Yes/No/Continue	buttons	that	allow	the	user	to	decide	if	the	file
should	continue	to	be	loaded	or	displayed.	If	the	user	chooses	to	cancel	out	of
the	operation,	that	decision	is	returned	through	the	Cancel	parameter	of	the
BeginFileDrop	event	and	the	file	is	not	loaded.

Public	WithEvents	ACADApp	As	AcadApplication

Sub	Example_AcadApplication_Events()

	'	This	example	intializes	the	public	variable	(ACADApp)

	'	which	will	be	used	to	intercept	AcadApplication	Events

	'

	'	Run	this	procedure	FIRST!

	'	We	could	get	the	application	from	the	ThisDocument

	'	object,	but	that	would	require	having	a	drawing	open,

	'	so	we	grab	it	from	the	system.

	Set	ACADApp	=	GetObject(,	"AutoCAD.Application.17")

End	Sub

Private	Sub	ACADApp_BeginFileDrop	_

	(ByVal	FileName	As	String,	Cancel	As	Boolean)

	'	This	example	intercepts	an	Application	BeginFileDrop	event.

	'

	'	This	event	is	triggered	when	a	drawing	file	is	dragged

	'	into	AutoCAD.

	'

	'	To	trigger	this	example	event:

	'					1)	Make	sure	to	run	the	example	that	initializes

	'					the	public	variable	(named	ACADApp)	linked	to	this	event.

	'

	'					2)	Drag	an	AutoCAD	drawing	file	into	the	AutoCAD

	'								application	from	either	the	Windows	Desktop

	'								or	Windows	Explorer

	'	Use	the	"Cancel"	variable	to	stop	the	loading	of	the

	'	dragged	file,	and	the	"FileName"	variable	to		notify

	'	the	user	which	file	is	about	to	be	dragged	in.

	If	MsgBox("AutoCAD	is	about	to	load	"	&	FileName	&	vbCrLf	_

	&	"Do	you	want	to	continue	loading	this	file?",	_

	vbYesNoCancel	+	vbQuestion)	<>	vbYes	Then

	Cancel	=	True

	End	If

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	

Handle	Document	Level	Events
	
	
	

Document	level	events	are	persistent	in	AutoCAD	VBA.	That	is,	they	are
automatically	enabled	when	a	VBA	project	is	loaded.	However,	they	are	not
enabled	for	any	other	controller,	such	as	VB.	Document	level	events	must
therefore	be	enabled	for	all	other	ActiveX	Automation	controllers.

Once	the	document	level	events	are	enabled,	you	have	a	wide	range	of	events
available	to	you.	These	events	include

Activate

Triggered	when	a	Document	window	is	activated.

BeginDocClose

Triggered	just	after	a	request	is	received	to	close	a	drawing.

BeginCommand

Triggered	immediately	after	a	command	is	issued,	but	before	it	completes.

BeginDoubleClick

Triggered	after	the	user	double-clicks	on	an	object	in	the	drawing.

BeginLISP

Triggered	immediately	after	AutoCAD	receives	a	request	to	evaluate	a	LISP
expression.

BeginPlot

Triggered	immediately	after	AutoCAD	receives	a	request	to	print	a	drawing.

BeginRightClick

Triggered	after	the	user	right-clicks	on	the	Drawing	window.

BeginSave

Triggered	immediately	after	AutoCAD	receives	a	request	to	save	the
drawing.

BeginShortcutMenuCommand

Triggered	after	the	user	right-clicks	on	the	Drawing	window,	and	before	the
shortcut	menu	appears	in	Command	mode.

BeginShortcutMenuDefault

Triggered	after	the	user	right-clicks	on	the	Drawing	window,	and	before	the
shortcut	menu	appears	in	Default	mode.

BeginShortcutMenuEdit

Triggered	after	the	user	right-clicks	on	the	Drawing	window,	and	before	the
shortcut	menu	appears	in	Edit	mode.

BeginShortcutMenuGrip

Triggered	after	the	user	right-clicks	on	the	Drawing	window,	and	before	the
shortcut	menu	appears	in	Grip	mode.

BeginShortcutMenuOsnap

Triggered	after	the	user	right-clicks	on	the	Drawing	window,	and	before	the
shortcut	menu	appears	in	Osnap	mode.

Deactivate

Triggered	when	the	Drawing	window	is	deactivated.

EndCommand

Triggered	immediately	after	a	command	completes.

EndLISP

Triggered	upon	completion	of	evaluating	a	LISP	expression.

EndPlot

Triggered	after	a	document	has	been	sent	to	the	printer.

EndSave

Triggered	when	AutoCAD	has	finished	saving	the	drawing.

EndShortcutMenu

Triggered	after	the	shortcut	menu	appears.

LayoutSwitched

Triggered	after	the	user	switches	to	a	different	layout.

LISPCancelled

Triggered	when	the	evaluation	of	a	LISP	expression	is	canceled.

ObjectAdded

Triggered	when	an	object	has	been	added	to	the	drawing.

ObjectErased

Triggered	when	an	object	has	been	erased	from	the	drawing.

ObjectModified

Triggered	when	an	object	in	the	drawing	has	been	modified.

SelectionChanged

Triggered	when	the	current	pickfirst	selection	set	changes.

WindowChanged

Triggered	when	there	is	a	change	to	the	Document	window.

WindowMovedOrResized

Triggered	just	after	the	Drawing	window	has	been	moved	or	resized.

Topics	in	this	section

Enable	Document	Level	Events	in	Environments	Other	Than	VBA
Code	Document	Level	Events	in	Environments	Other	Than	VBA
Code	Document	Level	Events	in	VBA

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	Handle	Document	Level	Events	>	

Enable	Document	Level	Events	in	Environments	Other
Than	VBA
	
	
	

Before	you	can	use	document	level	events	in	VB	or	another	environment	besides
VBA,	you	must	create	a	new	class	module	and	declare	an	object	of	type
AcadDocument	with	events.	For	example,	assume	a	new	class	module	is	created
and	called	EventClassModule.	The	new	class	module	contains	the	declaration	of
the	application	with	the	VBA	keyword	WithEvents.

To	create	a	new	class	and	declare	a	Document	object	with	events

1.	 In	the	VBA	IDE,	insert	a	class	module.	From	the	Insert	menu,	choose
Class	Module.

2.	 Select	the	new	class	module	in	the	Project	window.

3.	 Change	the	name	of	the	class	in	the	Properties	window	to	EventClass-
Module.

4.	 Open	the	Code	window	for	the	class	using	F7,	or	by	selecting	the	menu
option	View	 	Code.

5.	 In	the	Code	window	for	the	class,	add	the	following	line:

Public	WithEvents	Doc	As	AcadDocument

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object	in	the	class	module.	(When	you	select	the	new	object	in	the
Object	box,	the	valid	events	for	that	object	are	listed	in	the	Procedure	drop-down
list	box.)

Before	the	procedures	will	run,	however,	you	must	connect	the	declared	object	in
the	class	module	with	the	Document	object.	You	can	do	this	with	the	following

code	from	any	module.

To	connect	the	declared	object	to	the	Document	object

1.	 In	the	Code	window	for	your	main	module,	add	the	following	line	to	the
declarations	section:

Dim	X	As	New	EventClassModule

2.	 In	the	same	window,	add	the	following	subroutine:

ub	InitializeEvents()

	Set	X.Doc	=	ThisDrawing

End	Sub

3.	 In	the	code	for	your	main	module,	add	a	call	to	the	InitializeApp
subroutine:

Call	InitializeEvents

Once	the	InitializeEvents	procedure	has	been	run,	the	Doc	object	in	the
class	module	points	to	the	Document	object	created,	and	any	event
procedures	in	the	class	module	will	run	when	the	events	occur.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	Handle	Document	Level	Events	>	

Code	Document	Level	Events	in	Environments	Other
Than	VBA
	
	
	

Once	the	document	level	events	have	been	enabled,	you	will	find	the	Doc	class
variable	available	from	the	Object	drop-down	list	of	the	Class	Module	Code
window.	Select	the	Doc	class	and	the	list	of	available	events	will	appear	in	the
Procedure	drop-down	list.	Simply	select	the	event	you	want	to	write	a	handler
for	and	the	handler	skeleton	is	created	automatically.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	Handle	Document	Level	Events	>	

Code	Document	Level	Events	in	VBA
	
	
	

Document	level	events	are	automatically	enabled	when	a	VBA	project	is	loaded.
To	write	event	handlers	for	document	level	events	in	VBA,	you	simply	select
AcadDocument	from	the	Object	drop-down	list	in	the	Code	window.	The
available	events	for	the	document	will	appear	in	the	Procedure	drop-down	list.
Simply	select	the	event	you	want	to	write	a	handler	for	and	the	handler	skeleton
is	created	automatically.

Note	that	event	handlers	created	in	this	fashion	apply	to	the	current	active
drawing.	To	create	event	handlers	for	a	specific	drawing,	first	follow	the	steps
listed	in	Enable	Document	Level	Events	in	Environments	Other	Than	VBA.	This
will	allow	you	to	enable	a	specific	document	for	events.

The	following	example	uses	the	event	handler	for	the
BeginShortcutMenuDefault	event	to	add	the	“OpenDWG”	menu	item	to	the
beginning	of	the	shortcut	menu.	Then	the	event	handler	for	the
EndShortcutMenu	event	removes	the	additional	menu	item	so	that	it	is	not	saved
permanently	in	the	user's	menu	configuration.

Private	Sub	AcadDocument_BeginShortcutMenuDefault	_

	(ShortcutMenu	As	AutoCAD.IAcadPopupMenu)

				On	Error	Resume	Next

				'	Add	a	menu	item	to	the	cursor	menu

				Dim	newMenuItem	As	AcadPopupMenuItem

				Dim	openMacro	As	String

				openMacro	=	Chr(vbKeyEscape)	+	Chr(vbKeyEscape)	+	"_open	"

				Set	newMenuItem	=	ShortcutMenu.AddMenuItem	_

	(0,	Chr(Asc("&"))	_

	+	"OpenDWG",	openMacro)

End	Sub

Private	Sub	AcadDocument_EndShortcutMenu	_

	(ShortcutMenu	As	AutoCAD.IAcadPopupMenu)

				On	Error	Resume	Next

				ShortcutMenu.Item("OpenDWG").Delete

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	

Handle	Object	Level	Events
	
	
	

The	object	level	event	is	not	persistent	in	AutoCAD	VBA.	That	is,	it	is	not
automatically	enabled	when	a	VBA	project	is	loaded.	An	object	level	event	must
be	enabled	for	VBA	and	all	other	ActiveX	Automation	controllers.

Once	the	object	level	events	is	enabled,	the	Modified	event	is	available	to	you.
This	event	is	triggered	when	an	object	in	the	drawing	has	been	modified.

Topics	in	this	section

Enable	the	Object	Level	Event

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Use	Events	>	Handle	Object	Level	Events	>	

Enable	the	Object	Level	Event
	
	
	

Before	you	can	use	object	level	events	you	must	create	a	new	class	module	and
declare	an	object	of	type	AcadObject	with	events.	For	example,	assume	that	a
new	class	module	is	created	and	called	EventClassModule.	The	new	class
module	contains	the	declaration	of	the	application	with	the	VBA	keyword
WithEvents.

To	create	a	new	class	and	declare	a	Circle	object	with	events

1.	 In	the	VBA	IDE,	insert	a	class	module.	From	the	Insert	menu,	choose
Class	Module.

2.	 Select	the	new	class	module	in	the	Project	window.

3.	 Change	the	name	of	the	class	in	the	Properties	window	to	EventClass-
Module.

4.	 Open	the	Code	window	for	the	class	using	F7,	or	by	selecting	the	menu
option	View	 	Code.

5.	 In	the	Code	window	for	the	class,	add	the	following	line:

Public	WithEvents	Object	As	AcadCircle

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object	in	the	class	module.	(When	you	select	the	new	object	in	the
Object	box,	the	valid	events	for	that	object	are	listed	in	the	Procedure	drop-down
list	box.)

Before	the	procedures	will	run,	however,	you	must	connect	the	declared	object	in
the	class	module	with	the	Circle	object.	You	can	do	this	with	the	following	code
from	any	module.

To	connect	the	declared	object	to	the	Automation	object

1.	 In	the	Code	window	for	your	main	module,	add	the	following	line	to	the
declarations	section:

Dim	X	As	New	EventClassModule

2.	 In	the	same	window,	create	a	circle	called	“MyCircle”	and	initialize	it	as
containing	events:

Sub	InitializeEvents()

	Dim	MyCircle	As	AcadCircle

	Dim	centerPoint(0	To	2)	As	Double

	Dim	radius	As	Double

	centerPoint(0)	=	0#:	centerPoint(1)	=	0#:	centerPoint(2)	=	0#

	radius	=	5#

	Set	MyCircle	=	ThisDrawing.ModelSpace.AddCircle(centerPoint,	radius)

	Set	X.Object	=	MyCircle

End	Sub

3.	 In	the	code	for	your	main	module,	add	a	call	to	the	InitializeApp
subroutine:

Call	InitializeEvents

Once	the	InitializeEvents	procedure	has	been	run,	the	Circle	object	in	the
class	module	points	to	the	Circle	object	created,	and	any	event
procedures	in	the	class	module	will	run	when	the	events	occur.
Note When	coding	in	VBA,	you	must	provide	an	event	handler	for	all
objects	enabled	for	the	Modified	event.	If	you	do	not	provide	a	handler,
VBA	may	terminate	unexpectedly.

Display	the	area	of	a	closed	polyline	whenever	the	polyline	is	updated
This	example	creates	a	lightweight	polyline	with	events.	The	event
handler	for	the	polyline	then	displays	the	new	area	whenever	the
polyline	is	changed.	To	trigger	the	event,	simply	change	the	size	of	the
polyline	in	AutoCAD.	Remember	that	you	must	run	the
CreatePLineWithEvents	subroutine	before	the	event	handler	is	activated.

Public	WithEvents	PLine	As	AcadLWPolyline

Sub	CreatePLineWithEvents()

	'	This	example	creates	a	light	weight	polyline

	Dim	points(0	To	9)	As	Double

	points(0)	=	1:	points(1)	=	1

	points(2)	=	1:	points(3)	=	2

	points(4)	=	2:	points(5)	=	2

	points(6)	=	3:	points(7)	=	3

	points(8)	=	3:	points(9)	=	2

	Set	PLine	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

	PLine.Closed	=	True

	ThisDrawing.Application.ZoomAll

End	Sub

Private	Sub	PLine_Modified	_

	(ByVal	pObject	As	AutoCAD.IAcadObject)

	'	This	event	is	triggered	when	the	polyline	is	resized.

	'	If	the	polyline	is	deleted	the	modified	event	is	still

	'	triggered,	so	we	use	the	error	handler	to	avoid

	'	reading	data	from	a	deleted	object.

	On	Error	GoTo	ERRORHANDLER

	MsgBox	"The	area	of	"	&	pObject.ObjectName	&	"	is:	"	_

	&	pObject.Area

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Work	in	Three-Dimensional	Space
	
	
	

Most	drawings	consist	of	two-dimensional	(2D)	views	of	objects	that	are	three
dimensional	(3D).	Though	this	method	of	drafting	is	widely	used	in	the
architectural	and	engineering	communities,	it	is	limited:	the	drawings	are	2D
representations	of	3D	objects	and	must	be	visually	interpreted.	Moreover,
because	the	views	are	created	independently,	there	are	more	possibilities	for
error	and	ambiguity.	As	a	result,	you	may	want	to	create	true	3D	models	instead
of	2D	representations.	You	can	use	the	AutoCAD	drawing	tools	to	create
detailed,	realistic	3D	objects	and	manipulate	them	in	various	ways.

Topics	in	this	section

Specify	3D	Coordinates
Define	a	User	Coordinate	System
Convert	Coordinates
Create	3D	Objects
Edit	in	3D
Edit	3D	Solids

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Specify	3D	Coordinates
	
	
	

Entering	3D	world	coordinate	system	(WCS)	coordinates	is	similar	to	entering
2D	WCS	coordinates.	In	addition	to	specifying	X	and	Y	values,	you	specify	a	Z
value.	As	with	the	2D	coordinates,	a	variant	is	used	to	pass	the	coordinates	to
ActiveX®	methods	and	properties,	and	to	query	the	coordinates.

For	more	information	about	specifying	3D	coordinates,	see	“Enter	3D
Coordinates”	in	the	User's	Guide.

Define	and	query	the	coordinates	for	2D	and	3D	polylines

This	example	creates	two	polylines,	each	with	three	coordinates.	The	first
polyline	is	a	2D	polyline,	the	second	polyline	is	3D.	Notice	that	the	length	of	the
array	containing	the	vertices	is	expanded	to	include	the	Z	coordinates	in	the
creation	of	the	3D	polyline.	The	example	concludes	by	querying	the	coordinates
of	the	polylines	and	displaying	the	coordinates	in	a	message	box.

Sub	Ch8_Polyline_2D_3D()

				Dim	pline2DObj	As	AcadLWPolyline

				Dim	pline3DObj	As	AcadPolyline

				Dim	points2D(0	To	5)	As	Double

				Dim	points3D(0	To	8)	As	Double

				'	Define	three	2D	polyline	points

			points2D(0)	=	1:	points2D(1)	=	1

			points2D(2)	=	1:	points2D(3)	=	2

			points2D(4)	=	2:	points2D(5)	=	2

				'	Define	three	3D	polyline	points

			points3D(0)	=	1:	points3D(1)	=	1:	points3D(2)	=	0

			points3D(3)	=	2:	points3D(4)	=	1:	points3D(5)	=	0

			points3D(6)	=	2:	points3D(7)	=	2:	points3D(8)	=	0

				'	Create	the	2D	light	weight	Polyline

				Set	pline2DObj	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points2D)

				pline2DObj.Color	=	acRed

				pline2DObj.Update

				'	Create	the	3D	polyline

				Set	pline3DObj	=	ThisDrawing.ModelSpace.	_

	AddPolyline(points3D)

				pline3DObj.Color	=	acBlue

				pline3DObj.Update

				'	Query	the	coordinates	of	the	polylines

				Dim	get2Dpts	As	Variant

				Dim	get3Dpts	As	Variant

				get2Dpts	=	pline2DObj.Coordinates

				get3Dpts	=	pline3DObj.Coordinates

				'	Display	the	coordinates

				MsgBox	("2D	polyline	(red):	"	&	vbCrLf	&	_

	get2Dpts(0)	&	",	"	&	get2Dpts(1)	&	vbCrLf	&	_

	get2Dpts(2)	&	",	"	&	get2Dpts(3)	&	vbCrLf	&	_

	get2Dpts(4)	&	",	"	&	get2Dpts(5))

				MsgBox	("3D	polyline	(blue):	"	&	vbCrLf	&	_

	get3Dpts(0)	&	",	"	&	get3Dpts(1)	&	",	"	&	_

	get3Dpts(2)	&	vbCrLf	&	_

	get3Dpts(3)	&	",	"	&	get3Dpts(4)	&	",	"	&	_

	get3Dpts(5)	&	vbCrLf	&	_

	get3Dpts(6)	&	",	"	&	get3Dpts(7)	&	",	"	&	_

	get3Dpts(8))

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Define	a	User	Coordinate	System
	
	
	

You	define	a	user	coordinate	system	(UCS)	object	to	change	the	location	of	the
(0,	0,	0)	origin	point	and	the	orientation	of	the	XY	plane	and	Z	axis.	You	can
locate	and	orient	a	UCS	anywhere	in	3D	space,	and	you	can	define,	save,	and
recall	as	many	user	coordinate	systems	as	you	require.	Coordinate	input	and
display	are	relative	to	the	current	UCS.

To	indicate	the	origin	and	orientation	of	the	UCS,	you	can	display	the	UCS	icon
at	the	UCS	origin	point	using	the	UCSIconAtOrigin	property.	If	the	UCS	icon	is
turned	on	(see	the	UCSIconOn	property)	and	is	not	displayed	at	the	origin,	it	is
displayed	at	the	WCS	coordinate	defined	by	the	UCSORG	system	variable.

You	can	create	a	new	user	coordinate	system	using	the	Add	method.	This
method	requires	four	values	as	input:	the	coordinate	of	the	origin,	a	coordinate
on	the	X	and	Y	axes,	and	the	name	of	the	UCS.

All	coordinates	in	the	AutoCAD®	ActiveX	Automation	are	entered	in	the	world
coordinate	system.	Use	the	GetUCSMatrix	method	to	return	the	transformation
matrix	of	a	given	UCS.	Use	this	transformation	matrix	to	find	the	equivalent
WCS	coordinates.

To	make	a	UCS	active,	use	the	ActiveUCS	property	on	the	Document	object.	If
changes	are	made	to	the	active	UCS,	the	new	UCS	object	must	be	reset	as	the
active	UCS	for	the	changes	to	appear.	To	reset	the	active	UCS,	simply	call	the
ActiveUCS	property	again	with	the	updated	UCS	object.

For	more	information	about	defining	a	UCS,	see	“Control	the	User	Coordinate
System	in	3D”	in	the	User's	Guide.

Create	a	new	UCS,	make	it	active,	and	translate	the	coordinates	of	a	point
into	the	UCS	coordinates

The	following	subroutine	creates	a	new	UCS	and	sets	it	as	the	active	UCS	for

the	drawing.	It	then	asks	the	user	to	pick	a	point	in	the	drawing,	and	returns	both
WCS	and	UCS	coordinates	for	the	point.

Sub	Ch8_NewUCS()

				'	Define	the	variables	we	will	need

				Dim	ucsObj	As	AcadUCS

				Dim	origin(0	To	2)	As	Double

				Dim	xAxisPnt(0	To	2)	As	Double

				Dim	yAxisPnt(0	To	2)	As	Double

				'	Define	the	UCS	points

				origin(0)	=	4:	origin(1)	=	5:	origin(2)	=	3

				xAxisPnt(0)	=	5:	xAxisPnt(1)	=	5:	xAxisPnt(2)	=	3

				yAxisPnt(0)	=	4:	yAxisPnt(1)	=	6:	yAxisPnt(2)	=	3

				'	Add	the	UCS	to	the

				'	UserCoordinatesSystems	collection

				Set	ucsObj	=	ThisDrawing.UserCoordinateSystems.	_

	Add(origin,	xAxisPnt,	yAxisPnt,	"New_UCS")

				'	Display	the	UCS	icon

				ThisDrawing.ActiveViewport.UCSIconAtOrigin	=	True

				ThisDrawing.ActiveViewport.UCSIconOn	=	True

				'	Make	the	new	UCS	the	active	UCS

				ThisDrawing.ActiveUCS	=	ucsObj

				MsgBox	"The	current	UCS	is	:	"	&	ThisDrawing.ActiveUCS.Name	_

	&	vbCrLf	&	"	Pick	a	point	in	the	drawing."

				'	Find	the	WCS	and	UCS	coordinate	of	a	point

				Dim	WCSPnt	As	Variant

				Dim	UCSPnt	As	Variant

				WCSPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point:	")

				UCSPnt	=	ThisDrawing.Utility.TranslateCoordinates	_

	(WCSPnt,	acWorld,	acUCS,	False)

				MsgBox	"The	WCS	coordinates	are:	"	&	WCSPnt(0)	&	",	"	_

	&	WCSPnt(1)	&	",	"	&	WCSPnt(2)	&	vbCrLf	&	_

	"The	UCS	coordinates	are:	"	&	UCSPnt(0)	&	",	"	_

	&	UCSPnt(1)	&	",	"	&	UCSPnt(2)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Convert	Coordinates
	
	
	

The	TranslateCoordinates	method	translates	a	point	or	a	displacement	from	one
coordinate	system	to	another.	A	point	argument,	called	OriginalPoint,	can
be	interpreted	as	either	a	3D	point	or	a	3D	displacement	vector.	This	argument	is
distinguished	by	the	Boolean	argument,	Disp.	If	the	Disp	argument	is	set	to
TRUE,	the	OriginalPoint	argument	is	treated	as	a	displacement	vector;
otherwise,	it	is	treated	as	a	point.	Two	more	arguments	determine	which
coordinate	system	the	OriginalPoint	is	from,	and	to	which	coordinate
system	the	OriginalPoint	is	to	be	converted.	The	following	AutoCAD
coordinate	systems	can	be	specified	in	the	From	and	To	arguments:

WCS

World	coordinate	system:	The	reference	coordinate	system.	All	other
coordinate	systems	are	defined	relative	to	the	WCS,	which	never	changes.
Values	measured	relative	to	the	WCS	are	stable	across	changes	to	other
coordinate	systems.	All	points	passed	in	and	out	of	ActiveX	methods	and
properties	are	expressed	in	the	WCS	unless	otherwise	specified.

UCS

User	coordinate	system	(UCS):	The	working	coordinate	system.	The	user
specifies	a	UCS	to	make	drawing	tasks	easier.	All	points	passed	to	AutoCAD
commands,	including	those	returned	from	AutoLISP	routines	and	external
functions,	are	points	in	the	current	UCS	(unless	the	user	precedes	them	with
an	*	at	the	Command	prompt).	If	you	want	your	application	to	send
coordinates	in	the	WCS,	OCS,	or	DCS	to	AutoCAD	commands,	you	must
first	convert	them	to	the	UCS	by	calling	the	TranslateCoordinates	method.

OCS

Object	coordinate	system:	Point	values	specified	by	certain	methods	and
properties	for	the	Polyline	and	LightweightPolyline	objects	are	expressed	in
this	coordinate	system,	relative	to	the	object.	These	points	are	usually

converted	into	the	WCS,	current	UCS,	or	current	DCS,	according	to	the
intended	use	of	the	object.	Conversely,	points	in	WCS,	UCS,	or	DCS	must	be
translated	into	an	OCS	before	they	are	written	to	the	database	by	means	of
the	same	properties.	See	the	AutoCAD	ActiveX	and	VBA	Reference	for	the
methods	and	properties	that	use	this	coordinate	system.
When	converting	coordinates	to	or	from	the	OCS	you	must	enter	the	normal
for	the	OCS	in	the	final	argument	of	the	TranslateCoordinates	function.

DCS

Display	coordinate	system:	The	coordinate	system	where	objects	are
transformed	before	they	are	displayed.	The	origin	of	the	DCS	is	the	point
stored	in	the	AutoCAD	system	variable	TARGET,	and	its	Z	axis	is	the
viewing	direction.	In	other	words,	a	viewport	is	always	a	plan	view	of	its
DCS.	These	coordinates	can	be	used	to	determine	where	something	will	be
displayed	to	the	AutoCAD	user.

PSDCS

Paper	space	DCS:	This	coordinate	system	can	be	transformed	only	to	or	from
the	DCS	of	the	currently	active	model	space	viewport.	This	is	essentially	a
2D	transformation,	where	the	X	and	Y	coordinates	are	always	scaled	and
offset	if	the	Disp	argument	is	FALSE.	The	Z	coordinate	is	scaled	but	never
translated.	Therefore,	it	can	be	used	to	find	the	scale	factor	between	the	two
coordinate	systems.	The	PSDCS	can	be	transformed	only	into	the	current
model	space	viewport.	If	the	from	argument	equals	PSDCS,	then	the	to
argument	must	equal	DCS,	and	vice	versa.

Translate	OCS	coordinates	to	WCS	coordinates

This	example	creates	a	polyline	in	model	space.	The	first	vertex	for	the	polyline
is	then	displayed	in	both	the	OCS	and	WCS	coordinates.	The	conversion	from
OCS	to	WCS	requires	the	normal	for	the	OCS	be	placed	in	the	last	argument	of
the	TranslateCoordinates	method.

Sub	Ch8_TranslateCoordinates()

				'	Create	a	polyline	in	model	space.

				Dim	plineObj	As	AcadPolyline

				Dim	points(0	To	14)	As	Double

				'	Define	the	2D	polyline	points

				points(0)	=	1:	points(1)	=	1:	points(2)	=	0

				points(3)	=	1:	points(4)	=	2:	points(5)	=	0

				points(6)	=	2:	points(7)	=	2:	points(8)	=	0

				points(9)	=	3:	points(10)	=	2:	points(11)	=	0

				points(12)	=	4:	points(13)	=	4:	points(14)	=	0

				'	Create	a	light	weight	Polyline	object	in	model	space

				Set	plineObj	=	ThisDrawing.ModelSpace.AddPolyline(points)

				'	Find	the	X	and	Y	coordinates	of	the

				'	first	vertex	of	the	polyline

				Dim	firstVertex	As	Variant

				firstVertex	=	plineObj.Coordinate(0)

				'	Find	the	Z	coordinate	for	the	polyline

				'	using	the	elevation	property

				firstVertex(2)	=	plineObj.Elevation

				'	Change	the	normal	for	the	pline	so	that	the

				'	difference	between	the	coordinate	systems

				'	is	obvious.

				Dim	plineNormal(0	To	2)	As	Double

				plineNormal(0)	=	0#

				plineNormal(1)	=	1#

				plineNormal(2)	=	2#

				plineObj.Normal	=	plineNormal

				'	Translate	the	OCS	coordinate	into	WCS

				Dim	coordinateWCS	As	Variant

				coordinateWCS	=	ThisDrawing.Utility.TranslateCoordinates	_

										(firstVertex,	acOCS,	acWorld,	False,	plineNormal)

				'	Display	the	coordinates	of	the	point

				MsgBox	"The	first	vertex	has	the	following	coordinates:"	_

	&	vbCrLf	&	"OCS:	"	&	firstVertex(0)	&	",	"	&	_

	firstVertex(1)	&	",	"	&	firstVertex(2)	&	vbCrLf	&	_

	"WCS:	"	&	coordinateWCS(0)	&	",	"	&	_

	coordinateWCS(1)	&	",	"	&	coordinateWCS(2)

End	Sub	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Create	3D	Objects
	
	
	

Create	a	polyface	mesh	Create	a	wedge	solid	AutoCAD	supports	three	types	of
3D	modeling:	wireframe,	surface,	and	solid.	Each	type	has	its	own	creation	and
editing	techniques.

For	more	information	about	creating	3D	objects,	see	“Create	3D	Objects”	in	the
User's	Guide.

Topics	in	this	section

Create	Wireframes
Create	Meshes
Create	Polyface	Meshes
Create	Solids

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Create	3D	Objects	>	

Create	Wireframes
	
	
	

With	AutoCAD	you	can	create	wireframe	models	by	positioning	any	2D	planar
object	anywhere	in	3D	space.	You	can	position	2D	objects	in	3D	space	using
several	methods:

Create	the	object	by	entering	3D	points.	You	enter	a	coordinate	that
defines	the	X,	Y,	and	Z	location	of	the	point.

Set	the	default	construction	plane	(XY	plane)	on	which	you	will	draw	the
object	by	defining	a	UCS.

Move	the	object	to	its	proper	orientation	in	3D	space	after	you	create	it.

Also,	you	can	create	some	wireframe	objects,	such	as	polylines,	that	can	exist	in
all	three	dimensions.	Use	the	Add3DPoly	method	to	create	3D	polylines.

For	more	information	on	creating	wireframes,	see	“Create	Wireframe	Models”	in
the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Create	3D	Objects	>	

Create	Meshes
	
	
	

A	rectangular	mesh	(PolygonMesh	object)	represents	an	object's	surface	using
planar	facets.	The	mesh	density,	or	number	of	facets,	is	defined	in	terms	of	a
matrix	of	M	and	N	vertices,	similar	to	a	grid	consisting	of	columns	and	rows.	M
and	N	specify	the	column	and	row	position,	respectively,	of	any	given	vertex.
You	can	create	meshes	in	both	2D	and	3D,	but	they	are	used	primarily	for	3D.

Use	the	Add3DMesh	method	for	creating	rectangular	meshes.	This	method	takes
three	values	as	input:	the	number	of	vertices	in	the	M	direction,	the	numer	of
vertices	in	the	N	direction,	and	a	variant	array	containing	coordinates	for	all	the
vertices	in	the	mesh.

Once	the	PolygonMesh	is	created,	use	the	MClose	and	NClose	properties	to
close	the	mesh.

For	more	information	on	creating	meshes,	see	“Create	Surfaces”	in	the	User's
Guide.

Create	a	polygon	mesh

This	example	creates	a	4×4	polygon	mesh.	The	direction	of	the	active	viewport
is	then	adjusted	so	that	the	three-dimensional	nature	of	the	mesh	is	more	easily
viewed.

Sub	Ch8_Create3DMesh()

				Dim	meshObj	As	AcadPolygonMesh

				Dim	mSize,	nSize,	Count	As	Integer

				Dim	points(0	To	47)	As	Double

				'	create	the	matrix	of	points

				points(0)	=	0:	points(1)	=	0:	points(2)	=	0

				points(3)	=	2:	points(4)	=	0:	points(5)	=	1

				points(6)	=	4:	points(7)	=	0:	points(8)	=	0

				points(9)	=	6:	points(10)	=	0:	points(11)	=	1

				points(12)	=	0:	points(13)	=	2:	points(14)	=	0

				points(15)	=	2:	points(16)	=	2:	points(17)	=	1

				points(18)	=	4:	points(19)	=	2:	points(20)	=	0

				points(21)	=	6:	points(22)	=	2:	points(23)	=	1

				points(24)	=	0:	points(25)	=	4:	points(26)	=	0

				points(27)	=	2:	points(28)	=	4:	points(29)	=	1

				points(30)	=	4:	points(31)	=	4:	points(32)	=	0

				points(33)	=	6:	points(34)	=	4:	points(35)	=	0

				points(36)	=	0:	points(37)	=	6:	points(38)	=	0

				points(39)	=	2:	points(40)	=	6:	points(41)	=	1

				points(42)	=	4:	points(43)	=	6:	points(44)	=	0

				points(45)	=	6:	points(46)	=	6:	points(47)	=	0

				mSize	=	4:	nSize	=	4

				'	creates	a	3Dmesh	in	model	space

				Set	meshObj	=	ThisDrawing.ModelSpace.	_

	Add3DMesh(mSize,	nSize,	points)

				'	Change	the	viewing	direction	of	the	viewport

				'	to	better	see	the	cylinder

				Dim	NewDirection(0	To	2)	As	Double

				NewDirection(0)	=	-1

				NewDirection(1)	=	-1

				NewDirection(2)	=	1

				ThisDrawing.ActiveViewport.direction	=	NewDirection

				ThisDrawing.ActiveViewport	=	ThisDrawing.ActiveViewport

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Create	3D	Objects	>	

Create	Polyface	Meshes
	
	
	

Use	the	AddPolyfaceMesh	method	to	create	a	polyface	mesh,	with	each	face
capable	of	having	numerous	vertices.

Creating	a	polyface	mesh	is	similar	to	creating	a	rectangular	mesh.	To	create	a
polyface	mesh,	specify	coordinates	for	all	its	vertices	and	then	define	each	face
by	entering	vertex	numbers	for	all	the	vertices	of	that	face.	As	you	create	the
polyface	mesh,	you	can	set	specific	edges	to	be	invisible,	assign	them	to	layers,
or	give	them	colors.

To	make	an	edge	invisible,	enter	the	vertex	number	for	the	edge	as	a	negative
value.	For	more	information	on	creating	polyface	meshes,	see	the
AddPolyfaceMesh	method	in	the	ActiveX	and	VBA	Reference.

Create	a	polyface	mesh

This	example	creates	a	Polyface	Mesh	object	in	model	space.	The	viewing
direction	of	the	active	viewport	is	updated	to	display	the	three-dimensional
nature	of	the	mesh	more	easily.

Sub	Ch8_CreatePolyfaceMesh()

				'Define	the	mesh	vertices

				Dim	vertex(0	To	17)	As	Double

				vertex(0)	=	4:	vertex(1)	=	7:	vertex(2)	=	0

				vertex(3)	=	5:	vertex(4)	=	7:	vertex(5)	=	0

				vertex(6)	=	6:	vertex(7)	=	7:	vertex(8)	=	0

				vertex(9)	=	4:	vertex(10)	=	6:	vertex(11)	=	0

				vertex(12)	=	5:	vertex(13)	=	6:	vertex(14)	=	0

				vertex(15)	=	6:	vertex(16)	=	6:	vertex(17)	=	1

				'	Define	the	face	list

				Dim	FaceList(0	To	7)	As	Integer

				FaceList(0)	=	1

				FaceList(1)	=	2

				FaceList(2)	=	5

				FaceList(3)	=	4

				FaceList(4)	=	2

				FaceList(5)	=	3

				FaceList(6)	=	6

				FaceList(7)	=	5

				'	Create	the	polyface	mesh

				Dim	polyfaceMeshObj	As	AcadPolyfaceMesh

				Set	polyfaceMeshObj	=	ThisDrawing.ModelSpace.AddPolyfaceMesh	_

	(vertex,	FaceList)

				'	Change	the	viewing	direction	of	the	viewport	to

				'	better	see	the	polyface	mesh

				Dim	NewDirection(0	To	2)	As	Double

				NewDirection(0)	=	-1

				NewDirection(1)	=	-1

				NewDirection(2)	=	1

				ThisDrawing.ActiveViewport.direction	=	NewDirection

				ThisDrawing.ActiveViewport	=	ThisDrawing.ActiveViewport

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Create	3D	Objects	>	

Create	Solids
	
	
	

A	solid	object	(3DSolid	object)	represents	the	entire	volume	of	an	object.	Solids
are	the	most	informationally	complete	and	least	ambiguous	of	the	3D	modeling
types.	Complex	solid	shapes	are	also	easier	to	construct	and	edit	than	wireframes
and	meshes.

You	create	solids	from	one	of	the	basic	solid	shapes	of	box,	cone,	cylinder,
sphere,	torus,	and	wedge	or	by	extruding	a	2D	object	along	a	path	or	revolving	a
2D	object	about	an	axis.	Use	one	of	the	following	methods	to	create	solids:

AddBox,	AddCone,	AddCylinder,	AddEllipticalCone,	AddEllipticalCylinder,
AddExtrudedSolid,	AddExtrudedSolidAlongPath,	AddRevolvedSolid,
AddSolid,	AddSphere,	AddTorus,	or	AddWedge.

Like	meshes,	solids	are	displayed	as	wireframes	until	you	hide,	shade,	or	render
them.	Additionally,	you	can	analyze	solids	for	their	mass	properties	(volume,
moments	of	inertia,	center	of	gravity,	and	so	forth).	Use	the	following	properties
to	analyze	solids:	MomentOfInertia,	PrincipalDirections,	PrincipalMoments,
ProductOfInertia,	RadiiOfGyration,	and	Volume.

The	ContourlinesPerSurface	property	controls	the	number	of	tessellation	lines
used	to	visualize	curved	portions	of	the	wireframe.	The	RenderSmoothness
property	adjusts	the	smoothness	of	shaded	and	hidden-line	objects.

For	more	information	on	creating	solids,	see	“Create	3D	Objects”	in	the	User's
Guide.

Create	a	wedge	solid

The	following	example	creates	a	wedge-shaped	solid	in	model	space.	The
viewing	direction	of	the	active	viewport	is	updated	to	display	the	three-
dimensional	nature	of	the	wedge	more	easily.

Sub	Ch8_CreateWedge()

				Dim	wedgeObj	As	Acad3DSolid

				Dim	center(0	To	2)	As	Double

				Dim	length	As	Double

				Dim	width	As	Double

				Dim	height	As	Double

				'	Define	the	wedge

				center(0)	=	5#:	center(1)	=	5#:	center(2)	=	0

				length	=	10#:	width	=	15#:	height	=	20#

				'	Create	the	wedge	in	model	space

				Set	wedgeObj	=	ThisDrawing.ModelSpace.	_

	AddWedge(center,	length,	width,	height)

				'	Change	the	viewing	direction	of	the	viewport

				Dim	NewDirection(0	To	2)	As	Double

				NewDirection(0)	=	-1

				NewDirection(1)	=	-1

				NewDirection(2)	=	1

				ThisDrawing.ActiveViewport.direction	=	NewDirection

				ThisDrawing.ActiveViewport	=	ThisDrawing.ActiveViewport

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Edit	in	3D
	
	
	

This	section	describes	how	to	edit	3D	objects	by,	for	example,	rotating,	arraying,
and	mirroring.

Topics	in	this	section

Rotate	in	3D
Array	in	3D
Mirror	Objects	Along	a	Plane

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Edit	in	3D	>	

Rotate	in	3D
	
	
	

With	the	Rotate	method,	you	can	rotate	objects	in	2D	about	a	specified	point.
The	direction	of	rotation	is	determined	by	the	WCS.	The	Rotate3D	method
rotates	objects	in	3D	about	a	specified	axis.	The	Rotate3D	method	takes	three
values	as	input:	the	WCS	coordinates	of	the	two	points	defining	the	rotation	axis
and	the	rotation	angle	in	radians.

To	rotate	3D	objects,	use	either	the	Rotate	or	Rotate3D	method.

For	more	information	on	rotating	in	3D,	see	“Rotate	Objects”	in	the	User's
Guide.

Create	a	3D	box	and	rotate	it	about	an	axis

This	example	creates	a	3D	box.	It	then	defines	the	axis	for	rotation	and	finally
rotates	the	box	30	degrees	about	the	axis.

Sub	Ch8_Rotate_3DBox()

				Dim	boxObj	As	Acad3DSolid

				Dim	length	As	Double

				Dim	width	As	Double

				Dim	height	As	Double

				Dim	center(0	To	2)	As	Double

				'	Define	the	box

				center(0)	=	5:	center(1)	=	5:	center(2)	=	0

				length	=	5

				width	=	7

				height	=	10

				'	Create	the	box	object	in	model	space

				Set	boxObj	=	ThisDrawing.ModelSpace.	_

	AddBox(center,	length,	width,	height)

				'	Define	the	rotation	axis	with	two	points

				Dim	rotatePt1(0	To	2)	As	Double

				Dim	rotatePt2(0	To	2)	As	Double

				Dim	rotateAngle	As	Double

				rotatePt1(0)	=	-3:	rotatePt1(1)	=	4:	rotatePt1(2)	=	0

				rotatePt2(0)	=	-3:	rotatePt2(1)	=	-4:	rotatePt2(2)	=	0

				rotateAngle	=	30

				rotateAngle	=	rotateAngle	*	3.141592	/	180#

				'	Rotate	the	box

				boxObj.Rotate3D	rotatePt1,	rotatePt2,	rotateAngle

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Edit	in	3D	>	

Array	in	3D
	
	
	

With	the	ArrayRectangular	method,	you	can	create	a	rectangular	array	in	3D.	In
addition	to	specifying	the	number	of	columns	(X	direction)	and	rows	(Y
direction),	you	also	specify	the	number	of	levels	(Z	direction).

For	more	information	on	using	arrays	of	objects	in	3D,	see	“Create	an	Array	of
Objects”	in	the	User's	Guide.

Create	a	3D	rectangular	array

This	example	creates	a	circle	and	then	uses	that	circle	to	create	a	rectangular
array	of	four	rows,	four	columns,	and	three	levels	of	circles.

Sub	Ch8_CreateRectangularArray()

				'	Create	the	circle

				Dim	circleObj	As	AcadCircle

				Dim	center(0	To	2)	As	Double

				Dim	radius	As	Double

				center(0)	=	2:	center(1)	=	2:	center(2)	=	0

				radius	=	0.5

				Set	circleObj	=	ThisDrawing.ModelSpace.	_

	AddCircle(center,	radius)

				'	Define	the	rectangular	array

				Dim	numberOfRows	As	Long

				Dim	numberOfColumns	As	Long

				Dim	numberOfLevels	As	Long

				Dim	distanceBwtnRows	As	Double

				Dim	distanceBwtnColumns	As	Double

				Dim	distanceBwtnLevels	As	Double

				numberOfRows	=	4

				numberOfColumns	=	4

				numberOfLevels	=	3

				distanceBwtnRows	=	1

				distanceBwtnColumns	=	1

				distanceBwtnLevels	=	4

				'	Create	the	array	of	objects

				Dim	retObj	As	Variant

				retObj	=	circleObj.ArrayRectangular	_

								(numberOfRows,	numberOfColumns,	_

									numberOfLevels,	distanceBwtnRows,	_

									distanceBwtnColumns,	distanceBwtnLevels)

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	Edit	in	3D	>	

Mirror	Objects	Along	a	Plane
	
	
	

With	the	Mirror3D	method,	you	can	mirror	objects	along	a	specified	mirroring
plane	specified	by	three	points.

For	more	information	on	mirroring	objects	in	3D,	see	“Mirror	Objects”	in	the
User's	Guide.

Mirror	in	3D

This	example	creates	a	box	in	model	space.	It	then	mirrors	the	box	about	a	plane
and	colors	the	mirrored	box	red.

Sub	Ch8_MirrorABox3D()

				'	Create	the	box	object

				Dim	boxObj	As	Acad3DSolid

				Dim	length	As	Double

				Dim	width	As	Double

				Dim	height	As	Double

				Dim	center(0	To	2)	As	Double

				center(0)	=	5#:	center(1)	=	5#:	center(2)	=	0

				length	=	5#:	width	=	7:	height	=	10#

				'	Create	the	box	(3DSolid)	object	in	model	space

				Set	boxObj	=	ThisDrawing.ModelSpace.	_

	AddBox(center,	length,	width,	height)

				'	Define	the	mirroring	plane	with	three	points

				Dim	mirrorPt1(0	To	2)	As	Double

				Dim	mirrorPt2(0	To	2)	As	Double

				Dim	mirrorPt3(0	To	2)	As	Double

				mirrorPt1(0)	=	1.25:	mirrorPt1(1)	=	0:	mirrorPt1(2)	=	0

				mirrorPt2(0)	=	1.25:	mirrorPt2(1)	=	2:	mirrorPt2(2)	=	0

				mirrorPt3(0)	=	1.25:	mirrorPt3(1)	=	2:	mirrorPt3(2)	=	2

				'	Mirror	the	box

				Dim	mirrorBoxObj	As	Acad3DSolid

				Set	mirrorBoxObj	=	boxObj.Mirror3D	_

	(mirrorPt1,	mirrorPt2,	mirrorPt3)

				mirrorBoxObj.Color	=	acRed

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Work	in	Three-Dimensional	Space	>	

Edit	3D	Solids
	
	
	

Once	you	have	created	a	solid,	you	can	create	more	complex	shapes	by
combining	solids.	You	can	join	solids,	subtract	solids	from	each	other,	or	find	the
common	volume	(overlapping	portion)	of	solids.	Use	the	Boolean	or
CheckInterference	method	to	perform	these	combinations.

Solids	are	further	modified	by	obtaining	the	2D	cross	section	of	a	solid	or	slicing
a	solid	into	two	pieces.	Use	the	SectionSolid	method	to	find	cross	sections	of
solids,	and	the	SliceSolid	method	for	slicing	a	solid	into	two	pieces.

Find	the	interference	between	two	solids

This	example	creates	a	box	and	a	cylinder	in	model	space.	It	then	finds	the
interference	between	the	two	solids	and	creates	a	new	solid	from	that
interference.	For	ease	of	viewing,	the	box	is	colored	white,	the	cylinder	is
colored	cyan,	and	the	interference	solid	is	colored	red.

Sub	Ch8_FindInterferenceBetweenSolids()

				'	Define	the	box

				Dim	boxObj	As	Acad3DSolid

				Dim	length	As	Double

				Dim	width	As	Double

				Dim	height	As	Double

				Dim	center(0	To	2)	As	Double

				center(0)	=	5:	center(1)	=	5:	center(2)	=	0

				length	=	5

				width	=	7

				height	=	10

				'	Create	the	box	object	in	model	space

				'	and	color	it	white

				Set	boxObj	=	ThisDrawing.ModelSpace.	_

	AddBox(center,	length,	width,	height)

				boxObj.Color	=	acWhite

				'	Define	the	cylinder

				Dim	cylinderObj	As	Acad3DSolid

				Dim	cylinderRadius	As	Double

				Dim	cylinderHeight	As	Double

				center(0)	=	0:	center(1)	=	0:	center(2)	=	0

				cylinderRadius	=	5

				cylinderHeight	=	20

				'	Create	the	Cylinder	and

				'	color	it	cyan

				Set	cylinderObj	=	ThisDrawing.ModelSpace.AddCylinder	_

	(center,	cylinderRadius,	cylinderHeight)

				cylinderObj.Color	=	acCyan

				'	Find	the	interference	between	the	two	solids

				'	and	create	a	new	solid	from	it.	Color	the

				'	new	solid	red.

				Dim	solidObj	As	Acad3DSolid

				Set	solidObj	=	boxObj.CheckInterference(cylinderObj,	True)

				solidObj.Color	=	acRed

				ZoomAll

End	Sub

Slice	a	solid	into	two	solids

This	example	creates	a	box	in	model	space.	It	then	slices	the	box	based	on	a
plane	defined	by	three	points.	The	slice	is	returned	as	a	3DSolid.

Sub	Ch8_SliceABox()

				'	Create	the	box	object

				Dim	boxObj	As	Acad3DSolid

				Dim	length	As	Double

				Dim	width	As	Double

				Dim	height	As	Double

				Dim	center(0	To	2)	As	Double

				center(0)	=	5#:	center(1)	=	5#:	center(2)	=	0

				length	=	5#:	width	=	7:	height	=	10#

				'	Create	the	box	(3DSolid)	object	in	model	space

				Set	boxObj	=	ThisDrawing.ModelSpace.	_

	AddBox(center,	length,	width,	height)

				boxObj.Color	=	acWhite

				'	Define	the	section	plane	with	three	points

				Dim	slicePt1(0	To	2)	As	Double

				Dim	slicePt2(0	To	2)	As	Double

				Dim	slicePt3(0	To	2)	As	Double

				slicePt1(0)	=	1.5:	slicePt1(1)	=	7.5:	slicePt1(2)	=	0

				slicePt2(0)	=	1.5:	slicePt2(1)	=	7.5:	slicePt2(2)	=	10

				slicePt3(0)	=	8.5:	slicePt3(1)	=	2.5:	slicePt3(2)	=	10

				'	slice	the	box	and	color	the	new	solid	red

				Dim	sliceObj	As	Acad3DSolid

				Set	sliceObj	=	boxObj.SliceSolid	_

	(slicePt1,	slicePt2,	slicePt3,	True)

				sliceObj.Color	=	acRed

				ZoomAll

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Define	Layouts	and	Plot
	
	
	

After	you've	created	your	drawing	with	AutoCAD,	you	usually	plot	it	on	paper.
A	plotted	drawing	can	contain	a	single	view	of	your	drawing	or	a	more	complex
arrangement	of	views.	In	paper	space,	you	can	create	windows	called	floating
viewports,	which	display	various	views	of	the	drawing.	Depending	on	your
needs,	you	can	plot	one	or	more	viewports,	or	set	options	that	determine	what	is
plotted	and	how	the	image	fits	on	the	paper.

Topics	in	this	section

Model	Space	and	Paper	Space
Layouts
Viewports
Plot	Your	Drawing

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	

Model	Space	and	Paper	Space
	
	
	

Model	space	is	the	drawing	environment	in	which	you	create	the	geometry	for
your	model.	Normally,	as	you	begin	to	draw	in	model	space,	you	designate	your
drawing	limits	to	determine	the	extents	of	the	drawing	environment,	and	you
draw	in	real	world	units.

Paper	space	represents	the	paper	representation	of	your	model	as	it	will	be
plotted.	In	paper	space	you	can	lay	out	different	views	of	your	drawing,	scale
views	independently	from	one	another,	and	arrange	the	different	views	of	your
drawing	as	you	want	them	to	be	plotted.	There	can	be	many	different	paper
space	representations	of	your	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	

Layouts
	
	
	

All	the	geometry	of	your	drawing	is	contained	in	layouts.	Model	space	geometry
is	contained	on	a	single	layout	named	Model.	You	cannot	rename	the	model
space	layout,	nor	can	you	create	another	model	space	layout.	There	can	be	only
one	model	space	layout	per	drawing.

Paper	space	geometry	is	also	contained	on	layouts.	You	can	have	many	different
paper	space	layouts	in	your	drawing,	each	representing	a	different	configuration
to	print.	You	can	change	the	name	of	the	paper	space	layouts.

In	ActiveX®	Automation	the	ModelSpace	collection	contains	all	the	geometry	in
the	model	space	layout.	Because	there	can	be	more	than	one	paper	space	layout
in	a	drawing,	the	PaperSpace	collection	points	to	the	last	active	paper	space
layout.

For	more	information	about	working	with	paper	space	layouts,	see	“Hatches,
Fills,	and	Wipeouts”	in	the	User's	Guide.

Topics	in	this	section

Layouts	and	Blocks
Plot	Configurations
Layout	Settings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	

Layouts	and	Blocks
	
	
	

The	content	of	any	layout	is	distributed	among	two	different	ActiveX	objects:
the	Layout	object	and	the	Block	object.	The	Layout	object	contains	the	plot
settings	and	the	visual	properties	of	the	layout	as	it	appears	in	the	AutoCAD	user
interface.	The	Block	object	contains	the	geometry	for	the	layout.

Each	Layout	object	is	associated	with	one,	and	only	one,	Block	object.	To	access
the	Block	object	associated	with	a	given	layout,	use	the	Block	property.
Conversely,	each	Block	object	is	associated	with	one,	and	only	one,	Layout
object.	To	access	the	Layout	object	associated	with	a	given	Block,	use	the
Layout	property	for	that	block.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	

Plot	Configurations
	
	
	

A	PlotConfiguration	object	is	similar	to	a	Layout	object,	as	both	contain
identical	plot	information.	The	difference	is	that	a	Layout	object	is	associated
with	a	Block	object	containing	the	geometry	to	plot.	A	PlotConfiguration	object
is	not	associated	with	a	particular	Block	object.	It	is	simply	a	named	collection
of	plot	settings	available	for	use	with	any	geometry.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	

Layout	Settings
	
	
	

Layout	settings	control	the	final	plotted	output.	These	settings	affect	the	paper
size,	plot	scale,	plot	area,	plot	origin,	and	the	plot	device	name.	Understanding
how	to	use	layout	settings	ensures	that	the	layout	is	plotted	as	expected.	All	the
settings	for	a	layout	can	be	changed	from	the	Layout	object	properties	and
methods.

Topics	in	this	section

Paper	Size	and	Units
Adjust	the	Plot	Origin
Set	the	Plot	Area
Set	the	Plot	Scale
Set	the	Lineweight	Scale
Set	the	Plot	Device

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Paper	Size	and	Units
	
	
	

The	choice	of	paper	size	depends	on	the	plotter	configured	for	your	system.	Each
different	plotter	will	have	a	standard	list	of	available	paper	sizes.	You	can	change
the	paper	size	for	a	layout	by	using	the	CanonicalMediaName	property.

You	can	also	specify	the	units	for	your	layout	using	the	PaperUnits	property.
This	property	takes	one	of	three	values:	acInches,	acMillimeters,	or
acPixels.	If	your	plotter	is	configured	for	raster	output,	you	must	specify	the
output	size	in	pixels.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Adjust	the	Plot	Origin
	
	
	

The	plot	origin	is	the	lower-left	corner	of	the	specified	plotted	area	and	is
controlled	with	the	PlotOrigin	property.	Typically,	the	plot	origin	is	set	to	(0,	0).
However,	you	can	center	the	plot	on	the	sheet	of	paper	by	setting	the	CenterPlot
property	to	TRUE.	Centering	the	plot	alters	the	plot	origin.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Set	the	Plot	Area
	
	
	

When	you	prepare	to	plot	a	layout,	you	can	specify	the	plot	area	to	determine
what	will	be	included	in	the	plot.	To	specify	the	plot	area,	use	the	PlotType
property.	This	property	requires	one	of	the	following	values	as	input:

acDisplay

Prints	everything	that	is	in	the	current	model	space	display.	This	option	is
unavailable	when	plotting	from	a	paper	space	layout.

acExtents

Prints	everything	that	falls	within	the	boundaries	of	the	currently	selected
space.

acLimits

Prints	everything	that	is	in	the	limits	of	the	current	space.

acView

Prints	the	view	named	by	the	ViewToPlot	property.

acWindow

Prints	everything	in	the	window	specified	by	the	SetWindowToPlot	method.

acLayout

Prints	everything	that	falls	within	the	margins	of	the	specified	paper	size.
This	option	is	not	available	when	printing	from	model	space.

When	you	create	a	new	paper	space	layout,	the	default	option	is	acLayout.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Set	the	Plot	Scale
	
	
	

Generally,	you	draw	objects	at	their	actual	size.	When	you	plot	the	drawing,	you
can	either	specify	a	precise	scale	or	fit	the	image	to	the	paper.	To	specify	a	scale,
enter	either	a	standard	or	custom	plot	scale.

To	enter	a	standard	scale,	first	set	the	UseStandardScale	property	to	TRUE.	You
can	then	enter	the	desired	scale	using	the	StandardScale	property.

To	enter	a	custom	scale,	first	set	the	UseStandardScale	property	to	FALSE.	You
can	then	enter	the	custom	scale	using	the	SetCustomScale	method.

When	you	are	reviewing	an	early	draft	view,	a	precise	scale	is	not	always
important.	You	can	use	the	acScaleToFit	value	of	the	StandardScale
property	to	plot	the	layout	at	the	largest	possible	size	that	fits	the	paper.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Set	the	Lineweight	Scale
	
	
	

Lineweights	can	be	scaled	proportionately	in	a	layout	with	the	plot	scale.
Typically,	lineweights	specify	the	linewidth	of	plotted	objects	and	are	plotted
with	the	linewidth	size	regardless	of	the	plot	scale.	Most	often,	you	use	the
default	plot	scale	of	1:1	when	plotting	a	layout.	However,	if	you	want	to	plot	an
E-size	layout	that	is	scaled	to	fit	on	an	A-size	sheet	of	paper,	for	example,	you
can	specify	lineweights	to	be	scaled	in	proportion	to	the	new	plot	scale.

To	scale	lineweights,	set	the	ScaleLineweights	property	to	TRUE.	If	you	do	not
want	lineweights	to	be	scaled,	set	this	property	to	FALSE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Layouts	>	Layout	Settings	>	

Set	the	Plot	Device
	
	
	

The	plot	device	name	is	specified	in	the	ConfigName	property.	You	can	set	this
name	to	any	valid	device	name	for	your	system.	If	you	do	not	set	this	property,
plots	will	be	sent	to	the	default	device	for	your	system.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	

Viewports
	
	
	

When	working	in	model	space	you	draw	geometry	in	tile	viewports	(referred	to
as	Viewport	objects	in	ActiveX	Automation).	You	can	display	one	or	several
different	viewports	at	a	time.	If	several	tiled	viewports	are	displayed,	editing	in
one	viewport	affects	all	other	viewports.	However,	you	can	set	magnification,
viewpoint,	grid,	and	snap	settings	individually	for	each	viewport.

In	paper	space,	you	work	in	floating	paper	space	viewports	(referred	to	as
PViewport	objects	in	ActiveX	Automation)	to	contain	different	views	of	your
model.	Floating	viewports	are	treated	as	objects	you	can	move,	resize,	and	shape
to	create	a	suitable	layout.	You	also	can	draw	objects,	such	as	title	blocks	or
annotations,	directly	in	the	paper	space	view	without	affecting	the	model	itself.

For	more	information	about	viewports,	see	“Set	Model	Space	Viewports”	and

“Display	Multiple	Views	in	Model	Space”	in	the	User's	Guide.

Topics	in	this	section

Floating	Viewports
Switch	to	a	Paper	Space	Layout
Switch	to	the	Model	Space	Layout
Create	Paper	Space	Viewports
Change	Viewport	Views	and	Content
Scale	Views	Relative	to	Paper	Space

Scale	Pattern	Linetypes	in	Paper	Space
Use	Shaded	Viewports

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Floating	Viewports
	
	
	

You	cannot	edit	the	model	in	paper	space.	To	access	the	model	in	a	PViewport
object,	toggle	from	paper	space	to	model	space	using	the	ActiveSpace	property.
As	a	result,	you	can	work	with	the	model	while	keeping	the	overall	layout
visible.	In	PViewport	objects,	the	editing	and	view-changing	capabilities	are
almost	the	same	as	in	Viewport	objects.	However,	you	have	more	control	over
the	individual	views.	For	example,	you	can	freeze	or	turn	off	layers	in	some
viewports	without	affecting	others.	You	can	turn	an	entire	viewport	display	on	or
off.	You	can	also	align	views	between	viewports	and	scale	the	views	relative	to
the	overall	layout.

The	following	illustration	shows	how	different	views	of	a	model	are	displayed	in
paper	space.	Each	paper	space	image	represents	a	PViewport	object	with	a
different	view.	In	one	view,	the	dimensioning	layer	is	frozen.	Notice	that	the	title
block,	border,	and	annotation,	which	are	drawn	in	paper	space,	do	not	appear	in
the	Model	Space	view.	Also,	the	layer	containing	the	viewport	borders	has	been
turned	off.

When	you	work	in	a	Viewport	object,	the	ActiveSpace	property	must	always	be
set	to	acModelSpace.	When	you	are	working	in	a	PViewport	object,	you	can
set	the	ActiveSpace	property	to	either	acModelSpace	or	acPaperSpace,
thus	allowing	you	to	switch	between	paper	space	and	model	space	as	needed.

PViewport	object,	Viewport	object,	and	ActiveSpace

property	settings

Type	of
viewport Status Usage

PViewport ActiveSpace	=
acPaperspace

Arrange	the	layout	by
creating	floating
viewports	and	adding
title	block,	borders,	and
annotation.	Editing	does
not	affect	the	model.

PViewport ActiveSpace	=
acModelspace

Work	within	floating
viewports	to	edit	the
model	or	change	views.
You	can	turn	off	or
freeze	layers	in
individual	viewports.

Viewport ActiveSpace	=
acModelspace

Split	the	screen	into	tiled
viewports	to	edit
different	views	of	the
model.

In	AutoCAD®	ActiveX	Automation,	the	ActiveSpace	property	is	used	to	control
the	TILEMODE	system	variable.	Setting	ThisDrawing.ActiveSpace
=acModelSpace	is	equivalent	to	setting	TILEMODE	=	on,	and	setting
ThisDrawing.ActiveSpace	=	acPaperSpace	is	equivalent	to	setting
TILEMODE	=	off.

Similarly,	the	MSpace	property	is	the	equivalent	of	both	the	MSPACE	and
PSPACE	commands	in	AutoCAD.	Setting	ThisDrawing.MSpace	=	TRUE
is	the	same	as	using	the	MSPACE	command:	it	switches	to	model	space.	Setting
ThisDrawing.MSpace	=	FALSE	is	the	same	as	using	the	PSPACE
command:	it	switches	to	paper	space.

In	addition,	you	are	required	to	use	the	Display	method	before	setting	the
MSpace	property	to	TRUE.	The	Display	method	initializes	certain	graphic

settings	that	must	be	set	before	switching	to	model	space.	In	AutoCAD	this	is
done	“behind	the	scenes.”	However,	in	the	ActiveX	Automation	interface,	the
programmer	must	take	care	of	this	initialization.

Note Remember,	you	must	turn	on	the	display	using	the	Display	method	for	at
least	one	PViewport	object	before	you	can	set	the	MSpace	property	to	TRUE.
Failure	to	turn	on	the	display	will	result	in	an	error	being	returned	when	you	try
to	set	the	MSpace	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Switch	to	a	Paper	Space	Layout
	
	
	

From	model	space,	you	can	switch	to	the	last	active	paper	space	layout.

To	switch	to	the	last	active	paper	space	layout

1.	 Set	the	ActiveSpace	property	to	acPaperSpace:

ThisDrawing.ActiveSpace	=	acPaperSpace

2.	 Toggle	the	MSpace	property	to	FALSE:

ThisDrawing.MSpace	=	FALSE

When	you	are	in	paper	space,	AutoCAD	displays	the	paper	space	user
coordinate	system	(UCS)	icon	in	the	lower-left	corner	of	the	graphics	area.	The
crosshairs	indicate	that	the	paper	space	layout	area	(not	the	views	in	the
viewports)	can	be	edited.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Switch	to	the	Model	Space	Layout
	
	
	

From	paper	space,	you	can	switch	to	model	space	floating	viewports	or	model
space	tiled	viewports.

To	switch	to	floating	viewports

1.	 Use	the	Display	method	to	initialize	graphic	settings:

ThisDrawing.ActivePViewport.Display	TRUE

2.	 Toggle	the	MSpace	property	to	TRUE:

ThisDrawing.MSpace	=	TRUE

This	will	place	you	in	model	space,	floating	viewports.

Note You	must	create	floating	viewports	before	you	attempt	to	switch	to	model
space.

To	switch	to	tiled	viewports

To	switch	to	tiled	viewports,	perform	this	additional	step:

Set	the	ActiveSpace	property	to	acModelSpace:

ThisDrawing.ActiveSpace	=	acModelSpace	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Create	Paper	Space	Viewports
	
	
	

Paper	space	viewports	are	created	with	the	AddPViewport	method.	This	method
requires	a	center	point	and	the	width	and	height	of	the	new	viewport.	Before
creating	the	viewport,	use	the	ActiveSpace	property	to	set	paper	space	as	the
current	space	(normally	done	by	setting	TILEMODE	to	0).

After	creating	the	PViewport	object,	you	can	set	properties	of	the	view	itself,
such	as	viewing	direction	(Direction	property),	lens	length	for	perspective	views
(LensLength	property),	and	grid	display	(GridOn	property).	You	can	also	control
properties	of	the	viewport	itself,	such	as	layer	(Layer	property),	linetype
(Linetype	property),	and	linetype	scaling	(LinetypeScale	property).

Create	and	enable	a	floating	viewport

This	example	switches	AutoCAD	to	paper	space,	creates	a	floating	viewport,
sets	the	view,	and	enables	the	viewport.

Sub	Ch9_SwitchToPaperSpace()

			'	Set	the	active	space	to	paper	space

				ThisDrawing.ActiveSpace	=	acPaperSpace

			'	Create	the	paperspace	viewport

				Dim	newVport	As	AcadPViewport

				Dim	center(0	To	2)	As	Double

				center(0)	=	3.25

				center(1)	=	3

				center(2)	=	0

				Set	newVport	=	ThisDrawing.PaperSpace.	_

	AddPViewport(center,	6,	5)

			'	Change	the	view	direction	for	the	viewport

				Dim	viewDir(0	To	2)	As	Double

				viewDir(0)	=	1

				viewDir(1)	=	1

				viewDir(2)	=	1

				newVport.direction	=	viewDir

			'	Enable	the	viewport

				newVport.Display	True

			'	Switch	to	model	space

				ThisDrawing.MSpace	=	True

			'	Set	newVport	current

			'	(not	always	necessary	but	a	good	idea)

				ThisDrawing.ActivePViewport	=	newVport

			'	Zoom	Extents	in	model	space

				ZoomExtents

			'	Turn	model	space	editing	off

				ThisDrawing.MSpace	=	False

				'	ZoomExtents	in	paperspace

				ZoomExtents

End	Sub

The	order	of	steps	in	the	preceding	code	is	important.	In	general,	things	must	be
done	in	the	same	order	they	would	be	done	at	the	AutoCAD	command	line.	The
only	unexpected	actions	involve	defining	the	view	and	enabling	the	viewport.

Note To	set	or	modify	aspects	of	the	view	(view	direction,	lens	length,	and	so
forth),	the	Viewport	object's	Display	method	must	be	set	to	off	(FALSE),	and
before	you	can	set	a	viewport	current	the	Display	method	must	be	set	to	on
(TRUE).

Create	four	floating	viewports

This	example	takes	the	example	from	"Create	and	enable	a	floating	viewport"
and	continues	it	by	creating	four	floating	viewports	and	setting	the	view	of	each
to	top,	front,	right,	and	isometric	views,	respectively.	Each	view	is	scaled	to	half
the	scale	of	paper	space.	To	ensure	there	is	something	to	see	in	these	viewports,
you	may	want	to	create	a	3D	solid	sphere	before	trying	this	example.

Sub	Ch9_FourPViewports()

				Dim	topVport,	frontVport	As	AcadPViewport

				Dim	rightVport,	isoVport	As	AcadPViewport

				Dim	pt(0	To	2)	As	Double

				Dim	viewDir(0	To	2)	As	Double

				ThisDrawing.ActiveSpace	=	acPaperSpace

				ThisDrawing.MSpace	=	True

'	Take	the	existing	PViewport	and	make	it	the	topVport

				pt(0)	=	2.5:	pt(1)	=	5.5:	pt(2)	=	0

				Set	topVport	=	ThisDrawing.ActivePViewport

				'No	need	to	set	Direction	for	top	view

				topVport.center	=	pt

				topVport.width	=	2.5

				topVport.height	=	2.5

				topVport.Display	True

				ThisDrawing.MSpace	=	True

				ThisDrawing.ActivePViewport	=	topVport

				ZoomExtents

				ZoomScaled	0.5,	acZoomScaledRelativePSpace

'Create	and	setup	frontVport

				pt(0)	=	2.5:	pt(1)	=	2.5:	pt(2)	=	0

				Set	frontVport	=	ThisDrawing.PaperSpace.	_

	AddPViewport(pt,	2.5,	2.5)

				viewDir(0)	=	0:	viewDir(1)	=	1:	viewDir(2)	=	0

				frontVport.direction	=	viewDir

				frontVport.Display	acOn

				ThisDrawing.MSpace	=	True

				ThisDrawing.ActivePViewport	=	frontVport

				ZoomExtents

				ZoomScaled	0.5,	acZoomScaledRelativePSpace

'Create	and	setup	rightVport

				pt(0)	=	5.5:	pt(1)	=	5.5:	pt(2)	=	0

				Set	rightVport	=	ThisDrawing.PaperSpace.	_

	AddPViewport(pt,	2.5,	2.5)

				viewDir(0)	=	1:	viewDir(1)	=	0:	viewDir(2)	=	0

				rightVport.direction	=	viewDir

				rightVport.Display	acOn

				ThisDrawing.MSpace	=	True

				ThisDrawing.ActivePViewport	=	rightVport

				ZoomExtents

				ZoomScaled	0.5,	acZoomScaledRelativePSpace

'Create	and	set	up	isoVport

				pt(0)	=	5.5:	pt(1)	=	2.5:	pt(2)	=	0

				Set	isoVport	=	ThisDrawing.PaperSpace.	_

	AddPViewport(pt,	2.5,	2.5)

				viewDir(0)	=	1:	viewDir(1)	=	1:	viewDir(2)	=	1

				isoVport.direction	=	viewDir

				isoVport.Display	acOn

				ThisDrawing.MSpace	=	True

				ThisDrawing.ActivePViewport	=	isoVport

				ZoomExtents

				ZoomScaled	0.5,	acZoomScaledRelativePSpace

'Finish:	Perform	a	regen	in	all	viewports

				ThisDrawing.Regen	True

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Change	Viewport	Views	and	Content
	
	
	

To	change	the	view	within	a	Viewport	object,	you	must	be	in	model	space	and
the	viewport	must	be	active.

To	edit	a	drawing	in	a	floating	viewport

1.	 In	model	space,	make	the	viewport	active	by	setting	the	ActiveViewport
property:

Thisdrawing.ActiveViewport	=	MyViewportObject

2.	 Edit	the	drawing.

You	can	also	create	objects	such	as	annotations,	dimensions,	and	title	blocks	in
paper	space.	You	must,	however,	set	the	ActiveSpace	property	to	FALSE,	and
turn	paper	space	on	using	the	MSpace	property.	Objects	created	in	paper	space
are	visible	only	in	paper	space.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Scale	Views	Relative	to	Paper	Space
	
	
	

Before	you	plot,	you	can	establish	accurate	zoom	scale	factors	for	each	section
of	your	drawing.	Scaling	views	relative	to	paper	space	establishes	a	consistent
scale	for	each	displayed	view.	For	example,	the	following	illustration	shows	a
paper	space	view	with	several	viewports—each	set	to	different	scales	and	views.
To	scale	the	plotted	drawing	accurately,	you	must	scale	each	view	relative	to
paper	space,	not	relative	to	the	previous	view	or	to	the	full-scale	model.

When	you	work	in	paper	space,	the	scale	factor	represents	a	ratio	between	the
size	of	the	plotted	drawing	and	the	actual	size	of	the	model	displayed	in	the
viewports.	To	derive	this	scale,	divide	paper	space	units	by	model	space	units.
For	a	quarter-scale	drawing,	for	example,	you	specify	a	scale	factor	of	one	paper
space	unit	to	four	model	space	units	(1:4).

Use	the	ZoomScaled	method	to	scale	viewports	relative	to	paper	space	units.
This	method	takes	three	values	as	input:	the	viewport	to	scale,	the	scale	factor,
and	how	you	want	that	scale	factor	applied.	The	third	value	is	optional	and
determines	how	the	scale	is	applied:

Relative	to	the	drawing	limits

Relative	to	the	current	view

Relative	to	paper	space	units

To	specify	the	scale	relative	to	paper	space	units,	enter	the	acZoomScaled-

RelativePSpace	constant	for	this	value.

As	shown	in	the	illustrations,	if	you	enter	a	scale	of	2	relative	to	the	paper	space
units,	the	scale	in	the	viewport	increases	to	twice	the	size	of	the	paper	space
units.	A	scale	of	.5	relative	to	the	paper	space	units	sets	the	scale	to	half	the	size
of	the	paper	space	units.	The	model	is	plotted	at	half	its	actual	size.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Scale	Pattern	Linetypes	in	Paper	Space
	
	
	

In	paper	space,	you	can	scale	any	type	of	linetype	in	two	ways.	The	scale	can	be
based	on	the	drawing	units	of	the	space	in	which	the	object	was	created	(model
or	paper).	The	linetype	scale	also	can	be	a	uniform	scale	based	on	paper	space
units.	You	can	use	the	PSLTSCALE	system	variable	to	maintain	the	same
linetype	scaling	for	objects	displayed	at	different	zoom	scales	in	different
viewports.	It	also	affects	the	line	display	in	3D	views.

In	the	following	illustration,	the	pattern	linetype	of	the	lines	in	model	space	is
scaled	uniformly	in	paper	space	by	the	PSLTSCALE	system	variable.	Notice	that
the	linetype	in	the	two	viewports	has	the	same	scale,	even	though	the	objects
have	different	zoom	scales.

Use	the	SetVariable	method	to	set	the	value	of	the	PSLTSCALE	system	variable.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Viewports	>	

Use	Shaded	Viewports
	
	
	

If	your	drawing	contains	3D	faces,	meshes,	extruded	objects,	surfaces,	or	solids,
you	can	plot	from	paper	space	using	the	As	Displayed,	Wireframe,	Hidden,	and
Rendered	options.	Shaded	and	rendered	viewports	are	plot-previewed,	plotted,
and	plotted	to	file	with	full	shading	and	rendering.

To	set	an	option	for	shaded	viewport	plotting	in	paper	space,	use	the	ShadePlot
property	of	the	PViewport	object.

Note To	hide	lines	in	plots	of	model	space	viewports	(Viewport	objects)	use	the
PlotHidden	property	of	the	Layout	object.	This	property	takes	a	Boolean	value:
TRUE	to	remove	hidden	lines,	FALSE	to	draw	them.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	

Plot	Your	Drawing
	
	
	

You	can	plot	your	drawing	as	it	is	viewed	in	model	space,	or	you	can	plot	one	of
your	prepared	paper	space	layouts.	Plotting	from	model	space	is	often	preferable
when	you	want	to	view	or	verify	your	drawing	prior	to	creating	a	paper	space
layout.	Once	your	model	is	ready,	you	can	prepare	and	plot	a	paper	space	layout.

Note The	BACKGROUNDPLOT	system	variable	must	be	set	to	0	before	a	script
can	plot	multiple	jobs.

Plotting	involves	working	with	two	ActiveX	Automation	objects:	the	Layout
object	and	the	Plot	object.	The	Layout	object	contains	the	plot	settings	for	a
given	layout.	The	Plot	object	contains	the	methods	and	properties	that	initiate
and	monitor	a	plotting	sequence.

Topics	in	this	section

Perform	Basic	Plotting
Plot	from	Model	Space
Plot	from	Paper	Space

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Plot	Your	Drawing	>	

Perform	Basic	Plotting
	
	
	

From	the	Plot	object,	you	can	use	the	following	methods	and	properties:

PlotToFile

Plots	to	a	file.

PlotToDevice

Plots	to	a	plotter	or	printer.

DisplayPlotPreview

Displays	a	preview	of	the	specified	plot.

QuietErrorMode

Toggles	the	quiet	error	mode	for	plot	error	reporting.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Plot	Your	Drawing	>	

Plot	from	Model	Space
	
	
	

Typically,	when	you	plot	a	large	drawing	such	as	a	floorplan,	you	can	specify	a
scale	to	convert	the	real	drawing	units	into	plotted	inches	or	millimeters.
However,	when	you	plot	from	model	space,	the	defaults	that	are	used	if	there	are
no	settings	specified	include	plot	to	system	printer,	plot	the	current	display,
scaled	to	fit,	0	rotation,	and	0,0	offset.	To	modify	the	plot	settings,	change	the
properties	on	the	Layout	object	associated	with	model	space.

Plot	the	extents	of	an	active	model	space	layout

This	example	first	checks	to	make	sure	the	active	space	is	model	space.	The
example	then	establishes	several	plot	settings.	Finally,	the	plot	is	sent	using	the
PlotToDevice	method.

Sub	Ch9_PrintModelSpace()

				'	Verify	that	the	active	space	is	model	space

				If	ThisDrawing.ActiveSpace	=	acPaperSpace	Then

								ThisDrawing.MSpace	=	True

								ThisDrawing.ActiveSpace	=	acModelSpace

				End	If

				'	Set	the	extents	and	scale	of	the	plot	area

				ThisDrawing.ModelSpace.Layout.PlotType	=	acExtents

				ThisDrawing.ModelSpace.Layout.	_

	StandardScale	=	acScaleToFit

				'	Set	the	number	of	copies	to	one

				ThisDrawing.Plot.NumberOfCopies	=	1

				'	Initiate	the	plot

				ThisDrawing.Plot.PlotToDevice

End	Sub

The	device	name	can	be	specified	using	the	ConfigName	property.	This	device
can	be	overridden	in	the	PlotToDevice	method	by	specifying	a	PC3	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Define	Layouts	and	Plot	>	Plot	Your	Drawing	>	

Plot	from	Paper	Space
	
	
	

You	can	plot	a	paper	space	layout.	You	can	plot	the	active	layout,	as
demonstrated	in	"Plot	from	Model	Space",	or	you	can	specify	by	name	the
layout	to	plot.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>bitonal	images.	<$nopage>block	references:
<$nopage>BlockReference	object:<$nopage>xrefs.

	

Advanced	Drawing	and	Organizational	Techniques
	
	
	

As	you	gain	experience,	you	can	take	advantage	of	the	many	advanced	features
of	AutoCAD	to	further	enhance	your	applications.

You	can	include	in	your	drawing	raster	images	such	as	aerial,	satellite,	and
digital	photographs,	as	well	as	computer-rendered	images.	For	information	about
raster	images	in	addition	to	the	information	in	this	section,	see	the	User's	Guide.

In	addition	to	enhancing	your	drawing's	visual	image,	AutoCAD	provides
several	features	to	help	you	organize	data,	allowing	you	to	further	expand	the
intelligence	of	the	objects	in	your	drawing.

Topics	in	this	section

Work	with	Raster	Images
Use	Blocks	and	Attributes
Use	External	References
Assign	and	Retrieve	Extended	Data

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>bitonal	images.

Advanced	Drawing	and	Organizational	Techniques	>	

Work	with	Raster	Images
	
	
	

With	AutoCAD®,	you	can	add	raster	images	to	your	vector-based	AutoCAD
drawings,	and	then	view	and	plot	the	resulting	file.

Topics	in	this	section

Attach	and	Scale	a	Raster	Image
Manage	Raster	Images
Modify	Images	and	Image	Boundaries
Clip	Images

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	

Attach	and	Scale	a	Raster	Image
	
	
	

Images	can	be	placed	in	a	drawing	file,	but	they	are	not	actually	part	of	the	file.
The	image	is	linked	to	the	drawing	file	through	a	path	name	or	a	data
management	document	ID.	Linked	image	paths	can	be	changed	or	removed	at
any	time.	To	attach	an	image,	you	create	a	Raster	object	in	your	drawing	using
the	AddRaster	method.	This	method	takes	four	values	as	input:	the	name	of	the
image	file	to	attach,	the	insertion	point	in	the	drawing	to	place	the	image,	the
scale	factor	of	the	image,	and	the	rotation	angle	of	the	image.	Remember,	the
Raster	object	represents	an	independent	link	to	the	image,	not	the	image	itself.

Once	you've	attached	an	image,	you	can	reattach	it	many	times,	creating	a	new
Raster	object	for	each	attachment.	Each	attachment	has	its	own	clip	boundary
and	its	own	settings	for	brightness,	contrast,	fade,	and	transparency.	A	single
image	can	be	cut	into	multiple	pieces	and	rearranged	independently	in	your
drawing.

You	can	set	the	raster	image	scale	factor	when	you	create	the	Raster	object	so
that	the	image's	geometry	scale	matches	the	scale	of	the	geometry	created	in	the
AutoCAD	drawing.	When	you	select	an	image	to	attach,	the	image	is	inserted	at
a	scale	factor	of	1	image	unit	of	measurement	to	1	AutoCAD	unit	of
measurement.	To	set	the	image	scale	factor,	you	need	to	know	the	scale	of	the
geometry	on	the	image,	and	you	need	to	know	what	unit	of	measurement
(inches,	feet,	and	so	forth)	you	want	to	use	to	define	1	AutoCAD	unit.	The	image
file	must	contain	resolution	information	defining	the	DPI,	or	dots	per	inch,	and
number	of	pixels	in	the	image.

If	an	image	has	resolution	information,	AutoCAD	combines	it	with	the	scale
factor	and	the	AutoCAD	unit	of	measurement	you	supply	to	scale	the	image	in
your	drawing.	For	example,	if	your	raster	image	is	a	scanned	blueprint	on	which
the	scale	is	1	inch	equals	50	feet,	or	1:600,	and	your	AutoCAD	drawing	is	set	up
so	that	1	unit	represents	1	inch,	then	to	set	the	scale	factor	of	the	image,	you

enter	600	for	the	ScaleFactor	parameter	of	the	AddRaster	method.
AutoCAD	then	inserts	the	image	at	a	scale	that	brings	the	geometry	in	the	image
into	alignment	with	the	vector	geometry	in	the	drawing.

Note If	no	resolution	information	is	defined	with	the	attached	image	file,
AutoCAD	calculates	the	image's	original	width	as	one	unit.	After	insertion,	the
image	width	in	AutoCAD	units	is	equal	to	the	scale	factor.

Attach	a	raster	image

This	example	adds	a	raster	image	in	model	space.	This	example	uses	the
watch.jpg	file	found	in	the	sample	directory.	If	you	do	not	have	this	image,	or	if
it	is	located	in	a	different	directory,	insert	a	valid	path	and	file	name	for	the
imageName	variable.

Sub	Ch10_AttachingARaster()

	Dim	insertionPoint(0	To	2)	As	Double

	Dim	scalefactor	As	Double

	Dim	rotationAngle	As	Double

	Dim	imageName	As	String

	Dim	rasterObj	As	AcadRasterImage

	imageName	=	"C:/Program	Files/AutoCAD	Directory/sample/watch.jpg'

insertionPoint(0)	=	5

insertionPoint(1)	=	5

insertionPoint(2)	=	0

scalefactor	=	2

rotationAngle	=	0

	On	Error	GoTo	ERRORHANDLER

	'	Attach	the	raster	image	in	model	space

	Set	rasterObj	=	ThisDrawing.ModelSpace.AddRaster	_

	(imageName,	insertionPoint,	_

	scalefactor,	rotationAngle)

	ZoomAll

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	

Manage	Raster	Images
	
	
	

You	can	manage	raster	image	name,	file	name,	and	file	path	using	the	properties
of	the	Raster	object.

Topics	in	this	section

Change	Image	File	Paths
Name	Images

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Manage	Raster	Images	>	

Change	Image	File	Paths
	
	
	

The	path	and	file	name	of	an	image	is	queried	or	changed	using	the	ImageFile
property.	The	path	set	by	this	property	is	the	actual	path	where	AutoCAD	looks
for	the	image.

If	AutoCAD	cannot	locate	the	drawing	(for	example,	if	you	have	moved	the	file
to	a	different	directory	than	the	one	saved	with	the	ImageFile	property),	it
removes	relative	or	absolute	path	information	from	the	name	(for	example,
\images\tree.tga	or	c:\my	project\images\tree.tga	becomes	tree.tga)	and	searches
the	paths	you	have	defined	using	the	SetProjectFilePath	method	on	the
Preferences	object.	If	the	drawing	is	not	located	in	the	paths,	it	attempts	the	first
search	path	again.

You	can	remove	the	path	from	the	file	name	or	specify	a	relative	path	by
resetting	the	ImageFile	property.

Changing	the	path	in	the	ImageFile	property	does	not	affect	the	project	files'
search-path	settings.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Manage	Raster	Images	>	

Name	Images
	
	
	

Image	names	are	not	necessarily	the	same	as	image	file	names.	When	you	attach
an	image	to	a	drawing,	AutoCAD	uses	the	file	name	without	the	file	extension	as
the	image	name.	You	can	change	the	image	name	without	affecting	the	name	of
the	file.

The	image	file	is	represented	by	the	ImageFile	property	on	the	Raster	object.
Changing	the	ImageFile	property	will	change	the	image	in	the	drawing.	The
image	name	is	represented	by	the	Name	property,	and	changing	the	Name
property	will	change	the	name	of	the	image	only,	not	the	file	associated	with	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>bitonal	images.

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	

Modify	Images	and	Image	Boundaries
	
	
	

All	images	have	an	image	boundary.	When	you	attach	an	image	to	a	drawing,	the
image	boundary	inherits	the	current	property	settings,	including	color,	layer,
linetype,	and	linetype	scale.	If	the	image	is	a	bitonal	image,	the	image	color	and
boundary	color	are	the	same.

As	with	other	AutoCAD	objects,	you	can	modify	images	and	their	boundary
properties.	For	example,	you	can:

Display	or	hide	the	image	boundary

Modify	the	image	layer,	boundary	color,	and	linetype

Change	the	image	location

Scale,	rotate,	and	change	the	width	and	height	of	the	image

Toggle	the	image	visibility

Change	the	image	transparency

Change	the	image	brightness,	contrast,	and	fade

Change	the	quality	and	speed	of	image	display

Topics	in	this	section

Show	and	Hide	Image	Boundaries
Change	Image	Layer,	Boundary	Color,	and	Boundary	Linetype
Change	Image	Scale,	Rotation,	Location,	Width,	and	Height
Change	Image	Visibility

Modify	Bitonal	Image	Color	and	Transparency
Adjust	Image	Brightness,	Contrast,	and	Fade

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Show	and	Hide	Image	Boundaries
	
	
	

Hiding	an	image	boundary	ensures	that	the	image	cannot	accidentally	be	moved
or	modified	and	prevents	the	boundary	from	being	plotted	or	displayed.	When
image	boundaries	are	hidden,	clipped	images	are	still	displayed	to	their	specified
boundary	limits;	only	the	boundary	is	affected.	Showing	and	hiding	image
boundaries	affects	all	images	attached	to	your	drawing.

To	show	or	hide	the	image	boundaries,	use	the	ClippingEnabled	property.

Note This	property	affects	only	the	image	boundary.	To	see	a	change	in	the	image
when	toggling	this	property,	look	closely	at	the	small	boundary	surrounding	the
image.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Change	Image	Layer,	Boundary	Color,	and	Boundary
Linetype
	
	
	

You	can	change	the	color	and	linetype	of	image	boundaries	and	the	layer	of	an
image	using	the	following	properties

Layer

Specifies	the	layer	for	the	image

Color

Specifies	the	color	of	the	image	boundary

Linetype

Specifies	the	linetype	of	the	image

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Change	Image	Scale,	Rotation,	Location,	Width,	and
Height
	
	
	

You	can	change	the	scale,	rotation,	location,	width,	and	height	of	an	image	using
the	following	methods	and	properties:

ScaleEntity

Scales	the	image

Rotate

Rotates	the	image

Origin

Specifies	the	image	location

Width

Specifies	the	width	of	the	image	in	pixels

Height

Specifies	the	height	of	the	image	in	pixels

ImageWidth

Specifies	the	width	of	the	image	in	database	units

ImageHeight

Specifies	the	height	of	the	image	in	database	units

ShowRotation

Determines	if	the	raster	is	displayed	as	rotated

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Change	Image	Visibility
	
	
	

Image	visibility	affects	the	redraw	speed	by	hiding	images	in	the	current	drawing
session.	Hidden	images	are	not	displayed	or	plotted;	only	the	drawing	boundary
is	displayed.	To	hide	images,	set	the	ImageVisibility	property	to	FALSE.	To
redisplay	the	images,	set	the	ImageVisibility	property	to	TRUE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>bitonal	images.

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Modify	Bitonal	Image	Color	and	Transparency
	
	
	

Bitonal	raster	images	are	images	consisting	only	of	a	foreground	color	and	a
background	color.	When	you	attach	a	bitonal	image,	the	foreground	pixels	in	the
image	inherit	the	current	layer	settings	for	color.	In	addition	to	the	modifications
you	can	make	to	any	attached	image,	you	can	modify	bitonal	images	by
changing	the	foreground	color	and	by	turning	the	transparency	of	the
background	on	and	off.

Note Bitonal	images	and	bitonal	image	boundaries	are	always	the	same	color.

To	change	the	foreground	color	of	a	bitonal	image,	use	the	Color	property.	To
turn	the	transparency	on	and	off,	use	the	Transparency	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Modify	Images	and	Image	Boundaries	>	

Adjust	Image	Brightness,	Contrast,	and	Fade
	
	
	

You	can	adjust	image	brightness,	contrast,	and	fade	in	AutoCAD	to	the	display
of	the	image	and	to	plotted	output	without	affecting	the	original	raster	image	file.

Use	the	following	properties	to	adjust	brightness,	contrast,	and	fade:

Brightness

Specifies	the	brightness	level	of	an	image

Contrast

Specifies	the	contrast	level	of	an	image

Fade

Specifies	the	fade	level	of	an	image

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	

Clip	Images
	
	
	

You	can	define	a	region	of	an	image	for	display	and	plotting	by	clipping	the
image.	The	clipping	boundary	must	be	a	2D	polygon	or	rectangle	with	vertices
constrained	to	lie	within	the	boundaries	of	the	image.	Multiple	instances	of	the
same	image	can	have	different	boundaries

To	clip	an	image

1.	 Turn	on	the	image	boundaries	using	the	ClippingEnabled	property

2.	 Specify	the	clipping	boundary	and	perform	the	clip	using	the
ClipBoundary	method.	This	method	takes	one	value	as	input:	a	variant
array	of	2D	world	coordinate	system	coordinates	specifying	the	clipping
boundary	of	a	raster	image.

Topics	in	this	section

Change	the	Clipping	Boundary
Show	and	Hide	the	Clipping	Boundary

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Clip	Images	>	

Change	the	Clipping	Boundary
	
	
	

To	change	an	existing	clipping	boundary,	simply	repeat	the	previous	steps.	The
old	boundary	will	be	deleted	and	the	new	boundary	will	replace	the	old	one.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Clip	Images	>	

Show	and	Hide	the	Clipping	Boundary
	
	
	

You	can	display	a	clipped	image	using	the	clipping	boundary,	or	you	can	hide
the	clipping	boundary	and	display	the	original	image	boundaries.	To	hide	a
clipping	boundary	and	display	the	original	image,	set	the	ClippingEnabled
property	to	FALSE.	To	display	the	clipped	image,	set	the	ClippingEnabled
property	to	TRUE.

Topics	in	this	section

Clip	a	raster	image	boundary

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Work	with	Raster
Images	>	Clip	Images	>	Show	and	Hide	the	Clipping	Boundary	>	

Clip	a	raster	image	boundary
	
	
	

This	example	adds	a	raster	image	in	model	space.	It	then	clips	the	image	based
on	a	clip	boundary.	This	example	uses	the	downtown.jpg	file	found	in	the	sample
directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a	different	directory,
insert	a	valid	path	and	file	name	for	the	imageName	variable.

Sub	Ch10_ClippingRasterBoundary()

	Dim	insertionPoint(0	To	2)	As	Double

	Dim	scalefactor	As	Double

	Dim	rotationAngle	As	Double

	Dim	imageName	As	String

	Dim	rasterObj	As	AcadRasterImage

	imageName	=	"C:\AutoCAD\sample\downtown.jpg"

	insertionPoint(0)	=	5

	insertionPoint(1)	=	5

	insertionPoint(2)	=	0

	scalefactor	=	2

	rotationAngle	=	0

	On	Error	GoTo	ERRORHANDLER

	'	Creates	a	raster	image	in	model	space

	Set	rasterObj	=	ThisDrawing.ModelSpace.AddRaster	_

	(imageName,	insertionPoint,	_

	scalefactor,	rotationAngle)

	ZoomAll

	'	Establish	the	clip	boundary	with	an	array	of	points

	Dim	clipPoints(0	To	9)	As	Double

	clipPoints(0)	=	6:	clipPoints(1)	=	6.75

	clipPoints(2)	=	7:	clipPoints(3)	=	6

	clipPoints(4)	=	6:	clipPoints(5)	=	5

	clipPoints(6)	=	5:	clipPoints(7)	=	6

	clipPoints(8)	=	6:	clipPoints(9)	=	6.75

	'	Clip	the	image

	rasterObj.ClipBoundary	clipPoints

	'	Enable	the	display	of	the	clip

	rasterObj.ClippingEnabled	=	True

	ThisDrawing.Regen	acActiveViewport

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>block	references:<$nopage>BlockReference	object:

Advanced	Drawing	and	Organizational	Techniques	>	

Use	Blocks	and	Attributes
	
	
	

AutoCAD	provides	several	features	to	help	you	manage	objects	in	your
drawings.	With	blocks	you	can	organize	and	manipulate	many	objects	as	one
component.	Attributes	associate	items	of	information	with	the	blocks	in	your
drawings—for	example,	part	numbers	and	prices.

Using	AutoCAD	external	references,	or	xrefs,	you	can	attach	or	overlay	entire
drawings	to	your	current	drawing.	When	you	open	your	current	drawing,	any
changes	made	in	the	referenced	drawing	appear	in	the	current	drawing.

Topics	in	this	section

Work	with	Blocks
Work	with	Attributes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>block	references:<$nopage>BlockReference	object:

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	

Work	with	Blocks
	
	
	

A	block	is	a	collection	of	objects	you	can	associate	together	to	form	a	single
object,	or	a	block	reference.	You	can	insert,	scale,	and	rotate	a	block	reference	in
a	drawing.	You	can	explode	a	block	reference	into	its	component	objects,	modify
them,	and	redefine	the	block.	AutoCAD	updates	all	future	instances	of	that	block
reference	based	on	the	definition	of	the	block.

Blocks	can	be	defined	from	objects	originally	drawn	on	different	layers	with
different	colors	and	linetypes.	You	can	preserve	the	layer,	color,	and	linetype
information	of	objects	in	a	block.	Then,	each	time	you	insert	the	block,	you	have
each	object	within	the	block	drawn	on	its	original	layer	with	its	original	color
and	linetype.

For	more	information	about	working	with	blocks,	see	“Create	and	Insert
Symbols	(Blocks)”	in	the	User's	Guide.

Topics	in	this	section

Define	Blocks
Insert	Blocks
Explode	a	Block	Reference
Redefine	a	Block

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Blocks	>	

Define	Blocks
	
	
	

To	create	a	new	block,	use	the	Add	method.	This	method	requires	two	values	as
input:	the	location	in	the	drawing	where	the	block	is	added	and	the	name	of	the
block	to	create.

Once	created,	you	can	add	any	geometrical	object,	or	another	block,	to	the	newly
created	block.	You	can	then	insert	an	instance	of	the	block	into	the	drawing.	An
inserted	block	is	an	object	called	a	block	reference.

You	can	also	create	a	block	by	using	the	WBlock	method	to	group	objects	in	a
separate	drawing	file.	The	drawing	file	can	then	be	used	as	a	block	definition	for
other	drawings.	AutoCAD	considers	any	drawing	you	insert	into	another
drawing	to	be	a	block.

For	more	information	on	defining	blocks,	see	“Create	Blocks”	in	the	User's
Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>block	references:

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Blocks	>	

Insert	Blocks
	
	
	

You	can	insert	blocks	or	entire	drawings	into	the	current	drawing	with	the
InsertBlock	method.	The	InsertBlock	method	takes	six	values	as	input:	the
insertion	point,	the	name	of	the	block	or	drawing	to	insert,	the	X-scale	factor,	the
Y-scale	factor,	the	Z-scale	factor,	and	the	rotation	angle.

When	you	insert	an	entire	drawing	into	another	drawing,	AutoCAD	treats	the
inserted	drawing	like	any	other	block	reference.	Subsequent	insertions	reference
the	block	definition	(which	contains	the	geometric	description	of	the	block)	with
different	position,	scale,	and	rotation	settings.	If	you	change	the	original	drawing
after	inserting	it,	the	changes	have	no	effect	on	the	inserted	block.	If	you	want
the	inserted	block	to	reflect	the	changes	you	made	to	the	original	drawing,	you
can	redefine	the	block	by	reinserting	the	original	drawing.	This	can	be	done	with
the	InsertBlock	method.

If	you	insert	a	drawing	as	a	block,	the	file	name	is	automatically	used	as	the
name	of	the	block.	You	can	change	the	name	of	the	block	by	using	the	Name
property	once	the	block	has	been	created.

By	default,	AutoCAD	uses	the	coordinate	(0,	0,	0)	as	the	base	point	for	inserted
drawings.	You	can	change	the	base	point	of	a	drawing	by	opening	the	original
drawing	and	using	the	SetVariable	method	to	specify	a	different	insertion	base
point	for	the	INSBASE	system	variable.	AutoCAD	uses	the	new	base	point	the
next	time	you	insert	the	drawing.

If	the	drawing	you	insert	contains	PaperSpace	objects,	those	objects	are	not
included	in	the	current	drawing's	block	definition.	To	use	the	PaperSpace	objects
in	another	drawing,	open	the	original	drawing	and	use	the	Add	method	to	define
the	PaperSpace	objects	as	a	block.	You	can	insert	the	drawing	into	another
drawing	in	either	paper	space	or	model	space.

A	block	reference	cannot	be	iterated	to	find	the	original	objects	that	compose	it.
However,	you	can	iterate	the	original	block	definition,	or	you	can	explode	the
block	reference	into	its	original	components.

You	can	also	insert	an	array	of	blocks	using	the	AddMInsertBlock	method.	This
method	does	not	insert	a	single	block	into	your	drawing,	as	the	InsertBlock	does,
but	instead	inserts	an	array	of	the	specified	block.	This	method	returns	an
MInsertBlock	object.

For	more	information	on	inserting	blocks,	see	“Insert	Blocks”	in	the	User's
Guide.

Define	a	block	and	insert	the	block	into	a	drawing

This	example	defines	a	block	and	adds	a	circle	to	the	block	definition.	It	then
inserts	the	block	into	the	drawing	as	a	block	reference.

Sub	Ch10_InsertingABlock()

	'	Define	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"CircleBlock")

	'	Add	a	circle	to	the	block

	Dim	circleObj	As	AcadCircle

	Dim	center(0	To	2)	As	Double

	Dim	radius	As	Double

	center(0)	=	0

	center(1)	=	0

	center(2)	=	0

	radius	=	1

	Set	circleObj	=	blockObj.AddCircle(center,	radius)

	'	Insert	the	block

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"CircleBlock",	1#,	1#,	1#,	0)

	ZoomAll

	MsgBox	"The	circle	belongs	to	"	&	blockRefObj.ObjectName

End	Sub

Note After	insertion,	the	external	file's	WCS	is	aligned	parallel	to	the	XY	plane	of
the	current	user	coordinate	system	(UCS)	in	the	current	drawing.	Thus,	a	block
from	an	external	file	is	inserted	at	any	orientation	in	space	by	setting	the	UCS
before	inserting	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>BlockReference	object:

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Blocks	>	

Explode	a	Block	Reference
	
	
	

Use	the	Explode	method	to	break	a	block	reference.	By	exploding	a	block	ref-
erence,	you	can	modify	the	block	or	add	to	or	delete	the	objects	that	define	it.

Display	the	results	of	an	exploded	block	reference

This	example	creates	a	block	and	adds	a	circle	to	the	definition	of	the	block.	The
block	is	then	inserted	into	the	drawing	as	a	block	reference.	The	block	reference
is	then	exploded,	and	the	objects	resulting	from	the	explode	process	are
displayed	along	with	their	object	types.

Sub	Ch10_ExplodingABlock()

	'	Define	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"CircleBlock")

	

	'	Add	a	circle	to	the	block

	Dim	circleObj	As	AcadCircle

	Dim	center(0	To	2)	As	Double

	Dim	radius	As	Double

	center(0)	=	0

	center(1)	=	0

	center(2)	=	0

	radius	=	1

	Set	circleObj	=	blockObj.AddCircle(center,	radius)

	

	'	Insert	the	block

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"CircleBlock",	1#,	1#,	1#,	0)

	ZoomAll

	MsgBox	"The	circle	belongs	to	"	&	blockRefObj.ObjectName

	

	'	Explode	the	block	reference

	Dim	explodedObjects	As	Variant

	explodedObjects	=	blockRefObj.Explode

	

	'	Loop	through	the	exploded	objects

	Dim	I	As	Integer

	For	I	=	0	To	UBound(explodedObjects)

	explodedObjects(I).Color	=	acRed

	explodedObjects(I).Update

	MsgBox	"Exploded	Object	"	&	I	&	":	"	_

	&	explodedObjects(I).ObjectName

	explodedObjects(I).Color	=	acByLayer

	explodedObjects(I).Update

	Next

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Blocks	>	

Redefine	a	Block
	
	
	

Use	any	of	the	Block	object	methods	and	properties	to	redefine	a	block.	When
you	redefine	a	block,	all	the	references	to	that	block	in	the	drawing	are
immediately	updated	to	reflect	the	new	definition.

Redefinition	affects	previous	and	future	insertions	of	a	block.	Constant	attributes
are	lost	and	replaced	by	any	new	constant	attributes.	Variable	attributes	remain
unchanged,	even	if	the	new	block	has	no	attributes.

Redefine	the	objects	in	a	block	definition

This	example	creates	a	block	and	adds	a	circle	to	the	definition	of	the	block.	The
block	is	then	inserted	into	the	drawing	as	a	block	reference.	The	circle	in	the
block	definition	is	updated,	and	the	block	reference	is	updated	automatically.

Sub	Ch10_RedefiningABlock()

	'	Define	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"CircleBlock")

	

	'	Add	a	circle	to	the	block

	Dim	circleObj	As	AcadCircle

	Dim	center(0	To	2)	As	Double

	Dim	radius	As	Double

	center(0)	=	0

	center(1)	=	0

	center(2)	=	0

	radius	=	1

	Set	circleObj	=	blockObj.AddCircle(center,	radius)

	

	'	Insert	the	block

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"CircleBlock",	1#,	1#,	1#,	0)

	ZoomAll

	

	'	Redefine	the	circle	in	the	block,

	'	and	update	the	block	reference

	circleObj.radius	=	3

	blockRefObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	

Work	with	Attributes
	
	
	

An	attribute	reference	provides	an	interactive	label	or	tag	for	you	to	attach	text	to
a	block.	Examples	of	data	are	part	numbers,	prices,	comments,	and	owners'
names.

You	can	extract	attribute	reference	information	from	a	drawing	and	use	that
information	in	a	spreadsheet	or	database	to	produce	items	such	as	a	parts	list	or
bill	of	materials	(BOM).	You	can	associate	more	than	one	attribute	reference
with	a	block,	provided	that	each	attribute	reference	has	a	different	tag.	You	can
also	define	constant	attributes.	Because	they	have	the	same	value	in	every
occurrence	of	the	block,	AutoCAD	does	not	prompt	for	a	value	when	you	insert
the	block.

Attributes	can	be	invisible,	which	means	the	attribute	reference	is	not	displayed
or	plotted.	However,	information	on	the	attribute	reference	is	stored	in	the
drawing	file.

For	more	information	about	working	with	attributes,	see	“Overview	of	Block
Attributes”	in	the	User's	Guide.

Topics	in	this	section

Create	Attribute	Definitions	and	Attribute	References
Edit	Attribute	Definitions
Extract	Attribute	Information

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Attributes	>	

Create	Attribute	Definitions	and	Attribute	References
	
	
	

To	create	an	attribute	reference,	first	you	must	create	an	attribute	definition	on	a
block	by	using	the	AddAttribute	method.	This	method	requires	six	values	as
input:	the	height	of	the	attribute	text,	the	Attribute	mode,	a	prompt	string,	the
insertion	point,	the	tag	string,	and	the	default	attribute	value.

The	mode	value	is	optional.	There	are	five	constants	you	can	enter	to	specify	the
Attribute	mode:

acAttributeModeNormal

Specifies	that	the	current	mode	of	each	attribute	is	maintained.

acAttributeModeInvisible

Specifies	that	attribute	values	won't	appear	when	you	insert	the	block.	The
ATTDISP	command	overrides	the	Invisible	mode.

acAttributeModeConstant

Gives	attributes	a	fixed	value	for	block	insertions.

acAttributeModeVerify

Prompts	you	to	verify	that	the	attribute	value	is	correct	when	you	insert	the
block.

acAttributeModePreset

Sets	the	attribute	to	its	default	value	when	you	insert	a	block	containing	a
present	attribute.	The	value	cannot	be	edited	in	this	mode.

You	can	enter	none,	any	combination,	or	all	of	the	options.	To	specify	a
combination	of	options,	add	the	constants	together.	For	example,	you	can	enter
acAttributeModeInvisible	+	acAttributeModeConstant.

The	prompt	string	appears	when	a	block	containing	the	attribute	is	inserted.	The
default	for	this	string	is	the	Tag	string.	Input	acAttributeModeConstant	for	the
mode	to	disable	the	prompt.

The	tag	string	identifies	each	occurrence	of	the	attribute.	You	can	use	any
characters	except	spaces	or	exclamation	points.	AutoCAD	changes	lowercase
letters	to	uppercase.

Once	the	attribute	definition	is	defined	in	a	block,	whenever	you	insert	the	block
using	the	InsertBlock	method	you	can	specify	a	different	value	for	the	attribute
reference.

An	attribute	definition	is	associated	to	the	block	upon	which	it	is	created.
Attribute	definitions	created	on	model	space	or	paper	space	are	not	considered
attached	to	any	given	block.

Define	an	attribute	definition

This	example	creates	a	block	and	then	adds	an	attribute	to	the	block.	The	block
is	then	inserted	into	the	drawing.

Sub	Ch10_CreatingAnAttribute()

	'	Define	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"BlockWithAttribute")

	

	'	Add	an	attribute	to	the	block

	Dim	attributeObj	As	AcadAttribute

	Dim	height	As	Double

	Dim	mode	As	Long

	Dim	prompt	As	String

	Dim	insertionPoint(0	To	2)	As	Double

	Dim	tag	As	String

	Dim	value	As	String

	height	=	1

	mode	=	acAttributeModeVerify

	prompt	=	"New	Prompt"

	insertionPoint(0)	=	5

	insertionPoint(1)	=	5

	insertionPoint(2)	=	0

	tag	=	"New	Tag"

	value	=	"New	Value"

	Set	attributeObj	=	blockObj.AddAttribute(height,	mode,	_

	prompt,	insertionPoint,	tag,	value)

	'	Insert	the	block,	creating	a	block	reference

	'	and	an	attribute	reference

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"BlockWithAttribute",	1#,	1#,	1#,	0)

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Attributes	>	

Edit	Attribute	Definitions
	
	
	

You	can	use	the	Attribute	object	properties	and	methods	to	edit	the
attribute.Some	of	the	properties	on	an	attribute	include	the	following:

Alignment

Specifies	the	horizontal	and	vertical	alignment	of	the	attribute

Backward

Specifies	the	direction	of	attribute	text

FieldLength

Specifies	the	field	length	of	the	attribute

Height

Specifies	the	height	of	the	attribute

InsertionPoint

Specifies	the	insertion	point	of	the	attribute

Mode

Specifies	the	mode	of	the	attribute

PromptString

Specifies	the	prompt	string	of	the	attribute

Rotation

Specifies	the	rotation	of	the	attribute

ScaleFactor

Specifies	the	scale	factor	of	the	attribute

TagString

Specifies	the	tag	string	of	the	attribute

Some	of	the	methods	you	can	use	to	edit	the	attribute	include	the	following:

ArrayPolar

Creates	a	polar	array

ArrayRectangular

Creates	a	rectangular	array

Copy

Copies	the	attribute

Erase

Erases	the	attribute

Mirror

Mirrors	the	attribute

Move

Moves	the	attribute

Rotate

Rotates	the	attribute

ScaleEntity

Scales	the	attribute

Redefine	an	attribute	definition

This	example	creates	a	block	and	then	adds	an	attribute	to	the	block.	The	block
is	then	inserted	into	the	drawing.	The	attribute	text	is	then	updated	to	be
displayed	backward.

Sub	Ch10_RedefiningAnAttribute()

	'	Define	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"BlockWithAttribute")

	

	'	Add	an	attribute	to	the	block

	Dim	attributeObj	As	AcadAttribute

	Dim	height	As	Double

	Dim	mode	As	Long

	Dim	prompt	As	String

	Dim	insertionPoint(0	To	2)	As	Double

	Dim	tag	As	String

	Dim	value	As	String

	height	=	1

	mode	=	acAttributeModeVerify

	prompt	=	"New	Prompt"

	insertionPoint(0)	=	5

	insertionPoint(1)	=	5

	insertionPoint(2)	=	0

	tag	=	"New	Tag"

	value	=	"New	Value"

	Set	attributeObj	=	blockObj.AddAttribute(height,	mode,	_

	prompt,	insertionPoint,	tag,	value)

	'	Insert	the	block,	creating	a	block	reference

	'	and	an	attribute	reference

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"BlockWithAttribute",	1#,	1#,	1#,	0)

	

	'	Redefine	the	attribute	text	to	display	backwards.

	attributeObj.Backward	=	True

	attributeObj.Update

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	Blocks	and
Attributes	>	Work	with	Attributes	>	

Extract	Attribute	Information
	
	
	

You	can	extract	attribute	information	from	a	drawing	using	the	GetAttributes	and
GetConstantAttributes	methods.	The	GetAttributes	method	returns	an	array	of
the	attribute	references	attached	to	a	block,	along	with	their	current	values.	The
GetConstantAttributes	method	returns	an	array	of	constant	attributes	attached	to
the	block	or	external	reference.	The	attributes	returned	by	this	method	are	the
constant	attribute	definitions,	not	attribute	references.

You	do	not	need	template	files	to	extract	attribute	information,	and	no	attribute
information	files	are	created.	Simply	iterate	the	array	of	attribute	references,
using	the	TagString	and	TextString	properties	of	the	attribute	-reference	to
examine	the	attribute	information.

The	TagString	property	represents	the	individual	tag	for	the	attribute	reference.
The	TextString	property	contains	the	value	for	the	attribute	reference.

For	more	information	on	extracting	attribute	information,	see	“Extract	Data	from
Block	Attributes”	in	the	User's	Guide.

Get	attribute	reference	information

This	example	creates	a	block	and	then	adds	an	attribute	to	the	block.	The	block
is	then	inserted	into	the	drawing.	The	attribute	data	is	then	returned	and
displayed	using	a	message	box.	The	attribute	data	is	then	updated	for	the	block
reference,	and	once	again	the	attribute	data	is	returned	and	displayed.

Sub	Ch10_GettingAttributes()

	'	Create	the	block

	Dim	blockObj	As	AcadBlock

	Dim	insertionPnt(0	To	2)	As	Double

	insertionPnt(0)	=	0

	insertionPnt(1)	=	0

	insertionPnt(2)	=	0

	Set	blockObj	=	ThisDrawing.Blocks.Add	_

	(insertionPnt,	"TESTBLOCK")

	

	'	Define	the	attribute	definition

	Dim	attributeObj	As	AcadAttribute

	Dim	height	As	Double

	Dim	mode	As	Long

	Dim	prompt	As	String

	Dim	insertionPoint(0	To	2)	As	Double

	Dim	tag	As	String

	Dim	value	As	String

	height	=	1#

	mode	=	acAttributeModeVerify

	prompt	=	"Attribute	Prompt"

	insertionPoint(0)	=	5

	insertionPoint(1)	=	5

	insertionPoint(2)	=	0

	tag	=	"Attribute	Tag"

	value	=	"Attribute	Value"

	

	'	Create	the	attribute	definition	object	on	the	block

	Set	attributeObj	=	blockObj.AddAttribute	_

	(height,	mode,	prompt,	_

	insertionPoint,	tag,	value)

	

	'	Insert	the	block

	Dim	blockRefObj	As	AcadBlockReference

	insertionPnt(0)	=	2

	insertionPnt(1)	=	2

	insertionPnt(2)	=	0

	Set	blockRefObj	=	ThisDrawing.ModelSpace.InsertBlock	_

	(insertionPnt,	"TESTBLOCK",	1,	1,	1,	0)

	ZoomAll

	

	'	Get	the	attributes	for	the	block	reference

	Dim	varAttributes	As	Variant

	varAttributes	=	blockRefObj.GetAttributes

	

	'	Move	the	attribute	tags	and	values	into	a

	'	string	to	be	displayed	in	a	Msgbox

	Dim	strAttributes	As	String

	strAttributes	=	""

	Dim	I	As	Integer

	For	I	=	LBound(varAttributes)	To	UBound(varAttributes)

	strAttributes	=	strAttributes	+	"		Tag:	"	+	_

	varAttributes(I).TagString	+	vbCrLf	+	_

	"			Value:	"	+	varAttributes(I).textString

	Next

	MsgBox	"The	attributes	for	blockReference	"	+	_

	blockRefObj.Name	&	"	are:	"	&	vbCrLf	_

	&	strAttributes

	

	'	Change	the	value	of	the	attribute

	'	Note:	There	is	no	SetAttributes.	Once	you	have	the

	'	variant	array,	you	have	the	objects.

	'	Changing	them	changes	the	objects	in	the	drawing.

	varAttributes(0).textString	=	"NEW	VALUE!"

	

	'	Get	the	attributes	again

	Dim	newvarAttributes	As	Variant

	newvarAttributes	=	blockRefObj.GetAttributes

	

	'	Again,	display	the	tags	and	values

	strAttributes	=	""

	For	I	=	LBound(varAttributes)	To	UBound(varAttributes)

	strAttributes	=	strAttributes	+	"		Tag:	"	+	_

	newvarAttributes(I).TagString	+	vbCrLf	+	_

	"			Value:	"	+	newvarAttributes(I).textString

	Next

	MsgBox	"The	attributes	for	blockReference	"	&	_

	blockRefObj.Name	&	"	are:	"	&	vbCrLf	_

	&	strAttributes

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>xrefs.

Advanced	Drawing	and	Organizational	Techniques	>	

Use	External	References
	
	
	

An	external	reference	(xref)	links	another	drawing	to	the	current	drawing.	When
you	insert	a	drawing	as	a	block,	the	block	and	all	of	the	associated	geometry	is
stored	in	the	current	drawing	database.	It	is	not	updated	if	the	original	drawing
changes.	When	you	insert	a	drawing	as	an	xref,	however,	the	xref	is	updated
when	the	original	drawing	changes.	A	drawing	that	contains	xrefs,	therefore,
always	reflects	the	most	current	editing	of	each	externally	referenced	file.

Like	a	block	reference,	an	xref	is	displayed	in	the	current	drawing	as	a	single
object.	However,	an	xref	does	not	significantly	increase	the	file	size	of	the
current	drawing	and	cannot	be	exploded.	As	with	blocks,	you	can	nest	xrefs	that
are	attached	to	your	drawing.

For	more	information	about	xrefs,	see	“Attach,	Update,	and	Bind	External
References”	in	the	User's	Guide.

Topics	in	this	section

Update	Xrefs
Attach	Xrefs
Detach	Xrefs
Reload	Xrefs
Unload	Xrefs
Bind	Xrefs
Clip	Blocks	and	Xrefs
Demand	Loading	and	Xref	Performance

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Update	Xrefs
	
	
	

When	you	open	or	plot	your	drawing,	AutoCAD	reloads	each	xref	to	reflect	the
latest	state	of	the	referenced	drawing.	After	you	make	changes	to	an	externally
referenced	drawing	and	save	the	file,	other	users	can	access	your	changes
immediately	by	reloading	the	xref.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Attach	Xrefs
	
	
	

Attaching	an	xref	links	one	drawing	(the	reference	file,	or	xref)	to	the	current
drawing.	When	a	drawing	references	an	xref,	AutoCAD	attaches	only	the	xref
definition	to	the	drawing,	unlike	regular	blocks,	where	the	block	definition	and
the	contents	of	the	block	are	stored	with	the	current	drawing.	AutoCAD	reads
the	reference	drawing	to	determine	what	to	display	in	the	current	drawing.	If	the
reference	file	is	missing	or	corrupt,	its	data	is	not	displayed	in	the	current
drawing.	Each	time	you	open	a	drawing,	AutoCAD	loads	all	graphical	and
nongraphical	(such	as	layers,	linetypes,	and	text	styles)	objects	from	referenced
files.	If	VISRETAIN	is	on,	AutoCAD	stores	any	updated	xref-dependent	layer
information	in	the	current	drawing.

You	can	attach	as	many	copies	of	an	xref	as	you	want,	and	each	can	have	a
different	position,	scale,	and	rotation.	You	can	also	control	the	dependent	layers
and	linetype	properties	that	are	defined	in	the	xref.

To	attach	an	xref,	use	the	AttachExternalReference	method.	This	method
requires	you	to	input	the	path	and	file	name	of	the	drawing	to	be	referenced,	the
name	the	xref	is	to	use	in	the	current	drawing,	the	insertion	point,	the	scale,	and
rotation	information	for	the	xref.	The	AttachExternalReference	method	returns
the	newly	created	ExternalReference	object.

For	more	information	on	attaching	xrefs,	see	“Attach	External	References”	in	the
User's	Guide.

Attach	an	external	reference	to	a	drawing

This	example	displays	all	the	blocks	in	the	current	drawing	before	and	after
adding	an	external	reference.	This	example	uses	the	3D	House.dwg	file	found	in
the	sample	directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a
different	directory,	insert	a	valid	path	and	file	name	for	the	PathName	variable.

Sub	Ch10_AttachingExternalReference()

	On	Error	GoTo	ERRORHANDLER

	Dim	InsertPoint(0	To	2)	As	Double

	Dim	insertedBlock	As	AcadExternalReference

	Dim	tempBlock	As	AcadBlock

	Dim	msg	As	String,	PathName	As	String

	

	'	Define	external	reference	to	be	inserted

	InsertPoint(0)	=	1

	InsertPoint(1)	=	1

	InsertPoint(2)	=	0

	PathName	=	"C:/Program	Files/AutoCAD	2009/sample/3D	House.dwg"

	

	'	Display	current	Block	information	for	this	drawing

	GoSub	ListBlocks

	

	'	Add	the	external	reference	to	the	drawing

	Set	insertedBlock	=	ThisDrawing.ModelSpace.	_

	AttachExternalReference(PathName,	"XREF_IMAGE",	_

	InsertPoint,	1,	1,	1,	0,	False)

	ZoomAll

	

	'	Display	new	Block	information	for	this	drawing

	GoSub	ListBlocks

	Exit	Sub

ListBlocks:

	msg	=	vbCrLf				'	Reset	message

	For	Each	tempBlock	In	ThisDrawing.Blocks

	msg	=	msg	&	tempBlock.Name	&	vbCrLf

	Next

	MsgBox	"The	current	blocks	in	this	drawing	are:	"	&	msg

	Return

	

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Topics	in	this	section

Overlay	Xrefs

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External
References	>	Attach	Xrefs	>	

Overlay	Xrefs
	
	
	

Overlaying	is	similar	to	attaching,	except	when	a	drawing	is	attached	or	overlaid.
Any	other	overlays	nested	in	it	are	ignored	and,	therefore,	not	displayed.	In	other
words,	nested	overlays	are	not	read	in.

To	overlay	an	xref,	set	the	Overlay	parameter	of	the	AttachExternalReference
method	to	TRUE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Detach	Xrefs
	
	
	

You	can	detach	an	xref	definition	to	remove	the	xrefs	completely	from	your
drawing.	You	can	also	erase	the	individual	xref	instances.	Detaching	the	xref
definition	removes	all	dependent	symbols	associated	with	that	xref.	If	all	the
instances	of	an	xref	are	erased	from	the	drawing,	AutoCAD	removes	the	xref
definition	the	next	time	the	drawing	is	opened.

To	detach	an	xref,	use	the	Detach	method.	You	cannot	detach	a	nested	xref.

Detach	an	xref	definition

This	example	attaches	an	external	reference	and	then	detaches	the	external
reference.	This	example	uses	the	3D	House.dwg	file	found	in	the	sample
directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a	different	directory,
insert	a	valid	path	and	file	name	for	the	PathName	variable.

Sub	Ch10_DetachingExternalReference()

	On	Error	GoTo	ERRORHANDLER

	'	Define	external	reference	to	be	inserted

	Dim	xrefHome	As	AcadBlock

	Dim	xrefInserted	As	AcadExternalReference

	Dim	insertionPnt(0	To	2)	As	Double

	Dim	PathName	As	String

	insertionPnt(0)	=	1

	insertionPnt(1)	=	1

	insertionPnt(2)	=	0

	PathName	=	"c:/AutoCAD	2009/sample/3D	House.dwg"

	

	'	Add	the	external	reference

	Set	xrefInserted	=	ThisDrawing.ModelSpace.	_

	AttachExternalReference(PathName,	"XREF_IMAGE",	_

	insertionPnt,	1,	1,	1,	0,	False)

	ZoomAll

	MsgBox	"The	external	reference	is	attached."

	

	'	Detach	the	external	reference	definition

	Dim	name	As	String

	name	=	xrefInserted.name

	ThisDrawing.Blocks.Item(name).Detach

	MsgBox	"The	external	reference	is	detached."

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Reload	Xrefs
	
	
	

If	someone	modifies	an	externally	referenced	drawing	while	you	are	working	on
the	host	drawing	to	which	that	xref	is	attached,	you	can	update	that	xref	drawing
using	the	Reload	method.	When	you	reload,	the	selected	xref	drawing	is	updated
in	your	host	drawing.	Also,	if	you	have	unloaded	an	xref,	you	can	choose	to
reload	that	externally	referenced	drawing	at	any	time.

Reload	an	xref	definition

This	example	attaches	an	external	reference	and	then	reloads	the	external
reference.	This	example	uses	the	3D	House.dwg	file	found	in	the	sample
directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a	different	directory,
insert	a	valid	path	and	file	name	for	the	PathName	variable.

Sub	Ch10_ReloadingExternalReference()

	On	Error	GoTo	ERRORHANDLER

	'	Define	external	reference	to	be	inserted

	Dim	xrefHome	As	AcadBlock

	Dim	xrefInserted	As	AcadExternalReference

	Dim	insertionPnt(0	To	2)	As	Double

	Dim	PathName	As	String

	insertionPnt(0)	=	1

	insertionPnt(1)	=	1

	insertionPnt(2)	=	0

	PathName	=	"c:/AutoCAD	2009/sample/3D	House.dwg"

	

	'	Add	the	external	reference	to	the	block

	Set	xrefInserted	=	ThisDrawing.ModelSpace.	_

	AttachExternalReference(PathName,	"XREF_IMAGE",	_

	insertionPnt,	1,	1,	1,	0,	False)

	ZoomAll

	MsgBox	"The	external	reference	is	attached."

	

	'	Reload	the	external	reference	definition

	ThisDrawing.Blocks.Item(xrefInserted.name).Reload

	MsgBox	"The	external	reference	is	reloaded."

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Unload	Xrefs
	
	
	

To	unload	an	xref,	use	the	Unload	method.	When	you	unload	a	referenced	file
that	is	not	being	used	in	the	current	drawing,	the	AutoCAD	performance	is
enhanced	by	not	having	to	read	and	display	unnecessary	drawing	geometry	or
symbol	table	information.	The	xref	geometry	and	that	of	any	nested	xref	is	not
displayed	in	the	current	drawing	until	the	xref	is	reloaded.

Unload	an	xref	definition

This	example	attaches	an	external	reference	and	then	unloads	the	external
reference.	This	example	uses	the	3D	House.dwg	file	found	in	the	sample
directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a	different	directory,
insert	a	valid	path	and	file	name	for	the	PathName	variable.

Sub	Ch10_UnloadingExternalReference()

	On	Error	GoTo	ERRORHANDLER

	'	Define	external	reference	to	be	inserted

	Dim	xrefHome	As	AcadBlock

	Dim	xrefInserted	As	AcadExternalReference

	Dim	insertionPnt(0	To	2)	As	Double

	Dim	PathName	As	String

	insertionPnt(0)	=	1

	insertionPnt(1)	=	1

	insertionPnt(2)	=	0

	PathName	=	"c:/AutoCAD	2009/sample/3D	House.dwg"

	

	'	Add	the	external	reference

	Set	xrefInserted	=	ThisDrawing.ModelSpace.	_

	AttachExternalReference(PathName,	"XREF_IMAGE",	_

	insertionPnt,	1,	1,	1,	0,	False)

	ZoomAll

	MsgBox	"The	external	reference	is	attached."

	

	'	Unload	the	external	reference	definition

	ThisDrawing.Blocks.Item(xrefInserted.name).Unload

	MsgBox	"The	external	reference	is	unloaded."

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Bind	Xrefs
	
	
	

Binding	an	xref	to	a	drawing	using	the	Bind	method	makes	the	xref	a	permanent
part	of	the	drawing	and	no	longer	an	externally	referenced	file.	The	externally
referenced	information	becomes	a	block.	When	the	externally	referenced
drawing	is	updated,	the	bound	xref	is	not	updated.	This	process	binds	the	entire
drawing's	database,	including	all	of	its	dependent	symbols.

Dependent	symbols	are	named	objects	such	as	blocks,	dimension	styles,	layers,
linetypes,	and	text	styles.	Binding	the	xref	allows	named	objects	from	the	xref	to
be	used	in	the	current	drawing.

The	Bind	method	requires	only	one	parameter:	bPrefixName.	If	bPrefixName	is
set	to	TRUE,	the	symbol	names	of	the	xref	drawing	are	prefixed	in	the	current
drawing	with	<blockname>x,	where	x	is	an	integer	that	is	automatically
incremented	to	avoid	overriding	existing	block	definitions.	If	the	bPrefixName
parameter	is	set	to	FALSE,	the	symbol	names	of	the	xref	drawing	are	merged
into	the	current	drawing	without	the	prefix.	If	duplicate	names	exist,	AutoCAD
uses	the	symbols	already	defined	in	the	local	drawing.	If	you	are	unsure	whether
your	drawing	contains	duplicate	symbol	names,	it	is	recommended	that	you	set
bPrefixName	to	TRUE.

For	more	information	on	binding	xrefs,	see	“Archive	Drawings	That	Contain
External	References	(Bind)”	in	the	User's	Guide.

Bind	an	xref	definition

This	example	attaches	an	external	reference	and	then	binds	the	external	-
reference	to	the	drawing.	This	example	uses	the	3D	House.dwg	file	found	in	the
sample	directory.	If	you	do	not	have	this	image,	or	if	it	is	located	in	a	different
directory,	insert	a	valid	path	and	file	name	for	the	PathName	variable.

Sub	Ch10_BindingExternalReference()

	On	Error	GoTo	ERRORHANDLER

	'	Define	external	reference	to	be	inserted

	Dim	xrefHome	As	AcadBlock

	Dim	xrefInserted	As	AcadExternalReference

	Dim	insertionPnt(0	To	2)	As	Double

	Dim	PathName	As	String

	insertionPnt(0)	=	1

	insertionPnt(1)	=	1

	insertionPnt(2)	=	0

	PathName	=	"c:/AutoCAD	2009/sample/3D	House.dwg"

	

	'	Add	the	external	reference

	Set	xrefInserted	=	ThisDrawing.ModelSpace.	_

	AttachExternalReference(PathName,	"XREF_IMAGE",	_

	insertionPnt,	1,	1,	1,	0,	False)

	ZoomAll

	MsgBox	"The	external	reference	is	attached."

	

	'	Bind	the	external	reference	definition

	ThisDrawing.Blocks.Item(xrefInserted.name).Bind	False

	MsgBox	"The	external	reference	is	bound."

	Exit	Sub

ERRORHANDLER:

	MsgBox	Err.Description

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Clip	Blocks	and	Xrefs
	
	
	

There	is	no	method	provided	in	ActiveX	Automation	for	clipping	the	boundaries
of	blocks	and	xrefs.	Use	the	XCLIP	command	in	AutoCAD,	or	send	the	XCLIP
command	to	AutoCAD	using	the	SendCommand	method.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	Use	External	References	>	

Demand	Loading	and	Xref	Performance
	
	
	

Through	a	combination	of	demand	loading	and	saving	drawings	with	indexes,
you	can	increase	the	performance	of	drawings	with	external	references.	Demand
loading	works	in	conjunction	with	the	XLOADCTL	and	INDEXCTL	system
variables.	When	you	turn	on	demand	loading,	if	indexes	have	been	saved	in	the
referenced	drawings,	AutoCAD	loads	into	memory	only	the	data	from	the
reference	drawing	that	is	necessary	to	regenerate	the	current	drawing.	In	other
words,	referenced	material	is	read	in	“on	demand.”

To	realize	the	maximum	benefits	of	demand	loading,	you	need	to	save	the
referenced	drawings	with	layer	and	spatial	indexes.	The	performance	benefits	of
demand	loading	are	most	noticeable	when	you

Clip	the	xref	to	display	a	small	fraction	of	it,	and	a	spatial	index	is	saved
in	the	externally	referenced	drawing.

Freeze	several	layers	of	the	xref,	and	the	externally	referenced	drawing
is	saved	with	a	layer	index.

To	turn	on	demand	loading,	use	the	XRefDemandLoad	property.	If	you	turn	on
demand	loading	with	the	acDemandLoadEnabledWithCopy	option,	AutoCAD
makes	a	temporary	copy	of	the	externally	referenced	file	and	demand	loads	the
temporary	file.	You	can	then	demand	load	the	xref	while	allowing	the	original
reference	drawing	to	be	available	for	modification.	When	you	disable	demand
loading,	AutoCAD	reads	in	the	entire	reference	drawing	regardless	of	layer
visibility	or	clip	instances.

To	turn	on	layer	and	spatial	indexes,	set	the	INDEXCTL	system	variable	using
the	SetVariable	method.	The	following	settings	apply	to	the	INDEXCTL	s-ystem
variable:

0	=	no	indexes	created

1	=	layer	index	created

2	=	spatial	index	created

3	=	both	spatial	and	layer	indexes	created

By	default,	INDEXCTL	is	set	to	0	when	you	create	a	new	AutoCAD	drawing.

For	more	information	on	demand	loading	and	xrefs,	see	“Increase	Performance
with	Large	Xrefs”	in	the	User's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Advanced	Drawing	and	Organizational	Techniques	>	

Assign	and	Retrieve	Extended	Data
	
	
	

You	can	use	extended	data	(xdata)	as	a	means	for	linking	information	with
objects	in	a	drawing.

Assign	xdata	to	all	objects	in	a	selection	set

This	example	prompts	the	user	to	select	objects	from	the	drawing.	The	selected
objects	are	placed	into	a	selection	set,	and	the	specified	xdata	is	attached	to	all
objects	in	that	selection	set

Sub	Ch10_AttachXDataToSelectionSetObjects()

	'	Create	the	selection	set

	Dim	sset	As	Object

	Set	sset	=	ThisDrawing.SelectionSets.Add("SS1")

	

	'	Prompt	the	user	to	select	objects

	sset.SelectOnScreen

	

	'	Define	the	xdata

	Dim	appName	As	String,	xdataStr	As	String

	appName	=	"MY_APP"

	xdataStr	=	"This	is	some	xdata"

	Dim	xdataType(0	To	1)	As	Integer

	Dim	xdata(0	To	1)	As	Variant

	

	'	Define	the	values	for	each	array

	'1001	indicates	the	appName

	xdataType(0)	=	1001

	xdata(0)	=	appName

	'1000	indicates	a	string	value

	xdataType(1)	=	1000

	xdata(1)	=	xdataStr

	

	'	Loop	through	all	entities	in	the	selection

	'	set	and	assign	the	xdata	to	each	entity

	Dim	ent	As	Object

	For	Each	ent	In	sset

	ent.SetXData	xdataType,	xdata

	Next	ent

End	Sub

View	the	xdata	of	all	objects	in	a	selection	set

This	example	displays	the	xdata	attached	with	the	previous	example.	If	you
attach	xdata	other	than	strings	(type	1000),	you	will	need	to	revise	this	code

Sub	Ch10_ViewXData()

	'	Find	the	selection	created	in	previous	example

	Dim	sset	As	Object

	Set	sset	=	ThisDrawing.SelectionSets.Item("SS1")

	

	'	Define	the	xdata	variables	to	hold	xdata	information

	Dim	xdataType	As	Variant

	Dim	xdata	As	Variant

	Dim	xd	As	Variant

	

	'Define	index	counter

	Dim	xdi	As	Integer

	xdi	=	0

	

	'	Loop	through	the	objects	in	the	selection	set

	'	and	retrieve	the	xdata	for	the	object

	Dim	msgstr	As	String

	Dim	appName	As	String

	Dim	ent	As	AcadEntity

	appName	=	"MY_APP"

	For	Each	ent	In	sset

	msgstr	=	""

	xdi	=	0

	

	'	Retrieve	the	appName	xdata	type	and	value

	ent.GetXData	appName,	xdataType,	xdata

	

	'	If	the	xdataType	variable	is	not	initialized,	there

	'	was	no	appName	xdata	to	retrieve	for	that	entity

	If	VarType(xdataType)	<>	vbEmpty	Then

	For	Each	xd	In	xdata

	msgstr	=	msgstr	&	vbCrLf	&	xdataType(xdi)	_

	&	":	"	&	xd

	xdi	=	xdi	+	1

	Next	xd

	End	If

	

	'	If	the	msgstr	variable	is	NULL,	there	was	no	xdata

	If	msgstr	=	""	Then	msgstr	=	vbCrLf	&	"NONE"

	MsgBox	appName	&	"	xdata	on	"	&	ent.ObjectName	&	_

	":"	&	vbCrLf	&	msgstr

	Next	ent

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>dialog	controls.<$nopage>form	controls.

	

Develop	Applications	with	VBA
	
	
	

Many	programming	tasks	involve	more	than	simply	working	with	the	AutoCAD
ActiveX	object	model.	This	chapter	provides	a	brief	overview	of	creating	dialog
boxes,	handling	errors,	controlling	window	focus,	and	distributing	your
application	to	others.

Remember,	the	Microsoft	documentation	for	VBA	contains	more	information	on
these	topics.

Topics	in	this	section

More	VBA	Terminology
Forms	in	VBA
Handle	Errors
Encrypt	VBA	Code	Modules
Run	a	VBA	Macro	from	a	Toolbar	or	Menu
Automatically	Load	a	VBA	Project
Automatically	Run	a	VBA	Macro
Automatically	Open	the	VBA	IDE	Whenever	a	Project	Is	Loaded
Work	in	a	Zero	Document	State
Distribute	Your	Application
64-bit	Migration

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

More	VBA	Terminology
	
	
	

This	chapter	expands	your	exposure	to	VBA.	The	following	terms	will	help	you
understand	and	work	within	the	VBA	environment.

Project

A	set	of	forms	and	modules	grouped	together	in	a	single	file.

Module

A	group	of	(usually	related)	subroutines	and	functions.

Macro

A	public	subroutine	or	function.	Macros	are	exposed	to	the	user	as	an
executable	component	of	your	project.

Dialog	box

A	means	by	which	information	is	displayed	or	gathered	during	application
execution.

Form

Container	for	dialog	box	controls.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>dialog	controls.<$nopage>form	controls.

Develop	Applications	with	VBA	>	

Forms	in	VBA
	
	
	

Forms	are	the	basic	building	blocks	through	which	you	create	your	own	custom
dialog	boxes	for	your	application.	Through	custom	forms	you	can	provide
information	to	users,	get	information	from	users,	or	have	your	users	control
activity	in	the	application.

Forms	are	like	an	artist's	canvas—they	start	out	blank.	To	fill	your	canvas,	you
need	a	palette.	In	this	case,	your	palette	is	the	control	toolbox.	You,	as	the	artist,
place	selected	controls	from	the	toolbox	onto	the	form.	You	can	add	as	many
controls	as	you	like.	At	any	time	you	can	adjust	size	and	properties	of	the
controls	and	even	the	form	itself.	Finally,	you	add	the	functionality	(code)	to	the
controls	that	brings	your	form	to	life.

Although	Visual	Basic	6	supports	different	types	of	forms,	VBA	supports	only
the	UserForm.	This	means	some	forms	have	been	created	and	exported	in	Visual
Basic	6	that	cannot	be	imported	into	VBA.

UserForms—or	forms,	as	they	are	called	in	this	guide—can	be	modal	or
modeless.	The	ShowModal	property	of	a	form	determines	whether	it	is	modal	or

modeless.	Modal	forms	displayed	in	your	running	application	must	be	closed
before	users	can	perform	any	other	action	in	the	application.	For	more
information	about	working	with	modal	forms,	see	Modal	Forms	.

To	create	a	new	form	in	your	project

1.	 Open	the	Project	window	of	the	VBA	IDE	and	select	the	project	you
want	to	add	the	form	to.

2.	 From	the	Insert	menu,	choose	UserForm.
A	blank	form	is	created	and	added	to	your	project.

To	create	a	modeless	form	in	your	project

1.	 Open	the	Project	window	of	the	VBA	IDE	and	select	the	project	you
want	to	add	the	form	to.

2.	 From	the	Insert	menu,	choose	UserForm,	and	change	the	ShowModal
property	to	False.

3.	 Add	the	AcFocusCtrl	(AcFocusCtrl.dll)	to	the	Toolbox,	and	drag	the
control	onto	the	form.
The	AcFocusCtrl	keeps	the	focus	on	the	form	during	user	interaction.

Topics	in	this	section

Design	and	Run	Mode
Add	Controls	to	a	Form
Display	and	Hide	Forms
Load	and	Unload	Forms
Modal	Forms

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	

Design	and	Run	Mode
	
	
	

While	you	are	building	your	form	you	are	working	in	Design	mode,	where	you
can

Add	controls	to	the	form

Change	the	properties	of	the	form

Change	the	properties	of	controls	on	the	form

Add	code	to	the	form	module

While	in	Design	mode	there	is	no	interaction	among	the	user,	the	user	interface
of	AutoCAD®,	and	your	form.

Once	you	run	your	application,	or	your	user	runs	your	application,	the	form	is
then	in	Run	mode.	While	in	Run	mode	you	cannot	make	adjustments	to	the	form
directly.	However,	the	form	is	now	displayed	in	the	AutoCAD	user	interface	and
the	user	can	interact	with	the	form	as	part	of	the	normal	operation	of	your
application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>dialog	controls.<$nopage>form	controls.

Develop	Applications	with	VBA	>	Forms	in	VBA		>	

Add	Controls	to	a	Form
	
	
	

Adding	controls	to	a	form	is	easy.	Simply	select	a	control	from	the	control
toolbox	and	drag	it	over	to	the	form.	When	you	release	your	mouse,	a	copy	of
the	control	will	be	placed	on	the	form.	Once	the	control	is	on	the	form,	you	can
change	the	position	and	size	of	the	control.	You	can	copy	over	as	many	controls
as	you	like.

In	addition	to	the	drag	method	previously	mentioned,	there	are	other	ways	of
placing	controls	on	a	form.

Topics	in	this	section

Change	the	Size	and	Placement	of	a	Control
Use	Formatting	Controls
Change	the	Properties	of	a	Control
Add	Code	to	a	Control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	Add	Controls	to	a	Form	>	

Change	the	Size	and	Placement	of	a	Control
	
	
	

To	move	a	control,	simply	select	it	and	drag	it	to	its	new	position	on	the	form.

To	resize	a	control,	first	select	the	control	by	clicking	on	it	once.	When	you
select	a	control,	its	border	becomes	visible.	To	resize	the	control,	simply	select
one	of	the	sizing	grips	now	visible	on	the	border	and	drag	the	grip	to	a	new
position.	When	you	release	the	grip,	the	control	is	resized	to	that	location.	(You
can	resize	the	form	in	the	same	manner.)

To	move	or	resize	several	controls	at	once,	select	each	control	while	holding
down	the	SHIFT	key.	This	will	highlight	all	the	controls.	You	can	now	move	or
resize	the	controls	as	a	group.

To	size	a	control	as	you	place	it

1.	 Select	the	desired	control	in	the	control	toolbox.

2.	 On	the	form,	press,	drag,	and	release	the	mouse	button.	The	selected
control	will	be	placed	on	the	form.	The	size	of	the	control	depends	on
how	far	you	drag	the	mouse.

To	place	several	instances	of	the	same	control

1.	 In	the	control	toolbox,	double-click	on	the	control	you	want	to	place.

2.	 On	the	form,	click	at	the	location	you	want	a	copy	of	the	control	placed.
Move	to	another	location	on	the	form	and	click	again.	Another	copy	of
the	control	will	appear.	You	can	add	as	many	copies	of	the	control	as	you
need.

3.	 When	you	are	finished	with	the	control,	return	to	the	control	toolbox	and
click	the	control	one	more	time	to	deselect	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	Add	Controls	to	a	Form	>	

Use	Formatting	Controls
	
	
	

VBA	provides	several	formatting	controls	to	help	you	lay	out	your	form.	These
controls	can	be	found	on	the	Format	menu	of	the	VBA	IDE.	These	controls
allow	you	to	align	controls	to	each	other,	make	two	or	more	controls	the	same
size,	change	the	spacing	between	controls,	and	center	controls	on	the	form.

Remember	when	using	the	formatting	controls	that	several	controls	can	be
selected	at	once	by	using	SHIFT.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	Add	Controls	to	a	Form	>	

Change	the	Properties	of	a	Control
	
	
	

Properties	control	various	characteristics	of	a	control	such	as	its	size,	shape,
color,	label,	and	default	values.	You	can	set	the	properties	of	a	control	in	design
mode	by	using	the	Properties	window.

To	change	the	property	of	a	control

1.	 On	the	form,	select	the	desired	control.

2.	 Open	the	Properties	window	using	F4	if	it	is	not	already	open.

3.	 In	the	Properties	window,	find	the	property	you	want	to	change	and
select	the	current	value	for	that	property.

4.	 Change	the	value	to	the	new	desired	value	for	the	property.

You	can	also	change	the	property	of	a	control	at	runtime	by	writing	code	to
access	that	property.	See	the	Microsoft	documentation	for	more	information	on
changing	the	property	of	a	control	at	runtime.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	Add	Controls	to	a	Form	>	

Add	Code	to	a	Control
	
	
	

Now	that	you	have	your	form	looking	the	way	you	want,	it's	time	to	add	some
code	behind	your	controls.	To	open	the	Code	window	for	a	control	simply
double-click	on	the	control	in	the	Form	window.	The	Code	window	will	open,
with	a	subroutine	created	for	that	control	and	its	default	event.

You	can	add	code	to	the	default	event,	or	choose	a	different	event	from	the	event
drop-down	list	at	the	top-right	corner	of	the	Code	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	

Display	and	Hide	Forms
	
	
	

Now	you	have	a	beautifully	designed	form	with	fully	functional	code	behind	all
the	controls.	The	last	step	is	getting	the	form	displayed	to	the	user	at	run-time.
Displaying	the	form	is	accomplished	through	the	VBA	Show	method.	The	Show
method	can	be	called	from	any	code	module	in	your	application.

The	form	you	created	is	modal	by	default,	so	the	user	will	not	be	able	to	interact
with	AutoCAD	directly	while	the	form	is	displayed.	For	example,	the	user
cannot	select	a	point	or	object	in	the	drawing	with	the	form	displayed.	To	allow
the	user	access	to	the	AutoCAD	drawing,	use	the	VBA	Hide	method.	The	Hide
method	hides	the	form	and	allows	the	user	limited	access	to	AutoCAD.	When
using	the	Hide	method	it	is	important	to	remember	that	the	form	is	not	unloaded
from	memory.	It	will	retain	all	current	values	while	hidden.

The	Hide	method	is	called	in	the	same	manner	as	the	Show	method.

Display	a	form

This	example	will	display	the	form	named	“UserForm1”:

Public	Sub	MyApplication()

	UserForm1.Show

End	Sub

The	subroutine	(and	consequently	the	display	of	your	form)	is	now	callable	as	a
macro	from	the	VBARUN	command	or	from	an	AutoCAD	menu.

Hide	a	form

This	example	hides	the	form	named	“UserForm1”:

Public	Sub	MyAppHide()

	UserForm1.Hide

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	

Load	and	Unload	Forms
	
	
	

There	may	be	times	when	you	want	to	load	a	form	into	memory	during	runtime,
but	not	show	the	form.	You	may	choose	to	do	this	to	better	control	when	the	load
time	occurs	in	your	application,	or	when	you	need	programmatic	access	to	the
form	but	do	not	want	to	display	the	form	to	the	user.

To	load	a	form,	but	not	display	it,	use	the	VBA	Load	method.	The	Show	method
can	then	be	used	to	make	the	form	visible	at	the	appropriate	time	in	your
application's	execution.	Remember,	the	user	can't	interact	with	your	form	until	it
is	visible.

If	the	Show	method	is	called	and	the	form	has	not	been	loaded,	it	will	be	loaded
automatically.

There	may	also	be	times	when	you	will	want	to	unload	a	form	specifically.
Unloading	a	form	removes	that	form	from	memory	and	all	the	memory
associated	with	the	form	is	reclaimed.	Until	the	form	is	loaded	again	by	using
either	the	Load	or	Show	method,	a	user	can't	interact	with	the	form,	and	the	form
can't	be	manipulated	programmatically.	You	may	choose	to	unload	a	form	when
you	know	the	form	will	not	be	used	again	in	the	application	and	you	want	to
reclaim	the	memory.

The	Hide	method	does	not	perform	an	unload.	If	your	application	ends	and	a
form	has	not	been	unloaded,	it	will	be	unloaded	automatically.	The	following
table	compares	the	VBA	Show,	Hide,	Load,	and	Unload	methods:

VBA	Show,	Hide,	Load,	and	Unload	methods

Method Use

Show Displays	a	form.	If	the	form	has	not	been	loaded,	it	is
loaded	automatically.

Hide Hides	a	form.	The	form	is	not	unloaded	from	memory.

Load Loads	a	form	into	memory	but	does	not	display	it.

Unload Unloads	a	form	from	memory.	This	can	be	done
explicitly	from	the	Unload	method,	or	automatically	at
the	termination	of	the	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Forms	in	VBA		>	

Modal	Forms
	
	
	

When	you	define	a	dialog	box	as	modal	in	AutoCAD	VBA,	the	user	must
respond	to	the	dialog	box	before	any	other	part	of	the	application	is	allowed	to
continue.	No	subsequent	code	is	executed	until	the	modal	dialog	box	is	closed
through	either	the	Hide	or	Unload	method.	This	requires	that	you,	as	the
developer	of	the	application,	think	carefully	about	how	and	when	you	implement
dialog	boxes.

For	example,	you	may	have	a	dialog	box	that	requires	the	user	to	select	an	object
in	the	AutoCAD	drawing.	For	the	user	to	be	able	to	pick	the	object	from	the
AutoCAD	Application	window,	you	must	hide	the	form	by	calling	the	Hide
method.	Once	the	object	has	been	selected	you	use	the	Show	method	to	redisplay
the	form,	with	all	of	its	data	still	current,	and	continue	with	the	application.

Note Although	other	forms	in	the	application	are	disabled	when	a	modal	dialog
box	is	displayed,	other	applications	are	not.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Handle	Errors
	
	
	

Most	development	environments	provide	default	error	handling.	For	VB	and
VBA,	the	default	reaction	to	an	error	is	to	display	an	error	message	and
terminate	the	application.	While	this	behavior	is	adequate	during	the
development	phase	of	your	application,	it	is	not	productive	for	your	end	user.
There	may	be	errors	that	you	want	to	ignore,	or	that	you	want	to	provide	special
responses	to.	There	may	be	errors	that	you	will	want	to	suppress	the	error
message	display	for,	or	simply	control	the	message	that	gets	displayed	to	the
user.	In	addition,	automatically	terminating	the	application	is	hardly	ever
acceptable	to	the	end	user.

In	general,	error	handling	is	necessary	whenever	user	input	is	required	and
whenever	working	with	file	I/O.	Remember,	even	if	you	are	sure	a	needed	file	is
there	and	available	for	processing,	there	may	be	conditions	you	haven't	thought
of	that	could	cause	errors.

Note Most	of	the	code	examples	provided	in	the	AutoCAD	documentation	do	not
use	error	trapping.	This	keeps	the	examples	simple	and	to	the	point.	However,	as
with	all	programming	languages,	proper	error	trapping	and	handling	is	essential
for	a	robust	application.

Topics	in	this	section

Define	Application	Error	Types
Trap	Runtime	Errors
Respond	to	Trapped	Errors
Respond	to	AutoCAD	User	Input	Errors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Handle	Errors	>	

Define	Application	Error	Types
	
	
	

There	are	three	different	types	of	errors	you	can	encounter	in	your	applications:
compile-time	errors,	runtime	errors,	and	logic	errors.

Compile-time	errors	occur	during	the	construction	of	your	application.
These	errors	consist	mostly	of	syntax	mistakes,	variable	scoping
problems,	or	data	typing	problems.	In	VBA,	these	types	of	errors	are
caught	by	the	development	environment.	When	you	enter	an	incorrect
line	of	code,	the	line	is	highlighted	and	an	error	message	appears	telling
you	the	problem.	Compile-time	errors	must	be	corrected	before	the
application	can	run.

Runtime	errors	are	a	little	more	difficult	to	find	and	correct.	They	occur
during	the	execution	of	your	code,	and	often	involve	receiving
information	from	the	user.	For	example,	if	your	application	requires	the
user	to	enter	the	name	of	a	drawing	and	the	user	enters	a	name	for	a
drawing	that	didn't	exist,	a	runtime	error	occurs.	To	handle	runtime
errors	effectively,	you	must	predict	what	kinds	of	problems	could
happen,	trap	them,	and	then	write	code	to	handle	these	situations.

Logic	errors	are	the	most	difficult	to	find	and	correct.	Symptoms	of	logic
errors	include	situations	in	which	there	are	no	compile-time	errors	and
no	runtime	errors,	but	the	outcome	of	your	program	is	still	incorrect.
This	is	what	programmers	refer	to	as	a	bug—and	a	bug	can	be	very	easy
or	very	difficult	to	track	down.

Information	on	finding	and	correcting	all	three	types	of	errors	can	be	found	in
documentation	for	your	development	environment.	AutoCAD-specific	errors	fall
into	the	runtime	error	category,	so	these	types	of	errors	will	be	covered	more
fully	in	this	documentation.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Handle	Errors	>	

Trap	Runtime	Errors
	
	
	

In	VB	and	VBA,	runtime	errors	are	trapped	using	the	On	Error	statement.
This	statement	literally	sets	a	trap	for	the	system.	When	an	error	occurs,	this
statement	automatically	detours	processing	to	your	specially	written	error
handler.	The	default	error	handling	for	the	system	is	bypassed.

The	On	Error	statement	has	three	forms:

On	Error	Resume	Next

On	Error	GoTo	Label

On	Error	GoTo	0

The	On	Error	Resume	Next	statement	is	used	when	you	want	to	ignore
errors.	This	statement	traps	the	error	and	instead	of	displaying	an	error	message
and	terminating	the	program,	it	simply	moves	on	to	the	next	line	of	code	and
continues	processing.	For	example,	if	you	wanted	to	create	a	subroutine	to	iterate
through	model	space	and	change	the	color	of	each	entity,	you	know	that
AutoCAD	will	throw	an	error	if	you	try	to	color	an	entity	on	a	locked	layer.
Instead	of	terminating	the	program,	simply	skip	the	entity	on	the	locked	layer
and	continue	processing	the	remaining	entities.	The	On	Error	Resume
Next	statement	lets	you	do	just	that.

The	On	Error	GoTo	Label	statement	is	used	when	you	want	to	write	an
explicit	error	handler.	This	statement	traps	the	error	and	instead	of	displaying	an
error	message	and	terminating	the	program,	it	jumps	to	a	specific	location	in
your	code.	Your	code	can	then	respond	to	the	error	in	whatever	manner	is
appropriate	for	your	application.	For	example,	you	can	expand	the	example
above	to	display	a	message	containing	the	handle	for	each	entity	on	the	locked
layer.

Handle	errors	with	the	On	Error	Resume	Next	statement

The	following	subroutine	iterates	model	space	and	changes	the	color	of	each
entity	to	red.	Try	running	this	subroutine	on	a	drawing	with	several	entities,
some	of	which	are	on	a	locked	layer.	Next,	comment	out	the	On	Error
Resume	Next	statement	and	run	the	subroutine	again.	You	will	notice	the
subroutine	terminates	at	the	first	entity	on	the	locked	layer.

Sub	Ch11_ColorEntities()

	Dim	entry	As	Object

	On	Error	Resume	Next

	For	Each	entry	In	ThisDrawing.ModelSpace

	entry.Color	=	acRed

	Next	entry

End	Sub

Handle	errors	with	the	On	Error	GoTo	statement

The	following	subroutine	iterates	model	space	and	changes	the	color	of	each
entity	to	red.	For	each	entity	on	the	locked	layer,	the	error	handler	displays	a
custom	error	message	and	the	handle	of	the	entity.	Try	running	this	subroutine	on
a	drawing	with	several	entities,	some	of	which	are	on	a	locked	layer.	Next,
comment	out	the	On	Error	GoTo	MyErrorHandling	statement	and	run
the	subroutine	again.	You	will	notice	the	subroutine	terminates	at	the	first	entity
on	the	locked	layer.

Sub	Ch11_ColorEntities2()

	Dim	entry	As	Object

	On	Error	GoTo	MyErrorHandler

	For	Each	entry	In	ThisDrawing.ModelSpace

	entry.Color	=	acRed

	Next	entry

	'	Important!	Exit	the	subroutine	before	the	error	handler

	Exit	Sub

MyErrorHandler:

	Msgbox	entry.EntityName	+	"	is	on	a	locked	layer."	+	_

	"	The	handle	is:	"	+	entry.Handle

	Resume	Next

End	Sub

The	On	Error	GoTo	0	statement	cancels	the	current	error	handler.	The	On
Error	Resume	Next	and	On	Error	GoTo	Label	statements	remain	in
effect	until	the	subroutine	ends,	another	error	handler	is	declared,	or	the	error
handler	is	canceled	with	the	On	Error	GoTo	0	statement.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Handle	Errors	>	

Respond	to	Trapped	Errors
	
	
	

Now	that	you	have	trapped	an	error,	what	do	you	do	with	it?	The	answer
depends	on	the	nature	of	your	application	and	the	nature	of	the	error.

VB	and	VBA	provide	information	on	the	type	of	error	that	has	been	trapped	by
using	the	Err	object.	This	object	has	several	properties:	Number,	Description,
Source,	HelpFile,	HelpContext,	and	LastDLLError.	The	properties	of	the	Err
object	get	filled	in	with	the	information	for	the	most	current	error.	The	most
important	properties	are	the	Number	and	Description	properties.	The	Number
property	contains	the	unique	error	code	associated	with	the	error,	and	the
Description	property	contains	the	error	message	that	would	normally	be
displayed.

In	your	error	handler	you	can	compare	the	Number	property	of	the	error	to	an
expected	value.	This	will	help	you	determine	the	nature	of	the	error	that	has
occurred.	Once	you	know	what	kind	of	error	you	are	dealing	with,	you	can	take
the	appropriate	action.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Handle	Errors	>	

Respond	to	AutoCAD	User	Input	Errors
	
	
	

The	user-input	methods	provide	a	certain	amount	of	inherent	error	trapping	in
that	they	require	the	user	to	enter	a	certain	type	of	data.	If	the	user	tries	to	enter
some	other	data,	AutoCAD	rejects	the	input	and	reprompts	the	user.	Using	the
InitializeUserInput	method	with	the	user	input	functions	provides	additional
control	of	the	user	input	but	can	also	introduce	additional	conditions	that	must	be
verified	through	error	trapping.	For	an	example	of	error	trapping	that	is	required
with	certain	types	of	user-input,	see	Prompt	for	User	Input.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Encrypt	VBA	Code	Modules
	
	
	

Although	VBA	does	not	support	creation	of	executables,	it	does	offer	password
protection	for	the	visibility	of	the	project	forms,	classes,	and	modules	on	a
project	basis.	You	can	find	this	Project	Protection	facility	in	the	VBA	IDE	menu.
Choose	Tools	 	Project	Properties	 	Protection.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Run	a	VBA	Macro	from	a	Toolbar	or	Menu
	
	
	

You	can	run	a	VBA	macro	from	an	AutoCAD	toolbar	or	menu	by	simply
changing	the	Macro	property	for	that	toolbar	or	menu.	The	Macro	property	must
be	set	equal	to

-VBARUN	filename.dvb!modulename.macroname

where	filename	is	the	name	of	the	project	file,	modulename	is	the	name	of	the
module	containing	the	macro	to	be	run,	and	macroname	is	the	name	of	the
macro.	The	file	name	is	only	required	when	the	file	is	not	loaded	in	the	current
session	of	AutoCAD.	If	the	file	name	is	provided,	the	file	will	be	loaded.

For	more	information	on	editing	menus	and	toolbars,	see	Customize	Toolbars
and	Menus.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Automatically	Load	a	VBA	Project
	
	
	

There	are	two	different	ways	to	load	a	VBA	project	automatically:

When	VBA	is	loaded	it	will	look	in	the	AutoCAD	directory	for	a	project
named	acad.dvb.	This	file	is	automatically	loaded	as	the	default	project

Any	project	other	than	the	default,	acad.dvb,	can	be	used	by	explicitly
loading	that	project	at	startup	using	the	VBALOAD	command.	The
following	code	sample	uses	the	AutoLISP	startup	file	to	load	VBA	and	a
VBA	project	named	myproj.dvb	when	AutoCAD	is	started.	Start
notepad.exe	and	create	(or	append	to)	acad.lsp	the	following	lines:
(defun	S::STARTUP()

(command	"_VBALOAD"	"myproj.dvb")

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Automatically	Run	a	VBA	Macro
	
	
	

You	can	automatically	run	any	macro	in	the	acad.dvb	file	by	calling	it	with	the
command	line	version	of	VBARUN	from	an	AutoCAD	startup	facility	like
acad.lsp.	For	example,	to	automatically	run	the	macro	named	drawline,	first
save	the	drawline	macro	in	the	acad.dvb	file.	Next,	invoke	notepad.exe	and
create	(or	append	to)	acad.lsp	the	following	lines:

(defun	S::STARTUP()

	(command	"_-vbarun"	"drawline")

)

You	can	cause	a	macro	to	run	automatically	when	VBA	loads	by	naming	the
macro	AcadStartup.	Any	macro	in	your	acad.dvb	file	called	AcadStartup
will	automatically	get	executed	when	VBA	loads.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Automatically	Open	the	VBA	IDE	Whenever	a	Project	Is
Loaded
	
	
	

There	is	an	option	on	the	Open	VBA	Project	dialog	box	that	allows	you	to	open
the	interactive	development	environment	automatically.	Simply	select	the	Open
Visual	Basic	Editor	check	box	found	in	the	lower-left	side	of	the	dialog	box	and
the	VBA	IDE	will	open	automatically	whenever	a	VBA	project	is	loaded.	This
option	will	remain	set	until	you	turn	it	off	again.

Note To	access	the	Open	VBA	Project	dialog	box,	enter	VBALOAD	at	the
command	line.	The	dialog	box	will	open	and	allow	you	to	choose	a	project	to
load.	If	you	do	not	see	the	Open	VBA	Project	dialog	box,	it	is	most	likely
because	the	system	variable	FILEDIA	is	turned	off.	This	system	variable	turns
on	and	off	the	display	of	dialog	boxes.	To	turn	FILEDIA	back	on,	set	it	to	1.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Work	in	a	Zero	Document	State
	
	
	

A	zero	document	state	is	when	there	are	no	open	drawings	in	AutoCAD.	There
are	several	important	considerations	to	keep	in	mind	when	you	are	working	with
VBA	in	a	zero	document	state:

The	ThisDrawing	object	is	undefined	in	a	zero	document	state.	Any
attempt	to	use	ThisDrawing	will	result	in	an	error.

Objects	that	are	document	dependent	are	also	not	defined	in	a	zero
document	state.	Document	dependent	objects	are	those	objects	that	fall
below	the	Document	object	in	the	AutoCAD	object	model.	Working
with	nondocument-dependent	object,	such	as	the	Application	or
MenuBar	objects,	is	allowed.

AutoCAD	does	not	have	a	command	line	in	a	zero	document	state.	Any
attempt	to	access	the	AutoCAD	command	line	while	AutoCAD	is	in	a
zero	document	state	will	result	in	an	error.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

Distribute	Your	Application
	
	
	

VBA	applications	can	be	distributed	two	different	ways:

Embedded	in	an	AutoCAD	drawing	file

Stored	in	a	VBA	project	file

You	must	choose	a	distribution	option	that	is	appropriate	for	your	application.
Applications	that	are	applicable	to	the	current	drawing,	and	do	not	access	other
drawings,	are	often	embedded	in	the	drawing.	By	embedding	the	application	in
the	drawing,	you	can	always	be	sure	the	application	is	loaded,	and	therefore
available	to	the	user	whenever	the	drawing	is	open.

Applications	that	are	used	by	many	people,	are	updated	frequently,	need	to	open
and	close	other	drawings,	or	are	not	used	frequently	you	may	want	to	store	in	a
VBA	project	file.	In	this	way,	there	is	one	central	location	for	the	application,
and	everyone	can	be	sure	to	use	the	latest	version.

For	more	information	on	embedded	projects	and	VBA	project	files,	see
Understand	Embedded	and	Global	VBA	Projects.

Topics	in	this	section

Distribute	Visual	Basic	6	Applications

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	Distribute	Your	Application	>	

Distribute	Visual	Basic	6	Applications
	
	
	

Visual	Basic	6	applications,	or	any	other	out-of-process	applications,	cannot	be
stored	within	an	AutoCAD	drawing.	These	applications	are	compiled	into
standalone	executables	(EXEs).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	

64-bit	Migration
	
	
	

Microsoft	is	not	providing	a	64-bit	version	of	VBA	for	developers;	therefore,	the
32-bit	applications	you	develop	will	need	to	be	ported	for	64-bit	AutoCAD
releases.	In	64-bit,	VBA	will	run	as	an	out-of-process	component,	accessed
through	a	32-bit-to-64-bit	“thunking”	layer.

The	behavior	of	VBA	in	the	64-bit	version	of	AutoCAD	is	not	guaranteed	to	be
identical	to	that	of	VBA	in	32-bit	AutoCAD.	For	example,	when	the	VBA	IDE	is
active	or	when	it	is	displaying	a	modal	window,	there	might	be	a	slight	delay
during	the	repaint	of	an	AutoCAD	window.

Topics	in	this	section

AutoCAD	Object	Instantiation	in	VBA
Handling	ObjectId
Appendix	of	32-bit	Methods

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	64-bit	Migration	>	

AutoCAD	Object	Instantiation	in	VBA
	
	
	

64-bit	operating	systems	can	execute	both	32-bit	and	64-bit	applications,	but
they	cannot	mix	these	types	within	a	process.	For	example,	you	cannot	load	32-
bit	DLLs	into	a	64-bit	process,	or	vice	versa.	All	executable	components	(EXE
and	DLL	files)	that	are	loaded	into	a	process	must	match	the	binary	type	of	the
process.	In-process	components	for	your	64-bit	applications	should	be	ported	to
64-bit	processes	as	much	as	possible.

One	error	could	occur	when	attempting	to	create	a	new	object.	VB’s	New
keyword	will	attempt	to	load	64-bit	AutoCAD	COM	DLLs.	Since	VBA	is	a	32-
bit	application,	it	cannot	load	64-bit	DLLs.	For	example,	code	such	as

Dim	color	As	AcadAcCmColor

Set	color	=	New	AcadAcCmColor

or

Dim	color	As	New	AcadAcCmColor

color.SomeMethod()

needs	to	be	modified	and	ported	to

Dim	color	As	AcadAcCmColor

Set	color	=	AcadApplication.GetInterfaceObject(“Autocad.AcCmColor.17”).	

The	above	issue	should	be	resolved	using
AcadApplication.GetInterfaceObject(“ProgIdOfAcAnyObject”)

for	any	object	that	is	derived	from	IDispatch.	Classes	derived	from
IUnknown	(e.g.	AcSmSheetSet,	AcSmSheetMgr	etc)	are	not	expected
to	have	a	64-Bit	VBA	migration.	It	is	recommended	that	you	port	such	processes
to	VB	.Net.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	64-bit	Migration	>	

Handling	ObjectId
	
	
	

Beginning	with	AutoCAD	2009	64-bit,	object	IDs	are	represented	by	a	64-bit
integer	datatype	(__int64).	Accessing	these	values	in	32-bit	VBA	will	result
in	a	compilation	error.	As	a	resolution,	a	new	set	of	method	names	suffixed	with
“32”	corresponding	to	the	old	methods	are	used	(e.g.	ObjectID32(),
OwnerID32()).	These	methods	use	the	LONG	datatype,	which	internally	maps
to	the	64-bit	integer	datatype.

To	be	more	precise,	a	32-bit	object	ID	is	created	internally	for	each	object	ID
required	in	VBA.	This	ID	is	mapped	to	its	64-bit	actual	ID,	so	that	if	the	32-bit
ID	is	passed	back	to	AutoCAD	from	VBA	code,	then	the	64-bit	object	ID	is
returned	and	used	internally	for	all	purposes.

The	following	sample	gives	an	example	of	ported	32-bit	Object	ID	code:

Original	code:

Dim	splineObj	As	AcadSpline

Dim	objectID	As	Long

objectID	=	splineObj.objectID

Dim	tempObj	As	AcadObject

Set	tempObj	=	ThisDrawing.ObjectIdToObject(objectID)

Code	ported	for	64-bit	compatibility:

Dim	splineObj	As	AcadSpline

Dim	objectID	As	Long

objectID	=	splineObj.objectID32

Dim	tempObj	As	AcadObject

Set	tempObj	=	ThisDrawing.ObjectIdToObject32(objectID)

VBA	applications	can	also	use	an	object’s	handle	instead	of	its	object	ID.	The
following	sample	shows	how	to	use	the	handle	instead	of	the	object	ID:

Original	code:

Dim	splineObj	As	AcadSpline

Dim	objectID	As	Long

objectID	=	splineObj.objectID

Dim	tempObj	As	AcadObject

Set	tempObj	=	ThisDrawing.ObjectIdToObject(objectID)

Code	ported	for	64-bit	compatibility:

Dim	splineObj	As	AcadSpline

Dim	objectHandle	As	String

objectHandle	=	splineObj.Handle

Dim	tempObj	As	AcadObject

Set	tempObj	=	ThisDrawing.HandleToObject(objectHandle)

Note :	Support	for	VBA	will	be	deprecated	in	future	versions	of	AutoCAD.	VBA
developers	should	prepare	to	port	their	VBA	code	to	VB.Net.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Develop	Applications	with	VBA	>	64-bit	Migration	>	

Appendix	of	32-bit	Methods
	
	
	

The	following	table	lists	the	new	methods	added	in	AutoCAD	2009	for	32-bit
substitutions:

VBA	table	methods	for	a	64-bit	system

Method Use

GetBlockAttributeValue32 Returns	the	attribute	value	from	the
specified	block	cell	for	the	attribute
definition	object	contained	in	the
block	using	its	32-bit	object	ID.

GetBlockTableRecordId32 Gets	the	32-bit	object	ID	of	the
block	table	record	associated	to	the
block-type	cell	and	nContent.

GetFieldId32 Returns	the	32-bit	object	ID	of	the
field	object	associated	to	the
specifed	cell.

GetGridLinetype32 Returns	the	32-bit	object	ID	of	the
grid	linetype	object.

Key32 Specifies	the	object	ID	of	the
source	object	in	the	CopyObjects
operation	for	a	64-bit	system.

ObjectID32 Gets	the	object	ID	for	a	64-bit
system.

ObjectIDtoObject32 Gets	the	object	that	corresponds	to
the	given	object	ID	for	a	64-bit
system.

OwnerID32 Gets	the	object	ID	of	the	owner
(parent)	object	for	a	64-bit	system.

SetBlockAttributeValue32 Sets	the	attribute	value	from	the
specified	block	cell	for	the	attribute
definition	object	contained	in	the
block	and	nContent	using	its	32-
bit	object	ID.

SetBlockTableRecordId32 Sets	the	32-bit	object	ID	block
table	record	associated	to	the
block-type	cell	and	nContent.

SetFieldId32 Sets	the	32-bit	object	ID	of	the
field	object	associated	to	the
specifed	cell	and	nContent.

SetGridLinetype32 Sets	the	32-bit	object	ID	of	the
gridline	type	object.

Value32 Specifies	the	current	value	for	the
property,	or	the	object	ID	of	the
newly	created	cloned	object,	for	a
64-bit	system.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Interact	with	Other	Applications	and	Windows	APIs
	
	
	

ActiveX	technology	allows	you	to	exchange	information	easily	with	other
AutoCAD	applications	and	other	ActiveX-enabled	applications	such	as
Microsoft	Excel	or	Microsoft	Word.	This	chapter	examines	some	of	the	basic
procedures	for	interacting	with	other	applications.

Topics	in	this	section

Interact	with	Visual	LISP	Applications
Interact	with	Other	Windows	Applications
Access	Windows	APIs	from	VBA

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	

Interact	with	Visual	LISP	Applications
	
	
	

Visual	LISP®	applications	have	access	to	the	entire	range	of	ActiveX®	objects.
They	can	call	ActiveX	methods,	and	set	and	retrieve	ActiveX	properties.	In
addition,	Visual	LISP	applications	can	also	run	VBA	macros	through	the
VBARUN	command.

ActiveX	and	VBA	applications	can	execute	Visual	LISP	applications	through	the
SendCommand	method.	This	method	allows	ActiveX	and	VBA	applications	to
send	a	command	to	the	AutoCAD	command	line.

For	more	information	about	accessing	ActiveX	objects	through	Visual	LISP,	see
the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	

Interact	with	Other	Windows	Applications
	
	
	

AutoCAD®	ActiveX	technology	allows	you	to	exchange	information	easily	with
other	ActiveX-enabled	applications	such	as	Microsoft	Excel	or	Microsoft	Word.
This	capability	allows	you	to	collect,	store,	and	present	AutoCAD	information	in
formats	other	than	the	AutoCAD	drawing.	You	can	also	read	information	from
these	applications	back	into	AutoCAD	to	direct	the	creation	or	manipulation	of
AutoCAD	objects.	An	example	of	using	this	technology	is	to	create	a	bill	of
materials	as	a	Microsoft	Excel	spreadsheet	from	the	objects	in	an	AutoCAD
drawing.

You	have	already	learned	how	to	write	code	using	the	AutoCAD	ActiveX	Object
Model.	Exchanging	information	with	other	ActiveX-enabled	applications
involves	simply	referencing	the	other	applications'	ActiveX	Object	Model	and
writing	the	code	necessary	to	utilize	their	objects.

Note This	chapter	provides	only	a	brief	introduction	to	the	capabilities	of	cross-
application	programming.	This	material	is	not	AutoCAD-specific,	and	as	such	it
is	discussed	in	both	Microsoft	documentation	and	independent	programming
guides.

To	exchange	information	across	ActiveX	Object	Models

1.	 Reference	the	other	applications'	ActiveX	Object	Model.
This	will	make	your	code	aware	of	the	names	and	relationships	of	the
objects	in	the	other	Object	Model.

2.	 Create	an	instance	of	the	other	application.
This	will	create	(instantiate)	valid	objects	for	the	basic	objects	in	the
other	Object	Model.

3.	 Write	your	code	utilizing	both	the	AutoCAD	Object	Model	and	the	other
applications'	Object	Model.

This	is	where	the	exchange	of	data	takes	place.

Topics	in	this	section

Reference	the	ActiveX	Object	Library	of	Other	Applications
Create	an	Instance	of	the	Other	Application
Program	with	Objects	from	Other	Applications

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	Interact	with	Other
Windows	Applications	>	

Reference	the	ActiveX	Object	Library	of	Other
Applications
	
	
	

To	write	code	that	accesses	another	application,	you	must	instruct	VBA	to	make
the	objects	in	the	other	application	available	to	you.	You	do	this	by	setting	a
reference	in	the	other	application's	object	library.	This	is	a	file	on	your	computer
where	all	the	objects,	methods,	properties,	constants,	and	events	for	that
application	are	defined.

You	make	a	reference	to	an	object	library	through	the	VBA	IDE.	In	the	VBA
IDE,	under	the	Tools	menu,	there	is	a	menu	option	called	References.	This	menu
option	will	bring	up	a	dialog	box	that	lists	all	of	the	object	libraries	VBA	finds
on	your	system.	To	make	a	reference	to	a	library,	simply	select	the	library	from
the	list.	Libraries	with	check	boxes	that	are	selected	are	already	referenced	in	the
current	project.	For	example,	to	add	the	Microsoft	Excel	object	library,	select	the
Microsoft	Excel	object	library	entry	in	the	list.

Once	you	have	created	a	reference	to	another	application's	object	library,	you
can	use	the	VBA	Object	Browser	to	view	a	list	of	the	application's	objects.

Note You	must	set	the	reference	for	each	VBA	project	that	will	use	this	Object
Model.	Setting	the	reference	for	one	project	won't	automatically	set	it	for	another
project.	This	is	for	performance	reasons.

To	make	a	reference	to	another	application's	object	library

1.	 In	the	VBA	IDE,	open	the	Tools	menu	and	select	the	References	menu
option.

2.	 Find	and	select	the	entry	in	the	list	of	Available	References	for	the
application	you	want	to	access.

3.	 Select	OK	to	close	the	dialog	box	with	your	changes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	Interact	with	Other
Windows	Applications	>	

Create	an	Instance	of	the	Other	Application
	
	
	

Once	you	have	referenced	an	application's	object	library	you	must	create	an
instance	of	the	application.	This	is	just	a	fancy	way	of	saying	you	need	to	start
the	other	application	programmatically	so	your	code	will	have	valid	objects	to
work	with.

To	do	this,	first	declare	a	variable	that	will	represent	the	other	application.	You
do	this	the	same	way	as	built-in	objects,	by	using	a	Dim	statement.	You	should
qualify	the	type	of	application	in	your	Dim	statement.	For	example,	this	Dim
statement	declares	an	object	variable	of	type	Excel.Application:

Dim	ExcelAppObj	as	Excel.Application

After	you	declare	the	variable,	use	the	Set	statement	with	the	New	keyword	to
set	the	variable	equal	to	a	running	instance	of	the	application.	For	example,	the
following	Set	statement	sets	the	variable	declared	above	equal	to	the	Excel
application.	The	New	keyword	starts	a	new	session	of	Excel.

Set	ExcelAppObj	=	New	Excel.Application

Note Some	applications	allow	only	one	running	instance	of	the	application	at	a
time.	Using	the	New	keyword	on	such	an	application	will	establish	a	reference	to
the	existing	instance	and	will	not	launch	a	new	session	of	the	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	Interact	with	Other
Windows	Applications	>	

Program	with	Objects	from	Other	Applications
	
	
	

Now	that	you	have	referenced	the	object	library	and	created	a	new	instance	of
the	application,	you	can	create	and	manipulate	objects	in	that	application.	All	the
objects,	methods,	and	properties	defined	by	the	Object	Model	are	available	to
you.	For	example,	using	the	variable	declarations	from	the	previous	section,	the
following	line	of	code	makes	the	Excel	session	visible	to	the	user:

ExcelAppObj.Visible	=	TRUE

You	should	familiarize	yourself	with	the	Object	Model	of	the	application	you	are
writing	code	for.	You	can	use	the	VBA	Object	Browser	or	the	application's	help
file	to	learn	about	any	Object	Model	you	are	referencing.

Topics	in	this	section

Quit	the	Other	Application

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	Interact	with	Other
Windows	Applications	>	Program	with	Objects	from	Other	Applications	>	

Quit	the	Other	Application
	
	
	

When	you	start	an	application	programmatically	it	takes	up	memory	in	the
computer.	You	should	quit	the	application	when	you	have	finished	using	it	so
system	resources	can	be	freed	up.

Although	each	Object	Model	is	different,	most	have	a	Quit	method	from	the
Application	object	that	can	be	used	to	close	the	application	cleanly.	For	example,
using	the	variable	declarations	from	the	previous	section,	the	following	line	of
code	will	quit	Excel:

ExcelAppObj.Application.Quit

Note Destroying	or	going	beyond	the	scope	of	the	object	variable	does	not
necessarily	cause	the	application	to	terminate.	You	should	always	quit	the
application	using	the	appropriate	method	to	assure	proper	memory	cleanup.

List	AutoCAD	attributes	on	an	Excel	spreadsheet

This	subroutine	finds	all	the	block	references	in	the	current	drawing.	It	then	finds
the	attributes	attached	to	those	block	references	and	lists	them	in	an	Excel
spreadsheet.	To	run	this	example,	do	the	following:

1.	 Open	a	drawing	containing	block	references	with	attributes.	(The	sample
drawing	sample/activeX/attrib.dwg	contains	such	block	references.)

2.	 Open	the	VBA	IDE	using	the	AutoCAD	VBAIDE	command.

3.	 Using	the	Tools	 	References	menu	option	in	the	VBA	IDE,	select
Microsoft	Excel	8.0	Object	Model.

4.	 Copy	this	subroutine	into	a	VBA	Code	window	and	run	it.

Sub	Ch12_Extract()

				Dim	Excel	As	Excel.Application

				Dim	ExcelSheet	As	Object

				Dim	ExcelWorkbook	As	Object

				Dim	RowNum	As	Integer

				Dim	Header	As	Boolean

				Dim	elem	As	AcadEntity

				Dim	Array1	As	Variant

				Dim	Count	As	Integer

				'	Launch	Excel.

				Set	Excel	=	New	Excel.Application

				'	Create	a	new	workbook	and	find	the	active	sheet.

				Set	ExcelWorkbook	=	Excel.Workbooks.Add

				Set	ExcelSheet	=	Excel.ActiveSheet

				ExcelWorkbook.SaveAs	"Attribute.xls"

				RowNum	=	1

				Header	=	False

				'	Iterate	through	model	space	finding

				'	all	block	references.

				For	Each	elem	In	ThisDrawing.ModelSpace

								With	elem

	'	When	a	block	reference	has	been	found,

	'	check	it	for	attributes

	If	StrComp(.EntityName,	"AcDbBlockReference",	1)	_

	=	0	Then

	If	.HasAttributes	Then

	'	Get	the	attributes

	Array1	=	.GetAttributes

	'	Copy	the	Tagstrings	for	the

	'	Attributes	into	Excel

	For	Count	=	LBound(Array1)	To	UBound(Array1)

	If	Header	=	False	Then

	If	StrComp(Array1(Count).EntityName,	_

	"AcDbAttribute",	1)	=	0	Then

	ExcelSheet.Cells(RowNum,	_

	Count	+	1).value	=	_

	Array1(Count).TagString

	End	If

	End	If

	Next	Count

	RowNum	=	RowNum	+	1

	For	Count	=	LBound(Array1)	To	UBound(Array1)

	ExcelSheet.Cells(RowNum,	Count	+	1).value	_

	=	Array1(Count).textString

	Next	Count

	Header	=	True

	End	If

	End	If

								End	With

				Next	elem

				Excel.Application.Quit

End	Sub

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Interact	with	Other	Applications	and	Windows	APIs	>	

Access	Windows	APIs	from	VBA
	
	
	

The	Windows®	API	procedures	are	available	to	most	Windows	applications.
These	procedures	allow	you	to	expand	the	capabilities	of	your	application.

Through	the	Windows	APIs	you	can	obtain	information	about	the	current
system,	such	as	which	other	programs	are	installed	or	running	on	the	system,
where	information	is	located	on	a	system,	and	what	the	current	control	settings
are	for	the	system.	You	can	also	access	joystick,	multimedia,	and	sound	controls.
These	tasks	represent	but	a	few	of	the	many	capabilities	provided	by	the
Windows	APIs.

To	use	a	Windows	API,	you	must	first	declare	the	API	in	your	application.	This
is	done	with	the	Declare	statement.	The	Declare	statement	requires	several
pieces	of	information:

The	name	of	the	dynamic	link	library	(DLL)	containing	the	procedure
you	want	to	use

The	name	of	the	procedure	as	it	appears	in	the	DLL

The	name	of	the	procedure	as	you	want	to	use	it	in	your	application

The	parameters	the	procedure	expects	to	receive

The	return	value	data	type	(if	the	procedure	you	are	calling	is	a	function)

You	can	place	the	Declare	statement	in	any	of	your	VBA	modules.	If	you
place	it	in	a	standard	module,	the	procedure	will	be	available	to	any	module	in
your	application,	unless	you	limit	its	scope	by	using	the	keyword	Private.	If	you
place	the	Declare	statement	in	a	class	or	form	module,	the	procedure	will	only
be	available	in	that	module.	Once	a	procedure	has	been	declared,	you	can	call
that	procedure	as	you	would	any	other	procedure	in	your	application.

Getting	a	Declare	statement	just	right	is	a	difficult	skill	to	learn.	Getting	a
Declare	statement	wrong	is	easy,	but	it	often	comes	with	dire	consequences.

Be	sure	to	save	any	information	in	active	applications	before	you	try	out	a	new
Declare	statement.

To	help	you	with	your	Declare	statements,	Microsoft	provides	a	file	listing	of
many	of	the	declarations	most	commonly	used.	The	file	is	called	Win32api.txt
and	comes	with	Visual	Basic	6	and	Office.	You	can	search	this	file	for	the
procedure	you	need	and	copy	the	Declare	statement	provided	into	your	code.

The	Microsoft	VBA	documentation	contains	more	information	on	the	Declare
statement	and	an	example	of	its	use.	The	Microsoft	Windows	API	Reference	is
available	as	part	of	the	Microsoft	Developer	Network	CD	subscription	and
provides	a	reference	to	all	the	available	procedures	in	the	Windows	APIs.	Dan
Appleman's	book	Visual	Basic	Programmer's	Guide	to	the	Win32	API	is	also	an
excellent	resource	directed	at	the	Visual	Basic	6	programmer.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>tutorial:

	

ActiveX/VBA	Tutorial:	Design	the	Garden	Path
	
	
	

This	tutorial	demonstrates	how	to	use	ActiveX	and	Visual	Basic	for	Applications
(VBA)	and	how	to	add	a	macro	to	AutoCAD.	The	tutorial	is	oriented	toward
landscape	architecture,	but	the	concepts	in	the	tutorial	are	relevant	to	any
application	area.

This	tutorial	is	designed	for	the	proficient	AutoCAD	user	who	is	a	novice	VBA
programmer.

Topics	in	this	section

Check	Your	Environment
Define	the	Goal
Write	the	First	Function
Get	Input
Draw	the	Path	Outline
Draw	the	Tiles
Tie	It	All	Together
Step	Through	the	Code
Execute	the	Macro
Add	a	Dialog	Box	Interface

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<$nopage>tutorial:

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Check	Your	Environment
	
	
	

For	the	tutorial,	you	need	the	AutoCAD®	VBA	integrated	development
environment	(VBA	IDE).	The	VBA	IDE	is	installed	automatically	with	the	Full
option	of	the	AutoCAD	installation	program.	If	you	selected	the	Custom	option
when	you	installed	AutoCAD,	the	VBA	IDE	might	not	be	installed;	you	might
need	to	install	it	by	running	the	AutoCAD	installation	program	again.

To	test	if	the	VBA	IDE	is	installed

1.	 Start	AutoCAD.

2.	 On	the	command	line,	enter	vbaide,	and	press	ENTER.
If	the	VBA	IDE	opens,	the	VBA	IDE	is	installed.	If	you	receive	the
message	“AutoCAD	VBA	is	not	currently	installed,”	the	VBA	IDE	is
not	installed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Define	the	Goal
	
	
	

Your	goal	in	this	tutorial	is	to	develop	a	new	macro	for	AutoCAD	that	draws	a
garden	path	and	fills	it	with	circular	concrete	tiles.	Your	new	macro	will	have	the
following	prompt	sequence:

Command: gardenpath

Start	point	of	path: The	user	will	specify	the	start	point

Endpoint	of	path: The	user	will	specify	the	endpoint

Half	width	of	path: The	user	will	specify	a	number

Radius	of	tiles: The	user	will	specify	a	number

Spacing	between	tiles: The	user	will	specify	a	number

Your	macro	will	first	prompt	the	user	to	enter	the	start	point	and	endpoint	to
specify	the	centerline	of	a	path.	Next,	it	will	prompt	the	user	to	enter	the	half
width	of	the	path	and	the	radius	of	the	circular	tiles.	Finally,	the	user	will	enter
the	spacing	between	the	tiles.	You	are	using	the	half	width	of	the	path	rather	than
the	full	width	because	it	is	easier	to	visualize	the	half	width	from	the	centerline
of	the	path.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Write	the	First	Function
	
	
	

You	develop	the	Gardenpath	macro	using	a	series	of	functions	and	subroutines.
Many	subroutines	require	the	manipulation	of	angles.	Because	ActiveX	specifies
angles	in	radians,	but	most	users	think	of	angles	in	terms	of	degrees,	begin	by
creating	a	function	that	converts	degrees	to	radians.

To	convert	degrees	to	radians

1.	 On	the	command	line,	enter	vbaide,	and	press	ENTER.

2.	 In	the	VBA	IDE,	on	the	View	menu,	click	Code	to	open	the	Code
window.

3.	 Enter	the	following	code	in	the	Code	window:

Const	pi	=	3.14159

'	Convert	angle	in	degrees	to	radians

Function	dtr(a	As	Double)	As	Double

	dtr	=	(a	/	180)	*	pi

End	Function

Notice	that	as	soon	as	you	press	ENTER	after	entering	the	line
Function	dtr(a	As	Double)	As	Double,End	Function

is	added	automatically.	This	ensures	that	all	subroutines	and	functions
have	an	associated	End	statement.
Now	look	at	the	code.	First,	the	constant	pi	is	defined	as	the	value
3.14159.	This	allows	you	to	use	the	word	pi	instead	of	typing	3.14159
each	time	you	need	to	use	the	value.
Next,	you	are	defining	a	function	called	dtr	(short	for	degrees	to
radians).	The	function	dtr	takes	one	argument,	a,	which	is	the	angle	in
degrees.	The	result	is	obtained	by	dividing	the	angle	in	degrees	by	180,
and	then	multiplying	this	value	by	pi.	The	line	that	begins	with	a	single
quote	is	a	comment;	VBA	ignores	all	text	on	a	line	after	a	single	quote.

This	function	can	now	be	used	in	other	subroutines	throughout	your
project.

4.	 Save	your	work.	Click	File	 	Save	Global1.	Name	the	project
gardenpath.dvb.

Next,	add	a	function	to	calculate	the	distance	between	points.

To	calculate	the	distance	between	two	points

1.	 Enter	the	following	code	after	the	dtr	function:

'	Calculate	distance	between	two	points

Function	distance(sp	As	Variant,	ep	As	Variant)	_

	As	Double

	Dim	x	As	Double

	Dim	y	As	Double

	Dim	z	As	Double

	x	=	sp(0)	-	ep(0)

	y	=	sp(1)	-	ep(1)

	z	=	sp(2)	-	ep(2)

	distance	=	Sqr((Sqr((x	^	2)	+	(y	^	2))	^	2)	+	(z	^	2))

End	Function

2.	 Save	your	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Get	Input
	
	
	

The	Gardenpath	macro	asks	the	user	where	to	draw	the	path,	how	wide	to	make
the	path,	how	large	the	concrete	tiles	are,	and	how	closely	to	space	those	tiles.
You	define	a	subroutine	that	asks	the	user	for	all	of	these	items	and	then
computes	various	numbers	to	use	in	the	rest	of	the	macro.

In	this	subroutine,	you	use	the	user	input	methods	found	in	the	Utility	object.

Topics	in	this	section

Declare	Variables
Enter	the	gpuser	Subroutine

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Get	Input	>	

Declare	Variables
	
	
	

The	next	subroutine	uses	several	variables.	All	variables	must	be	declared	before
the	subroutine	can	access	them.

In	the	VBA	IDE,	enter	the	following	code	in	the	Code	window,	immediately
after	the	line	Const	pi	=	3.14159:

Private	sp(0	To	2)	As	Double

Private	ep(0	To	2)	As	Double

Private	hwidth	As	Double

Private	trad	As	Double

Private	tspac	As	Double

Private	pangle	As	Double

Private	plength	As	Double

Private	totalwidth	As	Double

Private	angp90	As	Double

Private	angm90	As	Double

Now	look	at	the	two	drop-down	lists	at	the	top	of	the	Code	window.	These	lists
are	called	the	Object	Box	and	the	Procedure/Event	Box	and	currently	display	the
terms	(General)	and	(Declarations),	respectively.	These	lists	display	the	current
section	of	the	code	you	are	working	in,	and	enable	you	to	move	quickly	to	a
different	section	by	simply	selecting	one	from	the	list.	The	(Declarations)	section
is	the	appropriate	place	to	declare	variables	that	you	will	use	in	more	than	one
subroutine.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Get	Input	>	

Enter	the	gpuser	Subroutine
	
	
	

The	gpuser	subroutine	prompts	the	user	for	information	necessary	for	drawing
a	garden	path.	Enter	the	following	code	after	the	distance	function:

'	Acquire	information	for	garden	path

Private	Sub	gpuser()

	Dim	varRet	As	Variant

	varRet	=	ThisDrawing.Utility.GetPoint(_

	,	"Start	point	of	path:	")

	sp(0)	=	varRet(0)

	sp(1)	=	varRet(1)

	sp(2)	=	varRet(2)

	varRet	=	ThisDrawing.Utility.GetPoint(_

	,	"Endpoint	of	path:	")

	ep(0)	=	varRet(0)

	ep(1)	=	varRet(1)

	ep(2)	=	varRet(2)

	hwidth	=	ThisDrawing.Utility.	_

	GetDistance(sp,	"Half	width	of	path:	")

	trad	=	ThisDrawing.Utility.	_

	GetDistance(sp,	"Radius	of	tiles:	")

	tspac	=	ThisDrawing.Utility.	_

	GetDistance(sp,	"Spacing	between	tiles:	")

	pangle	=	ThisDrawing.Utility.AngleFromXAxis(_

	sp,	ep)

	totalwidth	=	2	*	hwidth

	plength	=	distance(sp,	ep)

	angp90	=	pangle	+	dtr(90)

	angm90	=	pangle	-	dtr(90)

End	Sub

In	the	gpuser	subroutine,	the	line	Dim	varRet	As	Variant	declares	the
variable	varRet.	Because	this	variable	is	used	only	in	this	subroutine,	it	can	be
declared	here	locally,	instead	of	in	the	(Declarations)	section.

The	next	line,	varRet	=	ThisDrawing.Utility.GetPoint(,
"Start	point	of	path:	"),	calls	the	GetPoint	method.	The	underscore

in	the	line	is	intended	to	make	a	long	line	easier	to	read,	and	tells	VBA	to	read
the	next	line	as	if	it	were	on	the	same	line.	You	can	remove	the	underscore	by
placing	the	code	all	on	one	line.

To	access	the	GetPoint	method,	you	must	first	go	through	the	ThisDrawing
object	that	represents	the	current	drawing.	After	entering	ThisDrawing	you
enter	a	period	(.),	which	means	that	you	are	going	to	access	something	within
that	object.	After	you	type	the	period,	you	enter	Utility	and	another	period.
Once	again,	you	are	going	to	access	something	within	the	Utility	object.	Finally,
enter	GetPoint,	which	is	the	name	of	the	method	you	are	calling.

The	GetPoint	method	takes	two	parameters.	The	first	parameter	is	optional	and
won't	be	used.	Leave	the	parameter	blank	and	simply	type	a	comma	to	mark	its
spot.	The	second	parameter	is	the	prompt,	which	is	also	optional.	For	this
parameter,	you	entered	a	string	prompting	the	user	to	enter	the	start	point.	The
point	the	user	enters	is	put	into	the	varRet	variable.	The	next	three	lines	of	the
subroutine	copy	the	point	returned	by	the	user	into	the	sp	array.

The	endpoint	is	returned	in	the	same	manner.

The	GetDistance	method	is	used	to	obtain	the	half	width	of	the	path	(hwidth),
the	tile	radius	(trad),	and	the	spacing	between	the	tiles	(tspac).	The
GetDistance	method	takes	two	parameters.	The	first	parameter	is	a	base	point.
For	this	value,	you	supply	the	start	point.	The	second	parameter	is	the	prompt,
for	which	you	provide	a	string	prompting	the	user	for	the	appropriate	input.	The
interesting	thing	about	the	GetDistance	method	is	that	it	can	return	either	a	value
entered	on	the	command	line	or	the	distance	between	a	point	selected	in
AutoCAD	and	the	start	point.

The	subroutine	goes	on	to	calculate	several	variables	used	later	in	the	macro.
The	pangle	variable	is	set	to	the	angle	from	the	start	point	to	the	endpoint	and
is	found	by	using	the	AngleFromXAxis	method.	The	width	of	the	path	is	found
by	multiplying	the	half	width	by	two.	The	plength	variable	is	set	to	the	length
of	the	path	and	is	found	using	the	distance	function	you	entered	earlier.	Finally,
calculate	and	save	the	angle	of	the	path	plus	and	minus	90	degrees	in	angp90
and	angm90,	respectively.

The	following	illustration	shows	how	the	variables	obtained	by	gpuser	specify
the	dimensions	of	the	path.

Save	your	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Draw	the	Path	Outline
	
	
	

Now	that	you	have	acquired	the	location	and	width	of	the	path,	you	can	draw	its
outline.	Add	the	following	code	below	the	gpuser	subroutine:

'	Draw	outline	of	path

Private	Sub	drawout()

	Dim	points(0	To	9)	As	Double

	Dim	pline	As	AcadLWPolyline

	Dim	varRet	As	Variant

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	sp,	angm90,	hwidth)

	points(0)	=	varRet(0)

	points(1)	=	varRet(1)

	points(8)	=	varRet(0)

	points(9)	=	varRet(1)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	varRet,	pangle,	plength)

	points(2)	=	varRet(0)

	points(3)	=	varRet(1)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	varRet,	angp90,	totalwidth)

	points(4)	=	varRet(0)

	points(5)	=	varRet(1)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	varRet,	pangle	+	dtr(180),	plength)

	points(6)	=	varRet(0)

	points(7)	=	varRet(1)

	Set	pline	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

End	Sub

This	subroutine	draws	the	outline	of	the	path	using	the	AddLightweightPolyline
method.	This	method	takes	one	parameter:	an	array	of	points	that	make	up	the
polyline.	You	must	find	all	the	points	that	make	up	the	polyline	object	and	place
them	into	an	array	in	the	order	they	are	to	be	drawn.	For	this	polyline,	the	points
needed	are	the	corners	of	the	path.

To	find	the	corners	of	the	path,	use	the	PolarPoint	method.	This	method	finds	a
point	that	is	a	given	angle	and	distance	from	a	base	point.	Begin	with	the	start
point	(sp)	and	find	the	first	corner	of	the	path,	working	in	a	counterclockwise
direction.	This	corner	will	be	at	a	distance	of	half	the	width	of	the	path
(hwidth)	and	at	-90	degrees	from	the	path	angle.	Because	you	want	to	draw	a
closed	rectangle	for	the	path,	this	point	becomes	the	first	and	last	point	in	the
array.	Hence,	the	X	and	Y	coordinates	returned	from	the	PolarPoint	method	are
moved	into	the	first	and	last	positions	in	the	points	array.

The	remaining	corners	of	the	path	are	found	in	the	same	manner	using	the	length
and	width	of	the	path	(plength	and	width),	and	the	angle	of	the	path.	Every
time	the	PolarPoint	method	is	called,	the	coordinates	returned	(varRet)	are
copied	into	the	points	array.

Once	all	the	corners	have	been	identified	in	the	points	array,	the
AddLightweightPolyline	method	is	called.	Notice	that	this	method	is	called	from
the	ModelSpace	object.	If	you	were	to	run	this	macro,	you	would	also	notice	that
the	polyline	is	not	yet	visible	in	AutoCAD.	The	polyline	will	not	become	visible
until	you	update	the	display,	which	you	will	do	later.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Draw	the	Tiles
	
	
	

Now	that	you	have	developed	the	user	input	subroutine,	along	with	the
subroutine	to	draw	the	outline,	you	are	ready	to	fill	the	path	with	circular	tiles.
This	task	requires	some	geometry.

In	the	VBA	IDE,	enter	the	following	code	in	the	Code	window,	after	the
drawout	subroutine:

'	Place	one	row	of	tiles	the	given	distance	along	path

'	and	possibly	offset	it

Private	Sub	drow(pd	As	Double,	offset	As	Double)

	Dim	pfirst(0	To	2)	As	Double

	Dim	pctile(0	To	2)	As	Double

	Dim	pltile(0	To	2)	As	Double

	Dim	cir	As	AcadCircle

	Dim	varRet	As	Variant

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	sp,	pangle,	pd)

	pfirst(0)	=	varRet(0)

	pfirst(1)	=	varRet(1)

	pfirst(2)	=	varRet(2)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	pfirst,	angp90,	offset)

	pctile(0)	=	varRet(0)

	pctile(1)	=	varRet(1)

	pctile(2)	=	varRet(2)

	pltile(0)	=	pctile(0)

	pltile(1)	=	pctile(1)

	pltile(2)	=	pctile(2)

	Do	While	distance(pfirst,	pltile)	<	(hwidth	-	trad)

	Set	cir	=	ThisDrawing.ModelSpace.AddCircle(_

	pltile,	trad)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	pltile,	angp90,	(tspac	+	trad	+	trad))

	pltile(0)	=	varRet(0)

	pltile(1)	=	varRet(1)

	pltile(2)	=	varRet(2)

	Loop

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	pctile,	angm90,	tspac	+	trad	+	trad)

	pltile(0)	=	varRet(0)

	pltile(1)	=	varRet(1)

	pltile(2)	=	varRet(2)

	Do	While	distance(pfirst,	pltile)	<	(hwidth	-	trad)

	Set	cir	=	ThisDrawing.ModelSpace.AddCircle(_

	pltile,	trad)

	varRet	=	ThisDrawing.Utility.PolarPoint(_

	pltile,	angm90,	(tspac	+	trad	+	trad))

	pltile(0)	=	varRet(0)

	pltile(1)	=	varRet(1)

	pltile(2)	=	varRet(2)

	Loop

End	Sub

'	Draw	the	rows	of	tiles

Private	Sub	drawtiles()

	Dim	pdist	As	Double

	Dim	offset	As	Double

	pdist	=	trad	+	tspac

	offset	=	0

	Do	While	pdist	<=	(plength	-	trad)

	drow	pdist,	offset

	pdist	=	pdist	+	((tspac	+	trad	+	trad)	*	Sin(dtr(60)))

	If	offset	=	0	Then

	offset	=	(tspac	+	trad	+	trad)	*	Cos(dtr(60))

	Else

	offset	=	0

	End	If

	Loop

End	Sub

To	understand	how	these	subroutines	work,	refer	to	the	following	illustration.
The	subroutine	drow	draws	a	row	of	tiles	at	a	given	distance	along	the	path
specified	by	its	first	argument,	and	offsets	the	row	perpendicular	to	the	path	by	a
distance	specified	by	its	second	argument.	You	want	to	offset	the	tiles	on
alternate	rows	to	cover	more	space	and	make	a	more	pleasing	arrangement.

The	drow	subroutine	finds	the	location	for	the	first	row	by	using	the	PolarPoint
method	to	move	along	the	path	by	the	distance	specified	by	the	first	argument.
The	subroutine	then	uses	the	PolarPoint	method	again	to	move	perpendicularly
to	the	path	for	the	offset.	The	subroutine	uses	the	While	statement	to	continue
to	draw	circles	until	the	edge	of	the	path	is	encountered.	The	PolarPoint	method
in	the	first	While	statement	moves	on	to	the	next	tile	location	by	spacing	a
distance	of	two	tile	radii	(trad)	and	one	intertile	space	(tspac).	A	second
while	loop	then	draws	the	tiles	in	the	row	in	the	other	direction	until	the	other
edge	is	encountered.

The	drawtiles	subroutine	calls	drow	repeatedly	to	draw	all	the	tile	rows.
The	subroutine	While	loop	steps	along	the	path,	calling	drow	for	each	row.
Tiles	in	adjacent	rows	form	equilateral	triangles,	as	shown	in	the	previous
illustration.	The	edges	of	these	triangles	are	equal	to	twice	the	tile	radius	plus	the
spacing	between	the	tiles.	Therefore,	by	trigonometry,	the	distance	along	the
path	between	rows	is	the	sine	of	60	degrees	multiplied	by	this	quantity,	and	the
offset	for	odd	rows	is	the	cosine	of	60	degrees	multiplied	by	this	quantity.

The	If	statement	is	used	in	drawtiles	to	offset	every	other	row.	If	the	offset
is	equal	to	0,	set	it	to	the	spacing	between	the	centers	of	tiles	multiplied	by	the
cosine	of	60	degrees,	as	explained	earlier.	If	the	offset	is	not	equal	to	0,	set	it	to
0.	This	alternates	the	offset	on	the	rows	as	you	want.

Save	your	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Tie	It	All	Together
	
	
	

You	are	ready	to	combine	the	subroutines	into	the	Gardenpath	macro.	In	the
VBA	IDE,	enter	the	following	code	in	the	Code	window,	after	the	drawtiles
subroutine:

'	Execute	command,	calling	constituent	functions

Sub	gardenpath()

	Dim	sblip	As	Variant

	Dim	scmde	As	Variant

	gpuser

	sblip	=	ThisDrawing.GetVariable("blipmode")

	scmde	=	ThisDrawing.GetVariable("cmdecho")

	ThisDrawing.SetVariable	"blipmode",	0

	ThisDrawing.SetVariable	"cmdecho",	0

	drawout

	drawtiles

	ThisDrawing.SetVariable	"blipmode",	sblip

	ThisDrawing.SetVariable	"cmdecho",	scmde

End	Sub

The	path	subroutine	calls	gpuser	to	gather	the	necessary	input.	The
GetVariable	method	is	then	used	to	obtain	the	current	values	of	the	BLIPMODE
and	CMDECHO	system	variables,	and	saves	these	values	as	sblip	and
scmde.	The	subroutine	then	uses	the	SetVariable	method	to	set	both	of	these
system	variables	to	0,	thereby	disabling	blips	and	command	echoing.	Next,	the
path	is	drawn	using	the	drawout	and	drawtiles	subroutines.	Finally,	the
SetVariable	method	is	used	to	reset	the	system	variables	to	their	original	values.

You	may	notice	that	this	is	the	only	subroutine	you	have	entered	that	did	not
begin	with	a	Private	keyword,	which	ensures	the	subroutine	can	only	be	called
from	within	the	current	module.	Because	the	gardenpath	subroutine	must	be
available	to	the	user,	you	should	omit	the	Private	keyword.

Save	your	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Step	Through	the	Code
	
	
	

Now	run	the	macro,	stepping	through	the	code	as	it	executes.

From	the	AutoCAD	Tools	menu,	click	Macro	 	Macros.	From	the	Macros
dialog	box	select	ThisDrawing.gardenpath	and	click	Step	Into.

The	VBA	IDE	is	brought	to	the	front	of	the	screen,	with	the	first	line	of	the
gardenpath	macro	highlighted.	The	highlighted	line	is	the	line	of	code	that	is
about	to	be	executed.	To	execute	the	line,	press	F8.	The	next	line	of	code	to	be
executed	is	the	gpuser	subroutine.	To	step	into	the	gpuser	subroutine,	press
F8	again.

Now	you	are	at	the	beginning	of	the	gpuser	routine.	Press	F8	one	more	time	to
highlight	the	first	GetPoint	method.	Before	you	execute	this	line,	open	the
Locals	window	by	clicking	View	 	Locals	Window.	This	window	is	displayed	at
the	bottom	of	the	VBA	IDE.	All	the	local	variables	and	their	values	are
displayed	in	the	Locals	window	while	the	macro	is	executing.

Now	press	F8	to	execute	the	GetPoint	method.	Notice	that	the	highlight
disappears	and	no	new	code	is	presented.	This	is	because	the	GetPoint	method	is
waiting	for	the	user	to	enter	a	point	in	AutoCAD.	Switch	back	to	the	AutoCAD
window.	You	see	the	prompt	you	specified	in	the	GetPoint	call	on	the	command
line.	Enter	a	point.

Control	now	returns	to	the	macro.	The	line	following	the	call	to	the	GetPoint
method	is	highlighted.	Continue	stepping	through	the	code	by	pressing	F8.
Remember	to	switch	back	to	the	AutoCAD	window	when	you	are	entering
information.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Execute	the	Macro
	
	
	

You	don't	need	to	step	through	the	code	whenever	you	run	the	macro.	You	can
run	the	macro	from	the	Tools	menu	by	clicking	Macro	 	Macros,	selecting	a
macro,	and	then	clicking	Run.	This	allows	you	to	see	the	flow	of	execution	the
way	a	user	would	see	it.	Run	the	macro	from	AutoCAD,	entering	the	following
values:

Start	point	of	the	path: 2,	2

Endpoint	of	the	path: 9,	8

Half	width	of	the	path: 2

Radius	of	tiles: .2

Spacing	between	tiles: .1

This	example	should	draw	a	garden	path	as	shown	in	the	following	figure:

You	can	experiment	with	the	Gardenpath	macro	by	specifying	the	various	inputs.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	

Add	a	Dialog	Box	Interface
	
	
	

The	Gardenpath	macro	has	been	written	to	accept	command	line	input.	To	add
dialog	boxes,	you	use	forms	in	the	VBA	IDE.

First,	copy	the	finished	version	of	gardenpath.dvb	to	another	file,	gpdialog.dvb.
Then	drag	gpdialog.dvb	into	AutoCAD.

Topics	in	this	section

Create	the	Dialog	Box
Use	the	Project	Window	to	Navigate	Your	Project
Update	the	Existing	Code
Add	Code	to	the	Dialog	Box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Add	a	Dialog	Box	Interface	>	

Create	the	Dialog	Box
	
	
	

The	dialog	box	you	create	contains	two	option	buttons	(if	you	select	one,	the
other	is	cleared)	for	choosing	the	tile	shape:	circle	or	polygon.	The	dialog	box
also	contains	three	text	boxes	for	entering	the	following	numeric	values:	the
radius	of	the	tiles,	the	spacing	between	the	tiles,	and	the	number	of	sides	on	the
tile	(which	is	available	only	if	the	Polygon	option	button	is	selected).

To	create	a	dialog	box	from	the	VBA	IDE

1.	 On	the	Insert	menu,	click	User	Form	to	open	a	new	form.	Two	windows,
a	toolbox,	and	a	blank	user	form	are	displayed.

2.	 One	by	one,	select	and	drag	the	following	controls	from	the	toolbox	and
place	them	on	the	user	form.	You	should	place	two	option	buttons	(

),	three	labels	(

),	three	text	boxes	(

),	and	two	command	buttons	(

),	as	illustrated	on	the	following	form:

3.	 Close	the	toolbox.

To	set	the	properties	for	the	radio	button	controls

1.	 On	the	user	form,	select	the	OptionButton1	control.	On	the	View	menu,
click	Properties	Window,	and	change	the	following	properties	for
OptionButton1:
(Name)	=	gp_poly
Caption	=	Polygon
ControlTipText	=	Polygon	Tile	Shape
Accelerator	=	P

2.	 On	the	user	form,	select	the	OptionButton2	control.	In	the	Properties
window,	change	the	following	properties	for	OptionButton2:
(Name)	=	gp_circ
Caption	=	Circle
ControlTipText	=	Circle	Tile	Shape
Accelerator	=	I

To	set	the	properties	for	the	label	controls

1.	 On	the	user	form,	select	the	Label1	control.	In	the	Properties	window,
change	the	following	properties	for	Label1:

(Name)	=	label_trad
Caption	=	Radius	of	tiles
TabStop	=	True

2.	 On	the	user	form,	select	the	Label2	control.	In	the	Properties	window,
change	the	following	properties	for	Label2:
(Name)	=	label_tspac
Caption	=	Space	between	tiles
TabStop	=	True

3.	 On	the	user	form,	select	the	Label3	control.	In	the	Properties	window,
change	the	following	properties	for	Label3:
(Name)	=	label_tsides
Caption	=	Number	of	sides
TabStop	=	True

To	set	the	properties	for	the	text	box	controls

1.	 On	the	user	form,	select	the	TextBox1	control.	In	the	Properties	window,
change	the	following	property	for	TextBox1:
(Name)	=	gp_trad

2.	 On	the	user	form,	select	the	TextBox2	control.	In	the	Properties	window,
change	the	following	property	for	TextBox2:
(Name)	=	gp_tspac

3.	 On	the	user	form,	select	the	TextBox3	control.	In	the	Properties	window,
change	the	following	property	for	TextBox3:
(Name)	=	gp_tsides

To	set	the	properties	for	the	command	button	controls	and	the	form
window

1.	 On	the	user	form,	select	the	CommandButton1	control.	In	the	Properties
window,	change	the	following	properties	for	CommandButton1:
(Name)	=	accept

Caption	=	OK
ControlTipText	=	Accept	the	options
Accelerator	=	O
Default	=	True

2.	 On	the	user	form,	select	the	CommandButton2	control.	In	the	Properties
window	change	the	following	properties	for	CommandButton2:
(Name)	=	cancel
Caption	=	Cancel
ControlTipText	=	Cancel	the	operation
Accelerator	=	C

3.	 Select	the	user	form	itself	by	clicking	on	the	background	of	the	form,
away	from	any	control.	In	the	Properties	window,	change	the	following
properties	for	the	form:
(Name)	=	gpDialog
Caption	=	Garden	Path
Your	form	should	now	look	like	this:

4.	 Save	your	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Add	a	Dialog	Box	Interface	>	

Use	the	Project	Window	to	Navigate	Your	Project
	
	
	

In	the	VBA	IDE,	the	Project	window	contains	the	name	and	location	of	the
project,	a	folder	named	AutoCAD	Objects,	and	a	folder	named	Forms.	(You
might	need	to	click	Toggle	Folders	to	see	the	folders.)	When	you	open	the
AutoCAD	Objects	folder	(it	may	already	be	open),	you	see	a	drawing	icon	and
the	name	ThisDrawing.	When	you	open	the	Forms	folder	(it	may	already	be
open),	you	see	a	form	icon	and	the	name	gpDialog,	the	form	you	created.

You	can	use	the	Project	window	to	navigate	through	code	and	help	you	identify
where	you	are	working.	For	example,	to	view	the	code	associated	with	the	form
you	created,	highlight	gpDialog	in	the	Project	window	and	click	View	Code.

The	Code	window	for	the	form	is	displayed.

Now	highlight	ThisDrawing	in	the	Project	window.	You	can	view	the	code	by
clicking	View	Code.	All	the	code	you	have	already	entered	is	in	this	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Add	a	Dialog	Box	Interface	>	

Update	the	Existing	Code
	
	
	

Now	that	you	have	created	a	dialog	box,	you	can	modify	and	add	code.

To	modify	the	existing	code

1.	 Open	the	code	for	ThisDrawing,	if	it	is	not	already	open.

2.	 Update	the	following	lines	in	the	Declarations	section:

Public	trad	As	Double							'	Updated

Public	tspac	As	Double						'	Updated

Public	tsides	As	Integer				'	Add

Public	tshape	As	String					'	Add

Because	the	code	in	the	form	accesses	trad	and	tspac,	you	update
their	definitions	to	make	them	public.	Private	variables	are	available
only	in	the	module	in	which	they	are	defined,	so	the	variables	need	to	be
changed	to	public.	Additionally,	you	have	added	tsides	for	the
number	of	polygon	tile	sides	and	tshape	for	the	user's	choice	of	tile
shape,	which	is	either	circle	or	polygon.

3.	 Go	to	the	gpuser	subroutine.	Remove	the	two	lines	that	obtain	the
radius	of	the	tiles	and	the	spacing	between	the	tiles,	because	this
information	comes	from	the	form.	Specifically,	remove	the	following:

trad	=	ThisDrawing.Utility.	_

	GetDistance(sp,	"Radius	of	tiles:	")

tspac	=	ThisDrawing.Utility.	_

	GetDistance(sp,	"Spacing	between	tiles:	")

4.	 Add	the	lines	that	load	and	display	the	form.	Add	the	following	lines	in
place	of	the	lines	removed	in	step	3:

Load	gpDialog	

gpDialog.Show	

5.	 Add	a	subroutine	to	the	end	of	the	code	file	that	draws	either	the	circular
tiles	or	the	polygon	tiles:

'Draw	the	tile	with	the	designated	shape

Sub	DrawShape(pltile)

	Dim	angleSegment	As	Double

	Dim	currentAngle	As	Double

	Dim	angleInRadians	As	Double

	Dim	currentSide	As	Integer

	Dim	varRet	As	Variant

	Dim	aCircle	As	AcadCircle

	Dim	aPolygon	As	AcadLWPolyline

	ReDim	points(1	To	tsides	*	2)	As	Double

	'Branch	based	on	the	type	of	shape	to	draw

	Select	Case	tshape

	Case	"Circle"

	Set	aCircle	=	ThisDrawing.ModelSpace.	_

	AddCircle(pltile,	trad)

	Case	"Polygon"

	angleSegment	=	360	/	tsides

	currentAngle	=	0

	For	currentSide	=	0	To	(tsides	-	1)

	angleInRadians	=	dtr(currentAngle)

	varRet	=	ThisDrawing.Utility.PolarPoint(pltile,	_

	angleInRadians,	trad)

	points((currentSide	*	2)	+	1)	=	varRet(0)

	points((currentSide	*	2)	+	2)	=	varRet(1)

	currentAngle	=	currentAngle	+	angleSegment

	Next	currentSide

	Set	aPolygon	=	ThisDrawing.ModelSpace.	_

	AddLightWeightPolyline(points)

	aPolygon.Closed	=	True

	End	Select

End	Sub

This	subroutine	uses	a	Select	Case	statement	to	branch	control	of
the	program	based	on	the	type	of	shape	to	draw.	The	tshape	variable	is
used	to	determine	the	type	of	shape.

6.	 Next,	go	to	the	drow	subroutine.	Find	the	two	occurrences	of	the
following	line:

Set	cir	=	ThisDrawing.ModelSpace.AddCircle(pltile,	trad)

Change	these	lines	to	draw	the	appropriate	shape	tile,	as	follows:

DrawShape	(pltile)							'	Updated

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ActiveX/VBA	Tutorial:	Design	the	Garden	Path	>	Add	a	Dialog	Box	Interface	>	

Add	Code	to	the	Dialog	Box
	
	
	

Now	you	remove	the	code	for	the	circular	tile	creation	and	call	the	DrawShape
subroutine	to	draw	the	appropriate	shape	instead.

To	add	event	handlers	for	the	dialog	box

1.	 Open	the	Code	window	for	gpDialog.

2.	 Enter	the	following	code	at	the	top	of	the	window:

Private	Sub	gp_poly_Click()

	gp_tsides.Enabled	=	True

	ThisDrawing.tshape	=	"Polygon"

End	Sub

Private	Sub	gp_circ_Click()

	gp_tsides.Enabled	=	False

	ThisDrawing.tshape	=	"Circle"

End	Sub

Notice	that	the	subroutines	gp_poly_Click()	and
gp_circ_Click()	are	named	after	the	two	option	controls	you
added	earlier,	with	the	addition	of	_Click.	These	subroutines	are
automatically	executed	when	the	user	clicks	the	respective	control.	Also
notice	that	the	Object	Box	lists	the	controls	on	the	form,	sorted
alphabetically	by	Name	property.

3.	 Place	your	cursor	on	the	Private	Sub	gp_poly_Click()	line
and	open	the	Procedure/Event	Box.
You	see	a	list	of	all	the	events	that	you	can	respond	to	for	the
gp_polyoption	control.	The	two	subroutines	you	entered	handle	the
Click	event.	You	can	also	add	code	to	respond	to	the	DblClick	event
that	would	automatically	be	executed	when	the	user	double-clicked	the
control.	You	can	add	code	for	any	of	the	events	listed.	These	types	of
subroutines	are	called	event	handlers.
Look	at	the	code	you	entered	for	these	two	event	handlers.	The	first
event	handler	responds	to	the	Click	event	for	the	gp_poly	option
control.	The	first	line	of	code	enables	the	text	box	for	the	number	of
sides.	This	text	box	is	available	only	for	polygons,	so	it	is	not	enabled
unless	you	select	the	Polygon	control.	The	next	line	of	code	sets	the
tshape	variable	to	Polygon.
The	second	event	handler	responds	to	the	Click	event	for	the
gp_circ	option	control.	This	handler	disables	the	text	box	for	the
number	of	sides	and	sets	the	tshape	variable	to	Circle.

4.	 Add	the	following	event	handler	for	the	OK	button:

Private	Sub	accept_Click()

	If	ThisDrawing.tshape	=	"Polygon"	Then

	ThisDrawing.tsides	=	CInt(gp_tsides.text)

	If	(ThisDrawing.tsides	<	3#)	Or	_

	(ThisDrawing.tsides	>	1024#)	Then

	MsgBox	"Enter	a	value	between	3	and	"	&	_

	"1024	for	the	number	of	sides."

	Exit	Sub

	End	If

	End	If

	ThisDrawing.trad	=	CDbl(gp_trad.text)

	ThisDrawing.tspac	=	CDbl(gp_tspac.text)

	If	ThisDrawing.trad	<	0#	Then

	MsgBox	"Enter	a	positive	value	for	the	radius."

	Exit	Sub

	End	If

	If	(ThisDrawing.tspac	<	0#)	Then

	MsgBox	"Enter	a	positive	value	for	the	spacing."

	Exit	Sub

	End	If

	GPDialog.Hide

End	Sub

This	code	tests	whether	the	final	choice	of	shape	was	polygon.	If	so,	the
code	retrieves	the	number	of	sides	from	the	gp_tsides	control.	The
value	the	user	enters	is	stored	in	the	Text	property.	Because	it	is	stored	as
a	text	string,	you	convert	the	string	to	the	integer	equivalent	using	the
CInt	function.	Once	obtained,	the	event	handler	tests	the	range	of	the
value	to	make	sure	it	is	between	3	and	1024.	If	it	is	not,	a	message	is
displayed	and	the	event	handler	is	exited	without	further	processing.	The
result	is	that	a	message	is	displayed	and	the	user	is	given	an	opportunity
to	change	the	value.	After	the	OK	button	is	clicked	again,	this	event
handler	triggers	and	tests	the	value	again.
The	macro	obtains	radius	and	spacing	values,	but	these	values	are
doubles,	not	integers,	and	are	obtained	using	the	CDbl	function.	These
values	are	also	tested	to	make	sure	they	are	positive.
After	the	values	are	obtained	and	verified,	the	gpDialog.Hide
statement	hides	the	form,	passing	control	back	to	the	subroutine	that	first
called	the	form.

5.	 Add	the	following	event	handler	for	the	Cancel	button:

Private	Sub	cancel_Click()

	Unload	Me

	End

End	Sub

This	simple	event	handler	unloads	the	form	and	ends	the	entire	macro.
The	only	thing	you	haven't	done	is	add	the	initial	values	for	the	form.
There	is	an	event	called	Initialize	that	applies	to	the	form.	It	is	executed
when	the	form	is	first	loaded.

6.	 Add	the	following	event	handler	for	the	form	initialization:

Private	Sub	UserForm_Initialize()

	gp_circ.Value	=	True

	gp_trad.Text	=	".2"

	gp_tspac.Text	=	".1"

	gp_tsides.Text	=	"5"

	gp_tsides.Enabled	=	False

	ThisDrawing.tsides	=	5

End	Sub

This	code	sets	the	initial	values	for	the	form	and	for	the	tsides	variable.	The
tsides	variable	must	be	set	to	a	positive	number	greater	than	3,	even	if	the
user	selects	a	circle.	To	understand	this,	look	in	the	DrawShape	subroutine	that
you	entered	earlier.	There	is	a	variable	there	called	points	that	is	defined	using
the	number	of	sides	for	the	polygon.	That	variable	gets	memory	allocated	to	it
whether	or	not	a	polygon	shape	has	been	requested.	Because	of	this,	tsides
must	have	a	valid	range	defined	for	it.	The	user	is	free	to	change	this	value
during	macro	execution.

You	can	now	save	and	run	the	macro	from	AutoCAD.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	

Visual	LISP	and	ActiveX/VBA	Comparison
	
	
	

Most	of	the	capabilities	found	in	the	Visual	LISP	interface	can	also	be	found	in
the	ActiveX	and	VBA	interface.	This	appendix	serves	as	a	reference	to	help
developers	familiar	with	Visual	LISP	find	the	equivalent	ActiveX	and	VBA
functionality.

Topics	in	this	section

Visual	LISP	and	ActiveX/VBA	Comparison

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Visual	LISP	and	ActiveX/VBA	Comparison	>	

Visual	LISP	and	ActiveX/VBA	Comparison
	
	
	

The	following	table	compares	Visual	LISP	functions	with	the	similar	ActiveX®,
VBA,	and	Visual	Basic	6	functions	and	operators.	The	ActiveX	Automation
equivalents	are	indicated	by	“AutoCAD.Application.”	and	the	Visual	Basic	6
equivalents	are	listed	as	a	function	or	operator.

Visual	LISP	and	ActiveX/VBA	Comparison

AutoLISP
function ActiveX,	VBA,	or	Visual	Basic	6	equivalent

+	(addition) +	(addition	operator)

-	(subtraction) -	(subtraction	operator)

*
(multiplication)

*	(multiplication	operator)

/	(division) /	(division	operator)

=	(equal	to) =	(equal	to	comparison	operator)

/=	(not	equal
to)

<>	(not	equal	to	comparison	operator)

<	(less	than) <	(less	than	comparison	operator)

<=	(less	than	or
equal	to)

<=	(less	than	or	equal	to	comparison	operator)

/=	(not	equal
to)

<>	(not	equal	to	comparison	operator)

>	(greater	than) >	(greater	than	comparison	operator)

>=	(greater
than	or
equal	to)

>=	(greater	than	or	equal	to	comparison	operator)

~	(bitwise	not) Not	operator

1+	(increment) Use	+	(addition	operator)

1-	(decrement) Use	-	(subtraction	operator)

abs Abs	function

acad_colordlg Not	provided

acad_helpdlg Search	for	HELP	in	the	online	Help	index

acad_strlsort Search	for	SORT	in	the	online	Help	index

action_tile Use	the	Dialog	Editor

add_list Use	the	Dialog	Editor

ads AutoCAD.Application.ListADS	method

alert MsgBox	function

and And	operator

angle AutoCAD.Application.ActiveDocument.Utility.
AngleFromXAxis	method

angtof AutoCAD.Application.ActiveDocument.Utility.AngleToReal
method

angtos AutoCAD.Application.ActiveDocument.Utility.
AngleToString	method

append Use	array	manipulation	functions

apply Not	provided

arx AutoCAD.Application.ListARX	method

arxload AutoCAD.Application.LoadARX	method

arxunload AutoCAD.Application.UnloadARX	method

ascii Asc	function

assoc Not	provided

atan Atn	function

atof CDbl	Function

atoi CInt	Function

atom Search	for	IS	in	the	online	Help	index

atoms-family Not	provided

autoarxload Not	provided

autoload Not	provided

Boole Use	logical	operators

boundp Search	for	IS	in	the	online	Help	index

car/cdr Use	array	manipulation	functions

chr Chr	function

client_data_tile Use	the	Dialog	Editor

close AutoCAD.Application.Documents.Close	method

command AutoCAD.ActiveDocument.SendCommand	method

cond Select	Case	statement

cons Use	array	manipulation	functions	or
AutoCAD.Application.collection.Add<entityname>	method

cos Cos	function

cvunit Use	the	conversion	functions

defun The	keywords	Function	and	End	Function

dictadd AutoCAD.Application.ActiveDocument.Dictionaries.Add
method

dictnext AutoCAD.Application.ActiveDocument.Dictionaries.Item
method

dictremove AutoCAD.Application.ActiveDocument.Dictionaries.
Dictionary.Delete	method

dictrename AutoCAD.Application.ActiveDocument.Dictionaries.
Dictionary.Rename	method

dictsearch AutoCAD.Application.ActiveDocument.Dictionaries.
Dictionary.GetName	and	GetObject	methods

dimx_tile	and
dimy_tile

Use	the	Dialog	Editor

distance AutoCAD.Application.Utility.GetDistance	for	interactive
method.

distof Not	provided

done_dialog Use	the	Dialog	Editor

end_image Use	the	Dialog	Editor

end_list Use	the	Dialog	Editor

entdel AutoCAD.Application.ActiveDocument.collection_object.
Delete	method

entget AutoCAD.Application.ActiveDocument.collection_object.
property	properties

entlast AutoCAD.Application.ActiveDocument.Modelspace.
Item(count-1)

entmake AutoCAD.Application.ActiveDocument.Modelspace.
Add<entityname>	method

entmakex AutoCAD.Application.ActiveDocument.Modelspace.
Add<entityname>	method

entmod Use	any	of	the	read-write	properties	for	the	object

entnext AutoCAD.Application.ActiveDocument.collection.Item
method

entsel AutoCAD.Application.ActiveDocument.SelectionSets
object/methods/properties

entupd AutoCAD.Application.ActiveDocument.Modelspace.object.
Update	method

eq Not	provided

equal Eqv	operator

error Error	object/method/properties

eval Not	provided

exit AutoCAD.Application.Quit	method

exp Exp	function

expand Not	provided

expt ^	(exponentiation	operator)

fill_image Use	the	Dialog	Editor

findfile Dir	function

fix Fix,	Int,	Cint	functions

float CDbl	Function

foreach For	Each...Next	statement

gc AutoCAD.Application.ActiveDocument.PurgeAll

gcd Not	provided

get_attr Use	the	Dialog	Editor

get_tile Use	the	Dialog	Editor

getangle AutoCAD.Application.ActiveDocument.Utility.GetAngle
method

getcfg AutoCAD.Application.Preferences.property	property

getcname Not	provided

getcorner AutoCAD.Application.ActiveDocument.Utility.GetCorner
method

getdist AutoCAD.Application.ActiveDocument.Utility.GetDistance
method

getenv AutoCAD.Application.Preferences.property	property

getfiled Use	the	file	dialog

getint AutoCAD.Application.ActiveDocument.Utility.GetInteger
method

getkword AutoCAD.Application.ActiveDocument.Utility.GetKeyword
method

getorient AutoCAD.Application.ActiveDocument.Utility.
GetOrientation	method

getpoint AutoCAD.Application.ActiveDocument.Utility.GetPoint
method

getreal AutoCAD.Application.ActiveDocument.Utility.GetReal
method

getstring AutoCAD.Application.ActiveDocument.Utility.GetString
method

getvar AutoCAD.Application.GetVariable	method

graphscr AppActivate	AutoCAD.Application.Caption

grclear Obsolete	function

grdraw Not	provided

grread Not	provided

grtext AutoCAD.Application.ActiveDocument.Utility.Prompt

grvecs Not	provided

handent AutoCAD.Application.ActiveDocument.ModelSpace.object.
Handle	property

help Search	for	HELP	in	the	online	Help	index

if If…	Then…	Else	statement

initget AutoCAD.Application.ActiveDocument.Utility.
InitializeUserInput

inters AutoCAD.Application.ActiveDocument.Modelspace.object.
IntersectWith

itoa Str	function

lambda Not	provided

last arrayname(UBound(arrayname))

length UBound	function

list ReDim	statement

listp IsArray	function

load_dialog Use	the	Dialog	Editor

load AutoLISP	is	not	supported	through	Automation

log Log	function

logand And	function

logior Or	function

lsh Imp	function

mapcar Not	provided

max Max	function

mem Not	provided

member Use	collection

menucmd AutoCAD.Application.MenuBar	object

menugroup AutoCAD.Application.MenuGroup	object

min Min	function

minusp Use	<	0	syntax

mode_tile Use	the	Dialog	Editor

namedobjdict AutoCAD.Application.ActiveDocument.Dictionaries
collection

nentsel AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.SelectAtPoint	method

nentselp AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.SelectAtPoint	method

new_dialog Use	the	Dialog	Editor

not Use	the	logical	operators

nth Use	object(n)	syntax

null IsNull	function

numberp TypeName	function

open Open	function

or Use	the	logical	operators

osnap Not	provided	(You	can	use	the	SetVariable	method	to	control
the	OSMODE	system	variable.)

polar AutoCAD.Application.ActiveDocument.Utility.PolarPoint
method

prin1 AutoCAD.Application.ActiveDocument.Utility.Prompt

princ AutoCAD.Application.ActiveDocument.Utility.Prompt

print AutoCAD.Application.ActiveDocument.Utility.Prompt

progn Not	provided

prompt AutoCAD.Application.ActiveDocument.Utility.Prompt

quit AutoCAD.Application.Quit	method

quote Not	provided

read Not	provided

read-char Input	function

read-line Line	Input	function

redraw AutoCAD.Application.ActiveDocument.Modelspace.object.
Update	method

regapp AutoCAD.Application.ActiveDocument.
RegisteredApplications.Add	method

rem Mod	function

repeat For… Each,	While,

reverse Not	provided

rtos AutoCAD.Application.ActiveDocument.Utility.RealToString
method

set Set	function

set_tile Use	the	Dialog	Editor

setcfg AutoCAD.Application.Preferences.property	property

setfunhelp Not	provided

setq Set	function

setvar AutoCAD.Application.SetVariable	method

sin Sin	function

setview AutoCAD.Application.ActiveDocument.Viewports.Viewport.
SetView	method

slide_image Use	the	Dialog	Editor

snvalid Not	provided

sqrt Sqr	function

ssadd AutoCAD.Application.ActiveDocument.SelectionSets.Add
method

ssdel AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.Delete	method

ssget AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.SelectOnScreen	method

ssgetfirst Not	provided

sslength AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.Count	method

ssmemb Compare	ID	of	object	with	the	SelectionSet	members

ssname AutoCAD.Application.ActiveDocument.SelectionSets.
SelectionSet.Name	property

ssnamex Not	provided

sssetfirst AutoCAD.Application.ActiveDocument.PickfirstSelectionSet

startapp Shell	function

start_dialog Use	the	Dialog	Editor

start_image Use	the	Dialog	Editor

start_list Use	the	Dialog	Editor

strcase StrConv	function

strcat &	operator

strlen Len	function

subst Not	provided

substr Mid	function

tablet Not	provided

tblnext AutoCAD.Application.ActiveDocument.collection_object.
Item	method

tblobjname AutoCAD.Application.ActiveDocument.collection_object.
Name	method

tblsearch AutoCAD.Application.ActiveDocument.collection_object.
Name	method

term_dialog Use	the	Dialog	Editor

terpri Not	provided

textbox AutoCAD.Application.ActiveDocument.space.object.
GetBoundingBox	method

textpage Not	provided

textscr Not	provided

trace Not	provided

trans AutoCAD.Application.ActiveDocument.Utility.
TranslateCoordinates	method

type TypeName	function

unload_dialog Use	the	Dialog	Editor

untrace Not	provided

vector_image Use	the	Dialog	Editor

ver AutoCAD.Application.Version	property

vports AutoCAD.Application.ActiveDocument.Viewports	collection

wcmatch Like	operator

while While… Wend

write-char Print	function

write-line Print	function

xdroom Not	provided

xdsize Not	provided

zerop Use	=	0	syntax

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	Introduction
	Overview of AutoCAD ActiveX Technology
	Overview of AutoCAD Visual Basic for Applications (VBA) Interface
	How VBA Is Implemented in AutoCAD
	Use the Microsoft .NET Framework
	Dependencies and Restrictions
	AutoCAD ActiveX and VBA Together
	How This Guide Is Organized
	For More Information
	Sample Code
	Migrate Automation Projects
	New Objects
	Changed Items
	How to Migrate Projects
	Getting Started with VBA
	Understand Embedded and Global VBA Projects
	Organize Your Projects with the VBA Manager
	Load an Existing Project
	Virus Alert
	Unload a Project
	Embed a Project into a Drawing
	Extract a Project from a Drawing
	Create a New Project
	Save Your Project
	Handle Your Macros
	Use the Macros Dialog Box
	Run a Macro
	Edit a Macro
	Step into a Macro
	Set the Project Options
	Edit Your Projects with the VBA IDE
	View Project Information
	Define the Components in a Project
	Objects
	Forms
	Standard Modules
	Class Modules
	References
	Add New Components
	Import Existing Components
	Edit Components
	Use the Code Window
	Use the UserForm Window
	Name Your Project
	Save Your Project
	Reference Other VBA Projects
	Set the VBA IDE Options
	Editor
	Editor Format
	General
	Docking
	Perform an Introductory Exercise
	More Information
	AutoCAD VBA Project Terms
	AutoCAD VBA Commands
	ActiveX Automation Basics
	Understand the AutoCAD Object Model
	The Application Object
	The Document Object
	The Collection Objects
	The Graphical and Nongraphical Objects
	The Preferences, Plot, and Utility Objects
	Use New AutoCAD Features
	Access the Object Hierarchy
	Reference Objects in the Object Hierarchy
	Access the Application Object
	Collection Objects
	Access a Collection
	Add a New Member to a Collection Object
	Iterate through a Collection Object
	Delete a Member of a Collection Object
	Understand Properties and Methods
	Understand Parent Objects
	Locate the Type Library
	Use Variants in Methods and Properties
	What Is a Variant?
	Use Variants for Array Data
	Convert Arrays to Variants
	Interpret Variant Arrays
	Using Other Programming Languages
	Convert the VBA Code to VB
	Control the AutoCAD Environment
	Open, Save, and Close Drawings
	Set AutoCAD Preferences
	Database Preferences
	Control the Application Window
	Control the Drawing Windows
	Position and Size the Document Window
	Use Zoom
	Define a Zoom Window
	Scale a View
	Center Objects
	Display Drawing Limits and Extents
	Use Named Views
	Use Tiled Viewports
	Split the Active Viewport
	Make Another Tiled Viewport Current
	Update the Geometry in the Document Window
	Reset Active Objects
	Set and Return System Variables
	Draw with Precision
	Adjust Snap and Grid Alignment
	Use Ortho Mode
	Draw Construction Lines
	Create Construction XLines
	Query Construction XLines
	Create Rays
	Query Rays
	Calculate Points and Values
	Calculate Areas
	Calculate a Defined Area
	Prompt for User Input
	GetString Method
	GetPoint Method
	GetKeyword Method
	Control User Input
	Access the AutoCAD Command Line
	Work with No Documents Open
	Import Other File Formats
	Export to Other File Formats
	Create and Edit AutoCAD Entities
	Create Objects
	Determine the Container Object
	Create Lines
	Create Curved Objects
	Create Point Objects
	Create Solid-Filled Areas
	Work with Regions
	Create Regions
	Create Composite Regions
	Unite Regions
	Find the Intersection of Two Regions
	Create Hatches
	Create the Hatch Object
	Associate a Hatch
	Assign the Hatch Pattern Type and Name
	Define the Hatch Boundaries
	Work with Selection Sets
	Create a Selection Set
	Add Objects to a Selection Set
	Define Rules for Selection Sets
	Use Filter Lists to Define Selection Set Rules
	Specify Multiple Criteria in a Selection Set Filter List
	Add Complexity to Your Filter List Conditions
	Use Wild-Card Patterns in Selection Set Filter Criteria
	Filter for Extended Data
	Display Information About a Selection Set
	Remove Objects from a Selection Set
	Edit Objects
	Work with Named Objects
	Purge Named Objects
	Rename Objects
	Copy Objects
	Copy an Object to the Same Location
	Copy Multiple Objects
	Offset Objects
	Mirror Objects
	Array Objects
	Create Polar Arrays
	Create Rectangular Arrays
	Move Objects
	Move Objects Along a Vector
	Rotate Objects
	Delete Objects
	Scale Objects
	Transform Objects
	Extend and Trim Objects
	Explode Objects
	Edit Polylines
	Edit Splines
	Edit Hatches
	Edit Hatch Boundaries
	Edit Hatch Patterns
	Use Layers, Colors, and Linetypes
	Work with Layers
	Sort Layers and Linetypes
	Create and Name Layers
	Make a Layer Active
	Turn Layers On and Off
	Freeze and Thaw Layers
	Lock and Unlock Layers
	Assign Color to a Layer
	Assign a Linetype to a Layer
	Delete Layers
	Work with Colors
	Work with Linetypes
	Make a Linetype Active
	Rename Linetypes
	Delete Linetypes
	Change Linetype Descriptions
	Specify Linetype Scale
	Assign Layers, Colors, and Linetypes to Objects
	Change an Object's Layer
	Change an Object's Color
	Change an Object's Linetype
	Save and Restore Layer Settings
	Understand How AutoCAD Saves Layer Settings
	Use the LayerStateManager to Manage Layer Settings
	Save Layer Settings
	Restore Layer Settings
	Export and Import Saved Layer Settings
	Add Text to Drawings
	Work with Text Styles
	Create and Modify Text Styles
	Assign Fonts
	Use TrueType Fonts
	Use Unicode and Big Fonts
	Set Text Height
	Set Obliquing Angle
	Set Text Generation Flag
	Use Line Text (Text)
	Create Line Text
	Format Line Text
	Align Line Text
	Change Line Text
	Use Multiline Text (Mtext)
	Create Multiline Text
	Format Multiline Text
	Use Unicode Characters, Control Codes, and Special Characters
	Substitute Fonts
	Specify an Alternative Default Font
	Check Spelling
	Dimensions and Tolerances
	Dimensioning Concepts
	Parts of a Dimension
	Define the Dimension System Variables
	Set Dimension Text Styles
	Understand Leader Lines
	Understand Associative Dimensions
	Create Dimensions
	Create Linear Dimensions
	Create Radial Dimensions
	Create Angular Dimensions
	Create Ordinate Dimensions
	Edit Dimensions
	Override Dimension Text
	Work with Dimension Styles
	Create, Modify, and Copy Dimension Styles
	Override the Dimension Style
	Dimension in Model Space and Paper Space
	Create Leaders and Annotation
	Create Leader Lines
	Add the Annotation to a Leader Line
	Leader Associativity
	Edit Leader Associativity
	Edit Leaders
	Use Geometric Tolerances
	Create Geometric Tolerances
	Edit Tolerances
	Customize Toolbars and Menus
	Understand the MenuBar and MenuGroups Collections
	Load Menu Groups
	Change the Menu Bar
	Insert Menus in the Menu Bar
	Remove Menus from the Menu Bar
	Rearrange Menu Items on the Menu Bar
	Create and Edit Pull-Down and Shortcut Menus
	Create New Menus
	Add New Menu Items to a Menu
	Specify the Index Parameter
	Specify the Label Parameter
	Specify the Tag Parameter
	Specify the Macro Parameter
	Add Separators to a Menu
	Assign an Accelerator Key to a Menu Item
	Create Cascading Submenus
	Delete Menu Items from a Menu
	Explore the Properties of Menu Items
	Create and Edit Toolbars
	Create New Toolbars
	Add New Toolbar Buttons to a Toolbar
	Add Separators to a Toolbar
	Define the Toolbar Button Image
	Create Flyout Toolbars
	Float and Dock Toolbars
	Delete Toolbar Buttons from a Toolbar
	Explore the Properties of Toolbar Items
	Create Macros
	Macro Characters Mapped to ASCII Equivalents
	Macro Termination
	Pause for User Input
	Cancel a Command
	Macro Repetition
	Use of Single Object Selection Mode
	Create Status-Line Help for Menu Items and Toolbar Items
	Add Entries to the Right-Click Menu
	Use Events
	Understand the Events in AutoCAD
	Guidelines for Event Handlers
	Handle Application Level Events
	Enable Application Level Events
	Handle Document Level Events
	Enable Document Level Events in Environments Other Than VBA
	Code Document Level Events in Environments Other Than VBA
	Code Document Level Events in VBA
	Handle Object Level Events
	Enable the Object Level Event
	Work in Three-Dimensional Space
	Specify 3D Coordinates
	Define a User Coordinate System
	Convert Coordinates
	Create 3D Objects
	Create Wireframes
	Create Meshes
	Create Polyface Meshes
	Create Solids
	Edit in 3D
	Rotate in 3D
	Array in 3D
	Mirror Objects Along a Plane
	Edit 3D Solids
	Define Layouts and Plot
	Model Space and Paper Space
	Layouts
	Layouts and Blocks
	Plot Configurations
	Layout Settings
	Paper Size and Units
	Adjust the Plot Origin
	Set the Plot Area
	Set the Plot Scale
	Set the Lineweight Scale
	Set the Plot Device
	Viewports
	Floating Viewports
	Switch to a Paper Space Layout
	Switch to the Model Space Layout
	Create Paper Space Viewports
	Change Viewport Views and Content
	Scale Views Relative to Paper Space
	Scale Pattern Linetypes in Paper Space
	Use Shaded Viewports
	Plot Your Drawing
	Perform Basic Plotting
	Plot from Model Space
	Plot from Paper Space
	Advanced Drawing and Organizational Techniques
	Work with Raster Images
	Attach and Scale a Raster Image
	Manage Raster Images
	Change Image File Paths
	Name Images
	Modify Images and Image Boundaries
	Show and Hide Image Boundaries
	Change Image Layer, Boundary Color, and Boundary Linetype
	Change Image Scale, Rotation, Location, Width, and Height
	Change Image Visibility
	Modify Bitonal Image Color and Transparency
	Adjust Image Brightness, Contrast, and Fade
	Clip Images
	Change the Clipping Boundary
	Show and Hide the Clipping Boundary
	Clip a raster image boundary
	Use Blocks and Attributes
	Work with Blocks
	Define Blocks
	Insert Blocks
	Explode a Block Reference
	Redefine a Block
	Work with Attributes
	Create Attribute Definitions and Attribute References
	Edit Attribute Definitions
	Extract Attribute Information
	Use External References
	Update Xrefs
	Attach Xrefs
	Overlay Xrefs
	Detach Xrefs
	Reload Xrefs
	Unload Xrefs
	Bind Xrefs
	Clip Blocks and Xrefs
	Demand Loading and Xref Performance
	Assign and Retrieve Extended Data
	Develop Applications with VBA
	More VBA Terminology
	Forms in VBA
	Design and Run Mode
	Add Controls to a Form
	Change the Size and Placement of a Control
	Use Formatting Controls
	Change the Properties of a Control
	Add Code to a Control
	Display and Hide Forms
	Load and Unload Forms
	Modal Forms
	Handle Errors
	Define Application Error Types
	Trap Runtime Errors
	Respond to Trapped Errors
	Respond to AutoCAD User Input Errors
	Encrypt VBA Code Modules
	Run a VBA Macro from a Toolbar or Menu
	Automatically Load a VBA Project
	Automatically Run a VBA Macro
	Automatically Open the VBA IDE Whenever a Project Is Loaded
	Work in a Zero Document State
	Distribute Your Application
	Distribute Visual Basic 6 Applications
	64-bit Migration
	AutoCAD Object Instantiation in VBA
	Handling ObjectId
	Appendix of 32-bit Methods
	Interact with Other Applications and Windows APIs
	Interact with Visual LISP Applications
	Interact with Other Windows Applications
	Reference the ActiveX Object Library of Other Applications
	Create an Instance of the Other Application
	Program with Objects from Other Applications
	Quit the Other Application
	Access Windows APIs from VBA
	ActiveX/VBA Tutorial: Design the Garden Path
	Check Your Environment
	Define the Goal
	Write the First Function
	Get Input
	Declare Variables
	Enter the gpuser Subroutine
	Draw the Path Outline
	Draw the Tiles
	Tie It All Together
	Step Through the Code
	Execute the Macro
	Add a Dialog Box Interface
	Create the Dialog Box
	Use the Project Window to Navigate Your Project
	Update the Existing Code
	Add Code to the Dialog Box
	Visual LISP and ActiveX/VBA Comparison
	Visual LISP and ActiveX/VBA Comparison

