
AutoLISP	Developer's	Guide	>		

Introduction
	
	
	

For	years,	AutoLISP®	has	set	the	standard	for	customizing	AutoCAD®.	Now
Visual	LISP®	(VLISP)	represents	the	next	generation	of	LISP	for	AutoCAD,	by
adding	significantly	more	capabilities.	VLISP	extends	the	language	to	interface
with	objects	via	the	Microsoft	ActiveX®	Automation	interface,	and	enhances	the
ability	of	AutoLISP	to	respond	to	events	through	the	implementation	of	reactor
functions.	As	a	development	tool,	VLISP	provides	a	complete,	integrated
development	environment	(IDE)	that	includes	a	compiler,	debugger,	and	other
tools	to	increase	productivity	when	customizing	AutoCAD.

AutoLISP	and	Visual	LISP
Using	Visual	LISP	Documentation
Related	Documents

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Introduction	>	

AutoLISP	and	Visual	LISP
	
	
	

AutoLISP	is	a	programming	language	designed	for	extending	and	customizing
AutoCAD	functionality.	It	is	based	on	the	LISP	programming	language,	whose
origins	date	back	to	the	late	1950s.	LISP	was	originally	designed	for	use	in
Artificial	Intelligence	(AI)	applications,	and	is	still	the	basis	for	many	AI
applications.

AutoCAD	introduced	AutoLISP	as	an	application	programming	interface	(API)
in	Release	2.1,	in	the	mid-1980s.	LISP	was	chosen	as	the	initial	AutoCAD	API
because	it	was	uniquely	suited	for	the	unstructured	design	process	of	AutoCAD
projects,	which	involved	repeatedly	trying	different	solutions	to	design
problems.

Visual	LISP	(VLISP)	is	a	software	tool	designed	to	expedite	AutoLISP	program
development.	The	VLISP	integrated	development	environment	(IDE)	provides
features	to	help	ease	the	tasks	of	source-code	creation	and	modification,	program
testing,	and	debugging.	In	addition,	VLISP	provides	a	vehicle	for	delivering
standalone	applications	written	in	AutoLISP.

In	the	past,	developing	AutoLISP	programs	for	AutoCAD	meant	supplying	your
own	text	editor	for	writing	code,	then	loading	the	code	into	AutoCAD	and
running	it.	Debugging	your	program	meant	adding	statements	to	print	the
contents	of	variables	at	strategic	points	in	your	program.	You	had	to	figure	out
where	in	your	program	to	do	this,	and	what	variables	you	needed	to	look	at.	If
you	discovered	you	still	didn't	have	enough	information	to	determine	the	error,
you	had	to	go	back	and	change	the	code	again	by	adding	more	debugging	points.
And	finally,	when	you	got	the	program	to	work	correctly,	you	needed	to	either
comment	out	or	remove	the	debugging	code	you	added.

What	Visual	LISP	Offers
Working	with	Visual	LISP	and	AutoCAD

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Introduction	>	AutoLISP	and	Visual	LISP	>	

What	Visual	LISP	Offers
	
	
	

During	the	development	cycle	of	an	AutoLISP	application	or	routine,	the
AutoLISP	user	performs	a	number	of	operations	that	are	not	available	within	the
AutoCAD	software.	Some	of	these	operations—like	text	editing—are	available
with	other	software	tools.	Others,	such	as	full	AutoLISP	source-level	debugging,
are	introduced	only	with	VLISP.	In	VLISP,	you	perform	most	of	the	necessary
operations	inside	a	single	environment.	This	permits	text	editing,	program
debugging,	and	interaction	with	AutoCAD	and	other	applications.

The	following	are	components	of	the	Visual	LISP	IDE:

Syntax	Checker	recognizes	erroneous	AutoLISP	constructs	and	improper
arguments	in	calls	to	built-in	functions.

File	Compiler	improves	the	execution	speed	and	provides	a	secure	and
efficient	delivery	platform.

Source	Debugger,	designed	specifically	for	AutoLISP,	supports	stepping
through	AutoLISP	source	code	in	one	window	while	simultaneously
displaying	the	results	of	code	execution	in	an	AutoCAD	drawing
window.

Text	File	Editor	uses	AutoLISP	and	DCL	color	coding,	as	well	as	other
AutoLISP	syntax	support	features.

AutoLISP	Formatter	restructures	programs	into	an	easily	readable
format.

Comprehensive	Inspect	and	Watch	features	provide	convenient	access	to
variable	and	expression	values	for	data	structure	browsing	and
modification.	These	features	may	be	used	to	explore	AutoLISP	data	and
AutoCAD	drawing	entities.

Context-sensitive	Help	provides	information	for	AutoLISP	functions	and
a	powerful	Apropos	feature	for	symbol	name	search.

Project	Management	system	makes	it	easy	to	maintain	multiple-file
applications.

Compiled	AutoLISP	files	are	packaged	into	a	single	module.

Desktop	Save	and	Restore	capabilities	preserve	and	reuse	the	windowing
environment	from	any	VLISP	session.

Intelligent	Console	window	introduces	a	new	level	of	convenience	and
efficiency	for	AutoLISP	users.	The	basic	functions	of	the	Console
correspond	to	the	AutoCAD	Text	Screen	functions	and	provide	a	number
of	interactive	features,	such	as	history	scrolling	and	full-input	line
editing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Introduction	>	AutoLISP	and	Visual	LISP	>	

Working	with	Visual	LISP	and	AutoCAD
	
	
	

VLISP	contains	its	own	set	of	windows	and	menus	that	are	distinct	from	the	rest
of	AutoCAD,	but	VLISP	does	not	run	independently	of	AutoCAD.	Whenever
you	work	in	VLISP,	AutoCAD	must	also	be	running.	When	you	run	AutoLISP
programs	from	the	VLISP	IDE,	you	will	usually	need	to	interact	with	the
AutoCAD	graphics	or	Command	windows	to	respond	to	program	prompts.

If	AutoCAD	is	minimized	when	VLISP	turns	control	over	to	it,	you	must
manually	restore	and	activate	the	AutoCAD	window	to	continue.	VLISP	will	not
restore	the	AutoCAD	window	for	you.	Instead,	a	Visual	LISP	symbol	appears	in
the	VLISP	window	and	remains	there	until	you	activate	AutoCAD	and	respond
to	the	prompts	at	the	AutoCAD	Command	prompt.	The	Getting	Started	chapter
shows	an	example	of	this;	see	Loading	and	Running	AutoLISP	Programs.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Introduction	>	

Using	Visual	LISP	Documentation
	
	
	

The	AutoLISP	Developer's	Guide	explains	how	to	use	the	Visual	LISP	IDE	and
how	to	build	and	run	AutoLISP	applications.	This	guide	also	introduces	the
constructs	of	the	AutoLISP	language.

All	users	should	check	the	AutoCAD	Readme	file	for	notices	concerning
AutoLISP	and	Visual	LISP.	The	Readme	file	is	in	the	AutoCAD	Help	directory
and	contains	information	that	became	available	too	late	to	be	included	in	this
manual.

If	you	have	developed	AutoLISP	applications	in	earlier	releases	of	AutoCAD,	it
is	important	that	you	refer	to	the	Readme	file	for	information	on	AutoLISP
changes	that	may	affect	your	applications.

Additional	AutoLISP	and	Visual	LISP	manuals	are	available	online	through	the
Visual	LISP	and	AutoCAD	Help	menus:

The	AutoLISP	Reference	describes	every	AutoLISP	function	and
provides	examples.	Refer	to	the	AutoLISP	Reference	when	you	need	to
look	up	the	syntax	of	a	function	or	determine	what	a	function	returns.

The	AutoLISP	Tutorial	contains	step-by-step	instructions	guiding	you
toward	building	a	working	Visual	LISP	application.

This	AutoLISP	Developer's	Guide	assumes	you	have	some	experience	with
AutoCAD	and	have	basic	user-level	skills	with	Microsoft®	Windows®.	Prior
experience	with	AutoLISP	is	not	required.

The	AutoLISP	Developer's	Guide	is	divided	into	the	following	sections:

Using	the	Visual	LISP	Environment	describes	how	to	use	VLISP	to
develop	and	test	AutoLISP	programs.

Using	the	AutoLISP	Language	is	a	detailed	guide	describing	the
elements	and	structures	of	the	AutoLISP	language.

Working	with	Programmable	Dialog	Boxes	describes	how	to	design	and
implement	dialog	boxes	in	your	AutoLISP	applications.

Appendixes	includes	a	function	synopsis	summarizing	AutoLISP
functions	by	category,	information	on	AutoLISP	error	codes,	and	a
summary	of	the	environment	and	program	options	available	in	Visual
LISP.

The	following	are	a	few	guidelines	to	help	you	get	the	most	out	of	the	AutoLISP
Developer's	Guide:

Begin	by	reading	chapter	1,	Getting	Started.	This	chapter	tells	you	how
to	invoke	VLISP	from	AutoCAD,	identifies	what	you'll	see	when	VLISP
first	starts,	and	describes	how	to	load	and	run	existing	AutoLISP
programs	from	VLISP.	Chapter	1	introduces	and	briefly	describes	the
windows	you	will	be	working	with	in	the	VLISP	IDE.	Use	this	chapter
to	orient	yourself	to	the	VLISP	environment.

If	you	do	not	already	know	AutoLISP,	read	all	of	chapter	8,	AutoLISP
Basics,	and	at	least	browse	chapters	9	and	10,	Using	AutoLISP	to
Communicate	with	AutoCAD	and	Using	AutoLISP	to	Manipulate
AutoCAD	Objects,	respectively.	After	that,	you	can	either	work	through
the	tutorial	or	read	more	chapters	in	the	AutoLISP	Developer's	Guide.

To	search	for	a	function	that	meets	a	particular	programming	need,	refer
to	AutoLISP	Function	Synopsis,	in	this	guide.

The	following	table	summarizes	the	organization	of	this	manual:

Chapter	organization

Chapter Title Contents

1 Getting	Started Provides	an
orientation	to	Visual
LISP.

2 Developing
Programs	with
Visual	LISP

Shows	you	how	to	use
the	VLISP	text	editor
to	enter	AutoLISP

program	code,	format
the	code,	and	check
the	code	for	AutoLISP
syntax	errors.	Also
shows	you	how	to	run
the	code	you've
developed	from	the
VLISP	editor	window.

3 Debugging
Programs

Shows	you	how	to	use
VLISP	to	trace
program	execution,
watch	the	value	of
variables	change
during	program
execution,	see	the
sequence	in	which
expressions	are
evaluated,	and	step
through	program
execution	one
instruction	at	a	time.

4 Building
Applications

Introduces	the	VLISP
file	compiler	and
shows	how	you	can
use	the	VLISP
Application	Wizard	to
build	standalone
applications.

5 Maintaining
Visual	LISP
Applications

Describes	how	to
define	VLISP	projects
and	use	them	to
simplify	working	with
multi-file
applications.	This

chapter	also	explains
compiler	optimization
features,	and	how	to
use	them	in	a	project.

6 Working	with
ActiveX

Describes	how	to	use
ActiveX	objects	with
VLISP,	and	how	to
access	other
applications	through
ActiveX.

7 Advanced
Topics

Describes	how	to
attach	reactors	to
AutoCAD	drawings
and	objects.

8 AutoLISP
Basics

Introduces	basic
AutoLISP	concepts,
such	as	how	to	use
expressions	and
variables,	handle
numbers	and	strings,
display	output,	build
lists,	and	define
functions.

9 Using
AutoLISP	to
Communicate
with	AutoCAD

Describes	AutoLISP
functions	that	you	can
use	to	issue	AutoCAD
commands	and	to
interact	with	users	in
the	AutoCAD
environment.

10 Using
AutoLISP	to

Describes	AutoLISP
functions	you	can	use

Manipulate
AutoCAD
Objects

to	manipulate
AutoCAD	drawing
entities,	selection	sets,
extended	data,	and
symbol	tables.

11 Designing
Dialog	Boxes

Introduces	the
elements	that	make	up
dialog	boxes.	Explains
DCL	file	structure	and
syntax,	and	presents
AutoLISP	and	DCL
code	that	defines	and
displays	a	sample
dialog	box.

12 Managing
Dialog	Boxes

Describes	how	to
control	dialog	boxes
with	AutoLISP
programs.

13 Programmable
Dialog
Box	Reference

Lists	and	describes	all
the	DCL	tiles	and
their	associated
attributes,	and
summarizes	the
AutoLISP	functions
available	tor	work
with	programmable
dialog	boxes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Introduction	>	

Related	Documents
	
	
	

In	addition	to	the	AutoLISP	Reference	and	the	AutoLISP	Tutorial,	several	other
AutoCAD	publications	may	be	required	by	users	building	applications	with
Visual	LISP:

AutoCAD	ActiveX	and	VBA	Reference	contains	information	on
accessing	ActiveX	methods,	properties,	and	objects.	If	you	develop
AutoLISP	applications	that	use	ActiveX	automation	to	reference
AutoCAD	objects,	you	will	need	to	refer	to	this	reference.	It	is	available
through	the	AutoCAD	and	Visual	LISP	Help	menus.

AutoCAD	Customization	Guide	contains	basic	information	on	creating
customized	AutoCAD	applications.	For	example,	it	includes	information
on	creating	customized	menus,	linetypes,	and	hatch	patterns.	The
Customization	Guide	is	available	through	the	AutoCAD	and	Visual	LISP
Help	menus.

The	DXF	Reference	describes	drawing	interchange	format	(DXFTM)	and
the	DXF	group	codes	that	identify	attributes	of	AutoCAD	objects.	You
may	need	to	refer	to	the	DXF	Reference	when	working	with	association
lists	describing	entity	data.	The	DXF	Reference	is	available	through	the
AutoCAD	and	Visual	LISP	Help	menus.

The	ObjectARX	Reference	contains	information	on	using	ObjectARX®

to	develop	customized	AutoCAD	applications.	AutoCAD	reactor
functionality	is	implemented	through	ObjectARX.	If	you	develop
AutoLISP	applications	that	implement	reactor	functions,	you	may	want
to	refer	to	this	manual.
The	ObjectARX	Reference	is	not	included	when	you	install	AutoCAD.
To	obtain	the	manual,	download	the	ObjectARX	SDK	(Software
Development	Kit)	from	the	www.autodesk.com.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>		

Using	the	Visual	LISP	Environment
	
	
	

Getting	Started
You	can	use	Visual	LISP	to	increase	your	productivity	by	compiling
programs,	stepping	through	code,	and	debugging.
Developing	Programs	with	Visual	LISP
With	Visual	LISP,	you	can	format	your	code	and	automatically	detect
syntax	errors.
Debugging	Programs
To	debug	a	program,	you	can	trace	execution,	trace	the	values	of
variables	during	execution,	and	view	the	sequence	in	which	expressions
are	evaluated.
Building	Applications
You	can	compile	your	program	files	and	create	a	single	executable
module	that	you	can	distribute	to	users.
Maintaining	Visual	LISP	Applications
You	can	maintain	large	programs	by	creating	a	Visual	LISP	project	and
optimizing	code.
Working	with	ActiveX
With	Visual	LISP,	you	can	access	the	AutoCAD	object	model.
Advanced	Topics
You	can	use	reactors	for	event	notification.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Getting	Started
	
	
	

You	can	use	Visual	LISP	to	increase	your	productivity	by	compiling	programs,
stepping	through	code,	and	debugging.

This	chapter	introduces	you	to	the	look	and	feel	of	the	Visual	LISP®	interactive
development	environment	(IDE),	and	shows	you	how	to	run	AutoLISP®
programs	in	Visual	LISP.

Starting	Visual	LISP
Exploring	the	Visual	LISP	User	Interface
Touring	the	Visual	LISP	Menus
Understanding	the	Console	Window
Understanding	the	Visual	LISP	Text	Editor
Loading	and	Running	AutoLISP	Programs
Exiting	Visual	LISP

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Starting	Visual	LISP
	
	
	

The	Visual	LISP	(VLISP)	interactive	development	environment	runs	in	a
separate	set	of	windows	from	the	rest	of	AutoCAD®	.	You	must	explicitly	start
VLISP	to	work	in	the	interactive	development	environment.

To	start	Visual	LISP

1.	 Start	AutoCAD.

2.	 Choose	Tools	 	AutoLISP	 	Visual	LISP	Editor	from	the	AutoCAD
menu,	or	enter	the	following	at	the	Command	prompt:

vlisp

You	can	use	either	the	menu	or	the	vlisp	command	to	return	to	the	VLISP	IDE
at	any	time.

Note	that	AutoCAD	also	recognizes	the	vlide	command	to	start	or	return	to
Visual	LISP.	This	command	name	stands	for	“Visual	LISP	interactive
development	environment.”	AutoCAD	issues	the	vlide	command	to	call
VLISP,	and	as	a	result	you	may	sometimes	see	“VLIDE”	displayed	in	the
AutoCAD	Command	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Exploring	the	Visual	LISP	User	Interface
	
	
	

When	you	first	start	Visual	LISP,	the	following	components	are	displayed:

Menu

You	can	issue	VLISP	commands	by	choosing	from	the	various	menu	items.	If
you	highlight	an	item	on	a	menu,	VLISP	displays	a	brief	description	of	the
command's	function	in	the	status	bar	at	the	bottom	of	the	screen.

Toolbars

Click	toolbar	buttons	to	issue	VLISP	commands	quickly.	There	are	five
toolbars—Debug,	Edit,	Find,	Inspect,	and	Run—each	representing	a	distinct
functional	group	of	VLISP	commands.	You	can	execute	many,	but	not	all,
menu	commands	from	the	toolbars.	If	you	move	your	mouse	pointer	over	a
toolbar	button	and	leave	it	there	for	a	couple	of	seconds,	VLISP	displays	a
tooltip	indicating	the	function	of	the	button.	A	more	descriptive	explanation
appears	in	the	status	bar	at	the	bottom	of	the	VLISP	screen.

Console	Window

This	is	a	separate,	scrollable	window	within	the	main	VLISP	window.	In	the
Console	window,	you	can	type	AutoLISP	commands,	similar	to	the	way	you
do	in	the	AutoCAD	Command	window.	You	can	also	issue	many	Visual	LISP
commands	from	this	window,	instead	of	using	the	menu	or	toolbars.	See
Understanding	the	Console	Window	for	more	information	on	the	Console
window.

Status	Bar

The	information	displayed	in	the	status	bar	located	at	the	bottom	of	the
screen	varies	according	to	what	you	are	doing	in	VLISP.

You	may	also	see	a	minimized	Trace	window.	During	startup,	this	window

contains	informational	messages	about	the	current	release	of	VLISP,	and	may
contain	additional	information	if	VLISP	encounters	errors	during	startup.

Introducing	the	Visual	LISP	Text	Editor
Other	Visual	LISP	Windows

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Exploring	the	Visual	LISP	User	Interface	>	

Introducing	the	Visual	LISP	Text	Editor
	
	
	

You	will	spend	much	of	your	time	in	VLISP	creating	or	modifying	AutoLISP
programs.	VLISP	comes	with	an	integrated	text	editor	for	you	to	use	with
AutoLISP	code.

To	see	how	the	text	editor	window	displays	code,	open	a	sample	AutoLISP
program.	Begin	with	the	drawline.lsp	file	provided	with	VLISP.

Note The	sample	files	are	only	included	in	your	installation	if	you	chose	a	Full
installation,	or	if	you	chose	a	Custom	installation	and	selected	the	Visual	LISP
Samples	item.	If	you	previously	installed	AutoCAD	and	did	not	install	the
samples,	rerun	the	install,	choose	Custom,	and	select	the	Visual	LISP	Samples
item.

To	view	a	LISP	program	in	the	VLISP	text	editor

1.	 From	the	VLISP	menu,	choose	File	 	Open	File.

2.	 In	the	Open	File	dialog	box,	select	the	Sample\VisualLISP	folder,	which
is	in	your	AutoCAD	installation	directory.

3.	 Double-click	the	drawline.lsp	file.
VLISP	opens	the	file	in	a	new	window—the	text	editor	window—and
displays	the	name	of	the	file	in	the	status	bar.	If	you	make	a	change	to
the	text	in	the	editor	window,	or	add	new	text,	VLISP	places	an	asterisk
(*)	next	to	the	file	name	in	the	status	bar.	The	asterisk	remains	next	to
that	file	name	until	you	either	save	your	changes	or	close	the	file.
You	can	work	on	more	than	one	file	at	a	time.	Each	time	you	open	a	file,
VLISP	displays	the	file	in	a	new	text	editor	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Exploring	the	Visual	LISP	User	Interface	>	

Other	Visual	LISP	Windows
	
	
	

VLISP	displays	some	output	in	the	Console	window,	but	several	VLISP
functions	create	their	own	windows	in	which	to	display	results.	For	example,
when	you	trace	the	sequence	of	events	during	a	running	AutoLISP	program,	the
Trace	function	opens	a	window	and	displays	program	events.	You	cannot	enter
text	in	these	output	windows,	but	you	can	copy	text	from	them	and	paste	the	text
into	the	editor	or	Console	windows.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Touring	the	Visual	LISP	Menus
	
	
	

You	can	issue	VLISP	commands	by	choosing	from	the	various	menu	items.	For
example,	from	the	File	menu	you	can	create	a	new	AutoLISP	program	file,	select
an	existing	program	file	to	edit,	and	print	the	file	you're	editing.

Variable	Menu	Contents
Visual	LISP	Menu	Summary

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Touring	the	Visual	LISP	Menus	>	

Variable	Menu	Contents
	
	
	

Menu	contents	may	vary	depending	on	which	VLISP	window	(for	example,	text
editor,	Console)	is	active.	To	activate	a	different	window,	click	in	the	window's
title	bar,	or	in	any	empty	area	of	that	window.

As	an	example,	click	in	the	text	editor	window	containing	the	drawline.lsp	file,
then	choose	Edit	from	the	VLISP	menu.	You'll	see	the	following	list:

Note	that	the	last	items	on	the	menu	are	Parentheses	Matching	and	Extra
Commands.

Now	click	in	the	title	bar	of	the	VLISP	Console	window,	then	select	the	Edit
menu	item	again:

Notice	that	Extra	Commands	is	no	longer	the	last	item	on	the	menu.	Parentheses
Matching	is	followed	by	two	new	items,	Console	History	Up	and	Console
History	Down;	these	items	apply	only	to	a	Console	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Touring	the	Visual	LISP	Menus	>	

Visual	LISP	Menu	Summary
	
	
	

The	following	table	summarizes	the	VLISP	menu	items.

Visual	LISP	menu	items

Menu
item Uses

File Create	a	new	AutoLISP	program	file	for
editing,	open	an	existing	file,	save
changes	to	program	files,	build	Visual
LISP	application	files,	and	print	program
files.

Edit Copy	and	paste	text,	undo	the	last	change
you	made	to	text	(or	undo	the	last
command	entered	in	the	Console
window),	select	text	in	the	VLISP	editor
or	Console	windows,	match	parentheses
in	expressions,	and	redisplay	previous
commands	entered	in	the	Console
window.	See	the	chapter	titled
Developing	Programs	with	Visual	LISP
for	more	information	on	Edit	features.

Search Find	and	replace	text	strings,	set
bookmarks,	and	navigate	among
bookmarked	text.	See	Using	the	Text
Editor	for	information	on	these	topics.

View Find	and	display	the	value	of	variables
and	symbols	in	your	AutoLISP	code.	For
more	information	on	this	topic,	see
chapter	3,	Debugging	Programs.

Project Work	with	projects	and	compile
programs.	See	Managing	Multiple	LISP
Files,	and	Compiling	and	Linking
Programs	for	information	on	these	topics.

Debug Set	and	remove	breakpoints	in	your
program	and	step	through	program
execution	one	expression	at	a	time.	You
can	then	check	the	state	of	variables	and
the	results	of	expressions.	See	chapter	3,
Debugging	Programs,	for	more
information	on	these	features.

Tools Set	VLISP	options	for	text	formatting
and	various	environment	options,	such	as
the	placement	of	windows	and	toolbars.

Window Organize	the	windows	currently
displayed	in	your	VLISP	session,	or
activate	another	VLISP	or	AutoCAD
window.

Help Display	Help.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Understanding	the	Console	Window
	
	
	

From	the	VLISP	Console	window,	you	can	enter	and	run	AutoLISP	commands
and	see	the	results.	This	is	similar	to	what	you	can	do	in	the	AutoCAD
Command	window,	but	there	are	a	few	differences—some	subtle—in	how	you
accomplish	the	same	task	in	these	two	windows.	For	example,	to	display	the
current	value	of	an	AutoLISP	variable	in	VLISP,	you	simply	type	the	variable
name	in	the	Console	window	and	press	ENTER.	To	view	the	value	of	a	variable
in	AutoCAD,	you	must	precede	the	variable	name	with	an	exclamation	point	(!)
when	you	type	it	in	the	Command	window.

The	Console	window	is	also	where	VLISP	displays	AutoLISP	diagnostic
messages	and	the	results	of	many	AutoLISP	functions.	For	example,	output	from
the	print	and	princ	functions	is	displayed	in	the	Console	window.	You	can	scroll
through	the	Console	window	to	view	previously	entered	text	and	output.

For	a	description	of	VLISP	Console	window	features,	see	Using	the	Console
Window.	The	following	is	a	brief	summary	of	these	features:

Evaluating	AutoLISP	expressions	and	displaying	the	return	values	from
those	expressions.

Entering	AutoLISP	expressions	on	multiple	lines	by	pressing	CTRL	+
ENTER	to	continue	on	the	next	line.

Evaluating	multiple	expressions	at	one	time.

Copying	and	transferring	text	between	the	Console	and	text	editor
windows.	Most	text	editor	commands	are	also	available	in	the	Console
window.

Retrieving	previous	commands	entered	in	the	Console	by	pressing	TAB.
You	can	press	TAB	repeatedly	to	retrieve	earlier	commands.	Press
SHIFT	+	TAB	to	reverse	the	direction	of	command	retrieval.

Performing	an	associative	search	through	the	input	history	by	pressing
TAB.	For	example,	if	you	begin	an	expression	with	(+	and	then	press
TAB,	VLISP	retrieves	the	last	command	you	entered	that	begins	with	(+.
To	reverse	the	direction	of	the	search,	press	SHIFT	+	TAB.

Pressing	ESC	clears	any	text	following	the	Console	prompt.

Pressing	SHIFT	+	ESC	leaves	the	text	you	entered	at	the	Console
prompt	without	evaluating	the	text,	and	displays	a	new	Console	prompt.

Right-clicking	or	pressing	SHIFT	+	F10	anywhere	in	the	Console
window	displays	a	menu	of	VLISP	commands	and	options.	For	example,
you	can	use	this	feature	to	copy	and	paste	text	in	the	Console	command
line,	search	for	text,	and	initiate	VLISP	debugging	features.

Note	that	if	you	type	text	at	the	Console	prompt	but	switch	to	the	AutoCAD
window	before	pressing	ENTER,	the	text	will	no	longer	be	at	the	prompt	when
you	return	to	the	VLISP	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Understanding	the	Visual	LISP	Text	Editor
	
	
	

The	VLISP	text	editor	is	much	more	than	a	writing	tool,	it's	a	central	component
of	the	VLISP	programming	environment.	To	appreciate	the	versatility	and	value
of	the	VLISP	text	editor,	you	need	to	be	familiar	with	the	AutoLISP	language.	If
you	are	not	yet	familiar	with	AutoLISP,	you	can	learn	the	basics	in	chapter	8,
AutoLISP	Basics	and	find	additional	information	in	chapter	9,	Using	AutoLISP
to	Communicate	with	AutoCAD	and	chapter	10,	Using	AutoLISP	to	Manipulate
AutoCAD	Objects

Here	are	some	of	the	major	features	of	the	text	editor:

Color	Coding	of	Files

The	text	editor	identifies	different	parts	of	an	AutoLISP	program	and	assigns
distinct	colors	to	them.	This	allows	you	to	find	program	components	easily
such	as	function	calls	and	variable	names,	and	helps	you	find	typographical
errors.

Formatting	of	Text

The	text	editor	can	format	AutoLISP	code	for	you,	making	the	code	easier	to
read.	You	can	choose	from	a	number	of	different	formatting	styles.

Parenthesis	Matching

AutoLISP	code	contains	many	parentheses,	and	the	editor	helps	you	detect
missing	parentheses	by	finding	the	close	parenthesis	that	goes	with	an	open
parenthesis.

Execution	of	AutoLISP	Expressions

You	can	test	expressions	and	lines	of	code	without	leaving	the	text	editor.

Multiple	File	Searching

The	text	editor	can	search	for	a	word	or	expression	in	several	files	with	a

single	command.

Syntax	Checking	of	AutoLISP	Code

The	text	editor	can	evaluate	AutoLISP	code	and	highlight	syntax	errors.

Details	on	using	the	VLISP	text	editor	begin	with	Using	the	Text	Editor.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Loading	and	Running	AutoLISP	Programs
	
	
	

Once	you	have	opened	an	AutoLISP	program	file	in	the	VLISP	text	editor,	you
can	load	and	run	it.	Loading	is	the	process	by	which	functions	in	a	program	file
are	made	available	to	the	VLISP	command	interpreter.	You	can	try	this	with	the
drawline.lsp	sample	program.

To	load	and	run	a	program	in	a	Visual	LISP	text	editor	window

1.	 Make	sure	the	text	editor	window	containing	the	drawline.lsp	program	is
active.	If	you	are	not	sure	whether	the	window	is	active,	click	anywhere
in	the	window	to	activate	it.

2.	 Choose	the	Load	Active	Edit	Window	button	from	the	Run	toolbar,	or
choose	Tools	 	Load	Text	in	Editor	from	the	VLISP	menu.

VLISP	responds	by	displaying	a	message	in	the	Console	window
indicating	it	has	loaded	the	program.

3.	 Run	the	drawline	function	from	the	Console	prompt	by	entering	the
function	name	in	parentheses,	then	pressing	ENTER:

_$	(drawline)

The	drawline	function	will	ask	you	to	specify	two	points,	and	will
then	draw	a	straight	line	between	those	points.	When	drawline	asks
for	user	input,	VLISP	turns	control	over	to	AutoCAD	to	prompt	you	for
the	points.	What	you	see	next	depends	on	whether	or	not	the	AutoCAD
windows	are	currently	displayed	on	your	desktop.	If	AutoCAD	is
already	on	your	desktop,	you'll	see	the	AutoCAD	windows.	But	if
AutoCAD	is	currently	minimized	on	your	desktop,	the	windows	won't

automatically	be	restored	and	displayed.	Instead,	VLISP	remains	visible
and	your	mouse	pointer	changes	to	a	VLISP	symbol.

This	symbol	indicates	that	the	VLISP	window	is	no	longer	active.	If	this
is	the	case,	you	must	manually	switch	to	the	AutoCAD	window.	Click
the	AutoCAD	icon	on	the	Windows	task	bar	to	activate	AutoCAD.

4.	 Respond	to	the	prompts	by	specifying	points	in	the	graphics	window	or
on	the	Command	line.
After	you	respond	to	the	prompts,	control	returns	to	VLISP	and	you	will
once	again	see	the	VLISP	window.
When	you	enter	commands	in	the	VLISP	Console	window	or	run	a
program	loaded	from	the	text	editor,	you	may	be	frequently	switching
back	and	forth	between	the	VLISP	and	AutoCAD	windows.	Aside	from
using	the	standard	Windows	methods	of	switching	between	windows,
you	can	activate	the	AutoCAD	window	by	choosing	Window	 	Activate
AutoCAD	from	the	VLISP	menu,	or	by	clicking	the	Activate	AutoCAD
button	on	the	Run	toolbar.	If	you	are	in	AutoCAD	and	want	to	return	to
the	VLISP	environment,	you	can	enter	vlisp	at	the	Command	prompt,
or	choose	Tools	 	AutoLISP	 	Visual	LISP	Editor	from	the	AutoCAD
menu.
Running	Selected	Lines	of	Code
Using	Extended	AutoLISP	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Loading	and	Running	AutoLISP	Programs	>	

Running	Selected	Lines	of	Code
	
	
	

With	VLISP,	you	can	select	lines	of	code	in	the	text	editor	window	and	run	only
the	selected	code,	instead	of	the	whole	program.

To	run	selected	lines	of	AutoLISP	code	in	a	Visual	LISP	editor	window

1.	 Using	the	drawline.lsp	program	as	an	example,	highlight	the	following
lines	of	code:

(setq	pt1(getpoint	"\nEnter	the	start	point	for	the	line:	")

						pt2(getpoint	pt1	"\nEnter	the	end	point	for	the	line:	"))

2.	 Choose	the	Load	Selection	button	on	the	Run	toolbar.

VLISP	immediately	runs	the	code	and	switches	control	to	AutoCAD	to
prompt	you	for	input.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	Loading	and	Running	AutoLISP	Programs	>	

Using	Extended	AutoLISP	Functions
	
	
	

VLISP	provides	some	extensions	to	the	AutoLISP	language	that	are	not	loaded
automatically	when	you	start	AutoCAD.	These	functions	have	names	that	begin
with	vla-,	vlax-,	and	vlr.	The	vla-	functions	implement	ActiveX®	support	in
AutoLISP	(described	in	Working	with	ActiveX).	The	vlax-	functions	provide
ActiveX	utility	and	data	conversion	functions,	dictionary	handling	functions,	and
curve	measurement	functions.	The	vlr-	functions	provide	support	for	AutoCAD
reactors.	Before	you	can	use	any	of	these	functions,	you	need	to	load	the
AutoLISP	extensions	with	the	following	function	call:

(vl-load-com)

This	function	first	checks	whether	or	not	the	AutoLISP	extensions	are	already
loaded.	If	the	AutoLISP	extensions	are	loaded,	function	does	nothing;	otherwise
it	loads	the	extensions.

If	you're	using	the	VLISP	interactive	development	environment	to	develop	code,
chances	are	you'll	want	to	use	the	AutoLISP	extensions	at	some	point.	It's	a	good
practice	to	issue	vl-load-com	when	you	start	VLISP,	or	to	include	a	call	to
the	function	in	your	acaddoc.lsp	file,	so	that	it	loads	automatically.	But	if	you
write	programs	that	use	any	of	the	extended	AutoLISP	functions,	you	need	to
call	vl-load-com	in	those	programs	to	ensure	that	the	functions	are	available
to	other	users	running	your	code.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Getting
Started	>	

Exiting	Visual	LISP
	
	
	

When	you	are	finished	with	your	VLISP	session,	you	can	close	the	program	by
either	choosing	Exit	from	the	File	menu	or	clicking	the	Windows	Close	button.
Note	that	AutoCAD	does	not	completely	unload	VLISP	but	merely	closes	all
VLISP	windows.

Upon	exiting	AutoCAD,	if	you	have	made	any	changes	to	the	code	in	any
VLISP	text	editor	window	and	have	not	saved	those	changes,	you	will	be	asked
if	you	want	to	save	your	changes.	You	can	either	save	all	the	changes	you've
made	by	choosing	Yes,	or	save	none	of	the	changes	by	choosing	No.

VLISP	retains	its	state	when	you	exit.	The	next	time	you	start	a	VLISP	session,
VLISP	automatically	opens	whichever	files	and	windows	were	open	when	you
last	exited.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Developing	Programs	with	Visual	LISP
	
	
	

With	Visual	LISP,	you	can	format	your	code	and	automatically	detect	syntax
errors.

Visual	LISP®	provides	many	tools	and	features	that	help	you	develop
AutoLISP®	programs.	This	chapter	describes	the	features	that	help	you	during
the	coding	phase	of	program	development.	These	features	format	AutoLISP	code
to	improve	readability	and	help	you	detect	syntax	errors	in	your	code.

Getting	Organized
Using	the	Console	Window
Using	the	Text	Editor
Using	Console	and	Editor	Coding	Aids
Formatting	Code	with	Visual	LISP
Checking	for	Syntax	Errors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Getting	Organized
	
	
	

To	develop	an	AutoLISP	program	with	VLISP	you	must	perform	the	following
steps:

Think	about	which	tasks	you	want	to	accomplish	with	your	program,	and
how	to	approach	those	tasks.

Design	the	program.

Write	the	code.

Format	the	code	for	readability.

Check	for	errors	in	the	program.

Test	and	debug	the	program.

This	chapter	provides	you	with	information	to	help	you	accomplish	writing,
formatting,	and	checking	tasks.	The	Debugging	Programs	chapter	describes	the
debugging	features	of	VLISP.	The	Building	Applications	and	Maintaining	Visual
LISP	Applications	chapters	describe	how	to	package	your	programs	into
applications	that	can	be	run	by	other	users,	and	how	to	organize	application
components	to	facilitate	future	updates.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Using	the	Console	Window
	
	
	

Most	programming	in	VLISP	takes	place	within	the	confines	of	the	VLISP	text
editor,	but	the	ability	to	program	interactively	with	AutoLISP	provides	some
unique	advantages	to	the	development	process.	In	the	VLISP	Console	window
you	can	enter	AutoLISP	code	and	immediately	see	the	results	of	executing	that
code.

Enter	text	in	the	Console	window	following	the	Console	prompt,	which	looks
like	the	following:

_$

VLISP	saves	the	text	you	enter	and	any	output	from	executing	the	text.	You	can
then	scroll	through	the	Console	window	and	see	what	transpired.	You	can	copy
any	text	in	the	window	and	paste	it	at	the	Console	prompt	or	in	another	Windows
application.

Understanding	Console	Behavior
Using	the	Console	Window	with	Multiple	Drawings
Using	the	Console	Shortcut	Menu
Logging	Console	Window	Activity

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	

Understanding	Console	Behavior
	
	
	

The	VLISP	Console	window	is	similar	in	some	respects	to	the	AutoCAD®

Command	window,	but	it	provides	many	more	features.	Although	the	Console
window	and	the	AutoCAD	Command	window	provide	similar	capabilities,	you
don't	always	use	the	same	process	to	accomplish	identical	tasks.	For	example,	to
display	the	current	value	of	an	AutoLISP	variable	in	VLISP,	you	simply	type	the
variable	name	in	the	Console	window	and	press	ENTER.	To	view	the	value	of	a
variable	in	AutoCAD,	you	must	precede	the	variable	name	with	an	exclamation
point	(!)	when	you	enter	it	at	the	AutoCAD	Command	prompt.

Unlike	the	AutoCAD	Command	window,	where	pressing	SPACEBAR	causes
expression	evaluation,	text	input	at	the	VLISP	Console	prompt	is	not	processed
until	you	press	ENTER.	This	permits	you	to	do	the	following	in	the	Console
window:

Continue	an	AutoLISP	expression	on	a	new	line.	To	continue	entering	an
expression	on	a	new	line,	press	CTRL	+	ENTER	at	the	point	you	want	to
continue.

Input	more	than	one	expression	before	pressing	ENTER.	VLISP
evaluates	each	expression	before	returning	a	value	to	the	Console
window.

If	you	select	text	in	the	Console	window	(for	example,	the	result	of	a
previous	command	or	a	previously	entered	expression),	then	press
ENTER.	VLISP	copies	the	selected	text	at	the	Console	prompt.

The	VLISP	Console	window	and	the	AutoCAD	Command	window	differ	in	the
way	they	process	the	SPACEBAR	and	TAB	keys.	In	the	VLISP	Console
window,	a	space	plays	no	special	role	and	serves	only	as	a	separator.	In	the
AutoCAD	Command	window,	pressing	the	SPACEBAR	outside	an	expression
causes	AutoCAD	to	process	the	text	immediately,	as	if	you	had	pressed	ENTER.

Using	the	Console	Window	History
Interrupting	Commands	and	Clearing	the	Console	Input	Area

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	Understanding	Console
Behavior	>	

Using	the	Console	Window	History
	
	
	

You	can	retrieve	text	you	previously	entered	in	the	Console	window	by	pressing
TAB	while	at	the	Console	prompt.	Each	time	you	press	TAB,	the	previously
entered	text	replaces	the	text	at	the	Console	prompt.	You	can	repeatedly	press
TAB	until	you	cycle	through	all	the	text	entered	at	the	Console	prompt	during
your	VLISP	session.	After	you've	scrolled	to	the	first	entered	line,	VLISP	starts
again	by	retrieving	the	last	command	entered	in	the	Console	window,	and	the
cycle	repeats.	Press	SHIFT	+	TAB	to	scroll	the	input	history	in	the	opposite
direction.

For	example,	assume	you	entered	the	following	commands	at	the	Console
prompt:

(setq	origin	(getpoint	"\nOrigin	of	inyn	sign:	"))

(setq	radius	(getdist	"\nRadius	of	inyn	sign:	"	origin))

(setq	half-r	(/	radius	2))

(setq	origin-x	(car	origin))

(command	"_.CIRCLE"	origin	radius)

To	retrieve	commands	entered	in	the	Console	window

1.	 Press	TAB	once.	VLISP	retrieves	the	last	command	entered	and	places	it
at	the	Console	prompt:

$	(command	".CIRCLE"	origin	radius)

2.	 Press	TAB	again.	The	following	command	displays	at	the	Console
prompt:

_$		(setq	origin-x	(car	origin))

3.	 Press	TAB	again.	VLISP	displays	the	following	command:

_$		(setq	half-r	(/	radius	2))

4.	 Now	press	SHIFT	+	TAB.	VLISP	reverses	direction	and	retrieves	the
command	you	entered	after	the	previous	command:

_$	(setq	origin-x	(car	origin))

5.	 Press	SHIFT	+	TAB	again.	VLISP	displays	the	following	command:

$	(command	".CIRCLE"	origin	radius)

This	was	the	last	command	you	entered	at	the	Console	prompt.

6.	 Press	SHIFT	+	TAB	again.	Because	the	previous	command	retrieved
was	the	last	command	you	entered	during	this	VLISP	session,	VLISP
starts	again	by	retrieving	the	first	command	you	entered	in	the	Console
window:

_$	(setq	origin	(getpoint	"\nOrigin	of	inyn	sign:	"))

Note	that	if	you	enter	the	same	expression	more	than	once,	it	appears
only	once	as	you	cycle	through	the	Console	window	input	history.
You	can	perform	an	associative	search	in	the	input	history	to	retrieve	a
specific	command	that	you	previously	entered.

To	perform	an	associative	search	of	the	Console	input	history

1.	 Enter	the	text	you	want	to	locate.	For	example,	enter	(command	at	the
Console	prompt:

_$	(command

2.	 Press	TAB.	VLISP	searches	for	the	last	text	you	entered	that	began	with
(command:

$	(command	".CIRCLE"	origin	radius)

If	VLISP	does	not	find	a	match,	it	does	nothing	(except	possibly	emit	a
beep).	Press	SHIFT	+	TAB	to	reverse	the	direction	of	the	associative
search	and	find	progressively	less-recent	inputs.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	Understanding	Console
Behavior	>	

Interrupting	Commands	and	Clearing	the	Console	Input
Area
	
	
	

To	interrupt	a	command	entered	in	the	Console	window,	press	SHIFT	+	ESC.
For	example,	if	you	enter	an	invalid	function	call	like	the	following:

_$	((setq	origin-x	(car	origin)
((_>

Pressing	SHIFT	+	ESC	interrupts	the	command,	and	VLISP	displays	an	“input
discarded”	message	like	the	following:

((_>		;	<input	discarded>

_$	

(Note	that	in	this	example,	you	can	also	complete	the	command	by	entering	the
missing	close	parentheses.)

If	you	type	text	at	the	Console	prompt,	but	do	not	press	ENTER,	then	pressing
ESC	clears	the	text	you	typed.	If	you	press	SHIFT	+	ESC,	VLISP	leaves	the	text
you	entered	in	the	Console	window	but	displays	a	new	prompt	without
evaluating	the	text.

If	you	type	part	of	a	command	at	the	Console	prompt,	but	activate	the	AutoCAD
window	before	pressing	ENTER,	VLISP	displays	a	new	prompt	when	you	next
activate	the	VLISP	window.	The	text	you	typed	is	visible	in	the	Console	window
history,	so	you	can	copy	and	paste	it,	but	you	cannot	retrieve	the	text	by	pressing
TAB,	because	it	was	not	added	to	the	Console	history	buffer.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	

Using	the	Console	Window	with	Multiple	Drawings
	
	
	

There	is	a	single	Console	window	for	all	open	AutoCAD	drawing	documents.
When	you	scroll	through	the	Console	window,	you	see	commands	entered	in	all
document	contexts.	This	differs	from	the	AutoCAD	Command	window,	which
shows	only	the	commands	issued	against	the	current	drawing.	In	other	words,
each	AutoCAD	drawing	has	its	own	Command	window,	but	all	drawings	share
the	same	VLISP	Console	prompt.

VLISP	automatically	switches	context	when	you	change	the	active	drawing
document	in	AutoCAD.	The	active	document	in	AutoCAD	is	always	the	active
document	in	VLISP.	Commands	entered	in	the	VLISP	Console	window	always
apply	to	the	active	document.	The	title	bar	of	the	VLISP	window	contains	the
name	of	the	active	drawing	document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	

Using	the	Console	Shortcut	Menu
	
	
	

The	most	important	functions	needed	when	working	with	the	VLISP	Console
window	are	combined	into	a	shortcut	menu	for	fast	access.	Right-click	anywhere
in	the	Console	window	or	press	SHIFT	+	F10	to	display	the	shortcut	menu.

Depending	on	whether	there	is	text	selected	in	the	Console	window	and
depending	on	the	cursor	position,	some	commands	may	not	be	appropriate	at	the
moment	and	cannot	be	activated	from	the	shortcut	menu.	The	following	table
summarizes	the	commands	that	may	be	available	from	the	Console	window
shortcut	menu.

Console	window	shortcut	menu	commands

Command Action

Cut Removes	the	selected	text	from	the	Console
window	and	moves	it	to	the	Windows	Clipboard

Copy Copies	the	selected	text	to	the	Clipboard

Paste Pastes	the	Clipboard	contents	to	the	cursor	location

Clear	Console
window

Empties	the	Console	window

Find Finds	specified	text	in	the	Console	window

Inspect Opens	the	Inspect	dialog	box

Add	Watch Opens	the	Watch	window

Apropos	window Opens	the	Apropos	window

Symbol	Service Opens	the	Symbol	Service	dialog	box

Undo Reverses	the	last	operation

Redo Reverses	the	effects	of	the	previous	Undo

AutoCAD	Mode Transfers	all	input	to	the	AutoCAD	command	line
for	evaluation

Toggle	Console	Log Copies	Console	window	output	to	the	log	file

Note	also	that	you	can	cut	and	paste	text	between	the	VLISP	Console	window
and	the	AutoCAD	Command	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Console	Window	>	

Logging	Console	Window	Activity
	
	
	

You	can	keep	a	record	of	all	Console	window	activity	by	logging	the	activity	in	a
file.	Later,	you	can	view	the	file	and	review	the	activity	that	occurred	in	the
Console	window.

To	control	Console	logging	activity

1.	 Create	a	log	file	by	choosing	File	 	Toggle	Console	Log	from	the	VLISP
menu.	Note	that	the	Console	window	must	be	active	for	the	Toggle
Console	Log	option	to	be	available.

2.	 Choose	a	directory	for	the	log	file	and	specify	a	file	name	for	the	log.
If	the	file	already	exists,	VLISP	displays	an	alert	box	that	asks	if	you
want	to	append	the	current	log	to	the	existing	file.
If	you	choose	Yes,	VLISP	appends	future	Console	window	information
to	the	existing	contents	of	the	file.	If	you	choose	No,	VLISP	overwrites
the	file.

3.	 To	close	the	log	file	and	quit	the	logging	process,	choose	Toggle	Console
Log	from	the	File	menu	again.

The	state	of	Console	window	logging	is	indicated	in	the	Console	window's	title
bar.	If	logging	is	in	effect,	VLISP	displays	the	name	of	the	log	file	in	the	title
bar.	If	logging	is	off,	no	file	name	appears	in	the	title	bar.

If	you	do	not	close	the	log	file	before	exiting	VLISP,	it	closes	the	log	file
automatically	upon	exit.	After	a	log	file	is	closed,	you	can	view	its	contents	with
any	text	editor,	such	as	the	VLISP	text	editor.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Using	the	Text	Editor
	
	
	

If	you	just	need	to	run	a	few	simple	AutoLISP	expressions,	entering	the
expressions	in	the	VLISP	System	Console	may	suffice.	For	anything	more	than
that,	however,	you	will	need	to	use	the	VLISP	text	editor	and	save	your
AutoLISP	code	in	a	file.

The	text	editor	is	a	basic	component	of	VLISP.	It	is	easy	to	use	and,	if	you	have
some	experience	using	Windows,	you	can	begin	using	it	after	a	quick	review	of
this	chapter.

The	VLISP	text	editor	has	a	number	of	features	designed	to	support	AutoLISP
programming,	such	as	selecting	of	complete	AutoLISP	expressions,	matching	of
balanced	parentheses,	syntax	coloring,	and	executing	AutoLISP	expressions
without	leaving	the	editor	window.	Most	text	editor	commands	can	be	called
from	the	menu	bar,	and	some	of	the	most	frequently	used	commands	are	also
available	from	toolbar	push	buttons.

Editing	a	File
Using	the	Text	Editor	Shortcut	Menu
Using	Keyboard	Shortcuts	in	the	Text	Editor
Moving	and	Copying	Text
Searching	for	Text
Bookmarking	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Editing	a	File
	
	
	

To	open	a	new	file	in	the	VLISP	text	editor,	choose	File	 	New	File	from	the
menu	bar.	An	empty	editor	window	appears	on	the	screen,	and	you	can	begin
entering	text.

To	start	a	new	line,	press	ENTER.	The	text	editor	does	not	wrap	your	text	when
it	reaches	the	end	of	the	visible	text	editor	window,	so	everything	you	type	goes
on	the	same	line	until	you	press	ENTER.

You	can	indent	lines	of	text	manually,	but	VLISP	automatically	formats	code	for
you	as	you	enter	new	lines	of	code.	You	can	also	copy	text	from	another	file	and
have	VLISP	format	the	block	of	text	you	add.	See	Formatting	Code	with	Visual
LISP	for	details	on	using	the	VLISP	code	formatting	features.

Undoing	Your	Last	Change
Creating	Automatic	Backup	Files
Restoring	from	a	Backup	File
Editing	an	Existing	File

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Editing	a	File	>	

Undoing	Your	Last	Change
	
	
	

You	can	reverse	your	last	edit	action	by	choosing	Edit	 	Undo	from	the	VLISP
menu	bar.	You	can	undo	a	virtually	unlimited	number	of	changes,	back	to	the
point	at	which	you	last	saved	the	file.

To	reverse	the	effects	of	the	Undo	command,	choose	Edit	 	Redo	from	the
menu.	Redo	only	works	if	you	issue	it	immediately	after	Undo.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Editing	a	File	>	

Creating	Automatic	Backup	Files
	
	
	

VLISP	supports	the	automatic	creation	of	backup	copies	of	files	loaded	by	the
text	editor.	The	actual	backup	creation	occurs	when	you	save	the	file	for	the	first
time.	Backup	files	have	the	same	name	as	your	original	file,	except	the	file
extension	begins	with	an	underscore	(_)	and	is	followed	by	the	first	two
characters	of	the	original	extension.	For	example,	the	backup	file	for
drawline.lsp	would	be	drawline._ls.

Automatic	creation	of	backup	files	is	an	option	you	can	set	by	choosing	Tools	
Environment	Options	 	General	Options.	Choose	the	Editor	option	labeled
Backup	the	File	Edited	on	First	Save	to	turn	on	automatic	backup.	By	default,
this	option	is	already	selected	when	you	first	install	VLISP.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Editing	a	File	>	

Restoring	from	a	Backup	File
	
	
	

If	a	backup	file	exists,	you	can	restore	the	file	you	are	editing	to	its	original
content,	reversing	all	the	changes	you	made.	From	the	File	menu,	choose	Revert
to	restore	the	file.	If	there	is	no	backup	file	for	the	text	in	the	editor	window,
VLISP	displays	an	error	message.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Editing	a	File	>	

Editing	an	Existing	File
	
	
	

Choose	File	 	Open	from	the	VLISP	menu	to	open	an	existing	file.	VLISP	opens
a	new	text	editor	window	for	the	file	you	select.	You	can	open	any	number	of
files	and	work	on	them	simultaneously.	VLISP	places	each	file	in	its	own	editor
window.

Note If	you	select	text	in	any	VLISP	window	before	choosing	File	 	Open,	the
selected	text	is	placed	in	the	File	name	field	of	the	Open	dialog	box.

When	you	exit	VLISP,	it	notes	which	files	are	open	and	saves	this	information
for	your	next	VLISP	session.	The	next	time	you	start	VLISP,	it	automatically
opens	the	files	for	you.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Using	the	Text	Editor	Shortcut	Menu
	
	
	

Right-clicking	your	mouse	in	an	active	VLISP	text	editor	window	brings	up	a
shortcut	menu	for	quick	access	to	frequently	used	commands.	Depending	on
whether	there	is	text	highlighted	in	the	editor	window	and	depending	on	the
position	of	the	cursor,	some	commands	on	the	shortcut	menu	may	be	inactive.
The	following	table	summarizes	the	editor	shortcut	commands:

Text	editor	window	shortcut	menu	commands

Command Action

Cut Moves	the	selected	text	to	the	Clipboard

Copy Copies	the	selected	text	to	the	Clipboard

Paste Pastes	the	Clipboard	contents	to	the	cursor	position

Find Finds	the	specified	text	in	one	or	more	editor
windows

Go	to	Last	Edited Moves	the	cursor	to	the	position	you	last	edited

Toggle	Breakpoint Sets	a	breakpoint	at	the	cursor	position,	or	removes	a
breakpoint	if	one	is	set	currently	at	that	position

Inspect Opens	the	Inspect	dialog	box

Add	Watch Opens	the	Watch	window

Apropos	window Opens	the	Apropos	window

Symbol	Service Opens	the	Symbol	Service	dialog	box

Undo Reverses	the	last	operation

Redo Reverses	the	effects	of	the	previous	Undo

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Using	Keyboard	Shortcuts	in	the	Text	Editor
	
	
	

The	VLISP	text	editor	provides	numerous	keyboard	shortcuts	you	can	use
instead	of	menu	selections	and	mouse	clicks.

Correcting	Text
Selecting	Text
Navigation	Shortcuts
Indenting	Shortcuts

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Using	Keyboard	Shortcuts	in
the	Text	Editor	>	

Correcting	Text
	
	
	

You	can	delete	words	or	lines	using	the	following	shortcuts:

Text	correction	shortcut	keys

To Press

Erase	a	word	to	the	left	of	the	cursor CTRL	+	BACKSPACE

Erase	a	word	to	the	right	of	the	cursor SHIFT	+	BACKSPACE

Delete	characters	from	the	cursor	position
to	the	end	of	the	current	line

CTRL+E	then	press	E

You	can	also	can	use	the	overstrike	mode	to	insert	text.	Overstrike	mode	is
toggled	on	and	off	by	pressing	INSERT.	When	in	overstrike	mode,	each
character	you	type	replaces	existing	text.	The	cursor	changes	shape	from	vertical
to	horizontal	when	in	overstrike	mode.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Using	Keyboard	Shortcuts	in
the	Text	Editor	>	

Selecting	Text
	
	
	

The	simplest	method	to	select	text	is	to	double-click	your	left	mouse	button.	The
amount	of	text	selected	depends	on	the	location	of	your	cursor.

If	the	cursor	immediately	precedes	an	open	parenthesis,	VLISP	selects
all	the	following	text	up	to	the	matching	close	parenthesis.

If	the	cursor	immediately	follows	a	close	parenthesis,	VLISP	selects	all
preceding	text	up	to	the	matching	open	parenthesis.

If	the	cursor	immediately	precedes	or	follows	a	word,	or	is	within	a
word,	VLISP	selects	that	word.

To	select	specific	text,	press	and	hold	the	SHIFT	key	while	pressing	the	arrow
keys	on	the	keyboard.	Other	keyboard	methods	of	text	selection	are	listed	in	the
following	table:

Text	selection	shortcut	keys

To Press

Expand	the	selection	to	the
next	line

SHIFT+DOWN	ARROW

Expand	the	selection	to	the
previous	line

SHIFT+UP	ARROW

Expand	the	selection	to	the
end	of	the	line

SHIFT+END

Expand	the	selection	to	the
beginning	of	the	line

SHIFT+HOME

Expand	the	selection	down
one	window,	or
abandon	selection	of	the	next
window,	if	it	is
currently	selected

SHIFT+PAGEDOWN

Expand	the	selection	up	one
window,	or	abandon	selection
of	the	previous	window,	if	it
is	currently	selected

SHIFT+PAGEUP

Expand	the	selection	to	the
next	word,	or	abandon
selection	of	the	next	word,	if
it	is	currently	selected

CTRL+SHIFT+RIGHT	ARROW

Expand	the	selection	to	the
previous	word,	or
abandon	selection	of	the
previous	word,	if	it	is
currently	selected

CTRL+SHIFT+LEFT	ARROW

Expand	the	selection	up	to	the
matching	left
parenthesis

CTRL+SHIFT+[

Expand	the	selection	up	to	the
matching	right	parenthesis

CTRL+SHIFT+]

Move	the	cursor	to	the	other
side	of	the	selection

ALT+ENTER

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Using	Keyboard	Shortcuts	in
the	Text	Editor	>	

Navigation	Shortcuts
	
	
	

In	addition	to	using	the	cursor	arrow	keys,	you	can	use	the	following	VLISP
editor	shortcuts	to	navigate	through	your	text:

Navigation	shortcut	keys

To	move Press

One	word	to	the	left CTRL+LEFT	ARROW

One	word	to	the	right CTRL+RIGHT	ARROW

To	the	end	of	a	line END

To	the	beginning	of	a	line HOME

Down	one	window PAGEDOWN

Up	one	window PAGEUP

To	the	end	of	a	document CTRL+END

To	the	start	of	a	document CTRL+HOME

To	the	matching	left	parenthesis CTRL+[

To	the	matching	right	parenthesis CTRL+]

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Using	Keyboard	Shortcuts	in
the	Text	Editor	>	

Indenting	Shortcuts
	
	
	

Most	indenting	of	program	code	is	best	handled	by	the	VLISP	automatic	code
formatting	and	Smart	Indent	features,	and	by	customizing	the	formatter's	options
(see	Formatting	Code	with	Visual	LISP).	But	there	are	some	things	you	may
want	to	do	by	yourself.

To	indent	selected	lines	of	code,	press	TAB	or	press	CTRL	+	E,	and	then	choose
Indent	Block.	VLISP	inserts	a	TAB	character	at	the	beginning	of	each	line	you
selected.	You	can	control	the	indent	amount	of	the	TAB	character	by	choosing
Tools	 	Window	Attributes	 	Configure	Current	and	setting	the	Tab	Width
value.	You	can	also	use	the	following	keyboard	shortcuts	to	adjust	the
indentation	of	text.

Code	indentation	shortcuts

To Do

Adjust	the	indent	of	the	current	selection
to	the	preceding	AutoLISP	text.

Press	SHIFT+TAB

Clear	trailing	SPACE	and	TAB	characters,
insert	a	new	line,	and	indent	at	the	level	of
the	previous	non-empty	line.

Press	SHIFT+ENTER

Insert	a	new	line	without	clearing	trailing
SPACE	and	TAB	characters	of	the	current
line.

Press	CTRL+ENTER

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Moving	and	Copying	Text
	
	
	

In	addition	to	using	the	standard	Windows	Cut,	Copy,	and	Paste	functions,	the
VLISP	text	editor	allows	you	to	drag	text	from	one	location	to	another	within	the
edit	window.

To	move	text	by	dragging

1.	 Select	the	text	you	want	to	move.

2.	 Point	anywhere	inside	the	selected	area,	and	press	and	hold	the	left
mouse	button.

3.	 Drag	the	text	to	the	new	location.

4.	 Release	the	mouse	button.

To	copy	the	text	instead	of	moving	it,	follow	the	same	steps,	but	press	CTRL
before	releasing	the	mouse	button	in	step	4.

You	can	also	take	selected	text	and	copy	it	into	a	new	file.	With	the	text	selected,
press	CTRL	+	E	to	display	a	list	of	options,	and	choose	Save	Block	As.	VLISP
replies	by	displaying	a	dialog	box	for	you	to	specify	where	you	want	to	save	the
text.

VLISP	uses	the	Windows	Clipboard	for	all	cut	and	copy	operations.	Therefore,
you	can	exchange	text	with	any	other	Windows	application	that	supports	these
functions.	This	also	means	you	can	copy	and	paste	text	between	the	text	editor
and	the	VLISP	Console	window.

Remember	that	immediately	after	moving	or	copying	text,	you	can	change	your
mind	and	reverse	the	action,	using	the	Undo	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Searching	for	Text
	
	
	

The	VLISP	text	editor	has	extensive	text-searching	capabilities.	From	the	Search
menu,	choose	Find	to	begin	a	search,	or	choose	the	Find	toolbar	button.	VLISP
displays	the	Find	dialog	box.

In	the	Find	What	data	entry	field,	type	the	character	string	you	want	to	locate.	If
there	is	text	selected	when	you	enter	the	Find	command,	this	text	is
automatically	placed	in	the	Find	What	field.

Choose	Find	to	start	the	search.	When	searching	through	a	single	file,	press	F3	to
search	for	the	next	occurrence	of	your	search	string.	Choose	Cancel	to	end	the
search.

When	searching	through	multiple	files	(see	the	next	topic,	Choosing	Search
Options),	VLISP	displays	the	matches	it	found	in	an	output	window.	Double-
click	on	any	highlighted	lines	in	the	Find	Output	window	to	open	the	associated
LISP	file	in	a	VLISP	editor	window.

Choosing	Search	Options
Repeating	an	Earlier	Search
Replacing	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Searching	for	Text	>	

Choosing	Search	Options
	
	
	

Under	the	Search	heading,	indicate	the	extent	of	the	search	you	want	VLISP	to
conduct.	You	can	choose	one	of	the	following:

Current	Selection

Searches	only	the	text	highlighted	in	the	editor	window.

Current	File

Searches	through	the	entire	file	in	the	active	editor	window.

Find	in	Project

With	this	option	selected,	VLISP	prompts	you	to	specify	the	name	of	the
VLISP	project	you	want	to	search.	It	will	search	all	the	files	in	this	project
and	display	all	matches	in	a	new	output	window.	See	Finding	a	String	in
Project	Source	Files	for	more	information	on	this	option.

Find	in	Files

If	you	select	this	option,	VLISP	allows	you	to	specify	a	Windows	directory
(folder)	to	search	for	the	text.	Optionally,	you	can	instruct	VLISP	to	search
all	subdirectories	of	that	directory	as	well.	VLISP	will	search	through	all	the
files	and	display	all	matches	in	a	new	output	window.

When	searching	for	text	within	the	current	file,	the	Direction	setting	determines
where	VLISP	looks	next	for	the	search	text.	Choose	Down	to	search	forward
(toward	the	end	of	the	file)	from	the	cursor	position.	Choose	Up	to	search
backward	(toward	the	beginning	of	the	file)	from	the	cursor	position.

The	Find	dialog	box	also	includes	the	following	options:

Match	Whole	Word	Only

If	selected,	VLISP	will	only	match	complete	words.	For	example,	if	the

search	term	is	ent	and	VLISP	encounters	the	word	enter	in	the	text,	VLISP
does	not	consider	this	a	match.	However,	if	the	Match	Whole	Word	Only
option	is	not	selected,	VLISP	considers	the	ent	within	enter	to	be	a	match.

Match	Case

If	selected,	VLISP	only	matches	text	set	in	the	same	case.	In	this	instance,
Ent	and	ent	are	not	considered	a	match.	If	Match	Case	is	not	selected,	Ent
and	ent	are	considered	a	match.

Mark	Instances

If	you	select	this	option,	the	position	of	the	located	text	will	be	added	to	the
bookmark	ring	(see	Bookmarking	Text).	This	lets	you	return	quickly	to	this
code	position	later.	Searches	that	find	all	occurrences	of	a	string	add	each
position	to	the	bookmark	ring.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Searching	for	Text	>	

Repeating	an	Earlier	Search
	
	
	

VLISP	saves	each	search	string	you	enter	in	a	pull-down	list	on	the	toolbar.

To	repeat	a	search	you	made	earlier,	click	the	pull-down	arrow	and	select	a
search	term	from	the	toolbar	list.	Press	the	Find	Toolbar	String	button	to	conduct
the	search.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	Searching	for	Text	>	

Replacing	Text
	
	
	

The	Search	menu	contains	a	Replace	function	that	is	used	to	replace	the	search
text	with	a	text	string	that	you	specify.

The	Replace	dialog	box	is	similar	to	the	Find	dialog	box,	but	with	fewer	options.
It	contains	an	additional	Replace	With	entry	field,	in	which	you	specify	the	text
you	want	VLISP	to	substitute	for	the	search	text.	Specify	the	search	text	in	the
Find	What	field.

You	can	take	the	following	actions	from	the	Replace	dialog	box:

Press	Find	Next	to	find	the	next	occurrence	of	the	search	string.

Press	Replace	to	replace	the	found	text	with	the	replacement	string.
If	you	don't	want	to	replace	this	occurrence	of	the	text,	press	Find	Next
to	search	for	the	next	occurrence	of	the	text,	or	Cancel	to	end	the	search.

Press	Replace	All	to	replace	all	occurrences	of	the	search	string	with	the
replacement	string.

Press	Cancel	to	end	the	Replace	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	the	Text	Editor	>	

Bookmarking	Text
	
	
	

The	bookmark	feature	helps	you	navigate	through	VLISP	text	editor	windows	by
letting	you	mark	up	to	32	positions	(bookmarks)	in	each	window.	Once	32
bookmarks	are	set,	adding	a	new	bookmark	results	in	the	oldest	bookmark	being
removed.

Each	text	editor	window	maintains	its	own	set	of	bookmarks,	and	the	bookmark
navigation	tools	let	you	walk	through	the	marks	within	each	window
independently	of	the	other	windows.	A	set	of	bookmarks	within	a	window	is
known	as	a	bookmark	ring.	You	can	step	either	forward	or	backward	through	the
ring,	and	eventually	return	to	the	starting	point.

Whenever	you	step	to	a	bookmark,	VLISP	automatically	places	a	marker	at	the
location	you	are	stepping	from.	In	effect,	the	marker	for	the	place	you	are
jumping	to	is	moved	to	the	place	you	jumped	from.	This	makes	it	easy	to	return
to	your	original	location	just	by	stepping	back	in	the	opposite	direction,	or	by
cycling	through	all	the	bookmarks	until	you	get	back	to	the	starting	point.

To	add	a	bookmark

1.	 Move	the	cursor	to	the	location	you	want	to	mark.

2.	 Press	the	Toggle	Bookmark	button	on	the	toolbar,	or	press	ALT	+.	(ALT
plus	a	period).

Bookmarks	may	also	be	inserted	automatically	when	using	the	Find	command	to
search	for	text.	See	the	discussion	on	search	options	in	Searching	for	Text	for
more	information	on	this	feature.

To	move	the	cursor	from	one	bookmark	to	the	next

1.	 Move	the	cursor	to	the	previous	bookmark	in	the	ring	by	choosing
Search	 	Bookmarks	 	Previous	Bookmark,	or	by	pressing	the	Previous
Bookmark	toolbar	icon.	You	can	also	accomplish	this	by	pressing	CTRL
+,	(CTRL	plus	a	comma).

2.	 Move	the	cursor	to	the	next	bookmark	in	the	ring	by	choosing	Search	
Bookmarks	 	Next	Bookmark,	or	by	pressing	the	Next	Bookmark
toolbar	icon.	You	can	also	accomplish	this	by	pressing	CTRL	+.	(CTRL
plus	a	period).

In	addition	to	jumping	between	bookmarks,	you	can	also	jump	and	select	the	text
between	two	bookmarks.

To	move	the	cursor	and	select	text	between	bookmarks

1.	 Press	CTRL	+	SHIFT	+,	(comma)	to	select	the	text	between	the	current
location	and	the	next	bookmark.

2.	 Press	CTRL	+	SHIFT	+.	(period)	to	select	the	text	between	the	current
location	and	the	previous	bookmark.

Removing	a	bookmark	is	similar	to	setting	a	bookmark.

To	remove	a	bookmark

1.	 Move	the	cursor	to	the	bookmarked	location.

2.	 Press	the	Toggle	Bookmark	button,	or	press	ALT	+.	(ALT	plus	a	period).
The	Toggle	Bookmark	command	works	as	an	on/off	switch.	If	you	issue
the	command	when	a	bookmark	is	set,	Toggle	Bookmark	turns	it	off.
Issue	the	same	command	when	there	is	no	bookmark	set,	and	Toggle
Bookmark	inserts	a	bookmark.

3.	 To	remove	all	the	bookmarks	in	the	active	window,	press	the	Clear	All
Bookmarks	button	on	the	toolbar,	or	choose	Search	 	Bookmarks	
Clear	All	Bookmarks	from	the	VLISP	menu.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Using	Console	and	Editor	Coding	Aids
	
	
	

Several	VLISP	coding	aids	are	useful	at	both	the	Console	and	text	editor
windows.	One	highly	visual	aid	is	the	assignment	of	colors	to	AutoLISP
language	elements.	Color	coding	helps	you	detect	syntax	errors	in	your	code.
VLISP	also	contains	several	features	to	help	you	determine	the	names	of
variables	and	functions	that	you	need	to	refer	to	in	your	program,	and	shortcuts
to	online	Help	for	AutoLISP	functions.

Understanding	Visual	LISP	Color	Coding
Using	the	Apropos	Feature
Letting	Visual	LISP	Help	You	Complete	Words
Getting	Help	for	AutoLISP	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	

Understanding	Visual	LISP	Color	Coding
	
	
	

As	soon	as	you	enter	text	in	the	VLISP	Console	or	text	editor	windows,	VLISP
attempts	to	determine	if	the	entered	word	is	a	built-in	AutoLISP	function,	a
number,	a	string,	or	some	other	language	element.	VLISP	assigns	every	type	of
element	its	own	color.	This	helps	you	detect	missing	quotes	or	misspelled
function	names.	The	default	color	scheme	is	shown	in	the	following	table.

Default	color	coding	scheme	for	AutoLISP	code

AutoLISP	language	element Color

Built-in	functions	and	protected	symbols Blue

Strings Magenta

Integers Green

Real	numbers Teal

Comments Magenta,	on	gray
background

Parentheses Red

Unrecognized	items	(for	example,	user
variables)

Black

You	can	change	the	default	colors	by	choosing	Tools	 	Window	Attributes	

Configure	Current	from	the	VLISP	menu.	See	Configure	Current	for	more
information	on	setting	colors.

The	VLISP	text	editor	provides	color	coding	for	LISP	files,	DCL	files,	SQL	files,
and	C++	language	source	files	(see	LISP,	FAS,	and	Other	File	Types	for	a	list	of
file	types	recognized	by	VLISP).	VLISP	uses	the	file	name	extension	to
determine	a	file's	type,	and	then	selects	the	color	coding	accordingly.	You	can
change	the	color	coding	style	associated	with	a	file	type	by	choosing	Tools	
Window	Attributes	 	Syntax	Coloring	from	the	VLISP	menu.	All	text	entered	in
the	Console	window	is	treated	as	AutoLISP	code.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	

Using	the	Apropos	Feature
	
	
	

The	Apropos	feature	is	a	tool	that	searches	the	VLISP	symbol	table.	The	symbol
table	contains	every	symbol	read	by	the	AutoLISP	reader.	This	includes	symbols
in	user	programs	and	symbols	that	implement	the	AutoLISP	language.

You	can	define	specific	search	criteria	for	Apropos	to	use	in	searching	the
symbol	table.	For	example,	you	can	tell	Apropos	to	search	for	all	symbol	names
that	contain	a	specific	character	string,	and	you	can	further	refine	that	search	to
return	only	symbols	that	identify	functions.

To	invoke	Apropos,	choose	View	 	Apropos	Window	from	the	VLISP	menu,	or
press	the	Apropos	button	on	the	VLISP	toolbar.	If	you	select	text	prior	to
invoking	Apropos,	VLISP	immediately	performs	an	Apropos	search	on	the
selected	text.	If	no	text	is	selected,	VLISP	displays	the	Apropos	Options	dialog
box.

In	the	input	field	of	the	Apropos	Options	dialog	box,	enter	the	text	you	want
Apropos	to	search	for.	The	dialog	box	contains	the	following	options:

Match	by	Prefix

If	this	option	is	turned	on,	Apropos	searches	for	a	match	starting	only	from
the	first	character	of	the	symbol	name.	If	the	option	is	turned	off,	Apropos
tries	to	match	the	text	you	entered	starting	at	any	position	of	a	symbol	name.
For	example,	with	Match	by	Prefix	off,	a	search	on	the	word	get	returns
symbol	names	including	getint,	getpoint,	ssget,	and	vla-
getActive.	With	Match	by	Prefix	on,	the	same	search	does	not	return
ssget	and	vla-getActive,	because	get	appears	in	the	middle	of	those
symbol	names,	not	at	the	beginning.

Use	WCMATCH	(wild	card	match)

If	this	option	is	turned	on,	Apropos	treats	asterisks	as	wild-card	characters
when	searching.	For	example,	if	you	specify	fun*	as	the	symbol	you	want
matched,	Apropos	looks	for	all	names	that	contain	fun,	no	matter	what
characters	follow.	In	contrast,	with	Use	WCMATCH	turned	off,	the	asterisk
is	treated	as	a	string	and	Apropos	only	matches	names	that	precisely	contain
fun*.

Downcase	Symbols

If	this	option	is	turned	on,	any	symbols	you	copy	to	the	Clipboard	with	the
Apropos	service	are	converted	to	lowercase	characters.	If	you	paste	the
symbol	name	in	another	window,	it	appears	in	lowercase.

Filter	Flags

This	option	lets	you	choose	symbols	with	matching	flag	settings.	VLISP
displays	a	list	of	check	boxes	that	correspond	to	the	symbol	flags	described	in
Understanding	Symbol	Flags.	If	the	flag	filter	is	on,	only	symbols	set	with
the	selected	flags	are	considered.

Filter	Value

Opens	the	Filter	Value	dialog	box,	from	which	you	can	select	additional
search	criteria.	You	can	choose	one	of	the	following:
All No	filter.
Null	value Only	nil-valued	symbols	are	considered	for	matching.
Nonull	value Only	symbols	that	are	not	nil	are	considered	for	matching.
Functions All	function	types	(user-defined,	built-in,	and	so	on)	are
considered	for	matching.
User	function Only	user-defined	functions	(USUBR)	are	considered.
Built-in	function Only	built-in	or	compiled	AutoLISP	functions	(SUBR)
are	considered	for	matching.
Exrxsubr Only	external	function	names	are	matched.

If	you	specify	a	filter	value	or	filter	flag,	the	message	area	of	the	Apropos
options	dialog	box	indicates	your	selections.

When	you've	specified	the	criteria	you	want	Apropos	to	use	in	its	search,	press
OK	to	conduct	the	search.

To	search	for	AutoLISP	symbols	that	begin	with	set

1.	 Choose	View	 	Apropos	Window	from	the	VLISP	menu.

2.	 Enter	set	in	the	text	input	field	of	the	Apropos	options	dialog	box.

3.	 Select	the	Match	by	Prefix	option.

4.	 Clear	all	other	options	in	the	Apropos	options	dialog	box.

5.	 Press	OK	to	conduct	the	search.
Using	the	Results	of	an	Apropos	Search

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	Using	the
Apropos	Feature	>	

Using	the	Results	of	an	Apropos	Search
	
	
	

Apropos	displays	the	symbols	matching	your	search	criteria	in	the	following
window:

The	bottom	of	the	Apropos	Results	window	contains	a	message	area	with
information	about	the	results	of	the	search.	In	the	current	example,	the	message
indicates	the	number	of	symbols	Apropos	found	in	its	search.

If	the	Apropos	Results	window	is	not	large	enough	to	show	all	the	symbols
found,	the	window	is	displayed	as	scrollable.	If	the	search	returns	over	a
thousand	matches,	Apropos	will	not	be	able	to	list	all	the	symbols,	even	in	a
scrollable	window.	The	message	area	in	the	results	window	warns	you	when	this
occurs,	as	in	the	following	example	from	a	search	on	the	prefix	VL:

If	your	search	results	in	too	many	symbols	for	Apropos	to	display	in	the	Results
window,	you	can	use	the	Copy	to	Trace/Log	feature	to	view	the	complete	list	of
symbols	in	the	VLISP	Trace	window.

To	return	to	the	Apropos	Options	window	and	refine	your	search,	press	the
Apropos	options	button	in	the	Apropos	Results	window	toolbar.

The	toolbar	also	contains	the	following	buttons:

Copy	to	Trace/log

Copies	the	results	of	the	Apropos	search	to	the	VLISP	Trace	window.	Data	in
the	Trace	window	can	be	copied	using	the	Windows	Copy	command.	If	Trace
logging	is	active,	the	contents	are	also	copied	to	the	log	file	(see	Using	Visual
LISP	Data	Inspection	Tools	for	information	on	Trace	logging).

Help

Invokes	Help	for	the	selected	symbol.	The	symbol	name	is	used	as	the	Help
index	search	value.

You	can	also	use	the	Apropos	Results	window's	shortcut	menu	on	selected
symbols.	For	example,	you	can	select	a	symbol	from	the	list	and	insert	it	into	the
VLISP	Console	or	text	editor	window.

To	insert	a	symbol	from	the	Apropos	Results	window

1.	 Select	a	symbol	from	the	list.

2.	 Right-click	to	display	the	shortcut	menu,	and	choose	Copy	to	Clipboard
from	the	list	of	options.

3.	 Click	in	the	VLISP	window	at	the	point	you	want	to	insert	the	symbol
name.

4.	 Right-click	and	select	Paste	from	the	shortcut	menu,	or	press	CTRL	+	V
to	paste	the	text.

The	other	options	on	the	shortcut	menu	are:

Inspect

Invoke	the	VLISP	Inspect	feature	for	the	selected	symbol.	See	Using	Inspect
Windows	for	information	on	using	this	feature.

Print

Print	the	symbol	name	in	the	Console	window.	If	you	select	a	symbol	name
displayed	in	the	Console	window	and	press	ENTER,	VLISP	copies	the
symbol	name	to	the	Console	prompt.

Symbol

Invoke	the	VLISP	Symbol	Service	feature	for	the	selected	symbol.	See	Using
the	Symbol	Service	Dialog	Box	for	information	on	using	this	feature.

Copy

Copy	the	selected	symbol	name	to	the	*obj*	IDE	global	variable.

Add	to	Watch

Add	the	selected	symbol	to	the	Watch	window.	See	Using	the	Watch	Window
for	information	on	using	this	feature.

Help

Invoke	online	Help	for	the	selected	symbol.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	

Letting	Visual	LISP	Help	You	Complete	Words
	
	
	

Two	VLISP	features,	Complete	Word	by	Match	and	Complete	Word	by
Apropos,	allow	you	to	type	part	of	a	word	and	get	help	in	completing	the	rest.

Completing	a	Word	by	Matching
Completing	a	Word	by	Apropos

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	Letting
Visual	LISP	Help	You	Complete	Words	>	

Completing	a	Word	by	Matching
	
	
	

Using	Complete	Word	by	Match,	VLISP	completes	a	partially	entered	word	by
matching	the	part	you	have	typed	with	another	word	in	the	same	window.	For
example,	suppose	the	following	shows	the	history	of	your	VLISP	Console
window:

_$	(setq	origin	(getpoint	"\nOrigin	of	inyn	sign:	"))

_$	(setq	radius	(getdist	"\nRadius	of	inyn	sign:	"	origin))

_$	(setq	half-r	(/	radius	2))

_$	(setq	origin-x	(car	origin))

$	(command	".CIRCLE"	origin	radius)

In	other	words,	these	are	the	last	five	commands	that	you	entered	from	the
Console.

To	complete	a	word	by	matching

1.	 Type	the	following	at	the	Console	prompt:

_$	(c

2.	 Press	CTRL	+	SPACEBAR	to	invoke	Complete	Word	by	Match.	VLISP
finds	the	last	word	you	entered	that	began	with	the	letter	“c,”	and
completes	the	word	you	started	to	type:

_$	(command

3.	 If	that	is	not	the	word	you	are	looking	for,	press	CTRL	+	SPCAEBAR
again.	VLISP	searches	back	through	the	Console	history	for	the	previous
occurrence	of	a	word	beginning	with	the	letter	“c”:

_$	(car

VLISP	will	keep	searching	for	matching	words	each	time	you	press
CTRL	+	SPACEBAR.	If	you	keep	pressing	CTRL	+	SPACEBAR	after
VLISP	finds	the	last	matching	word,	VLISP	repeats	the	retrieval
sequence.	(Note	that	you	can	also	choose	Search	 	Complete	Word	by
Match	from	the	VLISP	menu	instead	of	pressing	CTRL	+	SPACEBAR
to	invoke	the	Match	feature.)
If	VLISP	does	not	find	any	matching	words,	it	does	nothing.
You	can	use	Complete	Word	by	Match	in	either	the	Console	window	or
the	text	editor	window.	When	you	invoke	the	feature	from	the	Console
window,	VLISP	only	searches	the	Console	for	a	match;	when	invoked
from	a	text	editor	window,	VLISP	only	searches	that	editor	window	for	a
match.
The	Complete	Word	by	Match	feature	is	not	case-sensitive.	In	the
previous	example,	you	would	have	achieved	the	same	result	had	you
entered	a	capital	C	instead	of	a	lowercase	c.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	Letting
Visual	LISP	Help	You	Complete	Words	>	

Completing	a	Word	by	Apropos
	
	
	

With	the	Complete	Word	by	Apropos	feature,	VLISP	completes	a	partially
entered	word	with	a	matching	symbol	name	from	the	VLISP	symbol	table.	To
demonstrate	this	feature,	assume	you	have	entered	the	following	commands
shown	in	your	VLISP	Console	window:

_$	(setq	origin	(getpoint	"\nOrigin	of	inyn	sign:	"))

_$	(setq	radius	(getdist	"\nRadius	of	inyn	sign:	"	origin))

_$	(setq	half-r	(/	radius	2))

_$	(setq	origin-x	(car	origin))

$	(command	".CIRCLE"	origin	radius)

To	use	the	Complete	Word	by	Apropos	feature

1.	 At	the	Console	prompt,	type	the	following:

_$	(ha

2.	 Press	CTRL	+	SHIFT	+	SPACE	to	invoke	Complete	Word	by	Apropos
on	the	partially	entered	word.	VLISP	lists	all	symbol	table	entries	that
begin	with	“ha”:

VLISP	found	two	matching	words	in	the	symbol	table.	The	half-r
symbol	is	a	variable	you	defined	in	the	Console	window,	and	the
handent	symbol	represents	an	AutoLISP	function.

3.	 Select	the	symbol	you	want	to	complete	your	typing.	If	you	do	not	want
to	select	a	symbol,	press	ESC.
Note	that	you	can	also	choose	Search	 	Complete	Word	by	Apropos
from	the	VLISP	menu	instead	of	pressing	CTRL	+	SHIFT	+	SPACE	to
invoke	the	feature.
If	no	symbols	match	the	text	you've	entered,	VLISP	displays	the
Apropos	options	dialog	box:

The	message	area	of	the	Apropos	options	dialog	box	shows	the	value
that	Apropos	could	not	match.	See	Using	the	Apropos	Feature	for
information	on	setting	Apropos	options	and	renewing	your	search.

If	VLISP	finds	more	than	15	matching	names	in	the	symbol	table,	it
displays	the	Apropos	Results	dialog	box.	For	example,	type	get	at	the
Console	prompt,	then	press	CTRL	+	SHIFT	+	SPACEBAR	to	invoke	the
Apropos	feature.	VLISP	displays	the	following	dialog	box:

You	can	select	a	symbol	from	the	results	window	and	copy	it	into	your
code	using	a	shortcut	menu.	If	you	need	additional	help	with	copying	the
symbol	to	your	program	code,	or	using	other	features	of	the	Apropos
Results	window,	see	Using	the	Results	of	an	Apropos	Search.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Using	Console	and	Editor	Coding	Aids	>	

Getting	Help	for	AutoLISP	Functions
	
	
	

If	you	select	a	function	name	anywhere	in	a	text	editor	or	Console	window,	and
then	press	the	Help	button	on	the	Tools	toolbar,	VLISP	displays	help	for	the
function.	This	feature	works	for	any	function	recognized	by	VLISP.	You	can	also
press	CTRL	+	F1	to	view	Help	for	the	selected	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Formatting	Code	with	Visual	LISP
	
	
	

The	VLISP	code	formatter	arranges	the	text	of	AutoLISP	expressions	in	a	style
that	improves	text	appearance	and	readability.	The	code	formatter	includes	a
Smart	Indent	feature	to	arrange	the	indentation	of	program	code	automatically.
The	code	formatter	works	automatically	as	you	enter	code	in	a	VLISP	text	editor
window.	You	can	also	explicitly	invoke	the	formatter	to	rearrange	selected
blocks	of	text	or	all	text	in	a	VLISP	editor	window.	This	is	useful	for	formatting
text	you	copy	from	other	editors,	or	for	reformatting	your	code	in	a	different
style.

To	format	text	in	an	active	editor	window

1.	 To	format	all	the	code	in	the	window,	choose	Tools	 	Format	code	in
Editor	from	the	VLISP	menu,	or	click	the	Format	Edit	window	button	on
the	Tools	toolbar.

2.	 To	format	only	part	of	the	code	in	the	editor	window,	select	a	fragment
of	code	text	and	choose	Format	Code	In	Selection	from	the	Tools	menu,
or	click	the	Format	Selection	button	on	the	Tools	toolbar.

If	you	select	text	to	be	formatted,	the	selection	must	contain	valid	AutoLISP
expressions	or	the	formatter	will	issue	an	error	message.

If	the	formatter	finds	unbalanced	parentheses	in	your	code,	an	alert	box	is
displayed.	Choose	Yes	to	have	VLISP	add	parentheses	where	it	thinks	they
belong;	choose	No	if	you	want	to	fix	the	parentheses	on	your	own.

Note The	VLISP	formatter	can	balance	the	number	of	parentheses	but	usually

does	not	insert	the	additional	parentheses	in	the	right	places.	See	Checking	the
Balance	of	Parentheses	for	more	information	on	detecting	and	correcting
unmatched	parentheses.

The	VLISP	Smart	Indent	feature	works	in	the	background	as	you	type	in	the	text
editor.	The	indent	is	evaluated	up	to	the	current	AutoLISP	parenthesis	nesting
level.	If	the	current	expression	is	preceded	by	only	a	sequence	of	completed	top-
level	AutoLISP	expressions,	the	indentation	will	be	zero.	You	can	affect	the
amount	of	indentation	by	specifying	Visual	LISP	format	options;	see	the	next
two	topics.

Understanding	Visual	LISP	Formatting	Styles
Applying	Formatting	Options
Applying	Visual	LISP	Comment	Styles
Saving	and	Restoring	Formatting	Options
Formatter	Restrictions
Formatting	Shortcut	Keys

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Understanding	Visual	LISP	Formatting	Styles
	
	
	

The	VLISP	formatter	chooses	the	appropriate	formatting	style	according	to	rules
that	are	explained	in	this	section.	You	can	influence	the	choice	of	VLISP	styles
through	the	options	you	set	in	the	Format	Options	dialog	box.	To	display	the
Format	Options	dialog	box,	choose	Tools	 	Environment	Options	 	Visual	LISP
Format	Options	from	the	VLISP	menu.

Initially,	VLISP	displays	only	a	subset	of	the	formatting	options	you	can	specify.
Press	the	More	Options	button	in	the	Format	Options	dialog	box	to	expand	the
window	with	additional	formatting	options.

The	following	are	two	main	formatting	style	sets:

A	single-line	formatting	style—Plane

Multiple-line	formatting	styles—Wide,	Narrow,	Column

The	sample	text	below	demonstrates	the	different	formatting	styles.

Sample	text	initial	appearance:

(autoload	"appload"

'("appload"))

For	a	general	function	call	expression,	the	formatter	applies	one	of	the	styles	in
the	following	sections.

Plane	Style
Wide	Style
Narrow	Style
Column	Style

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Understanding
Visual	LISP	Formatting	Styles	>	

Plane	Style
	
	
	

In	the	Plane	style,	all	arguments	are	placed	in	the	same	line,	separated	by	a
single	space:

(autoload	"appload"	'("appload"))

The	Plane	style	is	applied	to	an	expression	when	all	the	following	conditions	are
met:

The	expression's	last	character	position	does	not	exceed	the	value	of	the
Right	Text	Margin	environment	option.

The	expression's	printing	length	is	less	than	the	value	of	the
Approximate	Line	Length	environment	option	(that	is,	last	character
position	minus	starting	indentation	position	is	less	than	this	value).

The	expression	does	not	contain	embedded	comments	with	Newline
characters.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Understanding
Visual	LISP	Formatting	Styles	>	

Wide	Style
	
	
	

In	the	Wide	style,	the	first	argument	is	placed	in	the	same	line	as	the	function
name,	and	other	arguments	are	aligned	in	a	column	below	the	first	argument.

(autoload	"appload"

										'("appload")

)

The	Wide	style	applies	to	an	expression	when	the	following	conditions	are	met:

The	Plane	style	cannot	be	applied.

The	first	element	is	a	symbol,	and	the	first	element's	length	is	less	than
the	Maximum	Wide	Style	Car	Length	environment	option.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Understanding
Visual	LISP	Formatting	Styles	>	

Narrow	Style
	
	
	

In	the	Narrow	style,	the	first	argument	is	placed	on	the	next	line	after	the
function	name,	and	other	arguments	are	aligned	in	a	column	below	the	first
argument.	The	displacement	of	the	first	argument's	starting	position	relative	to
the	expression	starting	position	is	controlled	by	the	value	of	the	Narrow	Style
Indentation	environment	option	(in	the	following	example,	this	value	is	equal	to
2):

(autoload

		"appload"

		'("appload")

)

The	Narrow	formatting	style	applies	for	progn	expressions,	and	for	those
instances	when	the	Plane	and	Wide	formatting	styles	cannot	be	applied.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Understanding
Visual	LISP	Formatting	Styles	>	

Column	Style
	
	
	

In	the	Column	style,	all	elements	are	positioned	in	a	column.	This	style	is
appropriate	for	displaying	quoted	lists	and	COND-expression	clauses.	For
example,	the	following	text:

'((10	"{insertion}")						(1	"{string}")	

(7	"{style}"))

would	be	displayed	as:

'((10	"{insertion}")

		(1	"{string}")

		(7	"{style}")

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Applying	Formatting	Options
	
	
	

In	addition	to	affecting	the	basic	formatting	styles,	you	can	choose	from	a
number	of	Visual	LISP	format	options.

Close	Parenthesis	Style
Insert	Form-Closing	Comment
Preserve	Existing	Line	Breaks
Split	Comments
Long	List	Format	Style
Setting	Case	for	Symbols

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Close	Parenthesis	Style
	
	
	

This	style	controls	the	position	of	the	close	parenthesis	for	multiple-line
formatting	styles.	You	can	select	one	of	the	following	options:

Close	at	the	Same	Line

Close	parenthesis	on	the	last	line	of	each	formatting	expression.

Close	at	the	New	Line	with	Inner	Indentation

Close	parenthesis	on	the	next	line	following	the	last	line	of	each	formatting
expression	with	the	inner	indent.

Close	at	the	New	Line	with	Outer	Indentation

Close	parenthesis	on	the	next	line	following	the	last	line	of	each	formatting
expression	with	the	outer	indent.

Examples

The	initial	expression	is	written	as:

(cond		

	((/=	(logand	mask	flg)	0)

	(list	(list	txton)))

)

Formatting	result	when	Close	at	the	Same	Line	option	is	selected:

(cond	((/=	(logand	mask	flg)	0)

							(list	(list	txton))))

Formatting	result	when	Close	at	the	New	Line	with	Inner	Indentation	option	is
selected:

(cond	((/=	(logand	mask	flg)	0)

							(list	(list	txton))

)

)

Formatting	result	when	Close	at	the	New	Line	with	Outer	Indentation	is
selected:

(cond	((/=	(logand	mask	flg)	0)

							(list	(list	txton))

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Insert	Form-Closing	Comment
	
	
	

If	you	select	this	option,	VLISP	adds	a	comment	following	the	close	of	an
expression.	However,	the	option	takes	effect	only	if	the	Close	Parenthesis	Style
format	setting	is	either	Close	at	the	New	Line	with	Inner	Indentation	or	Close	at
the	New	Line	with	Outer	Indentation.

When	the	Insert	Form-Closing	Comment	option	is	on,	the	VLISP	formatter
inserts	a	comment	of	the	form

;_	end	of	<function	name>	

after	each	multiple-line	function.	This	comment	does	not	appear	if	an	inline-
comment,	single-semicolon	comment,	or	pasted-comment	exists	after	the
function	call.	You	can	change	the	comment	text	by	entering	a	different	comment
in	the	Form-Closing	Comment	prefix	field	of	the	Format	Options	dialog	box.

Example

Initial	text:

(autoarxload	"image"

											'("gifin"	"pcxin"	"riaspect"	"ribackg"	"riedge"

"rigamut"	"rigrey"		"rithresh"	"tiffin"))

Formatted	text:

(autoarxload	"image"

									'("gifin"						"pcxin"						"riaspect"

											"ribackg"				"riedge"					"rigamut"

										"rigrey"					"rithresh"			"tiffin"

)

)	;_	end	of	autoarxload

Note	the	_	end	of	autoarxload	comment	in	the	last	line	of	code.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Preserve	Existing	Line	Breaks
	
	
	

When	the	Preserve	Existing	Line	Breaks	option	is	on,	the	VLISP	formatter
inserts	new	lines	whenever	a	new	line	is	detected	in	the	text	it	is	formatting.
When	the	option	is	off,	the	formatter	can	squeeze	a	multiple-line	expression	to
the	Plane	style,	if	it	fits	within	the	right	margin.

The	following	example	shows	how	the	Preserve	Existing	Line	Breaks	option
works.

Initial	text:

(if	(/=	s	"Function	canceled")			(princ	(strcat	

				"\nError:	"

						s))	;single	semicolon	cmt

)	

Formatting	result	if	the	option	is	on	(default):

(if	(/=	s	"Function	canceled")

		(princ	(strcat

											"\nError:	"

											s

)

)																																;single	semicolon	cmt

)

Formatting	result	when	the	option	is	off:

(if	(/=	s	"Function	canceled")

		(princ	(strcat	"\nError:	"	s))				;single	semicolon	cmt

)	

Note	that	multiple-line	princ	and	strcat	expressions	are	compressed	to	a
single	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Split	Comments
	
	
	

When	the	Split	Comments	option	is	on,	the	formatter	splits	long	comments	that
extend	past	the	right	margin.

For	the	previous	example,	if	the	Right	Text	Margin	setting	is	60,	and	Single-
Semicolon	comment	indentation	is	40,	the	formatter	will	split	the	comment	as
follows:

(if	(/=	s	"Function	canceled")

(princ	(strcat	"\nError:	"	s))				;single

																																		;semicolon	cmt

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Long	List	Format	Style
	
	
	

Long	lists	are	lists	of	formal	arguments	in	defun,	lambda,	or	quoted	lists
containing	more	than	five	elements.	The	Long	List	format	style	applies	to	lists
that	do	not	fit	on	a	single	line	(within	the	Right	Text	Margin).

If	the	Long	List	format	style	options	do	not	appear	in	your	Format	Options
dialog	box,	press	the	More	Options	button	to	display	additional	formatting
options.	The	available	modes	for	Long	List	format	are	listed	below	and
illustrated	with	an	example	based	on	the	following	list	elements,	and	with	Right
Text	Margin	set	to	45:

'("entdel"	"entmake"	"entmod"	"entnext"

"entsel"	"entupd")

Single-Column	formatting:

						'("entdel"

								"entmake"

								"entmod"

								"entnext"

								"entsel"	

								"entupd"

)

Two-Column	formatting:

						'("entdel"						"entmake"

								"entmod"						"entsel"

								"entnext"					"entupd"

)

Multi-Column	formatting:

						'("entdel"					"entmake"					"entmod"

								"entsel"					"entnext"					"entupd"

)

Fill-the-String	formatting	(places	as	many	quoted	strings	on	one	line	as	possible,
up	to	the	right	margin):

		'("entdel"	"entmake"	"entmod"	"entsel"	"entnext"	"entupd"

)

The	Preserve	Existing	Line	Breaks	option,	if	selected,	may	supersede	the
formatting	indicated	by	Long	List	format	style.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	Applying
Formatting	Options	>	

Setting	Case	for	Symbols
	
	
	

By	default,	the	VLISP	formatter	does	not	change	the	case	of	AutoLISP	symbols.
You	can	set	the	formatter	to	change	the	case	of	symbols	according	to	the	VLISP
protection	state	for	symbols.

The	Protected	options	subgroup	controls	the	case	conversion	of	protected
symbols	(built-in	symbols	or	symbols	with	the	ASSIGN-PROTECT	flag	set).
The	Unprotected	options	subgroup	controls	case	conversion	of	unprotected
(user)	AutoLISP	symbols.

Case	settings	for	symbols

Setting Effect

None Does	not	change	the	case

downcase Forces	all	characters	in	a	symbol's	name	to	lowercase

UPCASE Forces	all	characters	in	a	symbol's	name	to	uppercase

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Applying	Visual	LISP	Comment	Styles
	
	
	

The	VLISP	formatter	recognizes	five	types	of	AutoLISP	comments,	and
positions	each	comment	according	to	its	type.

Visual	LISP	comment	formatting

Comment Formatted	appearance

;|	Inline	|; The	single-line	comment	appears	after
formatting	as	any	other	expression;	the
multiple-line	comment	appears	starting
at	a	new	line

;	Single-Semicolon Starts	at	the	comment-column	position,
as	defined	by	the	“Single-Semicolon
comment	indentation”	format	option

;;	Current-Column The	comment	appears	starting	on	a	new
line,	indented	at	the	same	level	as	the
last	line	of	program	code

;;;	Heading	or	0-Column Appears	on	a	new	line,	without
indentation

;_	Function-Closing Appears	just	after	the	previous
expression

The	following	example	demonstrates	each	comment	style.

Initial	text:

	(defun	foo	(x)	

				;|inline	comment	|;			

					(list	1	2	3)	;comment-column	comment

			;;current-column	comment

			;;;	heading	or	0-column	comment

)						;_	function-closing	comment

Formatted	text:

(defun	foo	(x)	;|inline	comment	|;

			(list	1	2	3)																							;comment-column	comment

			;;current-column	comment

;;;	heading	or	0-column	comment

)	;_	function-closing	comment

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Saving	and	Restoring	Formatting	Options
	
	
	

To	save	your	formatting	options	so	that	they	carry	over	to	subsequent	VLISP
sessions,	choose	Tools	 	Save	Settings	from	the	VLISP	menu.	Alternatively,	you
can	save	the	current	settings	specifically	for	the	program	in	the	active	text	editor
window.	VLISP	saves	formatter	settings	in	a	program	when	the	Save	Formatting
Options	in	Source	File	option	is	selected.	To	select	or	cancel	this	option,	choose
Environment	Options	 	Visual	LISP	Format	Options	from	the	Tools	menu.	If	the
option	is	in	effect,	VLISP	adds	formatting	information	as	comments	at	the	end	of
the	program,	when	you	run	the	formatter.

Each	formatter	invocation	checks	for	formatting	options	settings	at	the	bottom	of
the	selected	text.	If	found,	these	settings	override	the	session	settings	listed	in
Tools	 	Environment	Options	 	Visual	LISP	Format	Options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Formatter	Restrictions
	
	
	

The	following	restrictions	apply	to	the	VLISP	code	formatter:

The	formatter	relies	on	a	fixed	window	font	and	a	particular	tab	size.	To
change	font	settings,	choose	Window	Attributes	 	Font;	to	change	tab
settings,	choose	Window	Attributes	 	Configure	Current.

The	formatter	is	available	only	within	VLISP	text	editor	windows.

Existing	SPACE	and	TAB	characters	placed	outside	of	inline	comments
and	strings	will	not	influence	the	formatting	result.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Formatting	Code	with	Visual	LISP	>	

Formatting	Shortcut	Keys
	
	
	

Press	CTRL	+	E	while	in	an	active	VLISP	text	editor	window	to	display	a	list
containing	the	following	editor	options.

Text	editor	code	formatting	commands

Option Effect

Indent	Block Indents	the	selected	block	of	text
by	adding	a	tab	to	the	beginning
of	each	line

Unindent Unindents	the	selected	block	of
text	by	removing	a	tab

Indent	to	Current	Level Indents	the	current	line	to	the
same	level	as	the	previous	line	of
program	code

Prefix	With Adds	a	text	string	to	the
beginning	of	the	current	line,	or
to	each	line	in	a	block	of	selected
lines,	after	prompting	you	for	the
string

Append	With Appends	a	text	string	to	selected
lines	of	text,	after	prompting	you
for	the	string

Comment	Block Converts	a	block	of	code	to
comments

Uncomment	Block Changes	a	block	of	comments	to
active	text

Save	Block	As Copies	selected	text	to	a	new	file

Upcase Converts	the	selected	text	to	all
uppercase

Downcase Converts	the	selected	text	to	all
lowercase

Capitalize Capitalizes	the	first	letter	of	each
word	in	the	selected	text

Insert	date Inserts	the	current	date	(default
format	is	MM/DD/YY)

Insert	time Inserts	the	current	time	(default
format	is	HH:MM:SS)

Format	Date/Time Changes	the	date	and	time	format

Sort	Block Sorts	the	selected	block	of	code
in	alphabetical	order

Insert	File Inserts	the	contents	of	a	text	file
into	the	current	editor	window	at
the	cursor	position

Delete	to	EOL Erases	everything	from	the	cursor
position	to	the	end	of	the	current
line

Delete	Blanks Deletes	all	blank	spaces	from	the

cursor	position	to	the	first	non-
blank	character	in	the	line

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	

Checking	for	Syntax	Errors
	
	
	

One	main	attraction	of	using	VLISP	is	the	extensive	debugging	tools	it	provides.
These	tools	allow	you	to	watch	what	your	program	is	doing	while	it	is	executing,
and	to	take	a	“snapshot”	of	your	program	at	any	point.	However,	VLISP	also
provides	a	number	of	features	designed	to	detect	program	errors	before	you	run
the	program.

Checking	the	Balance	of	Parentheses
Using	Color	Coding	to	Detect	Syntax	Errors
Using	the	Check	Command	to	Look	for	Syntax	Errors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Checking	for	Syntax	Errors	>	

Checking	the	Balance	of	Parentheses
	
	
	

AutoLISP	uses	parentheses	more	frequently	than	most	other	computer
languages.	One	of	the	most	frequent	syntax	errors	in	AutoLISP	is	an	unequal
number	of	open	and	close	parentheses.	VLISP	includes	a	number	of	tools	to	help
you	detect	unbalanced	or	unmatched	parentheses.

As	noted	in	To	format	text	in	an	active	editor	window,	the	VLISP	code	formatter
searches	for	unbalanced	parentheses	when	it	formats	your	code.	If	you	allow	it
to,	the	formatter	will	add	parentheses	where	it	thinks	they	are	missing.	Typically,
though,	the	VLISP	formatter	adds	parentheses	at	the	end	of	a	program,	not	to
where	you	really	need	them.	If	you	let	VLISP	add	the	parentheses,	you	will
probably	have	to	remove	them	later.

Note If	you	do	not	allow	the	formatter	to	add	the	balancing	parentheses,	it	won't
format	your	code	either.

In	any	event,	you	must	check	the	structure	of	your	program	to	determine	where
the	parentheses	are	really	missing.	You	can	use	these	parentheses	matching	items
from	the	Edit	menu	to	help	you	find	unbalanced	parentheses:

Match	Forward	(CTRL	+])

Moves	the	insertion	point	(marked	by	the	cursor)	just	past	the	close
parenthesis	that	matches	an	open	parenthesis.
If	the	current	cursor	position	is	just	before	an	open	parenthesis,	VLISP
matches	that	parenthesis	with	its	closing	parenthesis.	If	the	cursor	position	is
in	the	middle	of	an	expression,	VLISP	matches	the	current	expression's	open
parenthesis	with	its	closing	parenthesis.

Match	Backward	(CTRL	+[)

Moves	the	insertion	point	to	just	before	the	open	parenthesis	that	matches	a
close	parenthesis.

If	the	current	cursor	position	is	just	after	a	close	parenthesis,	VLISP	matches
that	parenthesis	with	its	opening	parenthesis.	If	the	cursor	position	is	in	the
middle	of	an	expression,	VLISP	matches	the	current	expression's	close
parenthesis	with	its	open	parenthesis.

Select	Forward	(CTRL	+	SHIFT	+]

Moves	the	insertion	point	as	the	Match	Forward	command	does,	but	also
selects	all	text	between	the	start	and	end	positions.
With	the	cursor	positioned	right	before	an	open	parenthesis,	double-clicking
also	selects	all	text	up	to	the	matching	close	parenthesis,	but	does	not	move
the	insertion	point.

Select	Backward	(CTRL	+	SHIFT	+[)

Moves	the	insertion	point	as	the	Match	Backward	command	does,	but	also
selects	all	text	between	the	start	and	end	positions.
With	the	cursor	positioned	right	after	a	close	parenthesis,	double-clicking
also	selects	all	text	up	to	the	matching	open	parenthesis,	but	does	not	move
the	insertion	point.

For	example,	look	at	the	following	code:

1	(defun	yinyang	(/	origin	radius	i-radius	half-r	origin-x	origin-y)

2	(setq	half-r	(/	radius	2))

3	(setq	origin-x	(car	origin))

4	(setq	origin-y	(cadr	origin))

5	(command	"_.CIRCLE"	

6										origin	

7										radius

8										(command	"_.ARC"

9																"_C"

10																(list	origin-x	(+	origin-y	half-r))	

11																(list	origin-x	(+	origin-y	radius))	

12																	origin																													

13)

14									(command	"_.ARC"

15																"_C"

16															(list	origin-x	(-	origin-y	half-r))	

17																(list	origin-x	(-	origin-y	radius))	

18																origin																													

19)

20)

(The	line	numbers	are	not	part	of	the	text;	they	are	used	to	help	explain	the
example.)

Here	is	what	happens	if	you	load	this	code	in	VLISP	and	continually	issue	the
Match	Forward	command,	starting	with	the	insertion	point	at	the	beginning	of
line	1.

VLISP	does	not	find	a	matching	close	parenthesis,	so	the	cursor	does	not
move.

Move	the	cursor	to	the	beginning	of	line	2.

Cursor	moves	to	the	end	of	line	2.

Cursor	moves	to	the	end	of	line	3.

Cursor	moves	to	the	end	of	line	4.

Cursor	jumps	to	the	last	right	parenthesis	in	the	program.	(20)

In	other	words,	the	close	parenthesis	that	matches	the	open	parenthesis	on	line	5
is	the	last	parenthesis	in	the	program.	You	know	this	is	an	error	because	the	last
close	parenthesis	in	an	AutoLISP	program	should	match	the	open	parenthesis	of
the	program's	defun.	Notice	also	that	all	the	statements	after	line	5	are	indented
in	a	manner	unlike	in	the	preceding	program	code.	These	two	clues	indicate
something	is	amiss	at	this	point	in	the	program.	In	fact,	the	close	parenthesis	to
the	command	that	begins	on	line	5	is	missing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Checking	for	Syntax	Errors	>	

Using	Color	Coding	to	Detect	Syntax	Errors
	
	
	

The	AutoCAD	Sample\VisualLISP	directory	contains	a	file	named	drawline-
with-errors.lsp.	It	is	similar	to	the	drawline.lsp	program	file	introduced	earlier	in
this	manual,	but	it	contains	a	couple	of	errors.	Open	the	file	in	VLISP,	so	that
you	can	see	how	color	is	used	in	the	file:

(defun	drawline(/	pt1	pt2)	;	Local	variables	declared

		;;	get	two	points	from	the	user

		(setq	pt1	(getpoint	"\nEnter	the	start	point	for	the	line:	"))

(setq	pt2	(getpoint	pt1	"\nEnter	the	end	point	for	the	line:	"))

		;;	check	to	see	that	the	two	points	exist

		(iff	(and	pt1	pt2)

							(command	"_.line"	pt1	pt2	"")

							(princ	"\nInvalid	or	missing	points!")

							(princ)						;;		exit	quietly

)

)

If	you	use	the	standard	VLISP	syntactic	colorations,	systems	functions	such	as
setq,	defun,	getdist,	getpoint,	and	/	are	displayed	in	blue.	The	items
VLISP	does	not	recognize,	such	as	user-defined	variables,	are	printed	in	black.
In	this	example,	if	you	look	at	the	unrecognized	elements	in	the	program,	the
word	iff	might	easily	catch	your	eye.	Change	it	to	the	correct	spelling,	if,	and	the
color	immediately	changes	to	blue.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Checking	for	Syntax	Errors	>	

Using	the	Check	Command	to	Look	for	Syntax	Errors
	
	
	

You	can	perform	additional	syntax	checking	with	the	VLISP	Check	command.
The	Check	command	can	detect	the	following	errors:

Incorrect	number	of	arguments	supplied	to	a	known	function

Invalid	variable	name	passed	to	a	function	(for	example,	a	quoted
symbol	where	a	variable	is	required)

Incorrect	syntax	in	special	form	function	calls	(for	example,	lambda,
setq,	and	foreach)

Some	syntax	errors	can	only	be	determined	at	runtime	and	Check	cannot	detect
these	errors.	For	example,	if	you	call	a	function	that	expects	an	integer	argument
and	you	supply	a	string,	AutoLISP	does	not	detect	this	until	run-time.	As	a
result,	this	error	will	not	be	detected	until	you	run	your	program.

To	run	the	Check	command	on	text	in	an	editor	window

1.	 Switch	to	the	editor	window	containing	the	code	you	want	to	check.

2.	 To	check	the	entire	file,	choose	Tools	 	Check	Text	in	Editor	from	the
VLISP	menu.

3.	 To	check	the	syntax	of	a	selected	piece	of	code	instead	of	the	whole
program,	choose	Tools	 	Check	Selection.

VLISP	displays	error	messages	in	a	new	Build	Output	window,	if	it	detects
errors.	For	example,	if	you	change	the	iff	in	drawline-with-errors.lsp	to	if

and	run	Check,	the	following	error	message	results:

The	message	indicates	that	an	if	function	call	contains	too	many	arguments.
Finding	the	Location	of	the	Syntax	Error	in	Your	Program

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Developing
Programs	with	Visual	LISP	>	Checking	for	Syntax	Errors	>	Using	the	Check
Command	to	Look	for	Syntax	Errors	>	

Finding	the	Location	of	the	Syntax	Error	in	Your	Program
	
	
	

If	you	double-click	on	the	error	message	in	the	Build	Output	window,	VLISP
activates	the	editor	window,	places	the	cursor	at	the	beginning	of	the	statement
that	caused	the	error,	and	highlights	the	entire	expression,	as	follows:

This	error	results	from	the	last	princ	statement	following	the	if.	The	if
statement	only	allows	two	arguments:	the	statement	to	execute	if	the	expression
is	true,	and	the	statement	to	execute	if	the	expression	is	false.	The	last	princ
statement,	which	is	used	in	this	program	to	cause	a	quiet	exit,	belongs	after	the
close	parenthesis	that	currently	follows	it.	(See	Exiting	Quietly	for	an
explanation	of	a	quiet	exit.)	If	you	move	the	statement	to	the	correct	location	and
run	Check	again,	the	code	should	pass	as	error-free.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Debugging	Programs
	
	
	

To	debug	a	program,	you	can	trace	execution,	trace	the	values	of	variables
during	execution,	and	view	the	sequence	in	which	expressions	are	evaluated.

Programs	do	not	always	behave	in	the	way	they	were	intended.	When	the	results
you	get	appear	to	be	wrong,	or	cause	the	program	to	fail,	it	can	be	difficult	to
determine	what	is	going	wrong.	Visual	LISP®	provides	many	features	that	help
you	with	the	debugging	process—finding	and	resolving	program	problems.

Introducing	Visual	LISP	Debugging	Features
Learning	by	Example
Using	the	Visual	LISP	Debugging	Features
Using	Visual	LISP	Data	Inspection	Tools

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	

Introducing	Visual	LISP	Debugging	Features
	
	
	

Debugging	is	usually	the	most	time-consuming	stage	in	the	development	of	any
program.	For	this	reason,	VLISP	includes	a	powerful	debugger	that	provides	the
following	features:

Tracing	of	program	execution

Tracing	of	variable	values	during	program	execution

Viewing	the	sequence	in	which	various	expressions	are	evaluated

Inspecting	the	values	of	parameters	used	within	function	calls

Interrupting	program	execution

Stepping	through	program	execution	one	instruction	at	a	time

Inspecting	the	stack

VLISP	provides	the	following	facilities	to	implement	these	features:

Break	Loop	Mode

Halts	program	execution	at	specified	points,	allowing	you	to	look	at	and
modify	the	value	of	objects	during	the	break.	Examples	of	AutoLISP®
objects	are	variables,	symbols,	functions,	and	expressions.

Inspect

Provides	detailed	information	on	an	object	in	an	Inspect	dialog	box.	If	the
object	being	inspected	is	composed	of	nested	objects	(a	list,	for	example),	the
Inspect	feature	allows	you	to	inspect	all	the	components,	each	one	listed	on
its	own	line	within	the	window.	You	can	also	recursively	inspect	any	nested
object	until	an	atomic	object	(such	as	a	number	or	a	symbol)	is	reached.

Watch	Window

Watches	the	values	of	variables	during	program	execution.	The	content	of	the
Watch	window	is	updated	automatically.	This	means	that	if	the	value	of	a
variable	placed	in	the	Watch	window	is	changed,	this	change	will
automatically	be	reflected	in	the	Watch	window.

Trace	Stack	Facility

Views	the	function	call	stack.	The	call	stack	is	a	mechanism	by	which	VLISP
records	the	sequence	of	functions	as	they	are	executed	by	your	program.	You
can	view	the	stack	during	a	debugging	session	(when	the	program	is	in	a
suspended	state,	such	as	stepping	through	after	a	breakpoint),	or	after	your
program	has	crashed.	If	viewed	after	your	program	crashes,	the	function	call
stack	shows	what	VLISP	was	doing	at	the	moment	the	application	failed.

Trace	Facility

A	standard	LISP	facility,	logs	the	calls	and	returns	values	of	traced	functions
into	the	special	Trace	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	

Learning	by	Example
	
	
	

This	section	takes	you	through	a	VLISP	sample	program	and	demonstrates	some
VLISP	debugging	facilities	along	the	way.	You	can	find	the	sample	program,
yinyang.lsp,	in	the	Sample\VisualLISP	directory	under	the	default	AutoCAD
installation	path.	Open	the	file	in	VLISP	so	that	you	can	try	the	examples	in	this
section.

Stepping	through	the	Debugging	Example

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	

Stepping	through	the	Debugging	Example
	
	
	

First,	load	the	yinyang.lsp	file	and	run	the	yinyang	function	to	see	what	it
does.	The	function	draws	the	yin-yang	symbol,	which	is	used	in	many	religions:

When	you	run	the	program,	VLISP	passes	control	to	AutoCAD	and	you	need	to
respond	to	the	prompts	in	the	AutoCAD	Command	window.

VLISP	evaluates	AutoLISP	programs	by	evaluating	the	expressions	contained	in
parentheses.	These	parenthetical	expressions	are	similar	to	operators	in	other
programming	languages	such	as	C++	and	Visual	Basic	6.	The	VLISP	debugger
uses	an	expression-based	approach,	unlike	the	line-by-line	debuggers	of
languages	such	as	C.	In	the	expression-based	approach,	the	debugger	can
suspend	program	execution	immediately	before	or	after	the	evaluation	of	any
expression.

Debugging	options	are	controlled	from	several	different	places	within	VLISP,
including	the	text	editor,	the	System	Console,	and	various	menus.

Setting	a	Breakpoint	to	Interrupt	Program	Execution
Stepping	through	the	Program
Monitoring	the	Evaluation	Results	of	an	Expression
Continuing	Program	Execution
Running	in	Animate	Mode

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	Stepping	through	the	Debugging	Example	>	

Setting	a	Breakpoint	to	Interrupt	Program	Execution
	
	
	

Begin	by	entering	some	debugging	information	in	the	text	editor	window
containing	the	yinyang.lsp	program.

To	set	a	breakpoint	that	interrupts	program	execution

1.	 Move	the	cursor	in	front	of	the	open	parenthesis	in	the	line	of	code	that
reads:

(setq	half-r	(/	radius	2))

The	following	screen	snapshot	indicates	the	position	of	this	statement
within	the	program:

2.	 Click	the	Toggle	Breakpoint	button	in	the	Debug	toolbar,	or	choose
Debug	 	Toggle	Breakpoint	from	the	VLISP	menu.	Toggle	Breakpoint
switches	breakpoints	on	and	off.	When	no	breakpoint	exists,	Toggle
Breakpoint	adds	a	break;	if	a	breakpoint	already	exists	at	the	cursor
position,	Toggle	Breakpoint	removes	it.

3.	 Load	the	yinyang	function,	if	you	have	not	done	so	already,	run	it
from	the	VLISP	Console	prompt	by	entering	the	following	command:

(yinyang)

After	you	reply	to	the	prompts	the	program	displays	at	the	AutoCAD
command	line,	VLISP	halts	yinyang	execution	at	the	breakpoint	you
set	and	displays	the	code	in	the	text	editor	window:

Note	how	the	statement	following	the	cursor	is	highlighted.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	Stepping	through	the	Debugging	Example	>	

Stepping	through	the	Program
	
	
	

The	Step	commands	allow	you	to	move	through	a	program	by	executing	one	or
more	expressions	at	a	time.

To	step	through	a	program	from	a	breakpoint

1.	 Click	the	Step	Into	button,	or	choose	Debug	 	Step	Into	from	the	VLISP
menu.	You	can	also	press	F8	to	issue	the	Step	Into	command.
Execution	begins	and	halts	before	evaluation	of	the	inner	parenthetical
expression,	that	is,	before	the	specified	division	occurs.	The	expression
is	highlighted,	as	shown	in	the	following	figure:

Now	look	at	the	Step	Indicator	button	on	the	Debug	toolbar;	it	is	the	last
button	on	that	toolbar.

The	Step	Indicator	button	is	active	when	you	are	stepping	through	a
program.	It	indicates	where	you	are	in	relation	to	the	expression	at	the

breakpoint.	The	current	symbol	indicates	that	you	are	stopped	just	before
an	open	parenthesis.

2.	 Click	the	Step	Into	button	again.	The	cursor	moves	to	a	position	directly
after	the	evaluated	expression,	and	the	Step	Indicator	button	indicates
this.

3.	 Click	the	Step	Into	button	again.	The	cursor	moves	to	the	end	of	the
entire	statement	(the	expression	and	all	nested	expressions).

4.	 Click	the	Step	Into	button	again	and	the	cursor	moves	to	a	position	just
before	the	beginning	of	the	statement	on	the	next	line:

5.	 Now	take	a	bigger	step.	Click	the	Step	Over	button,	or	choose	Debug	
Step	Over	from	the	menu,	or	press	SHIFT	+	F8	to	issue	this	command:

With	the	Step	Over	command,	VLISP	evaluates	an	entire	expression	(and	all
nested	expressions),	then	stops	at	the	end	of	the	overall	expression.	The	cursor
moves	to	the	end	of	the	evaluated	expression.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	Stepping	through	the	Debugging	Example	>	

Monitoring	the	Evaluation	Results	of	an	Expression
	
	
	

As	you	step	through	a	program,	you	may	want	to	monitor	the	values	resulting
from	the	evaluation	of	individual	expressions.

To	monitor	variables	during	program	execution

1.	 From	the	Debug	menu,	choose	Watch	Last	Evaluation.

VLISP	displays	the	Watch	window,	which	shows	the	value	of	the
LAST-VALUE	IDE	global	variable.	VLISP	always	stores	the	value	of
the	last	evaluated	expression	in	the	*LAST-VALUE*	variable.

2.	 In	the	text	editor	window	containing	yinyang.lsp,	double-click	on	any
occurrence	of	the	variable	name	origin-y.

3.	 Click	the	Add	Watch	button	in	the	Watch	window.	VLISP	passes	the
origin-y	variable	name	to	the	Watch	window	and	displays	the	current
value	of	the	variable	in	the	window:

If	the	Watch	window	is	not	already	open	and	you	want	to	view	a
variable's	value,	you	can	open	the	window	by	choosing	View	 	Watch
Window	from	the	VLISP	menu.
If	you	click	the	Watch	window's	Add	Watch	button	without	double-
clicking	on	a	variable	name	first,	the	following	window	appears:

In	this	window,	you	can	enter	the	name	of	the	variable	you	want	to	view.
VLISP	may	anticipate	your	choice	by	copying	the	name	of	the	variable
nearest	the	cursor	into	the	window.	If	this	is	not	the	one	you	want	to
view,	simply	type	over	the	name.
VLISP	updates	the	variables	in	the	Watch	window	after	each	execution
step.

4.	 Click	the	Step	Over	button	(or	press	SHIFT	+	F8)	twice.
In	the	Watch	window,	note	how	the	value	of	origin-y	changes.	It	was
nil	at	first,	but	after	execution	it	took	on	the	value	corresponding	to	the
point	you	clicked	in	the	AutoCAD	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	Stepping	through	the	Debugging	Example	>	

Continuing	Program	Execution
	
	
	

To	continue	running	your	program	to	the	next	breakpoint,	or	to	the	end,	if	there
are	no	more	breakpoints,	press	the	Continue	button	on	the	Debug	toolbar,	or
choose	Debug	 	Continue	from	the	VLISP	menu.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Learning	by	Example	>	Stepping	through	the	Debugging	Example	>	

Running	in	Animate	Mode
	
	
	

Another	debugging	feature,	animation,	allows	you	to	watch	as	VLISP	steps
through	your	program	code	and	evaluates	each	expression.	In	Animate	mode,	it's
as	if	VLISP	repeatedly	enters	a	Step	Into	command	for	you.	Text	editor	windows
highlight	expressions	being	evaluated,	and	the	Watch	window	continuously
updates	its	data.

To	see	how	Animate	mode	works

1.	 Turn	on	Animate	mode	by	choosing	Debug	 	Animate	from	the	VLISP
menu.

2.	 Enter	(yinyang)	at	the	Console	prompt	to	begin	executing	the
program.
You'll	see	each	function	highlighted	as	VLISP	evaluates	the	function.
You'll	be	prompted	for	input,	as	usual.	Notice	how	the	Watch	window	is
updated	whenever	a	watched	variable	changes.	Because	you	previously
set	a	breakpoint	in	the	program,	execution	will	halt	at	that	breakpoint.

3.	 After	you	stop	at	the	breakpoint,	press	the	Continue	button	to	resume
execution;	VLISP	resumes	executing	in	Animate	mode.

You	can	also	interrupt	animation	by	pressing	BREAK	(it's	the	key	next	to
SCROLL-LOCK	on	most	keyboards).	Once	animation	is	paused	you	can	add
Watch	values,	set	variables	to	new	values,	and	add	breakpoints.

To	adjust	the	rate	of	animation,	choose	Tools	 	Environment	Options	 	General
Options,	and	select	the	Diagnostic	tab.	The	Animation	Delay	setting	defines	the
pause	between	program	steps,	in	milliseconds.

To	turn	off	Animate	mode,	choose	Debug	 	Animate	from	the	VLISP	menu
again.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	

Using	the	Visual	LISP	Debugging	Features
	
	
	

In	addition	to	setting	breakpoints	and	running	in	Animate	mode,	as	described	in
the	Learning	by	Example	section	of	this	chapter,	VLISP	provides	a	number	of
other	options	for	controlling	program	execution.

Stop	Once

Causes	VLISP	to	break	unconditionally	when	it	evaluates	the	very	first	LISP
expression	encountered.	You	turn	on	this	mode	of	operation	by	choosing
Debug	 	Break	on	Error	from	the	VLISP	menu.

Break	on	Error

Automatically	activates	the	interactive	break	loop	whenever	your	program
encounters	a	runtime	error.	You	turn	on	this	mode	of	operation	by	choosing
Debug	 	Stop	Once	from	the	VLISP	menu.
Note	that	if	this	option	is	selected,	some	errors	that	result	from	function	calls
entered	at	the	AutoCAD	Command	prompt	will	cause	VLISP	to	get	focus.
That	is,	the	active	window	may	switch	from	AutoCAD	to	the	VLISP	Console
window,	where	you	will	be	in	a	break	loop.

Break	on	Function	Entry

Sets	the	Debug-on-Entry	flag	for	a	function's	name	symbol,	causing	a	break
to	occur	every	time	you	invoke	that	function.	At	the	break,	the	source	code
for	the	function	will	be	shown	in	a	special	window.	You	can	set	or	clear	the
Debug-on-Entry	flag	interactively	with	the	Symbol	Service	dialog	box.	See
Using	the	Symbol	Service	Dialog	Box	for	information	on	setting	this	flag.

Top-Level	Debugging	Mode

Controls	the	loading	of	a	program	from	a	file	or	an	editor	window.	If	the
option	is	set,	breaks	occur	before	evaluating	every	top-level	expression	(such
as	defun).	The	Top-Level	debugging	mode	is	turned	on	by	switching	off	the

Do	Not	Debug	Top	Level	option.	To	find	the	check	box	for	this	option,
choose	Tools	 	Environment	Options	 	General	Options	from	the	VLISP
menu,	then	click	the	Diagnostic	tab.

If	Top-Level	debugging	and	Stop	Once	mode	are	turned	on,	VLISP	will	enter	the
debugging	mode	every	time	you	load	a	file	because	VLISP	is	debugging	defun,
setq,	and	other	functions	defined	within	the	file	as	they	are	loaded.	This	is
usually	not	a	helpful	debugging	technique	and	should	only	be	required	in	rare
instances.

Starting	a	Debugging	Session
Understanding	Break	Loops
Using	Breakpoints

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	

Starting	a	Debugging	Session
	
	
	

The	easiest	way	to	start	debugging	is	to	choose	Debug	 	Stop	Once	from	the
VLISP	menu.	When	this	item	is	selected,	the	evaluation	of	the	first	LISP
expression	will	be	interrupted.	After	that	you	can	resume	program	execution
using	various	Debugger	commands.	Another	way	to	enter	into	the	debugger
mode	is	to	set	a	breakpoint,	as	shown	in	Setting	a	Breakpoint	to	Interrupt
Program	Execution.

When	a	break	occurs,	the	corresponding	VLISP	text	editor	window	will	show
the	current	LISP	expression	at	the	point	which	the	break	took	place.	A	break
loop	marker	will	appear	in	the	Console	window.	Using	the	Console	window,	you
can	access	and	manipulate	the	program	environment	in	which	the	break
occurred.	You	can	also	examine	variables	using	the	Watch	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	

Understanding	Break	Loops
	
	
	

Expressions	are	the	basic	structural	units	of	AutoLISP,	and	VLISP	works	by
repeatedly	reading,	evaluating,	and	printing	expressions.	In	LISP	terminology,
this	is	a	read-eval-print	loop.

When	you	are	running	an	AutoLISP	program	without	any	debugging
intervention	by	VLISP,	you	are	running	in	the	Top-Level	read-eval-print	loop.
When	you	evaluate	an	expression	within	the	VLISP	Console	window,	and	the
normal	prompt	is	displayed,	you	are	also	working	at	the	Top	Level.

When	a	program's	evaluation	is	interrupted	or	suspended	in	the	middle	of
execution,	VLISP	passes	control	to	the	Console	and	you	enter	a	break	loop.	This
break	loop	is	a	separate	read-eval-print	loop,	and	is	nested	underneath	the
original	read-eval-print	loop.	It	is	possible	to	interrupt	a	break	loop	and	start	yet
another	read-eval-print	loop	beneath	it.	The	nesting	level	of	a	break	loop	with
respect	to	the	Top	Level	is	called	the	break	level.

When	you	enter	a	break	loop,	VLISP	prefixes	the	Console	prompt	with	a	number
indicating	the	level	where	you	are	located.	For	example,	when	you	first	enter	a
break	loop	in	a	program,	the	prompt	indicates	this	with	the	number	1:

1$

While	you	are	in	a	break	loop,	you	cannot	switch	control	to	the	AutoCAD
window.

On	exiting	from	a	break	loop	(for	example,	after	issuing	the	Quit	command),	the
current	read-eval-print	loop	is	terminated	and	the	previous	level	loop	is	resumed.
If	you	change	the	value	of	a	variable	in	the	break	loop,	this	value	will	be	used
when	the	program	resumes	execution.

Continuable	Break	Loops
Non-Continuable	Break	Loops

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Understanding	Break
Loops	>	

Continuable	Break	Loops
	
	
	

There	are	continuable	and	noncontinuable	break	loops	in	VLISP.	You	can	enter
the	continuable	break	loop	at	the	very	first	break	in	program	execution	by	any	of
the	following	methods:

Turning	on	the	Stop	Once	mode	and	reaching	an	expression	with
debugging	information	(that	is,	an	expression	that	is	loaded	from	source
code,	as	opposed	to	from	a	compiled	.exe	file)

Reaching	a	function	marked	for	Debug	on	Entry

Reaching	a	breakpoint	you	set	in	the	program

Entering	a	break	loop	by	pressing	the	Pause	button

Proceeding	with	a	Step	Over,	Step	Into,	or	Step	Out	command	from	the
previous	break	loop	state

When	the	program	is	interrupted,	you	enter	the	break	loop.	This	is	apparent	if	the
VLISP	Console	window	is	active,	because	the	prompt	is	changed	to	reflect	the
current	level	of	the	break	loop.	In	this	suspended	state,	you	have	read-write
access	to	all	variables	in	the	environment	in	which	the	break	occurred.	For
example,	if	the	break	occurred	within	a	function	containing	several	local	variable
declarations,	those	variables	are	accessible	and	you	can	change	their	values	by
issuing	setq	assignments	at	the	Console	prompt.

When	stopped	at	a	breakpoint,	you	can	control	subsequent	program	execution	by
choosing	one	of	the	following	items	from	the	Debug	menu,	or	by	pressing	the
equivalent	toolbar	button:

Reset	to	Top	Level	terminates	all	currently	active	break	loops	and
returns	to	the	Console	top-level	(the	top	read-eval-print	loop).

Quit	Current	Level	terminates	the	current	break	loop	and	returns	to	a
break	loop	one	level	up.	This	may	be	another	break	loop	or	the	top-level
read-eval-print	loop.

Continue	resumes	normal	program	execution	from	the	breakpoint.

The	Step	commands	evaluate	portions	of	program	code	before	resuming
suspended	mode:

Step	Over	looks	for	the	close	parenthesis	matching	the	open	parenthesis
where	the	program	is	currently	paused,	and	evaluates	the	expressions	in
between.

Step	Into	jumps	into	a	nested	expression,	if	any.	If	there	are	no	nested
expressions,	it	jumps	to	the	next	expression	in	sequence.

Step	Out	searches	for	the	end	of	the	function	where	the	program	is
currently	paused,	and	evaluates	all	the	expressions	up	to	that	point.

After	you	exit	the	break	loop	to	the	Console	top-level,	the	Console	prompt
returns	to	its	original	form	(without	a	number	prefix).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Understanding	Break
Loops	>	

Non-Continuable	Break	Loops
	
	
	

A	non-continuable	break	loop	is	activated	when	an	error	causes	program
interruption	and	the	Break	on	Error	option	is	set.	In	a	non-continuable	break
loop,	you	can	access	all	variables	in	the	error	environment,	but	you	cannot
continue	program	execution	or	execute	any	of	the	Step	commands.	To
distinguish	between	continuable	and	non-continuable	break	loops,	check	to	see	if
the	Step	and	Continue	toolbar	buttons	are	active.

To	leave	a	non-continuable	break	loop	step,	use	either	the	Reset	to	Top-Level
command	to	jump	to	the	Console	top-level	loop,	or	Quit	Current	Level	to	return
to	the	previous	break	loop	level.

Note If	you	activate	AutoCAD	while	in	the	midst	of	a	non-continuable	break
loop,	you	will	not	be	able	to	enter	anything	in	the	command	window;	in	fact,	the
window	will	not	contain	a	Command	prompt.	However,	if	you	accidentally	try
typing	anything	in	the	AutoCAD	command	window,	your	keyboard	input	will	be
queued	until	AutoCAD	regains	control	(that	is,	after	you	exit	the	break	loop	and
activate	the	AutoCAD	window).	At	that	point,	anything	you	typed	is	evaluated
by	AutoCAD	as	if	you	had	just	entered	it	at	the	Command	prompt.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	

Using	Breakpoints
	
	
	

Breakpoints	allow	you	to	mark	a	position	in	a	program	at	which	program
execution	should	be	interrupted.	You	can	set	breaks	to	occur	before	or	after
parenthetical	expressions.	Breakpoints	can	only	be	set	from	a	VLISP	text	editor
window.

To	set	a	breakpoint

1.	 Move	the	cursor	to	the	position	at	which	you	want	to	halt	execution.	For
example,	to	halt	execution	just	before	the	open	parenthesis	of	an
expression,	place	the	cursor	just	to	the	left	of	that	open	parenthesis.

2.	 Choose	the	Toggle	Breakpoint	toolbar	button	or	press	F9	to	set	the
breakpoint.	(For	variety,	you	can	set	a	breakpoint	by	choosing	Debug	
Toggle	Breakpoint	from	the	VLISP	menu,	or	by	right-clicking	the	mouse
and	selecting	Toggle	Breakpoint	from	the	resulting	shortcut	menu.)

If	you	move	the	cursor	to	an	ambiguous	position,	such	as	in	the	middle
of	an	expression,	VLISP	will	move	the	cursor	to	the	nearest	parenthesis
and	display	the	following	message	asking	whether	you	agree	with	the
breakpoint	placement:

3.	 Click	Yes	to	accept	the	breakpoint	location,	or	No	if	that	is	not	where

you	want	to	set	the	break.To	remove	a	breakpoint

1.	 Position	your	cursor	at	the	breakpoint	you	want	to	remove.

2.	 Choose	the	Toggle	Breakpoint	toolbar	button,	or	press	F9.
The	Toggle	Breakpoint	works	as	an	on/off	switch.	When	no	breakpoint
exists,	Toggle	Breakpoint	adds	a	break;	if	a	breakpoint	already	exists	at
the	cursor	position,	Toggle	Breakpoint	removes	it.	You	can	also	use	the
Breakpoint	Service	dialog	to	remove	breakpoints;	see	Listing	and
Viewing	the	Breakpoints	in	Your	Program	for	information	on	this
procedure.

3.	 To	remove	all	the	breakpoints	you	have	set,	choose	Debug	 	Clear	All
Breakpoints	from	the	VLISP	menu.
Changing	Breakpoint	Highlight	Colors
Disabling	Breakpoints	Temporarily
Listing	and	Viewing	the	Breakpoints	in	Your	Program
Life	Cycle	of	a	Breakpoint

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Using	Breakpoints	>	

Changing	Breakpoint	Highlight	Colors
	
	
	

VLISP	marks	each	breakpoint	position	with	a	colored	rectangle,	so	you	can
easily	locate	the	breakpoints	in	your	program.	By	default,	active	breakpoints	are
marked	in	red.	You	can	change	this	color	by	setting	the	:BPT-ACTIVE	option
in	Tools	 	Window	Attributes	 	Configure	Current.	See	Configure	Current	for
more	information	on	changing	colors	in	VLISP	windows.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Using	Breakpoints	>	

Disabling	Breakpoints	Temporarily
	
	
	

When	using	multiple	breakpoints	within	a	source	file,	it	may	be	useful	to	disable
one	or	more	breakpoints	temporarily,	but	leave	the	breakpoint	position	defined
for	possible	later	use.	This	saves	time	over	deleting	and	restoring	the	breakpoint.

To	disable	a	breakpoint

1.	 Place	the	cursor	at	the	breakpoint	marker	and	press	the	right	mouse
button.

2.	 From	the	resulting	menu,	choose	Breakpoint	Service.	VLISP	displays
the	following	dialog	box:

3.	 Click	the	Disable	button	in	the	Breakpoint	Service	dialog	box	to	disable
the	breakpoint	temporarily.

VLISP	changes	the	color	of	the	breakpoint	marker	when	it	disables	the
breakpoint.	By	default,	it	marks	disabled	breakpoints	in	blue.	You	can	change
this	color	by	resetting	the	:BPT-DISABLE	option.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Using	Breakpoints	>	

Listing	and	Viewing	the	Breakpoints	in	Your	Program
	
	
	

From	the	View	menu,	choose	Breakpoints	Window	to	see	a	list	of	all	breakpoints
currently	defined	to	VLISP:

The	Breakpoints	dialog	box	lists	the	breakpoints	in	all	programs	you	are	editing
in	VLISP,	not	just	the	program	in	the	active	editor	window.	In	the	example
above,	only	one	program	(yinyang)	contains	breakpoints.	But	you	could	have
breakpoints	set	in	any	number	of	files.

Each	entry	in	the	Breakpoints	dialog	box	shows	the	name	of	the	source	file
containing	the	breakpoint,	and	the	location	of	the	breakpoint	in	the	source.	A
leading	+	or	-	sign	differentiates	between	active	and	disabled	breakpoints.	The
dialog	box	allows	you	to	delete	all	breakpoints	at	once	or	to	edit	(or	display)	one
breakpoint	at	a	time.	Choose	Show	to	display	the	source	position	of	the
breakpoint.	The	Edit	button	opens	the	Breakpoint	Service	dialog	box,	from
which	you	can	disable	the	breakpoint.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	the	Visual	LISP	Debugging	Features	>	Using	Breakpoints	>	

Life	Cycle	of	a	Breakpoint
	
	
	

You	can	set	breakpoints	in	a	program	either	before	or	after	you	load	the	program.
However,	if	you	change	the	text	in	a	program	after	loading	the	program,	and	then
add	a	breakpoint,	the	breakpoint	only	takes	effect	after	you	reload	the	code.

Breakpoints	remain	in	effect	during	the	VLISP	editing	session	and	will	survive
between	sessions	if	you	choose	Save	Settings	from	the	Tools	menu.

In	addition	to	removing	breakpoints	using	the	methods	previously	described	in
this	chapter,	program	breakpoints	are	automatically	lost	when	you	do	any	of	the
following:

Delete	the	code	fragment	containing	the	breakpoint

Modify	the	file	outside	the	VLISP	editor	(for	example,	edit	and	save	it
with	Notepad)

Apply	VLISP	formatting	commands	to	code	fragments	containing
breakpoints

Note	also	that	if	you	modify	a	program's	code	and	run	it	without	reloading	it
(with	the	Load	Active	Edit	Window	command),	the	program	will	be	interrupted
when	a	breakpoint	is	reached,	but	the	exact	source	position	will	not	be	shown.
The	following	dialog	box	indicates	this	situation	has	occurred:

To	enable	the	proper	display	of	a	source	position,	you	must	reload	the	code	and
restart	the	program.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	

Using	Visual	LISP	Data	Inspection	Tools
	
	
	

VLISP	gives	you	almost	unlimited	access	to	symbols,	values,	and	functions	at
any	stage	of	program	execution.	The	VLISP	data	inspection	tools	are
implemented	as	modeless	windows	(except	for	the	Symbol	Service	dialog	box),
meaning	they	stay	on	the	screen	as	long	as	you	need	them,	no	matter	what	your
program	does.

The	Watch	window	displays	the	current	value	of	any	set	of	variables.

The	Trace	Stack	window	displays	the	most	current	call	hierarchy.	At	any
level	of	the	stack	you	can	view	the	corresponding	code,	the	calling	code,
the	local	variables,	and	more.

The	Symbol	Service	dialog	box	displays	the	current	value	of	a	symbol	as
well	as	its	current	flags.	You	can	modify	both	the	value	and	the	flags
from	here.

Inspect	windows	display	any	LISP	object	(from	a	string	to	an	AutoCAD
block	definition)	to	any	level	of	detail	needed.

Frame	Binding	windows	display	the	values	of	all	local	variables	for	their
particular	stack	frame	(that	is,	the	specific	function	invocation	in	the	call
sequence).

VLISP	provides	a	logging	feature	that,	when	active,	allows	you	to	copy	the
contents	of	a	Data	Inspection	window	to	a	log	file.

To	turn	trace	logging	on	and	off

1.	 Activate	the	Trace	window.

2.	 Specify	a	log	file	by	choosing	File	 	Toggle	Trace	Log	from	the	VLISP
menu.	Note	that	if	the	Trace	window	is	not	active,	the	Toggle	Trace	Log

option	will	not	be	available.

3.	 Choose	Save	to	select	the	file	you	specified.	If	the	file	already	exists,
VLISP	prompts	you	with	the	following	message:

If	you	reply	Yes,	VLISP	appends	new	data	to	the	current	contents	of	the
file.	If	you	reply	No,	VLISP	overwrites	the	file	and	its	original	contents
will	be	lost.	Choose	Cancel	to	terminate	the	operation	and	specify	a
different	file	name.

4.	 To	close	the	log	file	and	quit	the	logging	process,	choose	Toggle	Trace
Log	from	the	File	menu	again.

When	Trace	logging	is	turned	on,	any	information	displayed	in	the	Trace
window	is	also	written	to	the	log	file.	Most	VLISP	data	inspection	tools	provide
a	toolbar	button	for	copying	data	to	the	Trace	window.

The	state	of	Trace	logging	is	indicated	in	the	Trace	window's	title	bar.	If	logging
is	in	effect,	VLISP	displays	the	name	of	the	log	file	in	the	title	bar.	If	logging	is
off,	no	file	name	appears	in	the	title	bar.

If	you	do	not	close	the	log	file	before	exiting	VLISP,	it	closes	the	file
automatically	upon	exit.	After	a	log	file	is	closed,	you	can	view	its	contents	with
any	text	editor,	such	as	the	VLISP	text	editor.

Using	the	Watch	Window
Understanding	the	Trace	Stack	Window
Using	the	Symbol	Service	Dialog	Box
Using	Inspect	Windows
Viewing	AutoCAD	Drawing	Entities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	

Using	the	Watch	Window
	
	
	

The	Watch	window	monitors	the	values	of	AutoLISP	variables	during	program
execution.	Each	Watch	window	element	line	displays	the	name	of	a	variable	and
its	current	value,	as	illustrated	in	the	following	figure:

The	Watch	window	is	updated	at	each	step	of	a	VLISP	interactive	session	and
always	shows	the	current	environment	state.	In	debugger	mode,	the	Watch
window	is	refreshed	automatically	at	the	end	of	every	expression	evaluation.

To	add	variables	to	the	Watch	window

1.	 Highlight	the	variable	name	in	any	VLISP	context	(that	is,	in	a	text
editor	window,	the	Console	window,	etc.).

2.	 Choose	the	Add	Watch	button,	or	choose	Add	Watch	from	the	Debug
menu.	You	can	also	select	Add	Watch	from	a	shortcut	menu	by	right-
clicking	the	mouse	while	the	cursor	is	on	a	variable	name.

3.	 If	the	Watch	window	is	already	active,	you	can	add	variables	to	the
watch	list	by	clicking	the	Add	Watch	button	on	the	toolbar	in	the	Watch
window.
If	VLISP	cannot	determine	which	variable	you	are	interested	in	based	on

the	cursor	position	or	the	text	you've	selected,	it	displays	the	Add	Watch
window:

Specify	the	name	of	the	variable	to	be	watched	in	this	window,	then
click	OK.

The	Watch	window	retains	its	variables	during	a	VLISP	session.	This	means	that
if	you	invoke	Watch,	add	variables	to	the	Watch	window,	and	then	close	the
Watch	window,	the	variables	you	added	will	appear	in	the	Watch	window,	if	you
invoke	Watch	again	during	the	current	session.

The	introductory	section	of	this	chapter	includes	an	example	of	using	the	Watch
window.	(See	Monitoring	the	Evaluation	Results	of	an	Expression.)

Using	the	Watch	Toolbar
Using	the	Watch	Item	Shortcut	Menu

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	the	Watch	Window	>	

Using	the	Watch	Toolbar
	
	
	

The	toolbar	on	the	Watch	window	contains	the	following	buttons:

Add	Watch

Invokes	the	Add	Watch	command	to	add	a	new	variable	to	the	Watch
window.	This	variable	can	be	selected	from	any	active	text	window	or	typed
in	the	Add	Watch	dialog	box.

Clear	Window

Removes	all	variables	from	the	Watch	window.

Sort	Expressions

Sorts	the	variables	in	the	Watch	window	alphabetically	by	name.

Copy	to	Trace/Log

Copies	the	contents	of	the	Watch	window	to	the	Trace	window.	If	logging	is
active,	the	contents	of	the	Watch	window	are	also	copied	to	the	trace	log.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	the	Watch	Window	>	

Using	the	Watch	Item	Shortcut	Menu
	
	
	

To	display	the	Watch	Item	shortcut	menu,	select	an	item	in	the	watch	list	and
right-click.

The	following	items	appear	on	the	Watch	Item	menu:

Inspect	Value

Invokes	the	Inspect	feature	for	the	selected	value.	(See	Using	Inspect
Windows.)

Copy	Value

Copies	the	value	of	the	selected	variable	into	the	IDE	global	variable	*obj*.

Print	Value

Prints	the	selected	variable	value	in	the	Console	window,	prefixed	with	a
single	quote	(').

Symbol

Calls	the	Symbol	Service	dialog	box	for	the	selected	variable.	(See	Using	the
Symbol	Service	Dialog	Box.)

Apropos

Calls	the	Apropos	dialog	box	using	the	selected	symbol's	name	as	the
Apropos	argument.

Remove	from	Watch

Removes	the	selected	variable	from	the	Watch	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	

Understanding	the	Trace	Stack	Window
	
	
	

VLISP	has	a	special	debugging	tool	called	a	trace	stack	which	is	a	historical
record	of	the	execution	of	functions	within	your	program.	(The	term	stack	is
derived	from	a	computer	programming	structure	of	the	same	name.)	The
following	figure	illustrates	adding	and	removing	items	from	a	stack.	You	can	see
why	a	stack	structure	is	often	referred	to	as	LIFO—Last	In,	First	Out:

The	trace	stack	is	used	by	VLISP	to	“remember	its	way	out”	of	a	nested	series	of
expressions.	By	viewing	the	stack,	you	can	see	what	is	happening	within	your

program	as	it	is	executing	(within	a	suspended	break	mode)	or	immediately	after
it	has	crashed.

Before	you	invoke	a	function	at	the	Console	window	or	from	AutoCAD,	the
trace	stack	is	empty.	The	action	of	invoking	a	function	causes	a	record,	or
element,	to	be	placed	on	the	stack.	As	that	function	calls	additional	nested
functions	to	perform	the	work	of	your	program,	additional	elements	may	be
added	to	the	stack.	VLISP	only	needs	to	place	elements	on	the	stack	when	it
needs	to	remember	its	way	out	of	nested	functions.

There	are	two	conditions	where	it	is	useful	to	examine	trace	stacks.	The	first	is
when	your	program	is	in	a	suspended	state,	such	as	during	a	breakpoint	pause.
The	second	is	after	an	error	occurs,	causing	your	program	to	fail.

Stack	Element	Lists
Viewing	the	Current	Trace	Stack
Displaying	Information	on	a	Trace	Stack	Element
Using	the	Frame	Binding	Window
Understanding	Keyword	Frames
Understanding	Special	Function	Call	Frames
Viewing	an	Error	Trace	Stack

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Stack	Element	Lists
	
	
	

A	stack	element	is	an	individual	record	or	line-item	history	within	a	trace	stack.
There	are	five	kinds	of	elements	that	may	appear	within	a	stack:

Function	call	frames	show	one	individual	function	invocation.	Each
function	call	frame	appears	in	the	following	format:
level	(function-name	{argument1}...)
Arguments	within	this	listing	are	displayed	not	by	their	local	parameter
name,	but	by	the	values	that	were	actually	passed	to	the	function.

Keyword	frames	are	displayed	at	the	very	top	and	bottom	of	a	trace
stack.	They	are	displayed	in	the	following	form:
level	:keyword	-	{optional-data}
The	keyword	indicates	the	type	of	the	frame.	The	optional-data	displays
additional	information	relating	to	the	state	of	the	program.

Top	forms	indicate	an	action	that	was	initiated	by	typing	an	expression	at
the	top-level	Console	window,	or	from	the	invocation	of	a	function	that
was	triggered	during	the	loading	of	a	file	or	selection	within	a	VLISP
editor	window.

Lambda	forms	are	placed	within	a	stack	whenever	a	lambda	function	is
encountered	within	your	program.

Special	forms	display	the	invocation	of	the	foreach	and	repeat
functions.	The	arguments	for	these	functions	are	not	displayed.	They
appear	as:
level	(function-form	...)

Function	call	frames	and	keyword	frames	are	discussed	in	more	detail	in	the

following	sections.	These	sections	use	the	following	code	to	demonstrate	the
trace	stack.	If	you	wish,	you	can	copy	this	code	into	a	VLISP	editor	window,	set
a	breakpoint	as	indicated	in	the	code	comments,	and	run	this	sample:

(defun	stack-tracing	(indexVal	maxVal)

			(princ	"At	the	top	of	the	stack-tracing	function,	indexVal	=	")

			(princ	indexVal)

			(if	(<	indexVal	maxVal)

						(stack-tracing	(1+	indexVal)	maxVal)

						(princ	"Reached	the	maximum	depth.")	;	place	a	breakpoint

																																										;	at	the	beginning	of

																																										;	this	line

)

)

(defun	c:trace-10-deep	()

			(terpri)

			(stack-tracing	1	10)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Viewing	the	Current	Trace	Stack
	
	
	

To	see	the	state	of	a	function	call	stack	while	your	program	is	suspended	at	a
breakpoint,	choose	View	 	Trace	Stack	from	the	VLISP	menu,	or	click	the	Trace
toolbar	button.	VLISP	displays	the	Trace	Stack	window:

The	Trace	Stack	window	displayed	above	shows	a	function	call	frame	for	the
stack-tracing	function.	The	second	element,	or	frame,	in	the	trace	stack	is
highlighted:

[2]	(STACK-TRACING	10	10)

The	number	[2]	simply	identifies	it	as	the	second	element	in	the	stack.	The
numbers	following	the	stack-tracing	function	name	(10	10)	indicate	the

actual	values	that	were	passed	to	the	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Displaying	Information	on	a	Trace	Stack	Element
	
	
	

To	obtain	more	information	about	an	element	in	the	trace	stack,	select	the
element	and	right-click	to	display	a	shortcut	menu.

Active	items	available	on	the	shortcut	menu	depend	on	the	type	of	stack	element
you	selected	before	right-clicking.	Possible	menu	commands	include	the
following:

Inspect

Calls	the	Inspect	feature	for	the	selected	stack	element.

Print

Prints	the	stack	element	to	the	Console	window.

Function	Symbol

Calls	the	Symbol	Service	feature	for	the	function	call	in	the	stack	frame,	if
the	function	is	called	by	the	symbol.

Copy

Copies	the	selected	trace	stack	element	to	the	IDE	global	variable	*obj*.

Local	Variables

Displays	the	Frame	Bindings	dialog	box	to	allow	browsing	of	local	variable
values	at	the	time	the	function	was	called;	see	Using	the	Frame	Binding
Window.

Source	Position

Checks	whether	or	not	the	source	text	is	available	for	the	function	called	at
the	selected	stack	frame.	If	the	source	code	is	available,	the	text	window	with

the	source	code	is	displayed,	with	the	current	position	inside	the	function
highlighted.

Call	Point	Source

Shows	the	position	of	the	caller	expression,	similar	to	Source	Position.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Using	the	Frame	Binding	Window
	
	
	

Choose	the	local	variables	item	from	the	Trace	Stack	shortcut	menu	to	display
the	Frame	Binding	window:

The	Frame	Binding	window	displays	information	about	the	local	variables	in	the
frame.	In	the	example	shown	above,	the	parameter	names	(INDEXVAL,
MAXVAL)	are	listed,	along	with	the	values	assigned	to	these	parameters.	These
values	were	passed	to	the	function.	The	parameters	are	listed	in	the	order	they
are	defined	within	the	function.

If	you	right-click	on	an	entry	in	the	Frame	Binding	window,	VLISP	displays	a
shortcut	menu	containing	the	following	items:

Inspect

Calls	the	Inspect	feature	for	the	selected	value.

Print

Displays	the	selected	value	in	the	Console	window.

Symbol

Calls	the	Symbol	Service	dialog	box	for	the	selected	symbol.

Copy

Copies	the	selected	value	into	the	IDE	global	variable*obj*.

Add	to	Watch

Adds	the	selected	symbol	to	a	Watch	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Understanding	Keyword	Frames
	
	
	

A	keyword	frame	indicates	a	specific	type	of	operation	that	occurs	within	the
VLISP	environment.	The	keyword	indicates	the	type	of	operation.	Keyword
frames	will	appear	in	only	two	locations:	at	the	very	top	of	the	stack,	or	at	the
very	bottom	of	the	stack.

The	following	types	of	keyword	frames	will	appear	only	at	the	bottom	of	a	stack:

Keyword	frames	(bottom)

Frame	type Operation	that	occurred

:ACAD-REQUEST A	call	to	the	function	shown	in
the	frame	immediately	above	the
:ACAD-REQUEST	keyword
frame	was	invoked	from	the
AutoCAD	command	prompt.

:DCL-ACTION Execution	of	a	DCL	tile	or	dialog
action	was	requested	from
AutoCAD.	The	keyword	:DCL-
ACTION	is	followed	by	two
strings:	the	DCL	dialog	name	and
the	value	of	the	$KEY	variable	in
the	DCL	action	body.	If	a	number
appears,	it	is	the	value	of	the
$REASON	variable	in	the	DCL
action	body.	The	frame

immediately	above	the	keyword
describes	the	function	call	built
from	the	action	string.

:INSPECT-EVAL Evaluation	of	an	Inspect
command.

:INSPECT-VERBOSE Entrance	into	a	drawing	Inspect
hook	function.

:TOP-COMMAND The	VLISP	IDE	requested	the
action	resulting	in	the	first
element	placed	within	the	stack.
This	situation	occurs,	for
example,	when	a	function	is
invoked	directly	from	loading	a
selection	or	a	file.

:USER-INPUT The	character	string	shown	in	the
frame	was	entered	from	the
VLISP	Console	window.	The
frame	immediately	above	the
keyword	describes	the	expression
as	it	was	translated	from	the	user
input.	If	the	input	string	is	too
long,	right-click	to	open	a
shortcut	menu,	and	choose	Show
Message	to	view	the	entire	text.
You	can	also	choose	the	Inspect
command	to	inspect	the	entered
string.

:WATCH-EVAL Evaluation	of	a	watch	expression.

The	following	types	of	keyword	frames	may	appear	at	the	top	of	a	stack:

Keyword	frames	(top)

Frame	type Operation	that	occurred

:ACMD-CALLBACK Registered	AutoCAD	command
call.

:AFTER-EXP Indicates	that	your	program	is
interrupted	in	a	debugging	break
mode,	and	the	Step	Into	or	Step
Over	command	just	stepped	out
of	an	expression.

:ARQ-SUBR-CALLBACK Indicates	a	normal	call	from
AutoCAD	to	a	VLISP-defined
function.

:AXVLO-IO-CALLBACK
:DWF
:DWG

Saves	or	restores	a	VL	object	in	a
DWG.

:BEFORE-EXP Debugger	break	upon	entering	the
function.	This	message	will
appear	whenever	you	are	stepping
through	using	Step	Into	or	Step
Over,	and	the	step	is	entering	an
expression	(as	opposed	to	just
leaving	an	expression,	which	is
indicated	by	the	:AFTER-EXP
keyword).

:BREAK-POINT User-specified	breakpoint.

:ENTRY-NAMESPACE A	call	in	the	context	of	a	separate-
namespace	VLX.

:ERROR-BREAK General	runtime	error.	The	Show

Message	shortcut	menu	selection
allows	you	to	view	more	specific
error	messages.

:FUNCTION-ENTRY Debugger	break	upon	entering	the
function.	The	stack	element
following	this	message	contains
the	call	frame	for	the	function	in
which	the	break	occurred.

:KBD-BREAK The	PAUSE	key	was	pressed,
placing	the	program	on	hold.

:PROTECT-ASSIGN Assignment	of	a	value	to	a
protected	symbol.	From	the	right-
click	shortcut	menu,	you	can
choose	Show	Message	to	view
the	variable	name,	the	current
value,	and	the	new	value	that	was
attempted	to	be	assigned	to	the
variable.	You	can	also	choose	the
Inspect	command	to	view	the	list
containing	the	symbol,	and	the
new	value	indicated	following
:PROTECT-ASSIGN.

:REACTOR-CALLBACK Reactor	call.

:READ-ERROR Error	during	a	read	operation.
The	Show	Message	shortcut
menu	selection	provides
additional	information	about	the
error.

:SYNTAX-ERROR VLISP	encountered	incorrect
AutoLISP	program	syntax.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Understanding	Special	Function	Call	Frames
	
	
	

There	are	two	special	function	call	frames.

The	FOREACH	frame	indicates	a	call	to	the	foreach	function.	From	the
shortcut	menu,	choose	the	Local	Variables	option	to	display	the	name	and
current	value	of	the	user-supplied	variable	and	list	variables	bound	by	the
foreach	function.	For	example,	if	the	following	expression	were	evaluated

(foreach	n	'(a	b	c)	(print	n))

then	selecting	the	Local	Variables	option	displays	a	Frame	Binding	window	like
the	following:

This	Frame	Binding	window	identifies	the	user-supplied	variable	(N),	the	current
value	of	that	variable	(A),	and	the	items	remaining	to	be	processed	in	the	list
supplied	to	foreach	(BC).

The	REPEAT	frame	indicates	a	call	to	the	repeat	function.	From	the	shortcut
menu,	the	Local	Variables	command	displays	the	special	name	counter	and	the
current	value	of	the	repeat	internal	counter.	The	internal	counter	value	is
initially	set	to	the	integer	value	passed	to	repeat,	indicating	the	number	of
iterations	desired.	The	counter	decreases	by	one	at	each	loop	iteration.	It	shows
the	number	of	iterations	remaining,	minus	one.

Note	that	each	repeat	expression	possesses	its	own	counter,	but	only	one	such

counter	can	be	added	to	the	Watch	window.

AutoLISP	functions	such	as	if,	cond,	and,	and	setq	do	not	appear	on	the
stack.	They	are	not	necessary	because	their	call	position	may	be	viewed	within
the	source	file	in	the	VLISP	text	editor	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Understanding	the	Trace
Stack	Window	>	

Viewing	an	Error	Trace	Stack
	
	
	

If	your	program	terminates	due	to	an	error,	choose	Error	Trace	from	the	View
menu	to	see	the	state	of	function	invocations	up	to	the	time	your	program
crashed:

The	error	trace	is	a	copy	of	the	trace	stack	as	it	appeared	at	the	time	the	error
occurred.	If	the	Break	on	Error	debugging	option	is	selected,	the	error	trace	and
the	trace	stack	are	identical	immediately	after	an	error	occurs.	You	can	see	this
by	selecting	Break	on	Error	from	the	Debug	menu,	intentionally	causing	an	error
(for	example,	issuing	a	function	call	that	divides	by	zero),	and	opening	the	two
trace	windows.

The	toolbar	on	the	Trace	Stack	window	contains	two	buttons:

Refresh

Refreshes	contents	of	Trace	Stack	window.

Copy	to	Trace/Log

Copies	the	window	contents	to	the	Trace	Stack	window	or	open	log	file.

When	you	issue	a	Reset	command	to	exit	a	break	loop	(for	example,	Reset	to
Top	Level),	pressing	the	Refresh	button	in	the	Trace	Stack	window	replaces	that
window's	contents	with	the	latest	trace	stack	data.	In	contrast,	refreshing	the
Error	Trace	window	does	not	change	the	window's	contents,	unless	a	subsequent
error	has	occurred.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	

Using	the	Symbol	Service	Dialog	Box
	
	
	

The	Symbol	Service	feature	is	designed	to	simplify	access	to	the	different
debugger	features	provided	for	symbols.	Most	facilities	available	for	symbols
are	also	available	through	this	feature.

To	open	a	Symbol	Service	dialog	box	and	update	a	symbol

1.	 Highlight	the	name	of	any	symbol	in	your	program's	source	code	or	in
the	Console	window.

2.	 Choose	View	 	Symbol	Service	from	the	VLISP	menu,	or	press	the
Symbol	Service	button	on	the	Debug	toolbar.

The	Symbol	Service	dialog	box	contains	the	following	components:

A	toolbar

A	Name	field,	where	you	can	enter	or	change	the	symbol	to	work
on

A	Value	field	that	displays	the	symbol's	value	or	its	initial
substring

A	series	of	check	boxes	for	symbol	flags

3.	 To	update	the	value	of	the	displayed	symbol,	enter	an	expression	in	the
Value	field.	When	you	press	OK,	VLISP	evaluates	the	expression	and
assigns	its	value	to	the	symbol.

If	the	symbol	you	specified	is	a	protected	symbol,	the	Value	field	will	be	read-
only.	To	remove	protection,	clear	the	Protect	Assign	check	box.	See
Understanding	Symbol	Flags	for	more	information	on	Protect	Assign.

Use	the	OK	and	Cancel	buttons	to	close	the	dialog	box	and	to	continue	working
in	VLISP.

Using	the	Symbol	Service	Toolbar
Understanding	Symbol	Flags

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	the	Symbol	Service
Dialog	Box	>	

Using	the	Symbol	Service	Toolbar
	
	
	

The	Symbol	Service	toolbar	contains	the	following	buttons:

Watch

Adds	the	symbol	to	the	Watch	window.

Inspect

Opens	the	Inspect	window	to	show	the	value	of	the	symbol.

Show	Definition

If	the	symbol	names	a	user-defined	function,	this	command	opens	the	text
editor	window	containing	the	function	definition	and	highlights	the	function.

Help

Displays	information	from	the	VLISP	Help	file,	if	the	symbol	refers	to	a
built-in	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	the	Symbol	Service
Dialog	Box	>	

Understanding	Symbol	Flags
	
	
	

The	Symbol	Service	dialog	box	provides	direct	access	to	symbol	flags	and
properties	of	functional	objects	that	may	be	associated	with	them.	The	following
symbol	flag	options	are	available:

Trace	(Tr)

The	Trace	flag	activates	the	tracing	of	any	user-defined	function	(shown	as	a
symbol	within	the	Symbol	Service	window).	Tracing	will	only	occur	when
the	symbol	is	a	function,	and	the	expression	being	evaluated	uses	the	symbol
name	as	a	function	(not	as	a	local	variable	name,	for	example).

Protect	Assign	(Pa)

This	flag	intercepts	attempts	to	assign	values	to	protected	symbols.	For
instance,	the	symbol	pi	is	a	protected	symbol.	All	symbols	that	are	the	names
of	built-in	AutoLISP	functions	are	assignment-protected	by	default.	See
Protected	Symbols	for	more	information	on	symbol	protection.
Note	that	symbol	protection	works	only	for	explicit	setq,	set,	or	defun
invocations.	Binding	a	protected	symbol	in	an	argument	list	of	a	user-defined
function	is	not	intercepted.

Debug	on	Entry	(De)

If	this	flag	is	set,	a	breakpoint	occurs	at	each	function	invocation,	regardless
of	whether	the	function	was	loaded	with	debugging	information.	The	De	flag
is	tested	at	each	function	invocation,	not	during	load	or	defun	execution.
Note	that	VLISP	ignores	the	Debug-on-Entry	flag	for	all	SUBR	and
EXRXSUBR	symbols.

Export	to	ACAD	(Ea)

If	the	Ea	flag	is	set,	the	function	associated	with	this	symbol	is	defined	as	an
external	subroutine.	This	makes	the	function	available	to	ObjectARX
applications.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	

Using	Inspect	Windows
	
	
	

The	Inspect	feature	is	the	component	of	VLISP	that	provides	you	with	the	ability
to	browse,	examine,	and	modify	AutoLISP	and	AutoCAD	objects.	You	can	use
Inspect	to	view	the	following	items:

Any	AutoLISP	objects	such	as	lists,	numbers,	strings,	and	variables

AutoCAD	drawing	entities

AutoCAD	selection	sets

Using	Inspect,	you	can	also	browse	through	complex	data	structures.

The	Inspect	tool	creates	a	separate	window	for	each	object	you	inspect.

To	open	an	Inspect	window

1.	 Select	an	AutoLISP	object	name	(for	example,	a	variable).

2.	 Choose	View	 	Inspect	from	the	VLISP	menu,	or	press	the	Inspect
button	on	the	Debug	toolbar.
The	Inspect	command	is	also	available	from	a	number	of	shortcut	menus
and	from	the	windows	displayed	by	the	Apropos	and	Symbol	Service
features.

3.	 If	you	invoke	the	Inspect	command	without	selecting	an	object	name,
VLISP	prompts	you	to	specify	the	object	you	want	to	inspect,	displaying
the	following	dialog	box:

Enter	the	object	or	expression	you	want	to	inspect,	then	press	OK	to
open	the	Inspect	window	or	press	Cancel	to	cancel	the	action.

VLISP	saves	the	last	15	items	you	enter	in	the	Inspect	prompt	box.	You	can
choose	a	previously	specified	object	for	inspection	by	selecting	it	from	the	drop-
down	list.

For	example,	to	inspect	the	definition	of	the	yinyang	function,	select	the	name
in	the	text	editor	window	containing	the	yinyang.lsp,	then	press	the	Inspect
button	to	view	the	Inspect	window:

Using	the	Inspect	Window
Understanding	Object	Element	List	Formats
Common	Inspect	Commands
Copying	Inspect	Objects	to	the	*obj*	IDE	Global	Variable
Handling	Errors	in	the	Inspect	Command
Closing	All	Inspect	Windows

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Using	the	Inspect	Window
	
	
	

All	Inspect	windows	have	a	similar	appearance	and	contain	a	caption,	an	object
line,	and	an	object	element	list	(which	may	be	empty).	The	window	elements
contain	the	following	content:

The	caption	of	an	Inspect	dialog	box	shows	the	type	of	object	being
inspected.

The	object	line	shows	a	printed	representation	of	the	inspected	object.

The	element	list	displays	the	components	of	the	inspected	object.

The	element	list	may	vary	in	size	and	content	for	different	object	type.	Each
element	list	is	shown	as	a	pair:	name	and	content.	The	name	is	enclosed	in
brackets.	Square	brackets	([])	denote	that	you	can	modify	the	item	by	issuing	a
Modify	command	from	the	shortcut	menu	associated	with	the	item,	and	curly
brackets	({})	indicate	that	you	cannot	modify	the	item.

Both	the	object	line	and	the	element	list	lines	have	their	own	associated	shortcut
menus.	These	menus	are	described	in	Common	Inspect	Commands.

VLISP	will	display	up	to	50	element	lines	in	an	Inspect	window.	If	there	are
more	than	50	elements	to	be	shown,	Inspect	displays	the	elements	in	a	series	of
pages.	When	you	scroll	to	the	bottom	of	the	Inspect	window	and	there	are	more
entries	remaining	to	be	displayed,	the	bottom	of	the	list	contains	a	">>>[Next
page]"	element	line.	To	navigate	among	the	pages,	use	the	following
procedures:

To	page	down,	double-click	on	the	">>>	[Next	page]"	element
line,	or	select	that	line	and	press	ALT	+	E.

For	Inspect	windows	showing	AutoLISP	lists	and	selection	sets,	you	can
page	up	by	double-clicking	the	"<<<[Previous	page]"	element

line,	which	appears	at	the	top	of	the	list.	(Or	select	that	line	and	press
ALT	+	E.)

For	AutoLISP	lists	and	selection	sets,	when	you	reach	the	last	page	of
element	lines,	you	can	return	to	the	first	page	by	double-clicking	on	the	"
<<<[First	page]"	element	line,	or	by	selecting	that	line	and
pressing	ALT	+	E.

VLISP	expands	an	item	in	the	element	list	if	you	double-click	on	it.	For
example,	the	{Auxiliary}	component	in	the	sample	Inspect	window	is	itself	a
list.	Double-click	on	the	{Auxiliary}	item	to	open	another	Inspect	window
showing	the	elements	in	the	list:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Understanding	Object	Element	List	Formats
	
	
	

The	contents	of	an	Inspect	element	list	vary,	depending	on	the	data	type	of	the
object	being	inspected.	The	following	table	identifies	the	list	contents	for	each
data	type.

Inspect	element	lists

Data	type Contents	of	element	list

INT	(integer) The	various	representations	of
integers.

REAL	(floating	point	number) Empty.

STRING The	sequence	of	characters	in
the	string,	which	may	in	turn	be
inspected	as	integers.

SYMBOL Three	elements:	value,	print
name,	and	flags.

LIST	(for	proper	lists) Items	of	the	inspected	list.

LIST	(for	improper	lists) Two	elements:	the	car	and
cdr	fields.	It	serves	for	all
cases	that	are	not	proper	LISP
lists,	that	is,	where	the	last	cdr
is	not	nil.

FILE The	name	of	the	corresponding
file	and	the	file's	opening
attributes.

SUBR,	EXRXSUBR,	and	USUBR The	name	of	the	function	(the
name	that	was	specified	in
defun	or	at	load	time).	SUBR
refers	to	internal	and	compiled
functions,	EXRXSUBR	refers
to	external	ARX	functions,	and
USUBR	identifies	user-defined
functions.

ENAME	(drawing	entity) The	fields	in	this	element	list
correspond	to	the	AutoCAD
DXF	object	list,	as	returned	by
the	AutoLISP	built-in	function.

PICKSET	(selection	set) List	of	selected	AutoCAD
objects.

VARIANT The	data	type	and	value	of	the
variant.

SAFEARRAY The	data	type,	number	of
dimensions,	and	value	of	the
safearray.

Sample	Inspect	windows	for	each	data	type	follow.

INT

The	INT	(integer)	Inspect	window	shows	the	number	represented	in	binary,
octal,	decimal,	hexadecimal,	and	character	formats.	Character	format	means
the	ASCII	character	that	corresponds	to	the	number	(for	large	numbers	it
takes	the	last	byte).

The	INT	Inspect	window	does	not	have	an	element	list.

REAL

The	REAL	Inspect	window	does	not	have	an	element	list.

STRING

Shows	the	string	as	a	list	of	characters	represented	as	numbers:

Double-click	on	a	listed	character	to	see	its	number	representation.

SYMBOL

Contains	the	symbol	name,	the	symbol	value,	and	the	flags	that	represent
symbol	attributes.	Flags	may	be	one	of	the	following:
Pa	Protect	Assign
Tr	Trace
De	Debug	on	entry
Ea	Export	to	ACAD

To	change	a	symbol's	value	or	flag	settings,	use	the	object	line	menu
command	Symbol	Service,	which	shows	the	Symbol	Service	window.
Note	that	the	information	supplied	by	the	SYMBOL	Inspect	window	is
available	more	conveniently	through	the	Symbol	Service	feature.

LIST	(properlist)

Shows	the	elements	of	a	proper	list:

LIST	(improperlist)

Shows	the	car	and	cdr	of	an	improper	list.	For	example,	a	list	constructed	by
(cons	4	'(5	.	0))	is	represented	as	follows:

FILE

File	Inspect	fields	include	the	following:
File	name	is	the	name	string	used	in	the	open	function.
Mode	indicates	whether	the	file	is	open	for	input,	output,	append,	or	whether
the	file	is	closed.
ID	shows	the	internal	file	identifier.
Position	shows	the	current	position	in	the	file.
EOF	indicates	whether	or	not	the	end	of	the	file	has	been	reached.	This	field
does	not	appear	if	a	file	is	open	for	output.

SUBR

The	SUBR	data	type	represents	functions	that	cannot	be	debugged	with	the
VLISP	debugging	tools	(for	example,	you	cannot	set	breakpoints).	These	are
internal	AutoLISP	functions,	or	functions	loaded	from	FAS	or	VLX	files.
The	SUBR	Inspect	window	shows	a	string	containing	the	name	of	the
symbol,	as	in	the	following	example:

USUBR

The	USUBR	data	type	represents	functions	that	can	be	debugged	with	the
VLISP	debugging	tools	(for	example,	you	can	set	breakpoints	and	view	the
values	of	program	variables).	These	functions	are	loaded	from	LISP	source
code.
The	USUBR	Inspect	window	shows	the	name	of	the	symbol,	a	list	of
function	parameters	(arguments),	and	a	list	of	local	variables	declared	in	the
function	(listed	after	the	“/”	in	the	defun	argument	list).	The	following
example	shows	an	Inspect	window	for	a	function	that	accepts	no	arguments
and	declares	several	local	variables:

EXRXSUBR

The	EXRXSUBR	data	type	represents	functions	loaded	from	external	ARX
applications.	The	EXRXSUBR	Inspect	window	shows	a	string	containing	the
function	name,	as	in	the	following	example:

ENAME

The	contents	of	the	ENAME	Inspect	window	depend	on	the	properties	of	the

entity	being	inspected.	The	following	example	shows	an	Inspect	window	for
a	circle:

PICKSET

The	PICKSET	Inspect	window	lists	the	elements	in	a	selection	set:

VARIANT

The	VARIANT	Inspect	window	shows	the	data	type	and	value	of	the	variant.
The	following	example	shows	an	Inspect	window	for	a	variant	that	contains
an	array	of	doubles:

SAFEARRAY

The	SAFEARRAY	Inspect	window	shows	the	data	type,	number	of
dimensions,	and	value	of	the	safearray.	The	following	example	shows	a
Safearray	Inspect	window	for	a	single	dimension	array	of	doubles:

You	can	also	use	the	Inspect	feature	to	examine	ActiveX®	objects.	See	Using	the
Inspect	Tool	to	View	Object	Properties	for	an	example	of	this.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Common	Inspect	Commands
	
	
	

The	Inspect	windows	provide	shortcut	menus	containing	commands	relevant	to
the	data	being	inspected.

To	display	the	object	line	shortcut	menu,	press	ALT	+	0,	or	right-click	the	object
line.	The	following	commands	may	be	present	in	an	object	line	shortcut	menu:

Symbol	Service

Invokes	the	Symbol	Service	feature.

Print	(ALT	+	P)

Prints	the	object	in	the	Console	window.

Pretty	Print

Formats	and	prints	the	object	in	the	Console	window.

Copy

Copies	the	object	to	the	*obj*	variable.

Log

Copies	the	current	contents	of	the	Inspect	dialog	box	to	the	Trace	window.	If
logging	is	active,	the	contents	are	also	copied	to	the	trace	log.

Update	(ALT	+	U)

Updates	the	Inspect	dialog	box	to	show	the	most	recent	status	of	the
inspected	object.

The	element	line	shortcut	menu	appears	after	highlighting	the	element	line	and
right-clicking.	The	following	commands	may	appear	on	the	element	line	shortcut
menu:

Inspect	(ALT	+	I)

Calls	Inspect	and	passes	it	the	element	value	as	an	argument.

Descend	(ALT	+	D)

Calls	Inspect,	passes	it	the	element	value	as	an	argument,	and	closes	the
current	Inspect	window.

Copy

Copies	the	value	of	the	inspected	element	to	the	*obj*variable.

View	Source

Activates	a	text	editor	window	containing	the	selected	text.	If	the	text	was
loaded	from	the	Console	window	or	from	a	list	representation,	this	command
activates	a	new	text	editor	window.

The	default	command	for	an	element	line,	invoked	by	pressing	ENTER,	is	the
Inspect	command.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Copying	Inspect	Objects	to	the	*obj*	IDE	Global	Variable
	
	
	

Sometimes	it	is	useful	to	access	some	part	of	an	object	from	your	program	or
from	the	VLISP	Console	window.	You	may	also	want	to	copy	the	value	of	one
object's	item	into	another	item	and	so	on.	To	perform	all	these	tasks,	the	Inspect
feature	manages	a	reserved	global	IDE	variable	named	*obj*.	This	variable
can	be	used	as	a	temporary	storage	area	while	browsing	through	data	structures.
From	inside	an	Inspect	dialog	box,	you	can	assign	a	value	to	this	variable	and
replace	the	value	of	the	current	item	with	the	value	of	*obj*.

To	assign	the	value	of	an	inspected	object	to	the	*obj*	variable,	right-click	the
item	in	the	Inspect	window	and	choose	Copy.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Handling	Errors	in	the	Inspect	Command
	
	
	

In	text	editor	windows	it	is	not	possible	to	inspect	selected	expressions	longer
than	256	characters.	If	you	select	a	string	longer	than	256	characters,	you	will	be
prompted	to	enter	an	object	name.

If	you	specify	an	object	or	expression	that	VLISP	cannot	evaluate,	VLISP	issues
a	standard	AutoLISP	error	message.	Once	the	error	message	appears,	you	can
correct	the	expression	in	the	dialog	box	and	try	to	evaluate	it	once	more.

Errors	arising	from	evaluation	of	the	object	you	entered	cannot	be	investigated
from	a	nested	break	loop,	because	all	breaks	are	disabled	during	such	evaluation.
If	you	wish	to	examine	the	error,	choose	View	 	Error	Trace	from	the	VLISP
menu,	or	copy	the	expression	to	the	Console	prompt	and	press	ENTER.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Using	Inspect	Windows	>	

Closing	All	Inspect	Windows
	
	
	

To	close	all	Inspect	windows,	choose	Window	 	Close	Windows	 	Inspectors
from	the	VLISP	menu.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	

Viewing	AutoCAD	Drawing	Entities
	
	
	

VLISP	provides	facilities	to	walk	through	the	AutoCAD	drawing	database	and
inspect	the	raw	data	for	each	drawing	entity	reported	by	AutoCAD.	You	access
drawing	entities	through	the	VLISP	Browse	Database	feature.	Browse	Database
displays	entity	information	in	Inspect	windows.	You	can	set	a	diagnostic	option
telling	VLISP	how	much	information	to	supply	about	entities.

To	control	the	amount	of	Inspect	information	displayed	for	drawing
objects

1.	 Choose	Tools	 	Environment	Options	 	General	Options.

2.	 Click	the	Diagnostic	tab	in	the	General	Options	window.

3.	 Select	Inspect	Drawing	Objects	Verbosely	to	view	detailed	entity
information.	Clear	the	option	check	box	to	minimize	the	amount	of
information	supplied	by	Inspect.
Viewing	Entities	in	the	Drawing	Database
Viewing	Symbol	Tables	in	the	Drawing	Database
Viewing	Blocks	in	the	Drawing	Database
Viewing	Selected	Objects	in	a	Drawing
Viewing	Extended	Data

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Viewing	AutoCAD	Drawing
Entities	>	

Viewing	Entities	in	the	Drawing	Database
	
	
	

To	Open	an	Inspect	window	for	the	collection	of	entities	in	the	current	drawing
database,	choose	View	 	Browse	Drawing	Database	 	Browse	All	Entities	from
the	VLISP	menu.	VLISP	displays	a	window	listing	the	entities	in	the	database:

Note	that	VERTEX	and	ATTRIB	entity	types	are	not	included	in	this	list.	You
access	these	entity	types	through	their	parent	entities,	which	are	available	when
you	inspect	POLYLINE	and	INSERT	entities.

The	shortcut	menu	commands	available	for	the	object	line	in	the	AutoCAD
Entities	Inspect	window	are	Log	and	Update.

To	open	an	Inspect	window	for	a	specific	entity,	double-click	on	the	entity	name,
or	select	the	entity,	then	right-click,	and	choose	Inspect:

The	title	bar	of	this	window	identifies	the	drawing	entity	type.	The	object	line	of
the	window	displays	the	entity	name.

<Entity	name:	1cdf190>

The	shortcut	menu	for	the	object	line	contains	the	common	Inspect	commands
Print,	Copy,	Log,	and	Update,	plus	some	new	items.

Modify

If	available,	this	command	opens	the	standard	AutoCAD	DDMODIFY	dialog
for	the	inspected	entity.

Inspect	Raw	Data

Displays	an	Inspect	window	containing	the	list	resulting	from	an	entget
function	call	for	the	entity.

Inspect	Next	Entity

Displays	an	Inspect	window	for	the	next	entity	in	the	entities	list.

Inquire	Extended	Data

Displays	a	list	of	applications	currently	registered	by	regapp.	If	you	select
an	item	from	the	list,	any	extended	data	related	to	the	chosen	application	is
included	in	the	Inspect	entget	list.	See	Viewing	Extended	Data	for	more
information.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Viewing	AutoCAD	Drawing
Entities	>	

Viewing	Symbol	Tables	in	the	Drawing	Database
	
	
	

Choosing	View	 	Browse	Drawing	Database	 	Browse	Tables	from	the	VLISP
menu	opens	an	Inspect	window	for	the	collection	of	symbol	tables	in	your
drawing:

You	can	inspect	each	table	as	a	collection	of	named	attributes.	Double-click	on	a
name	to	view	its	attributes,	or	select	the	name,	right-click,	and	choose	Inspect:

To	view	a	table	entry	for	a	selected	attribute,	double-click	on	the	attribute	name,
or	select	the	attribute,	right-click,	and	choose	Inspect:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Viewing	AutoCAD	Drawing
Entities	>	

Viewing	Blocks	in	the	Drawing	Database
	
	
	

Choose	View	 	Browse	Drawing	Database	 	Browse	Blocks	from	the	VLISP
menu	to	open	an	Inspect	window	for	the	blocks	in	your	drawing:

Double-click	on	the	block	name	you	are	interested	in	to	open	an	Inspect	window
for	the	block,	or	select	the	block,	right-click,	and	choose	Inspect.

The	raw-data	element	shows	the	symbol	table	entries	for	the	inspected	block.
Double-click	on	the	parts	item	to	open	an	Inspect	window	listing	the	collection
of	entities	residing	within	the	block.

The	raw-data	and	parts	element	lines	occur	in	all	block	Inspect	windows.	Other
element	lines,	such	as	{name},	appear	only	if	the	Inspect	Drawing	Objects
Verbosely	Diagnostic	option	is	selected.	See	Diagnostic	Tab	(General	Options
Dialog	Box)	for	information	on	setting	VLISP	diagnostic	options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Viewing	AutoCAD	Drawing
Entities	>	

Viewing	Selected	Objects	in	a	Drawing
	
	
	

Choose	View	 	Browse	Drawing	Database	 	Browse	Selection	from	the	VLISP
menu	to	select	the	drawing	objects	you	want	to	view.	VLISP	invokes	the	ssget
function	to	prompt	you	to	define	a	selection	set	in	the	AutoCAD	drawing
window.	When	you	complete	the	selection,	VLISP	opens	the	Inspect	window	for
your	selection:

Double-click	on	an	entity	name	to	open	an	Inspect	window	for	the	entity,	or
select	an	entity,	right-click,	and	choose	Inspect.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Debugging
Programs	>	Using	Visual	LISP	Data	Inspection	Tools	>	Viewing	AutoCAD	Drawing
Entities	>	

Viewing	Extended	Data
	
	
	

Choose	View	 	Browse	Drawing	Database	 	Inquire	Extended	Data	from	the
VLISP	menu	to	see	a	list	of	the	applications	currently	registered	(through
regapp)	as	containing	extended	data.	If	you	select	an	application	from	this	list,
its	extended	data	is	included	into	the	Inspect	entget	list.

To	view	extended	data	associated	with	an	AutoCAD	object

1.	 Choose	View	 	Browse	Drawing	Database	 	Inquire	Extended	Data
from	the	VLISP	menu.

2.	 Select	the	application	whose	data	you	are	interested	in	viewing.

3.	 In	the	AutoCAD	window,	select	the	drawing	objects	whose	extended
data	you	want	to	view.

4.	 From	the	VLISP	menu,	choose	View	 	Browse	Drawing	Database	
Browse	Selection.	VLISP	displays	an	Inspect	window	listing	the
AutoCAD	objects	you	selected:

5.	 In	the	Inspect	window	element	list,	double-click	on	an	object	whose
extended	data	you	want	to	view.	VLISP	displays	an	Inspect	window	for
the	object.

6.	 Select	the	object	line	in	the	Inspect	window	and	right-click	to	view	a

shortcut	menu.

7.	 Choose	Inspect	Raw	Data	from	the	shortcut	menu.	VLISP	displays	an
Inspect	window	like	the	following:

Extended	data	is	identified	by	the	-3	DXF	group	code.	The	last	line	in
the	entity	list	shows	the	extended	data	for	the	selected	object.	You	can
double-click	on	this	line	to	open	a	separate	Inspect	window	containing
just	the	extended	data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Building	Applications
	
	
	

You	can	compile	your	program	files	and	create	a	single	executable	module	that
you	can	distribute	to	users.

This	chapter	describes	how	to	build	applications	with	Visual	LISP®.

VLISP	allows	you	to	compile	your	program	files	and	create	a	single	executable
module	that	you	can	distribute	to	users.	The	first	part	of	this	chapter	provides
basic	knowledge	about	the	VLISP	compiler	and	may	be	sufficient	for	building
macros	and	small	programs	that	work	in	a	single	document.	The	rest	of	the
chapter	helps	you	build	more	complex	applications.	These	remaining	sections
discuss	design	considerations	for	an	environment	where	several	AutoCAD®

drawings	may	be	open	at	the	same	time,	and	provide	information	on	fine-tuning
the	performance	of	compiled	code.

Compiling	and	Linking	Programs
Making	Application	Modules
Designing	for	a	Multiple	Document	Environment

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	

Compiling	and	Linking	Programs
	
	
	

Each	time	you	load	AutoLISP®	source	code,	the	code	is	translated	into
instructions	the	computer	understands	(executable	code).	The	advantage	of
having	source	code	translated	each	time	you	load	it	is	that	you	can	make	a
change	and	immediately	try	it	out.	This	is	useful	for	quickly	testing	new	code,
and	for	debugging	that	code.

Once	you	are	sure	your	program	is	working	correctly,	translating	AutoLISP
source	code	each	time	it	loads	is	time-consuming.	VLISP	provides	a	compiler
that	generates	executable	machine	code	files	from	your	source	files.	These
executable	files	are	known	as	FAS	files.	Because	the	executable	files	contain
only	machine-readable	code,	the	source	code	you	spent	weeks	or	months
developing	remains	hidden	even	if	you	distribute	your	program	to	thousands	of
users.	Even	strings	and	symbol	names	are	encrypted	by	the	VLISP	file	compiler.

VLISP	also	provides	features	for	packaging	more	complex	AutoLISP
applications	into	VLISP	executable	(VLX)	files.	VLX	files	can	include
additional	resources	files,	such	as	VBA	and	DCL	files,	and	compiled	AutoLISP
code.	See	Making	Application	Modules	for	instructions	on	building	VLX	files.

Using	VLX	files,	you	can	further	control	your	application's	operating
environment	by	exposing	only	those	functions	you	choose	to	expose,	and	by
maintaining	a	wall	between	your	program's	variables	and	the	variables	users	can
interact	with	in	AutoCAD.	For	more	information	on	controlling	the	operating
environment	of	a	VLX,	see	Designing	for	a	Multiple	Document	Environment.

Using	the	Compiler
Compiling	a	Program	from	a	File
Walking	through	a	Compile	Example
Loading	and	Running	Compiled	Programs
Linking	Function	Calls

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	

Using	the	Compiler
	
	
	

VLISP	provides	several	ways	to	access	and	use	the	file	compiler.	To	compile	a
single	AutoLISP	file,	you	can	use	the	vlisp-compile	function.	To	compile
many	AutoLISP	files	into	a	single	VLX	file,	you	can	use	the	Make	Application
wizard.	The	vlisp-compile	function	and	the	Make	Application	wizard	are
described	in	this	chapter.

If	your	application	consists	of	a	set	of	AutoLISP	files	loaded	in	parallel,	it	is
recommended	that	you	use	the	VLISP	integrated	project	management	facilities
to	compile	your	files.	The	project	manager	automatically	recompiles	files	that
have	changed,	allows	you	to	find	code	segments	without	knowing	which	files
contain	them,	and	optimizes	the	use	of	function	calls	and	local	variables	in	the
compiled	files.	These	features	are	explained	in	detail	in	.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	

Compiling	a	Program	from	a	File
	
	
	

To	compile	a	single	AutoLISP	file,	call	the	vlisp-compile	function.	The
function	syntax	is

(vlisp-compile	'mode	“filename”	[out-filename])	

For	this	function

mode	is	a	symbol	identifying	the	compiler	mode

filename	is	a	string	naming	the	source	file

out-filename	is	a	string	naming	the	compiled	output	file
Choosing	a	Compiler	Mode
Identifying	the	Input	File
Naming	an	Output	File

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	Compiling	a	Program	from	a
File	>	

Choosing	a	Compiler	Mode
	
	
	

The	mode	parameter	indicates	the	compilation	mode,	which	can	be	one	of	the
following:

st

Standard	build	mode

lsm

Optimize	and	link	indirectly

lsa

Optimize	and	link	directly

The	standard	mode	produces	the	smallest	output	file	and	is	suitable	for	programs
consisting	of	a	single	file.

The	optimization	options	result	in	more	efficient	compiled	files,	which	becomes
important	as	your	programs	grow	in	size	and	complexity.	The	basic	functions	of
optimization	are	as	follows:

Link	function	calls	to	create	direct	references	to	the	compiled	function	in
the	compiled	code,	instead	of	to	the	function	symbol.	This	feature
improves	the	performance	of	the	compiled	code	and	protects	the	code
against	function	redefinition	at	runtime.

Drop	function	names	to	make	the	compiled	code	more	secure	and	to
decrease	program	size	and	load	time.

Drop	the	names	of	all	local	variables	and	directly	link	their	references.
This	also	makes	the	compiled	code	more	secure	and	decreases	program

size	and	load	time.

The	VLISP	project	management	feature	allows	you	to	tailor	the	optimization
options	to	the	specific	needs	of	your	application.	See	to	learn	more	about
choosing	optimization	options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	Compiling	a	Program	from	a
File	>	

Identifying	the	Input	File
	
	
	

If	your	source	file	is	in	the	AutoCAD	support	file	search	path,	you	do	not	have
to	include	the	path	name	when	specifying	the	file	name.	The	search	path	is	set	by
choosing	Tools	 	Options	from	the	AutoCAD	menu,	then	clicking	the	Files	tab
and	selecting	Support	File	Search	Path:

For	example,	if	you	are	compiling	the	yinyang.lsp	program	file	that	is	in	the
AutoCAD	Sample\VisualLISP	directory,	and	Support	File	Search	Path	is	set	as
indicated	in	the	previous	figure,	you	can	issue	the	following	command	to
compile	the	program:

(vlisp-compile

'st	"yinyang.lsp")

If	the	AutoCAD	sample\visuallisp	directory	is	not	in	the	support	file	search	path,
you	must	include	the	entire	path	name	when	specifying	the	source	file.	For
example:

(vlisp-compile

'st	"c:/program	files/	<AutoCAD	installation	directory>/sample/visuallisp/yinyang.lsp")

If	you	omit	the	file	extension	from	a	file	name,	VLISP	assumes	the	.lsp
extension.

When	specifying	the	file	path	name,	replace	the	backslash	symbol	(\)	you
normally	use	for	file	names	with	either	a	forward	slash	or	a	double	backslash,
following	the	usual	AutoCAD	convention.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	Compiling	a	Program	from	a
File	>	

Naming	an	Output	File
	
	
	

The	compiler	produces	code	in	the	fast-load	AutoLISP	format	(FAS).	By	default,
the	output	file	containing	this	code	has	the	same	name	as	the	input	file,	but	with
an	extension	of	.fas.	You	can	override	the	default	name	by	specifying	an	output
file	name.	For	example,	to	compile	yinyang.lsp	and	produce	an	output	file
named	GoodKarma.fas,	issue	the	following	command:

	(vlisp-compile	'st	"yinyang.lsp"	"GoodKarma.fas")

Note If	you	specify	an	output	file	name	but	do	not	specify	a	path	name	for	either
the	input	or	the	output	file,	VLISP	places	the	output	file	in	the	AutoCAD	default
installation	directory.

In	most	instances,	you'll	want	to	specify	the	full	path	name	of	the	output	file.	For
example:

(vlisp-compile

'st		"yinyang.lsp	"	"c:/program	files/.../sample/visuallisp/goodkarma")

This	ensures	that	the	output	file	is	placed	in	the	directory	you	want..

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	

Walking	through	a	Compile	Example
	
	
	

You	can	use	the	yinyang.lsp	file	in	the	AutoCAD	sample\visuallisp	directory	to
exercise	the	vlisp-compile	function.

To	compile	the	yinyang.lsp	sample	program

1.	 At	the	Console	prompt,	enter	the	following:

(vlisp-compile	

'st	"c:/program

files/	<AutoCAD	installation	directory>/sample/visuallisp/yinyang.lsp")	

This	command	requests	a	standard	mode	compile	of	the	yinyang.lsp	file.
No	output	file	name	is	specified,	so	the	compiled	result	will	be	saved	in
a	file	named	yinyang.fas	and	will	be	placed	in	the	same	directory	as	the
input	file	(the	AutoCAD	sample\visuallisp	directory).

2.	 Look	at	the	Build	Output	window	displayed	after	the	command	executes.
If	necessary,	scroll	up	in	the	window	to	see	all	the	compiler	messages.	If
the	compile	completed	successfully,	the	window	contains	messages	like
the	following:

During	compilation,	the	compiler	prints	function	names	and	various	messages
about	each	stage	of	compilation.	The	first	stage	is	syntax	and	lexical	checking	of
the	source	code.	If	the	compiler	encounters	errors,	it	issues	messages	and	halts

the	compilation	process.	The	compiler	issues	warnings	if	it	encounters
expressions	it	considers	dangerous,	such	as	redefining	existing	AutoLISP
functions	or	assigning	new	values	to	protected	symbols.	If	the	compiler	displays
warning	or	error	messages,	you	can	view	and	edit	the	source	code	that	caused
these	messages	by	double-clicking	on	the	message	in	the	Build	Output	window.

If	compilation	is	successful,	as	in	the	example	contained	in	the	above	procedure,
the	Build	Output	window	displays	the	name	of	the	compiled	output	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	

Loading	and	Running	Compiled	Programs
	
	
	

Compiled	AutoLISP	programs	can	be	loaded	and	run	from	either	the	VLISP
Console	window	or	the	AutoCAD	Command	prompt,	or	by	choosing	Tools	
Load	Application	from	the	AutoCAD	menu.	This	is	true	of	both	.fas	files	and
.vlx	files,	which	may	contain	multiple	compiled	programs.	(See	Making
Application	Modules	for	information	on	creating	.vlx	files.)

To	run	a	compiled	program	from	the	Visual	LISP	Console	window

1.	 Load	the	program	by	invoking	the	load	function	from	the	Console
prompt.	For	example,	to	load	the	compiled	yinyang	program	created	in
Walking	through	a	Compile	Example,	enter	the	following	command:

	(load	"c:/program	files/<AutoCAD	installation

directory>	/sample/visuallisp/yinyang.fas")

If	you	specify	a	file	name	without	a	path	or	extension,	LOAD	looks	in
the	current	directory	for	a	matching	file	name	with	a	.vlx,	.fas,	or	.lsp
extension.	If	LOAD	does	not	find	a	match,	it	continues	to	search	the	rest
of	the	AutoCAD	search	path	for	a	matching	file	name.	The	search	stops
in	the	first	directory	that	contains	a	matching	file	name	with	any	of	the
valid	extensions.	In	that	directory,	if	there	are	multiple	matching	files
with	valid	extensions,	the	file	with	the	most	recent	timestamp	is	loaded.
If	there	are	multiple	files	with	the	same	timestamp,	the	preference	order
is	VLX,	FAS,	LSP.
If	you	specify	a	path	to	LOAD	but	omit	the	file	type,	the	function	looks
for	VLX,	FAS,	or	LSP	files	with	a	matching	name	in	the	specified
directory,	and	loads	the	one	with	the	most	recent	timestamp.
If	you	prefer	less	typing	and	more	clicking,	choose	File	 	Load	File
from	the	VLISP	menu,	and	use	the	Load	Lisp	File	dialog	box	to	select

the	file	you	want	to	load.	Remember	to	use	the	Files	of	Type	pull-down
list	in	this	dialog	box	to	specify	the	type	of	file	you	want	to	load,
otherwise	VLISP	lists	only	.lsp	files	in	the	dialog	box.	You	can	select
from	the	following	types:

Lisp	Source	Files	(.lsp	files)

Compiled	AutoLISP	Files	(.fas	files)

VL	Packed	Application	(.vlx	files)

All	files	(lists	all	files	in	the	specified	directory)
Choose	Open	to	load	the	selected	files.

2.	 At	the	VLISP	Console	prompt,	enter	the	name	of	the	function	you	want
to	run,	enclosing	the	name	in	parentheses.	For	example:

	(yinyang)

VLISP	transfers	control	to	AutoCAD	to	display	program	prompts	and
accept	user	input.

Once	you	load	a	program,	you	can	run	it	from	either	the	AutoCAD	Command
prompt	or	the	VLISP	Console	window	prompt.	Note	that	if	the	name	of	the
function	you	are	running	begins	with	c:,	you	can	invoke	it	from	the	AutoCAD
Command	prompt	as	if	it	were	an	AutoCAD	command,	that	is,	without
enclosing	the	name	in	parentheses.	See	for	more	information	on	this	feature.

Refer	to	the	AutoLISP	Reference	for	more	information	on	the	load	function.
Loading	Extended	AutoLISP	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	Loading	and	Running	Compiled
Programs	>	

Loading	Extended	AutoLISP	Functions
	
	
	

VLISP	provides	some	extensions	to	the	AutoLISP	language	that	are	not	loaded
automatically	when	you	start	AutoCAD.	These	functions	have	names	that	begin
with	vla-,	vlax-,	and	vlr-.	The	vla-	functions	implement	AutoLISP	ActiveX®

support.	The	vlax-	functions	provide	ActiveX	utility	and	data	conversion
functions,	dictionary	handling	functions,	and	curve	measurement	functions.	The
vlr-	functions	provide	support	for	AutoCAD	reactors.	Before	you	can	use	any	of
these	functions,	you	must	load	the	AutoLISP	extensions	with	the	following
function	call:

	(vl-load-com)

This	function	first	checks	if	the	AutoLISP	extensions	are	already	loaded;	if	so,
the	function	does	nothing,	otherwise	it	loads	the	extensions.

AutoLISP	code	that	includes	calls	to	vla-,	vlax-,	or	vlr-	functions	should	always
begin	with	a	call	to	vl-load-com	to	ensure	that	the	code	will	run;	it	should
not	be	left	up	to	the	user	to	load	the	extensions.	If	your	application	does	not	call
vl-load-com,	the	application	may	fail.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Compiling	and	Linking	Programs	>	

Linking	Function	Calls
	
	
	

The	process	of	compiling	function	calls	results	in	VLISP	creating	a	loadable
module	containing	in-line	copies	of	some	AutoLISP	built-in	functions.	In-line
compilation	of	built-in	functions	increases	the	efficiency	of	the	resulting	code,
but	may	change	the	behavior	of	some	tricky	AutoLISP	programs.

For	example,	if	your	program	contains	an	in-line	copy	of	a	built-in	function,	and
that	function	is	subsequently	redefined,	your	program	does	not	use	the	new
function	definition.	A	copy	of	the	old	definition	is	part	of	the	program's	load
module,	and	that	version	is	called	directly.	You	must	recompile	your	program	to
pick	up	the	new	function	definition.

If	you	include	both	direct	and	indirect	calls	to	the	same	function,	your	program
could	end	up	using	different	versions	for	different	function	calls.	This	is	one
reason	why	combining	direct	and	indirect	calls	within	a	single	program	is	not
recommended.

When	using	multiple-file	applications	in	conjunction	with	direct	linking,	it	is
highly	recommended	that	you	use	the	VLISP	built-in	project	management
system	along	with	its	functions	to	optimize	code	automatically.	The	project
management	system	provides	a	greater	degree	of	control	over	compilation	and
linking	of	program	files	than	does	the	vlisp-compile	function.	See	for
details.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	

Making	Application	Modules
	
	
	

VLISP	provides	you	with	the	ability	to	create	a	single,	stand-alone	executable
module	for	your	application.	This	module	incorporates	all	your	application's
compiled	files,	and	can	include	DCL,	DVB,	and	other	files	that	your	application
may	need.	Executable	VLISP	modules	are	known	as	VLX	files,	and	are	stored	in
files	named	with	a	.vlx	extension.

A	Make	Application	wizard	guides	you	through	the	application	building	process
in	VLISP.	The	result	of	this	process	is	a	Make	file,	which	is	often	referred	to	by
its	file	extension,	.prv.	The	Make	file	contains	all	the	instructions	VLISP	needs
to	build	the	application	executable.

Creating	a	New	Application
Loading	and	Running	Visual	LISP	Applications
Changing	Application	Options
Rebuilding	an	Application
Updating	an	Application

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	

Creating	a	New	Application
	
	
	

It	is	recommended	you	build	your	application	only	after	you	have	fully
debugged	it.	Compiler	errors	during	the	Make	process	may	prevent	the
application	wizard	from	completing	successfully.

There	are	two	modes	of	the	Make	Application	wizard:	simple	and	expert.	In	the
simple	mode,	you	need	only	identify	the	files	in	your	application	and	name	the
files	you	want	to	create.	The	expert	mode	allows	for	many	additional	options.

To	build	an	executable	file	with	the	Make	Application	wizard

1.	 Choose	File	 	Make	Application	 	New	Application	Wizard	from	the
VLISP	menu	to	start	the	Make	Application	wizard.	VLISP	displays	a
Wizard	Mode	dialog	box	asking	you	to	choose	the	mode	you	want:

Select	Expert	mode,	so	you	can	see	all	the	possible	Make	options;	then
press	the	Next	button.

2.	 VLISP	displays	the	following	Application	Directory	dialog	box,	where
you	name	your	application	and	specify	where	you	want	the	application
files	built	by	Make	Application	to	reside:

The	Application	Directory	dialog	box	appears	in	both	the	Simple	and
Expert	Wizard	modes.
You	can	enter	the	full	path	name	in	the	Application	Location	field,	or
press	the	Browse	button	and	identify	the	output	directory	(folder)	using	a
standard	Windows	dialog	box.
The	Make	Application	wizard	uses	the	Application	Name	when	it
creates	the	application	executable	(.vlx)	file	and	the	Make	(.prv)	file.	For
example,	if	you	specify	an	application	name	of	myapp,	the	Make
Application	wizard	creates	files	myapp.vlx	and	myapp.prv.
If	you	need	to	go	back	to	a	previous	Make	Application	wizard	step	and
change	something,	press	the	Back	button.	Otherwise,	press	Next	to
continue.

3.	 The	Application	Options	dialog	box	is	displayed	when	you	run	the	Make
Application	wizard	in	Expert	mode.	In	this	dialog	box,	you	choose
whether	you	want	your	application	to	run	in	its	own	namespace	or	in	the
namespace	of	the	document	from	which	the	VLX	is	loaded.	See
Designing	for	a	Multiple	Document	Environment	for	a	discussion	of
namespaces	and	separate-namespace	VLX	behavior.
The	ActiveX	Support	option	is	available	if	you	choose	to	run	your
application	in	a	separate	namespace.	Selecting	this	option	results	in

automatic	loading	of	AutoLISP	ActiveX	support	functions	when	the
VLX	is	loaded.

Choose	Next	to	continue	building	the	application.

4.	 VLISP	displays	a	dialog	box	in	which	you	specify	the	LISP	files	to	be
loaded	when	your	application	loads.

The	LISP	Files	to	Include	dialog	box	appears	in	both	the	Simple	and
Expert	Wizard	modes.
You	can	specify	AutoLISP	source	code	files,	compiled	AutoLISP	(FAS)
files,	or	a	VLISP	project	file.	Click	the	pull-down	button	to	choose	the
type	of	file	you	want	to	include,	then	press	the	Add	button	to	display	the

following	dialog	box	for	selecting	the	files:

You	can	select	multiple	files	using	the	standard	Windows	file	selection
methods.	After	selecting	file	names,	press	Open	to	add	the	files	to	your
application.	To	add	more	files	of	a	different	type,	choose	the	file	type
from	the	pull-down	list	and	press	Add	again.
If	you	specify	AutoLISP	source	files,	VLISP	compiles	those	program
files	when	it	builds	the	application.	If	you	specify	a	project	file,	all	the
project's	files	are	compiled	and	included	in	the	output	module.	See	for
information	on	creating	and	using	project	files.
To	remove	files	from	the	application,	select	the	files	you	no	longer	want
and	press	the	Remove	button.	You	can	also	select	one	or	more	files,
right-click,	and	choose	Remove	from	the	shortcut	menu.
VLISP	loads	the	application's	files	in	the	order	they	are	listed	in	the	List
Files	to	Include	dialog	box.	You	may	need	to	reorder	the	file	list.	For
example,	if	you	call	a	function	at	load	time,	the	function	must	be	defined
before	it	is	used.	In	this	case,	you	want	to	place	the	file	defining	that
function	first.	The	List	Files	to	Include	dialog	box	contains	buttons	you
can	use	to	move	files	around	in	the	list.	Select	a	file	name,	then	choose
from	among	the	following	buttons:

Top Move	to	the	top	of	the	list.

Up Move	ahead	of	the	file	just	above	in	the	list.

Dn Move	behind	the	file	just	below	in	the	list.

Btm Move	to	the	bottom	of	the	list.
You	can	also	right-click	and	choose	these	actions	from	a	shortcut	menu.
Note	that	the	load	order	of	project	files	is	specified	when	you	define	the
project.	(See	of	the	chapter.)
When	you	have	finished	specifying	your	application's	AutoLISP	files,
press	Next	to	continue	to	the	next	step	in	the	Make	Application	wizard.

5.	 The	Resource	Files	to	Include	dialog	box	is	displayed	when	you	run	the
Make	Application	wizard	in	Expert	mode.	If	your	application	includes
additional	files,	such	as	dialog	control	language	(DCL)	files,	you	can
include	them	in	your	application's	VLX	module	by	selecting	them	in	the
dialog	box.

You	can	specify	the	following	types	of	resource	files:

AutoLISP	source	files

Compiled	LISP	files

Visual	LISP	project	files

DCL	files

DVB	files

Text	files
All	program	files	can	be	loaded	by	the	VLX.	If	you	choose	a	Visual

LISP	project	file,	all	files	defined	in	the	project	files	are	compiled	and
included	in	the	VLX.
Click	the	pull-down	button	to	choose	the	type	of	files	you	want	to
include,	then	press	the	Add	button	to	display	the	dialog	box	for	selecting
the	files.	In	the	file	selection	dialog	box,	you	can	select	multiple	files
using	the	standard	Windows	file	selection	methods.	After	selecting	file
names,	press	Open	to	add	the	files	to	your	application.
To	add	more	files	of	a	different	type,	choose	the	file	type	from	the	pull-
down	list	and	press	Add	again.
To	remove	resource	files	from	your	application,	select	the	files	you	no
longer	want	and	press	the	Remove	button.	You	can	also	select	one	or
more	files,	right-click,	and	choose	Remove	from	the	shortcut	menu.
After	selecting	resource	files	for	your	application,	press	Next	to	continue
the	Make	Application	process.

6.	 The	Application	Compilation	Options	dialog	box	is	displayed	only	in
Expert	mode.	You	can	select	the	compilation	and	linkage	options	for
your	application	in	the	dialog	box.

Refer	to	Choosing	a	Compiler	Mode	for	information	on	these	options.
After	selecting	your	compilation	options,	press	Next	to	continue	to	the
final	step	of	the	Make	Application	process.

7.	 For	the	final	step	in	the	Make	Application	wizard,	you	can	tell	VLISP	to
build	your	application.	The	Review	Selections/Build	Application	dialog

box	appears	in	both	Simple	and	Expert	modes.

VLISP	saves	all	your	application	options	in	a	Make	(.prv)	file.	The	Make
file	also	includes	all	the	instructions	that	VLISP	needs	to	build	the
application.	If	you	do	not	elect	to	build	the	application	now,	VLISP	can
use	the	Make	file	to	build	the	application	later.
Choose	Finish	to	conclude	the	Make	Application	process.
Understanding	the	Output	from	Make	Application

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	Creating	a	New	Application	>	

Understanding	the	Output	from	Make	Application
	
	
	

VLISP	executes	instructions	in	a	Make	file	to	build	an	application.	Output
messages	from	this	process	appear	in	two	VLISP	windows:	the	Build	Output
window	and	the	Console	window.	The	Build	Output	window	contains	messages
relating	to	any	compilation	of	AutoLISP	source	code	into	.fas	files.	In	a
successful	compile,	the	output	looks	like	the	following:

The	compiler	messages	identify	the	following	items:

The	name	and	directory	path	of	the	source	files	being	compiled.

The	functions	defined	in	the	source	file.
In	the	above	example,	four	functions	are	identified:
GP:GETPOINTINPUT,	GP:GETDIALOGINPUT,
GP:DRAWOUTLINE,	and	C:GPATH.

The	name	and	path	of	the	output	.fas	files.

The	VLISP	Console	window	displays	messages	relating	to	the	creation	of	the
application	executable,	the	.vlx	file.	If	the	Make	Application	process	succeeds,
the	Console	window	displays	the	path	and	file	name	of	the	.vlx,	as	in	the
following	example:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	

Loading	and	Running	Visual	LISP	Applications
	
	
	

To	execute	the	functions	in	a	VLX	application,	you	must	first	load	the	VLX	file
using	any	of	the	following	methods:

Call	the	AutoLISP	load	function.

Choose	File	 	Load	File	from	the	VLISP	menu.

Choose	Tools	 	Load	Application	from	the	AutoCAD	menu.

See	Loading	and	Running	Compiled	Programs	for	specific	instructions	on
loading	and	running	application	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	

Changing	Application	Options
	
	
	

VLISP	allows	you	to	change	the	way	your	application	is	designed.	For	example,
you	can	change	compilation	options,	or	add	or	remove	AutoLISP	files	from	the
application.

To	change	an	application's	definition

1.	 Choose	File	 	Make	Application	 	Existing	Application	Properties.
VLISP	displays	a	dialog	box	for	you	to	specify	your	application's	Make
(.prv)	file,	which	is	where	VLISP	stores	the	application's	properties.

2.	 Specify	the	name	of	your	application's	Make	file,	then	press	Open.
VLISP	displays	the	Application	Properties	dialog	box.

3.	 Click	the	tab	of	the	property	you	want	to	change.

4.	 After	changing	a	property,	press	Apply	to	save	the	change,	or	press	OK
to	save	the	change	and	exit	the	Application	Properties	dialog	box.

Load/Compile	Options

Compile	AutoLISP	source	files	using	the	Standard	compile	option,	or
Optimize	and	Link	the	files.

Tune	Directories

Identify	LISP	Object	directory	and	Target	directory.	The	Object	directory	is
where	VLISP	places	.fas	and	temporary	files	created	by	the	compiler.	Target
directory	is	another	name	for	“Application	directory,”	which	is	where	Make
Application	stores	the	VLX	file.	If	a	field	identifying	a	directory	is	blank,
VLISP	uses	the	.prv	directory.

Application	Options

Create	a	separate-namespace	VLX	and	include	ActiveX	support.	If	ActiveX
Support	is	selected	along	with	Separate	Namespace,	loading	the	VLX	will
automatically	result	in	the	loading	of	AutoLISP	ActiveX	support	functions.

Load	Files

AutoLISP	source	files	included	in	the	application.

Resource	Files

Additional	resource	files	included	in	the	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	

Rebuilding	an	Application
	
	
	

After	changing	application	options	or	modifying	source	code,	you	need	to
rebuild	your	application	for	the	changes	to	take	effect.

To	rebuild	an	application

1.	 Choose	File	 	Make	Application	 	Rebuild	Application	from	the	VLISP
menu.

2.	 Specify	the	location	of	your	application's	Make	file.

3.	 Choose	Open	to	rebuild	the	application.

In	rebuilding	the	application,	VLISP	recompiles	all	.lsp	source	files,	applying	the
specified	compilation	options,	and	packages	your	application	files	into	a	new
.vlx	file.	If	your	application	contains	many	AutoLISP	files,	and	you	have	only
changed	the	source	code	in	one	or	two	files,	the	Make	Application	option	can
rebuild	your	application	more	efficiently.	See	the	following	section	for
information	on	using	this	option.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Making	Application	Modules	>	

Updating	an	Application
	
	
	

If	you	change	just	a	small	piece	of	your	application's	AutoLISP	source	code,	you
can	have	VLISP	rebuild	your	application	VLX	while	compiling	only	those	files
you've	updated.	To	make	this	type	of	update,	choose	File	 	Make	Application	
Make	Application	from	the	VLISP	menu,	and	select	your	application's	Make
file.	VLISP	rebuilds	the	application	based	on	the	information	contained	in	the
Make	file,	and	automatically	compiles	any	application	source	files	for	which
either	of	the	following	is	true:

There	is	no	compiled	(.fas)	version	of	the	file.

There	is	a	compiled	version	of	the	file,	but	the	source	file	has	been
modified	since	that	compile	(that	is,	the	date	of	the	source	file	is	more
current	than	the	date	of	the	.fas	file).

Note	that	if	you	change	application	options	(for	example,	from	Standard	compile
mode	to	Optimize	and	Link),	you	must	use	the	Rebuild	Application	menu	option
to	create	a	new	VLX	with	the	changes	you	specified.	The	Make	Application
command	only	checks	for	changes	to	AutoLISP	source	code	files,	not	to
application	options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	

Designing	for	a	Multiple	Document	Environment
	
	
	

Using	the	AutoCAD	multiple	document	interface	(MDI),	users	can	copy	objects
between	drawings	and	display	several	drawings	side	by	side	in	a	single	work
session.	When	you	design	an	AutoCAD	application,	you	need	to	understand	how
open	drawing	documents	relate	to	one	another.

Understanding	Namespaces
Running	an	Application	in	Its	Own	Namespace
Sharing	Data	Between	Namespaces
Handling	Errors	in	an	MDI	Environment
Limitations	on	Using	AutoLISP	in	an	MDI	Environment

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	

Understanding	Namespaces
	
	
	

The	concept	of	namespaces	was	introduced	to	prevent	applications	running	in
one	drawing	window	from	unintentionally	affecting	applications	running	in	other
windows.	A	namespace	is	a	LISP	environment	containing	a	set	of	symbols	(for
example,	variables	and	functions).	Each	open	AutoCAD	drawing	document	has
its	own	namespace.	Variables	and	functions	defined	in	one	document	namespace
are	isolated	from	variables	and	functions	defined	in	other	namespaces.

You	can	see	how	this	works	by	trying	a	simple	example.

To	see	the	effect	of	multiple	namespaces

1.	 Open	two	new	drawings	in	AutoCAD.

2.	 Choose	Window	 	Tile	Vertically	from	the	AutoCAD	menu.	You	should
see	two	open	document	windows	side	by	side	within	the	main	AutoCAD
window:

The	document's	title	bar	indicates	which	window	is	currently	active.	In
the	preceding	example,	Drawing1.dwg	is	the	current	document.

3.	 Enter	the	following	at	the	Command	prompt:

	(setq	draw1foo	"I	am	drawing	1")

This	sets	the	draw1foo	variable	to	a	string.

4.	 Activate	Drawing2.dwg	(click	in	the	window's	title	bar).

5.	 See	if	draw1foo	contains	the	value	you	just	set	for	it:

Command:	!draw1foo

nil

The	variable	is	nil	because	it	has	not	been	set	in	this	document's
namespace;	you	set	it	in	the	namespace	belonging	to	Drawing1.dwg.

6.	 Enter	the	following	at	the	Command	prompt:

	(setq	draw2foo	"I	too	am	a	drawing,	but	number	2")

This	sets	the	draw2foo	variable	to	a	string.

7.	 Activate	Drawing1.dwg.

8.	 Test	the	values	of	variables	draw1foo	and	draw2foo:

Command:	!draw1foo

"I	am	drawing	1"

Command:	!draw2foo

nil

The	draw1foo	variable	contains	the	value	you	set	for	it,	but
draw2foo	is	nil	because	you	did	not	set	it	to	a	value	in	the	current
namespace;	you	set	a	different	variable	of	the	same	name	in
Drawing2.dwg's	namespace.

VLISP	provides	ways	for	you	to	share	variables	between	namespaces,	but	you
must	take	explicit	action	to	do	so.	(See	Sharing	Data	Between	Namespaces.)

Like	variables,	functions	defined	in	an	AutoLISP	file	are	known	only	to	the
document	that	was	active	when	the	file	was	loaded.	The	functions	in	the	file	are
loaded	in	the	current	document's	namespace	and	are	known	only	to	that
document.

To	see	how	functions	are	affected	by	multiple	namespaces

1.	 Load	a	LISP	file	from	either	the	AutoCAD	Command	prompt	or	the
VLISP	Console	prompt.	For	example:

(load	"yinyang.lsp")

2.	 Invoke	the	function.

3.	 Open	a	second	drawing	window.

4.	 With	the	second	drawing	window	active,	try	invoking	the	function
again.	The	response	will	be	an	error	message	saying	the	function	is	not
defined.

You	can	use	the	vl-load-all	function	to	load	the	contents	of	an	AutoLISP
file	into	all	AutoCAD	drawing	documents.	For	example,	the	following	command
causes	the	contents	of	the	yinyang.lsp	file	to	be	loaded	into	all	open	documents,
and	into	any	documents	opened	later	in	the	AutoCAD	session:

(vl-load-all	"yinyang.lsp")

The	vl-load-all	function	is	useful	for	testing	new	functions	in	multiple

documents,	but	in	general	you	should	use	acaddoc.lsp	to	load	files	that	are
needed	in	every	AutoCAD	document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	

Running	an	Application	in	Its	Own	Namespace
	
	
	

You	can	define	a	namespace	for	a	VLX	application	in	VLISP.	A	VLX
application	defined	in	this	manner	is	referred	to	as	a	separate-namespace	VLX.
When	you	load	a	separate-namespace	VLX,	it	runs	in	its	own	namespace,	not	the
namespace	of	the	document	from	where	you	loaded	the	VLX.	The	option	to
define	a	VLX	application	with	its	own	namespace	is	part	of	the	Make
Application	procedure	(see	Making	Application	Modules).

If	you	try	to	load	a	separate-namespace	VLX	that	is	already	loaded,	you'll
receive	an	error	indicating	this.	Use	the	vl-unload-vlx	function	to	unload
the	application.	The	function's	syntax	is

	(vl-unload-vlx“appname”)

For	appname,	specify	the	file	name	of	the	VLX,	without	the	path	or	the	.vlx
extension.

Variables	and	functions	defined	in	a	VLX	application's	namespace	are	known
only	to	the	application,	not	to	the	drawing	document	that	was	active	when	the
application	was	loaded.	This	allows	you	to	protect	your	variables	from
accidentally—or	intentionally—being	overwritten	by	other	applications	or	users.

A	VLX	application	can	export	function	names	to	a	document	namespace	to
enable	those	functions	to	be	accessed	within	the	context	of	that	document.	The
following	diagram	illustrates	how	this	works:

The	diagram	shows	an	AutoCAD	session	containing	two	open	drawing
documents.	A	VLX	application	named	“hangman”	is	loaded	with	respect	to
Document1	(for	example,	a	user	opened	Document1	and	then	loaded	the	VLX
application	from	the	AutoCAD	Command	prompt).	The	hangman	application
established	its	own	namespace	and	declared	the	bar	function	and	the	dooley
variable	in	that	namespace.	The	VLX	exported	the	bar	function	to	Document1's
namespace.	When	a	user	invokes	bar	from	Document1,	bar	runs	in	the
application's	namespace.	The	bar	function	is	unknown	to	Document2,	and
neither	document	has	access	to	the	dooley	variable	(because	the	VLX	did	not
export	it).	You	can	load	another	instance	of	the	hangman	VLX	into	Document2,
but	this	instance	will	have	its	own	namespace	and	its	own	copies	of	bar	and
dooley.

Note When	you	load	a	VLX	file	that	has	not	been	defined	as	having	its	own
namespace,	the	environment	is	similar	to	that	of	a	loaded	file.	All	functions	and
variables	defined	in	the	VLX	are	loaded	in	the	document's	namespace.

Accessing	External	ObjectARX	Functions	from	a	Separate-
Namespace	VLX
Making	Functions	Available	to	Documents
Making	Separate-Namespace	Functions	Available	to	Other	VLX
Applications
Referencing	Variables	in	Document	Namespaces

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	Running	an
Application	in	Its	Own	Namespace	>	

Accessing	External	ObjectARX	Functions	from	a	Separate-
Namespace	VLX
	
	
	

In	order	to	access	functions	that	are	defined	in	an	external	ObjectARX
application	from	a	separate-namespace	VLX,	you	must	first	issue	vl-arx-
import	to	import	the	function.	ObjectARX	functions	are	identified	as	data	type
EXRXSUBR.	For	example,	the	following	command	identifies	startapp	as	an
external	ObjectARX	function:

Command:	(type	startapp)

EXRXSUBR

The	following	function	works	correctly	if	loaded	from	an	LSP	file:

(vl-doc-export	'StartApp2)

(vl-load-com)

(defun	StartApp2	()

			(setq	acadApp	(vlax-get-acad-object))

			(setq	acadDoc	(vla-Get-ActiveDocument	acadApp))

			(setq	acadPrefs	(vla-Get-Preferences	acadApp))

			(setq	acadPrefFiles	(vla-get-Files	acadPrefs))

			(setq	hlpFile	(vla-Get-HelpFilePath	acadPrefFiles))

			(startapp	"winhlp32"	hlpFile)

			(princ)

)

(princ	"\nStartApp2	is	loaded,	Type	(StartApp2)	to	Run.")

(princ)

However,	if	you	compile	StartApp2	as	a	separate-namespace	VLX	and	try	to	run
the	function,	it	fails	with	the	following	error	message:

"no	function	definition:	STARTAPP"

To	correct	this,	import	startapp	using	the	vl-arx-import	function,	as
shown	in	the	following	revised	code:

(vl-doc-export	'StartApp2)

(vl-load-com)

(vl-arx-import	'startapp)

(defun	StartApp2	()

			(setq	acadApp	(vlax-get-acad-object))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	Running	an
Application	in	Its	Own	Namespace	>	

Making	Functions	Available	to	Documents
	
	
	

By	default,	functions	defined	in	a	separate-namespace	VLX	are	not	exposed	to
the	document	namespace	from	which	the	VLX	is	loaded.	You	must	use	the	vl-
doc-export	function	to	expose	functions	to	document	namespaces.	When
issued	from	a	VLX	that	runs	in	its	own	namespace,	vl-doc-export	exposes
the	specified	function	to	any	document	namespace	that	loads	the	VLX.	The	vl-
doc-export	function	accepts	a	single	argument,	a	symbol	identifying	the
function	name.	For	example,	look	at	the	following	code:

(vl-doc-export	'kertrats)

(defun	kertrats	()

		(princ	"This	function	goes	nowhere")	

)

This	example	defines	the	kertrats	function,	which	simply	prints	a	message.
The	defun	for	the	function	is	preceded	by	a	vl-doc-export	call	that	causes
the	function	to	be	exported	to	the	document	namespace.

To	see	how	vl-doc-export	works	in	a	separate-namespace	VLX

1.	 In	a	VLISP	text	editor	window,	copy	the	following	code	into	a	file:

(defun	kertrats	()

		(princ	"This	function	goes	nowhere")	

)

Note	that	this	code	does	not	contain	a	call	to	vl-doc-export.

2.	 Save	the	file	you	just	created.

3.	 Use	the	VLISP	Make	Application	wizard	to	build	a	VLX	from	your
program	file.	Specify	the	following	wizard	options:

Wizard	mode:	Expert

Application	name:	doctest

Application	options:	Separate-namespace

Compilation	options:	Optimize

4.	 From	either	the	AutoCAD	Command	prompt	or	the	VLISP	Console
window	prompt,	load	the	doctest	VLX	file.

5.	 Try	running	the	kertrats	function.
You	should	receive	an	error	message	indicating	the	function	is	not
defined.

6.	 Add	the	following	line	of	code	to	the	beginning	of	your	program	file:

(vl-doc-export	'kertrats)

7.	 Save	the	file,	then	rebuild	the	application.

8.	 Use	vl-unload-vlx	to	unload	the	VLX,	then	load	and	run	the	VLX	again.
This	time,	kertrats	should	run	successfully.

You	can	issue	a	vl-doc-export	call	outside	the	context	of	a	separate-
namespace	VLX	application,	but	it	has	no	effect.

The	vl-list-loaded-vlx	function	returns	a	list	of	all	separate-namespace
applications	associated	with	the	current	document.	For	example:

_$	(vl-list-loaded-vlx)

(DOCTEST)

To	determine	what	functions	have	been	exported	from	a	separate-namespace
application	into	the	current	document,	use	vl-list-exported-
functions.	When	calling	this	function,	you	must	pass	it	a	string	naming	the
application	you	are	checking.	For	example,	the	following	command	returns	a	list
of	the	functions	exported	by	the	doctest	application:

_$	(vl-list-exported-functions	"doctest")

("KERTRATS")

The	results	show	that	a	single	function,	kertrats,	was	exported	from	doctest
to	the	current	document's	namespace.

Note Currently,	if	separate	namespace	VLX	A	associated	with	document	A	loads
separate	namespace	VLX	B,	then	all	of	VLX	B's	exported	functions	are
automatically	defined	in	document	A.	Note	also	that	VLX	B's	exported	functions
are	not	defined	in	VLX	A	until	VLX	A	issues	an	explicit	import.	(See	Making
Separate-Namespace	Functions	Available	to	Other	VLX	Applications.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	Running	an
Application	in	Its	Own	Namespace	>	

Making	Separate-Namespace	Functions	Available	to	Other
VLX	Applications
	
	
	

Functions	defined	in	one	separate-namespace	VLX	are	not	exposed	to	any	other
separate-namespace	VLX	applications.	If	a	function	has	been	exported	through
vl-doc-export,	you	can	use	the	vl-doc-import	function	to	make	the
function	available	to	another	separate-namespace	VLX.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	Running	an
Application	in	Its	Own	Namespace	>	

Referencing	Variables	in	Document	Namespaces
	
	
	

Variables	defined	in	a	separate-namespace	VLX	are	not	known	to	the	document
namespace	associated	with	the	VLX.	However,	a	separate-namespace	VLX	can
access	variables	defined	in	a	document	namespace	using	the	vl-doc-ref	and
vl-doc-set	functions.

The	vl-doc-ref	function	copies	the	value	of	a	variable	from	a	document
namespace.	The	function	requires	a	single	argument,	a	symbol	identifying	the
variable	to	be	copied.	For	example,	the	following	function	call	copies	the	value
of	a	variable	named	aruhu:

(vl-doc-ref	'aruhu)

If	executed	within	a	document	namespace,	vl-doc-ref	is	equivalent	to	the
eval	function.

The	vl-doc-set	function	sets	the	value	of	a	variable	in	a	document
namespace.	The	function	requires	two	arguments:	a	symbol	identifying	the
variable	to	be	set,	and	the	value	to	set	for	the	variable.	For	example,	the
following	function	call	sets	the	value	of	a	variable	named	ulus:

(vl-doc-set	'ulus	"Go	boldly	to	noone")

If	executed	within	a	document	namespace,	vl-doc-set	is	equivalent	to	the
setq	function.

To	set	the	value	of	a	variable	in	all	open	document	namespaces,	use	the	vl-
propagate	function.	For	example,	the	following	function	calls	set	a	variable
named	fooyall	in	all	open	document	namespaces:

(setq	fooyall	"Go	boldly	and	carry	a	soft	stick")

(vl-propagate	'fooyall)

This	command	not	only	copies	the	value	of	fooyall	into	all	currently	open
document	namespaces,	but	also	causes	fooyall	to	automatically	be	copied	to
the	namespace	of	any	new	drawings	opened	during	the	current	AutoCAD
session.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	

Sharing	Data	Between	Namespaces
	
	
	

VLISP	provides	a	blackboard	namespace	for	communicating	the	values	of
variables	between	namespaces.	The	blackboard	is	a	namespace	that	is	not
attached	to	any	document	or	VLX	application.	You	can	set	and	reference
variables	in	the	blackboard	from	any	document	or	VLX.	Use	the	vl-bb-set
function	to	set	a	variable,	and	use	vl-bb-ref	to	retrieve	a	variable's	value.

For	example,	the	following	command	sets	the	foobar	blackboard	variable	to	a
string:

Command:	(vl-bb-set	'foobar	"Root	toot	toot")

"Root	toot	toot"

The	vl-bb-ref	function	returns	the	specified	string.	The	following	example
uses	vl-bb-ref	to	retrieve	the	value	of	foobar	from	the	blackboard:

Command:	(vl-bb-ref	'foobar)

"Root	toot	toot"

Note	that	these	functions	require	you	to	pass	a	symbol	naming	the	variable	you
are	referencing	('var-name),	not	the	variable	name	(var-name).

Setting	or	retrieving	variable	values	in	the	blackboard	namespace	has	no	effect
on	variables	of	the	same	name	in	any	other	namespace.

To	demonstrate	that	document	variables	are	unaffected	by	blackboard
variables

1.	 From	the	VLISP	Console	window	(or	the	AutoCAD	Command	prompt),
use	vl-bb-set	to	set	the	*example*	blackboard	variable.

_$	(vl-bb-set	'*example*	0)

0

The	*example*	variable	is	set	to	0	in	the	blackboard	namespace.

2.	 Use	vl-bb-ref	to	verify	the	value	of	the	variable	you	set	in	the
previous	step.

_$	(vl-bb-ref	'*example*)

0

3.	 See	what	value	*example*	has	in	the	current	AutoCAD	document.

_$	*example*

nil

The	*example*	variable	is	nil	because	it	has	not	been	set	in	the
document	namespace.

4.	 Set	*example*	in	the	current	document.

_$	(setq	*example*	-1)

-1

The	*example*	variable	is	set	to	-1	in	the	document	namespace.

5.	 Check	the	current	value	of	*example*	in	the	blackboard.

_$	(vl-bb-ref	'*example*)

0

The	blackboard	variable	named	*example*	is	still	set	to	the	value
assigned	in	step	1;	setting	the	document	variable	of	the	same	name	in
step	4	had	no	effect	on	the	blackboard.

VLISP	also	provides	the	vl-doc-set	and	vl-doc-ref	functions	to	set	and
retrieve	document	namespace	variables	from	a	separate-namespace	VLX,	and
vl-propagate	to	set	the	value	of	a	variable	in	all	open	document
namespaces.	These	functions	are	described	in	Referencing	Variables	in
Document	Namespaces.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	

Handling	Errors	in	an	MDI	Environment
	
	
	

By	default,	each	document	namespace	is	provided	with	its	own	*error*
function,	which	is	defined	as	follows:

(defun	*error*	(msg)

															(princ	"error:	")

															(princ	msg)

															(princ)

)

A	VLX	application	running	within	a	document	namespace	shares	the	default
error-handler	function.	You	may	want	to	add	error-handling	logic	to	your
application.

Handling	Errors	in	a	VLX	Application	Running	in	Its	Own
Namespace

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	Handling	Errors
in	an	MDI	Environment	>	

Handling	Errors	in	a	VLX	Application	Running	in	Its	Own
Namespace
	
	
	

For	VLX	applications	executing	within	their	own	namespace,	you	can	either	use
the	default	error	function	or	you	can	define	an	error	handler	specifically	for	the
application.

If	you	define	an	error	handler	for	a	VLX	running	in	its	own	namespace,	you	can
call	the	vl-exit-with-error	function	to	pass	control	from	the	VLX	error
handler	to	the	document	namespace's	*error*	function.	The	following
example	uses	vl-exit-with-error	to	pass	a	string	to	the	document's
error	function:

(defun	*error*	(msg)

		...	;	processing	in	VLX	namespace/execution	context

(vl-exit-with-error	(strcat	"My	application	bombed!	"	msg)))

A	VLX	*error*	handler	can	use	the	vl-exit-with-value	function	to
return	a	value	to	the	document	namespace	from	which	the	VLX	was	invoked.
The	following	example	uses	vl-exit-with-value	to	return	the	integer
value	3	to	the	program	that	called	the	VLX	from	the	document	namespace:

(defun	*error*	(msg)

		...	;	processing	in	VLX-T	namespace/execution	context

		(vl-exit-with-value		3))

(vl-doc-export	'foo)

(defun	foo	(x)

		(bar	x)

		(print	3))

(defun	bar	(x)	(list	(/	2	x)	x))

Any	instructions	pending	at	the	time	the	error	occurred	are	flushed.

If	your	VLX	namespace	error	handler	does	not	use	either	vl-exit-with-
error	or	vl-exit-with-value,	then	control	returns	to	the	command
prompt	after	execution	of	the	error	handler.	You	can	only	call	vl-exit-
with-error	and	vl-exit-with-value	in	the	context	of	a	VLX
application's	error	handler;	it	is	an	error	to	invoke	these	functions	in	any	other
situation.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Building
Applications	>	Designing	for	a	Multiple	Document	Environment	>	

Limitations	on	Using	AutoLISP	in	an	MDI	Environment
	
	
	

When	using	native	AutoLISP	in	an	MDI	environment,	you	can	only	work	with
one	drawing	document	at	a	time.	Although	AutoLISP	provides	support	for
exchanging	variables	and	exposing	functions	to	multiple	namespaces,	you
cannot,	for	example,	run	a	function	in	one	document	namespace	and	issue
entmake	to	create	an	entity	in	another	document	namespace.	AutoLISP	does
not	support	accessing	information	across	multiple	drawings.

You	can	access	multiple	document	namespaces	using	ActiveX	automation,	and
AutoLISP	provides	access	to	ActiveX	methods	(see).	However,	accessing
multiple	documents	with	ActiveX	is	an	unsupported	feature	of	AutoLISP.	For
example,	an	AutoLISP	program	running	in	the	context	of	document	A	can
change	the	active	document	to	document	B	by	calling	vla-put-
activedocument.	Changing	the	active	document,	though,	immediately
suspends	execution	of	the	program.	The	program	may	resume	execution	if	the
user	activates	the	window	containing	document	A	but	the	system	will	be	in	an
unstable	state	and	likely	to	fail.

Warning If	you	do	use	ActiveX	to	work	in	MDI,	be	aware	that	if	you	close	all
AutoCAD	drawings	you	lose	access	to	AutoLISP	and	will	cause	an	exception.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Maintaining	Visual	LISP	Applications
	
	
	

You	can	maintain	large	programs	by	creating	a	Visual	LISP	project	and
optimizing	code.

This	chapter	describes	how	you	can	maintain	large	applications	containing
multiple	files	by	defining	the	application	as	a	Visual	LISP®	project.	Aside	from
defining	the	components	in	your	application,	you	can	use	VLISP	projects	to
define	compiler	options	for	the	application.	This	chapter	describes	the	various
compiler	options	and	the	consequences	of	each,	and	tells	you	how	to	override
these	options	for	individual	files	in	a	project.

Managing	Multiple	LISP	Files
Defining	a	Project
Working	with	Existing	Projects
Optimizing	Application	Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	

Managing	Multiple	LISP	Files
	
	
	

Many	program	examples	you	have	seen	in	this	document	have	been	small,	stand-
alone	AutoLISP®	files.	Typical	AutoLISP	applications,	however,	consist	of
larger	files	with	many	lines	of	code.	An	application	may	include	many	source
code	files.	After	compiling	the	programs	in	such	an	application,	you	also	have	a
number	of	FAS	files	to	track.

As	the	number	of	application	files	grows,	it	becomes	more	difficult	to	maintain
an	application.	Determining	when	you	need	to	recompile	files	after	source	code
changes	can	be	a	challenge.	VLISP	provides	functions	that	greatly	simplify	the
process	of	managing	multiple-file	applications.

Understanding	Visual	LISP	Projects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Managing	Multiple	LISP	Files	>	

Understanding	Visual	LISP	Projects
	
	
	

To	aid	you	in	the	process	of	maintaining	multiple-file	applications,	VLISP
provides	a	construct	called	a	project.	A	VLISP	project	contains	a	list	of
AutoLISP	source	files,	and	a	set	of	rules	on	how	to	compile	the	files.	Using	the
project	definition,	VLISP	can	do	the	following:

Check	which	.lsp	files	in	your	application	have	changed,	and
automatically	recompile	only	the	modified	files.	This	procedure	is
known	as	a	Make	procedure.

Simplify	access	to	source	files	by	listing	all	source	files	associated	with
a	project,	making	them	accessible	with	a	single-click.

Help	you	find	code	fragments	by	searching	for	strings	when	you	do	not
know	which	source	files	contain	the	text	you're	looking	for.	VLISP	limits
the	search	to	files	included	in	your	project.

Optimize	compiled	code	by	directly	linking	the	corresponding	parts	of
multiple	source	files.

Before	discussing	how	to	define	and	use	VLISP	projects,	it	may	help	to
introduce	file	types	used	in	VLISP.

LISP,	FAS,	and	Other	File	Types

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Managing	Multiple	LISP	Files	>	Understanding	Visual
LISP	Projects	>	

LISP,	FAS,	and	Other	File	Types
	
	
	

The	basic	file	type	in	VLISP	is	the	AutoLISP	source	file.	Typically,	AutoLISP
source	files	are	named	with	an	.lsp	file	extension.	You	have	seen	.lsp	files	used
frequently	in	previous	chapters.

The	FAS	(.fas)	file	type	was	introduced	in	the	previous	chapter,	Building
Applications	FAS	files	are	compiled	AutoLISP	files.	These	files	load	faster	than
AutoLISP	source	files	and	are	more	secure	because	their	contents	are	not
intelligible	to	users.

Here	is	a	brief	summary	of	the	types	of	files	used	by	the	VLISP	project
management	feature:

Visual	LISP	project	file	types

File	ext. Type	of	file Function

.fas Compiled
AutoLISP
code

Compiled	AutoLISP
programs.	May	be
loaded	and	run,	or
compiled	into	VLX
modules

.lsp AutoLISP
source	code

Program	source	files

.ob Object	code Used	internally	by
VLISP,	these	files

contain	compiled
AutoLISP	code	used	in
building	FAS	files

.pdb Project
database

Used	internally	by
VLISP,	these	files
contain	symbol
information	used	by	the
compiler

.prj Project
definition

Contains	the	location
and	names	of	all	source
files	that	build	the
project,	as	well	as
certain	parameters	and
rules	on	how	to	create
the	final	FAS	files

In	addition	to	the	files	recognized	by	the	project	manager,	VLISP	either	creates,
processes,	or	recognizes	a	number	of	additional	types	of	files,	as	summarized
below:

Additional	Visual	LISP	file	types

File	ext. Type	of	file Function

.dsk Desktop	save Contains	VLISP
environment	and
window	settings.	(Note:
Editing	this	file	may
permanently	change	the
VLISP	environment.	Do
not	edit	this	file	without
creating	a	backup	copy
first.)

._xx Backup	files Backup	copies	of	edited
files,	maintained	by	the
VLISP	editor.	Backup
files	contain	the	same
name	as	the	original,
except	that	the	file
extension	begins	with
the	underline	character
(_)	and	is	followed	by
the	first	two	characters
of	the	original	file's
extension.	For	example,
the	backup	file	of	a	LSP
file	has	an	._LS
extension;	the	backup	of
a	DCL	file	has	a	._DC
extension.

.vlx Stand-alone
applications

Stand-alone	AutoCAD
applications,	which	can
be	created	using	the
VLISP	Make
Application	wizard.

.c,	.cpp,	.cch,	.hpp,	.hh Language
source	files

Contain	program	source
code.	The	VLISP	editor
recognizes	the	syntax	of
these	files	and	color-
codes	reserved	words,
strings,	and	numbers.

.dcl Dialog
control
language

Contains	definitions	of
AutoCAD	dialog	boxes.
VLISP	can	preview
these	files,	and	you	can
include	them	in	Visual
LISP	executable	(VLX)

files.

.prv Make
application

Defines	the	files	and
options	used	to	build	a
VLX	application	with
the	VLISP	Make
Application	wizard.

.sql Structured
query
language

Contains	SQL
statements.	The	VLISP
text	editor	recognizes
this	file	type	and	color-
codes	the	text	according
to	SQL	syntax	rules.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	

Defining	a	Project
	
	
	

To	demonstrate	the	use	of	projects	in	VLISP,	you	can	use	the	sample	programs
supplied	with	the	AutoLISP	Tutorial.	This	code	is	available	on	the	AutoCAD®

installation	CD,	but	the	tutorial	files	are	only	included	in	your	installation	if	you
choose	a	Full	install,	or	if	you	choose	Custom	install	and	select	the	Tutorials
item.	If	you	have	already	installed	AutoCAD	and	did	not	install	the	samples,	you
can	rerun	the	installation,	choose	Custom,	and	select	only	the	Tutorials	item.

The	sample	files	used	in	this	chapter	are	in	the	Tutorial\VisualLISP\Lesson5
folder	of	the	AutoCAD	default	installation	directory.	The	files	are

Gpmain.lsp

Gpdraw.lsp

Gp-io.lsp

Utils.lsp

To	create	a	VLISP	project,	choose	Project	 	New	Project	from	the	VLISP	menu.
VLISP	displays	a	standard	Windows	dialog	box	for	you	to	specify	a	file	path	and
name.	For	the	example	in	this	chapter,	the	project	name	is	Tutorial.	VLISP
assigns	a	.prj	extension	to	the	project	file	name.

Assigning	Project	Properties
Using	the	Project	Window	to	Work	with	Project	Files

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	

Assigning	Project	Properties
	
	
	

The	Project	Properties	dialog	box	is	displayed	after	you	specify	a	project	file
name.

Selecting	the	Files	to	Include	in	a	Project
Identifying	the	Path	Name	of	Project	Files
Changing	the	Order	in	Which	Visual	LISP	Loads	Files
Choosing	Compiler	Build	Options

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Assigning	Project	Properties	>	

Selecting	the	Files	to	Include	in	a	Project
	
	
	

There	are	two	tabs	in	the	Project	Properties	dialog	box.	In	the	Project	Files	tab,
you	specify	the	AutoLISP	source	files	for	the	project.

The	project's	home	directory	is	identified	just	below	the	tabs.	This	is	where	the
project	file	(tutorial.prj)	resides.	In	this	example,	the	home	directory	is	c:\My
Documents\VisualLISP\Examples.	That's	not	the	directory	containing	the	tutorial
sample	files,	though.	To	identify	the	source	directory,	press	the	[...]	button.

Use	the	Browse	for	Folder	dialog	box	to	identify	the	location	of	the	project
source	files.	If	you	select	the	Lesson5	directory,	the	Project	Properties	dialog	box
looks	like	the	following:

VLISP	lists	all	files	in	the	directory	having	an	.lsp	extension	(but	does	not
display	the	extension	in	the	list).	The	window	is	designed	so	that,	by	default,	you
can	select	multiple	file	names	by	just	choosing	each	name.	You	do	not	have	to
press	and	hold	CTRL	to	select	more	than	one	file.	To	clear	a	selected	name,	just
choose	it	again.

To	include	all	the	listed	files	in	your	project,	press	the	button	labeled	“(Un)Select
all,”	then	choose	the	right	arrow	button.	VLISP	moves	the	file	names	to	the
window	on	the	right:

To	remove	a	file	from	the	project,	select	the	file's	name	in	the	right	window	and
click	the	left	arrow	button.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Assigning	Project	Properties	>	

Identifying	the	Path	Name	of	Project	Files
	
	
	

The	list	of	included	files	does	not	identify	the	path	name	of	each	file	(nor	does
the	Look	In	field;	this	just	identifies	the	path	of	the	files	listed	in	the	left
window).	Because	you	can	include	files	from	multiple	directories	in	your
project,	you	need	to	be	able	to	identify	the	path	name	of	each	file.	You	can	do
this	by	highlighting	one	or	more	file	names	and	right-clicking	to	display	a
shortcut	menu:

To	display	the	full	path	name	and	the	size	(in	bytes)	of	source	files	in	the	project,
choose	Log	Filenames	and	Size	from	the	shortcut	menu.	The	information
appears	in	a	small,	scrollable	window	near	the	bottom	of	the	Project	Properties
dialog	box:

If	a	file	is	in	the	Home	directory	shown	in	the	Project	Properties	dialog	box,
VLISP	does	not	spell	out	its	path	name.	Use	the	scroll	bar	to	see	information
about	all	the	files	in	the	project.

Note	that	you	cannot	include	two	files	of	the	same	name	in	a	project,	even	if
they	are	in	different	directory	paths.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Assigning	Project	Properties	>	

Changing	the	Order	in	Which	Visual	LISP	Loads	Files
	
	
	

The	shortcut	menu	for	the	list	of	included	files	also	provides	commands	to	move
files	up	and	down	in	the	list,	and	to	sort	the	list	by	file	name	or	by	full	path
name.	VLISP	loads	the	project's	files	in	the	order	in	which	they	are	listed.
Sometimes	the	load	order	is	important.	For	example,	you	might	have	an
initialization	file	that	defines	global	variables	needed	by	all	the	other	program
files,	and	thus	must	be	loaded	first.	You	could	select	that	file	name	and	choose
Move	to	Top	to	place	it	first	in	the	project's	file	list.

You	can	also	use	buttons	in	the	Project	Properties	dialog	box	to	move	files
around	in	the	list:	Top	(move	to	top),	Up	(move	up),	Dn	(move	down),	and	Btm
(move	to	bottom).

For	the	tutorial	project,	the	gpmain.lsp	file	should	be	loaded	last.	It	contains	the
following	instructions	at	the	end	of	the	file:

(princ	"\nType	GPATH	to	draw	a	garden	path.")

(princ)

This	results	in	a	prompt	telling	users	how	to	invoke	the	application.	If	VLISP
loads	gpmain.lsp	last,	these	instructions	will	display	at	the	AutoCAD	Command
prompt.

After	you	move	any	needed	files,	press	the	Apply	button.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Assigning	Project	Properties	>	

Choosing	Compiler	Build	Options
	
	
	

The	Build	Options	tab	displays	a	dialog	box	in	which	you	can	specify	compiler
options	to	VLISP.	This	topic	is	covered	in	the	Choosing	a	Compilation	Mode
section	later	in	this	chapter.	For	now,	choose	OK	to	close	the	Project	Properties
dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	

Using	the	Project	Window	to	Work	with	Project	Files
	
	
	

When	you	open	a	VLISP	project,	VLISP	displays	a	window	listing	the	files	in
the	project:

By	default,	VLISP	lists	the	project	members	in	the	order	in	which	they	will	be
loaded	(as	defined	in	the	Project	Properties	dialog	box).	You	can	change	this
order	by	choosing	Arrange	Files	from	the	shortcut	menu	for	this	window.

The	project	name	appears	in	the	window	title	bar.	Below	the	title	bar	are	five
icons.	Each	icon	is	a	button	that	performs	a	function.	The	buttons	and	their
functions	are	as	follows:

Project	Properties

Displays	the	Project	Properties	dialog	box	for	the	project.	This	allows	you	to
view	the	full	path	name	of	each	file	in	the	project,	add,	remove,	and	reorder
project	files,	and	view	and	change	project	compiler	options.

Load	Project	FAS

Loads	all	compiled	(.fas)	files	for	the	project.

Load	Source	Files

Loads	all	the	project	source	files,	making	them	available	to	be	run.

Build	Project	FAS

Compiles	all	project	source	files	that	have	been	modified	since	their	last
compile.

Rebuild	Project	FAS

Recompiles	all	project	source	files,	whether	or	not	they	have	changed	since
their	last	compile.

If	you	right-click	within	the	file	list	of	the	Project	Properties	dialog	box,	VLISP
displays	a	shortcut	menu.	Many	of	the	functions	available	from	the	project
shortcut	menu	can	also	be	accomplished	in	other	ways.	For	example,	you've
already	seen	how	to	add	files	to	projects	and	remove	files	from	projects.
Choosing	Remove	File	from	the	shortcut	menu	is	a	quick	way	of	removing	a	file
from	a	project,	while	choosing	Add	File	merely	brings	you	to	the	Project
Properties	dialog	box.

The	following	summarizes	the	commands	on	the	shortcut	menu:

Edit

Edits	the	source	code	of	the	selected	project	members.

Add	File

Opens	the	Project	Properties	dialog	box	to	add	files	to	the	project.

Remove	File

Removes	the	selected	members	from	the	project.

Load

Loads	the	FAS	file	for	the	selected	project	members.	If	no	FAS	file	exists	for
a	member,	loads	the	AutoLISP	source	file.

Load	Source

Loads	the	.lsp	file	for	the	selected	project	members.

Check	Syntax

Checks	AutoLISP	syntax	of	the	source	code	for	the	selected	members.

Touch

Indicates	that	the	selected	source	files	have	been	updated,	but	makes	no
change	to	the	files.	This	causes	VLISP	to	recompile	these	programs	the	next
time	you	ask	to	compile	all	changed	project	files.

Arrange	Files

Sorts	the	project	member	list,	according	to	one	of	the	available	suboptions
(load	order,	name,	type,	or	date).

Multiple	Selection

Tells	VLISP	whether	or	not	to	allow	selection	of	multiple	members	from	the
list	in	the	Project	Properties	dialog	box.	If	this	option	is	selected,	multiple
selection	is	allowed.

[Un]Select	All

Selects	all	members	of	the	project	list,	if	none	is	currently	selected.	If	any
members	are	currently	selected,	this	command	cancels	their	selection.

Close	Project

Closes	the	project.

Save	Project	As

Saves	the	project.

Selecting	Multiple	Project	Members
Loading	Project	Files
Compiling	and	Recompiling	Project	Files
Editing	Project	Files
Saving	and	Closing	the	Project

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Using	the	Project	Window	to	Work
with	Project	Files	>	

Selecting	Multiple	Project	Members
	
	
	

The	Multiple	Selector	menu	item	is	available	only	from	the	Project	Properties
dialog	box	shortcut	menu.	Choosing	this	option	allows	you	to	select	multiple
members	from	the	list	in	the	Project	window.	If	the	option	is	selected,	a	check
mark	appears	next	to	the	Multiple	Selector	item	on	the	menu.	Click	on	the	menu
item	to	toggle	it	on	and	off.

If	Multiple	Selector	is	in	effect,	clicking	a	member	name	in	the	Project
Properties	dialog	box	acts	as	a	toggle	to	select	or	deselect	the	member.	For
example,	none	of	the	members	listed	in	the	following	window	is	selected:

If	you	click	on	the	name	GP-IO,	then	click	on	the	name	GPDRAW,	both	are
selected.

This	is	unlike	the	default	Windows	behavior,	where	selecting	the	second	list	item
cancels	the	first	item's	selection,	unless	you	press	CTRL	while	selecting	the
item.

You	can	also	use	the	Project	Properties	dialog	box	shortcut	menu	to	select	all
members	of	the	project	or	cancel	selection	of	all	members.	If	no	members	are
currently	selected,	right-click	and	choose	[Un]Select	All	to	select	all	the
members.	If	any	or	all	members	are	already	selected,	[Un]Select	All	cancels	all
selections.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Using	the	Project	Window	to	Work
with	Project	Files	>	

Loading	Project	Files
	
	
	

To	load	the	project's	compiled	program	files,	click	the	Load	Project	FAS	button.
This	allows	you	to	run	the	application.	If	VLISP	detects	that	some	of	the	source
files	do	not	exist	in	compiled	format,	it	displays	a	message	and	asks	if	you	want
to	compile	those	files:

If	you	choose	Yes,	VLISP	attempts	to	compile	all	.lsp	files	that	do	not	have	a
corresponding	.fas	file.	If	you	choose	No,	VLISP	loads	all	FAS	files	it	finds	for
the	project,	and	loads	the	AutoLISP	source	for	the	remaining	project	files.
Choose	Cancel	to	abort	the	load	operation.

To	load	all	project	source	files	instead	of	their	compiled	versions,	click	the	Load
Source	Files	button.	Remember	that	debugging	breakpoints	may	be	saved	within
source	code	files	but	are	removed	from	the	compiled	version	of	the	code.	You
might	want	to	load	source	files	to	debug	changes	you've	made	to	your	programs.

Using	the	Project	Properties	dialog	box	shortcut	menu,	you	can	choose	to	load
just	selected	files.	Select	the	files	you	want	to	load,	and	then	right-click	and
choose	Load	to	load	the	FAS	files,	or	choose	Load	Source	to	load	the	source
code.	Note	that	if	you	choose	Load	and	a	FAS	file	does	not	exist	for	a	selected
file,	VLISP	loads	the	AutoLISP	source	file	instead.

Note The	Lesson5	example	from	the	AutoLISP	Tutorial	requires	a	DCL	file	to	run
successfully.	The	DCL	file	is	included	in	the	Lesson5	folder,	but	you	cannot

define	a	DCL	file	as	part	of	a	VLISP	project.	To	run	this	example	successfully,
you	must	copy	the	DCL	file	to	a	directory	in	the	AutoCAD	support	file	search
path.	You	can	also	define	the	DCL	file	as	an	application	component,	using	the
VLISP	Make	Application	wizard.	Using	this	method,	the	file	does	not	have	to	be
in	the	AutoCAD	search	path.	Including	a	Project	in	a	Visual	LISP	Application
demonstrates	how	to	define	an	application	composed	of	a	VLISP	project	and
supporting	files,	such	as	DCL	files.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Using	the	Project	Window	to	Work
with	Project	Files	>	

Compiling	and	Recompiling	Project	Files
	
	
	

One	key	advantage	in	defining	VLISP	projects	for	your	applications	is	that	it
provides	an	efficient	method	of	updating	compiled	code.	You	can	elect	to	have
VLISP	recompile	all	source	files	that	have	changed	since	the	last	time	they	were
compiled.	By	choosing	this	option,	you	ensure	all	FAS	files	in	your	application
correspond	to	the	latest	versions	of	the	program	source	code.	At	the	same	time,
you	save	time	by	avoiding	unnecessary	compiles.	To	invoke	this	feature,	click
the	Build	Project	FAS	button	in	the	Project	Properties	dialog	box.

You	can	also	choose	to	recompile	all	the	programs	in	your	project,	whether	or
not	they	have	changed.	Click	the	Rebuild	Project	FAS	button	to	enable	this
feature.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Using	the	Project	Window	to	Work
with	Project	Files	>	

Editing	Project	Files
	
	
	

To	edit	the	source	file	of	a	project	member,	select	the	member	from	the	list	in	the
Project	window,	then	right-click	and	choose	Edit.	If	the	Multiple	Selector	option
is	on,	you	can	select	multiple	members,	and	VLISP	will	open	a	text	editor
window	for	each.

Note If	the	Multiple	Selector	option	is	not	turned	on,	you	can	simply	double-click
a	member	name	to	edit	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Defining	a	Project	>	Using	the	Project	Window	to	Work
with	Project	Files	>	

Saving	and	Closing	the	Project
	
	
	

To	save	the	project	properties	you	defined	or	modified,	right-click	in	the	Project
window	and	choose	Save	Project	As	from	the	shortcut	menu.	VLISP	displays	a
list	of	project	files.	You	can	either	select	the	name	of	the	current	project	file	to
update	its	contents,	or	enter	a	new	file	name	to	save	the	changes	as	a	new
project.

When	you	are	finished	working	with	a	project,	right-click	in	the	Project	window
and	choose	Close	Project.	Note	that	this	only	closes	the	.prj	file;	any	project	files
that	are	open	in	VLISP	editor	windows	remain	open.

Note If	you	close	the	Project	Properties	dialog	box	by	clicking	the	Close	button,
this	does	not	close	the	project	itself.	The	Project	is	still	open,	and	you	can	reopen
a	Project	window	for	it	by	choosing	it	from	the	Project	menu,	as	described	in	the
next	section,	Opening	a	Project

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	

Working	with	Existing	Projects
	
	
	

Some	VLISP	features	described	in	previous	chapters	have	special	application
with	VLISP	projects.	The	features	described	in	this	section	are	the	text	editor
search	functions	and	the	Make	Application	wizard.

Opening	a	Project
Finding	a	String	in	Project	Source	Files
Including	a	Project	in	a	Visual	LISP	Application

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Working	with	Existing	Projects	>	

Opening	a	Project
	
	
	

To	open	an	existing	project,	choose	Project	 	Open	Project	from	the	VLISP
menu:

If	the	project	file	you	want	to	open	is	in	the	current	directory,	you	can	simply
enter	the	project	name	here.	If	the	project	file	is	not	in	the	current	directory,	or	if
you	don't	know	what	the	current	directory	is,	press	the	Browse	button	to	obtain	a
standard	Open	dialog	box.

Note	that	you	can	have	more	than	one	project	open	at	a	time.	You	can	view	a	list
of	all	open	projects	by	choosing	the	Project	menu	and	looking	at	the	bottom	of
the	menu	displayed:

At	any	time,	only	one	of	the	projects	is	active.	The	check	mark	in	front	of	the
project	name	indicates	the	active	project.	The	commands	in	the	Project	menu,

such	as	Load	and	Build,	apply	to	the	active	project.	These	commands	work	the
same	when	selected	from	a	Project	window.

If	you	attempt	to	open	a	project	that	has	the	same	name	as	the	active	project	(that
is,	the	project	file	has	the	same	name,	but	is	in	a	different	directory	than	the
current	active	project),	VLISP	displays	a	message	box	asking	you	if	you	want	to
“relocate	the	project	definition.”	If	you	choose	“Yes,”	VLISP	loads	the	new
project	file	and	replaces	the	active	project.	If	you	choose	“No,”	VLISP	does	not
load	the	new	project	file,	leaving	the	current	active	project	in	place.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Working	with	Existing	Projects	>	

Finding	a	String	in	Project	Source	Files
	
	
	

The	VLISP	text	search	function,	described	in	Searching	for	Text,	provides	you
with	the	ability	to	search	all	of	a	project's	source	files	for	a	string	of	text.

For	example,	suppose	in	reviewing	gpmain.lsp	you	see	calls	to	a	function	called
gp:getPointInput,	and	you	cannot	remember	in	which	source	file	this
function	is	defined.	To	search	for	it,	choose	Search	 	Find	from	the	VLISP
menu.	In	the	Find	dialog	box,	select	Project	in	the	list	of	Search	options:

A	Project	selection	field	now	appears	at	the	bottom	of	the	Find	dialog	box.	If	the
name	of	the	project	you	want	to	search	is	not	already	displayed	in	this	field,
choose	it	from	the	pull-down	list.	Choose	the	Find	button	to	perform	the	search.
VLISP	displays	the	results	in	a	Find	Output	window	like	the	following:

The	output	shows	that	four	files	were	searched	(there	are	four	source	files	in	the
project),	and	four	occurrences	of	gp:getPointInput	were	found.	The
occurrences	were	found	in	two	files;	the	defun	for	the	function	is	in	gp-io.lsp.
You	can	open	an	editor	window	for	the	file	by	double-clicking	anywhere	within
the	highlighted	text	in	the	Find	Output	window.	You	can	also	press	SHIFT	+	F11
to	display	the	first	source	location	at	which	the	text	string	was	found,	and	then
repeatedly	press	F11	to	view	subsequent	occurrences	in	the	source	files.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Working	with	Existing	Projects	>	

Including	a	Project	in	a	Visual	LISP	Application
	
	
	

After	you've	made	changes	to	an	application's	source	files,	you'll	want	to
incorporate	those	changes	in	the	application's	executable	file.	Making
Application	Modules	showed	you	how	to	keep	individual	application	files
synchronized,	so	that	the	application	executable	contained	the	latest	versions	of
all	its	source	files.	Defining	the	application	files	as	members	of	a	single	project
simplifies	this	process	further.	Instead	of	listing	every	source	file	in	your
application's	Make	file,	you	can	point	to	the	VLISP	project	file	and	use	the
project	file	to	identify	your	source	files.

To	define	an	application	that	includes	a	Visual	LISP	project

1.	 Choose	File	 	Make	Application	 	New	Application	Wizard	from	the
VLISP	menu	to	start	the	Make	Application	wizard.

2.	 Select	Expert	mode,	then	press	Next.

3.	 Identify	the	directory	path	in	which	you	want	VLISP	to	save	your
application	files,	and	enter	a	name	for	the	application.
Choose	Next	to	continue.

4.	 Choose	Next	to	accept	the	default	application	options.

5.	 In	the	LISP	Files	to	Include	dialog	box,	click	the	pull-down	menu	to	the
right	of	the	Add	button	and	choose	Visual	LISP	project	file	as	the	type	of
file	to	include.
Choose	the	Add	button	to	display	the	Add	Visual	LISP	Project	Files
dialog	box.

6.	 Specify	the	.prj	file	you	created	for	the	Lesson5	tutorial	example,	then
press	Open	to	add	the	file	to	your	application.	All	the	project's	files	will
be	included	in	the	application.

Choose	Next	to	continue	to	the	next	step	in	the	Make	Application
wizard.

7.	 In	the	Resource	Files	to	Include	dialog	box,	click	on	the	pull-down	to	the
right	of	the	Add	button	and	choose	DCL	files,	then	press	the	Add	button
to	display	the	dialog	box	for	selecting	the	DCL	files.
Select	the	DCL	file	in	the	Tutorial\VisualLISP\Lesson5	directory,	then
press	Open	to	add	the	file	to	your	application.
Choose	Next	to	continue	the	Make	Application	wizard.

8.	 Accept	the	default	options	in	the	remaining	steps	and	complete	the	Make
Application	process.
If	you	add	files	to	the	VLISP	project	you	included	in	your	application,
the	new	files	are	automatically	included	the	next	time	you	build	the
application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	

Optimizing	Application	Code
	
	
	

The	optimization	features	of	VLISP	can	produce	more	efficient	compiled	files,
and	are	useful	as	your	programs	grow	in	size	and	complexity.	With	the	VLISP
project	management	feature,	you	can	tailor	the	optimization	options	to	the
specific	needs	of	your	application.

Defining	Build	Options
Choosing	a	Compilation	Mode
Choosing	a	Link	Mode
Understanding	Safe	Optimization

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	

Defining	Build	Options
	
	
	

VLISP	provides	a	number	of	options	for	compiling	and	linking	a	project's	source
code	that	affect	the	efficiency	of	the	compiled	code.	For	example,	you	can
specify	whether	to	create	a	separate	FAS	file	for	each	source	file	or	merge	all
compiled	files	into	a	single	FAS	file.	You	can	choose	to	have	the	compiler
remove	the	names	of	all	local	symbols	from	your	compiled	files.	You	specify
these	options	in	the	Project	Properties	dialog	box.

To	specify	project	build	options

1.	 Open	the	project	file	(choose	Project	 	Open	Project	from	the	VLISP
menu).

2.	 Choose	the	Project	Properties	button	in	the	Project	window	toolbar.

3.	 Select	the	Build	Options	tab	in	the	Project	Properties	dialog	box.	VLISP
displays	the	Build	Options	dialog	box:

Some	of	the	build	options	require	extensive	background	information,	which	is
provided	in	the	following	sections	of	this	chapter.	The	build	options	are:

Compilation	Mode

Choose	between	standard	and	optimized	compilation.	Optimized	compilation
creates	smaller	and	faster	programs	but	is	not	suited	for	every	project.	See
Choosing	a	Compilation	Mode	for	more	information	on	this	topic.

Merge	Files	Mode

Tell	the	compiler	whether	to	create	a	separate	FAS	file	for	each	source	file,	or
to	merge	all	compiled	files	into	a	single	FAS	file.
A	single	FAS	file	is	faster	to	load	and	is	required	for	certain	types	of
optimization.	Sometimes,	however,	you	will	prefer	to	load	your	code	one	file
at	a	time.	This	is	important	if	you	have	not	completed	the	debugging	or
modification	of	the	application's	code.	FAS	files	do	not	allow	source	code
debugging,	so	it	is	recommended	that	you	compile	your	code	only	after	the
initial	debugging	is	done.

Edit	Global	Declarations

Create	or	edit	a	global	declarations	file	for	the	project.
This	feature	is	provided	for	compatibility	with	the	Preview	version	of	VLISP.

FAS	Directory

Specify	the	directory	for	compiled	files.	If	you	indicate	a	relative	path,
VLISP	applies	it	in	relation	to	the	project's	home	directory.	If	you	leave	the
field	blank,	VLISP	places	compiled	files	in	the	same	directory	as	the	project
definition	(.prj)	file.

Tmp	Directory

Specify	the	directory	for	project-related	temporary	files.	A	relative	path	is
applied	in	relation	to	the	project's	home	directory.

Link	Mode

Specify	how	function	calls	are	to	be	optimized.	This	option	is	only	available
if	optimized	compilation	is	selected.	Choose	from	the	following:

Do	not	link:	This	results	in	indirect	linking	of	functions.	The
compiler	stores	the	address	of	the	symbol	naming	the	function.

Link:	If	selected,	the	compiler	directly	addresses	function	definitions
and	all	calls	where	the	functions	are	referenced.

Internal:	This	directly	links	function	calls	and	removes	(drops)	the
function	names	from	the	resulting	FAS	files.

See	Choosing	a	Link	Mode	for	further	information	on	these	options.

Localize	Variables

If	this	option	is	selected,	the	compiler	removes	(drops)	the	names	of	all	local
symbols	from	compiled	files	and	directly	links	their	references,	wherever
possible.	This	means	the	program	code	points	to	the	address	where	a	variable
is	stored,	not	to	a	symbol	used	to	find	the	address	of	the	variable.

Safe	Optimize

If	this	option	is	selected,	this	option	directs	the	compiler	to	refuse	some	types
of	optimization,	if	there	is	a	chance	they	will	result	in	incorrect	code.	For
more	information	on	optimization,	see	Choosing	a	Compilation	Mode	below.

Message	Mode

Select	the	level	of	detail	you	want	VLISP	to	produce	in	its	compilation
reports.	You	can	choose	to	receive	a	report	showing	only	fatal	errors	(those
causing	compilation	failure),	a	report	showing	errors	and	warning	messages,
or	a	full	report	showing	errors,	warnings,	and	compiler	statistics.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	

Choosing	a	Compilation	Mode
	
	
	

Combining	compiled	code	from	multiple	files	to	a	single	binary	file	allows	the
compiler	to	add	a	high	level	of	optimization.	It	also	means	that	there	are	more
choices	to	make.

When	producing	standard,	non-optimized	binary	code,	the	VLISP	compiler
preserves	the	symbol	names	associated	with	functions	and	global	variables,
because	these	symbols	may	be	referenced	from	other	files.	When	the	symbol	is
referenced,	VLISP	looks	in	a	table	to	determine	what	area	in	memory	is	assigned
to	the	symbol.

When	optimizing	code,	the	VLISP	compiler	assumes	all	files	in	a	project	work
together	to	form	a	complete	application.	This	allows	the	compiler	to	discard	the
symbol	names	and,	when	executing	the	code,	jump	directly	to	the	memory
location	containing	the	value	associated	with	the	symbol.

Analyzing	for	Optimization	Correctness

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	Choosing	a	Compilation
Mode	>	

Analyzing	for	Optimization	Correctness
	
	
	

Optimizing	code	may	introduce	bugs	to	software	that	runs	perfectly	when	non-
optimized.	Also,	the	level	of	performance	gain	depends	highly	on	the	internal
structure	of	the	source	code.	LISP	is	a	language	in	which	you	can	easily	write
programs	that	create	or	modify	functions	at	runtime.	This	use	of	the	language	by
definition	contradicts	compile-time	optimization.

The	VLISP	compiler	analyzes	the	code	it	compiles	and	links,	then	it	creates	a
report	pointing	you	to	all	source	code	segments	that	may	cause	problems	when
optimized.	If	you	do	not	receive	any	optimization	warning	messages,	you	can
assume	optimization	did	not	introduce	new	problems	to	your	code.

The	compiler	is	able	to	detect	most	problematic	situations	in	AutoLISP	code.
However,	there	are	situations	in	which	it	is	impossible	to	detect	code	that	may
become	incorrect	during	the	optimization.	If	your	program	uses	one	of	the
following	constructs,	the	compiler	will	not	be	able	to	prove	correctness	of	the
optimized	code	definitively:

Interaction	with	external	ObjectARX	applications	that	set	or	retrieve
AutoLISP	variables

Dynamic	calls	to	functions	defined	by	other	ObjectARX	applications

Evaluation	of	dynamically	built	code	using	eval,	apply,	mapcar,	or
load

Use	of	set	to	set	dynamically	supplied	variables

Dynamic	(program	evaluated)	action	strings	in	action_tile	and
new_dialog

Remember	that	any	optimization	will	change	program	semantics.	The	compiler

intends	to	preserve	the	behavior	of	project	components	relative	to	one	another.
The	compiler	cannot	guarantee	unchanged	behavior	between	your	project	and
external	procedures.	Typical	effects	of	optimization	include	the	following:

Outer	applications	and	the	VLISP	Console	window	lose	access	to
program	functions	and	symbols.

Functions	available	from	the	Console	window	in	interpreter	mode	are
unknown	in	compiled	mode.

Functions	are	available	from	the	Console	window,	but	redefining	them
does	not	change	the	program's	behavior.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	

Choosing	a	Link	Mode
	
	
	

If	you	instruct	the	VLISP	compiler	to	link	functions	in	your	project	directly,	the
compiler	tries	to	resolve	all	explicit	function	calls	by	referencing	the	function's
definition	in	memory.	In	contrast,	when	you	indirectly	link	your	functions,	the
compiler	creates	references	to	symbols	that	VLISP	later	uses	to	look	up	the
actual	memory	location	of	the	function.	Direct	linking	improves	the	performance
of	the	compiled	code	and	protects	the	code	against	function	redefinition.
However,	if	your	application	needs	to	redefine	a	function,	you	cannot	directly
link	that	function.

Once	function	calls	are	directly	linked,	the	compiler	can	optimize	one	level
further	by	dropping	the	function	name	completely	so	that	the	function	becomes
invisible	to	users.	To	select	this	feature,	choose	the	Internal	Link	mode	option.
Note	that	symbols	exported	to	AutoCAD	(for	example,	function	names	starting
with	C:)	are	never	dropped.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	

Understanding	Safe	Optimization
	
	
	

Choosing	the	Safe	Optimize	option	reduces	the	amount	of	compiler	optimization
but	protects	your	code	against	compiler-induced	errors.	Safe	optimizing	prevents
runtime	uncertainty	that	could	cause	an	optimized	program	to	fail,	even	though
the	source	code	seems	to	be	correct.	For	example,	imagine	the	following
situation:

The	function	symbol	fishlips	is	defined	by	defun	and	used
somewhere	in	your	code.	This	is	a	typical	candidate	for	link
optimization.

In	another	segment	of	your	code,	a	variable	named	fishlips	is
assigned	using	(setq	fishlips	expression).

Now	there	are	two	possible	conditions.	If	the	value	assigned	through	setq	is
intended	to	alter	the	definition	of	the	function	fishlips,	direct	linking	will
prevent	this	from	happening.	The	first	definition	will	be	referenced	directly	and
cannot	be	changed	by	the	setq	function.	On	the	other	hand,	if	the	identical
names	are	handled	independently,	fishlips	can	be	linked	without	creating
incorrect	code.

If	safe	optimizing	is	on,	the	compiler	will	always	stay	on	the	safe	side,	even	if
you	explicitly	request	that	fishlips	be	directly	linked.	This	may	result	in	less
efficient	code,	but	it	ensures	code	correctness.	If	safe	optimizing	is	off,	you	can
override	the	compiler's	recommendation	to	link	fishlips	indirectly.	You	are
responsible	for	the	link	option.

The	Safe	Optimize	mode	is	on	by	default.	Be	sure	you	fully	understand	the
consequences	before	you	turn	it	off.

Optimization	Conditions	Bypassed	by	Safe	Optimization
Safe	Optimization	Warning	Messages

Compiler	Checking	of	Optimizing	Conditions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	Understanding	Safe
Optimization	>	

Optimization	Conditions	Bypassed	by	Safe	Optimization
	
	
	

When	Safe	Optimization	is	in	effect,	the	VLISP	compiler	ignores	an
optimization	option	if	it	determines	that	adhering	to	the	option	may	induce	an
error	condition.	The	following	list	identifies	the	conditions	under	which	an
option	is	ignored:

Link

If	the	compiler	encounters	the	following	situations	while	Safe	Optimize	is	on,
it	ignores	any	related	Link	directive:

A	symbol	is	bound	as	a	parameter	anywhere	in	the	project.

A	symbol	is	bound	as	an	auxiliary	variable	and	referenced	by	value
anywhere	in	the	project.

A	symbol	is	explicitly	assigned	somewhere	(by	setq).

Drop

If	the	compiler	encounters	a	symbol	referenced	by	value,	it	ignores	any	Drop
directive	for	the	symbol.

Localize

If	the	compiler	encounters	the	following	situations	while	safe	optimize	is	on,
it	ignores	the	Localize	directive	or	the	corresponding	variable:

A	variable	has	a	non-local	reference	or	assignment	to	it	within	the
project.

A	variable	is	called	by	name.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	Understanding	Safe
Optimization	>	

Safe	Optimization	Warning	Messages
	
	
	

If	optimized	compilation	is	on	and	the	compiler	finds	a	condition	that	forbids	a
certain	level	of	optimization,	it	issues	a	warning	message.	For	example,	if	the
function	fishlips	cannot	be	linked	because	the	compiler	found	two
definitions	for	the	function,	you'll	see:

;***	WARNING:	Cannot	LINK	fishlips;

	Two	DEFUNs	found.	

See	Another	DEFUN

Right-click	on	a	warning	message	to	open	a	shortcut	menu.	In	addition	to
displaying	symbol	commands,	the	menu	allows	you	to	view	the	source	code
associated	with	the	message.	Double-click	on	the	highlighted	message	to	show
the	source	code.	To	browse	all	source	files	related	to	the	compiler	messages,
press	F11	repeatedly,	or	press	SHIFT	+	F11	to	return	to	the	first	message.

Each	line	of	the	previous	warning	message	guides	you	to	a	different	code
segment.	For	example:

;	***	WARNING:	Cannot	LINK	fishlips

shows	the	function	call	that	could	not	be	linked.

;	Two	DEFUNs	found

shows	the	first	defun	found	for	function	fishlips.

;	See	Another	DEFUN

shows	the	second	defun	found	for	function	fishlips.

When	the	compiler	works	in	Safe	Optimization	mode	and	finds	a	problem

condition,	the	warning	starts	with:

;	***	WARNING:	Safe:	Cannot	…

If	Safe	Optimization	is	off,	but	message	mode	is	set	to	Full	report,	the	same
warnings	are	prefixed	by:

;	***	WARNING:	Dangerous	…

If	you	disable	Safe	Optimize	mode,	these	problematic	conditions	result	in
compiler	warnings.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Maintaining
Visual	LISP	Applications	>	Optimizing	Application	Code	>	Understanding	Safe
Optimization	>	

Compiler	Checking	of	Optimizing	Conditions
	
	
	

The	compiler	always	checks	for	optimizing	consistency.	If	you	specify	an
optimization	option	that	contradicts	certain	security	rules,	the	compiler	will	issue
warning	messages.	The	security	rules	are:

Link

The	compiler	directly	links	AutoLISP	function	calls	only	if	the	following
conditions	are	met:

The	function	is	defined	only	once,	or	is	predefined	by	AutoLISP	and
no	user	defun	redefines	it.

The	function	name	does	not	appear	in	the	parameter	list	of	another
function.

The	function	is	not	assigned	anywhere	in	the	project.

Drop

The	compiler	tries	to	drop	a	function	symbol	only	if	all	corresponding
function	calls	are	directly	linked	to	the	function	definition.	The	compiler	does
not	drop	the	symbol	for	a	function	definition	if	the	program	calls	the	function
by	its	symbol	name.	A	function	is	called	by	symbol	in	the	following	cases:

The	symbol	appears	in	a	vl-acad-defun	declaration.

The	function	was	called	from	an	ACTION_TILE	action	string.

The	function	symbol	is	a	quoted	argument	for	apply,	mapcar,	or
eval	somewhere	in	the	project.

Note	that	for	functions	called	from	top-level	expressions,	the	Drop
declaration	will	be	ignored	without	warning	messages.

Localize

The	compiler	does	not	localize	a	variable	in	bound	lists	of	defun,	lambda,
and	foreach	expressions	if	any	of	the	following	conditions	are	true:

The	variable	has	a	non-local	reference	(or	assignment)	to	it	within	the
outer	top-level	expression.

The	variable	is	called	as	a	function	by	name.

The	variable	symbol	appears	as	a	function	call	somewhere	in	the	top-
level	read-eval	loop.

Other	than	these	conditions,	which	always	cancel	the	optimization	and	result
in	warning	messages,	there	are	other	conditions	that	may	or	may	not	result	in
incorrect	code.	Choose	the	Safe	Optimize	option	for	the	project	to	disallow
these	conditions	as	well.	Disabling	Safe	Optimization	results	in	compiler
warnings	if	these	conditions	are	met.	See	Understanding	Safe	Optimization
for	more	information	on	this	topic.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Working	with	ActiveX
	
	
	

With	Visual	LISP,	you	can	access	the	AutoCAD	object	model.

Visual	LISP®	not	only	makes	program	development	easier	and	faster,	it	also
provides	new	functionality	to	AutoLISP®	applications.	For	example,	you	can	use
VLISP	to	access	ActiveX®	objects	from	AutoLISP	code.	You	can	also	use
ActiveX	to	interact	with	other	Windows	applications	that	support	ActiveX
methodology.

Using	ActiveX	Objects	with	AutoLISP
Understanding	the	AutoCAD	Object	Model
Accessing	AutoCAD	Objects
Using	Visual	LISP	Functions	with	ActiveX	Methods
Using	ActiveX	to	Interact	with	Other	Applications

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	

Using	ActiveX	Objects	with	AutoLISP
	
	
	

ActiveX	Automation	is	a	way	to	work	programmatically	with	the	contents	of	an
AutoCAD®	drawing.	In	many	instances,	ActiveX	works	faster	than	traditional
AutoLISP	functions	in	manipulating	AutoCAD	drawing	objects.

The	ActiveX	programming	interface	is	usable	in	a	number	of	languages	and
environments.	When	you	work	with	ActiveX	objects	in	AutoLISP,	you	work
with	the	same	object	model,	properties,	and	methods	that	can	be	manipulated
from	other	programming	environments.

Objects	are	the	main	building	blocks	of	an	ActiveX	application.	In	some	ways,
you	are	already	familiar	with	this	notion.	For	example,	AutoCAD	drawing	items
such	as	lines,	arcs,	polylines,	and	circles	have	long	been	referred	to	as	objects.
But	in	the	ActiveX	schema,	the	following	AutoCAD	components	are	also
represented	as	objects:

Style	settings,	such	as	linetypes	and	dimension	styles

Organizational	structures,	such	as	layers,	groups,	and	blocks

The	drawing	display,	such	as	the	view	and	viewport

The	drawing's	model	space	and	paper	space

Even	the	drawing	and	the	AutoCAD	application	itself	are	considered	objects.

Note To	access	drawing	properties	such	as	Title,	Subject,	Author,	and	Keywords,
the	IAcadSummaryInfo	interface,	accessible	as	a	property	of	the	Document
object	in	the	AutoCAD	object	model,	must	be	used.	For	more	information,	see
Accessing	Drawing	Properties.

ActiveX	includes	much	of	the	functionality	provided	by	standard	AutoLISP
functions	such	as	entget,	entmod,	and	setvar.	Compared	to	these
functions,	ActiveX	runs	faster	and	provides	easier	access	to	object	properties.

For	example,	to	access	the	radius	of	a	circle	with	standard	AutoLISP	functions,
you	must	use	entget	to	obtain	a	list	of	entities	and	assoc	to	find	the	property
you	want.	You	must	also	know	the	code	number	(DXF	key	value)	associated
with	that	property	to	obtain	it	with	assoc,	as	shown	in	the	following	example:

(setq	radius	(cdr	(assoc	40	(entget	circle-entity))))

With	an	ActiveX	function,	you	simply	ask	for	the	radius	of	a	circle	as	follows:

(setq	radius	(vla-get-radius	circle-object))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	

Understanding	the	AutoCAD	Object	Model
	
	
	

AutoCAD	objects	are	structured	in	a	hierarchical	fashion,	with	the	Application
object	at	the	root.	The	view	of	this	hierarchical	structure	is	referred	to	as	the
object	model.	It	shows	you	which	object	provides	access	to	the	next	level	of
objects.	The	AutoCAD	object	model	is	described	in	the	following	figure:

Using	ActiveX	is	not	always	a	matter	of	choice.	For	example,	you	must	use
ActiveX	to	access	drawing	objects	from	reactor	callback	functions.	You'll	learn
more	about	this	in	Attaching	Reactors	to	AutoCAD	Drawings.

Object	Properties
Object	Methods
Collections	of	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Understanding	the	AutoCAD	Object	Model	>	

Object	Properties
	
	
	

All	objects	in	the	AutoCAD	object	model	have	one	or	more	properties.	For
example,	a	circle	object	can	be	described	by	properties	such	as	radius,	area,	or
linetype.	An	ellipse	object	also	has	area	and	linetype	properties,	but	it	cannot	be
described	in	terms	of	its	radius.	Rather,	you	describe	it	in	terms	of	its	major	to
minor	axis	ratio,	a	property	named	RadiusRatio.	Property	names	are	necessary
when	accessing	AutoCAD	data	through	ActiveX	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Understanding	the	AutoCAD	Object	Model	>	

Object	Methods
	
	
	

ActiveX	objects	also	contain	methods,	which	are	simply	the	actions	available	for
a	particular	kind	of	object.	Some	methods	can	be	applied	to	most	AutoCAD
drawing	objects.	For	example,	the	Mirror	method	(creating	a	mirror	image	copy
of	an	object	around	a	mirror	axis),	and	the	Move	method	(moving	a	drawing
object	along	a	specified	vector)	can	be	applied	to	most	drawing	objects.	By
contrast,	the	Offset	method,	which	creates	a	new	object	at	a	specified	distance
from	an	existing	object,	applies	only	to	a	few	classes	of	AutoCAD	objects	such
as	Arc,	Circle,	Ellipse,	and	Line.

In	VLISP,	ActiveX	methods	are	implemented	as	AutoLISP	functions.	You'll	see
many	references	to	ActiveX	functions	in	VLISP	documentation,	but	keep	in
mind	that	in	ActiveX	terminology,	they	are	always	known	as	methods.

To	determine	which	methods	and	properties	apply	to	a	specific	type	of
AutoCAD	object,	refer	to	the	ActiveX	and	VBA	Reference.	This	reference	is
available	from	the	VLISP	and	AutoCAD	Help	menus,	or	by	opening	the
acadauto.chm	file	in	the	AutoCAD	Help	directory.

You	will	probably	want	to	leave	the	ActiveX	and	VBA	Reference	open	when	you
are	developing	VLISP	programs	that	use	ActiveX.	If	you	open	the	acadauto.chm
file	from	the	AutoCAD	Help	directory,	you	can	keep	the	reference	open	when
you	use	VLISP	online	Help.

Note You	can	access	the	Help	topic	for	a	vlax-	or	vla-	function	by	highlighting	the
text	of	the	function	in	the	VLISP	editor	and	clicking	the	Help	button	on	the
Tools	toolbar.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Understanding	the	AutoCAD	Object	Model	>	

Collections	of	Objects
	
	
	

All	objects	in	the	AutoCAD	object	model	are	grouped	in	collections.	For
example,	the	Blocks	collection	is	made	up	of	all	blocks	in	an	AutoCAD	drawing,
and	the	ModelSpace	collection	comprises	all	graphical	objects	(circles,	lines,
polylines,	and	so	on)	in	the	drawing's	model	space.	Collections	are	labeled	in	the
object	model	diagram.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	

Accessing	AutoCAD	Objects
	
	
	

The	Application	object	is	the	root	object	for	the	AutoCAD	object	model.	From
the	Application	object,	you	can	access	any	of	the	other	objects,	or	the	properties
or	methods	assigned	to	objects.

Before	you	can	use	ActiveX	functions	with	AutoLISP,	you	need	to	load	the
supporting	code	that	enables	these	functions.	Issue	the	following	function	call	to
load	ActiveX	support:

(vl-load-com)

This	function	first	checks	if	ActiveX	support	is	already	loaded;	if	so,	the
function	does	nothing.	If	ActiveX	support	is	not	already	loaded,	vl-load-com
loads	ActiveX	and	other	Visual	LISP	extensions	to	the	AutoLISP	language.

Note All	applications	that	use	ActiveX	should	begin	by	calling	vl-load-com.
If	your	application	does	not	call	vl-load-com,	the	application	will	fail,	unless
the	user	has	already	loaded	ActiveX	support.

After	loading	the	ActiveX	support	functions,	the	first	step	in	accessing
AutoCAD	objects	is	to	establish	a	connection	to	the	AutoCAD	Application
object.	Use	the	vlax-get-acad-object	function	to	establish	this
connection,	as	in	the	following	example:

(setq	acadObject	(vlax-get-acad-object))

The	vlax-get-acad-object	function	returns	a	pointer	to	the	AutoCAD
Application	object.	In	the	example	above,	the	pointer	is	stored	in	the	acadObject
variable.	This	return	value	exists	as	a	unique	VLISP	data	type	called	VLA-object
(VLISP	ActiveX	object).

When	you	refer	to	AutoCAD	objects	with	ActiveX	functions,	you	must	specify	a

VLA-object	type.	For	this	reason,	you	cannot	use	entget	to	access	an	object
and	then	refer	to	that	object	with	an	ActiveX	function.	The	entget	function
returns	an	object	of	data	type	ename.	Although	you	cannot	use	this	object
directly	with	an	ActiveX	function,	you	can	convert	it	to	a	VLA-object	using	the
vlax-ename->vla-object	function.	(See	Converting	Object	References.)

Using	the	Inspect	Tool	to	View	Object	Properties
Moving	Forward	from	the	Application	Object
Summarizing	the	Process
Performance	Considerations

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Accessing	AutoCAD	Objects	>	

Using	the	Inspect	Tool	to	View	Object	Properties
	
	
	

To	view	the	properties	associated	with	an	Application	object,	you	can	select	the
variable	that	points	to	the	object	(acadobject,	in	the	previous	example),	and
choose	the	Inspect	button	on	the	VLISP	View	toolbar	as	follows:

You	can	readily	identify	many	of	the	properties	listed	in	the	VLA-object	Inspect
window.	For	example,	FullName	is	the	file	name	of	the	AutoCAD	executable
file,	Version	is	the	current	AutoCAD	version,	and	Caption	is	the	contents	of	the
AutoCAD	window	title	bar.	An	[RO]	following	a	property	name	indicates	the
property	is	read-only;	you	cannot	change	it.

Any	property	identified	as	a	#<VLA-OBJECT...>	refers	to	another	AutoCAD
ActiveX	object.	Look	at	the	Preferences	property,	for	example.	If	you	refer	to	the
diagram	of	the	AutoCAD	object	model,	you'll	see	that	the	Preferences	object	is
just	below	the	Application	object	in	the	model	hierarchy.	To	view	the	properties
associated	with	an	object,	double-click	the	object	line	in	the	Inspect	window	(or
right-click	and	choose	Inspect).	Here	is	the	Inspect	window	for	the	Preferences

object:

You	may	notice	that	the	properties	of	the	Preferences	object	correspond	to	the
tabs	on	the	AutoCAD	Options	dialog	box.	Double-click	on	the	Files	property	to
display	the	following	Inspect	window:

If	you	compare	the	properties	shown	in	this	window	to	the	options	available
under	the	Files	tab	in	the	AutoCAD	Options	dialog	box,	you'll	be	able	to	see	the
connection	between	the	two.	The	following	figure	shows	the	Files	options:

For	example,	the	AutoSavePath	property	corresponds	to	the	Automatic	Save	File
Location	option,	and	the	HelpFilePath	property	would	be	a	sub-option	under	the
Menu,	Help,	and	Miscellaneous	File	Names	option.

You'll	learn	how	to	use	ActiveX	functions	to	access	objects	and	modify
properties	in	Using	Visual	LISP	Functions	with	ActiveX	Methods.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Accessing	AutoCAD	Objects	>	

Moving	Forward	from	the	Application	Object
	
	
	

Following	the	AutoCAD	object	model	hierarchy,	the	ActiveDocument	property
of	the	Application	object	leads	you	to	a	Document	object.	This	Document	object
represents	the	current	AutoCAD	drawing.	The	following	AutoLISP	command
returns	the	active	document:

(setq	acadDocument	(vla-get-ActiveDocument	acadObject))

The	Document	object	has	many	properties.	Access	to	non-graphical	objects
(layers,	linetypes,	and	groups,	for	example)	is	provided	through	like-named
properties	such	as	Layers,	Linetypes,	and	Groups.	To	get	to	the	graphical	objects
in	the	AutoCAD	drawing,	you	must	access	either	the	drawing's	model	space
(through	the	ModelSpace	property)	or	paper	space	(through	the	PaperSpace
property).	For	example:

(setq	mSpace	(vla-get-ModelSpace	acadDocument))

At	this	point,	you	have	access	to	the	AutoCAD	drawing	and	can	add	objects	to
the	drawing.	For	example,	you	can	add	a	circle	to	the	model	space	with	the
following	command:

(setq	mycircle	(vla-addCircle	mSpace	

			(vlax-3d-point	'(3.0	3.0	0.0))	2.0))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Accessing	AutoCAD	Objects	>	

Summarizing	the	Process
	
	
	

In	this	section,	you	saw	code	examples	that	led	to	the	drawing	of	a	circle	object
in	an	AutoCAD	drawing	using	ActiveX	Automation.	The	following	sequence	of
function	calls	was	used:

(vl-load-com)

(setq	acadObject			(vlax-get-acad-object))

(setq	acadDocument	(vla-get-ActiveDocument	acadObject))

(setq	mSpace							(vla-get-ModelSpace	acadDocument))

(setq	mycircle				(vla-addCircle	mSpace	

					(vlax-3d-point	'(3.0	3.0	0.0))	2.0))

The	statements	in	this	example	accomplished	the	following:

Loaded	AutoLISP	ActiveX	support	functions.

Returned	a	pointer	to	the	Application	object.

Obtained	a	pointer	to	the	current	active	Document	object,	using	the
ActiveDocument	property	of	the	Application	object.	This	provided
access	to	the	current	AutoCAD	drawing.

Obtained	a	pointer	to	the	ModelSpace	object,	using	the	ModelSpace
property	of	the	Document	object.

Drew	a	circle	in	the	ModelSpace.

The	hierarchical	path	traversed	in	the	AutoCAD	object	model	is	pictured	below:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Accessing	AutoCAD	Objects	>	

Performance	Considerations
	
	
	

Repeated	calls	to	access	the	AutoCAD	Application,	active	Document,	and
ModelSpace	objects	should	be	avoided,	as	they	negatively	impact	performance.
You	should	design	your	applications	to	obtain	these	objects	one	time,	and	refer
to	the	obtained	object	pointers	throughout	the	application.

The	following	code	examples	illustrate	three	functions	you	can	define	to	return
the	Application,	active	Document,	and	ModelSpace	objects,	respectively:

(setq	*acad-object*	nil)						;	Initialize	global	variable

(defun	acad-object	()

		(cond	(*acad-object*)							;	Return	the	cached	object

				(t

					(setq	*acad-object*	(vlax-get-acad-object))

)

)

)

(setq	*active-document*	nil)		;	Initialize	global	variable

(defun	active-document	()

		(cond	(*active-document*)			;	Return	the	cached	object

				(t

					(setq	*active-document*	(vla-get-activedocument	(acad-object)))

)

)

)

(setq	*model-space*	nil)						;	Initialize	global	variable

(defun	model-space	()

		(cond	(*model-space*)							;	Return	the	cached	object

				(t

					(setq	*model-space*	(vla-get-modelspace	(active-document)))

)

)

)

For	example,	you	can	draw	a	circle	using	the	following	function	call:

(vla-addCircle	(model-space)	(vlax-3d-point	'(3.0	3.0	0.0))	2.0)

The	model-space	function	returns	the	model	space	of	the	active	document,
using	the	active-document	function	to	access	the	Document	object,	if
necessary.	The	active-document	function,	in	turn,	calls	acad-object	to
obtain	the	Application	object,	if	necessary.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	

Using	Visual	LISP	Functions	with	ActiveX	Methods
	
	
	

VLISP	adds	a	set	of	functions	to	the	AutoLISP	language	that	provides	access	to
ActiveX	objects.	The	function	names	are	prefixed	with	vla-:	for	example,	vla-
addCircle,	vla-get-ModelSpace,	vla-getColor.	These	functions
can	be	further	categorized	as	follows:

vla-	functions	correspond	to	every	ActiveX	method.	Use	these	functions
to	invoke	the	method	(for	example,	vla-addCircle	invokes	the
Addcircle	method).

vla-get-	functions	correspond	to	every	property,	enabling	you	to	retrieve
the	value	of	that	property	(for	example,	vla-get-Color	obtains	an
object's	color	property).

vla-put-	functions	correspond	to	every	property,	enabling	you	to	update
the	value	of	that	property	(for	example,	vla-put-Color	updates	an
object's	color	property).

VLISP	also	adds	a	set	of	ActiveX-related	functions	whose	names	are	prefixed
with	vlax-.	These	are	more	general	ActiveX	functions,	each	of	which	can	be
applied	to	numerous	methods,	objects,	or	properties.	For	example,	with	the
vlax-get-property	function,	you	can	obtain	any	property	of	any	ActiveX
object.	If	your	drawing	contains	custom	ActiveX	objects,	or	if	you	need	to
access	objects	from	other	applications,	such	as	a	Microsoft	Excel	spreadsheet,
you	can	use	the	vlax-invoke-method,	vlax-get-property,	and
vlax-put-property	functions	to	access	their	methods	and	properties;	you'll
see	examples	using	these	functions	in	Using	ActiveX	without	Importing	a	Type
Library.

Determining	the	Visual	LISP	Function	You	Need
Determining	How	to	Call	a	Function

Converting	AutoLISP	Data	Types	to	ActiveX	Data	Types
Viewing	and	Updating	Object	Properties
Using	ActiveX	Methods	That	Return	Values	in	Arguments
Listing	an	Object's	Properties	and	Methods
Working	with	Collection	Objects
Releasing	Objects	and	Freeing	Memory
Converting	Object	References
Handling	Errors	Returned	by	ActiveX	Methods

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Determining	the	Visual	LISP	Function	You	Need
	
	
	

The	VLISP	ActiveX	functions	actually	provide	access	to	ActiveX	methods.	For
example,	look	at	the	following	AutoLISP	statement,	which	was	entered	at	the
VLISP	Console	prompt:

_$	(setq	mycircle	(vla-addCircle

mSpace	

						(vlax-3d-point

'(3.0	3.0	0.0))	2.0))
#<VLA-OBJECT	IAcadCircle	03ad067c>

This	command	adds	a	circle	to	a	drawing,	using	the	Addcircle	method.	The
function	called	to	draw	the	circle	is	vla-addCircle.

If	you	do	not	know	what	function	adds	a	circle	to	an	AutoCAD	drawing,	you	can
figure	it	out	by	looking	in	the	ActiveX	and	VBA	Reference.	If	you	look	up	the
definition	for	a	Circle	object,	here's	what	the	entry	looks	like:

Sometimes,	as	in	this	Circle	entry,	there	is	descriptive	text	that	identifies	the
method	you	need.	Often,	though,	you'll	need	to	look	through	the	list	of	methods
to	find	the	one	that	matches	the	action	you	want	to	take.

Once	you	find	the	name	of	the	method,	add	a	vla-	prefix	to	the	method	name	to
get	the	name	of	the	VLISP	function	that	implements	the	method.	In	this
example,	it	is	vla-AddCircle.	Note	in	VLISP	the	function	name	is	not	case-
sensitive;	vla-addcircle	is	the	same	as	vla-AddCircle.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Determining	How	to	Call	a	Function
	
	
	

Once	you	identify	the	VLISP	function	you	need,	you	still	must	determine	how	to
call	the	function.	You	need	to	know	the	arguments	to	specify	and	the	data	type	of
those	arguments.	The	ActiveX	and	VBA	Reference	contains	the	information
required	for	coding	calls	to	ActiveX	functions.

For	example,	from	the	reference	page	for	the	Circle	object,	choose	the
AddCircle	hyperlink	to	view	the	definition	of	this	method:

Note	that	you	can	also	get	to	this	page	by	choosing	the	Methods	button	near	the
top	of	the	Help	window,	then	choosing	AddCircle	from	a	list	of	methods.

The	syntax	definitions	in	the	reference	were	designed	for	Visual	Basic	6	users,
so	they	may	take	some	getting	used	to.	For	AddCircle,	the	syntax	is	defined	as
follows:

RetVal	=	object.AddCircle(Center,	Radius)

Substituting	the	variable	names	used	in	this	chapter's	examples,	the	syntax	is:

mycircle	=	mspace.AddCircle(Center,	Radius)

The	AutoLISP	syntax	required	for	the	same	operation	is:

(setq	myCircle	(vla-addCircle	mSpace	

			(vlax-3d-point	'(3.0	3.0	0.0))	2.0))

The	return	value	(RetVal,	in	Visual	Basic	6)	is	straightforward.	The	ActiveX
and	VBA	Reference	defines	this	as	a	Circle	object.	In	VLISP,	whenever	an
AutoCAD	object	is	returned	by	an	ActiveX	function,	it	is	stored	as	a	VLA	object
data	type.

The	object	referred	to	before	the	method	name	(object.AddCircle)	is	always	the
first	argument	in	a	vla	function	call.	This	is	the	AutoCAD	object	you	are
viewing	or	modifying.	For	example,	add	a	circle	to	the	drawing	model	space
with	the	following:

(vla-addCircle		mSpace	...)

In	this	example,	mspace	refers	to	the	ModelSpace	object.	Recall	from	the
discussion	on	the	AutoCAD	object	model	(in	Accessing	AutoCAD	Objects),	that
you	use	the	properties	of	one	AutoCAD	object	to	access	another	object	in	a
hierarchical	manner.	The	ModelSpace	object	provides	access	to	the	model	space
of	the	current	drawing.

The	Center	and	Radius	arguments	refer	to	data	types	that	may	be	unfamiliar
to	LISP	users.	The	following	section	explains	these	data	types.

Note	that	some	ActiveX	methods	require	arguments	that	are	described	as	output
only.	See	Using	ActiveX	Methods	That	Return	Values	in	Arguments	for
information	on	how	to	code	these	arguments.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Converting	AutoLISP	Data	Types	to	ActiveX	Data	Types
	
	
	

When	adding	a	circle	to	a	drawing,	you	must	specify	the	center	point	of	the
circle	and	the	radius	of	the	circle.	In	the	definition	for	the	AddCircle	method	in
the	ActiveX	and	VBA	Reference,	these	arguments	are	referred	to	as	Center	and
Radius.	Center	is	defined	as	a	variant	(three-element	array	of	doubles),	and
Radius	is	listed	as	a	double:

RetVal	=	object.AddCircle	(Center,	Radius)

Elements

Center

Variant	(three-element	array	of	doubles);	input	only.	A	3D	WCS	coordinate
specifying	the	circle's	center.

Radius

Double;	input	only.	The	radius	of	the	circle.	Must	be	a	positive	number.

The	reference	explains	what	these	parameters	are	used	for,	but	the	data	types
indicated	for	these	parameters	may	be	unfamiliar	to	LISP	users.	Variants	are
essentially	self-defining	structures	that	can	contain	different	types	of	data.	For
example,	strings,	integers,	and	arrays	can	all	be	represented	by	variants.	Stored
along	with	the	data	is	information	identifying	the	type	of	data.	This	self-defining
feature	makes	variants	useful	for	passing	parameters	to	ActiveX	servers,	because
it	enables	servers	based	on	any	language	to	understand	the	data	value.

Working	with	Variants
Working	with	Safearrays
Using	Safearrays	with	Variants

Converting	Other	AutoLISP	Data	Types	for	ActiveX	Methods

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting
AutoLISP	Data	Types	to	ActiveX	Data	Types	>	

Working	with	Variants
	
	
	

Several	AutoLISP	functions	allow	you	to	create	and	work	with	variants:

vlax-make-variant	creates	a	variant.

vlax-variant-type	returns	the	data	type	of	a	variant.

vlax-variant-value	returns	the	value	of	a	variant	variable.

vlax-variant-change-type	changes	the	data	type	of	a	variant
variable.

The	vlax-make-variant	function	accepts	two	arguments:	value	and
type.	The	value	argument	is	the	value	to	be	assigned	to	the	variant.	The
type	argument	specifies	the	type	of	data	to	be	stored	in	the	variant.	For	type,
specify	one	of	the	following	constants:

vlax-vbEmpty

Uninitialized	(default	value)

vlax-vbNull

Contains	no	valid	data

vlax-vbInteger

Integer

vlax-vbLong

Long	integer

vlax-vbSingle

Single-precision	floating-point	number

vlax-vbDouble

Double-precision	floating-point	number

vlax-vbString

String

vlax-vbObject

Object

vlax-vbBoolean

Boolean

vlax-vbArray

Array

The	constants	evaluate	to	integer	values.	Because	the	integer	values	can	change,
you	should	always	refer	to	the	constant,	not	the	integer	value.	See	the	entry	for
vlax-make-variant	in	the	AutoLISP	Reference	for	the	current	integer	value
assigned	to	each	constant.

For	example,	the	following	function	call	creates	an	integer	variant	and	sets	its
value	to	5:

_$	(setq	varint	(vlax-make-variant

5	vlax-vbInteger))
#<variant	2	5>

The	return	value	indicates	the	variant's	data	type	(2,	which	is	vbInteger)	and
the	variant's	value	(5).

If	you	do	not	specify	a	data	type	to	vlax-make-variant,	the	function
assigns	a	default	type.	For	example,	the	following	function	call	creates	a	variant
and	assigns	it	a	value	of	5	but	does	not	specify	a	data	type:

_$	(setq	varint	(vlax-make-variant

5))
#<variant	3	5>

By	default,	vlax-make-variant	assigned	the	specified	integer	value	to	a
Long	Integer	data	type,	not	Integer,	as	you	might	expect.	When	assigning	a

numeric	value	to	a	variant,	you	should	explicitly	state	the	data	type	you	want.
Refer	to	vlax-make-variant	in	the	AutoLISP	Reference	for	a	complete	list
of	default	type	assignments.

If	you	do	not	specify	a	value	or	data	type,	vlax-make-variant	allocates	an
uninitialized	(vlax-vbEmpty)	variant.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting
AutoLISP	Data	Types	to	ActiveX	Data	Types	>	

Working	with	Safearrays
	
	
	

Arrays	passed	to	ActiveX	methods	must	be	of	the	safearray	type.	These	arrays
are	safe	because	you	cannot	accidentally	assign	values	outside	the	array	bounds
and	cause	a	data	exception	to	occur.	Use	the	vlax-make-safearray
function	to	create	a	safearray	and	use	vlax-safearray-put-element	or
vlax-safearray-fill	to	populate	a	safearray	with	data.

The	vlax-make-safearray	function	requires	a	minimum	of	two
arguments.	The	first	argument	identifies	the	type	of	data	that	will	be	stored	in	the
array.	Specify	one	of	the	following	constants	for	the	data	type:

vlax-vbInteger

Integer

vlax-vbLong

Long	integer

vlax-vbSingle

Single-precision	floating-point	number

vlax-vbDouble

Double-precision	floating-point	number

vlax-vbString

String

vlax-vbObject

Object

vlax-vbBoolean

Boolean

vlax-vbVariant

Variant

The	constants	evaluate	to	integer	values.	Because	the	integer	values	can	change,
you	should	always	refer	to	the	constant,	not	the	integer	value.	See	the	entry	for
vlax-make-safearray	in	the	AutoLISP	Reference	for	the	current	integer	value
assigned	to	each	constant.

The	remaining	arguments	to	vlax-make-safearray	specify	the	upper	and
lower	bounds	of	each	dimension	of	the	array.	You	can	create	single	or
multidimensional	arrays	with	vlax-make-safearray.	The	lower	bound	for
an	index	can	be	zero	or	any	positive	or	negative	integer.

For	example,	the	following	function	call	creates	a	single-dimension	array
consisting	of	doubles,	with	a	starting	index	of	0:

_$	(setq	point	(vlax-make-safearray

vlax-vbDouble	'(0	.	2)))
#<safearray...>

The	upper	bound	specified	in	this	example	is	2,	so	the	array	will	hold	three
elements	(element	0,	element	1,	and	element	2).

Different	dimensions	can	have	different	bounds.	For	example,	the	following
function	call	creates	a	two-dimension	array	of	strings.	The	first	dimension	starts
at	index	0	and	contains	two	elements,	while	the	second	dimension	starts	at	index
1	and	contains	three	elements:

_$	(setq	mat2	(vlax-make-safearray

vlax-vbString	'(0	.	1)	'(1	.	3)))
#<safearray...>

You	can	use	either	vlax-safearray-fill	or	vlax-safearray-put-
element	to	populate	arrays	with	data.

Using	vlax-safearray-fill

The	vlax-safearray-fill	function	requires	two	arguments:	the	variable
containing	the	array	you	are	populating	and	a	list	of	the	values	to	be	assigned	to

the	array	elements.	You	must	specify	as	many	values	as	there	are	elements	in	the
array.	For	example,	the	following	code	populates	a	single-dimension	array	of
three	doubles:

(vlax-safearray-fill	point	'(100	100	0))

You	can	display	the	contents	of	this	array	in	list	form	with	the	vlax-safear-
ray->list	function:

_$	(vlax-safearray->list

point)
(100.0	100.0	0.0)

If	you	do	not	specify	a	value	for	every	element	in	the	array,	vlax-safear-
ray-fill	results	in	an	error.

To	assign	values	to	a	multi-dimensional	array,	specify	a	list	of	lists	to	vlax-
safearray-fill,	with	each	list	corresponding	to	a	dimension.	For	example,
the	following	command	assigns	values	to	a	two-dimension	array	of	strings	that
contains	three	elements	in	each	dimension:

_$	(vlax-safearray-fill

mat2	'(("a"	"b"	"c")	("d"	"e"	"f")))
#<safearray...>

Use	the	vlax-safearray->list	function	to	confirm	the	contents	of	mat2:

_$	(vlax-safearray->list

mat2)
(("a"	"b"	"c")	("d"	"e"	"f"))

Using	vlax-safearray-put-element

The	vlax-safearray-put-element	function	can	be	used	to	assign	values
to	one	or	more	elements	of	a	safearray.	The	number	of	arguments	required	by
this	function	depends	on	the	number	of	dimensions	in	the	array.	The	following
rules	apply	to	specifying	arguments	to	vlax-safearray-put-element:

The	first	argument	always	names	the	safearray	to	which	you	are
assigning	a	value.

The	next	set	of	arguments	identifies	index	values	pointing	to	the	element
to	which	you	are	assigning	a	value.	For	a	single-dimension	array,	specify
one	index	value;	for	a	two-dimension	array,	specify	two	index	values,
and	so	on.

The	final	argument	is	always	the	value	to	be	assigned	to	the	safearray
element.

For	example,	the	following	code	populates	a	single-dimension	array	of	three
doubles:

(vlax-safearray-put-element	point	0	100)

(vlax-safearray-put-element	point	1	100)

(vlax-safearray-put-element	point	2	0)

To	change	the	second	element	of	the	array	to	a	value	of	50,	issue	the	following
command:

(vlax-safearray-put-element	point	1	50)

The	following	example	populates	a	two-dimension	array	of	strings.	The	first
dimension	of	the	array	starts	at	index	0,	while	the	second	dimension	starts	at
index	1:

(vlax-safearray-put-element	mat2	0	1	"a")

(vlax-safearray-put-element	mat2	0	2	"b")

(vlax-safearray-put-element	mat2	0	3	"c")

(vlax-safearray-put-element	mat2	1	1	"d")

(vlax-safearray-put-element	mat2	1	2	"e")

(vlax-safearray-put-element	mat2	1	3	"f")

You	can	use	vlax-safearray->list	to	confirm	the	contents	of	the	array:

_$	(vlax-safearray->list

mat2)
(("a"	"b"	"c")	("d"	"e"	"f"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting
AutoLISP	Data	Types	to	ActiveX	Data	Types	>	

Using	Safearrays	with	Variants
	
	
	

Safearray	data	must	be	passed	to	ActiveX	methods	through	variants.	That	is,	you
create	a	safearray,	then	you	assign	the	safearray	to	a	variant	before	passing	it	to	a
method.	For	methods	that	require	you	to	pass	a	three-element	array	of	doubles
(typically	to	specify	a	point),	you	can	use	the	vlax-3d-point	function	to
build	the	required	data	structure.	For	example,	the	following	call	takes	a	list	of
points	and	converts	the	list	into	an	array	of	three	doubles:

_$	(setq	circCenter

(vlax-3d-point	'(3.0	3.0	0.0)))
#<variant	8197	...>

You	can	also	pass	vlax-3d-point	two	or	three	numbers,	instead	of	a	list.	For
example:

$	(setq	circCenter

(vlax-3d-point	3.0	3.0))
#<variant	8197	...>

When	you	omit	the	third	point	from	your	argument,	vlax-3d-point	sets	it	to
zero.	You	can	use	vlax-safearray->list	to	verify	the	contents	of	the
variable	set	by	vlax-3d-point:

$	(vlax-safearray->list

(vlax-variant-value	circcenter))
(3.0	3.0	0.0)

The	vlax-TMatrix	function	performs	a	similar	task	for	transformation
matrices,	which	are	required	by	the	vla-TransformBy	function.	It	builds	the
transformation	matrix	from	four	lists	of	four	numbers	each,	converting	all

numbers	to	reals,	if	necessary.	For	example:

_$	(vlax-tmatrix	'((1

1	1	0)	(1	2	3	0)	(2	3	4	5)	(2	9	8	3)))
#<variant	8197	...>

If	you	need	to	create	a	variant	for	an	array	containing	anything	other	than	three
doubles	or	a	transformation	matrix,	you	must	build	it	yourself.

To	create	a	variant	containing	an	array	of	four	doubles

1.	 Allocate	space	for	the	array:

(setq	4dubs	(vlax-make-safearray

vlax-vbDouble	'(0	.	3)))

2.	 Populate	the	array:

(vlax-safearray-fill

4dubs	'(3.0	6.0	7.2	1.0))

3.	 Store	the	safearray	in	a	variant:

(setq	var4dubs	(vlax-make-variant

4dubs))

The	var4dubs	variable	now	contains	a	variant	containing	an	array	of
doubles.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting
AutoLISP	Data	Types	to	ActiveX	Data	Types	>	

Converting	Other	AutoLISP	Data	Types	for	ActiveX
Methods
	
	
	

The	Radius	argument	to	the	AddCircle	method	requires	a	Double,	but	the
ActiveX	functions	make	the	necessary	conversion	if	you	specify	a	real	in
AutoLISP.	The	following	table	identifies	the	AutoLISP	data	type	that	ActiveX
functions	will	accept	in	place	of	the	required	ActiveX	data	type.	Each	row	in	the
table	represents	a	data	type	used	by	ActiveX	functions.	Each	column	in	the	table
represents	an	AutoLISP	data	type.	Wherever	the	intersecting	cells	contain	a	plus
(+)	symbol,	you	can	specify	the	corresponding	AutoLISP	data	type	for	the
required	ActiveX	data	type.

AutoLISP	data	types	accepted	in	place	of	an	ActiveX	data	type

	 Integer Real String VLA-
object Variant Safe-

array

:vlax-
true

:vlax-
false

Byte + 	 	 	 	 	 	

Boolean 	 	 	 	 	 	 +

Integer + 	 	 	 	 	 	

Long + 	 	 	 	 	 	

Single + + 	 	 	 	 	

Double + + 	 	 	 	 	

Object 	 	 	 + 	 	 	

String 	 	 + 	 	 	 	

Variant 	 	 	 	 + 	 	

Array 	 	 	 	 	 + 	

In	some	instances	an	AutoLISP	ActiveX	function	will	accept	and	convert	a	data
type	that	is	not	indicated	as	acceptable	by	the	preceding	table,	but	you	should
never	count	on	this.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Viewing	and	Updating	Object	Properties
	
	
	

VLISP	provides	AutoLISP	functions	for	reading	and	updating	object	properties.
You	can	use	these	functions	to	obtain	the	properties	of	existing	drawing	objects
(for	example,	the	center	point	of	a	circle),	and	to	modify	drawing	objects	(for
example,	moving	the	center	point	of	the	circle).

Reading	Object	Properties
Updating	Object	Properties
Determining	Whether	an	Object	Is	Available	for	Updating

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Viewing	and
Updating	Object	Properties	>	

Reading	Object	Properties
	
	
	

Functions	that	read	object	properties	are	named	with	a	vla-get	prefix	and	require
the	following	syntax:

(vla-get-propertyobject)

For	example,	vla-get-center	returns	the	center	point	of	a	circle.

To	obtain	an	object's	property	and	apply	the	property	to	a	new	object

1.	 Enter	the	following	at	the	VLISP	Console	prompt:

(setq	myCircle	(vla-addcircle

mspace	(vlax-3d-point	

		(getpoint	"\nPick

the	center	point	for	a	circle:	"))	2.0))

This	function	call	prompts	you	to	pick	a	center	point	for	a	circle,	then
invokes	the	Addcircle	method	to	draw	the	circle.	The	vlax-3d-
point	function	converts	the	point	you	pick	into	the	data	type	required
by	vla-addcir-cle.

2.	 Use	vla-get-center	to	draw	a	second	circle	concentric	to	the	first:

(vla-addCircle	mSpace

(vla-get-center	myCircle)	1.0)

The	AutoCAD	drawing	window	now	contains	the	following	objects:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Viewing	and
Updating	Object	Properties	>	

Updating	Object	Properties
	
	
	

Functions	that	update	properties	are	prefixed	with	vla-put	and	use	the	following
syntax:

(vla-put-propertyobjectnew-value)

For	example,	vla-put-center	changes	the	center	point	of	a	circle.

To	change	the	X	axis	of	a	circle

1.	 Obtain	the	current	center	point	of	the	circle:

_$	(setq	myCenter	(vla-get-center

myCircle))
#<variant	8197	

The	center	point	is	returned	in	a	variant	of	type	safearray.	The	safearray
contains	three	doubles	(X,	Y,	and	Z	coordinates).

2.	 Save	the	center	point	in	list	form:

$	(setq	centerpt	(vlax-safearray->list

		(vlax-variant-value

myCenter)))
(17.8685	5.02781	0.0)

Converting	the	center	point	from	a	variant	safearray	to	a	list	makes	it
easier	to	modify	the	coordinates.

3.	 Subtract	1	from	the	X	axis	of	the	center	point:

_$	(setq	newXaxis	(-

(car	centerpt)	1))
16.8685

The	result	is	saved	in	variable	newXaxis.

4.	 Construct	a	new	point	list	for	the	center	point,	using	the	new	X	axis	and
the	original	Y	and	Z	values:

_$	(setq	newcenter	(list

newXaxis		(cadr	centerpt)

			(caddr	centerpt)))
(16.8685	4.52594	0.0)

The	constructed	list	is	saved	in	variable	newcenter.

5.	 Use	vla-put-center	to	update	the	circle	with	the	new	X	axis:

_$	(vla-put-center	myCircle

(vlax-3d-point	newcenter))
nil

Note	that	this	command	uses	vlax-3d-point	to	convert	the	new
center	point	list	into	the	data	type	required	by	vla-put-center.
The	AutoCAD	drawing	window	shows	the	result:

Note	that	changing	an	object's	property	may	not	immediately	affect	the	display
of	the	object	in	the	AutoCAD	drawing.	AutoCAD	delays	property	changes	to
allow	you	to	change	more	than	one	property	at	a	time.	If	you	need	to	update	the
drawing	window	explicitly,	issue	the	vla-update	function:

(vla-update	object)

Sometimes	you	can	use	pre-defined	constants	to	update	an	object's	property.	For
example,	to	set	the	fill	color	of	a	circle	to	red,	you	can	use	the	constant	acRed
instead	of	specifying	a	numeric	index	value:

(vla-put-color	myCircle	acRed)

The	ActiveX	and	VBA	Reference	lists	any	predefined	constants	under	the	entry
describing	the	property.	You	can	use	these	constants	in	VLISP	ActiveX	function
calls.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Viewing	and
Updating	Object	Properties	>	

Determining	Whether	an	Object	Is	Available	for	Updating
	
	
	

If	other	applications	are	working	with	any	AutoCAD	objects	at	the	same	time	as
your	program,	those	objects	may	not	be	accessible.	This	is	especially	important
to	look	out	for	if	your	application	includes	reactors,	because	reactors	execute
code	segments	in	response	to	external	events	that	cannot	be	predicted	in	advance
(see	Attaching	Reactors	to	AutoCAD	Drawings).	Even	a	simple	thing	such	as	a
locked	layer	can	prevent	you	from	changing	an	object's	properties.

VLISP	provides	the	following	functions	to	test	the	accessibility	of	an	object
before	trying	to	use	the	object:

vlax-read-enabled-p	tests	whether	you	can	read	an	object.

vlax-write-enabled-p	determines	whether	you	can	modify	an
object's	properties.

vlax-erased-p	checks	to	see	if	an	object	has	been	erased.	Erased
objects	may	still	exist	in	the	drawing	database.

These	test	functions	return	T	if	true,	nil	if	false.	The	following	examples	test	a
line	object:

Determine	whether	the	line	is	readable:

$	(vlax-read-enabled-p

WhatsMyLine)
T

Determine	whether	the	line	is	modifiable:

$	(vlax-write-enabled-p

WhatsMyLine)

T

See	if	the	line	has	been	erased:

$	(vlax-erased-p	WhatsMyLine)
nil

Erase	WhatsMyLine:

_$	(vla-delete	WhatsMyLine)
nil

Issue	vlax-read-enabled-p	to	see	if	WhatsMyLine	is	still	readable:

$	(vlax-read-enabled-p

WhatsMyLine)
nil

Issue	vlax-erased-p	again	to	confirm	the	object	was	deleted:

$	(vlax-erased-p	WhatsMyLine)
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Using	ActiveX	Methods	That	Return	Values	in	Arguments
	
	
	

Some	ActiveX	methods	require	that	you	supply	them	with	variables	into	which
the	methods	can	place	values.	The	GetBoundingBox	method	is	an	example	of
this	type	of	method.	Here	is	how	it	is	defined	in	the	ActiveX	and	VBA	Reference:

Note	that	the	MinPoint	and	MaxPoint	parameters	are	described	as	output	only.
You	must	provide	output	arguments	as	quoted	variable	names.	The	following
example	shows	a	VLISP	function	call	to	return	the	minimum	and	maximum
bounding	points	of	a	circle:

_$	(vla-getboundingbox

myCircle	'minpoint	'maxpoint)
nil

The	values	output	by	vla-getboundingbox	are	stored	in	the	minpoint
and	maxpoint	variables	as	safearrays	of	three	doubles.	You	can	view	the
values	using	vlax-safearray->list:

_$	(vlax-safearray->list

minpoint)
(1.0	1.0	-1.0e-008)

_$	(vlax-safearray->list

maxpoint)
(5.0	5.0	1.0e-008)

Note	that	the	quoted	symbol	parameters	you	pass	to	the	function	become
AutoLISP	variables	just	like	the	ones	created	through	setq.	Because	of	this,
you	should	include	them	as	local	variables	in	your	function	definition	so	they	do
not	become	global	variables	by	default.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Listing	an	Object's	Properties	and	Methods
	
	
	

Earlier	in	this	chapter,	you	learned	how	to	use	the	VLISP	Inspect	tool	to	display
an	object's	properties.	Another	way	to	view	an	object's	properties	is	to	call	the
vlax-dump-object	function.	You	can	invoke	this	function	from	the	VLISP
Console	window	or	from	an	application	program.	The	vlax-dump-object
function	prints	a	list	of	the	properties	of	the	specified	object	and	returns	T.	For
example,	the	following	code	obtains	the	last	object	added	to	the	model	space,
then	issues	vlax-dumpObject	to	print	the	object's	properties:

_$	(setq	WhatsMyLine

(vla-item	mSpace	(-	(vla-get-count	mspace)	1)))
#<VLA-OBJECT	IAcadLWPolyline	036f1d0c>

_$	(vlax-dump-object

WhatsMyLine)
;	IAcadLWPolyline:	AutoCAD	Lightweight	Polyline	Interface

;	Property	values:

;			Application	(RO)	=	#<VLA-OBJECT	IAcadApplication	00a4ae24>

;			Area	(RO)	=	2.46556

;			Closed	=	0

;			Color	=	256

;			ConstantWidth	=	0.0

;			Coordinate	=	...Indexed	contents	not	shown...

;			Coordinates	=	(8.49917	7.00155	11.2996	3.73137	14.8	5.74379	...)

;			Database	(RO)	=	#<VLA-OBJECT	IAcadDatabase	01e3da44>

;			Elevation	=	0.0

;			Handle	(RO)	=	"53"

;			HasExtensionDictionary	(RO)	=	0

;			Hyperlinks	(RO)	=	#<VLA-OBJECT	IAcadHyperlinks	01e3d7d4>

;			Layer	=	"0"

;			Linetype	=	"BYLAYER"

;			LinetypeGeneration	=	0

;			LinetypeScale	=	1.0

;			Lineweight	=	-1

;			Normal	=	(0.0	0.0	1.0)

;			ObjectID	(RO)	=	28895576

;			ObjectName	(RO)	=	"AcDbPolyline"

;			PlotStyleName	=	"ByLayer"

;			Thickness	=	0.0

;			Visible	=	-1

T

There	is	an	optional	second	argument	you	can	supply	to	vlax-dump-object
that	causes	it	to	also	list	all	the	methods	that	apply	to	the	object.	Simply	specify
“T”	following	the	object	name:

(vlax-dump-object	WhatsMyLine	T)

Note	that	vlax-dump-object	displays	the	information	in	the	window	from
which	you	issued	the	command.	However,	the	function	returns	T	to	the	calling
program,	not	the	information	displayed	in	the	Command	window.

Determining	If	a	Method	or	Property	Applies	to	an	Object

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Listing	an	Object's
Properties	and	Methods	>	

Determining	If	a	Method	or	Property	Applies	to	an	Object
	
	
	

Trying	to	use	a	method	that	does	not	apply	to	the	specified	object	will	result	in
an	error.	Trying	to	reference	a	property	that	does	not	apply	to	an	object	also
results	in	an	error.	In	instances	where	you	are	not	sure	what	applies,	use	the
vlax-method-applicable-p	and	vlax-property-available-p
functions	to	test	the	objects.	These	functions	return	T	if	the	method	or	property	is
available	for	the	object,	and	nil	if	it	is	not.

The	syntax	for	vlax-method-applicable-p	is:

(vlax-method-applicable-p	objectmethod)

The	following	command	checks	to	see	if	the	Copy	method	can	be	applied	to	the
object	referenced	by	WhatsMyLine:

_$	(vlax-method-applicable-p

WhatsMyLine	"Copy")
T

The	following	command	determines	whether	or	not	the	AddBox	method	can	be
applied	to	the	object:

_$	(vlax-method-applicable-p

WhatsMyLine	"AddBox")
nil

For	vlax-property-available-p,	the	syntax	is:

(vlax-property-available-p	objectproperty	[T])

For	example,	the	following	commands	determine	if	Color	and	Center	are

properties	of	WhatsMyLine:

_$	(vlax-property-available-p

WhatsMyLine	"Color")
T

_$	(vlax-property-available-p

WhatsMyLine	"Center")
nil

Supplying	the	optional	“T”	argument	to	vlax-property-available-p	changes
the	meaning	of	the	test.	If	you	supply	this	argument,	the	function	returns	T	only
if	the	object	has	the	property	and	the	property	can	be	modified.	If	the	object	has
no	such	property	or	the	property	is	read-only,	vlax-property-available-p	returns
nil.	For	example,	an	ellipse	contains	an	Area	property,	but	you	cannot	update
it.	If	you	check	the	property	without	specifying	the	optional	argument,	the	result
is	T:

_$	(vlax-property-available-p

myEllipse	"area")
T

If	you	supply	the	optional	argument,	the	result	is	nil:

_$	(vlax-property-available-p

myEllipse	"area"	T)
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Working	with	Collection	Objects
	
	
	

The	concept	of	collections	was	introduced	in	Understanding	the	AutoCAD
Object	Model	Recall	that	all	ActiveX	objects	in	the	AutoCAD	object	model	are
grouped	in	collections.	For	example,	the	Blocks	collection	is	made	up	of	all
blocks	in	an	AutoCAD	document.	VLISP	provides	functions	to	help	you	work
with	collections	of	AutoCAD	objects.	These	functions	are	vlax-map-
collection	and	vlax-for.

The	vlax-map-collection	function	applies	a	function	to	every	object	in	a
collection.	The	syntax	is:

(vlax-map-collection	collection-objectfunction)

For	example,	the	following	command	displays	all	properties	of	every	object	in	a
drawing's	model	space:

$	(vlax-map-collection

(vla-get-ModelSpace	acadDocument)	'vlax-dump-Object)
;	IAcadLWPolyline:	AutoCAD	Lightweight	Polyline	Interface

;	Property	values:

;			Application	(RO)	=	#<VLA-OBJECT	IAcadApplication	00b3b91c>

;			Area	(RO)	=	3.67152

;			Closed	=	-1

;			Color	=	256

;			Coordinates	=	(9.59247	4.44872	9.25814	5.34715	4.1991	5.679	...)

;			EntityName	(RO)	=	"AcDbPolyline"

;			EntityType	(RO)	=	24

;			Handle	(RO)	=	"4C"

;			Layer	=	"0"

;		.

;		.

;		.

;			Thickness	=	0.0

;			Visible	=	-1

(Note	that	the	preceding	example	does	not	show	every	property	returned	by
vlax-dump-Object.)

To	evaluate	a	series	of	functions	with	each	object	in	a	collection,	use	vlax-
for:

(vlax-for	symbolcollection	[expressions]	...)

Like	the	foreach	function,	vlax-for	returns	the	result	of	the	last	expression
evaluated	inside	the	for	loop.	Note	that	modifying	the	collection	(that	is,
adding	or	removing	members)	while	iterating	through	it	may	cause	an	error.

The	following	example	defines	a	function	that	uses	vlax-for	to	show	color
statistics	for	each	object	in	the	active	drawing:

(defun	show-Color-Statistics	(/	objectColor	colorSublist	colorList)

			(setq	modelSpace	(vla-get-ModelSpace

							(vla-get-ActiveDocument	(vlax-get-Acad-Object))

)

)

			(vlax-for	obj	modelSpace

						(setq	objectColor	(vla-get-Color	obj))

						(if	(setq	colorSublist	(assoc	objectColor	colorList))

								(setq	colorList

											(subst	(cons	objectColor	(1+(cdr	colorSublist)))

																										colorSublist

																										colorList

)

)

								(setq	colorList	(cons	(cons	objectColor	1)	colorList))

)

)

		(if	colorList

					(progn	(setq

								colorList	(vl-sort	colorList

																				'(lambda	(lst1	lst2)	(<	(car	lst1)	(car	lst2)))

)

)

												(princ	"\nColorList	=	")

												(princ	colorList)

												(foreach	subList	colorList

															(princ	"\nColor	")

															(princ	(car	subList))

															(princ	"	is	found	in	")

															(princ	(setq	count	(cdr	subList)))

															(princ	"	object")

															(princ	(if	(=	count	1)

																									"."

																									"s."

)

))))			

	(princ)

)

This	function	lists	each	color	in	the	drawing	and	the	number	of	objects	where	the
color	is	found.

Retrieving	Member	Objects	in	a	Collection

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Working	with
Collection	Objects	>	

Retrieving	Member	Objects	in	a	Collection
	
	
	

The	Item	method	retrieves	a	member	object	from	a	collection.	The	Count
property	shows	the	number	of	items	in	a	collection.	Using	the	Item	method	and
Count	property,	you	can	individually	process	each	object	in	a	collection.	For
example,	you	can	look	at	each	object	in	a	model	space,	determine	the	type	of
object,	and	process	only	the	types	of	objects	you	are	interested	in.	The	following
code	prints	the	start	angle	for	each	arc	object	in	a	model	space:

(setq	index	0)

(repeat			(vla-get-count	mspace)

		(if	(=	"AcDbArc"	(vla-get-objectname	(vla-item	mspace	index)))

				(progn

						(princ	"\nThe	start	angle	of	the	arc	is	")

						(princ	(vla-get-startangle	(vla-item	mspace	index)))

)

)

		(setq	index	(+	index	1))

)

Note	that	Item	and	Count	also	apply	to	groups	and	selection	sets.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Releasing	Objects	and	Freeing	Memory
	
	
	

Just	as	you	can	have	different	variables	pointing	to	the	same	AutoCAD	entity,
you	can	have	multiple	VLA-objects	pointing	to	the	same	drawing	object.	You
can	compare	two	VLA-objects	with	the	equal	function,	which	returns	T	if	both
objects	point	to	the	same	drawing	object.

As	long	as	a	VLA-object	points	to	a	drawing	object,	AutoCAD	will	keep	all	the
memory	needed	for	the	object.	When	you	no	longer	need	to	reference	an	object,
use	the	vlax-release-object	function	to	indicate	this	to	AutoCAD:

(vlax-release-object	object)

After	releasing	an	object,	it	is	no	longer	accessible	through	the	VLA-object
pointer.	This	is	similar	to	closing	a	file.	No	memory	is	necessarily	freed	when
you	issue	vlax-release-object,	but	AutoCAD	can	reclaim	the	memory	if
needed,	once	all	references	to	the	object	have	been	released.

To	test	whether	or	not	an	object	has	been	released,	use	the	vlax-object-
released-p	function:

(vlax-object-released-p	object)

This	function	returns	T	if	the	object	has	been	released,	nil	if	it	has	not.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Converting	Object	References
	
	
	

There	are	a	number	of	ways	to	refer	to	AutoCAD	drawing	objects	with
AutoLISP.	These	include	the	following:

VLA-objects,	returned	by	ActiveX	functions

Entity	names	(enames),	returned	by	entget	and	entsel,	identifying
objects	in	an	open	drawing

Handles,	returned	by	handent,	which	entities	retain	across	AutoCAD
sessions

Object	IDs,	used	by	ARX	to	identify	objects

AutoLISP	provides	functions	to	convert	from	one	type	of	object	identifier	to
another.

Converting	between	Enames	and	VLA-objects
Obtaining	One	Object	Identifier	from	Another

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting	Object
References	>	

Converting	between	Enames	and	VLA-objects
	
	
	

The	vlax-ename->vla-object	function	allows	you	to	convert	entity
names	(enames)	obtained	through	functions,	such	as	entget,	to	VLA-objects
you	can	use	with	ActiveX	functions.	For	example,	the	following	code	sets	a
variable	to	an	ename,	then	uses	vlax-ename->vla-object	to	convert	the
ename	to	a	VLA-object:

_$	(setq	ename-circle

(car	(entsel	"\nPick	a	Circle:")))
<Entity	name:	27f0538>

_$	(setq	vlaobject-circle

(vlax-ename->vla-object	ename-circle))
#<VLA-OBJECT	IAcadCircle	03642c24>

To	convert	VLA-objects	to	enames,	use	vlax-vla-object->ename.	For
example:

$	(setq	new-ename-circle

(vlax-vla-object->ename	vlaobject-circle))
<Entity	name:	27f0538>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	Converting	Object
References	>	

Obtaining	One	Object	Identifier	from	Another
	
	
	

You	may	find	the	same	drawing	object	represented	by	different	identifiers	and
data	types	such	as	a	handle	string,	an	ename,	a	VLA-object,	or	an	ObjectARX
object	ID	integer.	To	obtain	the	identifier	with	the	data	type	your	program
requires,	use	the	following	strategies:

To	find	the	handle	associated	with	an	ename,	use	the	DXF	5	group	of	the
ename's	association	list:
_$	(setq	handle-circle	(cdr	(assoc	5	(entget

ename-circle))))

"4F"

To	find	the	ename	associated	with	a	handle,	use	the	handent	function:
_$	(handent	handle-circle)

<Entity	name:	27f0538>

To	find	the	VLA-object	associated	with	a	handle,	use	the	vla-
handleToObject	function:
_$	(setq	vla-circle	(vla-handleToObject

acadDocument

handle-circle))

#<VLA-OBJECT	IAcadCircle	03642c24>

To	find	the	handle	associated	with	a	VLA-object,	use	vla-get-
handle	to	obtain	the	handle	property:
_$	(vla-get-handle	vla-circle)

"4F"

To	find	the	ObjectARX	object	ID	of	a	VLA-object,	use	vla-get-
objectid	to	get	the	objectID	property:
_$	(setq	objid-Circle	(vla-get-objectid	vla-

circle))

41878840

To	find	the	VLA-object	identified	by	an	ObjectARX	object	ID,	use	the
ObjectID-toObject	method	on	the	AutoCAD	Document	object:
_$	(vla-ObjectIDtoObject	acadDocument	objid-

circle)

#<VLA-OBJECT	IAcadCircle	03642c24>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	Visual	LISP	Functions	with	ActiveX	Methods	>	

Handling	Errors	Returned	by	ActiveX	Methods
	
	
	

When	ActiveX	methods	fail,	they	raise	exceptions	rather	than	returning	error
values	that	your	program	can	interpret.	If	your	program	uses	ActiveX	methods,
you	must	prepare	it	to	catch	exceptions,	otherwise	the	program	halts,	leaving	the
user	at	a	Command	prompt.	You	can	use	vl-catch-all-apply	to	intercept
errors	returned	by	ActiveX	methods.

To	intercept	errors	returned	by	ActiveX	methods

1.	 Load	the	following	function	and	invoke	it	by	issuing	(init-
motivate)	at	the	VLISP	Console	prompt:

(defun	init-motivate	()

		(vl-load-com)

		(setq	mspace

					(vla-get-modelspace

							(vla-get-activedocument	(vlax-get-acad-object))

)

)

		(vla-addray	mspace	(vlax-3d-point	0	0	0)	(vlax-3d-point	1	1	0))

)

This	function	adds	a	ray	object	to	the	current	model	space.	A	ray	has	a
finite	starting	point	and	extends	to	infinity.

2.	 The	GetBoundingBox	method	obtains	two	points	of	a	box	enclosing	a
specified	object,	returning	those	points	in	variables	you	supply	to	the
method.	(See	Using	ActiveX	Methods	That	Return	Values	in	Arguments
for	an	example	using	this.)	The	following	code	obtains	a	pointer	to	the
last	object	added	to	a	drawing's	model	space	and	uses	vla-
getboundingbox	to	obtain	the	points	enclosing	the	object:

(defun	bnddrop	(/	bbox)

		(setq	bbox	(vla-getboundingbox

											(vla-item	mspace	(-	1	(vla-get-count	mspace)))

											'll

											'ur

)

)

		(list	"Do	something	with	bounding	box."	bbox)

)

Load	this	code	and	run	it	by	issuing	(bnddrop)	at	the	Console
prompt.	Because	a	ray	extends	to	infinity,	it	is	not	possible	to	enclose	it
with	a	box,	and	GetBoundingBox	results	in	the	following	error:

;	error:	Automation	Error.	Invalid	extents

If	this	code	were	part	of	your	application	program,	execution	would	halt
at	this	point.

3.	 By	invoking	vla-getboundingbox	through	the	vl-catch-all-
apply	function,	you	can	intercept	errors	returned	by	ActiveX.	Load	the
following	code	and	run	it	by	issuing	(bndcatch)	at	the	Console
prompt:

(defun	bndcatch	(/	bbox)

		(setq	bbox	(vl-catch-all-apply

											'vla-getboundingbox

											(list	(vla-item	mspace	(-	1	(vla-get-count	mspace)))

																	'll

																	'ur

)

)

)

		(if	(vl-catch-all-error-p	bbox)

				(list	"Exception:	"	(vl-catch-all-error-message	bbox))

				(list	"Do	something	with	bounding	box."	bbox)

)

)

This	function	uses	vl-catch-all-apply	to	call	vla-
getboundingbox.	It	passes	vl-catch-all-apply	two
arguments:	the	symbol	naming	the	function	being	called	('vla-
getboundingbox)	and	a	list	of	arguments	to	be	passed	to	vla-
getboundingbox.	If	the	GetBoundingBox	method	completes
successfully,	vl-catch-all-apply	stores	the	return	value	in
variable	bbox.	If	the	call	is	unsuccessful,	vl-catch-all-apply

stores	an	error	object	in	bbox.
At	this	point	in	the	bnddrop	function,	vla-getboundingbox	was
issued	directly,	an	error	resulted,	and	execution	halted.	But	in
bndcatch,	vl-catch-all-apply	intercepts	the	error	and	program
execution	continues.
A	call	to	vl-catch-all-error-p	checks	the	return	value	from
vl-catch-all-apply	and	returns	T	if	it	is	an	error	object,	nil
otherwise.	If	the	return	value	is	an	error	object,	as	it	would	be	in	this
example,	the	function	issues	vl-catch-all-error-message	to
obtain	the	message	from	the	error	object.	Program	execution	continues
from	this	point.
Catching	Errors	and	Continuing	Program	Execution	includes	a	non-
ActiveX	example	that	uses	the	vl-catch-*	functions	to	intercept
errors.	For	additional	information	on	these	functions,	see	the	AutoLISP
Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	

Using	ActiveX	to	Interact	with	Other	Applications
	
	
	

The	power	of	ActiveX	extends	beyond	the	ability	to	interact	with	standard
AutoCAD	objects.	Visual	LISP	provides	AutoLISP	functions	that	allow	you	to
access	objects	from	other	applications	that	support	ActiveX.	For	example,	you
can	open	a	Microsoft®	Word	document,	retrieve	text	data	from	an	AutoCAD
drawing,	and	copy	the	text	into	the	Word	document.	Or	you	might	access	cells	in
a	Microsoft	Excel	spreadsheet	and	use	the	data	with	your	AutoCAD	drawing.

To	write	AutoLISP	code	that	interacts	with	other	ActiveX	applications,	you'll
need	to	refer	to	the	documentation	for	those	applications	to	learn	the
application's	object	names	and	how	to	work	with	its	methods	and	properties.
Typically,	the	online	Help	for	an	ActiveX-enabled	Windows	application	contains
information	on	its	ActiveX	interface.	For	example,	AutoCAD	provides	the
ActiveX	and	VBA	Reference,	as	well	as	the	ActiveX	and	VBA	Developer's	Guide
for	working	with	ActiveX	using	Visual	Basic	for	Applications	(VBA).

The	following	topics	in	this	section	apply	when	you	work	with	any	ActiveX
application	from	AutoLISP.	The	code	examples	illustrate	the	process	of
obtaining	text	from	an	AutoCAD	drawing	and	then	inserting	the	text	into	a
Microsoft	Word	document.

Importing	a	Type	Library
Establishing	a	Connection	to	an	Application
Coding	a	Sample	Application
Using	ActiveX	without	Importing	a	Type	Library

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	

Importing	a	Type	Library
	
	
	

VLISP	provides	an	AutoLISP	function	that	allows	you	to	import	the	type	library
of	the	ActiveX	application	you	want	to	access.	When	you	import	a	type	library,
AutoCAD	creates	a	set	of	wrapper	functions	that	provide	access	to	the
application's	methods	and	properties.	In	fact,	the	vla-	functions	you	have	seen
so	far	are	wrapper	functions	created	for	the	AutoCAD	type	library.

Use	the	vlax-import-type-library	function	to	import	a	type	library.
When	calling	this	function,	identify	the	type	library	and	tell	AutoCAD	what
prefixes	to	use	in	naming	the	wrapper	functions	for	the	application's	methods
and	properties.	Also	specify	a	prefix	for	the	application's	constants.	The	vlax-
import-type-library	function	takes	the	following	syntax:

(vlax-import-type-library	:tlb-filename	filename	

[:methods-prefix	mprefix:properties-prefix	pprefix	:constants-prefix	c

The	filename	argument	is	a	string	that	names	the	type	library.	If	you	do	not
specify	a	path,	AutoCAD	looks	for	the	file	in	the	support	file	search	path.

The	mprefix	argument	specifies	the	prefix	to	be	used	for	method	wrapper
functions.	For	example,	if	the	type	library	contains	a	Calculate	method	and	the
mprefix	parameter	is	set	to	"cc-",	AutoCAD	generates	a	wrapper	function
named	cc-Calculate.	This	parameter	defaults	to	"".

The	pprefix	argument	specifies	the	prefix	to	be	used	for	property	wrapper
functions,	and	the	cprefix	argument	defines	the	prefix	to	be	used	for
constants	contained	in	the	type	library.	These	parameters	also	default	to	"".

Note	the	required	use	of	keywords	when	passing	arguments	to	vlax-import-
type-library.	For	example,	the	following	code	imports	a	Microsoft	Word
type	library,	assigning	the	prefix	mswm-	to	methods,	mswp-	to	properties,	and
mswc-	to	constants:

(if	(equal	nil	mswc-wd100Words)	;	check	for	a	WinWord	constant

		(vlax-import-type-library

				:tlb-filename	"c:/Microsoft	Office/Office/msword8.olb"

				:methods-prefix	"mswm-"

				:properties-prefix	"mswp-"

				:constants-prefix	"mswc-"

)	

)	

After	importing	the	type	library,	you	can	use	the	VLISP	Apropos	feature	to	list
the	ActiveX	wrapper	functions	resulting	from	the	import.	For	example,	enter
mswm	in	the	Apropos	Options	dialog	box	and	select	the	Match	by	Prefix	option
to	list	all	Microsoft	Word	ActiveX	methods.

Importing	an	application's	type	library	enables	you	to	use	VLISP	features	such
as	Apropos	on	the	application's	properties	and	methods,	but	you	can	access	the
application	even	if	you	do	not	import	its	type	library.	See	Using	ActiveX	without
Importing	a	Type	Library.

Coding	Hints	for	Using	vlax-import-type-library

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	Importing	a	Type
Library	>	

Coding	Hints	for	Using	vlax-import-type-library
	
	
	

In	AutoCAD,	vlax-import-type-library	is	executed	at	runtime	rather
than	at	compiletime.	The	following	practices	are	recommended	when	using
vlax-import-type-library:

If	you	want	your	code	to	run	on	different	machines,	avoid	specifying	an
absolute	path	in	the	tlb-filename	parameter.

If	possible,	avoid	using	vlax-import-type-library	from	inside
any	AutoLISP	expression	(in	other	words,	always	call	it	from	a	top-level
position).

In	your	AutoLISP	source	file,	code	the	vlax-import-type-
library	call	before	any	code	that	uses	method	or	property	wrappers	or
constants	defined	in	the	type	library.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	

Establishing	a	Connection	to	an	Application
	
	
	

If	an	instance	of	Microsoft	Word	is	already	running	on	your	PC,	use	vlax-
get-object	to	establish	a	connection	to	the	application.	For	example,	the
following	function	call	establishes	a	connection	to	a	Microsoft	Word	application,
and	saves	a	pointer	to	the	application	in	a	variable	named	msw:

(setq	msw	(vlax-get-object	"Word.Application"))

The	vlax-create-object	function	creates	a	new	instance	of	an	application
object.	For	example,	if	the	return	value	from	vlax-get-object	is	nil,
indicating	that	the	requested	application	does	not	exist,	you	can	use	vlax-
create-object	to	start	the	application.	The	following	call	starts	Microsoft
Word	and	saves	a	pointer	to	the	application	in	variable	msw:

(setq	msw	(vlax-create-object	"Word.Application"))

Alternatively,	you	can	use	vlax-get-or-create-object	to	access	an
application.	This	function	attempts	to	connect	to	an	existing	instance	of	an
application,	and	starts	a	new	instance	if	it	doesn't	find	one.

The	application	object	does	not	appear	until	you	make	it	visible.	You	make	an
object	visible	by	setting	its	Visible	property	to	TRUE.	For	example,	the
following	call	makes	the	Microsoft	Word	application	visible:

(vla-put-visible	msw	:vlax-true)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	

Coding	a	Sample	Application
	
	
	

After	accessing	the	application	object,	the	remaining	AutoLISP	code	is	specific
to	the	application	you're	working	with	and	the	tasks	you	want	to	accomplish.	For
example,	the	following	function	call	accesses	the	documents	collection	object	in
Microsoft	Word:

(setq	docs	(vla-get-documents	msw))

The	following	command	creates	a	new	Word	document:

(setq	doc	(mswm-add	docs))

The	following	procedure	creates	an	ActiveX	application	that	works	with
Microsoft	Word	97	and	an	AutoCAD	drawing	that	contains	mtext.

To	copy	mtext	from	an	AutoCAD	drawing	into	a	Microsoft	Word
document

1.	 Issue	the	following	command	to	ensure	that	AutoLISP	ActiveX	support
is	loaded:

(vl-load-com)	

2.	 Obtain	the	AutoCAD	application	and	current	ModelSpace	objects	and
save	their	pointers:

(setq	*AcadApp*	(vlax-get-acad-object))				;	Get	AutoCAD	application

(setq	*ModelSpace*	(vla-get-ModelSpace	

		(vla-get-ActiveDocument	*AcadApp*)))					;	Get	model	space

3.	 Import	the	Microsoft	Word	type	library.	Change	the	:tlb-filename
argument	in	the	following	code	to	point	to	the	msword8.olb	file	on	your

system,	then	run	the	code:

(if	(equal	nil	mswc-wd100Words)	;	check	for	a	Word	constant

		(vlax-import-type-library

				:tlb-filename	"c:/Microsoft	Office/Office/msword8.olb"

				:methods-prefix	"mswm-"

				:properties-prefix	"mswp-"

				:constants-prefix	"mswc-"

)	

)	

This	code	first	checks	to	see	if	a	known	Microsoft	Word	constant	is
defined	with	a	value.	If	the	constant	has	a	value,	it	is	assumed	that	the
Word	type	library	has	already	been	imported	and	no	further	action	is
necessary.	If	the	constant	is	nil,	vlax-import-type-library	is
invoked.

4.	 Establish	a	connection	to	a	Microsoft	Word	application	by	running	the
following	code:

(setq	msw	(vlax-get-object	"Word.Application.8"))

	(if	(equal	nil	msw)

			(progn

					;	Word	is	not	running.	Start	it.

					(setq	msw	(vlax-create-object	"Word.Application.8"))

					(vla-put-visible	msw	:vlax-true)

)

)

The	code	issues	vlax-get-object	to	establish	a	connection	to	a
running	Microsoft	Word	application.	(In	this	example,	version	8—Word
97—is	specified;	if	the	8	were	omitted,	any	instance	of	Word	would	be
accepted.)	If	there	is	no	running	instance	of	Word,	vlax-create-
object	is	issued	to	start	one.

5.	 The	remaining	code	follows.	Comments	in	the	code	explain	the
processing.

(if	(/=	nil	msw)

		(progn

				;;	Get	the	document	collection	object.

				(setq	docs	(vla-get-documents	msw))

				;;	Add	a	new	document

				(setq	doc	(mswm-add	docs))

				;;	Get	the	paragraphs	of	the	document	(to	do	some	formatting)

				(setq	paragraphs	(mswp-get-paragraphs	doc))

				;;	Now	iterate	through	the	model	space	and	export	any	mtext

				;;	every	Mtext	entity	to	Word.

				(vlax-for	ent	*ModelSpace*

						(if	(equal	(vla-get-ObjectName	ent)	"AcDbMText")

								(progn

											;;	Get	the	following	information	from	the	Mtext	entity:

											;;					o	the	text	string

											;;					o	the	location	of	a	corner	of	the	text	boundary

											(setq	text	(vla-get-TextString	ent)							

																	textpos	(vla-get-InsertionPoint	ent)

																	arrayTextpos	(vlax-variant-value	textpos)

																	textinfo

																		(strcat

																	(rtos	(vlax-safearray-get-element	arrayTextpos	0)	2	2)

																",	"

																	(rtos	(vlax-safearray-get-element	arrayTextpos	1)	2	2)

																",	"

																(rtos	(vlax-safearray-get-element	arrayTextpos	2)	2	2)

)

)	;_	end	of	setq

									;	Print	some	info	(with	formatting)

									;		Get	the	last	paragraph	in	the	document

									(setq	pg	(mswp-get-last	paragraphs))

									;		Obtain	the	range	of	the	paragraph

									(setq	range	(mswp-get-range	pg))

									;		Do	some	formatting

									(mswp-put-bold	range	1)																							;bold

									(mswp-put-underline	range	mswc-wdUnderlineSingle)	;underline

									;	4)	Insert	info	about	the	text	at	the	end	of	the	paragraph

									(mswm-InsertAfter	range

												(strcat	"AcDbMText	at	position	"	textinfo	"\n"))

									;	Now	show	the	text	string	(from	the	ACAD	text	entity)

									(setq	pg	(mswp-get-last	paragraphs))

									(setq	range	(mswp-get-range	pg))

									(mswp-put-bold	range	0)

									(mswp-put-underline	range	mswc-wdUnderlineNone)

									(mswm-InsertAfter	range	(strcat	text	"\n\n"))

)	;_	end	of	progn		

)	;_	end	of	if	AcDbMText

)	;_	end	of	vlax-for

)	;_	end	of	progn

		(princ	"\nNo	Microsoft	Word	application	found.\n")

)

Load	and	run	the	code	and	look	at	the	result	in	Microsoft	Word.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	

Using	ActiveX	without	Importing	a	Type	Library
	
	
	

Importing	an	application	type	library	and	using	the	resulting	ActiveX	wrapper
functions	is	convenient	and	provides	access	to	VLISP	features	such	as	Apropos,
but	it	comes	at	a	cost.	Applications	such	as	Microsoft	Word	and	Microsoft	Excel
contain	hundreds	of	methods	and	properties,	and	creating	wrappers	for	each	of
these	adds	up	to	significant	memory	usage.	Also,	you	may	need	to	use	an
ActiveX	property	or	method	for	which	there	is	no	generated	AutoLISP	wrapper
function.	In	this	instance,	and	to	avoid	the	overhead	involved	in	importing	a	type
library,	VLISP	provides	the	following	AutoLISP	functions:

vlax-invoke-method

vlax-get-property

vlax-put-property

Calling	an	ActiveX	Method	with	vlax-invoke-method
Obtaining	an	ActiveX	Property	with	vlax-get-property
Updating	an	ActiveX	Property	with	vlax-put-property

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	Using	ActiveX
without	Importing	a	Type	Library	>	

Calling	an	ActiveX	Method	with	vlax-invoke-method
	
	
	

The	vlax-invoke-method	function	calls	an	ActiveX	method	directly.	The
function	requires	the	following	arguments:

The	VLA-object	the	method	is	to	work	on

A	symbol	or	string	naming	the	method	to	be	called

One	or	more	arguments	to	be	passed	to	the	method

The	return	value	from	vlax-invoke-method	depends	on	the	method	being
invoked.

For	example,	the	following	invokes	the	AddCircle	method	to	draw	a	circle	in	the
model	space	(represented	by	the	mspace	variable)	of	the	current	AutoCAD
drawing:

_$	(setq	mycircle	

					(vlax-invoke-method

mspace	'AddCircle	circCenter	3.0))
#<VLA-OBJECT	IAcadCircle	00bfd6e4>

In	this	example,	circCenter	is	a	variant	(containing	a	three-element	array	of
doubles)	identifying	the	center	of	the	circle,	and	3.0	is	the	radius	of	the	circle.
The	method	returns	a	VLA-object,	the	circle	drawn.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	Using	ActiveX
without	Importing	a	Type	Library	>	

Obtaining	an	ActiveX	Property	with	vlax-get-property
	
	
	

The	vlax-get-property	function	returns	the	property	of	an	object.	The
function	requires	the	following	arguments:

A	VLA-object	identifying	the	object	whose	property	you	are	interested
in

A	symbol	or	string	naming	the	property	to	be	retrieved

For	example,	there	is	no	wrapper	function	available	to	obtain	the	CommandBars
property	of	an	Microsoft	Word	application	object,	but	the	following	command
achieves	this:

_$	(setq	ComBars	(vlax-get-property

msw	'CommandBars))
#<VLA-OBJECT	CommandBars	0016763c>

You	can	use	vlax-get-property	(and	vlax-invoke-method	and
vlax-put-property)	even	if	a	wrapper	function	is	available	for	the	task.
For	example,	the	following	returns	the	AutoCAD's	ActiveDocument	property:

_$	(vlax-get-property

acadObject	'ActiveDocument)
#<VLA-OBJECT	IAcadDocument	00302a18>

In	this	instance,	you	could	have	instead	used	vla-get-ActiveDocument	to
obtain	the	ActiveDocument	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Working	with
ActiveX	>	Using	ActiveX	to	Interact	with	Other	Applications	>	Using	ActiveX
without	Importing	a	Type	Library	>	

Updating	an	ActiveX	Property	with	vlax-put-property
	
	
	

The	vlax-put-property	function	updates	the	property	of	an	object.	The
function	requires	the	following	arguments:

A	VLA-object	identifying	the	object	whose	property	you	are	updating

A	symbol	or	string	naming	the	property	to	be	set

The	value	to	set	the	property	to

If	vlax-put-property	updates	the	property	successfully,	it	returns	nil.

The	following	function	call	changes	the	size	of	the	Microsoft	Word	toolbar
buttons	by	updating	the	LargeButtons	property	of	the	CommandBars	object:

_$	(vlax-put-property

combars	'LargeButtons	:vlax-true)
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	

Advanced	Topics
	
	
	

You	can	use	reactors	for	event	notification.

Visual	LISP®	not	only	makes	program	development	easier	and	faster,	it	also
provides	new	functionality	to	LISP	applications.	For	example,	you	can	attach
reactors	to	entities	in	the	AutoCAD®	drawing	window,	allowing	your	application
to	respond	to	user	actions	on	these	entities.

Attaching	Reactors	to	AutoCAD	Drawings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	

Attaching	Reactors	to	AutoCAD	Drawings
	
	
	

A	reactor	is	an	object	you	attach	to	AutoCAD	drawing	objects	to	have	AutoCAD
notify	your	application	when	events	you	are	interested	in	occur.	For	example,	if
a	user	moves	an	entity	that	your	application	has	attached	a	reactor	to,	your
application	will	receive	notification	that	the	entity	has	moved.	If	you	design	it	to
do	so,	your	application	can	react	to	this	notification	with	appropriate	actions,
such	as	moving	other	entities	associated	with	the	one	moved,	or	perhaps
updating	a	text	tag	that	records	revision	information	on	the	altered	drawing
feature.

A	reactor	communicates	with	your	application	by	calling	a	function	you	have
associated	with	the	reactor.	Such	a	function	is	referred	to	as	a	callback	function.
There	isn't	anything	particularly	unusual	about	reactor	callback	functions—they
are	like	other	functions	you	write	with	VLISP.	They	become	callback	functions
when	you	attach	them	to	reactor	events.

Before	you	can	use	reactor	functions	with	AutoLISP,	you	must	load	the
supporting	code	that	enables	these	functions.	Issue	the	following	function	call	to
load	reactor	support:

vl-load-com

This	function	first	checks	whether	reactor	support	is	already	loaded;	if	reactor
support	is	loaded,	the	function	does	nothing,	otherwise,	it	loads	reactor	support
and	other	AutoLISP	extended	functions.

Note All	applications	that	use	reactors—including	all	callback	functions—should
begin	by	calling	vl-load-com.

Understanding	Reactor	Types	and	Events
Defining	Callback	Functions
Creating	Reactors

Working	with	Reactors	in	Multiple	Namespaces
Querying,	Modifying,	and	Removing	Reactors
Transient	versus	Persistent	Reactors
Reactor	Use	Guidelines

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Understanding	Reactor	Types	and	Events
	
	
	

There	are	many	types	of	AutoCAD	reactors.	Each	reactor	type	responds	to	one
or	more	AutoCAD	events.	The	different	types	of	reactors	are	grouped	into	the
following	categories:

Database	Reactors

Database	reactors	notify	your	application	when	specific	events	occur	to	the
drawing	database,	such	as	when	an	object	has	been	added	to	the	database.

Document	Reactors

Document	reactors	notify	your	application	of	a	change	to	the	current	drawing
document,	such	as	opening	a	new	drawing	document,	activating	a	different
document	window,	and	changing	a	document's	lock	status.

Editor	Reactors

Editor	reactors	notify	you	each	time	an	AutoCAD	command	is	invoked;	a
drawing	opens,	closes,	or	is	saved;	a	DXF	file	is	imported	or	exported;	or	a
system	variable	changes	value.

Linker	Reactors

Linker	reactors	notify	your	application	every	time	an	ObjectARX	application
is	loaded	or	unloaded.

Object	Reactors

Object	reactors	notify	you	each	time	a	specific	object	is	changed,	copied,	or
deleted.

With	the	exception	of	Editor	reactors,	there	is	one	type	of	reactor	for	each
reactor	category.	The	following	table	lists	the	name	by	which	each	reactor	type	is
identified	in	AutoLISP	code:

General	reactor	types

Reactor	type
identifier Description

:VLR-AcDb-
Reactor

Database	reactor

:VLR-
DocManager-
Reactor

Document	management
reactor

:VLR-Editor-
Reactor

General	Editor	reactor—
maintained	for	backward-
compatibility

:VLR-Linker-
Reactor

Linker	reactor

:VLR-Object-
Reactor

Object	reactor

Beginning	with	AutoCAD	2000,	the	broad	class	of	Editor	reactors	is	broken
down	into	more	specific	reactor	types.	The	:VLR-Editor-Reactor	type	is	retained
for	backward-compatibility,	but	any	new	Editor	reactors	introduced	with
AutoCAD	2000	cannot	be	referenced	through	:VLR-Editor-Reactor.	The
following	table	lists	the	types	of	Editor	reactors	available	beginning	with
AutoCAD	2000.

Editor	reactor	types

Reactor	type Description

:VLR-Command-
Reactor

Provides	notification	of	a
command	event

:VLR-
DeepClone-
Reactor

Provides	notification	of	a
deep	clone	event

:VLR-DWG-
Reactor

Provides	notification	of	a
drawing	event	(for
example,	opening	or
closing	a	drawing	file)

:VLR-DXF-
Reactor

Provides	notification	of	an
event	related	to	reading	or
writing	of	a	DXF	file

:VLR-Insert-
Reactor

Provides	notification	of	an
event	related	to	block
insertion

:VLR-Lisp-
Reactor

Provides	notification	of	an
AutoLISP	event

:VLR-
Miscellaneous-
Reactor

Does	not	fall	under	any	of
the	other	editor	reactor
types

:VLR-Mouse-
Reactor

Provides	notification	of	a
mouse	event	(for	example,
a	double-click)

:VLR-SysVar-
Reactor

Provides	notification	of	a
change	to	a	system	variable

:VLR-Toolbar-
Reactor

Provides	notification	of	a
change	to	the	bitmaps	in	a
toolbar

:VLR-Undo-
Reactor

Provides	notification	of	an
undo	event

:VLR-Wblock-
Reactor

Provides	notification	of	an
event	related	to	writing	a
block

:VLR-Window-
Reactor

Provides	notification	of	an
event	related	to	moving	or
sizing	an	AutoCAD
window

:VLR-XREF-
Reactor

Provides	notification	of	an
event	related	to	attaching	or
modifying	xrefs

Use	the	vlr-types	function	to	return	the	complete	list	of	reactor	types.
Reactor	Callback	Events

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Understanding	Reactor	Types
and	Events	>	

Reactor	Callback	Events
	
	
	

For	each	reactor	type	there	are	a	number	of	events	that	can	cause	the	reactor	to
notify	your	application.	These	events	are	known	as	callback	events,	because	they
cause	the	reactor	to	call	a	function	you	associate	with	the	event.	For	example,
when	you	issue	the	Save	command	to	save	a	drawing,	a	:vlr-beginSave
event	occurs.	When	you	complete	the	save	process,	a	:vlr-saveComplete
event	occurs.	In	designing	a	reactor-based	application,	it	is	up	to	you	to
determine	the	events	you	are	interested	in,	and	to	write	the	callback	functions	to
be	triggered	when	these	events	occur.

The	vlr-reaction-names	function	returns	a	list	of	all	available	events	for	a
given	reactor	type:

(vlr-reaction-names	reactor	type)

For	example,	the	following	command	returns	a	list	of	all	events	related	to	Object
reactors:

$	(vlr-reaction-names

:VLR-Object-Reactor)
(:VLR-cancelled	:VLR-copied	:VLR-erased	:VLR-unerased	:VLR-goodbye	:VLR-openedForModify	:VLR-modified	:VLR-subObjModified	:VLR-modifyUndone	:VLR-modifiedXData	:VLR-unappended	:VLR-reappended	:VLR-objectClosed)

Note If	this	or	any	other	vlr-*	command	fails	with	a	“no	function	definition”
message,	you	may	have	forgotten	to	call	vl-load-com,	the	function	that	loads
AutoLISP	reactor	support	functions.

You	can	print	out	a	list	of	all	available	reactor	events,	sorted	by	reactor	type,	by
loading	and	running	the	following	code	in	VLISP:

(defun	print-reactors-and-events	()

		(foreach	rtype	(vlr-types)

				(princ	(strcat	"\n"	(vl-princ-to-string	rtype)))

				(foreach	rname	(vlr-reaction-names	rtype)

						(princ	(strcat	"\n\t"	(vl-princ-to-string	rname)))))

		(princ))

The	AutoLISP	Reference	lists	each	event	available	for	a	reactor	type.	For	each
reactor	type,	you	can	find	this	information	by	looking	up	the	description	of	the
function	you	use	to	define	a	reactor	of	that	type.	These	functions	have	the	same
name	as	the	reactor	type,	minus	the	leading	colon.	For	example,	vlr-acdb-
reactor	creates	a	database	reactor,	vlr-toolbar-reactor	creates	a
toolbar	reactor,	and	so	on.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Defining	Callback	Functions
	
	
	

To	add	reactor	functionality	to	your	application,	you	first	need	to	write	a
callback	function	that	performs	the	tasks	needed	at	the	time	of	the	reactor	event.
After	you	define	a	callback	function,	you	link	the	function	to	an	event	by
creating	a	reactor	object.

A	callback	function	is	a	regular	AutoLISP	function,	which	you	define	using
defun.	However,	there	are	some	restrictions	on	what	you	can	do	in	a	callback
function.	You	cannot	call	AutoCAD	commands	using	the	command	function.
Also,	to	access	drawing	objects,	you	must	use	ActiveX®	functions;	entget	and
entmod	are	not	allowed	inside	callback	functions.	See	Reactor	Use	Guidelines
for	more	information.

Callback	functions	for	all	reactors,	other	than	Object	reactors,	must	be	defined	to
accept	two	arguments:

The	first	argument	identifies	the	Reactor	object	that	called	the	function.

The	second	argument	is	a	list	of	parameters	set	by	AutoCAD.

The	following	example	shows	a	function	named	saveDrawingInfo,	which
displays	file	path	and	size	information.	This	function	will	be	attached	to	a	DWG
Editor	reactor	that	will	fire	when	an	AutoCAD	drawing	is	saved.

(defun	saveDrawingInfo	(calling-reactor	commandInfo	/	dwgname	filesize)

				(vl-load-com)

				(setq	dwgname	(cadr	commandInfo)

								filesize	(vl-file-size	dwgname)

)

		(alert	(strcat	"The	file	size	of	"	dwgname	"	is	"

																	(itoa	filesize)	"	bytes."

)

)

		(princ)

)

In	this	example,	the	calling-reactor	variable	identifies	the	reactor	that
invoked	the	function.	The	function	retrieves	the	drawing	name	from	the
commandInfo	parameter,	then	uses	the	vl-file-size	function	to	retrieve
the	size	of	the	drawing.	Finally,	the	function	displays	the	information	in	an	alert
box	in	the	AutoCAD	window.

The	parameters	passed	to	a	callback	function	depend	on	the	type	of	event
associated	with	the	function.	For	example,	saveDrawingInfo	will	be
associated	with	a	saveComplete	event.	This	event	indicates	that	a	Save	command
has	been	completed.	For	saveComplete	events,	AutoCAD	passes	the	callback
function	a	string	containing	the	name	of	the	file	the	drawing	was	saved	in.	On
the	other	hand,	a	callback	function	that	reacts	to	changes	to	system	variables
(sysVarChanged	event)	receives	a	parameter	list	containing	the	name	of	a	system
variable	(a	string)	and	a	flag	indicating	if	the	change	was	successful.	You	can
find	a	list	of	events	for	each	reactor	type,	and	the	parameters	associated	with
each	event,	in	the	AutoLISP	Reference.	The	events	are	listed	under	the
description	of	the	functions	used	to	define	each	type	of	reactor.

AutoCAD	comes	with	two	predefined	callback	functions.	You	can	use	these
functions	when	testing	your	reactors:

vlr-beep-reaction	is	a	simple	function	that	beeps	your	PC.

vlr-trace-reaction	prints	a	list	of	arguments	to	the	VLISP	Trace
window	each	time	a	reactor	fires	this	callback	function.
Defining	Object	Reactor	Callback	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Defining	Callback
Functions	>	

Defining	Object	Reactor	Callback	Functions
	
	
	

Unlike	other	AutoCAD	reactors,	object	reactors	are	attached	to	specific
AutoCAD	entities	(objects).	When	you	define	an	object	reactor,	you	must
identify	the	entity	the	reactor	is	to	be	attached	to.	So	callback	functions	for
object	reactors	must	be	defined	to	accept	three	arguments:

The	first	argument	identifies	the	object	that	fired	the	notification.

The	second	argument	identifies	the	Reactor	object	that	called	the
function.

The	third	argument	is	a	list	of	parameters	specific	to	the	callback
condition.

For	example,	the	following	code	defines	a	callback	function	named	print-
radius.	This	function	can	be	used	to	print	the	radius	of	a	circle:

(defun	print-radius	(notifier-object	reactor-object	parameter-list)

		(vl-load-com)

		(cond

				(

					(vlax-property-available-p

							notifier-object

							"Radius"

)

					(princ	"The	radius	is	")

					(princ	(vla-get-radius	notifier-object))

)

)

)

Note	that	the	code	uses	the	vlax-property-available-p	function	to
verify	that	the	drawing	object	that	notified	this	function	contains	a	radius
property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Creating	Reactors
	
	
	

You	link	a	callback	function	to	an	event	when	you	create	a	reactor.	There	is	an
AutoLISP	function	for	creating	each	type	of	reactor.	These	functions	have	the
same	name	as	the	reactor	type,	minus	the	leading	colon.	For	example,	vlr-
acdb-reactor	creates	a	database	reactor,	vlr-toolbar-reactor
creates	a	toolbar	reactor,	and	so	on.	Except	for	object	reactors,	the	reactor
creation	functions	require	the	following	arguments:

AutoLISP	data	to	be	associated	with	the	Reactor	object

A	list	of	pairs	naming	the	event	and	the	callback	function	to	be
associated	with	that	event	(event-name	.	callback_function)

For	example,	the	following	command	defines	a	DWG	Editor	reactor.	The	reactor
will	invoke	the	saveDrawingInfo	function	in	response	to	a	user	issuing	a
SAVE	command:

(vlr-dwg-Reactor	nil	'((:vlr-saveComplete	.	saveDrawingInfo)))

In	this	example,	the	first	argument	is	nil	because	there	is	no	application-
specific	data	to	attach	to	this	reactor.	The	second	argument	is	a	list	consisting	of
dotted	pair	lists.	Each	dotted	pair	list	identifies	an	event	the	reactor	is	to	be
notified	about,	and	the	callback	function	to	be	run	in	response	to	that	event.	In
this	case	the	reactor	is	notified	of	only	one	event,	:vlr-saveComplete.

Editor	reactors	are	notified	each	time	the	user	issues	a	command,	whether
through	the	AutoCAD	command	line,	a	menu,	a	toolbar,	or	an	AutoLISP
program.	So,	the	callback	function	for	this	DWG	reactor	needs	to	determine
precisely	what	it	is	responding	to.	In	the	current	example,	save-
drawingInfo	simply	checks	for	the	Save	command.

Possible	events	for	each	reactor	type	are	listed	in	the	AutoLISP	Reference.	To

find	the	list	of	events	for	a	reactor,	refer	to	the	entry	in	the	AutoLISP	Reference
that	describes	the	function	used	to	create	the	reactor.	For	example,	to	find	the	list
of	possible	events	for	a	DWG	reactor,	refer	to	the	entry	for	vlr-DWG-
reactor.

All	reactor	construction	functions	return	a	Reactor	object.
Using	Object	Reactors
Attaching	Data	to	Reactor	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Creating	Reactors	>	

Using	Object	Reactors
	
	
	

Unlike	other	AutoCAD	reactors,	object	reactors	are	attached	to	specific
AutoCAD	entities	(objects).	When	you	define	an	object	reactor,	you	must
identify	the	entity	to	which	the	reactor	is	to	be	attached.	The	vlr-object-
reactor	function,	which	creates	object	reactors,	requires	the	following
arguments:

A	list	of	VLA-objects	identifying	the	drawing	objects	that	are	to	fire
notifications	to	the	reactor.	These	objects	are	referred	to	as	the	reactor
owners.

AutoLISP	data	to	be	associated	with	the	Reactor	object.

A	list	of	pairs	naming	the	event	and	the	callback	function	to	be
associated	with	that	event	(event-name	.	callback_function).

Warning You	cannot	modify	an	object	in	a	callback	function	if	it	is	included	in	the
object	reactor's	owner	list.	Attempts	to	do	so	will	generate	an	error	message	and
can	cause	AutoCAD	to	fail.

For	example,	the	following	statement	defines	an	object	reactor	with	a	single
owner	(the	object	identified	by	myCircle),	then	attaches	the	string	“Circle
Reactor”	to	the	reactor	and	tells	AutoCAD	to	invoke	the	print-radius
function	when	a	user	modifies	myCircle:

(setq	circleReactor	(vlr-object-reactor	(list	myCircle)

									"Circle	Reactor"	'((:vlr-modified	.	print-radius))))

The	Reactor	object	is	stored	in	variable	circleReactor;	you	can	refer	to	the
reactor	using	this	variable,	as	described	in	Querying,	Modifying,	and	Removing
Reactors.

When	defining	a	list	of	owners,	you	must	specify	VLA-objects	only;	Ename

objects	are	not	allowed.	VLA-objects	are	required	because	callback	functions
can	only	use	ActiveX	methods	to	modify	AutoCAD	objects,	and	ActiveX
methods	require	a	VLA-object	to	work	on.

Note	that,	although	you	cannot	use	objects	obtained	through	functions	such	as
entlast	and	entget	with	callback	reactors,	you	can	convert	these	Ename
objects	into	VLA-objects	using	the	vlax-ename->vla-object	function.
See	the	AutoLISP	Reference	for	more	information	on	vlax-ename->vla-
object.

To	see	how	an	object	reactor	works

1.	 Load	the	following	code	to	define	a	circle	object;	you	will	be	prompted
to	draw	the	circle:

(setq	myCircle

			;	Prompt	for	the	center

point	and	radius:

						(progn	(setq	ctrPt		

									(getpoint	"\nCircle	center	point:	")

													radius	(distance	ctrPt

																						(getpoint	ctrpt	"\nRadius:	")

)

)

			;	Add	a	circle	to	the

drawing	model	space.	Nest	the	function

			;	calls	to	obtain	the

path	to	the	current	drawing's	model

			;	space:	AcadObject	>

ActiveDocument	>	ModelSpace

							(vla-addCircle											

										(vla-get-ModelSpace			

													(vla-get-ActiveDocument	(vlax-get-acad-object))	

)

								(vlax-3d-point	ctrPt)

								radius

)

)

)

This	code	uses	vla-addCircle	to	draw	a	circle,	assigning	the	return
value	to	variable	myCircle.	The	return	value	is	a	VLA-object,	which
contains	a	pointer	to	the	Circle	object	drawn.

2.	 Load	the	print-radius	callback	function	shown	in	Defining	Object

Reactor	Callback	Functions.

3.	 Define	the	reactor	with	the	following	command:

(setq	circleReactor	(vlr-object-reactor	(list	myCircle)

									"Circle	Reactor"	'((:vlr-modified	.	print-radius))))

4.	 In	the	AutoCAD	drawing	window,	select	the	circle	and	change	its	size.
The	print-radius	function	will	display	a	message	in	the	AutoCAD
Command	window.	For	example,	if	you	use	the	STRETCH	command	to
enlarge	the	circle,	the	message	looks	like	the	following:

Specify	stretch	point	or	[Base	point/Copy/Undo/eXit]:	The	radius	is	3.75803

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Creating	Reactors	>	

Attaching	Data	to	Reactor	Objects
	
	
	

The	object	reactor	creation	example	in	Using	Object	Reactors	included	a	string,
“Circle	Reactor,”	in	the	call	to	vlr-object-reactor.	You	do	not	have	to
specify	any	data	to	be	included	with	the	reactor;	you	can	specify	nil	instead.
However,	an	object	may	have	several	reactors	attached	to	it.	Include	an
identifying	text	string,	or	other	data	your	application	can	use,	to	allow	you	to
distinguish	among	the	different	reactors	attached	to	an	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Working	with	Reactors	in	Multiple	Namespaces
	
	
	

The	current	implementation	of	AutoLISP	supports	working	in	one	drawing
document	at	a	time.	Some	AutoCAD	APIs,	such	as	ObjectARX	and	VBA,	do
support	the	ability	of	an	application	to	work	simultaneously	in	multiple
documents.	As	a	result,	an	application	may	modify	an	open	drawing	that	is	not
currently	active.	This	is	not	supported	in	AutoLISP.	(Note	that	a	VLX	may	run	in
a	separate-namespace	from	the	document	it	is	loaded	from,	but	it	is	still
associated	with	that	document	and	cannot	manipulate	objects	in	another
document.)

AutoLISP	does	provide	limited	support	for	reactor	callback	functions	executing
in	a	document	that	is	not	active.	By	default,	a	reactor	callback	function	will
execute	only	if	a	notification	event	occurs	when	the	document	it	was	defined	in
is	the	active	document.	You	can	alter	this	behavior	using	the	vlr-set-
notification	function.

To	specify	that	a	reactor	should	execute	its	callback	function	even	if	the
document	it	was	defined	in	is	not	active	(for	example,	if	an	application	in
another	namespace	triggers	an	event),	issue	the	following	function	call:

(vlr-set-notification	reactor-object	'all-documents)

To	modify	a	reactor	so	it	only	executes	its	callback	function	if	an	event	occurs
when	the	document	it	was	defined	in	is	active,	issue	the	following:

(vlr-set-notification	reactor-object	'active-document-only)

The	vlr-set-notification	function	returns	the	specified	reactor	object.
For	example,	the	following	sequence	of	commands	defines	a	reactor	and	sets	it
to	respond	to	events	whether	or	not	its	associated	document	is	active:

_$	(setq	circleReactor

(vlr-object-reactor	(list	myCircle)

"Circle	Reactor"

'((:vlr-modified	.	print-radius))))
#<VLR-Object-Reactor>

_$	(vlr-set-notification

circleReactor	'all-documents)
#<VLR-Object-Reactor>

To	determine	the	notification	setting	of	a	reactor,	use	the	vlr-notification
function.	For	example:

_$	(vlr-notification

circleReactor)
all-documents

The	vlr-set-notification	function	affects	only	the	specified	reactor.	All
reactors	are	created	with	the	default	notification	set	to	active-document-
only.

Warning If	you	choose	to	set	a	reactor	to	execute	its	callback	function	even	if
triggered	when	its	document	is	not	active,	the	callback	function	should	do
nothing	other	than	set	and	read	AutoLISP	variables.	Any	other	action	may	cause
system	instability.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Querying,	Modifying,	and	Removing	Reactors
	
	
	

There	are	various	ways	to	obtain	information	about	reactors.	VLISP	supplies
AutoLISP	functions	to	query	reactors,	and	you	can	use	standard	VLISP	data
inspection	tools	to	view	information	on	them.

To	use	AutoLISP	to	list	all	reactors	in	a	drawing,	call	the	vlr-reactors
function.	The	function	returns	a	list	of	reactor	lists.	Each	reactor	list	begins	with
a	symbol	identifying	the	reactor	type,	followed	by	pointers	to	each	reactor	of	that
type.	For	example:

_$	(vlr-reactors)
((:VLR-Object-Reactor	#<VLR-Object-Reactor>)	(:VLR-Editor-Reactor	#<VLR-Editor-Reactor>))

In	this	example,	vlr-reactors	returned	a	list	containing	two	lists,	one
identifying	a	single	object	reactor	and	one	identifying	a	single	Editor	reactor.

To	list	all	reactors	of	a	given	type,	supply	vlr-reactors	with	an	argument
identifying	the	reactor	type.	Specify	one	of	the	values	returned	by	the	vlr-
types	function;	these	are	listed	in	“Understanding	Reactor	Types	and	Events”.
For	example,	the	following	lists	all	DWG	reactors:

_$	(vlr-reactors

:vlr-dwg-reactor)
((:VLR-DWG-Reactor	#<VLR-DWG-Reactor>	#<VLR-DWG-Reactor>))

In	this	case,	the	return	value	is	a	list	containing	one	list.	The	one	list	identifies
pointers	to	two	DWG	reactors.

Inspecting	Reactors
Querying	Reactors	Using	Function	Calls
Modifying	Reactors

Removing	Reactors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Querying,	Modifying,	and
Removing	Reactors	>	

Inspecting	Reactors
	
	
	

You	can	examine	reactors	using	the	VLISP	Inspect	tool.	For	example,	the	object
reactor	defined	in	Using	Object	Reactors	was	returned	to	the	variable
circleReactor.	If	you	open	an	Inspect	window	for	this	variable,	VLISP
displays	the	following	information:

The	list	items	in	the	Inspect	window	show	the	following:

Objects	owning	the	reactor

Event	and	associated	callback	function

Whether	or	not	the	reactor	is	active	(yes	if	added-p	is	T,	no	if	added-p	is
nil)

User	data	attached	to	the	reactor

Document	range	in	which	the	reactor	will	fire	(if	0,	it	fires	only	in	the
context	of	the	drawing	document	it	was	created	in;	if	1,	the	reactor
responds	in	the	context	of	any	document	(see	Working	with	Reactors	in
Multiple	Namespaces	for	more	information	on	this	topic))

The	AutoCAD	document	attached	to	the	object	reactor

Double-click	on	the	item	that	begins	with	{Owners}	to	view	a	list	of	the	owner

objects:

Double-click	on	a	list	item	to	obtain	detailed	information	about	an	owner.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Querying,	Modifying,	and
Removing	Reactors	>	

Querying	Reactors	Using	Function	Calls
	
	
	

VLISP	also	provides	functions	to	inspect	a	reactor	definition	from	within	an
application	program,	or	at	the	Console	prompt:

vlr-type	returns	the	type	of	the	specified	reactor.	For	example:
$	(vlr-type	circleReactor)

:VLR-Object-Reactor

vlr-current-reaction-name	returns	the	name	of	the	event	that
caused	the	callback	function	to	be	called.

vlr-data	returns	the	application-specific	data	value	attached	to	the
reactor,	as	shown	in	the	following	example:
$	(vlr-data	circleReactor)

"Circle	Reactor"

You	can	use	this	data	to	distinguish	among	multiple	reactors	that	can	fire
the	same	callback	function.

vlr-owners	returns	a	list	of	the	objects	in	an	AutoCAD	drawing	that
fire	notifications	to	an	object	reactor.	The	following	function	call	lists
the	objects	that	fire	notifications	to	circleReactor:
_$	(vlr-owners	circleReactor)

(#<VLA-OBJECT	IAcadCircle	03ad077c>)

vlr-reactions	returns	the	callback	list	of	condition-function	pairs
of	the	specified	reactor.	The	following	example	returns	information
about	circleReactor:
$	(vlr-reactions	circleReactor)

((:vlr-modified	.	PRINT-RADIUS))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Querying,	Modifying,	and
Removing	Reactors	>	

Modifying	Reactors
	
	
	

VLISP	provides	functions	to	modify	reactor	definitions:

vlr-reaction-set	changes	the	callback	function	link	for	the
specified	reactor	event.	The	function	syntax	is:
(vlr-reaction-set	reactor	callback-condition

'callback-function)

For	example,	the	following	command	changes	the	circleReactor
reactor	to	call	the	print-area	function	when	an	object	is	modified:
$	(vlr-reaction-set	circleReactor	:vlr-modified

'print-area)

PRINT-AREA

vlr-data-set	changes	the	application-specific	data	associated	with
the	reactor.	For	example,	the	following	call	replaces	the	text	string	used
to	identify	the	circleReactor	reactor:
$	(vlr-data-set	circleReactor	"Circle	Area

Reactor")

"Circle	Area	Reactor"

You	can	verify	that	the	reactor	has	changed	by	using	the	VLISP	Inspect
feature.	If	the	Inspect	window	shown	in	Inspecting	Reactors	is	still
displayed	in	your	VLISP	session,	right-click	in	the	window's	object	line
and	choose	Update.	If	you've	modified	the	circleReactor	reactor	as
shown	in	this	section,	the	updated	Inspect	window	will	look	like	the
following:

vlr-owner-add	adds	a	database	object	to	the	list	of	owners	of	the
specified	reactor.	In	the	following	example,	an	ARC	object	named
archie	is	added	to	the	owner	list	of	reactor	circleReactor:
$	(vlr-owner-add	circleReactor	archie)

#<VLA-OBJECT	IAcadArc	03ad0bcc>

Now,	if	a	user	modifies	the	archie	object,	the	callback	function
defined	for	reactor	circleReactor	is	invoked.	You	can	verify	this	by
inspecting	the	reactor.	Update	the	Inspect	window	for	the
circleReactor	reactor,	then	right-click	on	the	list	item	that	begins
with	{Owners}	and	choose	Inspect:

Both	the	Arc	and	Circle	objects	are	listed	in	the	Inspect	window.

vlr-owner-remove	removes	an	Owner	object	from	the	list	of
reactor	owners.	For	example,	the	following	command	removes	archie
from	the	circleReactor	owner	list:
$	(vlr-owner-remove	circleReactor	archie)

#<VLA-OBJECT	IAcadArc	03ad0bcc>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Querying,	Modifying,	and
Removing	Reactors	>	

Removing	Reactors
	
	
	

Use	the	vlr-remove	function	to	disable	a	reactor.	Disabling	the	reactor	does
not	delete	it:	the	Reactor	object	still	exists	and	you	can	activate	it	again	using	the
vlr-add	function.	To	determine	whether	or	not	a	reactor	is	active	(registered	to
AutoCAD),	use	the	vlr-added-p	function:

_$	(vlr-added-p	circleReactor)
T

The	vlr-added-p	function	returns	T	if	the	reactor	is	active,	nil	if	it	is	not.

The	following	command	disables	reactor	circleReactor:

_$	(vlr-remove	circleReactor)
#<VLR-Object-reactor>

You	can	use	vlr-added-p	to	verify	the	circleReactor	object	reactor	has
been	disabled:

$	(vlr-added-p	circleReactor)
nil

To	enable	the	circleReactor	reactor,	use	vlr-add:

$	(vlr-add	circleReactor)
#<VLR-Object-reactor>

You	can	use	the	vlr-remove-all	function	to	disable	all	reactors	in	your
drawing.	To	disable	all	reactors	of	a	particular	type,	specify	the	reactor	type
when	calling	vlr-remove-all.	The	following	function	call	disables	all
object	reactors:

$	(vlr-remove-all	:vlr-object-reactor)
(#<VLR-Object-reactor>)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Transient	versus	Persistent	Reactors
	
	
	

Reactors	may	be	transient	or	persistent.	Transient	reactors	are	lost	when	a
drawing	closes;	this	is	the	default	reactor	mode.	Persistent	reactors	are	saved
with	the	drawing	and	exist	when	the	drawing	is	next	opened.

Use	the	vlr-pers	function	to	make	a	reactor	persistent.	To	remove	persistence
from	a	reactor	and	make	it	transient,	use	vlr-pers-release.	Each	function
takes	a	Reactor	object	as	its	only	argument.	For	example,	the	following
command	makes	a	reactor	persistent:

_$	(vlr-pers	circleReactor)
#<VLR-Object-Reactor>

If	successful,	vlr-pers	returns	the	specified	Reactor	object.

To	determine	whether	a	Reactor	object	is	persistent	or	transient,	issue	vlr-
pers-p.	For	example:

_$	(vlr-pers-p	circleReactor)
#<VLR-Object-Reactor>

The	vlr-pers-p	function	returns	the	Reactor	object	if	it	is	persistent,	nil	if
it	is	not.

Opening	a	Drawing	Containing	Persistent	Reactors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	Transient	versus	Persistent
Reactors	>	

Opening	a	Drawing	Containing	Persistent	Reactors
	
	
	

A	reactor	is	only	a	link	between	an	event	and	a	callback	function.	While	this	link
remains,	the	callback	function	itself	is	not	part	of	the	reactor,	and	is	normally	not
part	of	the	drawing.	The	reactors	saved	in	the	drawing	are	only	usable	if	their
associated	callback	functions	are	loaded	in	AutoCAD.	You	can	cause	this	to
occur	automatically	when	a	drawing	is	opened	if	you	define	the	reactor	and
callback	functions	in	a	separate-namespace	VLX.

If	you	open	a	drawing	containing	VLISP	reactor	information	and	the	associated
callback	functions	are	not	loaded,	AutoCAD	displays	an	error	message.	You	can
use	the	vlr-pers-list	function	to	return	a	list	of	all	Persistent	reactors	in	a
drawing	document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	Visual	LISP	Environment	>	Advanced
Topics	>	Attaching	Reactors	to	AutoCAD	Drawings	>	

Reactor	Use	Guidelines
	
	
	

When	using	reactors,	try	to	adhere	to	the	following	guidelines.	Reactors	that
violate	these	guidelines	can	result	in	unpredictable	results	for	your	application	if
the	internal	implementation	of	reactors	changes.

Do	not	rely	on	the	sequence	of	reactor	notifications.
It	is	recommended	that,	with	a	few	exceptions,	you	do	not	rely	on	the
sequence	of	reactor	notifications.	For	example,	an	OPEN	command
triggers	BeginCommand,	BeginOpen,	EndOpen,	and	EndCommand
events.	However,	they	may	not	occur	in	that	order.	The	only	event
sequence	you	can	safely	rely	on	is	that	a	Begin	event	will	occur	before
the	corresponding	End	event.	For	example,	commandWillStart()
always	occurs	before	commandEnded(),	and	beginInsert()
always	occurs	before	endInsert().	Relying	on	more	complex
sequences	may	result	in	problems	for	your	application	if	the	sequence	is
changed	as	a	result	of	new	notifications	being	introduced	in	the	future
and	existing	ones	being	rearranged.

Do	not	rely	on	the	sequence	of	function	calls	between	notifications.
It	is	not	guaranteed	that	certain	functions	will	be	called	between	certain
notifications.	For	example,	when	you	receive	:vlr-erased
notification	on	object	A,	all	it	means	is	that	object	A	is	erased.	If	you
receive	:vlr-erased	notification	on	A	followed	by	a	:vlr-
erased	notification	on	B,	all	it	means	is	that	both	objects	A	and	B	are
erased;	it	does	not	ensure	that	B	was	erased	after	A.	If	you	tie	your
application	to	this	level	of	detail,	there	is	a	very	high	probability	of	your
application	breaking	in	future	releases.	Instead	of	relying	on	sequences,
rely	on	reactors	to	indicate	the	state	of	the	system.

Do	not	use	any	interactive	functions	in	your	reactor	callback	function

(for	example,	do	not	use	getPoint,	entsel).
Attempting	to	execute	interactive	functions	from	within	a	reactor
callback	function	can	cause	serious	problems,	as	AutoCAD	may	still	be
processing	a	command	at	the	time	the	event	is	triggered.	Therefore,
avoid	the	use	of	input-acquisition	methods	such	as	getPoint,
entsel,	and	getkword,	as	well	as	selection	set	operations	and	the
command	function.

Do	not	launch	a	dialog	box	from	within	an	event	handler.
Dialog	boxes	are	considered	interactive	functions	and	can	interfere	with
the	current	operation	of	AutoCAD.	However,	message	boxes	and	alert
boxes	are	not	considered	interactive	and	can	be	issued	safely.

Do	not	update	the	object	that	issued	the	event	notification.
The	event	causing	an	object	to	trigger	a	callback	function	may	still	be	in
progress	and	the	object	still	in	use	by	AutoCAD	when	the	callback
function	is	invoked.	Therefore,	do	not	attempt	to	update	an	object	from	a
callback	function	for	the	same	object.	You	can,	however,	safely	read
information	from	the	object	triggering	an	event.	For	example,	suppose
you	have	a	floor	filled	with	tiles	and	you	attach	a	reactor	to	the	border	of
the	floor.	If	you	change	the	size	of	the	floor,	the	reactor	callback	function
will	automatically	add	or	subtract	tiles	to	fill	the	new	area.	The	function
will	be	able	to	read	the	new	area	of	the	border,	but	it	cannot	attempt	any
changes	on	the	border	itself.

Do	not	perform	any	action	from	a	callback	function	that	will	trigger	the
same	event.
If	you	perform	an	action	in	your	reactor	callback	function	that	triggers
the	same	event,	you	will	create	an	infinite	loop.	For	example,	if	you
attempt	to	open	a	drawing	from	within	a	BeginOpen	event,	AutoCAD
will	simply	continue	to	open	more	drawings	until	the	maximum	number
of	open	drawings	is	reached.

Verify	that	a	reactor	is	not	already	set	before	setting	it,	or	you	may	end
up	with	multiple	callbacks	on	the	same	event.

Remember	that	no	events	will	be	fired	while	AutoCAD	is	displaying	a
modal	dialog.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>		

Using	the	AutoLISP	Language
	
	
	

AutoLISP	Basics
You	can	use	number,	string,	and	list-handling	functions	to	customize
AutoCAD.
Using	AutoLISP	to	Communicate	with	AutoCAD
Query	and	command	functions	provide	direct	access	to	AutoCAD
commands	and	drawing	services.
Using	AutoLISP	to	Manipulate	AutoCAD	Objects
You	can	select	and	handle	objects,	and	use	their	extended	data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	

AutoLISP	Basics
	
	
	

You	can	use	number,	string,	and	list-handling	functions	to	customize	AutoCAD.

This	chapter	introduces	the	basic	concepts	of	the	AutoLISP®	programming
language.	It	describes	the	core	components	and	data	types	used	in	AutoLISP,	and
presents	examples	of	simple	number-,	string-,	output-,	and	list-handling
functions.

AutoLISP	code	does	not	need	to	be	compiled,	so	you	can	enter	the	code	at	a
Command	line	and	immediately	see	the	results.	Some	examples	in	this	chapter
are	intended	to	be	entered	at	the	Visual	LISP®	(VLISP)	Console	window	prompt
(_$),	while	others	are	entered	at	the	AutoCAD®	Command	prompt	(Command:).

AutoLISP	Expressions
AutoLISP	Data	Types
AutoLISP	Program	Files
AutoLISP	Variables
Number	Handling
String	Handling
Basic	Output	Functions
Equality	and	Conditional
List	Handling
Symbol	and	Function	Handling
Error	Handling	in	AutoLISP

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

AutoLISP	Expressions
	
	
	

An	AutoLISP	program	consists	of	a	series	of	expressions.	AutoLISP	expressions
have	the	following	form:

(function	arguments)

Each	expression	begins	with	an	open	(left)	parenthesis	and	consists	of	a	function
name	and	optional	arguments	to	that	function.	Each	argument	can	also	be	an
expression.	The	expression	ends	with	a	right	parenthesis.	Every	expression
returns	a	value	that	can	be	used	by	a	surrounding	expression.	The	value	of	the
last	interpreted	expression	is	returned	to	the	calling	expression.

For	example,	the	following	code	example	involves	three	functions:

(fun1	(fun2	arguments)(fun3	arguments))

If	you	enter	this	code	at	the	Visual	LISP	Console	prompt	or	the	AutoCAD
Command	prompt,	the	AutoCAD	AutoLISP	interpreter	processes	the	code.	The
first	function,	fun1,	has	two	arguments,	and	the	other	functions,	fun2	and
fun3,	each	have	one	argument.	The	functions	fun2	and	fun3	are	surrounded
by	function	fun1,	so	their	return	values	are	passed	to	fun1	as	arguments.
Function	fun1	evaluates	the	two	arguments	and	returns	the	value	to	the	window
from	which	you	entered	the	code.

The	following	example	shows	the	use	of	the	*	(multiplication)	function,	which
accepts	one	or	more	numbers	as	arguments:

_$ (* 2 27)
54

Because	this	code	example	has	no	surrounding	expression,	AutoLISP	returns	the
result	to	the	window	from	which	you	entered	the	code.

Expressions	nested	within	other	expressions	return	their	result	to	the	surrounding
expression.	The	following	example	uses	the	result	from	the	+	(addition)	function
as	one	of	the	arguments	for	the	*	(multiplication)	function.

_$ (* 2 (+ 5 10))
30

If	you	enter	the	incorrect	number	of	close	(right)	parentheses,	AutoLISP	displays
the	following	prompt:

(_>

The	number	of	open	parentheses	in	this	prompt	indicates	how	many	levels	of
open	parentheses	remain	unclosed.	If	this	prompt	appears,	you	must	enter	the
required	number	of	close	parentheses	for	the	expression	to	be	evaluated.

_$ (* 2 (+ 5 10
((_>))
30

A	common	mistake	is	to	omit	the	closing	quotation	mark	(")	in	a	text	string,	in
which	case	the	close	parentheses	are	interpreted	as	part	of	the	string	and	have	no
effect	in	resolving	the	open	parentheses.	To	correct	this	condition,	press	SHIFT	+
ESC	to	cancel	the	function,	then	re-enter	it	correctly.

AutoLISP	Function	Syntax

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Expressions	>	

AutoLISP	Function	Syntax
	
	
	

In	this	guide,	the	following	conventions	describe	the	syntax	for	AutoLISP
functions:

In	this	example,	the	foo	function	has	one	required	argument,	string,	and	one
optional	argument,	number.	Additional	number	arguments	can	be	provided.
Frequently,	the	name	of	the	argument	indicates	the	expected	data	type.	The
examples	in	the	following	table	show	both	valid	and	invalid	calls	to	the	foo
function.

Valid	and	invalid	function	call
examples

Valid	calls Invalid	calls

(foo

"catch")

(foo	44

13)

(foo	"catch"

22)

(foo	"fi"

"foe"	44

13)

(foo	"catch"

22	31)

(foo)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

AutoLISP	Data	Types
	
	
	

AutoLISP	expressions	are	processed	according	to	the	order	and	data	type	of	the
code	within	the	parentheses.	Before	you	can	fully	utilize	AutoLISP,	you	must
understand	the	differences	among	the	data	types	and	how	to	use	them.

Integers
Reals
Strings
Lists
Selection	Sets
Entity	Names
VLA-objects
File	Descriptors
Symbols	and	Variables

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Integers
	
	
	

Integers	are	whole	numbers	that	do	not	contain	a	decimal	point.	AutoLISP
integers	are	32-bit	signed	numbers	with	values	ranging	from	+2,147,483,647	to
-2,147,483,648.	(Note,	however,	that	the	getint	function	only	accepts	16-bit
numbers	ranging	from	+32767	to	-32678.)	When	you	explicitly	use	an	integer	in
an	AutoLISP	expression,	that	value	is	known	as	a	constant.	Numbers	such	as	2,
-56,	and	1,200,196	are	valid	AutoLISP	integers.

If	you	enter	a	number	that	is	greater	than	the	maximum	integer	allowed
(resulting	in	integer	overflow),	AutoLISP	converts	the	integer	to	a	real	number.
However,	if	you	perform	an	arithmetic	operation	on	two	valid	integers,	and	the
result	is	greater	than	the	maximum	allowable	integer,	the	resulting	number	will
be	invalid.	The	following	examples	illustrate	how	AutoLISP	handles	integer
overflow.

The	largest	positive	integer	value	retains	its	specified	value:

_$	2147483647
2147483647

If	you	enter	an	integer	that	is	greater	than	the	largest	allowable	value,	AutoLISP
returns	the	value	as	a	real:

_$	2147483648	
2.14748e+009

An	arithmetic	operation	involving	two	valid	integers,	but	resulting	in	integer
overflow,	produces	an	invalid	result:

_$	(+	2147483646	3)
-2147483647

In	this	example	the	result	is	clearly	invalid,	as	the	addition	of	two	positive
numbers	results	in	a	negative	number.	But	note	how	the	following	operation
produces	a	valid	result:

_$	(+	2147483648	2)
2.14748e+009

In	this	instance,	AutoLISP	converts	2147483648	to	a	valid	real	before	adding	2
to	the	number.	The	result	is	a	valid	real.

The	largest	negative	integer	value	retains	its	specified	value:

_$	-2147483647
-2147483647

If	you	enter	a	negative	integer	larger	than	the	greatest	allowable	negative	value,
AutoLISP	returns	the	value	as	a	real:

_$	-2147483648
-2.14748e+009

The	following	operation	concludes	successfully,	because	AutoLISP	first	converts
the	overflow	negative	integer	to	a	valid	real:

_$	(-	-2147483648	1)
-2.14748e+009

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Reals
	
	
	

A	real	is	a	number	containing	a	decimal	point.	Numbers	between	-1	and	1	must
contain	a	leading	zero.	Real	numbers	are	stored	in	double-precision	floating-
point	format,	providing	at	least	14	significant	digits	of	precision.	Note	that
VLISP	does	not	show	you	all	the	significant	digits.

Reals	can	be	expressed	in	scientific	notation,	which	has	an	optional	e	or	E
followed	by	the	exponent	of	the	number	(for	example,	0.0000041	is	the	same	as
4.1e-6).	Numbers	such	as	3.1,	0.23,	-56.123,	and	21,000,000.0	are	valid
AutoLISP	reals.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Strings
	
	
	

A	string	is	a	group	of	characters	surrounded	by	quotation	marks.	Within	quoted
strings	the	backslash	(\)	character	allows	control	characters	(or	escape	codes)	to
be	included.	When	you	explicitly	use	a	quoted	string	in	an	AutoLISP	expression,
that	value	is	known	as	a	literal	string	or	a	string	constant.

Examples	of	valid	strings	are	“string	1”	and	“\nEnter	first	point:”.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Lists
	
	
	

An	AutoLISP	list	is	a	group	of	related	values	separated	by	spaces	and	enclosed
in	parentheses.	Lists	provide	an	efficient	method	of	storing	numerous	related
values.	AutoCAD	expresses	3D	points	as	a	list	of	three	real	numbers.

Examples	of	lists	are	(1.0	1.0	0.0),	(“this”	“that”	“the	other”),	and	(1	“ONE”).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Selection	Sets
	
	
	

Selection	sets	are	groups	of	one	or	more	objects	(entities).	You	can	interactively
add	objects	to,	or	remove	objects	from,	selection	sets	with	AutoLISP	routines.

The	following	example	uses	the	ssget	function	to	return	a	selection	set
containing	all	the	objects	in	a	drawing.

_$ (ssget	"X")
<Selection	set:	1>	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Entity	Names
	
	
	

An	entity	name	is	a	numeric	label	assigned	to	objects	in	a	drawing.	It	is	actually
a	pointer	into	a	file	maintained	by	AutoCAD,	and	can	be	used	to	find	the	object's
database	record	and	its	vectors	(if	they	are	displayed).	This	label	can	be
referenced	by	AutoLISP	functions	to	allow	selection	of	objects	for	processing	in
various	ways.	Internally,	AutoCAD	refers	to	objects	as	entities.

The	following	example	uses	the	entlast	function	to	get	the	name	of	the	last
object	entered	into	the	drawing.

_$ (entlast)
<Entity	name:	27f0540>	

Entity	names	assigned	to	objects	in	a	drawing	are	only	in	effect	during	the
current	editing	session.	The	next	time	you	open	the	drawing,	AutoCAD	assigns
new	entity	names	to	the	objects.	You	can	use	an	object's	handle	to	refer	to	it	from
one	editing	session	to	another;	see	Entity	Handles	and	Their	Uses	for
information	on	using	handles.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

VLA-objects
	
	
	

Objects	in	a	drawing	can	be	represented	as	Visual	LISP	ActiveX®	(VLA)
objects,	a	data	type	introduced	with	Visual	LISP.	When	working	with	ActiveX
functions,	you	must	refer	to	VLA-objects,	not	the	ename	pointer	returned	by
functions	such	as	entlast.	For	information	on	working	with	ActiveX	objects,
see	Using	ActiveX	Objects	with	AutoLISP.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

File	Descriptors
	
	
	

A	file	descriptor	is	a	pointer	to	a	file	opened	by	the	AutoLISP	open	function.
The	open	function	returns	this	pointer	as	an	alphanumeric	label.	You	supply	the
file	descriptor	as	an	argument	to	other	AutoLISP	functions	that	read	or	write	to
the	file.

The	following	example	opens	the	myinfo.dat	file	for	reading.	The	open	function
returns	the	file	descriptor:

_$ (setq	file1	(open
"c:\\myinfo.dat"	"r"))
#<file	"c:\\myinfo.dat">	

In	this	example,	the	file	descriptor	is	stored	in	the	file1variable.

Files	remain	open	until	you	explicitly	close	them	in	your	AutoLISP	program.
The	close	function	closes	a	file.	The	following	code	closes	the	file	whose	file
descriptor	is	stored	in	the	file1	variable:

_$ (close	file1)
nil	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	

Symbols	and	Variables
	
	
	

AutoLISP	uses	symbols	to	refer	to	data.	Symbol	names	are	not	case	sensitive	and
may	consist	of	any	sequence	of	alphanumeric	and	notation	characters,	except	the
following:

Characters	restricted
from	symbol	names

((Open	Parenthesis)

) (Close	Parenthesis)

. (Period)

' (Apostrophe)

" (Quote	Symbol)

; (Semicolon)

A	symbol	name	cannot	consist	only	of	numeric	characters.

Technically,	AutoLISP	applications	consist	of	either	symbols	or	constant	values,
such	as	strings,	reals,	and	integers.	For	the	sake	of	clarity,	this	guide	uses	the
term	symbol	to	refer	to	a	symbol	name	that	stores	static	data,	such	as	built-in	and
user-defined	functions.	The	term	variable	is	used	to	refer	to	a	symbol	name	that
stores	program	data.	The	following	example	uses	the	setq	function	to	assign
the	string	value	"this	is	a	string"	to	the	str1	variable:

_$ (setq	str1	"this
is	a	string")
"this	is	a	string"	

Help	yourself	and	others	who	need	to	read	your	code.	Choose	meaningful	names
for	your	program	symbols	and	variables.

Protected	Symbols

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Data	Types	>	Symbols	and	Variables	>	

Protected	Symbols
	
	
	

You	may	be	warned	if	you	attempt	to	change	the	value	of	some	symbols	used	by
the	AutoLISP	language.	These	symbols	are	known	as	protected	symbols,	and
include	items	such	as	arithmetic	operators	(for	example,	+,	-)	and	the	values	T
and	nil.	You	can	use	the	Visual	LISP	Symbol	Service	feature	to	determine	if	a
symbol	is	protected.

When	you	first	start	AutoCAD,	protected	symbols	receive	no	special	protection.
If	you	set	a	protected	symbol	at	the	AutoCAD	Command	prompt,	you	receive	no
indication	that	the	symbol	has	any	special	status.	However,	once	you	start	Visual
LISP,	this	changes.	From	the	moment	you	start	Visual	LISP	until	the	end	of	your
AutoCAD	session,	AutoLISP	intercepts	any	attempt	to	modify	a	protected
symbol.	Processing	of	protected	symbols	depends	on	the	status	of	a	Visual	LISP
environment	option.	You	can	specify	one	of	the	following	options:

Transparent Protected	symbols	are	treated	like	any	other	symbol.

Print	message AutoLISP	issues	a	warning	message	when	you	modify
a	protected	symbol	but	carries	out	the	modification.	For	example,	the
following	demonstrates	what	happens	when	you	modify	the	symbol	T:
Command:	(setq	t	"look	out")
;	*U*	WARNING:	assignment	to	protected	symbol:	T	<-	"look	out"
"look	out"

Prompt	to	enter	break	loop This	is	the	default	option,	resulting	in
AutoLISP	displaying	the	following	message	box	when	you	attempt	to
modify	a	protected	symbol:

If	you	choose	No,	the	symbol's	value	is	modified,	and	processing
continues	normally.	If	you	choose	Yes,	processing	is	interrupted,	and	you
enter	a	Visual	LISP	break	loop.	Control	switches	to	the	Visual	LISP
Console	window.	To	set	the	symbol	and	continue	processing,	press	the
Continue	button	on	the	Visual	LISP	toolbar;	to	abort	modification,	press
Reset.

Error This	option	prohibits	modification	of	protected	symbols.	Any
attempt	to	modify	a	protected	symbol	results	in	an	error	message.

To	specify	how	AutoLISP	responds	to	attempts	to	modify	protected	symbols,
choose	Tools	 	Environment	Options	 	General	Options	from	the	Visual	LISP
menu.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

AutoLISP	Program	Files
	
	
	

Although	you	can	enter	AutoLISP	code	in	the	Visual	LISP	Console	window	or	at
the	AutoCAD	Command	prompt,	testing	and	debugging	a	series	of	instructions
are	considerably	easier	when	you	save	AutoLISP	code	in	a	file	rather	than	re-
entering	it	each	time	you	make	a	refinement.	AutoLISP	source	code	is	usually
stored	in	ASCII	text	files	with	an	.lsp	extension.	However,	you	can	load
AutoLISP	code	from	any	ASCII	text	file.

To	create	a	new	source	file	in	VLISP,	choose	New	File	from	the	VLISP	File
menu.

To	edit	existing	AutoLISP	source	code	in	VLISP,	choose	Open	File	from	the
VLISP	File	menu,	and	use	the	Open	File	dialog	box	to	select	your	file.	VLISP
loads	this	file	into	its	text	editor	and	displays	the	contents	in	a	new	editor
window.

Formatting	AutoLISP	Code
Comments	in	AutoLISP	Program	Files
Color	Coding

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Program	Files	>	

Formatting	AutoLISP	Code
	
	
	

The	extensive	use	of	parentheses	in	AutoLISP	code	can	make	it	difficult	to	read.
The	traditional	technique	for	combatting	this	confusion	is	indentation.	The	more
deeply	nested	a	line	of	code	is,	the	farther	to	the	right	you	position	the	line.

If	you	use	the	VLISP	text	editor	to	enter	your	code,	VLISP	automatically
formats	the	code	as	you	enter	it.	VLISP	also	has	features	to	reformat	a	selection
or	an	entire	file.	This	improves	the	appearance	of	your	code,	making	it	more
readable.	For	information	on	using	these	features,	see	Formatting	Code	with
Visual	LISP.

Spaces	in	AutoLISP	Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Program	Files	>	Formatting	AutoLISP	Code	>	

Spaces	in	AutoLISP	Code
	
	
	

In	AutoLISP,	multiple	spaces	between	variable	names,	constants,	and	function
names	are	equivalent	to	a	single	space.	The	end	of	a	line	is	also	treated	as	a
single	space.

The	following	two	expressions	produce	the	same	result:

(setq	test1	123	test2	456)	

(setq

				test1	123

				test2	456

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Program	Files	>	

Comments	in	AutoLISP	Program	Files
	
	
	

It	is	good	practice	to	include	comments	in	AutoLISP	program	files.	Comments
are	useful	to	both	the	programmer	and	future	users	who	may	need	to	revise	a
program	to	suit	their	needs.	Use	comments	to	do	the	following:

Give	a	title,	authorship,	and	creation	date

Provide	instructions	on	using	a	routine

Make	explanatory	notes	throughout	the	body	of	a	routine

Make	notes	to	yourself	during	debugging

Comments	begin	with	one	or	more	semicolons	(;)	and	continue	through	the	end
of	the	line.

;	This	entire	line	is	a	comment

(setq	area	(*	pi	r	r))		;	Compute	area	of	circle	

Any	text	within	;|	...	|;	is	ignored.	Therefore,	comments	can	be	included
within	a	line	of	code	or	extend	for	multiple	lines.	This	type	of	comment	is
known	as	an	in-line	comment.

(setq	tmode	;|some	note	here|;	(getvar	"tilemode"))

The	following	example	shows	a	comment	that	continues	for	multiple	lines:

(setvar	"orthomode"	1)	;|comment	starts	here

and	continues	to	this	line,

but	ends	way	down	here|;	(princ	"\nORTHOMODE	set	On.")

It	is	recommended	that	you	use	comments	liberally	when	writing	AutoLISP
programs.	The	tutorial	files	provided	with	VLISP	contain	good	examples	of
commenting	style.	If	you've	installed	the	AutoLISP	Tutorial	files,	you'll	find	the

AutoLISP	tutorial	code	in	the	Tutorial\VisualLISP	directory.
Visual	LISP	Comment	Styles

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Program	Files	>	Comments	in	AutoLISP	Program	Files	>	

Visual	LISP	Comment	Styles
	
	
	

The	VLISP	code	formatter	recognizes	five	types	of	comments	and	positions	each
comment	according	to	its	type.	Refer	to	Applying	Visual	LISP	Comment	Styles
for	a	description	of	each	comment	style.

Regardless	of	your	commenting	style,	it	is	more	important	that	comments	be
present	rather	than	they	obey	any	particular	layout	rules.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Program	Files	>	

Color	Coding
	
	
	

VLISP	provides	an	additional	solution	to	make	AutoLISP	text	easier	to	read:
color	coding.	VLISP	looks	at	each	word	of	text	and	tries	to	determine	what	type
of	AutoLISP	language	element	the	word	represents	(for	example,	a	built-in
function,	a	number,	or	a	string).	Every	type	of	element	is	assigned	its	own	color,
so	you	can	easily	distinguish	among	them	when	viewing	the	code.	See
Understanding	Visual	LISP	Color	Coding	for	more	information	on	the	VLISP
color	coding	feature.

Keep	in	mind	that	color	coding	is	a	VLISP	text	editor	feature,	and	it	is	possible
that	someone	who	does	not	have	access	to	VLISP	may	need	to	read	your	code
some	day.	For	this	reason,	you	should	still	use	indentation	and	alignment	to
enhance	your	program's	readability.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

AutoLISP	Variables
	
	
	

An	AutoLISP	variable	assumes	the	data	type	of	the	value	assigned	to	it.	Until
they	are	assigned	new	values,	variables	retain	their	original	values.	You	use	the
AutoLISP	setq	function	to	assign	values	to	variables.

(setq	variable_name1	value1

[variable_name2	value2	...])

The	setq	function	assigns	the	specified	value	to	the	variable	name	given.	It
returns	the	value	as	its	function	result.	If	you	issue	setq	at	the	Visual	LISP
Console	prompt,	the	result	is	displayed	in	the	Console	window:

_$ (setq val 3
abc 3.875)
3.875	

_$ (setq layr "EXTERIOR-WALLS")
"EXTERIOR-WALLS"	

_$	

Displaying	the	Value	of	a	Variable
Nil	Variables
Predefined	Variables

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Variables	>	

Displaying	the	Value	of	a	Variable
	
	
	

To	display	the	current	value	of	a	variable	when	working	in	Visual	LISP,	just
enter	the	variable	name	at	the	Console	prompt	as	follows:

_$	abc
3.875

To	display	the	value	of	a	variable	from	the	AutoCAD	Command	prompt,	you
must	precede	the	variable	name	with	an	exclamation	point	(!).	For	example:

Command:	!abc

3.875

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Variables	>	

Nil	Variables
	
	
	

An	AutoLISP	variable	that	has	not	been	assigned	a	value	is	said	to	be	nil.	This
is	different	from	blank,	which	is	considered	a	character	string,	and	different	from
0,	which	is	a	number.	So,	in	addition	to	checking	a	variable	for	its	current	value,
you	can	test	to	determine	if	the	variable	has	been	assigned	a	value.

Each	variable	consumes	a	small	amount	of	memory,	so	it	is	good	programming
practice	to	reuse	variable	names	or	set	variables	to	nil	when	their	values	are	no
longer	needed.	Setting	a	variable	to	nil	releases	the	memory	used	to	store	that
variable's	value.	If	you	no	longer	need	the	val	variable,	you	can	release	its
value	from	memory	with	the	following	expression:

_$ (setq val nil)
nil	

Another	efficient	programming	practice	is	to	use	local	variables	whenever
possible.	See	Local	Variables	in	Functions	on	this	topic.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	AutoLISP	Variables	>	

Predefined	Variables
	
	
	

The	following	predefined	variables	are	commonly	used	in	AutoLISP
applications:

PAUSE

Defined	as	a	string	consisting	of	a	double	backslash	(\\)	character.	This
variable	is	used	with	the	command	function	to	pause	for	user	input.

PI

Defined	as	the	constant	p	(pi).	It	evaluates	to	approximately	3.14159.

T

Defined	as	the	constant	T.	This	is	used	as	a	non-nil	value.

Note You	can	change	the	value	of	these	variables	with	the	setq	function.
However,	other	applications	might	rely	on	their	values	being	consistent;
therefore,	it	is	recommended	that	you	do	not	modify	these	variables.	Visual
LISP,	by	default,	protects	these	variables	from	redefinition.	You	can	override	this
protection	through	the	VLISP	Symbol	Service	feature	or	by	setting	a	VLISP
environment	option.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

Number	Handling
	
	
	

AutoLISP	provides	functions	for	working	with	integers	and	real	numbers.	In
addition	to	performing	complex	mathematical	computations	in	applications,	you
can	use	the	number-handling	functions	to	help	you	in	your	daily	use	of
AutoCAD.	If	you	are	drawing	a	steel	connection	detail	that	uses	a	2.5"	bolt	that
is	0.5"	in	diameter,	how	many	threads	are	there	if	the	bolt	has	13	threads	per
inch?	Use	the	*	(multiplication)	function	at	the	Console	prompt,	as	in	the
following	example:

_$ (*	2.5	13)
32.5	

The	arithmetic	functions	that	have	a	number	argument	(as	opposed	to	num	or
angle,	for	example)	return	different	values	if	you	provide	integers	or	reals	as
arguments.	If	all	arguments	are	integers,	the	value	returned	is	an	integer.
However,	if	one	or	all	the	arguments	are	reals,	the	value	returned	is	a	real.	To
ensure	your	application	passes	real	values,	be	certain	at	least	one	argument	is	a
real.

_$ (/	12	5)
2

_$ (/	12.0	5)
2.4

A	complete	list	of	number-handling	functions	is	in	AutoLISP	Function	Synopsis
under	the	heading	Arithmetic	Functions	These	functions	are	described	in	the
AutoLISP	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

String	Handling
	
	
	

AutoLISP	provides	functions	for	working	with	string	values.	For	example,	the
strcase	function	returns	the	conversion	of	all	alphabetic	characters	in	a	string
to	uppercase	or	lowercase.	It	accepts	two	arguments:	a	string	and	an	optional
argument	that	specifies	the	case	in	which	the	characters	are	returned.	If	the
optional	second	argument	is	omitted,	it	evaluates	to	nil	and	strcase	returns
the	characters	converted	to	uppercase.

_$ (strcase	"This	is
a	TEST.")
"THIS	IS	A	TEST."	

If	you	provide	a	second	argument	of	T,	the	characters	are	returned	as	lowercase.
AutoLISP	provides	the	predefined	variable	T	to	use	in	similar	situations	where	a
non-nil	value	is	used	as	a	type	of	true/false	toggle.

_$ (strcase	"This	is
a	TEST."	T)
"this	is	a	test."	

The	strcat	function	combines	multiple	strings	into	a	single	string	value.	This
is	useful	for	placing	a	variable	string	within	a	constant	string.	The	following
code	sets	a	variable	to	a	string	value	and	then	uses	strcat	to	insert	that	string
into	the	middle	of	another	string.

_$ (setq	str	"BIG")
(setq	bigstr	(strcat	"This	is	a	"	str	"	test."))
"This	is	a	BIG	test."

If	the	variable	bigstr	is	set	to	the	preceding	string	value,	you	can	use	the
strlen	function	to	find	out	the	number	of	characters	(including	spaces)	in	that

string.

_$ (strlen	bigstr)
19

The	substr	function	returns	a	substring	of	a	string.	It	has	two	required
arguments	and	one	optional	argument.	The	first	required	argument	is	the	string.
The	second	argument	is	a	positive	integer	that	specifies	the	first	character	of	the
string	you	want	to	include	in	the	substring.	If	the	third	argument	is	provided,	it
specifies	the	number	of	characters	to	include	in	the	substring.	If	the	third
argument	is	not	provided,	substr	returns	all	characters	including	and
following	the	specified	start	character.

As	an	example,	you	can	use	the	substr	function	to	strip	off	the	three-letter
extension	from	a	file	name	(note	that	you	can	actually	use	the	vl-file-
name-base	function	to	do	this).	First,	set	a	variable	to	a	file	name.

_$ (setq	filnam	"bigfile.txt")
"bigfile.txt"

You	need	to	get	a	string	that	contains	all	characters	except	the	last	four	(the
period	and	the	three-letter	extension).	Use	strlen	to	get	the	length	of	the	string
and	subtract	4	from	that	value.	Then	use	substr	to	specify	the	first	character	of
the	substring	and	its	length.

_$ (setq	newlen	(-	(strlen
filnam)	4))
7	

_$ (substr	filnam	1
newlen)
"bigfile"	

If	your	application	has	no	need	for	the	value	of	newlen,	you	can	combine	these
two	lines	of	code	into	one.

_$ (substr	filnam	1
(-	(strlen	filnam)	4))
"bigfile"	

Additional	string-handling	functions	are	listed	in	AutoLISP	Function	Synopsis
under	the	heading	String-Handling	Functions	These	functions	are	described	in

the	AutoLISP	Reference.

AutoLISP	also	provides	a	number	of	functions	that	convert	string	values	into
numeric	values	and	numeric	values	into	string	values.	These	functions	are
discussed	in	Conversions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

Basic	Output	Functions
	
	
	

AutoLISP	includes	functions	for	controlling	the	AutoCAD	display,	including
both	text	and	graphics	windows.	Some	functions	also	display	information	in	the
Visual	LISP	Console	window.	The	major	text	display	functions	are:

prin1

princ

print

prompt

These	functions	are	discussed	in	the	following	sections.	The	remaining	display
functions	are	covered	in	Using	AutoLISP	to	Communicate	with	AutoCAD,
beginning	with	the	Display	Control	topic.

Displaying	Messages
Control	Characters	in	Strings
Wild-Card	Matching

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Basic	Output	Functions	>	

Displaying	Messages
	
	
	

When	entered	from	VLISP,	the	prompt	function	displays	a	message	(a	string)
in	the	AutoCAD	Command	window	and	returns	nil	to	the	VLISP	Console
window.	The	princ,	prin1,	and	print	functions	all	display	an	expression
(not	necessarily	a	string)	in	the	AutoCAD	Command	window	and	return	the
expression	to	the	VLISP	Console	window.	Optionally,	these	functions	can	send
output	to	a	file.	The	differences	are	as	follows:

princ	displays	strings	without	the	enclosing	quotation	marks.

prin1	displays	strings	enclosed	in	quotation	marks.

print	displays	strings	enclosed	in	quotation	marks	but	places	a	blank
line	before	the	expression	and	a	space	afterward.

The	following	examples	demonstrate	the	differences	between	the	four	basic
output	functions	and	how	they	handle	the	same	string	of	text.	If	you	enter	the
examples	from	VLISP,	the	text	following	prints	is	what	you	see	at	the	AutoCAD
Command	prompt;	text	following	returns	appears	within	the	VLISP	Console
window	or	within	an	application.	See	Control	Characters	in	Strings	for	an
explanation	of	the	control	characters	used	in	the	example.

(setq	str	"The	\"allowable\"	tolerance	is	\261	\274\"")

(prompt	str)		printsThe	"allowable"	tolerance

is1/4"
and	returns		nil

(princ	str)			printsThe	"allowable"	tolerance

is1/4"
and	returns		"The	\"allowable\"	tolerance	is	1/4\""

(prin1	str)			prints"The	\"allowable\"

tolerance	is1/4""
and	returns		"The	\"allowable\"	tolerance	is		1/4\""

(print	str)			prints<blank	line>

"The	\"allowable\"

tolerance	is1/4""<space>
and	returns		"The	\"allowable\"	tolerance	is		1/4\""

Note	that	the	write-char	and	write-line	functions	can	also	display
output	to	a	Command	window.	Refer	to	the	AutoLISP	Reference	for	information
on	these	functions.

Exiting	Quietly

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Basic	Output	Functions	>	Displaying	Messages	>	

Exiting	Quietly
	
	
	

If	you	invoke	the	princ	function	without	passing	an	expression	to	it,	it	displays
nothing	and	has	no	value	to	return.	So	if	you	write	an	AutoLISP	expression	that
ends	with	a	call	to	princ	without	any	arguments,	the	ending	nil	is	suppressed
(because	it	has	nothing	to	return).	This	practice	is	called	exiting	quietly.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Basic	Output	Functions	>	

Control	Characters	in	Strings
	
	
	

Within	quoted	strings,	the	backslash	(\)	character	allows	control	characters	(or
escape	codes)	to	be	included.	The	following	table	shows	the	currently
recognized	control	characters:

AutoLISP	control
characters

Code Description

\\ \	character

\" "	character

\e Escape	character

\n Newline	character

\r Return	character

\t Tab	character

\nnn Character	whose
octal	code	is	nnn

The	prompt	and	princ	functions	expand	the	control	characters	in	a	string	and
display	the	expanded	string	in	the	AutoCAD	Command	window.

If	you	need	to	use	the	backslash	character	(\)	or	quotation	mark	(")	within	a

quoted	string,	it	must	be	preceded	by	the	backslash	character	(\).	For	example,	if
you	enter

_$ (princ	"The	\"filename\"
is:	D:\\ACAD\\TEST.TXT.	")

the	following	text	is	displayed	in	the	AutoCAD	Command	window:

The	"filename"	is:	D:\ACAD\TEST.TXT

You	will	also	see	this	output	in	the	VLISP	Console	window,	along	with	the
return	value	from	the	princ	function	(which	is	your	original	input,	with	the
unexpanded	control	characters).

To	force	a	line	break	at	a	specific	location	in	a	string,	use	the	newline	character
(\n).

_$ (prompt	"An	example
of	the	\nnewline	character.	")
An	example	of	the	

newline	character.	

You	can	also	use	the	terpri	function	to	cause	a	line	break.

The	return	character	(\r)	returns	to	the	beginning	of	the	current	line.	This	is
useful	for	displaying	incremental	information	(for	example,	a	counter	showing
the	number	of	objects	processed	during	a	loop).

The	Tab	character	(\t)	can	be	used	in	strings	to	indent	or	to	provide	alignment
with	other	tabbed	text	strings.	In	this	example,	note	the	use	of	the	princ
function	to	suppress	the	ending	nil.

_$ (prompt	"\nName\tOffice\n-
-	-	-	-\t-	-	-	-	-

(_>	\nSue\t101\nJoe\t102\nSam\t103\n")

(princ)

Name Office

-	-	-	-	- -	-	-	-	-

Sue 101

Joe 102

Sam 103

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Basic	Output	Functions	>	

Wild-Card	Matching
	
	
	

The	wcmatch	function	enables	applications	to	compare	a	string	to	a	wild-card
pattern.	You	can	use	this	facility	when	you	build	a	selection	set	(in	conjunction
with	ssget)	and	when	you	retrieve	extended	entity	data	by	application	name
(in	conjunction	with	entget).

The	wcmatch	function	compares	a	single	string	to	a	pattern.	The	function
returns	T	if	the	string	matches	the	pattern,	and	nil	if	it	does	not.	The	wild-card
patterns	are	similar	to	the	regular	expressions	used	by	many	system	and
application	programs.	In	the	pattern,	alphabetic	characters	and	numerals	are
treated	literally;	brackets	can	be	used	to	specify	optional	characters	or	a	range	of
letters	or	digits;	a	question	mark	(?)	matches	a	single	character;	an	asterisk	(*)
matches	a	sequence	of	characters;	and,	certain	other	special	characters	have
special	meanings	within	the	pattern.	When	you	use	the	*	character	at	the
beginning	and	end	of	the	search	pattern,	you	can	locate	the	desired	portion
anywhere	in	the	string.

In	the	following	examples,	a	string	variable	called	matchme	has	been	declared
and	initialized:

_$ (setq	matchme	"this
is	a	string	-	test1	test2	the	end")
"this	is	a	string	-	test1	test2	the	end"	

The	following	code	checks	whether	or	not	matchme	begins	with	the	four
characters	"this":

_$ (wcmatch	matchme
"this*")
T	

The	following	code	illustrates	the	use	of	brackets	in	the	pattern.	In	this	case,

wcmatch	returns	T	if	matchme	contains	"test4",	"test5",	"test6"
(4-6),	or	"test9"	(note	the	use	of	the	*	character):

_$ (wcmatch	matchme
"*test[4-69]*")
nil	

In	this	case,	wcmatch	returns	nil	because	matchme	does	not	contain	any	of
the	strings	indicated	by	the	pattern.

However,

_$ (wcmatch	matchme
"*test[4-61]*")
T	

returns	true	because	the	string	contains	"test1".

The	pattern	string	can	specify	multiple	patterns,	separated	by	commas.	The
following	code	returns	T	if	matchme	equals	"ABC",	or	if	it	begins	with
"XYZ",	or	if	it	ends	with	"end".

_$ (wcmatch	matchme
"ABC,XYZ*,*end")
T	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

Equality	and	Conditional
	
	
	

AutoLISP	includes	functions	that	provide	equality	verification	as	well	as
conditional	branching	and	looping.	The	equality	and	conditional	functions	are
listed	in	AutoLISP	Function	Synopsis	under	the	heading	Equality	and
Conditional	Functions	These	functions	are	described	in	the	AutoLISP	Reference.

When	writing	code	that	checks	string	and	symbol	table	names,	keep	in	mind	that
AutoLISP	automatically	converts	symbol	table	names	to	upper	case	in	some
instances.	When	testing	symbol	names	for	equality,	you	need	to	make	the
comparison	insensitive	to	the	case	of	the	names.	Use	the	strcase	function	to
convert	strings	to	the	same	case	before	testing	them	for	equality.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

List	Handling
	
	
	

AutoLISP	provides	functions	for	working	with	lists.	This	section	provides
examples	of	the	append,	assoc,	car,	cons,	list,	nth,	and	subst
functions.	A	summary	of	all	list-handling	functions	is	in	AutoLISP	Function
Synopsis	under	the	heading	List	Manipulation	Functions	Each	list-handling
function	is	described	in	the	AutoLISP	Reference.

Lists	provide	an	efficient	and	powerful	method	of	storing	numerous	related
values.	After	all,	LISP	is	so-named	because	it	is	the	LISt	Processing	language.
Once	you	understand	the	power	of	lists,	you'll	find	that	you	can	create	more
powerful	and	flexible	applications.

Several	AutoLISP	functions	provide	a	basis	for	programming	two-dimensional
and	three-dimensional	graphics	applications.	These	functions	return	point	values
in	the	form	of	a	list.

The	list	function	provides	a	simple	method	of	grouping	related	items.	These
items	do	not	need	to	be	of	similar	data	types.	The	following	code	groups	three
related	items	as	a	list:

_$ (setq	lst1	(list
1.0	"One"	1))
(1.0	"One"	1)	

You	can	retrieve	a	specific	item	from	the	list	in	the	lst1	variable	with	the	nth
function.	This	function	accepts	two	arguments.	The	first	argument	is	an	integer
that	specifies	which	item	to	return.	A	0	specifies	the	first	item	in	a	list,	1
specifies	the	second	item,	and	so	on.	The	second	argument	is	the	list	itself.	The
following	code	returns	the	second	item	in	lst1.

_$ (nth	1	lst1)
"One"	

The	cdr	function	returns	all	elements,	except	the	first,	from	a	list.	For	example:

_$	(cdr	lst1)
("One"	1)

The	car	function	provides	another	way	to	extract	items	from	a	list.	For	more
examples	using	car	and	cdr,	and	combinations	of	the	two,	see	Point	Lists.

Three	functions	let	you	modify	an	existing	list.	The	append	function	returns	a
list	with	new	items	added	to	the	end	of	it,	and	the	cons	function	returns	a	list
with	new	items	added	to	the	beginning	of	the	list.	The	subst	function	returns	a
list	with	a	new	item	substituted	for	every	occurrence	of	an	old	item.	These
functions	do	not	modify	the	original	list;	they	return	a	modified	list.	To	modify
the	original	list,	you	must	explicitly	replace	the	old	list	with	the	new	list.

The	append	function	takes	any	number	of	lists	and	runs	them	together	as	one
list.	Therefore,	all	arguments	to	this	function	must	be	lists.	The	following	code
adds	another	"One"	to	the	list	lst1.	Note	the	use	of	the	quote	(or	')	function
as	an	easy	way	to	make	the	string	"One"	into	a	list.

_$ (setq	lst2	(append
lst1	'("One")))
(1.0	"One"	1	"One")	

The	cons	function	combines	a	single	element	with	a	list.	You	can	add	another
string	"One"	to	the	beginning	of	this	new	list,	lst2,	with	the	cons	function.

_$ (setq	lst3	(cons
"One"	lst2))
("One"	1.0	"One"	1	"One")	

You	can	substitute	all	occurrences	of	an	item	in	a	list	with	a	new	item	with	the
subst	function.	The	following	code	replaces	all	strings	"One"	with	the	string
"one".

_$ (setq	lst4	(subst
"one"	"One"	lst3))
("one"	1.0	"one"	1	"one")

Point	Lists
Dotted	Pairs

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	List	Handling	>	

Point	Lists
	
	
	

AutoLISP	observes	the	following	conventions	for	handling	graphics	coordinates.
Points	are	expressed	as	lists	of	two	or	three	numbers	surrounded	by	parentheses.

2D	points

Expressed	as	lists	of	two	real	numbers	(X	and	Y,	respectively),	as	in
(3.4	7.52)

3D	points

Expressed	as	lists	of	three	real	numbers	(X,	Y,	and	Z,	respectively),	as	in
(3.4	7.52	1.0)

You	can	use	the	list	function	to	form	point	lists,	as	shown	in	the	following
examples:

_$		(list 3.875
1.23)
(3.875 1.23)	
_$		(list	88.0 14.77 3.14)
(88.0 14.77 3.14)	

To	assign	particular	coordinates	to	a	point	variable,	you	can	use	one	of	the
following	expressions:

_$		(setq	pt1	(list	3.875

1.23))
(3.875 1.23)	
_$		(setq	pt2	(list	88.0

14.77	3.14))
(88.0 14.77 3.14)	
_$		(setq	abc	3.45)

3.45

_$		(setq	pt3	(list	abc

1.23))
(3.45 1.23)	

The	latter	uses	the	value	of	variable	abc	as	the	X	component	of	the	point.

If	all	members	of	a	list	are	constant	values,	you	can	use	the	quote	function	to
explicitly	define	the	list,	rather	than	the	list	function.	The	quote	function
returns	an	expression	without	evaluation,	as	follows:

_$ (setq	pt1	(quote
(4.5	7.5)))
(4.5 7.5)

The	single	quotation	mark	(')	can	be	used	as	shorthand	for	the	quote	function.
The	following	code	produces	the	same	result	as	the	preceding	code.

_$ (setq	pt1	'(4.5	7.5))
(4.5 7.5)

You	can	refer	to	X,	Y,	and	Z	components	of	a	point	individually,	using	three
additional	built-in	functions	called	car,	cadr,	and	caddr.	The	following
examples	show	how	to	extract	the	X,	Y,	and	Z	coordinates	from	a	3D	point	list.
The	pt	variable	is	set	to	the	point	(1.5	3.2	2.0):

_$ (setq	pt	'(1.5 3.2 2.0))
(1.5 3.2 2.0)

The	car	function	returns	the	first	member	of	a	list.	In	this	example	it	returns	the
X	value	of	point	pt	to	the	x_val	variable.

_$ (setq	x_val	(car
pt))
1.5	

The	cadr	function	returns	the	second	member	of	a	list.	In	this	example	it
returns	the	Y	value	of	the	pt	point	to	the	y_val	variable.

_$ (setq	y_val	(cadr
pt))

3.2	

The	caddr	function	returns	the	third	member	of	a	list.	In	this	example	it	returns
the	Z	value	of	point	pt	to	the	variable	z_val.

_$ (setq	z_val	(caddr
pt))
2.0	

You	can	use	the	following	code	to	define	the	lower-left	and	upper-right	(pt1	and
pt2)	corners	of	a	rectangle,	as	follows:

_$ (setq	pt1	'(1.0	2.0)
pt2	'	(3.0	4.0))
(3.0 4.0)	

You	can	use	the	car	and	cadr	functions	to	set	the	pt3	variable	to	the	upper-
left	corner	of	the	rectangle,	by	extracting	the	X	component	of	pt1	and	the	Y
component	of	pt2,	as	follows:

_$ (setq	pt3	(list	(car
pt1)	(cadr	pt2)))
(1.0 4.0)	

The	preceding	expression	sets	pt3	equal	to	point	(1.0,4.0).

AutoLISP	supports	concatenations	of	car	and	cdr	up	to	four	levels	deep.	The
following	are	valid	functions:

caaaar cadaar cdaaar cddaar

caaadr cadadr cdaadr cddadr

caaar cadar cdaar cddar

caadar caddar cdadar cdddar

caaddr cadddr cdaddr cddddr

caadr caddr cdadr cdddr

caar cadr cdar cddr

These	concatenations	are	the	equivalent	of	nested	calls	to	car	and	cdr.	Each	a
represents	a	call	to	car,	and	each	d	represents	a	call	to	cdr.	For	example:

(caar	x)				is	equivalent

to		(car	(car	x))	

(cdar	x)				is	equivalent

to		(cdr	(car	x))	

(cadar	x)			is	equivalent

to		(car	(cdr	(car	x)))

(cadr	x)				is	equivalent

to		(car	(cdr	x))	

(cddr	x)				is	equivalent

to		(cdr	(cdr	x))	

(caddr	x)			is	equivalent	to		(car	(cdr	(cdr	x)))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	List	Handling	>	

Dotted	Pairs
	
	
	

Another	way	AutoLISP	uses	lists	to	organize	data	is	with	a	special	type	of	list
called	a	dotted	pair.	This	list	must	always	contain	two	members.	When
representing	a	dotted	pair,	AutoLISP	separates	the	members	of	the	list	with	a
period	(.).	Most	list-handling	functions	will	not	accept	a	dotted	pair	as	an
argument,	so	you	should	be	sure	you	are	passing	the	right	kind	of	list	to	a
function.

Dotted	pairs	are	an	example	of	an	"improper	list."	An	improper	list	is	one	in
which	the	last	cdr	is	not	nil.	In	addition	to	adding	an	item	to	the	beginning	of
a	list,	the	cons	function	can	create	a	dotted	pair.	If	the	second	argument	to	the
cons	function	is	anything	other	than	another	list	or	nil,	it	creates	a	dotted	pair.

_$ (setq	sublist	(cons
'lyr	"WALLS"))
(LYR	.	"WALLS")	

The	car,	cdr,	and	assoc	functions	are	useful	for	handling	dotted	pairs.	The
following	code	creates	an	association	list,	which	is	a	list	of	lists,	and	is	the
method	AutoLISP	uses	to	maintain	entity	definition	data.	(Entity	definition	data
is	discussed	in	Using	AutoLISP	to	Manipulate	AutoCAD	Objects)	The	following
code	creates	an	association	list	of	dotted	pairs:

_$ (setq	wallinfo	(list
sublist(cons	'len	240.0)	(cons	'hgt	96.0)))
((LYR	.	"WALLS")		(LEN	.	240.0)		(HGT	.	96.0))	

The	assoc	function	returns	a	specified	list	from	within	an	association	list
regardless	of	the	specified	list's	location	within	the	association	list.	The	assoc
function	searches	for	a	specified	key	element	in	the	lists,	as	follows:

_$		(assoc	'len	wallinfo)
(LEN		.		240.0)

_$		(cdr	(assoc	'lyr

wallinfo))
"WALLS"

_$		(nth	1	wallinfo)
(LEN		.		240.0)

_$		(car	(nth	1	wallinfo))
LEN

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

Symbol	and	Function	Handling
	
	
	

AutoLISP	provides	a	number	of	functions	for	handling	symbols	and	variables.
The	symbol-handling	functions	are	listed	in	AutoLISP	Function	Synopsis	under
the	heading	Symbol-Handling	Functions	Each	symbol-handling	function	is
described	in	the	AutoLISP	Reference.

AutoLISP	provides	functions	for	handling	one	or	more	groups	of	functions.	This
section	provides	examples	of	the	defun	function.	The	remaining	function-
handling	functions	are	listed	in	AutoLISP	Function	Synopsis	under	the	heading
Symbol-Handling	Functions	The	functions	are	described	in	the	AutoLISP
Reference.

Using	defun	to	Define	a	Function
C:XXX	Functions
Local	Variables	in	Functions
Functions	with	Arguments

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	

Using	defun	to	Define	a	Function
	
	
	

With	AutoLISP,	you	can	define	your	own	functions.	Once	defined,	these
functions	can	be	used	at	the	AutoCAD	Command	prompt,	the	Visual	LISP
Console	prompt,	or	within	other	AutoLISP	expressions,	just	as	you	use	the
standard	functions.	You	can	also	create	your	own	AutoCAD	commands,	because
commands	are	just	a	special	type	of	function.

The	defun	function	combines	a	group	of	expressions	into	a	function	or
command.	This	function	requires	at	least	three	arguments,	the	first	of	which	is
the	name	of	the	function	(symbol	name)	to	define.	The	second	argument	is	the
argument	list	(a	list	of	arguments	and	local	variables	used	by	the	function).	The
argument	list	can	be	nil	or	an	empty	list	().	Argument	lists	are	discussed	in
greater	detail	in	Functions	with	Arguments.	If	local	variables	are	provided,	they
are	separated	from	the	arguments	by	a	slash	(/).	Local	variables	are	discussed	in
Local	Variables	in	Functions.	Following	these	arguments	are	the	expressions	that
make	up	the	function;	there	must	be	at	least	one	expression	in	a	function
definition.

(defun	symbol_name	(args	/	local_variables)

expressions

)

The	following	code	defines	a	simple	function	that	accepts	no	arguments	and
displays	“bye”	in	the	AutoCAD	Command	window.	Note	that	the	argument	list
is	defined	as	an	empty	list	(()):

_$ (defun	DONE	()	(prompt
"\nbye!	"))
DONE

Now	that	the	DONE	function	is	defined,	you	can	use	it	as	you	would	any	other
function.	For	example,	the	following	code	prints	a	message,	then	says	“bye”	in

the	AutoCAD	Command	window:

_$ (prompt	"The	value
is	127.")	(DONE)	(princ)
The	value	is	127

bye!

Note	how	the	previous	example	invokes	the	princ	function	without	any
arguments.	This	suppresses	an	ending	nil	and	achieves	a	quiet	exit.

Functions	that	accept	no	arguments	may	seem	useless.	However,	you	might	use
this	type	of	function	to	query	the	state	of	certain	system	variables	or	conditions
and	to	return	a	value	that	indicates	those	values.

AutoCAD	can	automatically	load	your	functions	each	time	you	start	a	new
AutoCAD	session	or	open	a	new	AutoCAD	drawing	file;	see	Automatically
Load	and	Execute	VBA	Projects	in	the	AutoCAD	Customization	Guide	for
further	information	on	automatic	loading.

Any	code	in	an	AutoLISP	program	file	that	is	not	part	of	a	defun	statement	is
executed	when	that	file	is	loaded.	You	can	use	this	to	set	up	certain	parameters	or
to	perform	any	other	initialization	procedures	in	addition	to	displaying	textual
information,	such	as	how	to	invoke	the	loaded	function.

Compatibility	of	defun	with	Previous	Versions	of	AutoCAD

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	Using	defun	to	Define	a	Function	>	

Compatibility	of	defun	with	Previous	Versions	of	AutoCAD
	
	
	

The	internal	implementation	of	defun	changed	in	AutoCAD	2000.	This	change
will	be	transparent	to	the	great	majority	of	AutoLISP	users	upgrading	from
earlier	versions	of	AutoCAD.	The	change	only	affects	AutoLISP	code	that
manipulated	defun	definitions	as	a	list	structure,	such	as	by	appending	one
function	to	another,	as	in	the	following	code:

(append	s::startup	(cdr	mystartup))

For	situations	like	this,	you	can	use	defun-q	to	define	your	functions.	An
attempt	to	use	a	defun	function	as	a	list	results	in	an	error.	The	following
example	illustrates	the	error:

_$	(defun	foo	(x)	4)
foo

_$	(append	foo	'(3	4))
;	error:	Invalid	attempt	to	access	a	compiled	function	definition.

You	may	want	to	define	it	using	defun-q:	#<SUBR	@024bda3c	FOO>

The	error	message	alerts	you	to	the	possibility	of	using	defun-q	instead	of
defun.

The	defun-q	function	is	provided	strictly	for	backward	compatibility	with
previous	versions	of	AutoLISP	and	should	not	be	used	for	other	purposes.	For
more	information	on	using	defun-q,	and	the	related	defun-q-list-set
and	defun-q-list-ref	functions,	see	the	AutoLISP	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	

C:XXX	Functions
	
	
	

If	an	AutoLISP	function	is	defined	with	a	name	of	the	form	C:xxx,	it	can	be
issued	at	the	AutoCAD	Command	prompt	in	the	same	manner	as	a	built-in
AutoCAD	command.	This	is	true	regardless	of	whether	you	define	and	load	the
function	in	VLISP	or	at	the	AutoCAD	Command	prompt.	You	can	use	this
feature	to	add	new	commands	to	AutoCAD	or	to	redefine	existing	commands.

To	use	functions	as	AutoCAD	commands,	be	sure	they	adhere	to	the	following
rules:

The	function	name	must	use	the	form	C:XXX	(upper-	or	lowercase
characters).	The	C:	portion	of	the	name	must	always	be	present;	the
XXX	portion	is	a	command	name	of	your	choice.	C:XXX	functions	can
be	used	to	override	built-in	AutoCAD	commands.	(See	Redefining
AutoCAD	Commands.)

The	function	must	be	defined	with	no	arguments.	However,	local
variables	are	permitted	and	it	is	a	good	programming	practice	to	use
them.

A	function	defined	in	this	manner	can	be	issued	transparently	from	within	any
prompt	of	any	built-in	AutoCAD	command,	provided	the	function	issued
transparently	does	not	call	the	command	function.	(This	is	the	AutoLISP
function	you	use	to	issue	AutoCAD	commands;	see	the	entry	on	command	in	the
AutoLISP	Reference.)	When	issuing	a	C:XXX	defined	command	transparently,
you	must	precede	the	XXX	portion	with	a	single	quotation	mark	(').

You	can	issue	a	built-in	command	transparently	while	a	C:XXX	command	is
active	by	preceding	it	with	a	single	quotation	mark	('),	as	you	would	with	all
commands	that	are	issued	transparently.	However,	you	cannot	issue	a
C:XXXcommand	transparently	while	a	C:XXX	command	is	active.

Note When	calling	a	function	defined	as	a	command	from	the	code	of	another
AutoLISP	function,	you	must	use	the	whole	name,	including	the	parentheses;	for
example,	(C:HELLO).	You	also	must	use	the	whole	name	and	the	parentheses
when	you	invoke	the	function	from	the	VLISP	Console	prompt.

Adding	Commands
Redefining	AutoCAD	Commands

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	C:XXX	Functions	>	

Adding	Commands
	
	
	

Using	the	C:XXX	feature,	you	can	define	a	command	that	displays	a	simple
message.

_$ (defun	C:HELLO	()
(princ	"Hello	world.	\n")	(princ))
C:HELLO

HELLO	is	now	defined	as	a	command,	in	addition	to	being	an	AutoLISP
function.	This	means	you	can	issue	the	command	from	the	AutoCAD	Command
prompt.

Command: hello

Hello	world.

This	new	command	can	be	issued	transparently	because	it	does	not	call	the
command	function	itself.	At	the	AutoCAD	Command	prompt,	you	could	do	the
following:

Command: line

From	point: 'hello

Hello	world.

From	point:

Remember:	to	run	this	function	from	the	VLISP	Console	window,	you	need	to
issue	the	function	call	with	the	parentheses	because	VLISP	does	not	recognize
AutoCAD	commands.

_$	(c:hello)
Hello	world.	

If	you	follow	your	function	definition	with	a	call	to	the	setfunhelp	function,
you	can	associate	a	Help	file	and	topic	with	a	user-defined	command.	When	help

is	requested	during	execution	of	the	user-defined	command,	the	topic	specified
by	setfunhelp	displays.	See	the	AutoLISP	Reference	for	more	information	on
using	setfunhelp.

You	cannot	usually	use	an	AutoLISP	statement	to	respond	to	prompts	from	an
AutoLISP-implemented	command.	However,	if	your	AutoLISP	routine	makes
use	of	the	initget	function,	you	can	use	arbitrary	keyboard	input	with	certain
functions.	This	allows	an	AutoLISP-implemented	command	to	accept	an
AutoLISP	statement	as	a	response.	Also,	the	values	returned	by	a	DIESEL
expression	can	perform	some	evaluation	of	the	current	drawing	and	return	these
values	to	AutoLISP.	See	Keyword	Options	for	more	information	on	using
initget,	and	refer	to	the	AutoCAD	Customization	Guide	for	information	on
the	DIESEL	string	expression	language.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	C:XXX	Functions	>	

Redefining	AutoCAD	Commands
	
	
	

Using	AutoLISP,	external	commands,	and	the	alias	feature,	you	can	define	your
own	AutoCAD	commands.	You	can	use	the	UNDEFINE	command	to	redefine	a
built-in	AutoCAD	command	with	a	user-defined	command	of	the	same	name.	To
restore	the	built-in	definition	of	a	command,	use	the	REDEFINE	command.	The
UNDEFINE	command	is	in	effect	for	the	current	editing	session	only.

You	can	always	activate	an	undefined	command	by	specifying	its	true	name,
which	is	the	command	name	prefixed	by	a	period.	For	example,	if	you	undefine
QUIT,	you	can	still	access	the	command	by	entering	.quit	at	the	AutoCAD
Command	prompt.	This	is	also	the	syntax	that	should	be	used	within	the
AutoLISP	command	function.

Consider	the	following	example.	Whenever	you	use	the	LINE	command,	you
want	AutoCAD	to	remind	you	about	using	the	PLINE	command.	You	can	define
the	AutoLISP	function	C:LINE	to	substitute	for	the	normalLINEcommand	as
follows:

_$ (defun	C:LINE	()
(_>	(princ	"Shouldn't

you	be	using	PLINE?\n")

(_>	(command	".LINE")

(princ))
C:LINE	

In	this	example,	the	function	C:LINE	is	designed	to	issue	its	message	and	then
to	execute	the	normal	LINE	command	(using	its	true	name,	.LINE).	Before
AutoCAD	will	use	your	new	definition	for	the	LINE	command,	you	must
undefine	the	built-in	LINE	command.	Enter	the	following	to	undefine	the	built-
in	LINE	command:

_$ (command	"undefine"
"line")

Now,	if	you	enter	line	at	the	AutoCAD	Command	prompt,	AutoCAD	uses	the
C:LINE	AutoLISP	function:

Command: line

Shouldn't	you	be	using	PLINE?

.LINE	Specify	first	point:	Specify	first	point:

The	previous	code	example	assumes	the	CMDECHO	system	variable	is	set	to	1
(On).	If	CMDECHO	is	set	to	0	(Off),	AutoCAD	does	not	echo	prompts	during	a
command	function	call.	The	following	code	uses	the	CMDECHO	system
variable	to	prevent	the	LINE	command	prompt	from	repeating:

_$ (defun	C:LINE	(/
cmdsave)

(_>	(setq	cmdsave	(getvar

"cmdecho"))

(_>	(setvar	"cmdecho"

0)

(_>	(princ	"Shouldn't

you	be	using	PLINE?\n")

(_>	(command	".LINE")

(_>	(setvar	"cmdecho"

cmdsave)

(_>	(princ))
C:LINE

Now	if	you	enter	line	at	the	AutoCAD	Command	prompt,	the	following	text	is
displayed:

Shouldn't	you	be	using	PLINE?

Specify	first	point:

You	can	use	this	feature	in	a	drawing	management	system,	for	example.	You	can
redefine	the	NEW,	OPEN,	and	QUIT	commands	to	write	billing	information	to	a
log	file	before	you	terminate	the	editing	session.

It	is	recommended	that	you	protect	your	menus,	scripts,	and	AutoLISP	programs
by	using	the	period-prefixed	forms	of	all	commands.	This	ensures	that	your
applications	use	the	built-in	command	definitions	rather	than	a	redefined

command.

See	the	Overview	of	File	Organization	topic	in	the	AutoCAD	Customization
Guide	for	a	description	of	the	steps	AutoCAD	takes	to	evaluate	command
names.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	

Local	Variables	in	Functions
	
	
	

AutoLISP	provides	a	method	for	defining	a	list	of	symbols	(variables)	that	are
available	only	to	your	function.	These	are	known	as	local	variables.

Local	Variables	versus	Global	Variables
Example	Using	Local	Variables

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	Local	Variables	in	Functions	>	

Local	Variables	versus	Global	Variables
	
	
	

The	use	of	local	variables	ensures	that	the	variables	in	your	functions	are
unaffected	by	the	surrounding	application	and	that	your	variables	do	not	remain
available	after	the	calling	function	has	completed	its	task.

Many	user-defined	functions	are	used	as	utility	functions	within	larger
applications.	User-defined	functions	also	typically	contain	a	number	of	variables
whose	values	and	use	are	specific	to	that	function.

The	danger	in	using	global	variables,	instead	of	local	variables,	is	you	may
inadvertently	modify	them	outside	of	the	function	they	were	declared	in	and
intended	for.	This	can	lead	to	unpredictable	behavior,	and	it	can	be	very	difficult
to	identify	the	source	of	this	type	of	problem.

Another	advantage	of	using	local	variables	is	that	AutoCAD	can	recycle	the
memory	space	used	by	these	variables,	whereas	global	variables	keep
accumulating	within	AutoCAD	memory	space.

There	are	some	legitimate	uses	for	global	variables,	but	these	should	be	kept	to	a
minimum.	It	is	also	a	good	practice	to	indicate	that	you	intend	a	variable	to	be
global.	A	common	way	of	doing	this	is	to	add	an	opening	and	closing	asterisk	to
the	variable	name,	for	example,	*default-layer*.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	Local	Variables	in	Functions	>	

Example	Using	Local	Variables
	
	
	

The	following	example	shows	the	use	of	local	variables	in	a	user-defined
function	(be	certain	there	is	at	least	one	space	between	the	slash	and	the	local
variables).

_$ (defun	LOCAL	(/
aaa	bbb)

(_> (setq	aaa	"A"	bbb
"B")

(_> (princ	(strcat	"\naaa
has	the	value	"	aaa))

(_> (princ	(strcat	"\nbbb
has	the	value	"	bbb))

(_> (princ))
LOCAL

Before	you	test	the	new	function,	assign	variables	aaa	and	bbb	to	values	other
than	those	used	in	the	LOCAL	function.

_$ (setq	aaa	1	bbb	2)
2	

You	can	verify	that	the	variables	aaa	and	bbb	are	actually	set	to	those	values.

_$ aaa
1	

_$ bbb
2	

Now	test	the	LOCAL	function.

_$ (local)
aaa	has	the	value	A	

bbb	has	the	value	B	

You	will	notice	the	function	used	the	values	for	aaa	and	bbb	that	are	local	to
the	function.	You	can	verify	that	the	current	values	for	aaa	and	bbb	are	still	set
to	their	nonlocal	values.

_$ aaa
1	

_$ bbb
2	

In	addition	to	ensuring	that	variables	are	local	to	a	particular	function,	this
technique	also	ensures	the	memory	used	for	those	variables	is	available	for	other
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	

Functions	with	Arguments
	
	
	

With	AutoLISP,	you	can	define	functions	that	accept	arguments.	Unlike	many	of
the	standard	AutoLISP	functions,	user-defined	functions	cannot	have	optional
arguments.	When	you	call	a	user-defined	function	that	accepts	arguments,	you
must	provide	values	for	all	the	arguments.

The	symbols	to	use	as	arguments	are	defined	in	the	argument	list	before	the	local
variables.	Arguments	are	treated	as	a	special	type	of	local	variable;	argument
variables	are	not	available	outside	the	function.	You	cannot	define	a	function
with	multiple	arguments	of	the	same	name.

The	following	code	defines	a	function	that	accepts	two	string	arguments,
combines	them	with	another	string,	and	returns	the	resulting	string.

_$ (defun	ARGTEST	(
arg1	arg2	/	ccc)

(_> (setq	ccc	"Constant
string")

(_> (strcat	ccc	",	"
arg1	",	"	arg2))
ARGTEST	

The	ARGTEST	function	returns	the	desired	value	because	AutoLISP	always
returns	the	results	of	the	last	expression	it	evaluates.	The	last	line	in	ARGTEST
uses	strcat	to	concatenate	the	strings,	and	the	resulting	value	is	returned.	This
is	one	example	where	you	should	not	use	the	princ	function	to	suppress	the
return	value	from	your	program.

This	type	of	function	can	be	used	a	number	of	times	within	an	application	to
combine	two	variable	strings	with	one	constant	string	in	a	specific	order.
Because	it	returns	a	value,	you	can	save	the	value	to	a	variable	for	use	later	in
the	application.

_$ (setq	newstr	(ARGTEST
"String	1"	"String	2"))	
"Constant	string,	String	1,	String	2"

The	newstr	variable	is	now	set	to	the	value	of	the	three	strings	combined.

Note	that	the	ccc	variable	was	defined	locally	within	the	ARGTEST	function.
Once	the	function	runs	to	completion,	AutoLISP	recycles	the	variable,
recapturing	the	memory	allocated	to	it.	To	prove	this,	check	from	the	VLISP
Console	window	to	see	if	there	is	still	a	value	assigned	to	ccc.

_$		ccc
nil

Special	Forms

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Symbol	and	Function	Handling	>	Functions	with	Arguments	>	

Special	Forms
	
	
	

Certain	AutoLISP	functions	are	considered	special	forms	because	they	evaluate
arguments	in	a	different	manner	than	most	AutoLISP	function	calls.	A	typical
function	evaluates	all	arguments	passed	to	it	before	acting	on	those	arguments.
Special	forms	either	do	not	evaluate	all	their	arguments,	or	only	evaluate	some
arguments	under	certain	conditions.

The	following	AutoLISP	functions	are	considered	special	forms:

AND

COMMAND

COND

DEFUN

DEFUN-Q

FOREACH

FUNCTION

IF

LAMBDA

OR

PROGN

QUOTE

REPEAT

SETQ

TRACE

UNTRACE

VLAX-FOR

WHILE

You	can	read	about	each	of	these	functions	in	the	AutoLISP	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	

Error	Handling	in	AutoLISP
	
	
	

The	AutoLISP	language	provides	several	functions	for	error	handling.	You	can
use	these	functions	to	do	the	following:

Provide	information	to	users	when	an	error	occurs	during	the	execution
of	a	program.

Restore	the	AutoCAD	environment	to	a	known	state.

Intercept	errors	and	continue	program	execution.

The	complete	list	of	error-handling	functions	is	in	AutoLISP	Function	Synopsis
under	the	heading	Error-Handling	Functions	Each	error-handling	function	is
described	in	the	AutoLISP	Reference.

If	your	program	contains	more	than	one	error	in	the	same	expression,	you	cannot
depend	on	the	order	in	which	AutoLISP	detects	the	errors.	For	example,	the
inters	function	requires	several	arguments,	each	of	which	must	be	either	a	2D
or	3D	point	list.	A	call	to	inters	like	the	following:

(inters	'a)

is	an	error	on	two	counts:	too	few	arguments	and	invalid	argument	type.	You	will
receive	either	of	the	following	error	messages:

;	***	ERROR:	too	few	arguments

;	***	ERROR:	bad	argument	type:	2D/3D	point

Your	program	should	be	designed	to	handle	either	error.

Note	also	that	in	AutoCAD,	AutoLISP	evaluates	all	arguments	before	checking
the	argument	types.	In	previous	releases	of	AutoCAD,	AutoLISP	evaluated	and
checked	the	type	of	each	argument	sequentially.	To	see	the	difference,	look	at	the
following	code	examples:

(defun	foo	()

		(print	"Evaluating	foo")

		'(1	2))

(defun	bar	()

		(print	"Evaluating	bar")

		'b)

(defun	baz	()

		(print	"Evaluating	baz")

		'c)

Observe	how	an	expression	using	the	inters	function	is	evaluated	in
AutoCAD:

Command:	(inters	(foo)	(bar)	(baz))

"Evaluating	foo"

"Evaluating	bar"

"Evaluating	baz"

;	***	ERROR:	too	few	arguments

Each	argument	was	evaluated	successfully	before	AutoLISP	passed	the	results	to
inters	and	discovered	that	too	few	arguments	were	specified.

In	AutoCAD	Release	14	or	earlier,	the	same	expression	evaluated	as	follows:
Command:	(inters	(foo)	(bar)	(baz))

"Evaluating	foo"

"Evaluating	bar"	error:	bad	argument	type

AutoLISP	evaluated	(foo),	then	passed	the	result	to	inters.	Since	the	result
was	a	valid	2D	point	list,	AutoLISP	proceeds	to	evaluate	(bar),	where	it
determines	that	the	evaluated	result	is	a	string,	an	invalid	argument	type	for
inters.

Using	the	*error*	Function
Catching	Errors	and	Continuing	Program	Execution

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Error	Handling	in	AutoLISP	>	

Using	the	*error*	Function
	
	
	

Proper	use	of	the	*error*	function	can	ensure	that	AutoCAD	returns	to	a
particular	state	after	an	error	occurs.	Through	this	user-definable	function	you
can	assess	the	error	condition	and	return	an	appropriate	message	to	the	user.	If
AutoCAD	encounters	an	error	during	evaluation,	it	prints	a	message	in	the
following	form:

Error: text

In	this	message,	text	describes	the	error.	However,	if	the	*error*	function	is
defined	(that	is,	if	it	is	not	nil),	AutoLISP	executes	*error*	instead	of
printing	the	message.	The	*error*	function	receives	text	as	its	single
argument.

If	*error*	is	not	defined	or	is	nil,	AutoLISP	evaluation	stops	and	displays	a
traceback	of	the	calling	function	and	its	callers.	It	is	beneficial	to	leave	this	error
handler	in	effect	while	you	debug	your	program.

A	code	for	the	last	error	is	saved	in	the	AutoCAD	system	variable	ERRNO,
where	you	can	retrieve	it	by	using	the	getvar	function.	See	Error	Handling	in
AutoLISP	for	a	list	of	error	codes	and	their	meaning.

Before	defining	your	own	*error*	function,	save	the	current	contents	of
error	so	that	the	previous	error	handler	can	be	restored	upon	exit.	When	an
error	condition	exists,	AutoCAD	calls	the	currently	defined	*error*	function
and	passes	it	one	argument,	which	is	a	text	string	describing	the	nature	of	the
error.	Your	*error*	function	should	be	designed	to	exit	quietly	after	an	ESC
(cancel)	or	an	exit	function	call.	The	standard	way	to	accomplish	this	is	to
include	the	following	statements	in	your	error-handling	routine.

(if	

		(or	

				(=	msg	"Function	cancelled")

				(=	msg	"quit	/	exit	abort")	

)

		(princ)

		(princ	(strcat	"\nError:	"	msg))

)

This	code	examines	the	error	message	passed	to	it	and	ensures	that	the	user	is
informed	of	the	nature	of	the	error.	If	the	user	cancels	the	routine	while	it	is
running,	nothing	is	returned	from	this	code.	Likewise,	if	an	error	condition	is
programmed	into	your	code	and	the	exit	function	is	called,	nothing	is	returned.
It	is	presumed	you	have	already	explained	the	nature	of	the	error	by	using	print
statements.	Remember	to	include	a	terminating	call	to	princ	if	you	don't	want
a	return	value	printed	at	the	end	of	an	error	routine.

The	main	caveat	about	error-handling	routines	is	they	are	normal	AutoLISP
functions	that	can	be	canceled	by	the	user.	Keep	them	as	short	and	as	fast	as
possible.	This	will	increase	the	likelihood	that	an	entire	routine	will	execute	if
called.

You	can	also	warn	the	user	about	error	conditions	by	displaying	an	alert	box,
which	is	a	small	dialog	box	containing	a	message	supplied	by	your	program.	To
display	an	alert	box,	call	the	alert	function.

The	following	call	to	alert	displays	an	alert	box:

(alert	"File	not	found")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>		AutoLISP
Basics	>	Error	Handling	in	AutoLISP	>	

Catching	Errors	and	Continuing	Program	Execution
	
	
	

Your	program	can	intercept	and	attempt	to	process	errors	instead	of	allowing
control	to	pass	to	*error*.	The	vl-catch-all-apply	function	is
designed	to	invoke	any	function,	return	a	value	from	the	function,	and	trap	any
error	that	may	occur.	The	function	requires	two	arguments:	a	symbol	identifying
a	function	or	lambda	expression,	and	a	list	of	arguments	to	be	passed	to	the
called	function.	The	following	example	uses	vl-catch-all-apply	to
divide	two	numbers:

_$	(setq	catchit	(vl-catch-all-apply

'/	'(50	5)))
10

The	result	from	this	example	is	the	same	as	if	you	had	used	apply	to	perform
the	division.

The	value	of	vl-catch-all-apply	is	in	catching	errors	and	allowing	your
program	to	continue	execution.

To	catch	errors	with	vl-catch-all-apply

1.	 The	following	code	defines	a	function	named	catch-me-if-you-
can.	Copy	the	code	into	a	VLISP	text	editor	window:

(defun	catch-me-if-you-can	(dividend	divisor	/	errobj)

		(setq	errobj	(vl-catch-all-apply	'/	(list	dividend	divisor)))

		(if	(vl-catch-all-error-p	errobj)

				(progn

						(print	(strcat	"An	error	occurred:	"

																					(vl-catch-all-error-message	errobj)

)

)

						(prompt	"Do	you	want	to	continue?	(Y/N)	->	")

						(setq	ans	(getstring))

						(if	(equal	(strcase	ans)	"Y")

								(print	"Okay,	I'll	keep	going")

)

)

				(print	errobj)

)

		(princ)

)

This	function	accepts	two	number	arguments	and	uses	vl-catch-
all-apply	to	divide	the	first	number	by	the	second	number.	The	vl-
catch-all-error-p	function	determines	whether	the	return	value
from	vl-catch-all-apply	is	an	error	object.	If	the	return	value	is
an	error	object,	catch-me-if-you-can	invokes	vl-catch-all-
error-message	to	obtain	the	message	from	the	error	object.

2.	 Load	the	function.

3.	 Invoke	the	function	with	the	following	command:

(catch-me-if-you-can

50	2)

The	function	should	return	25.

4.	 Intentionally	cause	an	error	condition	by	invoking	the	function	with	the
following	command:

(catch-me-if-you-can

50	0)

The	function	should	issue	the	following	prompt	in	the	AutoCAD
Command	window:

"An	error	occurred:	divide	by	zero"	Do	you	want	to	continue?	(Y/N)	->

If	you	enter	y,	catch-me-if-you-can	indicates	that	it	will	continue
processing.
Try	modifying	this	example	by	changing	vl-catch-all-apply	to
apply.	Load	and	run	the	example	with	a	divide	by	zero	again.	When
apply	results	in	an	error,	execution	immediately	halts	and	*error*	is
called,	resulting	in	an	error	message.

The	vl-catch-*	functions	are	especially	important	when	you	use
ActiveX	with	AutoLISP.	Many	of	the	AutoCAD	ActiveX	automation
methods	are	designed	to	be	used	in	the	“programming	by	exception”
style.	This	means	they	either	return	useful	values	if	they	succeed,	or
raise	an	exception	if	they	fail	(instead	of	returning	an	error	value).	If
your	program	uses	ActiveX	methods,	you	must	prepare	it	to	catch
exceptions,	otherwise	the	program	halts,	leaving	the	user	at	a	Command
prompt.	See	Handling	Errors	Returned	by	ActiveX	Methods	for	an
example	using	vl-catch-all-apply	with	ActiveX.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	

Using	AutoLISP	to	Communicate	with	AutoCAD
	
	
	

Query	and	command	functions	provide	direct	access	to	AutoCAD	commands
and	drawing	services.

AutoLISP®	provides	various	functions	for	examining	the	contents	of	the
currently	loaded	drawing.	This	chapter	introduces	these	functions	and	describes
how	to	use	them	in	conjunction	with	other	functions.

Accessing	Commands	and	Services
Display	Control
Getting	User	Input
Geometric	Utilities
Conversions
File	Handling
Device	Access	and	Control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Accessing	Commands	and	Services
	
	
	

The	query	and	command	functions	described	in	this	section	provide	direct	access
to	AutoCAD®	commands	and	drawing	services.	Their	behavior	depends	on	the
current	state	of	the	AutoCAD	system	and	environment	variables,	and	on	the
drawing	that	is	currently	loaded.	See	##xref	here	-	Query	and	Command
Functions	(app	A	Utility	functions)	in	AutoLISP	Function	Synopsis	for	a
complete	list	of	query	and	command	functions.

Note The	AutoLISP	examples	in	this	chapter	show	code	entered	at	the	AutoCAD
Command	prompt,	not	the	Visual	LISP	Console	window.

Command	Submission
System	and	Environment	Variables
Configuration	Control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	

Command	Submission
	
	
	

The	command	function	sends	an	AutoCAD	command	directly	to	the	AutoCAD
Command	prompt.	The	command	function	has	a	variable-length	argument	list.
These	arguments	must	correspond	to	the	types	and	values	expected	by	that
command's	prompt	sequence;	these	may	be	strings,	real	values,	integers,	points,
entity	names,	or	selection	set	names.	Data	such	as	angles,	distances,	and	points
can	be	passed	either	as	strings	or	as	the	values	themselves	(as	integer	or	real
values,	or	as	point	lists).	An	empty	string	("")	is	equivalent	to	pressing	the
SPACEBAR	or	ENTER	on	the	keyboard.

There	are	some	restrictions	on	the	commands	that	you	can	use	with	the
command	function.	See	the	AutoLISP	Reference	definition	of	this	function	for
information	on	these	restrictions.

The	following	code	fragment	shows	representative	calls	to	command.

(command	"circle"	"0,0"	"3,3")

(command	"thickness"	1)

(setq	p1		'(1.0	1.0	3.0))

(setq	rad	4.5)

(command	"circle"	p1	rad)

If	AutoCAD	is	at	the	Command	prompt	when	these	functions	are	called,
AutoCAD	performs	the	following	actions:

1.	 The	first	call	to	command	passes	points	to	the	CIRCLE	command	as
strings	(draws	a	circle	centered	at	0.0,0.0	and	passes	through	3.0,3.0).

2.	 The	second	call	passes	an	integer	to	the	THICKNESS	system	variable
(changes	the	current	thickness	to	1.0).

3.	 The	last	call	uses	a	3D	point	and	a	real	(floating-point)	value,	both	of
which	are	stored	as	variables	and	passed	by	reference	to	the	CIRCLE

command.	This	draws	an	extruded	circle	centered	at	(1.0,1.0,3.0)	with	a
radius	of	4.5.
Foreign	Language	Support
Pausing	for	User	Input
Passing	Pick	Points	to	AutoCAD	Commands
Undoing	Commands	Issued	with	the	command	Function

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	Command
Submission	>	

Foreign	Language	Support
	
	
	

If	you	develop	AutoLISP	programs	that	can	be	used	with	a	foreign	language
version	of	AutoCAD,	the	standard	AutoCAD	commands	and	keywords	are
automatically	translated	if	you	precede	each	command	or	keyword	with	an
underscore	(_).

(command	"_line"	pt1	pt2	pt3	"_c")

If	you	are	using	the	dot	prefix	(to	avoid	using	redefined	commands),	you	can
place	the	dot	and	underscore	in	either	order.	Both	"._line"	and	"_.line"
are	valid.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	Command
Submission	>	

Pausing	for	User	Input
	
	
	

If	an	AutoCAD	command	is	in	progress	and	the	predefined	symbol	PAUSE	is
encountered	as	an	argument	to	command,	the	command	is	suspended	to	allow
direct	user	input	(usually	point	selection	or	dragging).	This	is	similar	to	the
backslash	pause	mechanism	provided	for	menus.

The	PAUSE	symbol	is	defined	as	a	string	consisting	of	a	single	backslash.	When
you	use	a	backslash	(\)	in	a	string,	you	must	precede	it	by	another	backslash	(\\).

Menu	input	is	not	suspended	by	an	AutoLISP	pause.	If	a	menu	item	is	active
when	the	command	function	pauses	for	input,	that	input	request	can	be	satisfied
by	the	menu.	If	you	want	the	menu	item	to	be	suspended	as	well,	you	must
provide	a	backslash	in	the	menu	item.	When	valid	input	is	found,	both	the
command	function	and	the	menu	item	resume.

Note You	can	use	a	backslash	instead	of	the	PAUSE	symbol.	However,	it	is
recommended	that	you	always	use	the	PAUSE	symbol	rather	than	an	explicit
backslash.	Also,	if	the	command	function	is	invoked	from	a	menu	item,	the
backslash	suspends	the	reading	of	the	menu	item,	which	results	in	partial
evaluation	of	the	AutoLISP	expression.

If	you	issue	a	transparent	command	while	a	command	function	is	suspended,	the
command	function	remains	suspended.	Therefore,	users	can	'ZOOM	and	'PAN
while	at	a	command	pause.	The	pause	remains	in	effect	until	AutoCAD	gets
valid	input,	and	no	transparent	command	is	in	progress.	For	example,	the
following	code	begins	the	CIRCLE	command,	sets	the	center	point	at	(5,5),	and
then	pauses	to	let	the	user	drag	the	circle's	radius.	When	the	user	specifies	the
desired	point	(or	types	in	the	desired	radius),	the	function	resumes,	drawing	a
line	from	(5,5)	to	(7,5),	as	follows:

(command	"circle"	"5,5"	pause	"line"	"5,5"	"7,5"	"")

If	PAUSE	is	encountered	when	a	command	is	expecting	input	of	a	text	string	or
an	attribute	value,	AutoCAD	pauses	for	input	only	if	the	TEXTEVAL	system
variable	is	nonzero.	Otherwise,	AutoCAD	does	not	pause	for	user	input	but	uses
the	value	of	the	PAUSE	symbol	(a	single	backslash)	text.

When	the	command	function	pauses	for	user	input,	the	function	is	considered
active,	so	the	user	cannot	enter	another	AutoLISP	expression	to	be	evaluated.

The	following	is	an	example	of	using	the	PAUSE	symbol	(the	layer	NEW_LAY
and	the	block	MY_BLOCK	must	exist	in	the	drawing	prior	to	testing	this	code):

(setq	blk	"MY_BLOCK")

(setq	old_lay	(getvar	"clayer"))

(command	"layer"	"set"	"NEW_LAY"	"")

(command	"insert"	blk	pause	""	""	pause)

(command	"layer"	"set"	old_lay	"")

The	preceding	code	fragment	sets	the	current	layer	to	NEW_LAY,	pauses	for
user	selection	of	an	insertion	point	for	the	block	MY_BLOCK	(which	is	inserted
with	X	and	Y	scale	factors	of	1),	and	pauses	again	for	user	selection	of	a	rotation
angle.	The	current	layer	is	then	reset	to	the	original	layer.

If	the	command	function	specifies	a	PAUSE	to	the	SELECT	command	and	a
PICKFIRST	set	is	active,	the	SELECT	command	obtains	the	PICKFIRST	set
without	pausing	for	the	user.

Warning The	Radius	and	Diameter	subcommands	of	the	Dim	prompt	issue
additional	prompts	in	some	situations.	This	can	cause	a	failure	of	AutoLISP
programs	written	prior	to	Release	11	that	use	these	commands.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	Command
Submission	>	

Passing	Pick	Points	to	AutoCAD	Commands
	
	
	

Some	AutoCAD	commands	(such	as	TRIM,	EXTEND,	and	FILLET)	require	the
user	to	specify	a	pick	point	as	well	as	the	object	itself.	To	pass	such	pairs	of
object	and	point	data	by	means	of	the	command	function	without	the	use	of	a
PAUSE,	you	must	first	store	them	as	variables.	Points	can	be	passed	as	strings
within	the	command	function	or	can	be	defined	outside	the	function	and	passed
as	variables,	as	shown	in	the	following	example.	This	code	fragment	shows	one
method	of	passing	an	entity	name	and	a	pick	point	to	the	command	function.

(command	"circle"	"5,5"	"2")								Draws

circle

(command	"line"	"3,5"	"7,5"	"")					Draws

line

(setq	el		(entlast))																Gets

last	entity	name

(setq	pt		'(5	7))																			Sets	point	pt

(command	"trim"	el	""	pt	"")								Performs

trim

If	AutoCAD	is	at	the	Command	prompt	when	these	functions	are	called,
AutoCAD	performs	the	following	actions:

1.	 Draws	a	circle	centered	at	(5,5)	with	a	radius	of	2.

2.	 Draws	a	line	from	(3,5)	to	(7,5).

3.	 Creates	a	variable	el	that	is	the	name	of	the	last	object	added	to	the
database.	(See	Using	AutoLISP	to	Manipulate	AutoCAD	Objects	for
more	discussion	of	objects	and	object-handling	functions.)

4.	 Creates	a	pt	variable	that	is	a	point	on	the	circle.	(This	point	selects	the
portion	of	the	circle	to	be	trimmed.)

5.	 Performs	the	TRIM	command	by	selecting	the	el	object	and	by
selecting	the	point	specified	by	pt.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	Command
Submission	>	

Undoing	Commands	Issued	with	the	command	Function
	
	
	

An	UNDO	group	is	explicitly	created	around	each	command	used	with	the
command	function.	If	a	user	enters	U	(or	UNDO)	after	running	an	AutoLISP
routine,	only	the	last	command	will	be	undone.	Additional	entries	of	UNDO	will
step	backward	through	the	commands	used	in	that	routine.	If	you	want	a	group
of	commands	to	be	considered	a	group	(or	the	entire	routine),	use	the	UNDO
Begin	and	UNDO	End	options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	

System	and	Environment	Variables
	
	
	

With	the	getvar	and	setvar	functions,	AutoLISP	applications	can	inspect
and	change	the	value	of	AutoCAD	system	variables.	These	functions	use	a	string
to	specify	the	variable	name.	The	setvar	function	specifies	a	value	of	the	type
that	the	system	variable	expects.	AutoCAD	system	variables	come	in	various
types:	integers,	real	values,	strings,	2D	points,	and	3D	points.	Values	supplied	as
arguments	to	setvar	must	be	of	the	expected	type.	If	an	invalid	type	is
supplied,	an	AutoLISP	error	is	generated.

The	following	code	fragment	ensures	that	subsequent	FILLET	commands	use	a
radius	of	at	least	1:

(if	(<	(getvar	"filletrad")	1)

		(setvar	"filletrad"	1)

)

See	the	Command	Reference	for	a	list	of	AutoCAD	system	variables	and	their
descriptions.

An	additional	function,	getenv,	provides	AutoLISP	routines	with	access	to	the
currently	defined	operating	system	environment	variables.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Accessing	Commands	and	Services	>	

Configuration	Control
	
	
	

AutoCAD	uses	the	acadxx.cfg	file	to	store	configuration	information	(the	xx	in
the	file	name	refers	to	the	AutoCAD	release	number).	The	AppData	section	of
this	file	is	provided	for	users	and	developers	to	store	configuration	information
pertaining	to	their	applications.	The	getcfg	and	setcfg	functions	allow
AutoLISP	applications	to	inspect	and	change	the	value	of	parameters	in	the
AppData	section.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Display	Control
	
	
	

AutoLISP	includes	functions	for	controlling	the	AutoCAD	display	in	both	text
and	graphics	windows.	Some	functions	prompt	for,	or	depend	on,	input	from	the
AutoCAD	user.

The	prompt,	princ,	prin1,	and	print	functions	are	the	primary	text	output
functions.	These	functions	were	described	in	the	AutoLISP	Basics	chapter,	under
the	heading,	Basic	Output	Functions

See	Display	Control	Functions	in	AutoLISP	Function	Synopsis	for	a	complete
list	of	display	control	functions.

Controlling	Menus
Control	of	Graphics	and	Text	Windows
Control	of	Low-Level	Graphics

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Display	Control	>	

Controlling	Menus
	
	
	

The	menucmd	function	controls	the	display	of	the	graphics	window	menus.	It
displays,	modifies,	or	queries	one	of	the	submenus	of	the	current	menu,	and
accepts	a	string	argument	that	specifies	the	submenu	and	the	action	to	perform
on	that	submenu.

The	menucmd	function	takes	a	string	argument	that	consists	of	two	fields,
separated	by	an	equal	sign,	in	the	following	form:

"menu_area=action"

This	syntax	can	load	a	submenu	into	a	specified	menu	area,	or	perform	an	action
on	a	menu	item	or	a	currently	loaded	menu	area.	The	menu_area	field
specifies	which	part	of	the	menu	is	to	receive	the	action.	This	field	can	specify	a
menu	area,	such	as	P0	(for	the	shortcut	menu)	or	S	(for	the	screen	menu),	or	a
specific	menu	item.	The	action	field	specifies	the	action	to	perform	on	the
menu	area	or	menu	item,	or	a	submenu	to	load	into	the	menu	area.	The	menu
areas	that	can	receive	an	action	are	the	same	as	those	used	in	menu	file	submenu
references.

Every	menu	area	has	a	currently	loaded	submenu.	By	default,	the	first	submenu
following	a	menu	section	label	is	loaded	into	that	menu	area.

If	menu_area	specifies	a	pull-down	menu	or	image	tile	menu,	action	can	be
an	asterisk	(*).	This	causes	the	menu	to	display	(pull-down	menus	and	image	tile
menus	are	not	automatically	displayed	when	they	are	called).	In	Windows,	only
the	P0	(cursor)	menu	and	image	tile	menus	are	displayed	with	the	asterisk.

Note Do	not	include	the	dollar	sign	that	introduces	the	similar	instructions	in	a
menu	file	in	the	string	argument.	Also,	do	not	include	the	asterisks	that	precede
submenu	labels	in	the	menu	file	in	the	action	field	of	the	string	argument.

The	following	menucmd	function	call	causes	the	**OSNAP	screen	submenu
defined	in	the	current	menu	file	to	be	displayed	(assuming	the	screen	menu	is
currently	enabled).

(menucmd	"S=OSNAP")	

In	Windows,	you	can	reference	the	menu	group.	This	can	be	useful	if	there	are
multiple	menus	loaded	that	contain	the	same	submenu	name.	The	following	code
displays	the	**OSNAP	screen	submenu	in	the	ACAD	menu	group.

(menucmd	"S=ACAD.OSNAP")	

The	menucmd	function	can	load	submenus	into	the	BUTTONS	and	AUX	menu
areas.	You	might	want	your	digitizer	buttons	to	function	differently	depending
on	whether	Tablet	mode	is	on	or	off.	You	can	have	two	submenus	defined	in	the
***BUTTONS1	section,	**DIG-BUTTONS	and	**TAB-BUTTONS,	and
switch	between	them	with	the	following	code.

(menucmd	"B1=DIG-BUTTONS")		Enables	the	DIG-BUTTONS	submenu

(menucmd	"B1=TAB-BUTTONS")		Enables	the	TAB-BUTTONS	submenu

The	following	code	loads	the	***POP0	menu	into	the	P0	(cursor)	menu	area
and	displays	it.

(menucmd	"P0=POP0")									Loads

the	***POP0	menu	into	the	P0	menu	area

(menucmd	"P0=*")		 	 	 	 	 	 Displays

it

If	you	are	sure	the	correct	menu	is	loaded	into	a	particular	menu	area,	you	do	not
need	to	load	it	specifically	each	time	you	want	to	display	it.

The	following	call	displays	the	pull-down	menu	currently	loaded	in	the	P1	(first
pull-down	menu)	location.

(menucmd	"P1=*")

Using	"P1=*"	without	previously	loading	the	menu	can	result	in	unexpected
behavior.	Although	you	can	load	virtually	any	menu	at	a	pull-down	or	shortcut
menu	location,	it	is	best	to	use	only	menus	specifically	designed	for	that	menu
area.	For	example,	if	you	have	a	submenu	called	**MORESTUFF,	you	can	load
it	at	the	P1	location	with	the	following	code:

(menucmd	"P1=MORESTUFF")				Loads	the	**MORESTUFF	menu	in	the

P1	menu	location

(menucmd	"P1=*")												Displays

it	

This	menu	remains	in	this	location	until	you	replace	it	by	loading	another	menu,
as	in	the	following:

(menucmd	"P1=POP1")

If	your	menu	uses	the	disabling	(graying-out)	and	marking	features,	you	can
retrieve	and	change	the	state	of	a	menu	label	with	the	menucmd	function.	The
following	call	retrieves	the	current	state	of	the	fourth	label	in	the	pull-down
menu	P2.

(menucmd	"P2.4=#?")									If

disabled	returns			"P2.4=~"	

These	function	calls	enable	and	disable	that	same	label:

(menucmd	"P2.4=")											Enables

the	label

(menucmd	"P2.4=~")										Disables

the	label

You	can	also	place	and	remove	marks	to	the	left	of	menu	labels.

The	previously	described	method	of	menu	item	handling	works	relatively	well
with	a	single	static	menu.	However,	it	becomes	unreliable	when	menu	item
locations	change	when	you	load	multiple	partial	menu	files.	You	can	make	use	of
the	menu-group	and	name-tag	features	to	keep	track	of	menu	items.	Instead	of
specifying	a	menu	item	by	its	location	in	the	menu	file,	you	specify	the	menu
group	and	name	tag	associated	with	the	menu	item.

When	you	use	the	menu	group	to	enable,	disable,	and	mark	menu	labels,	you
must	precede	the	group	name	with	a	G,	as	shown	in	the	following	examples.

(menucmd	"Gacad.ID_New=~")		Disables	the

label

(menucmd	"Gacad.ID_New=")			Enables	the

label

Not	only	can	an	AutoLISP	function	enable	and	disable	menu	labels,	it	can	also
modify	the	text	displayed	in	the	label	by	placing	a	DIESEL	string	expression	in

the	label.	Because	DIESEL	accepts	only	strings	as	input,	you	can	pass
information	to	the	DIESEL	expression	through	a	USERS1-5	system	variable
that	has	been	set	to	a	value	returned	by	your	function.

You	can	also	use	the	menucmd	function	to	evaluate	DIESEL	string	expressions
within	an	AutoLISP	function.	The	following	routine	returns	the	current	time:

(defun	C:CTIME	(/	ctim)

		(setq	ctim	

				(menucmd	"M=$(edtime,$(getvar,date),H:MMam/pm)"))

		(princ	(strcat	"\nThe	current	time	is	"	ctim))

		(princ)

)

For	information	on	the	use	of	DIESEL	expressions	with	AutoLISP	and	a	catalog
of	DIESEL	functions,	see	the	Customization	Guide.	Refer	also	to	the
Customization	Guide	for	further	information	on	menus.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Display	Control	>	

Control	of	Graphics	and	Text	Windows
	
	
	

You	can	control	the	display	of	the	graphics	and	text	windows	from	an	AutoLISP
application.	On	single-screen	AutoCAD	installations,	a	call	to	graphscr
displays	the	graphics	window,	and	a	call	to	textscr	displays	the	text	window.
Using	these	functions	is	equivalent	to	toggling	the	Flip	Screen	function	key.	The
function	textpage	is	equivalent	to	textscr.

The	redraw	function	is	similar	to	the	AutoCAD	REDRAW	command	but
provides	more	control	over	what	is	displayed.	It	not	only	redraws	the	entire
graphics	area	but	can	also	specify	a	single	object	to	be	redrawn	or	undrawn	(that
is,	blanked	out).	If	the	object	is	a	complex	object	such	as	an	old-style	polyline	or
a	block,	redraw	can	draw	(or	undraw)	either	the	entire	object	or	its	header.	The
redraw	function	can	also	highlight	and	unhighlight	specified	objects.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Display	Control	>	

Control	of	Low-Level	Graphics
	
	
	

AutoLISP	provides	functions	that	control	the	low-level	graphics	and	allow	direct
access	to	the	AutoCAD	graphics	screen	and	input	devices.

The	grtext	function	displays	text	directly	in	the	status	or	menu	areas,	with	or
without	highlighting.	The	grdraw	function	draws	a	vector	in	the	current
viewport	with	control	over	color	and	highlighting.	The	grvecs	function	draws
multiple	vectors.

Note Because	these	functions	depend	on	code	in	AutoCAD,	their	operation	can	be
expected	to	change	from	release	to	release.	There	is	no	guarantee	that
applications	calling	these	functions	will	be	upward	compatible.	Also,	they
depend	on	current	hardware	configurations.	In	particular,	applications	that	call
grtext	are	not	likely	to	work	the	same	on	all	configurations	unless	the
developer	is	very	careful	to	use	them	as	described	(see	the	Customization	Guide)
and	to	avoid	hardware-specific	features.	Finally,	because	they	are	low-level
functions,	they	do	almost	no	error	reporting	and	can	alter	the	graphics	screen
display	unexpectedly	(see	the	following	example	for	a	way	to	fix	this).

The	following	sequence	restores	the	default	graphics	window	display	caused	by
incorrect	calls	to	grtext,	grdraw,	or	grvecs:

(grtext)							Restores

standard	text

(redraw)	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Getting	User	Input
	
	
	

Several	functions	enable	an	AutoLISP	application	to	prompt	the	user	for	input	of
data.	See	User	Input	Functions	in	AutoLISP	Function	Synopsis	for	a	complete
list	of	user	input	functions.

The	getxxx	Functions
Control	of	User-Input	Function	Conditions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	

The	getxxx	Functions
	
	
	

Each	user-input	getxxx	function	pauses	for	data	entry	of	the	indicated	type	and
returns	the	value	entered.	The	application	specifies	an	optional	prompt	to	display
before	the	function	pauses.	The	following	table	lists	the	getxxx	functions	and
the	type	of	user	input	requested.

Allowable	input	to	the	getxxx	user-input	functions

Function
name Type	of	user	input

getint An	integer	value	on	the	command
line

getreal A	real	or	integer	value	on	the
command	line

getstring A	string	on	the	command	line

getpoint A	point	value	on	the	command	line	or
selected	from	the	screen

getcorner A	point	value	(the	opposite	corner	of
a	box)	on	the	command	line	or
selected	from	the	screen

getdist A	real	or	integer	value	(of	distance)
on	the	command	line	or	determined
by	selecting	points	on	the	screen

getangle An	angle	value	(in	the	current	angle
format)	on	the	command	line	or	based
on	selected	points	on	the	screen

getorient An	angle	value	(in	the	current	angle
format)	on	the	command	line	or	based
on	selected	points	on	the	screen

getkword A	predefined	keyword	or	its
abbreviation	on	the	command	line

Note Although	the	getvar,	getcfg,	and	getenv	functions	begin	with	the
letters	g,	e,	and	t,	they	are	not	user-input	functions.	They	are	discussed	in
Accessing	Commands	and	Services.

The	functions	getint,	getreal,	and	getstring	pause	for	user	input	on
the	AutoCAD	command	line.	They	return	a	value	only	of	the	same	type	as	that
requested.

The	getpoint,	getcorner,	and	getdist	functions	pause	for	user	input	on
the	command	line	or	from	points	selected	on	the	graphics	screen.	The
getpoint	and	getcorner	functions	return	3D	point	values,	and	getdist
returns	a	real	value.

Both	getangle	and	getorient	pause	for	input	of	an	angle	value	on	the
command	line	or	as	defined	by	points	selected	on	the	graphics	screen.	For	the
getorient	function,	the	0	angle	is	always	to	the	right:	“East”	or	“3	o'clock.”
For	getangle,	the	0	angle	is	the	value	of	ANGBASE,	which	can	be	set	to	any
angle.	Both	getangle	and	getorient	return	an	angle	value	(a	real)	in
radians	measured	counterclockwise	from	a	base	(0	angle),	for	getangle	equal
to	ANGBASE,	and	for	getorient	to	the	right.

For	example,	ANGBASE	is	set	to	90	degrees	(north),	and	ANGDIR	is	set	to	1
(clockwise	direction	for	increasing	angles).	The	following	table	shows	what
getangle	and	getorient	return	(in	radians)	for	representative	input	values
(in	degrees).

Possible	return	values	from

getangle	and	getorient

Input

(degrees)
getangle getorient

0 0.0 1.5708

-90 1.5708 3.14159

180 3.14159 4.71239

90 4.71239 0.0

The	getangle	function	honors	the	settings	of	ANGDIR	and	ANGBASE	when
accepting	input.	You	can	use	getangle	to	obtain	a	rotation	amount	for	a	block
insertion,	because	input	of	0	degrees	always	returns	0	radians.	The	getorient
function	honors	only	ANGDIR.	You	use	getorient	to	obtain	angles	such	as
the	baseline	angle	for	a	text	object.	For	example,	given	the	preceding	settings	of
ANGBASE	and	ANGDIR,	for	a	line	of	text	created	at	an	angle	of	0,
getorient	returns	an	angle	value	of	90.

The	user-input	functions	take	advantage	of	the	error-checking	capability	of
AutoCAD.	Trivial	errors	are	trapped	by	AutoCAD	and	are	not	returned	by	the
user-input	function.	A	prior	call	to	initget	provides	additional	filtering
capabilities,	lessening	the	need	for	error-checking.

The	getkword	function	pauses	for	the	input	of	a	keyword	or	its	abbreviation.
Keywords	must	be	defined	with	the	initget	function	before	the	call	to
getkword.	All	user-input	functions	(except	getstring)	can	accept	keyword
values	in	addition	to	the	values	they	normally	return,	provided	that	initget

has	been	called	to	define	the	keywords.

All	user-input	functions	allow	for	an	optional	prompt	argument.	It	is
recommended	you	use	this	argument	rather	than	a	prior	call	to	the	prompt	or
princ	functions.	If	a	prompt	argument	is	supplied	with	the	call	to	the	user-
input	function,	that	prompt	is	reissued	in	the	case	of	invalid	user	input.	If	no
prompt	argument	is	supplied	and	the	user	enters	incorrect	information,	the
following	message	appears	at	the	AutoCAD	prompt	line:

Try	again:

This	can	be	confusing,	because	the	original	prompt	may	have	scrolled	out	of	the
Command	prompt	area.

The	AutoCAD	user	cannot	typically	respond	to	a	user-input	function	by	entering
an	AutoLISP	expression.	If	your	AutoLISP	routine	makes	use	of	the	initget
function,	arbitrary	keyboard	input	is	permitted	to	certain	functions	that	can	allow
an	AutoLISP	statement	as	response	to	a	command	implemented	in	AutoLISP.
This	is	discussed	in	Arbitrary	Keyboard	Input.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	

Control	of	User-Input	Function	Conditions
	
	
	

The	initget	function	provides	a	level	of	control	over	the	next	user-input
function	call.	The	initget	function	establishes	various	options	for	use	by	the
next	entsel,	nentsel,	nentselp,	or	getxxx	function	(except
getstring,	getvar,	and	getenv).	This	function	accepts	two	arguments,
bits	and	string,	both	of	which	are	optional.	The	bits	argument	specifies
one	or	more	control	bits	that	enable	or	disable	certain	input	values	to	the	next
user-input	function	call.	The	string	argument	can	specify	keywords	that	the
next	user-input	function	call	will	recognize.

The	control	bits	and	keywords	established	by	initget	apply	only	to	the	next
user-input	function	call.	They	are	discarded	after	that	call.	The	application
doesn't	have	to	call	initget	a	second	time	to	clear	special	conditions.

Input	Options	for	User-Input	Functions
Keyword	Options
Arbitrary	Keyboard	Input
Input	Validation

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	Control	of	User-Input
Function	Conditions	>	

Input	Options	for	User-Input	Functions
	
	
	

The	value	of	the	bits	argument	restricts	the	types	of	user	input	to	the	next	user-
input	function	call.	This	reduces	error-checking.	These	are	some	of	the	available
bit	values:	1	disallows	null	input,	2	disallows	input	of	0	(zero),	and	4	disallows
negative	input.	If	these	values	are	used	with	a	following	call	to	the	getint
function,	the	user	is	forced	to	enter	an	integer	value	greater	than	0.

To	set	more	than	one	condition	at	a	time,	add	the	values	together	(in	any
combination)	to	create	a	bits	value	between	0	and	255.	If	bits	is	not	included
or	is	set	to	0,	none	of	the	control	conditions	applies	to	the	next	user-input
function	call.	(For	a	complete	listing	of	initget	bit	settings,	see	initget	in
the	AutoLISP	Reference.)

(initget	(+	1	2	4))

(getint	"\nHow	old	are	you?	")

This	sequence	requests	the	user's	age.	AutoCAD	displays	an	error	message	and
repeats	the	prompt	if	the	user	attempts	to	enter	a	negative	or	zero	value,	or	if	the
user	only	presses	ENTER,	or	enters	a	string	(the	getint	function	rejects
attempts	to	enter	a	value	that	is	not	an	integer).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	Control	of	User-Input
Function	Conditions	>	

Keyword	Options
	
	
	

The	optional	string	argument	specifies	a	list	of	keywords	recognized	by	the	next
user-input	function	call.

The	initget	function	allows	keyword	abbreviations	to	be	recognized	in
addition	to	the	full	keywords.	The	user-input	function	returns	a	predefined
keyword	if	the	input	from	the	user	matches	the	spelling	of	a	keyword	(not	case
sensitive),	or	if	the	user	enters	the	abbreviation	of	a	keyword.	There	are	two
methods	for	abbreviating	keywords;	both	are	discussed	in	the	initget	topic	in
the	AutoLISP	Reference.

The	following	user-defined	function	shows	a	call	to	getreal,	preceded	by	a
call	to	initget,	that	specifies	two	keywords.	The	application	checks	for	these
keywords	and	sets	the	input	value	accordingly.

(defun	C:GETNUM	(/	num)

		(initget	1	"Pi	Two-pi")	

		(setq	num	(getreal	"Pi/Two-pi/<number>:	"))	

		(cond	

				((eq	num	"Pi")	pi)	

				((eq	num	"Two-pi")	(*	2.0	pi))	

				(T	num)	

)

)

This	initget	call	inhibits	null	input	(bits	=	1)	and	establishes	a	list	of	two
keywords,	"Pi"	and	"Two-pi".	The	getreal	function	is	then	used	to	obtain
a	real	number,	issuing	the	following	prompt:

Pi/Two-pi/<number>:

The	result	is	placed	in	local	symbol	num.	If	the	user	enters	a	number,	that
number	is	returned	by	C:GETNUM.	However,	if	the	user	enters	the	keyword	Pi

(or	simply	P),	getreal	returns	the	keyword	Pi.	The	cond	function	detects
this	and	returns	the	value	of	p	in	this	case.	The	Two-pi	keyword	is	handled
similarly.

Note You	can	also	use	initget	to	enable	entsel,	nentsel,	and	nentselp
to	accept	keyword	input.	For	more	information	on	these	functions,	see	Object
Handling	and	the	entsel,	nentsel	and	nentselp	function	definitions	in
the	AutoLISP	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	Control	of	User-Input
Function	Conditions	>	

Arbitrary	Keyboard	Input
	
	
	

The	initget	function	also	allows	arbitrary	keyboard	input	to	most	getxxx
functions.	This	input	is	passed	back	to	the	application	as	a	string.	An	application
using	this	facility	can	be	written	to	permit	the	user	to	call	an	AutoLISP	function
at	a	getxxx	function	prompt.

These	functions	show	a	method	for	allowing	AutoLISP	response	to	a	getxxx
function	call:

(defun	C:ARBENTRY	(/	pt1)	

		(initget	128)																					;	Sets	arbitrary	entry	bit	

		(setq	pt1	(getpoint	"\nPoint:	"))	;	Gets	value	from	user.	

		(if	(=	'STR	(type	pt1))											;	If	it's	a	string,	convert	it

				(setq	pt1	(eval	(read	pt1)))				;	to	a	symbol,	try	evaluating

																																				;	it	as	a	function;	otherwise,

				pt1																													;	just	return	the	value.	

)

)

(defun	REF	()

		(setvar	"LASTPOINT"	(getpoint	"\nReference	point:	"))

		(getpoint	"\nNext	point:	"	(getvar	"LASTPOINT"))

)

If	both	the	C:ARBENTRY	and	REF	functions	are	loaded	into	the	drawing,	the
following	command	sequence	is	acceptable.

Command: arbentry

Point: (ref)

Reference	point: Select	a	point

Next	point: @1,1,0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Getting	User	Input	>	Control	of	User-Input
Function	Conditions	>	

Input	Validation
	
	
	

You	should	protect	your	code	from	unintentional	user	errors.	The	AutoLISP	user
input	getxxx	functions	do	much	of	this	for	you.	However,	it's	dangerous	to
forget	to	check	for	adherence	to	other	program	requirements	that	the	getxxx
functions	do	not	check	for.	If	you	neglect	to	check	input	validity,	the	program's
integrity	can	be	seriously	affected.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Geometric	Utilities
	
	
	

A	group	of	functions	allows	applications	to	obtain	pure	geometric	information
and	geometric	data	from	the	drawing.	See	Geometric	Functions	in	AutoLISP
Function	Synopsis	for	a	complete	list	of	geometric	utility	functions.

The	angle	function	finds	the	angle	in	radians	between	a	line	and	the	X	axis	(of
the	current	UCS),	distance	finds	the	distance	between	two	points,	and
polar	finds	a	point	by	means	of	polar	coordinates	(relative	to	an	initial	point).
The	inters	function	finds	the	intersection	of	two	lines.	The	osnap	and
textbox	functions	are	described	separately.

The	following	code	fragment	shows	calls	to	the	geometric	utility	functions:

(setq	pt1	'(3.0	6.0	0.0))

(setq	pt2	'(5.0	2.0	0.0))

(setq	base	'(1.0	7.0	0.0))

(setq	rads		(angle	pt1	pt2))				;	Angle	in	XY	plane	of	current	UCS

																																;	(value	is	returned	in	radians)	

(setq	len		(distance	pt1	pt2))		;	Distance	in	3D	space	

(setq	endpt		(polar	base	rads	len))

The	call	to	polar	sets	endpt	to	a	point	that	is	the	same	distance	from	(1,7)	as
pt1	is	from	pt2,	and	at	the	same	angle	from	the	X	axis	as	the	angle	between
pt1	and	pt2.

Object	Snap
Text	Extents

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Geometric	Utilities	>	

Object	Snap
	
	
	

The	osnap	function	can	find	a	point	by	using	one	of	the	AutoCAD	Object	Snap
modes.	The	Snap	modes	are	specified	in	a	string	argument.

The	following	call	to	osnap	looks	for	the	midpoint	of	an	object	near	pt1:

(setq	pt2	(osnap	pt1	"midp"))

The	following	call	looks	for	the	midpoint,	the	endpoint,	or	the	center	of	an	object
nearest	pt1:

(setq	pt2	(osnap	pt1	"midp,endp,center"))

In	both	examples,	pt2	is	set	to	the	snap	point	if	one	is	found	that	fulfills	the
osnap	requirements.	If	more	than	one	snap	point	fulfills	the	requirements,	the
point	is	selected	based	on	the	setting	of	the	SORTENTS	system	variable.
Otherwise,	pt2	is	set	to	nil.

Note The	APERTURE	system	variable	determines	the	allowable	proximity	of	a
selected	point	to	an	object	when	you	use	Object	Snap.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Geometric	Utilities	>	

Text	Extents
	
	
	

The	textbox	function	returns	the	diagonal	coordinates	of	a	box	that	encloses	a
text	object.	It	takes	an	entity	definition	list	of	the	type	returned	by	entget	(an
association	list	of	group	codes	and	values)	as	its	single	argument.	This	list	can
contain	a	complete	association	list	description	of	the	text	object	or	just	a	list
describing	the	text	string.

The	points	returned	by	textbox	describe	the	bounding	box	(an	imaginary	box
that	encloses	the	text	object)	of	the	text	object,	as	if	its	insertion	point	were
located	at	(0,0,0)	and	its	rotation	angle	were	0.	The	first	list	returned	is	the	point
(0.0	0.0	0.0),	unless	the	text	object	is	oblique	or	vertical	or	it	contains	letters
with	descenders	(such	as	g	and	p).	The	value	of	the	first	point	list	specifies	the
offset	distance	from	the	text	insertion	point	to	the	lower-left	corner	of	the
smallest	rectangle	enclosing	the	text.	The	second	point	list	specifies	the	upper-
right	corner	of	that	box.	The	returned	point	lists	always	describe	the	bottom-left
and	upper-right	corners	of	this	bounding	box,	regardless	of	the	orientation	of	the
text	being	measured.

The	following	example	shows	the	minimum	allowable	entity	definition	list	that
textbox	accepts.	Because	no	additional	information	is	provided,	textbox
uses	the	current	defaults	for	text	style	and	height.

Command: (textbox	'((1	.	"Hello	world")))

((0.0	0.0	0.0)	(2.80952	1.0	0.0))

The	actual	values	returned	by	textbox	will	vary	depending	on	the	current	text
style.

The	following	example	demonstrates	one	method	of	providing	the	textbox
function	with	an	entity	definition	list.

Command: dtext

Justify/Style/<Start	point>: 1,1

Height	<1.0000>: ENTER

Rotation	angle	<0>: ENTER

Text: test

Text: ENTER

Command: (setq	e	(entget	(entlast)))

((-1	.	<Entity	name:	1ba3568>)	(0	.	"TEXT")	(330	.	<Entity	name:	1ba34f8>)	(5	.

"2D")	(100	.	"AcDbEntity")	(67	.	0)	(410	.	"Model")	(8	.	"0")	(100	.

"AcDbText")	(10	1.0	1.0	0.0)	(40	.	1.0)	(1	.	"test")	(50	.	0.0)	(41	.	1.0)	(51

.	0.0)	(7	.	"Standard")	(71	.	0)	(72	.	0)	(11	0.0	0.0	0.0)	(210	0.0	0.0	1.0)

(100	.	"AcDbText")	(73	.	0))

Command: (textbox	e)

((0.0	0.0	0.0)	(0.8	0.2	0.0))

The	following	figure	shows	the	results	of	applying	textbox	to	a	text	object
with	a	height	of	1.0.	The	figure	also	shows	the	baseline	and	insertion	point	of	the
text.

If	the	text	is	vertical	or	rotated,	pt1	is	still	the	bottom-left	corner	and	pt2	is	the
upper-right	corner;	the	bottom-left	point	may	have	negative	offsets	if	necessary.

The	following	figure	shows	the	point	values	(pt1	and	pt2)	that	textbox
returns	for	samples	of	vertical	and	aligned	text.	In	both	samples,	the	height	of	the
letters	is	1.0.	(For	the	aligned	text,	the	height	is	adjusted	to	fit	the	alignment
points.)

When	using	vertical	text	styles,	the	points	are	still	returned	in	left-to-right,
bottom-to-top	order	as	they	are	for	horizontal	styles,	so	that	the	first	point	list

will	contain	negative	offsets	from	the	text	insertion	point.

Regardless	of	the	text	orientation	or	style,	the	points	returned	by	textbox	are
such	that	the	text	insertion	point	(group	code	10)	directly	translates	to	the	origin
point	of	the	object	coordinate	system	(OCS)	for	the	associated	text	object.	This
point	can	be	referenced	when	translating	the	coordinates	returned	from
textbox	into	points	that	define	the	actual	extent	of	the	text.	The	two	sample
routines	that	follow	use	textbox	to	place	a	box	around	selected	text	regardless
of	its	orientation.

The	first	routine	uses	the	textbox	function	to	draw	a	box	around	a	selected
text	object:

(defun	C:TBOX	(/	textent	tb	ll	ur	ul	lr)

		(setq	textent	(car	(entsel	"\nSelect	text:	")))

		(command	"ucs"	"Object"	textent)

		(setq	tb	(textbox	(list		(cons	-1	textent)))

								ll	(car	tb)

								ur		(cadr	tb)

								ul		(list	(car	ll)	(cadr	ur))

								lr	(list	(car	ur)	(cadr	ll))

)

		(command	"pline"	ll	lr	ur	ul	"Close")

		(command	"ucs"	"p")

		(princ)

)

The	second	routine,	which	follows,	accomplishes	the	same	task	as	the	first
routine	by	performing	the	geometric	calculations	with	the	sin	and	cos
AutoLISP	functions.	The	result	is	correct	only	if	the	current	UCS	is	parallel	to
the	plane	of	the	text	object.

(defun	C:TBOX2	(/	textent	ang	sinrot	cosrot	

																			t1	t2	p0	p1	p2	p3	p4)

		(setq	textent	(entget	(car	(entsel	"\nSelect	text:	"))))

		(setq	p0	(cdr	(assoc	10	textent))

								ang	(cdr	(assoc	50	textent))

								sinrot	(sin	ang)

								cosrot	(cos	ang)

								t1	(car	(textbox	textent))

								t2	(cadr	(textbox	textent))

								p1	(list	

										(+	(car	p0)

												(-	(*	(car	t1)	cosrot)(*	(cadr	t1)	sinrot))

)

										(+	(cadr	p0)

												(+	(*	(car	t1)	sinrot)(*	(cadr	t1)	cosrot))

)

)

						p2	(list	

								(+	(car	p0)

										(-	(*	(car	t2)	cosrot)(*	(cadr	t1)	sinrot))

)

								(+	(cadr	p0)

										(+	(*	(car	t2)	sinrot)(*	(cadr	t1)	cosrot))

)

)

						p3	(list	

								(+	(car	p0)

										(-	(*	(car	t2)	cosrot)(*	(cadr	t2)	sinrot))

)

								(+	(cadr	p0)

										(+	(*	(car	t2)	sinrot)(*	(cadr	t2)	cosrot))

)

)

						p4	(list	

								(+	(car	p0)

										(-	(*	(car	t1)	cosrot)(*	(cadr	t2)	sinrot))

)

								(+	(cadr	p0)

										(+	(*	(car	t1)	sinrot)(*	(cadr	t2)	cosrot))

)

)

)

		(command	"pline"	p1	p2	p3	p4	"c")

		(princ)

)	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Conversions
	
	
	

The	functions	described	in	this	section	are	utilities	for	converting	data	types	and
units.	See	in	AutoLISP	Function	Synopsis	for	a	complete	list	of	conversion
functions.

String	Conversions
Angular	Conversion
ASCII	Code	Conversion
Unit	Conversion
Coordinate	System	Transformations

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	

String	Conversions
	
	
	

The	functions	rtos	(real	to	string)	and	angtos	(angle	to	string)	convert
numeric	values	used	in	AutoCAD	to	string	values	that	can	be	used	in	output	or
as	textual	data.	The	rtos	function	converts	a	real	value,	and	angtos	converts
an	angle.	The	format	of	the	result	string	is	controlled	by	the	value	of	AutoCAD
system	variables:	the	units	and	precision	are	specified	by	LUNITS	and	LUPREC
for	real	(linear)	values	and	by	AUNITS	and	AUPREC	for	angular	values.	For
both	functions,	the	dimensioning	variable	DIMZIN	controls	how	leading	and
trailing	zeros	are	written	to	the	result	string.

The	following	code	fragments	show	calls	to	rtos	and	the	values	returned
(assuming	the	DIMZIN	system	variable	equals	0).	Precision	(the	third	argument
to	rtos)	is	set	to	4	places	in	the	first	call	and	2	places	in	the	others.

(setq	x	17.5)

(setq	str	"\nValue	formatted	as	")

(setq	fmtval		(rtos	x	1	4))				;	Mode	1	=	scientific

(princ	(strcat	str	fmtval))				;	displays  Value	formatted	as	1.7500E+01
(setq	fmtval	(rtos	x	2	2))					;	Mode	2	=	decimal

(princ	(strcat	str	fmtval))				;	displays  Value	formatted	as	17.50
(setq	fmtval	(rtos	x	3	2))					;	Mode	3	=	engineering

(princ	(strcat	str	fmtval))				;	displays  Value	formatted	as	1'-5.50"
(setq	fmtval	(rtos	x	4	2))					;	Mode	4	=	architectural

(princ	(strcat	str	fmtval))				;	displays  Value	formatted	as	1'-5	1/2"
(setq	fmtval	(rtos	x	5	2))					;	Mode	5	=	fractional

(princ	(strcat	str	fmtval))				;	displays  Value	formatted	as	17	1/2

When	the	UNOTHODE	system	variable	is	set	to	1,	specifying	that	units	are
displayed	as	entered,	the	string	returned	by	rtos	differs	for	engineering	(mode
equals	3),	architectural	(mode	equals	4),	and	fractional	(mode	equals	5)	units.
For	example,	the	first	two	lines	of	the	preceding	sample	output	would	be	the
same,	but	the	last	three	lines	would	appear	as	follows:

Value	formatted	as	1'5.50"

Value	formatted	as	1'5-1/2"

Value	formatted	as	17-1/2''

Because	the	angtos	function	takes	the	ANGBASE	system	variable	into
account,	the	following	code	always	returns	"0":

(angtos	(getvar	"angbase"))

There	is	no	AutoLISP	function	that	returns	a	string	version	(in	the	current
mode/precision)	of	either	the	amount	of	rotation	of	ANGBASE	from	true	zero
(East)	or	an	arbitrary	angle	in	radians.

To	find	the	amount	of	rotation	of	ANGBASE	from	AutoCAD	zero	(East)	or	the
size	of	an	arbitrary	angle,	you	can	do	one	of	the	following:

Add	the	desired	angle	to	the	current	ANGBASE,	and	then	check	to	see	if
the	absolute	value	of	the	result	is	greater	than	2pi;	(2	*	pi).	If	so,	subtract
2pi;;	if	the	result	is	negative,	add	2pi;,	then	use	the	angtos	function	on
the	result.

Store	the	value	of	ANGBASE	in	a	temporary	variable,	set	ANGBASE	to
0,	evaluate	the	angtos	function,	then	set	ANGBASE	to	its	original
value.

Subtracting	the	result	of	(atof	(angtos	0))	from	360	degrees	(2pi;
radians	or	400	grads)	also	yields	the	rotation	of	ANGBASE	from	0.

The	distof	(distance	to	floating	point)	function	is	the	complement	of	rtos.
Therefore,	the	following	calls,	which	use	the	strings	generated	in	the	previous
examples,	all	return	the	same	value:	17.5.	(Note	the	use	of	the	backslash	(\)	with
modes	3	and	4.)

(distof	"1.7500E+01"	1)			;	Mode	1	=	scientific	

(distof	"17.50"	2)								;	Mode	2	=	decimal	

(distof	"1'-5.50\""	3)				;	Mode	3	=	engineering	

(distof	"1'-5	1/2\""	4)			;	Mode	4	=	architectural	

(distof	"17	1/2"	5)							;	Mode	5	=	fractional

The	following	code	fragments	show	similar	calls	to	angtos	and	the	values
returned	(still	assuming	that	DIMZIN	equals	0).	Precision	(the	third	argument	to
angtos)	is	set	to	0	places	in	the	first	call,	4	places	in	the	next	three	calls,	and	2
places	in	the	last.

(setq	ang	3.14159	str2	"\nAngle	formatted	as	")	

(setq	fmtval	(angtos	ang	0	0))			;	Mode	0	=	degrees

(princ	(strcat	str2	fmtval))					;	displays Angle	formatted	as	180
(setq	fmtval	(angtos	ang	1	4))			;	Mode	1	=	deg/min/sec

(princ	(strcat	str2	fmtval))					;	displays Angle	formatted	as	180d0'0"
(setq	fmtval	(angtos	ang	2	4))			;	Mode	2	=	grads

(princ	(strcat	str2	fmtval))					;	displays Angle	formatted	as	200.0000g
(setq	fmtval	(angtos	ang	3	4))			;	Mode	3	=	radians

(princ	(strcat	str2	fmtval))					;	displays Angle	formatted	as	3.1416r
(setq	fmtval	(angtos	ang	4	2))			;	Mode	4	=	surveyor's

(princ	(strcat	str2	fmtval))					;	displays Angle	formatted	as	W

The	UNITHODE	system	variable	also	affects	strings	returned	by	angtos	when
it	returns	a	string	in	surveyor's	units	(mode	equals	4).	If	UNITMODE	equals	0,
the	string	returned	can	include	spaces	(for	example,	"N	45d	E");	if
UNITMODE	equals	1,	the	string	contains	no	spaces	(for	example,	"N45dE").

The	angtof	function	complements	angtos,	so	all	of	the	following	calls	return
the	same	value:	3.14159.

(angtof	"180"	0)										;	Mode	0	=	degrees	

(angtof	"180d0'0\""	1)				;	Mode	1	=	deg/min/sec	

(angtof	"200.0000g"	2)				;	Mode	2	=	grads	

(angtof	"3.14159r"	3)					;	Mode	3	=	radians	

(angtof	"W"	4)												;	Mode	4	=	surveyor's	

When	you	have	a	string	specifying	a	distance	in	feet	and	inches,	or	an	angle	in
degrees,	minutes,	and	seconds,	you	must	precede	the	quotation	mark	with	a
backslash	(\")	so	it	doesn't	look	like	the	end	of	the	string.	The	preceding
examples	of	angtof	and	distof	demonstrate	this	action.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	

Angular	Conversion
	
	
	

If	your	application	needs	to	convert	angular	values	from	radians	to	degrees,	you
can	use	the	angtos	function,	which	returns	a	string,	and	then	convert	that	string
into	a	floating	point	value	with	atof.

(setq	pt1	'(1	1)	pt2	'(1	2))

(setq	rad	(angle	pt1	pt2))

(setq	deg	(atof	(angtos	rad	0	2)))									returns				90.0

However,	a	more	efficient	method	might	be	to	include	a	Radian->Degrees
function	in	your	application.	The	following	code	shows	this:

;	Convert	value	in	radians	to	degrees

(defun	Radian->Degrees	(nbrOfRadians)

		(*	180.0	(/	nbrOfRadians	pi))

)

After	this	function	is	defined,	you	can	use	the	Radian->Degrees	function
throughout	your	application,	as	in

(setq	degrees	(Radian->Degrees	rad))						returns				90.0

You	may	also	need	to	convert	from	degrees	to	radians.	The	following	code
shows	this:

;	Convert	value	in	degrees	to	radians

(defun	Degrees->Radians	(numberOfDegrees)

		(*	pi	(/	numberOfDegrees	180.0))

)	;_	end	of	defun

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	

ASCII	Code	Conversion
	
	
	

AutoLISP	provides	the	ascii	and	chr	functions	that	handle	decimal	ASCII
codes.	The	ascii	function	returns	the	ASCII	decimal	value	associated	with	a
string,	and	chr	returns	the	character	associated	with	an	ASCII	decimal	value.

To	see	your	system's	characters	with	their	codes	in	decimal,	octal,	and
hexadecimal	form,	save	the	following	AutoLISP	code	to	a	file	named	ascii.lsp.
Then	load	the	file	and	enter	the	new	ASCII	command	at	the	AutoCAD
Command	prompt.	This	command	prints	the	ASCII	codes	to	the	screen	and	to	a
file	called	ascii.txt.	The	C:ASCII	function	makes	use	of	the	BASE	function.
You	may	find	this	conversion	utility	useful	in	other	applications.

;	BASE	converts	from	a	decimal	integer	to	a	string	in	another	base.

(defun	BASE	(bas	int	/	ret	yyy	zot)

		(defun	zot	(i1	i2	/	xxx)

				(if	(>	(setq	xxx	(rem	i2	i1))	9)

						(chr	(+	55	xxx))

						(itoa	xxx)

)						

)

		(setq	ret	(zot	bas	int)	yyy	(/	int	bas))

		(while	(>=	yyy	bas)

				(setq	ret	(strcat	(zot	bas	yyy)	ret))

				(setq	yyy	(/	yyy	bas))

)

		(strcat	(zot	bas	yyy)	ret)

)

(defun	C:ASCII	(/	chk	out	ct	code	dec	oct	hex)

		(initget	"Yes")

		(setq	chk	(getkword	"\nWriting	to	ASCII.TXT,	continue?	<Y>:	"))

		(if	(or	(=	chk	"Yes")(=	chk	nil))				(progn

						(setq	out	(open	"ascii.txt"	"w")	chk	1	code	0	ct	0)

						(princ	"\n	\n	CHAR			DEC		OCT		HEX	\n")

						(princ	"\n	\n	CHAR			DEC		OCT		HEX	\n"	out)

						(while	chk

								(setq	dec	(strcat	"		"	(itoa	code))

										oct	(base	8	code)	hex	(base	16	code))

								(setq	dec	(substr	dec	(-	(strlen	dec)	2)	3))

								(if	(<	(strlen	oct)	3)(setq	oct	(strcat	"0"	oct)))

								(princ	(strcat	"\n	"	(chr	code)	"						"	dec	"	"

										oct	"		"	hex))

								(princ	(strcat	"\n	"	(chr	code)	"						"	dec	"	"

										oct	"		"	hex)	out)

								(cond

										((=	code	255)(setq	chk	nil))

										((=	ct	20)

												(setq	xxx	(getstring	

															"\n	\nPress	'X'	to	eXit	or	any	key	to	continue:	"))

												(if	(=	(strcase	xxx)	"X")

														(setq	chk	nil)

														(progn

																(setq	ct	0)

																(princ	"\n	\n	CHAR			DEC		OCT		HEX	\n")

)

)

)

)

								(setq	ct	(1+	ct)	code	(1+	code))

)

						(close	out)

						(setq	out	nil)

)

)

		(princ)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	

Unit	Conversion
	
	
	

The	acad.unt	file	defines	various	conversions	between	real-world	units	such	as
miles	to	kilometers,	Fahrenheit	to	Celsius,	and	so	on.	The	function	cvunit
takes	a	value	expressed	in	one	system	of	units	and	returns	the	equivalent	value	in
another	system.	The	two	systems	of	units	are	specified	by	strings	containing
expressions	of	units	defined	in	acad.unt.

The	cvunit	function	does	not	convert	incompatible	dimensions.	For	example,
it	does	not	convert	inches	into	grams.

The	first	time	cvunit	converts	to	or	from	a	unit	during	a	drawing	editor
session,	it	must	look	up	the	string	that	specifies	the	unit	in	acad.unt.	If	your
application	has	many	values	to	convert	from	one	system	of	units	to	another,	it	is
more	efficient	to	convert	the	value	1.0	by	a	single	call	to	cvunit	and	then	use
the	returned	value	as	a	scale	factor	in	subsequent	conversions.	This	works	for	all
units	defined	in	acad.unt,	except	temperature	scales,	which	involve	an	offset	as
well	as	a	scale	factor.

Converting	from	Inches	to	Meters
The	Unit	Definition	File

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	Unit	Conversion	>	

Converting	from	Inches	to	Meters
	
	
	

If	the	current	drawing	units	are	engineering	or	architectural	(feet	and	inches),	the
following	routine	converts	a	user-specified	distance	of	inches	into	meters:

(defun	C:I2M	(/	eng_len	metric_len	eng	metric)

		(princ	"\nConverting	inches	to	meters.	")

		(setq	eng_len	

				(getdist	"\nEnter	a	distance	in	inches:	"))

		(setq	metric_len		(cvunit	eng_len	"inches"	"meters"))

		(setq	eng	(rtos	eng_len	2	4)	

								metric	(rtos	metric_len	2	4))

		(princ	

				(strcat	"\n\t"	eng	"	inches	=	"	metric	"	meters."))

		(princ)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	Unit	Conversion	>	

The	Unit	Definition	File
	
	
	

With	the	AutoCAD	unit	definition	file	acad.unt,	you	can	define	factors	to
convert	data	in	one	set	of	units	to	another	set	of	units.	The	definitions	in
acad.unt	are	in	ASCII	format	and	are	used	by	the	unit-conversion	function
cvunit.

You	can	make	new	units	available	by	using	a	text	editor	to	add	their	definitions
to	acad.unt.	A	definition	consists	of	two	lines	in	the	file—the	unit	name	and	the
unit	definition.	The	first	line	must	have	an	asterisk	(*)	in	the	first	column,
followed	by	the	name	of	the	unit.	A	unit	name	can	have	several	abbreviations	or
alternate	spellings,	separated	by	commas.	If	a	unit	name	has	singular	and	plural
forms,	you	can	specify	these	using	the	following	format:

*[[common]	[([singular.]	plural)]]...

You	can	specify	multiple	expressions	(singular	and	plural).	They	don't	have	to	be
located	at	the	end	of	the	word,	and	a	plural	form	isn't	required.	The	following	are
examples	of	valid	unit	name	definitions:

*inch(es)

*milleni(um.a)

*f(oot.eet)	or	(foot.feet)

The	line	following	the	*unit	name	line	defines	the	unit	as	either	fundamental	or
derived.

Fundamental	Units

A	fundamental	unit	is	an	expression	in	constants.	If	the	line	following	the	*unit
name	line	begins	with	something	other	than	an	equal	sign	(=),	it	defines
fundamental	units.	Fundamental	units	consist	of	five	integers	and	two	real
numbers	in	the	following	form:

c,	e,	h,	k,	m,	r1,	r2

The	five	integers	correspond	to	the	exponents	of	these	five	constants:

c	Velocity	of	light	in	a	vacuum

e	Electron	charge

h	Planck's	constant

k	Boltzman's	constant

m	Electron	rest	mass

As	a	group,	these	exponents	define	the	dimensionality	of	the	unit:	length,	mass,
time,	volume,	and	so	on.

The	first	real	number	(r1)	is	a	multiplier,	and	the	second	(r2)	is	an	additive	offset
(used	only	for	temperature	conversions).	The	fundamental	unit	definition	allows
for	different	spellings	of	the	unit	(for	example,	meter	and	metre);	the	case	of	the
unit	is	ignored.	An	example	of	a	fundamental	unit	definition	is	as	follows:

*meter(s),metre(s),m

-1,0,1,0,-1,4.1214856408e11,0

In	this	example,	the	constants	that	make	one	meter	are	as	follows:

Derived	Units

A	derived	unit	is	defined	in	terms	of	other	units.	If	the	line	following	the	*unit
name	line	begins	with	an	equal	sign	(=),	it	defines	derived	units.	Valid	operators
in	these	definitions	are	*	(multiplication),	/	(division),	+	(addition),	-
(subtraction),	and	^	(exponentiation).	You	can	specify	a	predefined	unit	by
naming	it,	and	you	can	use	abbreviations	(if	provided).	The	items	in	a	formula
are	multiplied	together	unless	some	other	arithmetic	operator	is	specified.	For
example,	the	units	database	defines	the	dimensionless	multiple	and	submultiple
names,	so	you	can	specify	a	unit	such	as	micro-inches	by	entering	micro
inch.	The	following	are	examples	of	derived	unit	definitions.

;	Units	of	area

*township(s)

=93239571.456	meter^2

The	definition	of	a	township	is	given	as	93,239,571.456	square	meters.

;	Electromagnetic	units

*volt(s),v

=watt/ampere

In	this	example,	a	volt	is	defined	as	a	watt	divided	by	an	ampere.	In	the	acad.unt,
both	watts	and	amperes	are	defined	in	terms	of	fundamental	units.

User	Comments

To	include	comments,	begin	the	line	with	a	semicolon.	The	comment	continues
to	the	end	of	the	line.

;	This	entire	line	is	a	comment.

List	the	acad.unt	file	itself	for	more	information	and	examples.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	

Coordinate	System	Transformations
	
	
	

The	trans	function	translates	a	point	or	a	displacement	from	one	coordinate
system	into	another.	It	takes	a	point	argument,	pt,	that	can	be	interpreted	as
either	a	3D	point	or	a	3D	displacement	vector,	distinguished	by	a	displacement
argument	called	disp.	The	disp	argument	must	be	nonzero	if	pt	is	to	be
treated	as	a	displacement	vector;	otherwise,	pt	is	treated	as	a	point.	A	from
argument	specifies	the	coordinate	system	in	which	pt	is	expressed,	and	a	to
argument	specifies	the	desired	coordinate	system.	The	following	is	the	syntax	for
the	trans	function:

(trans	pt	from	to	[disp])	

The	following	AutoCAD	coordinate	systems	can	be	specified	by	the	from	and
to	arguments:

WCS

World	coordinate	system—the	reference	coordinate	system.	All	other
coordinate	systems	are	defined	relative	to	the	WCS,	which	never	changes.
Values	measured	relative	to	the	WCS	are	stable	across	changes	to	other
coordinate	systems.

UCS

User	coordinate	system—the	working	coordinate	system.	The	user	specifies	a
UCS	to	make	drawing	tasks	easier.	All	points	passed	to	AutoCAD
commands,	including	those	returned	from	AutoLISP	routines	and	external
functions,	are	points	in	the	current	UCS	(unless	the	user	precedes	them	with	a
*	at	the	Command	prompt).	If	you	want	your	application	to	send	coordinates
in	the	WCS,	OCS,	or	DCS	to	AutoCAD	commands,	you	must	first	convert
them	to	the	UCS	by	calling	the	trans	function.

OCS

Object	coordinate	system—point	values	returned	by	entget	are	expressed
in	this	coordinate	system,	relative	to	the	object	itself.	These	points	are	usually
converted	into	the	WCS,	current	UCS,	or	current	DCS,	according	to	the
intended	use	of	the	object.	Conversely,	points	must	be	translated	into	an	OCS
before	they	are	written	to	the	database	by	means	of	the	entmod	or
entmake	functions.	This	is	also	known	as	the	entity	coordinate	system.

DCS

Display	coordinate	system—the	coordinate	system	into	which	objects	are
transformed	before	they	are	displayed.	The	origin	of	the	DCS	is	the	point
stored	in	the	AutoCAD	system	variable	TARGET,	and	its	Z	axis	is	the
viewing	direction.	In	other	words,	a	viewport	is	always	a	plan	view	of	its
DCS.	These	coordinates	can	be	used	to	determine	where	something	will	be
displayed	to	the	AutoCAD	user.
When	the	from	and	to	integer	codes	are	2	and	3,	in	either	order,	2	indicates
the	DCS	for	the	current	model	space	viewport	and	3	indicates	the	DCS	for
paper	space	(PSDCS).	When	the	2	code	is	used	with	an	integer	code	other
than	3	(or	another	means	of	specifying	the	coordinate	system),	it	is	assumed
to	indicate	the	DCS	of	the	current	space,	whether	paper	space	or	model
space.	The	other	argument	is	also	assumed	to	indicate	a	coordinate	system	in
the	current	space.

PSDCS

Paper	space	DCS—this	coordinate	system	can	be	transformed	only	to	or	from
the	DCS	of	the	currently	active	model	space	viewport.	This	is	essentially	a
2D	transformation,	where	the	X	and	Y	coordinates	are	always	scaled	and	are
offset	if	the	disp	argument	is	0.	The	Z	coordinate	is	scaled	but	is	never
translated.	Therefore,	it	can	be	used	to	find	the	scale	factor	between	the	two
coordinate	systems.	The	PSDCS	(integer	code	2)	can	be	transformed	only
into	the	current	model	space	viewport.	If	the	from	argument	equals	3,	the	to
argument	must	equal	2,	and	vice	versa.

Both	the	from	and	to	arguments	can	specify	a	coordinate	system	in	any	of	the
following	ways:

As	an	integer	code	that	specifies	the	WCS,	current	UCS,	or	current	DCS
(of	either	the	current	viewport	or	paper	space).

As	an	entity	name	returned	by	one	of	the	entity	name	or	selection	set

functions	described	in	Using	AutoLISP	to	Manipulate	AutoCAD	Objects
This	specifies	the	OCS	of	the	named	object.	For	planar	objects,	the	OCS
can	differ	from	the	WCS,	as	described	in	the	AutoCAD	User's	Guide.	If
the	OCS	does	not	differ,	conversion	between	OCS	and	WCS	is	an
identity	operation.

As	a	3D	extrusion	vector.	Extrusion	vectors	are	always	represented	in
World	coordinates;	an	extrusion	vector	of	(0,0,1)	specifies	the	WCS
itself.

The	following	table	lists	the	valid	integer	codes	that	can	be	used	as	the	to	and
from	arguments:

Coordinate	system	codes

Code Coordinate	system

0 World	(WCS)

1 User	(current	UCS)

2 Display;	DCS	of	current
viewport	when	used	with	code
0	or	1,	DCS	of	current	model
space	viewport	when	used	with
code	3

3 Paper	space	DCS,	PSDCS
(used	only	with	code	2)

The	following	example	translates	a	point	from	the	WCS	into	the	current	UCS.

(setq	pt	'(1.0	2.0	3.0))

(setq	cs_from	0)														;	WCS	

(setq	cs_to	1)																;	UCS	

(trans	pt	cs_from	cs_to	0)				;	disp

=	0	indicates	that	pt	is	a	point

If	the	current	UCS	is	rotated	90	degrees	counterclockwise	around	the	World	Z

axis,	the	call	to	trans	returns	a	point	(2.0,-1.0,3.0).	However,	if	you	swap	the
to	and	from	values,	the	result	differs	as	shown	in	the	following	code:

(trans	pt	cs_to	cs_from	0)	;	the

result	is (-2.0,1.0,3.0)	

Point	Transformations

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Conversions	>	Coordinate	System
Transformations	>	

Point	Transformations
	
	
	

If	you	are	doing	point	transformations	with	the	trans	function	and	you	need	to
make	that	part	of	a	program	run	faster,	you	can	construct	your	own
transformation	matrix	on	the	AutoLISP	side	by	using	trans	once	to	transform
each	of	the	basis	vectors	(0	0	0),	(1	0	0),	(0	1	0),	and	(0	0	1).	Writing	matrix
multiplication	functions	in	AutoLISP	can	be	difficult,	so	it	may	not	be
worthwhile	unless	your	program	is	doing	a	lot	of	transformations.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

File	Handling
	
	
	

AutoLISP	provides	functions	for	handling	files	and	data	I/O.	See	File-Handling
Functions	in	AutoLISP	Function	Synopsis	for	a	complete	list	of	file-handling
functions.

File	Search
Accessing	Drawing	Properties
Accessing	Help	Files

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	File	Handling	>	

File	Search
	
	
	

An	application	can	use	the	findfile	function	to	search	for	a	particular	file
name.	The	application	can	specify	the	directory	to	search,	or	it	can	use	the
current	AutoCAD	library	path.

In	the	following	code	fragment,	findfile	searches	for	the	requested	file	name
according	to	the	AutoCAD	library	path:

(setq	refname	"refc.dwg")

(setq	fil		(findfile	refname))

(if	fil	

		(setq	refname	fil)

		(princ	(strcat	"\nCould	not	find	file	"	refname	".	"))

)

If	the	call	to	findfile	is	successful,	the	variable	refname	is	set	to	a	fully
qualified	path	name	string,	as	follows:

"/home/work/ref/refc.dwg"

When	specifying	a	path	name,	you	must	precede	the	backslash	(\)with	another
backslash	so	the	path	name	will	be	recognized	by	AutoLISP.	Alternatively,	you
can	use	the	slash	character	(/)	as	a	directory	separator.

The	getfiled	function	displays	a	dialog	box	containing	a	list	of	available	files
of	a	specified	extension	type	in	the	specified	directory.	This	gives	AutoLISP
routines	access	to	the	AutoCAD	Get	File	dialog	box.

A	call	to	getfiled	takes	four	arguments	that	determine	the	appearance	and
functionality	of	the	dialog	box.	The	application	must	specify	the	following	string
values,	each	of	which	can	be	nil:	a	title,	placed	at	the	top	of	the	dialog	box;	a
default	file	name,	displayed	in	the	edit	box	at	the	bottom	of	the	dialog	box;	and
an	extension	type,	which	determines	the	initial	files	provided	for	selection	in	the

list	box.	The	final	argument	is	an	integer	value	that	specifies	how	the	dialog	box
interacts	with	selected	files.

This	simple	routine	uses	getfiled	to	let	you	view	your	directory	structure	and
select	a	file:

(defun	C:DDIR	()

		(setq	dfil	(getfiled	"Directory	Listing"	""	""	2))

		(princ	(strcat	"\nVariable	'dfil'	set	to	selected	file	"	dfil))

		(princ)

)

This	is	a	useful	utility	command.	The	dfil	variable	is	set	to	the	file	you	select,
which	can	then	be	used	by	other	AutoLISP	functions	or	as	a	response	to	a
command	line	prompt	for	a	file	name.	To	use	this	variable	in	response	to	a
command	line	prompt,	enter	!dfil.

Note You	cannot	use	!dfil	in	a	dialog	box.	It	is	valid	only	at	the	command	line.

For	more	information,	see	getfiled	in	the	AutoLISP	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	File	Handling	>	

Accessing	Drawing	Properties
	
	
	

To	access	drawing	properties	such	as	Title,	Subject,	Author,	and	Keywords,	use
the	IAcadSummaryInfo	interface.	This	interface	is	accessible	as	a	property
of	the	Document	object	in	the	AutoCAD	object	model.

In	the	following	example,	the	IAcadSummaryInfo	interface	is	used	to	add
standard	and	custom	properties	to	a	drawing	named	MyDrawing.dwg:

(vl-load-com)

(defun	c:ADD_PROPS	(/	doc	db	si	author	nc	nc2	nc3	value3	value4)

		(setq	doc	(vla-get-ActiveDocument	(vlax-get-Acad-Object)))

		(setq	db	(vla-get-Database	doc))

		(setq	si	(vla-get-SummaryInfo	db))

		(vla-put-author	si	"John")

		(vla-put-comments	si	"New	comments")

		(vla-put-hyperlinkbase	si	"http://AddURL")

		(vla-put-keywords	si	"New	keywords")

		(vla-AddCustomInfo	si	"siPutKey"	"siPutValue")

		(setq	nc	(vla-numcustominfo	si))

		(vla-SetCustomByKey	si	"siPutKey"	"siPutValueByKey")

		(vla-GetCustomByKey	si	"siPutKey"	'value3)

		(if	(/=	"siPutValueByKey"	value3)

				(princ	"***	Error	SetCustomByKey\n")

)

		(vla-SetCustomByIndex	si	(1-	nc)	"siPutCustomByIndexKey"

				"siPutCustomByIndexValue")

		(vla-GetCustomByKey	si	"siPutCustomByIndexKey"	'value4)

		(if	(/=	"siPutCustomByIndexValue"	value4)

				(princ	"***	Error	SetCustomByIndex\n")

)

		(vla-RemoveCustomByIndex	si	(1-	nc))

		(setq	nc2	(vla-numcustominfo	si))

		(if	(/=	nc2	(1-	nc))

				(princ	"***	Error	RemoveCustomByIndex")

)

		(vla-AddCustomInfo	si	"siPutKey"	"siPutValue")

		;	Remove	property

		(vla-RemoveCustomByKey	si	"siPutKey")

		(setq	nc3	(vla-numcustominfo	si))

		(if	(/=	nc2	(1-	nc))

				(princ	"***	Error	RemoveCustomByKey")

)

		(vla-AddCustomInfo	si	"siPutKey"	"siPutValue")

		(vlax-release-object	si)

		(vlax-release-object	db)

		(vlax-release-object	doc)

		(princ)

)

(princ)

Drawing	properties	can	be	read	using	the	same	inteface,	the
IAcadSummaryInfo	interface,	as	in	the	following	example:

(vl-load-com)

(defun	c:GET_PROPS	(/	doc	db	si	author)

		(if	(/=	"MyDrawing.dwg"	(getvar	"DWGNAME"))

				(princ	"Open	MyDrawing.dwg")

				(progn

						(setq	doc	(vla-get-ActiveDocument	(vlax-get-Acad-Object)))

						(setq	db	(vla-get-Database	doc))

						(setq	si	(vla-get-SummaryInfo	db))

						(princ	"\nAuthor:	\n")

						(if	(/=	"John"	(setq	author	(vla-get-author	si)))

								(princ	"***	vla-get-author	error")

								(princ	author)

)

				(princ	"\n")

				(princ	"\nComments:\n	")

				(princ	(vla-get-comments	si))

				(princ	"\n")

				(princ	"\nHyperlink-base:	\n")

				(princ	(vla-get-HyperlinkBase	si))

				(princ	"\n")							

				(princ	"\nNumber	of	custom	properties:	")

				(princ	(setq	nc	(vla-numcustominfo	si)))

				(princ	"\n")							

				(while	(>	nc	0)	

						(princ	"Custom	property	")

						(princ	nc)

						(vla-GetCustomByIndex	si	(-	nc	1)	'key	'value)

						(princ	":	key(")

						(princ	key)

						(princ	")")

						(princ	"	value(")

						(princ	value)

						(princ	")\n")

						(vla-GetCustomByKey	si	key	'value2)

						(if	(/=	value	value2)

								(princ	"\n***	Error	GetCustomByKey	returned	unexpected

									result.\n")

)

						(setq	nc	(1-	nc))

)

				(vlax-release-object	si)

				(vlax-release-object	db)

				(vlax-release-object	doc)

)

)

		(princ)

)

For	more	information	on	the	properties	and	methods	used	to	access	drawing
properties,	see	the	ActiveX	and	VBA	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	File	Handling	>	

Accessing	Help	Files
	
	
	

The	help	function	provides	access	to	both	AutoCAD	Help	files	(.ahp)	and
Windows	Help	files	(.hlp).	Depending	on	the	Help	file's	extension,	the	help
function	calls	the	AutoCAD	or	the	Windows	Help	viewer	with	the	specified	file.
You	can	use	this	function	to	add	a	Help	facility	to	your	applications.	The
following	code	fragment	calls	the	default	AutoCAD	Help	file	and	provides
information	about	the	LINE	command.

(help	""	"line")

You	can	create	a	Help	file	that	provides	information	about	your	applications	or
about	procedures	you	use	in	your	business.	The	following	user-defined
command	displays	the	morehelp.hlp	Help	file	as	follows:

(defun	C:MYHELP	()

		(help	"morehelp.hlp")

		(princ)

)

See	the	Customization	Guide	for	information	on	creating	and	modifying	help
files.

The	setfunhelp	function	provides	help	for	user-defined	commands.	After	the
definition	of	your	new	command,	adding	a	call	to	setfunhelp	associates	a
specific	help	file	and	topic	with	that	command.	The	following	example	assigns
the	help	topic	“Mycmd”	in	the	file	morehelp.hlp	to	the	user-defined	MYCMD
command:

(defun	C:MYCMD	()

		.

		.	Command	definition

		.

)

(setfunhelp	c:mycmd	"morehelp.hlp"	"mycmd")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	

Device	Access	and	Control
	
	
	

AutoLISP	provides	the	grread	and	tablet	functions	for	accessing	data	from
the	various	input	devices.

Note	that	the	read-char	and	read-line	file-handling	functions	can	also
read	input	from	the	keyboard	input	buffer.	See	the	AutoLISP	Reference	for	more
information	on	these	functions.

Accessing	User	Input
Calibrating	Tablets

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Device	Access	and	Control	>	

Accessing	User	Input
	
	
	

The	grread	function	returns	raw	user	input,	whether	from	the	keyboard	or
from	the	pointing	device	(mouse	or	digitizer).	If	the	call	to	grread	enables
tracking,	the	function	returns	a	digitized	coordinate	that	can	be	used	for	things
such	as	dragging.

Note There	is	no	guarantee	that	applications	calling	grread	will	be	upward
compatible.	Because	it	depends	on	the	current	hardware	configuration,
applications	that	call	grread	are	not	likely	to	work	in	the	same	way	on	all
configurations.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Communicate	with	AutoCAD	>	Device	Access	and	Control	>	

Calibrating	Tablets
	
	
	

AutoCAD	users	can	calibrate	a	digitizing	tablet	by	using	the	TABLET	command
(see	the	Command	Reference	for	a	description	of	this	command).	The	tablet
function	enables	applications	to	manage	calibration	by	setting	the	calibrations
directly	and	by	saving	those	settings	for	future	use.

The	first	argument	to	the	tablet	function	is	an	integer	code.	If	code	is	equal
to	0,	the	function	returns	the	current	calibration.	If	code	is	equal	to	1,	the
calibration	is	set	according	to	the	remaining	arguments.	Calibrations	are
expressed	as	four	3D	points	(in	addition	to	the	code).	The	first	three	points
—row1,	row2,	and	row3—are	the	three	rows	of	the	tablet's	transformation
matrix.	The	fourth	point,	direction,	is	a	vector	that	is	normal	to	the	plane	in
which	the	tablet's	surface	is	assumed	to	lie	(expressed	in	WCS,	the	World
Coordinate	System).	When	the	calibration	is	set	with	the	TABLET	command,
the	tablet's	surface	is	assumed	to	lie	in	the	XY	plane	of	the	current	UCS.

Note The	TABMODE	system	variable	controls	whether	Tablet	mode	is	turned	on
(1)	or	off	(0).	You	can	control	it	by	using	the	setvar	function.

The	following	sample	routine	retrieves	the	current	tablet	calibration	and	stores	it
in	the	variable	tcal:

(defun	C:TABGET	()

		(setq	tcal	(tablet	0))

		(if	tcal	

				(princ	

						(strcat	"\nConfiguration	saved,	"

								"use	TABSET	to	retrieve	calibration.")

)

				(princ	"\nCalibration	not	obtainable	")

)

		(princ)

)

If	the	preceding	routine	was	successful,	the	symbol	tcal	now	contains	the	list
returned	by	the	tablet	function.	This	list	might	appear	as	follows:

(1	(0.00561717	-0.000978942	-7.5171)	

		(0.000978942	0.00561717	-9.17308)

		(0.0	0.0	1.0)	

		(0.0	0.0	1.0)

)

To	reset	the	calibration	to	the	values	retrieved	by	the	preceding	routine,	you	can
use	the	C:TABSET	routine,	as	follows:

(defun	C:TABSET	()

		(if	(not		(apply	'tablet	tcal))

				(princ	"\nUnable	to	reset	calibration.	")

				(progn

						(princ	"\nTablet	calibration	reset.	")

						(setvar	"tabmode"	1)	

						(if	(=	(getvar	"tabmode")	0)

								(princ	"\nUnable	to	turn	on	tablet	mode	")

)

)

)

		(princ)

)

The	transformation	matrix	passed	as	row1,	row2,	and	row3	is	a	3×3
transformation	matrix	that	is	meant	to	transform	a	2D	point.	The	2D	point	is
expressed	as	a	column	vector	in	homogeneous	coordinates	(by	appending	1.0	as
the	third	element),	so	the	transformation	looks	like	this:

The	calculation	of	a	point	is	similar	to	the	3D	case.	AutoCAD	transforms	the
point	by	using	the	following	formulas:

To	turn	the	resulting	vector	back	into	a	2D	point,	the	first	two	components	are
divided	by	the	third	component	(the	scale	factor	D')	yielding	the	point
(X'/D',Y'/D').

For	projective	transformations,	the	most	general	case,	tablet	does	the	full
calculation.	But	for	affine	and	orthogonal	transformations,	M20	and	M21	are	both
0,	so	D'	would	be	1.0.	The	calculation	of	D'	and	the	division	are	omitted;	the
resulting	2D	point	is	simply	(X',Y').

As	the	previous	paragraph	implies,	an	affine	transformation	is	a	special,	uniform
case	of	a	projective	transformation.	An	orthogonal	transformation	is	a	special
case	of	an	affine	transformation:	not	only	are	M20	and	M21	zero,	but	M00	=	M11
and	M10	=	-M01.

Note When	you	set	a	calibration,	the	list	returned	does	not	equal	the	list	provided
if	the	direction	isn't	normalized.	AutoCAD	normalizes	the	direction	vector
before	it	returns	it.	Also,	it	ensures	the	third	element	in	the	third	column
(row3[Z])	is	equal	to	1.	This	situation	should	not	arise	if	you	set	the	calibration
by	using	values	retrieved	from	AutoCAD	by	means	of	tablet.	However,	it	can
happen	if	your	program	calculates	the	transformation	itself.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	

Using	AutoLISP	to	Manipulate	AutoCAD	Objects
	
	
	

You	can	select	and	handle	objects,	and	use	their	extended	data.

Most	AutoLISP®	functions	that	handle	selection	sets	and	objects	identify	a	set	or
an	object	by	the	entity	name.	For	selection	sets,	which	are	valid	only	in	the
current	session,	the	volatility	of	names	poses	no	problem,	but	it	does	for	objects
because	they	are	saved	in	the	drawing	database.	An	application	that	must	refer	to
the	same	objects	in	the	same	drawing	(or	drawings)	at	different	times	can	use	the
objects'	handles.

AutoLISP	uses	symbol	tables	to	maintain	lists	of	graphic	and	non-graphic	data
related	to	a	drawing,	such	as	the	layers,	linetypes,	and	block	definitions.	Each
symbol	table	entry	has	a	related	entity	name	and	handle	and	can	be	manipulated
in	a	manner	similar	to	the	way	other	AutoCAD®	entities	are	manipulated.

Selection	Set	Handling
Object	Handling
Extended	Data	-	xdata
Xrecord	Objects
Symbol	Table	and	Dictionary	Access

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	

Selection	Set	Handling
	
	
	

AutoLISP	provides	a	number	of	functions	for	handling	selection	sets.	For	a
complete	list	of	selection	set	functions,	see	Selection	Set	Manipulation	Functions
in	AutoLISP	Function	Synopsis

The	ssget	function	provides	the	most	general	means	of	creating	a	selection	set.
It	can	create	a	selection	set	in	one	of	the	following	ways:

Explicitly	specifying	the	objects	to	select,	using	the	Last,	Previous,
Window,	Implied,	WPolygon,	Crossing,	CPolygon,	or	Fence	options

Specifying	a	single	point

Selecting	the	entire	database

Prompting	the	user	to	select	objects

With	any	option,	you	can	use	filtering	to	specify	a	list	of	attributes	and
conditions	that	the	selected	objects	must	match.

Note Selection	set	and	entity	names	are	volatile.	That	is,	they	apply	only	to	the
current	drawing	session.

The	first	argument	to	ssget	is	a	string	that	describes	which	selection	option	to
use.	The	next	two	arguments,	pt1	and	pt2,	specify	point	values	for	the	relevant
options	(they	should	be	left	out	if	they	don't	apply).	A	point	list,	pt-list,	must
be	provided	as	an	argument	to	the	selection	methods	that	allow	selection	by
polygons	(that	is,	Fence,	Crossing	Polygon,	and	Window	Polygon).	The	last
argument,	filter-list,	is	optional.	If	filter-list	is	supplied,	it
specifies	the	list	of	entity	field	values	used	in	filtering.	For	example,	you	can
obtain	a	selection	set	that	includes	all	objects	of	a	given	type,	on	a	given	layer,	or
of	a	given	color.	Selection	filters	are	described	in	more	detail	in	Selection	Set
Filter	Lists.

See	the	ssget	entry	in	the	AutoLISP	Reference	for	a	list	of	the	available	selection
methods	and	the	arguments	used	with	each.

The	following	table	shows	examples	of	calls	to	ssget:

SSGET	Examples

Function	call Effect

(setq	pt1	'(0.0	0.0	0.0)

pt2	'(5.0	5.0	0.0)

pt3	'(4.0	1.0	0.0)

pt4	'(2.0	6.0	0.0))

Sets	pt1,	pt2,	pt3,	and	pt4	to
point	values

(setq	ss1	(ssget)) Asks	the	user	for	a	general
object	selection	and	places
those	items	in	a	selection	set

(setq	ss1	(ssget	"P")) Creates	a	selection	set	from	the
most	recently	created	selection
set

(setq	ss1	(ssget	"L")) Creates	a	selection	set	of	the
last	object	added	to	the	database
that	is	visible	on	the	screen

(setq	ss1	(ssget	pt2)) Creates	a	selection	set	of	an
object	passing	through	point
(5,5)

(setq	ss1	(ssget	"W"	pt1

pt2))

Creates	a	selection	set	of	the
objects	inside	the	window	from
(0,0)	to	(5,5)

(setq	ss1	(ssget	"F"

(list	pt2	pt3	pt4)))

Creates	a	selection	set	of	the
objects	crossing	the	fence	and

defined	by	the	points	(5,5),
(4,1),	and	(2,6)

(setq	ss1	(ssget	"WP"

(list	pt1	pt2	pt3)))

Creates	a	selection	set	of	the
objects	inside	the	polygon
defined	by	the	points	(0,0),
(5,5),	and	(4,1)

(setq	ss1	(ssget	"X")) Creates	a	selection	set	of	all
objects	in	the	database

When	an	application	has	finished	using	a	selection	set,	it	is	important	to	release
it	from	memory.	You	can	do	this	by	setting	it	to	nil:

(setq	ss1	nil)

Attempting	to	manage	a	large	number	of	selection	sets	simultaneously	is	not
recommended.	An	AutoLISP	application	cannot	have	more	than	128	selection
sets	open	at	once.	(The	limit	may	be	lower	on	your	system.)	When	the	limit	is
reached,	AutoCAD	will	not	create	more	selection	sets.	Keep	a	minimum	number
of	sets	open	at	a	time,	and	set	unneeded	selection	sets	to	nil	as	soon	as
possible.	If	the	maximum	number	of	selection	sets	is	reached,	you	must	call	the
gc	function	to	free	unused	memory	before	another	ssget	will	work.

Selection	Set	Filter	Lists
Passing	Selection	Sets	between	AutoLISP	and	ObjectARX
Applications

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e29110.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	

Selection	Set	Filter	Lists
	
	
	

An	entity	filter	list	is	an	association	list	that	uses	DXF	group	codes	in	the	same
format	as	a	list	returned	by	entget.	(See	the	DXF	Reference	for	a	list	of	group
codes.)	The	ssget	function	recognizes	all	group	codes	except	entity	names
(group	-1),	handles	(group	5),	and	xdata	codes	(groups	greater	than	1000).	If	an
invalid	group	code	is	used	in	a	filter-list,	it	is	ignored	by	ssget.	To
search	for	objects	with	xdata,	use	the	-3	code	as	described	in	Filtering	for
Extended	Data.

When	a	filter-list	is	provided	as	the	last	argument	to	ssget,	the	function
scans	the	selected	objects	and	creates	a	selection	set	containing	the	names	of	all
main	entities	matching	the	specified	criteria.	For	example,	you	can	obtain	a
selection	set	that	includes	all	objects	of	a	given	type,	on	a	given	layer,	or	of	a
given	color.

The	filter-list	specifies	which	property	(or	properties)	of	the	entities	are
to	be	checked	and	which	values	constitute	a	match.

The	following	examples	demonstrate	methods	of	using	a	filter-list	with
various	object	selection	options.

SSGET	examples	using	filter	lists

Function	call Effect

(setq	ss1	(ssget	'((0	.

"TEXT")))

)

Prompts	for	general	object
selection	but	adds	only	text
objects	to	the	selection	set.

(setq	ss1	(ssget	"P" Creates	a	selection	set	containing

'((0	.	"LINE")))

)

all	line	objects	from	the	last
selection	set	created.

(setq	ss1	(ssget	"W"	pt1

pt2

'((8	.	"FLOOR9")))

)

Creates	a	selection	set	of	all
objects	inside	the	window	that	are
also	on	layer	FLOOR9.

(setq	ss1	(ssget	"X"

'((0	.	"CIRCLE")))

)

Creates	a	selection	set	of	all
objects	in	the	database	that	are
Circle	objects.

(ssget	"I"	'((0	.	"LINE")

(62	.	5)))

Creates	a	selection	set	of	all	blue
Line	objects	that	are	part	of	the
Implied	selection	set	(those
objects	selected	while
PICKFIRST	is	in	effect).
Note	that	this	filter	picks	up	lines
that	have	been	assigned	color	5
(blue),	but	not	blue	lines	that
have	had	their	color	applied	by
the	ByLayer	or	ByBlock
properties.

If	both	the	code	and	the	desired	value	are	known,	the	list	may	be	quoted	as
shown	previously.	If	either	is	specified	by	a	variable,	the	list	must	be	constructed
using	the	list	and	cons	function.	For	example,	the	following	code	creates	a
selection	set	of	all	objects	in	the	database	that	are	on	layer	FLOOR3:

(setq	lay_name	"FLOOR3")

(setq	ss1	

		(ssget	"X"				

				(list	(cons	8	lay_name))

)

)	

If	the	filter-list	specifies	more	than	one	property,	an	entity	is	included	in
the	selection	set	only	if	it	matches	all	specified	conditions,	as	in	the	following
example:

(ssget	"X"		(list		(cons	0	"CIRCLE")(cons	8	lay_name)(cons	62	1)))

This	code	selects	only	Circle	objects	on	layer	FLOOR3	that	are	colored	red.	This
type	of	test	performs	a	Boolean	“AND”	operation.	Additional	tests	for	object
properties	are	described	in	Logical	Grouping	of	Filter	Tests.

The	ssget	function	filters	a	drawing	by	scanning	the	selected	entities	and
comparing	the	fields	of	each	main	entity	against	the	specified	filtering	list.	If	an
entity's	properties	match	all	specified	fields	in	the	filtering	list,	it	is	included	in
the	returned	selection	set.	Otherwise,	the	entity	is	not	included	in	the	selection
set.	The	ssget	function	returns	nil	if	no	entities	from	those	selected	match
the	specified	filtering	criteria.

Note The	meaning	of	certain	group	codes	can	differ	from	entity	to	entity,	and	not
all	group	codes	are	present	in	all	entities.	If	a	particular	group	code	is	specified
in	a	filter,	entities	not	containing	that	group	code	are	excluded	from	the	selection
set	that	ssget	returns.

When	ssget	filters	a	drawing,	the	selection	set	it	retrieves	might	include
entities	from	both	paper	space	and	model	space.	However,	when	the	selection	set
is	passed	to	an	AutoCAD	command,	only	entities	from	the	space	that	is	currently
in	effect	are	used.	(The	space	to	which	an	entity	belongs	is	specified	by	the	value
of	its	67	group.	Refer	to	the	Customization	Guide	for	further	information.)

Wild-Card	Patterns	in	Filter	Lists
Filtering	for	Extended	Data
Relational	Tests
Logical	Grouping	of	Filter	Tests
Selection	Set	Manipulation

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	Selection	Set	Filter
Lists	>	

Wild-Card	Patterns	in	Filter	Lists
	
	
	

Symbol	names	specified	in	filtering	lists	can	include	wild-card	patterns.	The
wild-card	patterns	recognized	by	ssget	are	the	same	as	those	recognized	by	the
wcmatch	function,	and	are	described	in	Wild-Card	Matching,	and	under
wcmatch	in	the	AutoLISP	Reference.

When	filtering	for	anonymous	blocks,	you	must	precede	the	*	character	with	a
reverse	single	quotation	mark	(`),	also	known	as	an	escape	character,	because
the	*	is	read	by	ssget	as	a	wild-card	character.	For	example,	you	can	retrieve
an	anonymous	block	named	*U2	with	the	following:

(ssget	"X"	'((2	.	"`*U2")))

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e29375.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	Selection	Set	Filter
Lists	>	

Filtering	for	Extended	Data
	
	
	

Using	the	ssgetfilter-list,	you	can	select	all	entities	containing
extended	data	for	a	particular	application.	(See	Extended	Data	-	xdata.)	To	do
this,	use	the	-3	group	code,	as	shown	in	the	following	example:

(ssget	"X"	'((0	.	"CIRCLE")	(-3	("APPNAME"))))

This	code	will	select	all	circles	that	include	extended	data	for	the	"APPNAME"
application.	If	more	than	one	application	name	is	included	in	the	-3	group's	list,
an	AND	operation	is	implied	and	the	entity	must	contain	extended	data	for	all	of
the	specified	applications.	So,	the	following	statement	would	select	all	circles
with	extended	data	for	both	the	"APP1"	and	"APP2"	applications:

(ssget	"X"	'((0	.	"CIRCLE")	(-3	("APP1")("APP2"))))

Wild-card	matching	is	permitted,	so	either	of	the	following	statements	will	select
all	circles	with	extended	data	for	either	or	both	of	these	applications.

(ssget	"X"	'((0	.	"CIRCLE")	(-3	("APP[12]"))))

(ssget	"X"	'((0	.	"CIRCLE")	(-3	("APP1,APP2"))))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	Selection	Set	Filter
Lists	>	

Relational	Tests
	
	
	

Unless	otherwise	specified,	an	equivalency	is	implied	for	each	item	in	the
filter-list.	For	numeric	groups	(integers,	reals,	points,	and	vectors),	you
can	specify	other	relations	by	including	a	special	-4	group	code	that	specifies	a
relational	operator.	The	value	of	a	-4	group	is	a	string	indicating	the	test	operator
to	be	applied	to	the	next	group	in	the	filter-list.

The	following	selects	all	circles	with	a	radius	(group	code	40)	greater	than	or
equal	to	2.0:

(ssget	"X"	'((0	.	"CIRCLE")	(-4	.	">=")	(40	.	2.0)))

The	possible	relational	operators	are	shown	in	the	following	table:

Relational	operators	for	selection	set	filter	lists

Operator Description

"*" Anything	goes
(always	true)

"=" Equals

"!=" Not	equal	to

"/=" Not	equal	to

"<>" Not	equal	to

"<" Less	than

"<=" Less	than	or	equal
to

">" Greater	than

">=" Greater	than	or
equal	to

"&" Bitwise	AND
(integer	groups
only)

"&=" Bitwise	masked
equals	(integer
groups	only)

The	use	of	relational	operators	depends	on	the	kind	of	group	you	are	testing:

All	relational	operators	except	for	the	bitwise	operators	("&"	and	"&=")
are	valid	for	both	real-	and	integer-valued	groups.

The	bitwise	operators	"&"	and	"&="	are	valid	only	for	integer-valued
groups.	The	bitwise	AND,	"&",	is	true	if	((integer_group	&
filter)	/=	0)—that	is,	if	any	of	the	bits	set	in	the	mask	are	also	set
in	the	integer	group.	The	bitwise	masked	equals,	"&=",	is	true	if
((integer_group	&	filter)	=	filter)—that	is,	if	all	bits	set
in	the	mask	are	also	set	in	the	integer_group	(other	bits	might	be
set	in	the	integer_group	but	are	not	checked).

For	point	groups,	the	X,	Y,	and	Z	tests	can	be	combined	into	a	single
string,	with	each	operator	separated	by	commas	(for	example,
">,>,*").	If	an	operator	is	omitted	from	the	string	(for	example,	"=,
<>"	leaves	out	the	Z	test),	then	the	“anything	goes”	operator,	"*",	is
assumed.

Direction	vectors	(group	type	210)	can	be	compared	only	with	the

operators	"*",	"=",	and	"!="	(or	one	of	the	equivalent	“not	equal”
strings).

You	cannot	use	the	relational	operators	with	string	groups;	use	wild-card
tests	instead.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	Selection	Set	Filter
Lists	>	

Logical	Grouping	of	Filter	Tests
	
	
	

You	can	also	test	groups	by	creating	nested	Boolean	expressions	that	use	the
logical	grouping	operators	shown	in	the	following	table:

Grouping	operators	for	selection	set	filter	lists

Starting

operator
Encloses

Ending

operator

"<AND" One	or	more
operands

"AND>"

"<OR" One	or	more
operands

"OR>"

"<XOR" Two	operands "XOR>"

"<NOT" One	operand "NOT>"

The	grouping	operators	are	specified	by	-4	groups,	like	the	relational	operators.
They	are	paired	and	must	be	balanced	correctly	in	the	filter	list	or	the	ssget
call	will	fail.	An	example	of	grouping	operators	in	a	filter	list	follows:

(ssget	"X"	

	'(

				(-4	.	"<OR")

						(-4	.	"<AND")

								(0	.	"CIRCLE")

								(40	.	1.0)

						(-4	.	"AND>")

						(-4	.	"<AND")

								(0	.	"LINE")

								(8	.	"ABC")

						(-4	.	"AND>")

				(-4	.	"OR>")

)

)

This	code	selects	all	circles	with	a	radius	of	1.0	plus	all	lines	on	layer	"ABC".
The	grouping	operators	are	not	case-sensitive;	for	example,	you	can	specify
"and>",	"<or",	instead	of	"AND>",	"<OR".

Grouping	operators	are	not	allowed	within	the	-3	group.	Multiple	application
names	specified	in	a	-3	group	use	an	implied	AND	operator.	If	you	want	to	test
for	extended	data	using	other	grouping	operators,	specify	separate	-3	groups	and
group	them	as	desired.	To	select	all	circles	having	extended	data	for	either
application	"APP1"	or	"APP2"	but	not	both,	enter	the	following:

(ssget	"X"	

	'((0	.	"CIRCLE")

				(-4	.	"<XOR")

						(-3	("APP1"))

						(-3	("APP2"))

				(-4	.	"XOR>")

)

)

You	can	simplify	the	coding	of	frequently	used	grouping	operators	by	setting
them	equal	to	a	symbol.	The	previous	example	could	be	rewritten	as	follows
(notice	that	in	this	example	you	must	explicitly	quote	each	list):

(setq	<xor	'(-4	.	"<XOR")	

							xor>	'(-4	.	"XOR>"))

(ssget	"X"	

		(list	

				'(0	.	"CIRCLE")

				<xor

						'(-3	("APP1"))

						'(-3	("APP2"))

				xor>

)

)

As	you	can	see,	this	method	may	not	be	sensible	for	short	pieces	of	code	but	can
be	beneficial	in	larger	applications.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	Selection	Set	Filter
Lists	>	

Selection	Set	Manipulation
	
	
	

Once	a	selection	set	has	been	created,	you	can	add	entities	to	it	or	remove
entities	from	it	with	the	functions	ssadd	and	ssdel.	You	can	use	the	ssadd
function	to	create	a	new	selection	set,	as	shown	in	the	following	example.	The
following	code	fragment	creates	a	selection	set	that	includes	the	first	and	last
entities	in	the	current	drawing	(entnext	and	entlast	are	described	later	in
this	chapter).

(setq	fname	(entnext))											;	Gets	first	entity	in	the	

																																	;	drawing.

(setq	lname	(entlast))											;	Gets	last	entity	in	the	

																																	;	drawing.

(if	(not	fname)

		(princ	"\nNo	entities	in	drawing.	")

		(progn

				(setq	ourset	(ssadd	fname))		;	Creates	a	selection	set	of	the

																																	;	first	entity.

				(ssadd	lname	ourset)									;	Adds	the	last	entity	to	the	

																																	;	selection	set.

)

)

The	example	runs	correctly	even	if	only	one	entity	is	in	the	database	(in	which
case	both	entnext	and	entlast	set	their	arguments	to	the	same	entity
name).	If	ssadd	is	passed	the	name	of	an	entity	already	in	the	selection	set,	it
ignores	the	request	and	does	not	report	an	error.	The	following	function	removes
the	first	entity	from	the	selection	set	created	in	the	previous	example:

(ssdel	fname	ourset)

If	there	is	more	than	one	entity	in	the	drawing	(that	is,	if	fname	and	lname	are
not	equal),	then	the	selection	set	ourset	contains	only	lname,	the	last	entity	in

the	drawing.

The	function	sslength	returns	the	number	of	entities	in	a	selection	set,	and
ssmemb	tests	whether	a	particular	entity	is	a	member	of	a	selection	set.	Finally,
the	function	ssname	returns	the	name	of	a	particular	entity	in	a	selection	set,
using	an	index	to	the	set	(entities	in	a	selection	set	are	numbered	from	0).

The	following	code	shows	calls	to	ssname:

(setq	sset	(ssget))											;	Prompts	the	user	to	create	a	

																														;	selection	set.

(setq	ent1	(ssname	sset	0))			;	Gets	the	name	of	the	first	

																														;	entity	in	sset.

(setq	ent4	(ssname	sset	3))			;	Gets	the	name	of	the	fourth	

																														;	entity	in	sset.

(if	(not	ent4)

		(princ	"\nNeed	to	select	at	least	four	entities.	")

)

(setq	ilast	(sslength	sset))		;	Finds	index	of	the	last	entity	

																														;	in	sset.

																														;	Gets	the	name	of	the	

																														;	last	entity	in	sset.

(setq	lastent	(ssname	sset	(1-	ilast)))

Regardless	of	how	entities	are	added	to	a	selection	set,	the	set	never	contains
duplicate	entities.	If	the	same	entity	is	added	more	than	once,	the	later	additions
are	ignored.	Therefore,	sslength	accurately	returns	the	number	of	distinct
entities	in	the	specified	selection	set.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Selection	Set	Handling	>	

Passing	Selection	Sets	between	AutoLISP	and	ObjectARX
Applications
	
	
	

When	passing	selection	sets	between	AutoLISP	and	ObjectARX	applications,
the	following	should	be	observed:

If	a	selection	set	is	created	in	AutoLISP	and	stored	in	an	AutoLISP	variable,	then
overwritten	by	a	value	returned	from	an	ObjectARX	application,	the	original
selection	set	is	eligible	for	garbage	collection	(it	is	freed	at	the	next	automatic	or
explicit	garbage	collection).

This	is	true	even	if	the	value	returned	from	the	ObjectARX	application	was	the
original	selection	set.	In	the	following	example,	if	the	adsfunc	ObjectARX
function	returns	the	same	selection	set	it	was	fed	as	an	argument,	then	this
selection	set	will	be	eligible	for	garbage	collection	even	though	it	is	still
assigned	to	the	same	variable.

(setq	var1	(ssget))

(setq	var1	(adsfunc	var1))

If	you	want	the	original	selection	set	to	be	protected	from	garbage	collection,
then	you	must	not	assign	the	return	value	of	the	ObjectARX	application	to	the
AutoLISP	variable	that	already	references	the	selection	set.	Changing	the
previous	example	prevents	the	selection	set	referenced	by	var1	from	being
eligible	for	garbage	collection.

(setq	var1	(ssget))

(setq	var2	(adsfunc	var1))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	

Object	Handling
	
	
	

AutoLISP	provides	functions	for	handling	objects.	The	object-handling	functions
are	organized	into	two	categories:	functions	that	retrieve	the	entity	name	of	a
particular	object,	and	functions	that	retrieve	or	modify	entity	data.	See	Object-
Handling	Functions	in	AutoLISP	Function	Synopsis	for	a	complete	list	of	the
object-handling	functions.

Entity	Name	Functions
Entity	Data	Functions
Entity	Data	Functions	and	the	Graphics	Screen
Old-Style	Polylines	and	Lightweight	Polylines
Non-Graphic	Object	Handling

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	

Entity	Name	Functions
	
	
	

To	operate	on	an	object,	an	AutoLISP	application	must	obtain	its	entity	name	for
use	in	subsequent	calls	to	the	entity	data	or	selection	set	functions.	Two
functions	described	in	this	section,	entsel	and	nentsel,	return	not	only	the
entity's	name	but	additional	information	for	the	application's	use.

Both	functions	require	the	AutoCAD	user	to	select	an	object	interactively	by
picking	a	point	on	the	graphics	screen.	All	the	other	entity	name	functions	can
retrieve	an	entity	even	if	it	is	not	visible	on	the	screen	or	if	it	is	on	a	frozen	layer.
The	entsel	function	prompts	the	user	to	select	an	object	by	picking	a	point	on
the	graphics	screen,	and	entsel	returns	both	the	entity	name	and	the	value	of
the	point	selected.	Some	entity	operations	require	knowledge	of	the	point	by
which	the	object	was	selected.	Examples	from	the	set	of	existing	AutoCAD
commands	include:	BREAK,	TRIM,	and	EXTEND.	The	nentsel	function	is
described	in	detail	in	Entity	Context	and	Coordinate	Transform	Data.	These
functions	accept	keywords	if	they	are	preceded	by	a	call	to	initget.

The	entnext	function	retrieves	entity	names	sequentially.	If	entnext	is
called	with	no	arguments,	it	returns	the	name	of	the	first	entity	in	the	drawing
database.	If	its	argument	is	the	name	of	an	entity	in	the	current	drawing,
entnext	returns	the	name	of	the	succeeding	entity.

The	following	code	fragment	illustrates	how	ssadd	can	be	used	in	conjunction
with	entnext	to	create	selection	sets	and	add	members	to	an	existing	set.

(setq	e1		(entnext))

(if		(not	e1)																;	Sets	e1	to	name	of	first	entity.

		(princ	"\nNo	entities	in	drawing.	")	

		(progn

				(setq	ss		(ssadd))							;	Sets	ss	to	a	null	selection	set.

				(ssadd	e1	ss)												;	Returns	selection	set	ss	with	

																													;	e1	added.

				(setq	e2	(entnext	e1))			;	Gets	entity	following	e1.

				(ssadd	e2	ss)												;	Adds	e2	to	selection	set	ss.

)

)

The	entlast	function	retrieves	the	name	of	the	last	entity	in	the	database.	The
last	entity	is	the	most	recently	created	main	entity,	so	entlast	can	be	called	to
obtain	the	name	of	an	entity	that	has	just	been	created	with	a	call	to	command.

You	can	set	the	entity	name	returned	by	entnext	to	the	same	variable	name
passed	to	this	function.	This	“walks”	a	single	entity	name	variable	through	the
database,	as	shown	in	the	following	example:

(setq	one_ent	(entnext))												;	Gets	name	of	first	entity.

	(while	one_ent	

	.	

	.																																		;	Processes	new	entity.

	.	

		(setq	one_ent	(entnext	one_ent))

)																																			;	Value	of	one_ent	is	now	nil.

Entity	Handles	and	Their	Uses
Entity	Context	and	Coordinate	Transform	Data
Entity	Access	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Name	Functions	>	

Entity	Handles	and	Their	Uses
	
	
	

The	handent	function	retrieves	the	name	of	an	entity	with	a	specific	handle.
As	with	entity	names,	handles	are	unique	within	a	drawing.	However,	an	entity's
handle	is	constant	throughout	its	life.	AutoLISP	applications	that	manipulate	a
specific	database	can	use	handent	to	obtain	the	current	name	of	an	entity	they
must	use.	You	can	use	the	DDMODIFY	command	to	get	the	handle	of	a	selected
object.

The	following	code	fragment	uses	handent	to	obtain	and	display	an	entity
name.

(if		(not	(setq	e1		(handent	"5a2")))

		(princ	"\nNo	entity	with	that	handle	exists.	")

		(princ	e1)

)

In	one	particular	editing	session,	this	code	fragment	might	display	the	following:
<Entity	name:	60004722>

In	another	editing	session	with	the	same	drawing,	the	fragment	might	display	an
entirely	different	number.	But	in	both	cases	the	code	would	be	accessing	the
same	entity.

The	handent	function	has	an	additional	use.	Entities	can	be	deleted	from	the
database	with	entdel	(see	Entity	Context	and	Coordinate	Transform	Data).
The	entities	are	not	purged	until	the	current	drawing	ends.	This	means	that
handent	can	recover	the	names	of	deleted	entities,	which	can	then	be	restored
to	the	drawing	by	a	second	call	to	entdel.

Note Handles	are	provided	for	block	definitions,	including	subentities.

Entities	in	drawings	that	are	cross-referenced	by	way	of	XREF	Attach	are	not
actually	part	of	the	current	drawing;	their	handles	are	unchanged	but	cannot	be

accessed	by	handent.	However,	when	drawings	are	combined	by	means	of
INSERT,	INSERT	*,	XREF	Bind	(XBIND),	or	partial	DXFIN,	the	handles	of
entities	in	the	incoming	drawing	are	lost,	and	incoming	entities	are	assigned	new
handle	values	to	ensure	each	handle	in	the	current	drawing	remains	unique.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Name	Functions	>	

Entity	Context	and	Coordinate	Transform	Data
	
	
	

The	nentsel	and	nentselp	functions	are	similar	to	entsel,	except	they
return	two	additional	values	to	handle	entities	nested	within	block	references.

Another	difference	between	these	functions	is	that	when	the	user	responds	to	a
nentsel	call	by	selecting	a	complex	entity	or	a	complex	entity	is	selected	by
nentselp,	these	functions	return	the	entity	name	of	the	selected	subentity	and
not	the	complex	entity's	header,	as	entsel	does.

For	example,	when	the	user	selects	a	3D	polyline,	nentsel	returns	a	vertex
subentity	instead	of	the	polyline	header.	To	retrieve	the	polyline	header,	the
application	must	use	entnext	to	step	forward	to	the	seqend	subentity,	and	then
obtain	the	name	of	the	header	from	the	seqend	subentity's	-2	group.	The	same
applies	when	the	user	selects	attributes	in	a	nested	block	reference.

Selecting	an	attribute	within	a	block	reference	returns	the	name	of	the	attribute
and	the	pick	point.	When	the	selected	object	is	a	component	of	a	block	reference
other	than	an	attribute,	nentsel	returns	a	list	containing	the	following
elements:

The	selected	entity's	name.

A	list	containing	the	coordinates	of	the	point	used	to	pick	the	object.

The	Model	to	World	Transformation	Matrix.	This	is	a	list	consisting	of
four	sublists,	each	of	which	contains	a	set	of	coordinates.	This	matrix
can	be	used	to	transform	the	entity	definition	data	points	from	an	internal
coordinate	system	called	the	model	coordinate	system	(MCS),	to	the
World	Coordinate	System	(WCS).	The	insertion	point	of	the	block	that
contains	the	selected	entity	defines	the	origin	of	the	MCS.	The
orientation	of	the	UCS	when	the	block	is	created	determines	the
direction	of	the	MCS	axes.

A	list	containing	the	entity	name	of	the	block	that	contains	the	selected
object.	If	the	selected	object	is	in	a	nested	block	(a	block	within	a	block),
the	list	also	contains	the	entity	names	of	all	blocks	in	which	the	selected
object	is	nested,	starting	with	the	innermost	block	and	continuing
outward	until	the	name	of	the	block	that	was	inserted	in	the	drawing	is
reported.

The	list	returned	from	selecting	a	block	with	nentsel	is	summarized	as
follows:

(<Entity	Name:	ename1>					;	Name	of	entity.

		(Px	Py	Pz)															;	Pick	point.

		((X0	Y0	Z0)													;	Model	to	World	Transformation	Matrix.

				(X1	Y1	Z1)													

				(X2	Y2	Z2)	

				(X3	Y3	Z3)	

)

		(<Entity	name:	ename2>			;	Name	of	most	deeply	nested	block

					.																					;	containing	selected	object.

					.	

					.	

		<Entity	name:	enamen>)			;	Name	of	outermost	block

)																										;	containing	selected	object.

In	the	following	example,	create	a	block	to	use	with	the	nentsel	function.
Command: line

Specify	first	point:	 1,1

Specify	next	point	or	[Undo]:	 3,1

Specify	next	point	or	[Undo]: 	3,3

Specify	next	point	or	[Close/Undo]:	 1,3

Specify	next	point	or	[Close/Undo]:	 c

Command:	 -block

Enter	block	name	or	[?]:	 square

Specify	insertion	base	point:	 2,2

Select	objects: Select	the	four	lines	you	just	drew

Select	objects: ENTER

Then,	insert	the	block	in	a	UCS	rotated	45	degrees	about	the	Z	axis:
Command: ucs

Current	ucs	name:	*WORLD*

Enter	option[New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World]

<World>: z

Specify	rotation	angle	about	Z	axis	<0>: 45

Command: 	-insert

Enter	block	name	or	[?]:	 square

Specify	insertion	point	or	[Scale/X/Y/Z/Rotate/PScale/PX/PY/PZ/PRotate]:7,0

Enter	X	scale	factor,	specify	opposite	corner,	or	[Corner/XYZ]	<1>: ENTER

Enter	Y	scale	factor	<use	X	scale	factor>: ENTER

Specify	rotation	angle	<0>: ENTER

Use	nentsel	to	select	the	lower-left	side	of	the	square.

(setq	ndata	(nentsel))

This	code	sets	ndata	equal	to	a	list	similar	to	the	following:

(<Entity	Name:	400000a0>					;	Entity	name.

	(6.46616	-1.0606	0.0)							;	Pick	point.

	((0.707107	0.707107	0.0)				;	Model	to	World	

		(-0.707107	0.707107	0.0)			;	Transformation	Matrix.

		(0.0	-0.0	1.0)

		(4.94975	4.94975	0.0)	

)

	(<Entity	name:6000001c>)				;	Name	of	block	containing

																													;	selected	object.

)

Once	you	obtain	the	entity	name	and	the	Model	to	World	Transformation	Matrix,
you	can	transform	the	entity	definition	data	points	from	the	MCS	to	the	WCS.
Use	entget	and	assoc	on	the	entity	name	to	obtain	the	definition	points
expressed	in	MCS	coordinates.	The	Model	to	World	Transformation	Matrix
returned	by	nentsel	is	a	4×3	matrix—passed	as	an	array	of	four	points—that
uses	the	convention	that	a	point	is	a	row	rather	than	a	column.	The
transformation	is	described	by	the	following	matrix	multiplication:

So	the	equations	for	deriving	the	new	coordinates	are	as	follows:

The	Mij,	where	0	le;	i,	j	le;	2,	are	the	Model	to	World	Transformation	Matrix
coordinates;	X,	Y,	Z	is	the	entity	definition	data	point	expressed	in	MCS
coordinates,	and	X',	Y',	Z'	is	the	resulting	entity	definition	data	point	expressed	in
WCS	coordinates.

To	transform	a	vector	rather	than	a	point,	do	not	add	the	translation	vector	(M30
M31	M32	from	the	fourth	column	of	the	transformation	matrix).

Note This	is	the	only	AutoLISP	function	that	uses	a	matrix	of	this	type.	The
nentselp	function	is	preferred	to	nentsel	because	it	returns	a	matrix
similar	to	those	used	by	other	AutoLISP	and	ObjectARX	functions	.

Using	the	entity	name	previously	obtained	with	nentsel,	the	following
example	illustrates	how	to	obtain	the	MCS	start	point	of	a	line	(group	code	10)
contained	in	a	block	definition:

Command:	(setq	edata	(assoc	10	(entget	(car	ndata))))

(10	-1.0	1.0	0.0)

The	following	statement	stores	the	Model	to	World	Transformation	Matrix
sublist	in	the	symbolmatrix.

Command:	(setq	matrix	(caddr	ndata))

((0.707107	0.707107	0.0)				;	X	transformation

		(-0.707107	0.707107	0.0)		;	Y	transformation

		(0.0	-0.0	1.0)												;	Z	transformation

		(4.94975	4.94975	0.0)					;	Displacement	from	WCS	origin

)

The	following	command	applies	the	transformation	formula	forX	'	to	change	the
X	coordinate	of	the	start	point	of	the	line	from	an	MCS	coordinate	to	a	WCS
coordinate:

(setq	answer	

		(+																																								;	add:

				(*	(car	(nth	0	matrix))(cadr	edata))				;	M00	*	X

				(*	(car	(nth	1	matrix))(caddr	edata))			;	M10	*	Y

				(*	(car	(nth	2	matrix))(cadddr	edata))		;	M20	*	Z

				(car	(nth	3	matrix))																				;	M30

)

)

This	statement	returns	3.53553,	the	WCSX	coordinate	of	the	start	point	of	the
selected	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Name	Functions	>	

Entity	Access	Functions
	
	
	

The	entity	access	functions	are	relatively	slow.	It	is	best	to	get	the	contents	of	a
particular	entity	(or	symbol	table	entry)	once	and	keep	that	information	stored	in
memory,	rather	than	repeatedly	ask	AutoCAD	for	the	same	data.	Be	sure	the	data
remains	valid.	If	the	user	has	an	opportunity	to	alter	the	entity	or	symbol	table
entry,	you	should	reissue	the	entity	access	function	to	ensure	the	validity	of	the
data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	

Entity	Data	Functions
	
	
	

The	functions	described	in	this	section	operate	on	entity	data	and	can	be	used	to
modify	the	current	drawing	database.

Deleting	an	Entity
Obtaining	Entity	Information
Modifying	an	Entity
Adding	an	Entity	to	a	Drawing
Creating	Complex	Entities
Working	with	Blocks
Anonymous	Blocks

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Deleting	an	Entity
	
	
	

The	entdel	function	deletes	a	specified	entity.	The	entity	is	not	purged	from
the	database	until	the	end	of	the	current	drawing	session,	so	if	the	application
calls	entdel	a	second	time	during	that	session	and	specifies	the	same	entity,
the	entity	is	undeleted.

Attributes	and	old-style	polyline	vertices	cannot	be	deleted	independently	of
their	parent	entities.	The	entdel	function	operates	only	on	main	entities.	If	you
need	to	delete	an	attribute	or	vertex,	you	can	use	command	to	invoke	the
AutoCAD	ATTEDIT	or	PEDIT	commands.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Obtaining	Entity	Information
	
	
	

The	entget	function	returns	the	definition	data	of	a	specified	entity.	The	data
is	returned	as	a	list.	Each	item	in	the	list	is	specified	by	a	DXF	group	code.	The
first	item	in	the	list	contains	the	entity's	current	name.

In	this	example,	the	following	(default)	conditions	apply	to	the	current	drawing:

Layer	is	0

Linetype	is	CONTINUOUS

Elevation	is	0

The	user	has	drawn	a	line	with	the	following	sequence	of	commands:
Command:	 line

From	point:	 1,2

To	point:	 6,6

To	point:	 ENTER

An	AutoLISP	application	can	retrieve	and	print	the	definition	data	for	the	line	by
using	the	following	AutoLISP	function:

(defun	C:PRINTDXF	()

		(setq	ent	(entlast))					;	Set	ent	to	last	entity.

		(setq	entl	(entget	ent))	;	Set	entl	to	association	list	of	

																											;	last	entity.

		(setq	ct	0)														;	Set	ct	(a	counter)	to	0.

		(textpage)															;	Switch	to	the	text	screen.

		(princ	"\nentget	of	last	entity:")

		(repeat	(length	entl)				;	Repeat	for	number	of	members	in	list:

				(print	(nth	ct	entl))		;	Print	a	newline,	then	each	list	

																											;	member.

				(setq	ct	(1+	ct))						;	Increments	the	counter	by	one.

)

		(princ)																		;	Exit	quietly.

)

This	would	print	the	following:
entget	of	last	entity:

(-1	.	<Entity	name:	1bbd1c8>)

(0	.	"LINE")

(330	.	<Entity	name:	1bbd0c8>)

(5	.	"69")

(100	.	"AcDbEntity")

(67	.	0)

(410	.	"Model")

(8	.	"0")

(100	.	"AcDbLine")

(10	1.0	2.0	0.0)

(11	6.0	6.0	0.0)

(210	0.0	0.0	1.0)

The	-1	item	at	the	start	of	the	list	contains	the	name	of	the	entity.	The	entmod
function,	which	is	described	in	this	section,	uses	the	name	to	identify	the	entity
to	be	modified.	The	individual	dotted	pairs	that	represent	the	values	can	be
extracted	by	using	assoc	with	the	cdr	function.

Sublists	for	points	are	not	represented	as	dotted	pairs	like	the	rest	of	the	values
returned.	The	convention	is	that	the	cdr	of	the	sublist	is	the	group's	value.
Because	a	point	is	a	list	of	two	or	three	reals,	the	entire	group	is	a	three-	(or	four-
)	element	list.	The	cdr	of	the	group	is	the	list	representing	the	point,	so	the
convention	that	cdr	always	returns	the	value	is	preserved.

The	codes	for	the	components	of	the	entity	are	those	used	by	DXF.	As	with
DXF,	the	entity	header	items	(color,	linetype,	thickness,	the	attributes-follow
flag,	and	the	entity	handle)	are	returned	only	if	they	have	values	other	than	the
default.	Unlike	DXF,	optional	entity	definition	fields	are	returned	whether	or	not
they	equal	their	defaults	and	whether	or	not	associated	X,	Y,	and	Z	coordinates
are	returned	as	a	single	point	variable,	rather	than	as	separate	X	(10),	Y	(20),	and
Z	(30)	groups.

All	points	associated	with	an	object	are	expressed	in	terms	of	that	object's	object
coordinate	system	(OCS).	For	point,	line,	3D	line,	3D	face,	3D	polyline,	3D
mesh,	and	dimension	objects,	the	OCS	is	equivalent	to	the	WCS	(the	object
points	are	World	points).	For	all	other	objects,	the	OCS	can	be	derived	from	the

WCS	and	the	object's	extrusion	direction	(its	210	group).	When	working	with
objects	that	are	drawn	using	coordinate	systems	other	than	the	WCS,	you	may
need	to	convert	the	points	to	the	WCS	or	to	the	current	UCS	by	using	the	trans
function.

When	writing	functions	to	process	entity	lists,	make	sure	the	function	logic	is
independent	of	the	order	of	the	sublists;	use	assoc	to	guarantee	this.	The
assoc	function	searches	a	list	for	a	group	of	a	specified	type.	The	following
code	returns	the	object	type	"LINE"	(0)	from	the	list	entl.

(cdr	(assoc	0	entl))

If	the	DXF	group	code	specified	is	not	present	in	the	list	(or	if	it	is	not	a	valid
DXF	group),	assoc	returns	nil.

Warning Before	performing	an	entget	on	vertex	entities,	you	should	read	or
write	the	polyline	entity's	header.	If	the	most	recently	processed	polyline	entity	is
different	from	the	one	to	which	the	vertex	belongs,	width	information	(the	40
and	41	groups)	can	be	lost.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Modifying	an	Entity
	
	
	

The	entmod	function	modifies	an	entity.	It	passes	a	list	that	has	the	same	format
as	a	list	returned	by	entget	but	with	some	of	the	entity	group	values
(presumably)	modified	by	the	application.	This	function	complements	entget.
The	primary	mechanism	by	which	an	AutoLISP	application	updates	the	database
is	by	retrieving	an	entity	with	entget,	modifying	its	entity	list,	and	then
passing	the	list	back	to	the	database	with	entmod.

The	following	code	fragment	retrieves	the	definition	data	of	the	first	entity	in	the
drawing	and	changes	its	layer	property	to	MYLAYER.

(setq	en	(entnext))					;	Sets	en	to	first	entity	name	

																								;	in	the	drawing.

(setq	ed	(entget	en))			;	Sets	ed	to	the	entity	data	

																								;	for	entity	name	en.

(setq	ed	

		(subst		(cons	8	"MYLAYER")

				(assoc	8	ed)								;	Changes	the	layer	group	in	ed.

				ed																		;	to	layer	MYLAYER.

)	

)	

(entmod	ed)													;	Modifies	entity	en's	layer	in	

																								;	the	drawing.

There	are	restrictions	on	the	changes	to	the	database	that	entmod	can	make;
entmodcannot	change	the	following:

The	entity's	type	or	handle.

Internal	fields.	(Internal	fields	are	the	values	that	AutoCAD	assigns	to
certain	group	codes:	-2,	entity	name	reference;	-1,	entity	name;	5,	entity
handle.)	Any	attempt	to	change	an	internal	field—for	example,	the	main
entity	name	in	a	seqend	subentity	(group	-2)—is	ignored.

Viewport	entities.	An	attempt	to	change	a	viewport	entity	causes	an
error.

Other	restrictions	apply	when	modifying	dimensions	and	hatch	patterns.

AutoCAD	must	recognize	all	objects	(except	layers)	that	the	entity	list	refers	to.
The	name	of	any	text	style,	linetype,	shape,	or	block	that	appears	in	an	entity	list
must	be	defined	in	the	current	drawing	before	the	entity	list	is	passed	to
entmod.	There	is	one	exception:	entmod	accepts	new	layer	names.

If	the	entity	list	refers	to	a	layer	name	that	has	not	been	defined	in	the	current
drawing,	entmod	creates	a	new	layer.	The	attributes	of	the	new	layer	are	the
standard	default	values	used	by	the	New	option	of	the	AutoCAD	LAYER
command.

The	entmod	function	can	modify	subentities	such	as	polyline	vertices	and	block
attributes.

If	you	use	entmod	to	modify	an	entity	in	a	block	definition,	this	affects	all
INSERT	or	XREF	references	to	that	block.	Also,	entities	in	block	definitions
cannot	be	deleted	by	entdel.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Adding	an	Entity	to	a	Drawing
	
	
	

An	application	can	add	an	entity	to	the	drawing	database	by	calling	the
entmake	function.	Like	that	of	entmod,	the	argument	to	entmake	is	a	list
whose	format	is	similar	to	that	returned	by	entget.	The	new	entity	that	the	list
describes	is	appended	to	the	drawing	database	(it	becomes	the	last	entity	in	the
drawing).	If	the	entity	is	a	complex	entity	(an	old-style	polyline	or	a	block),	it	is
not	appended	to	the	database	until	it	is	complete.

The	following	code	fragment	creates	a	circle	on	the	MYLAYER	layer:

(entmake	'((0	.	"CIRCLE")							;	Object	type	

										(8	.	"MYLAYER")							;	Layer	

										(10	5.0	7.0	0.0)						;	Center	point	

										(40	.	1.0)												;	Radius	

))

The	following	entmake	restrictions	apply	to	all	entities:

The	first	or	second	member	in	the	list	must	specify	the	entity	type.	The
type	must	be	a	valid	DXF	group	code.	If	the	first	member	does	not
specify	the	type,	it	can	specify	only	the	name	of	the	entity:	group	-1	(the
name	is	not	saved	in	the	database).

AutoCAD	must	recognize	all	objects	that	the	entity	list	refers	to.	There	is
one	exception:	entmake	accepts	new	layer	names.

Any	internal	fields	passed	to	entmake	are	ignored.

entmake	cannot	create	viewport	entities.

For	entity	types	introduced	in	AutoCAD	Release	13	and	later	releases,	you	must
also	specify	subclass	markers	(DXF	group	code	100)	when	creating	the	entity.
All	AutoCAD	entities	have	the	AcDbEntity	subclass	marker,	and	this	must	be
explicitly	included	in	the	entmake	list.	In	addition,	one	or	more	subclass

marker	entries	are	required	to	identify	the	specific	sub-entity	type.	These	entries
must	follow	group	code	0	and	must	precede	group	codes	that	are	specifically
used	to	define	entity	properties	in	the	entmake	list.	For	example,	the	following
is	the	minimum	code	required	to	entmake	an	MTEXT	entity:

(entmake	'(

	(0	.	"MTEXT")

	(100	.	"AcDbEntity")			;	Required	for	all	post-R12	entities.

	(8	.	"ALAYER")

	(100	.	"AcDbMText")				;	Identifies	the	entity	as	MTEXT.

	(10	4.0	4.0	0.0)

	(1	.	"Some\\Ptext")

)

)

The	following	table	identifies	the	entities	that	do	not	require	subentity	marker
entries	in	the	list	passed	to	entmake:

DXF	names	of	entities	introduced

prior	to	AutoCAD	Release	13

3DFACE ARC

ATTDEF ATTRIB

CIRCLE DIMENSION

INSERT LINE

POINT POLYLINE	(old-style)

SEQEND SHAPE

SOLID TEXT

TRACE VERTEX

VIEWPORT 	

The	entmake	function	verifies	that	a	valid	layer	name,	linetype	name,	and
color	are	supplied.	If	a	new	layer	name	is	introduced,	entmake	automatically
creates	the	new	layer.	The	entmake	function	also	checks	for	block	names,
dimension	style	names,	text	style	names,	and	shape	names,	if	the	entity	type
requires	them.	The	function	fails	if	it	cannot	create	valid	entities.	Objects	created
on	a	frozen	layer	are	not	regenerated	until	the	layer	is	thawed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Creating	Complex	Entities
	
	
	

To	create	a	complex	entity	(an	old-style	polyline	or	a	block),	you	make	multiple
calls	to	entmake,	using	a	separate	call	for	each	subentity.	When	entmake	first
receives	an	initial	component	for	a	complex	entity,	it	creates	a	temporary	file	in
which	to	gather	the	definition	data	and	extended	data,	if	present.	(See	Extended
Data	-	xdata	.)	For	each	subsequent	entmake	call,	the	function	checks	if	the
temporary	file	exists.	If	it	does,	the	new	subentity	is	appended	to	the	file.	When
the	definition	of	the	complex	entity	is	complete	(that	is,	when	entmake
receives	an	appropriate	seqend	or	endblk	subentity),	the	entity	is	checked	for
consistency;	if	valid,	it	is	added	to	the	drawing.	The	file	is	deleted	when	the
complex	entity	is	complete	or	when	its	creation	has	been	canceled.

No	portion	of	a	complex	entity	is	displayed	on	your	drawing	until	its	definition
is	complete.	The	entity	does	not	appear	in	the	drawing	database	until	the	final
seqend	or	endblk	subentity	has	been	passed	to	entmake	.	The	entlast
function	cannot	retrieve	the	most	recently	created	subentity	for	a	complex	entity
that	has	not	been	completed.	You	can	cancel	the	creation	of	a	complex	entity	by
entering	entmake	with	no	arguments.	This	clears	the	temporary	file	and	returns
nil.

As	the	previous	paragraphs	imply,	entmake	can	construct	only	one	complex
entity	at	a	time.	If	a	complex	entity	is	being	created	andentmake	receives
invalid	data	or	an	entity	that	is	not	an	appropriate	subentity,	both	the	invalid
entity	and	the	entire	complex	entity	are	rejected.	You	can	explicitly	cancel	the
creation	of	a	complex	entity	by	calling	entmake	with	no	arguments.

The	following	example	contains	five	entmake	functions	that	create	a	single
complex	entity,	an	old-style	polyline.	The	polyline	has	a	linetype	of	DASHED
and	a	color	of	BLUE.	It	has	three	vertices	located	at	coordinates	(1,1,0),	(4,6,0),
and	(3,2,0).	All	other	optional	definition	data	assume	default	values.	(For	this
example	to	work	properly,	the	linetype	DASHED	must	be	loaded.)

(entmake	'((0	.	"POLYLINE")				;	Object	type

										(62	.	5)													;	Color

										(6	.	"dashed")							;	Linetype

										(66	.	1)													;	Vertices	follow

))

(entmake	'((0	.	"VERTEX")						;	Object	type

										(10	1.0	1.0	0.0)					;	Start	point

))

(entmake	'((0	.	"VERTEX")						;	Object	type

										(10	4.0	6.0	0.0)					;	Second	point

))

(entmake	'((0	.	"VERTEX")						;	Object	type

										(10	3.0	2.0	0.0)					;	Third	point

))

(entmake	'((0	.	"SEQEND")))				;	Sequence	end	

When	defining	dotted	pairs,	as	in	the	above	example,	there	must	be	a	space	on
both	sides	of	the	dot.	Otherwise,	you	will	get	an	invalid	dotted	pair	error
message.

Block	definitions	begin	with	a	block	entity	and	end	with	an	endblk	subentity.
Newly	created	blocks	are	automatically	entered	into	the	symbol	table	where	they
can	be	referenced.	Block	definitions	cannot	be	nested,	nor	can	they	reference
themselves.	A	block	definition	can	contain	references	to	other	block	definitions.

Note Before	you	use	entmake	to	create	a	block,	you	should	use	tblsearch	to
ensure	that	the	name	of	the	new	block	is	unique.	The	entmake	function	does
not	check	for	name	conflicts	in	the	block	definitions	table,	so	it	can	redefine
existing	blocks.	See	Symbol	Table	and	Dictionary	Access	for	information	on
using	tblsearch.

Block	references	can	include	an	attributes-follow	flag	(group	66).	If	present	and
equal	to	1,	a	series	of	attribute	(attrib)	entities	is	expected	to	follow	the	insert
object.	The	attribute	sequence	is	terminated	by	a	seqend	subentity.

Old-style	polyline	entities	always	include	a	vertices-follow	flag	(also	group	66).
The	value	of	this	flag	must	be	1,	and	the	flag	must	be	followed	by	a	sequence	of
vertex	entities,	terminated	by	a	seqend	subentity.

Applications	can	represent	polygons	with	an	arbitrarily	large	number	of	sides	in
polyface	meshes.	However,	the	AutoCAD	entity	structure	imposes	a	limit	on	the
number	of	vertices	that	a	given	face	entity	can	specify.	You	can	represent	more
complex	polygons	by	dividing	them	into	triangular	wedges.	AutoCAD
represents	triangular	wedges	as	four-vertex	faces	where	two	adjacent	vertices

have	the	same	value.	Their	edges	should	be	made	invisible	to	prevent	visible
artifacts	of	this	subdivision	from	being	drawn.	The	PFACE	command	performs
this	subdivision	automatically,	but	when	applications	generate	polyface	meshes
directly,	the	applications	must	do	this	themselves.

The	number	of	vertices	per	face	is	the	key	parameter	in	this	subdivision	process.
The	PFACEVMAX	system	variable	provides	an	application	with	the	number	of
vertices	per	face	entity.	This	value	is	read-only	and	is	set	to	4.

Complex	entities	can	exist	in	either	model	space	or	paper	space,	but	not	both.	If
you	have	changed	the	current	space	by	invoking	either	MSPACE	or	PSPACE
(with	command)	while	a	complex	entity	is	being	constructed,	a	subsequent	call
to	entmake	cancels	the	complex	entity.	This	can	also	occur	if	the	subentity	has
a	67	group	whose	value	does	not	match	the	67	group	of	the	entity	header.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Working	with	Blocks
	
	
	

There	is	no	direct	method	for	an	application	to	check	whether	a	block	listed	in
the	BLOCK	table	is	actually	referenced	by	an	insert	object	in	the	drawing.	You
can	use	the	following	code	to	scan	the	drawing	for	instances	of	a	block
reference:

(ssget	"x"	'((2	.	"BLOCKNAME")))

You	must	also	scan	each	block	definition	for	instances	of	nested	blocks.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Entity	Data	Functions	>	

Anonymous	Blocks
	
	
	

The	block	definitions	(BLOCK)	table	in	a	drawing	can	contain	anonymous
blocks	(also	known	as	unnamed	blocks),	that	AutoCAD	creates	to	support	hatch
patterns	and	associative	dimensioning.	The	entmake	function	can	create
anonymous	blocks	other	than	*Dnnn	(dimensions)	and	*Xnnn	(hatch	patterns).
Unreferenced	anonymous	blocks	are	purged	from	the	BLOCK	definition	table
when	a	drawing	is	opened.	Referenced	anonymous	blocks	(those	that	have	been
inserted)	are	not	purged.	You	can	use	entmake	to	create	a	block	reference
(insert	object)	to	an	anonymous	block.	(You	cannot	pass	an	anonymous	block	to
the	INSERT	command.)	Also,	you	can	use	entmake	to	redefine	the	block.	You
can	modify	the	entities	in	a	block	(but	not	the	block	object	itself)	with	entmod.

The	name	(group	2)	of	an	anonymous	block	created	by	AutoLISP	or	ObjectARX
has	the	form	*Unnn,	where	nnn	is	a	number	generated	by	AutoCAD.	Also,	the
low-order	bit	of	an	anonymous	block's	block	type	flag	(group	70)	is	set	to	1.
When	entmake	creates	a	block	whose	name	begins	with	*	and	whose
anonymous	bit	is	set,	AutoCAD	treats	this	as	an	anonymous	block	and	assigns	it
a	name.	Any	characters	following	the	*	in	the	name	string	passed	to	entmake
are	ignored.

Note Anonymous	block	names	do	not	remain	constant.	Although	a	referenced
anonymous	block	becomes	permanent,	the	numeric	portion	of	its	name	can
change	between	drawing	sessions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	

Entity	Data	Functions	and	the	Graphics	Screen
	
	
	

Changes	to	the	drawing	made	by	the	entity	data	functions	are	reflected	on	the
graphics	screen,	provided	the	entity	being	deleted,	undeleted,	modified,	or	made
is	in	an	area	and	on	a	layer	that	is	currently	visible.	There	is	one	exception:
When	entmod	modifies	a	subentity,	it	does	not	update	the	image	of	the	entire
(complex)	entity.	If,	for	example,	an	application	modifies	100	vertices	of	an	old-
style	polyline	with	100	calls	to	entmod,	the	time	required	to	recalculate	and
redisplay	the	entire	polyline	is	unacceptably	slow.	Instead,	an	application	can
perform	a	series	of	subentity	modifications,	and	then	redisplay	the	entire	entity
with	a	single	call	to	the	entupd	function.

Consider	the	following:	If	the	first	entity	in	the	current	drawing	is	an	old-style
polyline	with	several	vertices,	the	following	code	modifies	the	second	vertex	of
the	polyline	and	regenerates	its	screen	image.

(setq	e1	(entnext))							;	Sets	e1	to	the	polyline's	entity	name.

(setq	v1	(entnext	e1))				;	Sets	v1	to	its	first	vertex.

(setq	v2	(entnext	v1))				;	Sets	v2	to	its	second	vertex.

(setq	v2d	(entget	v2))				;	Sets	v2d	to	the	vertex	data.

(setq	v2d	

		(subst	

				'(10	1.0	2.0	0.0)

					(assoc	10	v2d)							;	Changes	the	vertex's	location	in	v2d

						v2d																	;	to	point	(1,2,0).

)

)

(entmod	v2d)														;	Moves	the	vertex	in	the	drawing.

(entupd	e1)															;	Regenerates	the	polyline	entity	e1.

The	argument	to	entupd	can	specify	either	a	main	entity	or	a	subentity.	In
either	case,	entupd	regenerates	the	entire	entity.	Although	its	primary	use	is	for
complex	entities,	entupd	can	regenerate	any	entity	in	the	current	drawing.

Note To	ensure	that	all	instances	of	the	block	references	are	updated,	you	must

regenerate	the	drawing	by	invoking	the	AutoCAD	REGEN	command	(with
command).	The	entupd	function	is	not	sufficient	if	the	modified	entity	is	in	a
block	definition.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	

Old-Style	Polylines	and	Lightweight	Polylines
	
	
	

A	lightweight	polyline	(lwpolyline)	is	defined	in	the	drawing	database	as	a
single	graphic	entity.	The	lwpolyline	differs	from	the	old-style	polyline,	which	is
defined	as	a	group	of	subentities.	Lwpolylines	display	faster	and	consume	less
disk	space	and	RAM.

As	of	Release	14	of	AutoCAD,	3D	polylines	are	always	created	as	old-style
polyline	entities,	and	2D	polylines	are	created	as	lwpolyline	entities,	unless	they
are	curved	or	fitted	with	the	PEDIT	command.	When	a	drawing	from	an	earlier
release	is	opened	in	Release	14	or	a	later	release,	all	2D	polylines	convert	to
lwpolylines	automatically,	unless	they	have	been	curved	or	fitted	or	contain
xdata.

Processing	Curve-Fit	and	Spline-Fit	Polylines

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Old-Style	Polylines	and
Lightweight	Polylines	>	

Processing	Curve-Fit	and	Spline-Fit	Polylines
	
	
	

When	an	AutoLISP	application	uses	entnext	to	step	through	the	vertices	of	an
old-style	polyline,	it	might	encounter	vertices	that	were	not	created	explicitly.
Auxiliary	vertices	are	inserted	automatically	by	the	PEDIT	command's	Fit	and
Spline	options.	You	can	safely	ignore	them,	because	changes	to	these	vertices
will	be	discarded	the	next	time	the	user	applies	PEDIT	to	fit	or	to	spline	the
polyline.

The	old-style	polyline	entity's	group	70	flags	indicate	whether	the	polyline	has
been	curve-fit	(bit	value	2)	or	spline-fit	(bit	value	4).	If	neither	bit	is	set,	all	the
polyline's	vertices	are	regular	user-defined	vertices.	However,	if	the	curve-fit	bit
(2)	is	set,	alternating	vertices	of	the	polyline	have	the	bit	value	1	set	in	their	70
group	to	indicate	that	they	were	inserted	by	the	curve-fitting	process.	If	you	use
entmod	to	move	the	vertices	of	such	a	polyline	with	the	intent	of	refitting	the
curve	by	means	of	PEDIT,	ignore	these	vertices.

Likewise,	if	the	old-style	polyline	entity's	spline-fit	flag	bit	(bit	4)	is	set,	an
assortment	of	vertices	will	be	found—some	with	flag	bit	1	(inserted	by	curve
fitting	if	system	variable	SPLINESEGS	was	negative),	some	with	bit	value	8
(inserted	by	spline	fitting),	and	all	others	with	bit	value	16	(spline	frame-control
point).	Here	again,	if	you	use	entmod	to	move	the	vertices	and	you	intend	to
refit	the	spline	afterward,	move	only	the	control-point	vertices.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	

Non-Graphic	Object	Handling
	
	
	

AutoCAD	uses	two	types	of	non-graphical	objects:	dictionary	objects	and
symbol	table	objects.	Although	there	are	similarities	between	these	object	types,
they	are	handled	differently.

All	object	types	are	supported	by	the	entget,	entmod,	entdel,	and
entmake	functions,	although	object	types	individually	dictate	their
participation	in	these	functions	and	may	refuse	any	or	all	processing.	With
respect	to	AutoCAD	built-in	objects,	the	rules	apply	for	symbol	tables	and	for
dictionary	objects.	For	more	information,	see	Symbol	Table	Objects	and
Dictionary	Objects.

All	rules	and	restrictions	that	apply	to	graphic	objects	apply	to	non-graphic
objects	as	well.	Non-graphic	objects	cannot	be	passed	to	the	entupd	function.

When	using	entmake,	the	object	type	determines	where	the	object	will	reside.
For	example,	if	a	layer	object	is	passed	to	entmake,	it	automatically	goes	to	the
layer	symbol	table.	If	a	graphic	object	is	passed	to	entmake,	it	will	reside	in	the
current	space	(model	or	paper).

Symbol	Table	Objects
Dictionary	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Non-Graphic	Object
Handling	>	

Symbol	Table	Objects
	
	
	

The	following	rules	apply	to	symbol	tables:

Symbol	table	entries	can	be	created	through	entmake	with	few
restrictions,	other	than	being	valid	record	representations,	and	name
conflicts	can	only	occur	in	the	VPORT	table.	*ACTIVE	entries	cannot
be	created.

Symbol	table	entries	cannot	be	deleted	with	entdel.

The	object	states	of	symbol	tables	and	symbol	table	entries	may	be
accessed	with	entget	by	passing	the	entity	name.	The	tblobjname
function	can	be	used	to	retrieve	the	entity	name	of	a	symbol	table	entry.

Symbol	tables	themselves	cannot	be	created	with	entmake;	however,
symbol	table	entries	can	be	created	with	entmake.

Handle	groups	(5,	105)	cannot	be	changed	in	entmod,	nor	specified	in
entmake.

Symbol	table	entries	that	are	not	in	the	APPID	table	can	have	many	of
their	fields	modified	with	entmod.	To	be	passed	to	entmod,	a	symbol
table	record	list	must	include	its	entity	name,	which	can	be	obtained
from	entget	but	not	from	the	tblsearch	and	tblnext	functions.
The	70	group	of	symbol	table	entries	is	ignored	in	entmod	and
entmake	operations.

Renaming	symbol	table	entries	to	duplicate	names	is	not	acceptable,	except	for
the	VPORT	symbol	table.	The	following	entries	cannot	be	modified	or	renamed,
except	that	most	LAYER	entries	can	be	renamed	and	xdata	can	be	modified	on
all	symbol	table	entries.

Symbol	table	entries	that	cannot	be	modified	or	renamed

Table Entry	name

VPORT *ACTIVE

LINETYPE CONTINUOUS

LAYER Entries	cannot	be	modified,	except	for	xdata,
but	renaming	is	allowed

The	following	entries	cannot	be	renamed,	but	are	otherwise	modifiable:

Symbol	table	entries	that	cannot	be	renamed

Table Entry	name

STYLE STANDARD

DIMSTYLE STANDARD

BLOCKS *MODEL_SPACE

BLOCKS *PAPER_SPACE

APPID No	entries	can	be
renamed

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Object	Handling	>	Non-Graphic	Object
Handling	>	

Dictionary	Objects
	
	
	

The	following	rules	apply	to	dictionary	objects:

Dictionary	objects	can	be	examined	with	entget	and	their	xdata
modified	with	entmod.	Their	entries	cannot	be	altered	with	entmod.
All	access	to	their	entries	are	made	through	the	dictsearch	and
dictnext	functions.

Dictionary	entry	contents	cannot	be	modified	through	entmod,
although	xdata	can	be	modified.

Dictionary	entries	that	begin	with	ACAD*	cannot	be	renamed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	

Extended	Data	-	xdata
	
	
	

Several	AutoLISP	functions	are	provided	to	handle	extended	data	(xdata),	which
is	created	by	applications	written	with	ObjectARX	or	AutoLISP.	If	an	entity
contains	xdata,	it	follows	the	entity's	regular	definition	data.

You	can	retrieve	an	entity's	extended	data	by	calling	entget.	The	entget
function	retrieves	an	entity's	regular	definition	data	and	the	xdata	for	those
applications	specified	in	the	entget	call.

When	xdata	is	retrieved	with	entget,	the	beginning	of	extended	data	is
indicated	by	a	-3	code.	The	-3	code	is	in	a	list	that	precedes	the	first	1001	group.
The	1001	group	contains	the	application	name	of	the	first	application	retrieved,
as	shown	in	the	table	and	as	described	in	the	topics	in	this	section.

Group	codes	for	regular	and	extended	data

Group	code Field Type	of	data

(-1,	-2
(0-239
)

Entity	name)
Regular	definition	data	fields)
.
.
.

Normal	entity
definition	data

(-3
(1001
(1000,

Extended	data	sentinel
Registered	application	name	1)
XDATA	fields)

Extended	data

1002-1071
(1001
(1000,
1002-1071
(1001

.

.

.
Registered	application	name	2)
XDATA	fields)
.
.
.
Registered	application	name	3)
.
.

Organization	of	Extended	Data
Registration	of	an	Application
Retrieval	of	Extended	Data
Attachment	of	Extended	Data	to	an	Entity
Management	of	Extended	Data	Memory	Use
Handles	in	Extended	Data

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Organization	of	Extended	Data
	
	
	

Extended	data	consists	of	one	or	more	1001	groups,	each	of	which	begins	with	a
unique	application	name.	The	xdata	groups	returned	by	entget	follow	the
definition	data	in	the	order	in	which	they	are	saved	in	the	database.

Within	each	application's	group,	the	contents,	meaning,	and	organization	of	the
data	are	defined	by	the	application.	AutoCAD	maintains	the	information	but
does	not	use	it.	The	table	also	shows	that	the	group	codes	for	xdata	are	in	the
range	1000-1071.	Many	of	these	group	codes	are	for	familiar	data	types,	as
follows:

String

1000.	Strings	in	extended	data	can	be	up	to	255	bytes	long	(with	the	256th
byte	reserved	for	the	null	character).

Application	Name

1001	(also	a	string	value).	Application	names	can	be	up	to	31	bytes	long	(the
32nd	byte	is	reserved	for	the	null	character)	and	must	adhere	to	the	rules	for
symbol	table	names	(such	as	layer	names).	An	application	name	can	contain
letters,	digits,	and	the	special	characters	$	(dollar	sign),	-	(hyphen),	and	_
(underscore).	It	cannot	contain	spaces.

Layer	Name

1003.	Name	of	a	layer	associated	with	the	xdata.

Database	-Handle

1005.	Handle	of	an	entity	in	the	drawing	database.

3D	Point

1010.	Three	real	values,	contained	in	a	point.

Real

1040.	A	real	value.

Integer

1070.	A	16-bit	integer	(signed	or	unsigned).

Long

1071.	A	32-bit	signed	(long)	integer.	If	the	value	that	appears	in	a	1071
group	is	a	short	integer	or	real	value,	it	is	converted	to	a	long	integer;	if	it
is	invalid	(for	example,	a	string),	it	is	converted	to	a	long	zero	(0L).

Note AutoLISP	manages	1071	groups	as	real	values.	If	you	use	entget	to
retrieve	an	entity's	definition	list	that	contains	a	1071	group,	the	value	is
returned	as	a	real,	as	shown	in	the	following	example:
(1071	.	12.0)
If	you	want	to	create	a	1071	group	in	an	entity	with	entmake	or	entmod,
you	can	use	either	a	real	or	an	integer	value,	as	shown	in	the	following
example:
(entmake	'((.....	(1071	.	12))))

(entmake	'((.....	(1071	.	12.0))))

(entmake	'((.....	(1071	.	65537.0))))

(entmake	'((.....	(1071	.	65537))))

But	AutoLISP	still	returns	the	group	value	as	a	real:
(entmake	'((.....	(1071	.	65537))))

The	preceding	statement	returns	the	following:
(1071	.	65537.0)

ObjectARX	always	manages	1071	groups	as	long	integers.

Several	other	extended	data	groups	have	special	meanings	in	this	context	(if	the
application	chooses	to	use	them):

Control	String

1002.	An	xdata	control	string	can	be	either	"{"	or	"}".	These	braces	enable
the	application	to	organize	its	data	by	subdividing	it	into	lists.	The	left	brace
begins	a	list,	and	the	right	brace	terminates	the	most	recent	list.	Lists	can	be
nested.

Note If	a	1001	group	appears	within	a	list,	it	is	treated	as	a	string	and	does	not
begin	a	new	application	group.

Binary	Data

1004.	Binary	data	that	is	organized	into	variable-length	chunks,	which	can	be
handled	in	ObjectARX	with	the	ads_binary	structure.	The	maximum
length	of	each	chunk	is	127	bytes.

Note AutoLISP	cannot	directly	handle	binary	chunks,	so	the	same	precautions
that	apply	to	long	(1071)	groups	apply	to	binary	groups	as	well.

World	Space	Position

1011.	Unlike	a	simple	3D	point,	the	WCS	coordinates	are	moved,	scaled,
rotated,	and	mirrored	along	with	the	parent	entity	to	which	the	extended	data
belongs.	The	WCS	position	is	also	stretched	when	the	STRETCH	command
is	applied	to	the	parent	entity	and	when	this	point	lies	within	the	select
window.

World	Space	-Displacement

1012.	A	3D	point	that	is	scaled,	rotated,	or	mirrored	along	with	the	parent,
but	not	stretched	or	moved.

World	-Direction

1013.	A	3D	point	that	is	rotated	or	mirrored	along	with	the	parent,	but	not
scaled,	stretched,	or	moved.	The	WCS	direction	is	a	normalized	displacement
that	always	has	a	unit	length.

Distance

1041.	A	real	value	that	is	scaled	along	with	the	parent	entity.

Scale	Factor

1042.	Also	a	real	value	that	is	scaled	along	with	the	parent.

The	DXF	group	codes	for	xdata	are	also	described	in	the	DXF	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Registration	of	an	Application
	
	
	

To	be	recognized	by	AutoCAD,	an	application	must	register	the	name	or	names
that	it	uses.	Application	names	are	saved	with	the	extended	data	of	each	entity
that	uses	them,	and	also	in	the	APPID	table.	Registration	is	done	with	the
regapp	function,	which	specifies	a	string	to	use	as	an	application	name.	If	it
successfully	adds	the	name	to	APPID,	it	returns	the	name	of	the	application;
otherwise	it	returns	nil.	A	result	of	nil	indicates	that	the	name	is	already
present	in	the	symbol	table.	This	is	not	an	actual	error	condition	but	an	expected
return	value,	because	the	application	name	needs	to	be	registered	only	once	per
drawing.

To	register	itself,	an	application	should	first	check	that	its	name	is	not	already	in
the	APPID	table.	If	the	name	is	not	there,	the	application	must	register	it.
Otherwise,	it	can	simply	go	ahead	and	use	the	data,	as	described	later	in	this
section.

The	following	fragment	shows	the	typical	use	of	regapp.	(The	tblsearch
function	is	described	in	Symbol	Table	and	Dictionary	Access.)

(setq	appname	"MYAPP_2356")								;	Unique	application	name.

(if		(tblsearch	"appid"	appname)			;	Checks	if	already	registered.

		(princ	(strcat	

				"\n"	appname	"	already	registered.	"))

		(if	(=		(regapp	appname)	nil)				;	Some	other	problem.

				(princ	(strcat	

						"\nCan't	register	XDATA	for	"	appname	".	"))

)

)

The	regapp	function	provides	a	measure	of	security,	but	it	cannot	guarantee
that	two	separate	applications	have	not	chosen	the	same	name.	One	way	of
ensuring	this	is	to	adopt	a	naming	scheme	that	uses	the	company	or	product
name	and	a	unique	number	(like	your	telephone	number	or	the	current	date	and

time).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Retrieval	of	Extended	Data
	
	
	

An	application	can	call	entget	to	obtain	the	xdata	that	it	has	registered.	The
entget	function	can	return	both	the	definition	data	and	the	xdata	for	the
applications	it	requests.	It	requires	an	additional	argument,	application,	that
specifies	the	application	names.	The	names	passed	to	entget	must	correspond
to	applications	registered	by	a	previous	call	to	regapp;	they	can	also	contain
wild-card	characters.

By	default,	associative	hatch	patterns	contain	extended	data.	The	following	code
shows	the	association	list	of	this	xdata.

Command: (entget	(car	(entsel))	'("ACAD"))

Select	object: Select	an	associative	hatch

Entering	the	preceding	code	at	the	command	line	returns	a	list	that	looks
something	like	this:

((-1	.	<Entity	name:	600000c0>)	(0	.	"INSERT")	(8	.	"0")	(2	.	"*X0")

(10	0.0	0.0	0.0)	(41	.	1.0)	(42	.	1.0)	(50	.	0.0)	(43	.	1.0)	(70	.	0)	(71	.	0)

(44	.	0.0)	(45	.	0.0)	(210	0.0	0.0	1.0)	(-3	("ACAD"	(1000	.	"HATCH")

(1002	.	"{")	(1070	.	16)	(1000	.	"LINE")	(1040	.	1.0)	(1040	.	0.0)

(1002	.	"}"))))

This	fragment	shows	a	typical	sequence	for	retrieving	xdata	for	two	specified
applications.	Note	that	the	application	argument	passes	application	names
in	list	form:

(setq	working_elist	

		(entget	ent_name	

				'("MY_APP_1"	"SOME_OTHER")		;	Only	xdata	from	"MY_APP_1"	

)																													;	and	"SOME_OTHER"	is	retrieved.

)	

(if	working_elist

		(progn

				...																									;	Updates	working	entity	groups.

				(entmod	working_elist)						;	Only	xdata	from	registered

)																													;	applications	still	in	the

)																															;	working_elist	list	are	modified.

As	the	sample	code	shows,	you	can	modify	xdata	retrieved	by	entget	by	using
a	subsequent	call	to	entmod,	just	as	you	can	use	entmod	to	modify	normal
definition	data.	You	can	also	create	xdata	by	defining	it	in	the	entity	list	passed
to	entmake.

Returning	the	extended	data	of	only	those	applications	specifically	requested
protects	one	application	from	corrupting	another	application's	data.	It	also
controls	the	amount	of	memory	that	an	application	needs	to	use	and	simplifies
the	xdata	processing	that	an	application	needs	to	perform.

Note Because	the	strings	passed	by	application	can	include	wild-card
characters,	an	application	name	of	"*"	will	cause	entget	to	return	all
extended	data	attached	to	an	entity.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Attachment	of	Extended	Data	to	an	Entity
	
	
	

You	can	use	xdata	to	store	any	type	of	information	you	want.	For	example,	draw
an	entity	(such	as	a	line	or	a	circle),	then	enter	the	following	code	to	attach	xdata
to	the	entity:

(setq	lastent	(entget	(entlast)))	;	Gets	the	association

																																		;	list	of	definition	data

																																		;	for	the	last	entity.

(regapp	"NEWDATA")																;	Registers	the

																																		;	application	name.

(setq	exdata																						;	Sets	the	variable

	'((-3	("NEWDATA"																	;	exdata	equal	to	the

		(1000	.	"This	is	a	new	thing!")	;	new	extended	data—

)))																													;	in	this	case,	a	text

)																																	;	string.

(setq	newent		

		(append	lastent	exdata))		;	Appends	new	data	list	to	

																												;	entity's	list.

(entmod	newent)													;	Modifies	the	entity	with	the	new	

																												;	definition	data.

To	verify	that	your	new	xdata	has	been	attached	to	the	entity,	enter	the	following
code	and	select	the	object:

(entget	(car	(entsel))	'("NEWDATA"))

This	example	shows	the	basic	method	for	attaching	extended	data	to	an	entity.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Management	of	Extended	Data	Memory	Use
	
	
	

Extended	data	is	currently	limited	to	16K	per	entity.	Because	the	xdata	of	an
entity	can	be	created	and	maintained	by	multiple	applications,	problems	can
result	when	the	size	of	the	xdata	approaches	its	limit.	AutoLISP	provides	two
functions,	xdsize	and	xdroom,	to	assist	in	managing	the	memory	that	xdata
occupies.	When	xdsize	is	passed	a	list	of	xdata,	it	returns	the	amount	of
memory	(in	bytes)	that	the	data	will	occupy.	When	xdroom	is	passed	the	name
of	an	entity,	it	returns	the	remaining	number	of	free	bytes	that	can	still	be
appended	to	the	entity.

The	xdsize	function	reads	an	extended	data	list,	which	can	be	large.	This
function	can	be	slow,	so	it	is	not	recommended	that	you	call	it	frequently.	A
better	approach	is	to	use	it	(in	conjunction	with	xdroom)	in	an	error	handler.	If
a	call	to	entmod	fails,	you	can	use	xdsize	and	xdroom	to	find	out	whether
the	call	failed	because	the	entity	didn't	have	enough	room	for	the	xdata.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Extended	Data	-	xdata	>	

Handles	in	Extended	Data
	
	
	

Extended	data	can	contain	handles	(group	1005)	to	save	relational	structures
within	a	drawing.	One	entity	can	reference	another	by	saving	the	other's	handle
in	its	xdata.	The	handle	can	be	retrieved	later	from	xdata	and	then	passed	to
handent	to	obtain	the	other	entity.	Because	more	than	one	entity	can	reference
another,	xdata	handles	are	not	necessarily	unique.	The	AUDIT	command	does
require	that	handles	in	extended	data	either	be	NULL	or	valid	entity	handles
(within	the	current	drawing).	The	best	way	to	ensure	that	xdata	entity	handles	are
valid	is	to	obtain	a	referenced	entity's	handle	directly	from	its	definition	data	by
means	of	entget.	The	handle	value	is	in	group	5.

When	you	reference	entities	in	other	drawings	(for	example,	entities	that	are
attached	with	XREF),	you	can	avoid	protests	from	AUDIT	by	using	extended
entity	strings	(group	1000)	rather	than	handles	(group	1005).	The	handles	of
cross-referenced	entities	are	either	not	valid	in	the	current	drawing,	or	they
conflict	with	valid	handles.	However,	if	an	XREF	Attach	changes	to	an	XREF
Bind	or	is	combined	with	the	current	drawing	in	some	other	way,	it	is	up	to	the
application	to	revise	the	entity	references	accordingly.

When	drawings	are	combined	by	means	of	INSERT,	INSERT*,	XREF	Bind
(XBIND),	or	partial	DXFIN,	handles	are	translated	so	they	become	valid	in	the
current	drawing.	(If	the	incoming	drawing	did	not	employ	handles,	new	ones	are
assigned.)	Extended	entity	handles	that	refer	to	incoming	entities	are	also
translated	when	these	commands	are	invoked.

When	an	entity	is	placed	in	a	block	definition	(with	the	BLOCK	command),	the
entity	within	the	block	is	assigned	new	handles.	(If	the	original	entity	is	restored
by	means	of	OOPS,	it	retains	its	original	handles.)	The	value	of	any	xdata
handles	remains	unchanged.	When	a	block	is	exploded	(with	the	EXPLODE
command),	xdata	handles	are	translated	in	a	manner	similar	to	the	way	they	are
translated	when	drawings	are	combined.	If	the	xdata	handle	refers	to	an	entity

that	is	not	within	the	block,	it	is	unchanged.	However,	if	the	xdata	handle	refers
to	an	entity	that	is	within	the	block,	the	data	handle	is	assigned	the	value	of	the
new	(exploded)	entity's	handle.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	

Xrecord	Objects
	
	
	

Xrecord	objects	are	used	to	store	and	manage	arbitrary	data.	They	are	composed
of	DXF	group	codes	with	normal	object	groups	(that	is,	non-xdata	group	codes),
ranging	from	1	through	369	for	supported	ranges.	These	objects	are	similar	in
concept	to	xdata	but	is	not	limited	by	size	or	order.

The	following	examples	provide	methods	for	creating	and	listing	xrecord	data.

(defun	C:MAKEXRECORD(/	xrec	xname)

		;	create	the	xrecord's	data	list.

		(setq	xrec	'((0	.	"XRECORD")(100	.	"AcDbXrecord")	

				(1	.	"This	is	a	test	xrecord	list")

				(10	1.0	2.0	0.0)	(40	.	3.14159)	(50	.	3.14159)	

				(62	.	1)	(70	.	180))

)

		;	use	entmakex	to	create	the	xrecord	with	no	owner.

		(setq	xname	(entmakex	xrec))

		;	add	the	new	xrecord	to	the	named	object	dictionary.

		(dictadd	(namedobjdict)	"XRECLIST"	xname)

		(princ)

)

(defun	C:LISTXRECORD	(/	xlist)

		;	find	the	xrecord	in	the	named	object	dictionary.

		(setq	xlist	(dictsearch	(namedobjdict)	"XRECLIST"))

		;	print	out	the	xrecord's	data	list.

		(princ	xlist)

		(princ)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	

Symbol	Table	and	Dictionary	Access
	
	
	

AutoLISP	provides	functions	for	accessing	symbol	table	and	dictionary	entries.
Examples	of	the	tblnext	and	tblsearch	functions	are	provided	in	the
following	sections.	For	a	complete	list	of	the	symbol	table	and	dictionary	access
functions,	see	Symbol	Table	and	Dictionary-Handling	Functions	in	AutoLISP
Function	Synopsis	Refer	to	the	AutoLISP	Reference	for	more	detailed
information	on	the	functions	listed	in	the	Synopsis.

For	additional	information	on	non-graphic	objects	see,	Non-Graphic	Object
Handling.

Symbol	Tables
Dictionary	Entries

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Symbol	Table	and	Dictionary	Access	>	

Symbol	Tables
	
	
	

Symbol	table	entries	can	also	be	manipulated	by	the	following	functions:

entdel

entget

entmake

entmod

handent

The	tblnext	function	sequentially	scans	symbol	table	entries,	and	the
tblsearch	function	retrieves	specific	entries.	Table	names	are	specified	by
strings.	The	valid	names	are	LAYER,	LTYPE,	VIEW,	STYLE,	BLOCK,	UCS,
VPORT,	DIMSTYLE,	and	APPID.	Both	functions	return	lists	with	DXF	group
codes	that	are	similar	to	the	entity	data	returned	by	entget.

The	first	call	to	tblnext	returns	the	first	entry	in	the	specified	table.
Subsequent	calls	that	specify	the	same	table	return	successive	entries,	unless	the
second	argument	to	tblnext	(rewind)	is	nonzero,	in	which	case	tblnext
returns	the	first	entry	again.

In	the	following	example,	the	function	GETBLOCK	retrieves	the	symbol	table
entry	for	the	first	block	(if	any)	in	the	current	drawing,	and	then	displays	it	in	a
list	format.

(defun	C:GETBLOCK	(/	blk	ct)

		(setq	blk	(tblnext	"BLOCK"	1))	;	Gets	the	first	BLOCK	entry.

		(setq	ct	0)																				;	Sets	ct	(a	counter)	to	0.

		(textpage)																					;	Switches	to	the	text	screen.

		(princ	"\nResults	from	GETBLOCK:	")

		(repeat	(length	blk)											;	Repeats	for	the	number	of	

																																	;	members	in	the	list.

				(print	(nth	ct	blk))									;	Prints	a	new	line,	then	

																																	;	each	list	member.

				(setq	ct	(1+	ct))												;	Increments	the	counter	by	1.

)

		(princ)																								;	Exits	quietly.

)

Entries	retrieved	from	the	BLOCK	table	contain	a	-2	group	that	contains	the
name	of	the	first	entity	in	the	block	definition.	If	the	block	is	empty,	this	is	the
name	of	the	block's	ENDBLK	entity,	which	is	never	seen	on	occupied	blocks.	In
a	drawing	with	a	single	block	named	BOX,	a	call	to	GETBLOCK	displays	the
following.	(The	name	value	varies	from	session	to	session.)

Results	from	GETBLOCK:

(0	.	"BLOCK")

(2	.	"BOX")

(70	.	0)

(10	9.0	2.0	0.0)

(-2	.	<Entity	name:	40000126>)

As	with	tblnext,	the	first	argument	to	tblsearch	is	a	string	that	names	a
table,	but	the	second	argument	is	a	string	that	names	a	particular	symbol	in	the
table.	If	the	symbol	is	found,	tblsearch	returns	its	data.	This	function	has	a
third	argument,	setnext,	that	you	can	use	to	coordinate	operations	with
tblnext.	If	setnext	is	nil,	the	tblsearch	call	has	no	effect	on
tblnext,	but	if	setnext	is	non-nil,	the	next	call	to	tblnext	returns	the
table	entry	following	the	entry	found	by	tblsearch.

The	setnext	option	is	useful	when	you	are	handling	the	VPORT	symbol	table,
because	all	viewports	in	a	particular	viewport	configuration	have	the	same	name
(such	as	*ACTIVE).

If	the	VPORT	symbol	table	is	accessed	when	TILEMODE	is	turned	off,	any
changes	have	no	visible	effect	until	TILEMODE	is	turned	on.	Do	not	confuse
VPORTS,which	is	described	by	the	VPORT	symbol	table	with	paper	space
viewport	entities.

The	following	processes	all	viewports	in	the	4VIEW	configuration:

(setq	v	(tblsearch	"VPORT"	"4VIEW"	T))	;	Finds	first	VPORT	entry.

(while	(and	v	(=	(cdr	(assoc	2	v))	"4VIEW"))

		.

		.																																				;	...	Processes	entry	...	

		.

		(setq	v	(tblnext	"VPORT"))											;	Gets	next	VPORT	entry.

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Symbol	Table	and	Dictionary	Access	>	

Dictionary	Entries
	
	
	

A	dictionary	is	a	container	object,	similar	to	the	symbol	tables	in	functions.
Dictionary	entries	can	be	queried	with	the	dictsearch	and	dictnext
functions.	Each	dictionary	entry	consists	of	a	text	name	key	plus	a	hard
ownership	handle	reference	to	the	entry	object.	Dictionary	entries	may	be
removed	by	directly	passing	entry	object	names	to	the	entdel	function.	The
text	name	key	uses	the	same	syntax	and	valid	characters	as	symbol	table	names.

Accessing	AutoCAD	Groups

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Using	the	AutoLISP	Language	>	Using	AutoLISP	to
Manipulate	AutoCAD	Objects	>	Symbol	Table	and	Dictionary	Access	>	Dictionary
Entries	>	

Accessing	AutoCAD	Groups
	
	
	

The	following	is	an	example	of	one	method	for	accessing	the	entities	contained
in	a	group.	This	example	assumes	a	group	named	G1	exists	in	the	current
drawing.

(setq	objdict	(namedobjdict))

(setq	grpdict	(dictsearch	objdict	"ACAD_GROUP"))

This	sets	the	grpdict	variable	to	the	entity	definition	list	of	the
ACAD_GROUP	dictionary	and	returns	the	following:

((-1	.	<Entity	name:	8dc10468>)	(0	.	"DICTIONARY")	(5	.	"D")

(102	.	"{ACAD_REACTORS")	(330	.	<Entity	name:	8dc10460>)

(102	.	"}")	(100	.	"AcDbDictionary")	(3	.	"G1")

(350	.	<Entity	name:	8dc41240>))

The	following	code	sets	the	variable	group1	to	the	entity	definition	list	of	the
G1	group:

(setq	group1	(dictsearch	(cdar	grpdict)	"G1"))

It	returns	the	following:
((-1	.	<Entity	name:	8dc10518>)	(0	.	"GROUP")	(5	.	"23")

(102	.	"{ACAD_REACTORS")	(330	.	<Entity	name:	8dc10468>)

(102	.	"}")	(100	.	"AcDbGroup")	(300	.	"line	and	circle")	(70	.	0)	(71	.	1)

(340	.	<Entity	name:	8dc10510>)(340	.	<Entity	name:	8dc10550>))

The	340	group	codes	are	the	entities	that	belong	to	the	group.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>		

Working	with	Programmable	Dialog	Boxes
	
	
	

Designing	Dialog	Boxes
With	dialog	control	language,	you	can	create	dialog	boxes.
Managing	Dialog	Boxes
You	can	use	dialog	boxes	to	respond	to	user	input.
Programmable	Dialog	Box	Reference
You	can	use	attributes	to	work	with	dialog	boxes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	

Designing	Dialog	Boxes
	
	
	

With	dialog	control	language,	you	can	create	dialog	boxes.

Dialog	boxes	are	defined	by	ASCII	files	written	in	dialog	control	language
(DCL).	The	elements	in	a	dialog	box,	such	as	buttons	and	edit	boxes,	are	known
as	tiles.	The	size	and	functionality	of	each	tile	is	controlled	by	the	tile's
attributes.	The	size	of	the	dialog	box	and	the	layout	of	its	parts	are	set
automatically	with	a	minimum	of	positioning	information.	Visual	LISP®
provides	a	tool	for	viewing	dialog	boxes,	and	provides	functions	for	controlling
dialog	boxes	from	application	programs.

This	chapter	introduces	the	elements	that	make	up	dialog	boxes.	It	explains	DCL
file	structure	and	syntax,	and	presents	sample	AutoLISP®	and	DCL	code	for	a
sample	dialog	box.	This	chapter	also	provides	some	DCL	coding	techniques	for
handling	layout	problems.

Dialog	Box	Components
Using	DCL	to	Define	Dialog	Boxes
Displaying	Dialog	Boxes	with	Visual	LISP
Adjusting	the	Layout	of	Dialog	Boxes
Design	Guidelines

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	

Dialog	Box	Components
	
	
	

The	following	figure	shows	a	standard	AutoCAD®	dialog	box,	with	some	of	its
components	labeled.	In	dialog	box	creation	and	customization	these	components
are	known	as	tiles.

A	dialog	box	consists	of	the	box	and	the	tiles	within	it.	The	basic	tile	types	are
predefined	by	the	programmable	dialog	box	(PDB)	facility.

You	can	create	complex	tiles,	called	subassemblies,	by	grouping	tiles	into	rows
and	columns,	with	or	without	an	enclosing	box	or	border.	A	row	or	column	of
tiles	is	referred	to	as	a	cluster.	Subassemblies	define	groups	of	tiles	or	clusters
that	can	be	used	in	many	dialog	boxes.	For	example,	the	OK,	Cancel,	and	Help
buttons	are	grouped	into	a	subassembly,	defined	as	a	row	(cluster)	of	three
button	tiles	and	some	spacing	separating	the	buttons.

Subassemblies	are	treated	as	single	tiles.	The	tiles	within	a	subassembly	are
called	children.	DCL	files	are	organized	in	a	tree	structure.	At	the	top	of	the	tree
is	a	(dialog)	tile	that	defines	the	dialog	box	itself.	The	following	diagram
shows	a	DCL	file	structure:

The	layout,	appearance,	and	behavior	of	a	tile	or	subassembly	are	specified	in
DCL	by	the	tile's	attributes.	For	example,	the	dialog	itself,	and	most
predefined	tile	types,	has	a	label	attribute	that	specifies	the	text	associated	with
the	tile.	The	label	of	a	dialog	box	defines	the	caption	at	the	top	of	the	dialog
box,	the	label	of	a	button	specifies	the	text	inside	the	button,	and	so	on.

DCL	also	enables	you	to	define	new	tiles,	called	prototypes,	that	are	not
necessarily	associated	with	a	specific	dialog	box.	This	is	useful	when	you	want
to	use	the	same	component	in	several	dialog	boxes.	You	can	reference	prototype
tiles	from	other	DCL	files	and	change	their	attributes	the	same	way	you	change
predefined	tiles.

Before	you	program	a	dialog	box,	plan	both	the	dialog	box	and	the	application	in
detail	before	you	code	and	debug.	The	sequence	in	which	the	data	is	entered	will
vary	with	each	user.	The	need	to	anticipate	a	variety	of	user	actions	imposes	a
program	structure	that	is	less	linear	than	conventional	programming,	but	is	more
reflective	of	the	way	users	work.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	

Using	DCL	to	Define	Dialog	Boxes
	
	
	

You	define	dialog	boxes	by	entering	DCL	descriptions	in	ASCII	text	files,	much
like	writing	AutoLISP	code.	DCL	files	have	a	.dcl	extension.	A	single	DCL	file
can	contain	the	description	of	one	or	more	dialog	boxes,	or	it	can	contain	only
prototype	tiles	and	subassemblies	for	use	by	other	DCL	files.	A	DCL	file
consists	of	the	following	three	parts,	which	can	appear	in	any	order.	Depending
on	your	application,	only	one	or	more	of	these	parts	is	required.

References	to	other	DCL	files
These	consist	of	include	directives	as	described	in	Referencing	DCL
Files.

Prototype	tile	and	subassembly	definitions
These	are	tile	definitions	you	can	refer	to	in	subsequent	tile	definitions
(including	dialog	box	definitions).

Dialog	box	definitions
These	define	the	attributes	of	tiles	or	override	the	attributes	defined	in
prototype	tiles	and	subassemblies.
The	base.dcl	and	acad.dcl	Files
Referencing	DCL	Files
DCL	Syntax

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	

The	base.dcl	and	acad.dcl	Files
	
	
	

The	base.dcl	and	acad.dcl	files	are	included	with	AutoCAD	and	are	distributed
in	the	User	Support	folder.	To	see	the	path	to	the	User	Support	folder,	from	the
Tools	menu,	click	Options.	On	the	Files	tab,	the	path	to	the	User	Support	folder
is	the	first	path	displayed	under	Support	File	Search	Path.

The	base.dcl	file	shows	the	DCL	definitions	for	the	basic,	predefined	tiles	and
tile	types.	It	also	contains	definitions	for	commonly	used	prototypes.	The	PDB
feature	does	not	allow	you	to	redefine	the	predefined	tiles.	The	acad.dcl	file
contains	the	standard	definitions	of	all	the	dialog	boxes	used	by	AutoCAD.

Warning Any	errors	in	base.dcl	may	disrupt	the	appearance	of	the	standard
AutoCAD	dialog	boxes	and	customized	dialog	boxes	from	your	application	or
other	applications.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	

Referencing	DCL	Files
	
	
	

When	you	create	dialog	boxes,	you	must	create	a	new,	application-specific	DCL
file.	All	DCL	files	can	use	the	tiles	defined	in	the	base.dcl	file.	A	DCL	file	can
also	use	tiles	defined	in	another	DCL	file	by	naming	the	other	file	in	what	is
called	an	include	directive.	You	can	create	your	own	hierarchy	of	DCL	files,	as
shown	in	the	following	figure:

In	this	figure,	the	user1.dcl	and	user2.dcl	files	are	independent	of	each	other,	but
user3.dcl	uses	tiles	defined	in	user1.dcl.	The	include	directive	has	the	form:

@include	filename

where	filename	is	a	quoted	string	containing	the	full	name	of	the	other	DCL
file.	For	example,	the	following	directive	includes	a	file	named	usercore.dcl:

@include	"usercore.dcl"	

If	you	specify	only	the	file	name,	the	PDB	feature	searches	for	the	file	first	in	the
current	directory	and	then	in	the	same	directory	as	the	DCL	file	itself	(the	one
that	contains	the	include	directive).	If	you	specify	a	full	path	name,	the	PDB
feature	searches	only	the	directory	specified	in	that	path.

Note The	DCL	files	you	create	cannot	use	the	dialog	boxes	defined	in	acad.dcl.
You	cannot	specify	@include"acad.dcl".	However,	if	you	want	to	create

similar	dialog	boxes,	you	can	cut	and	paste	the	definitions	into	your	own	DCL
file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	

DCL	Syntax
	
	
	

This	section	describes	the	DCL	syntax	for	specifying	tiles,	tile	attributes,	and
attribute	values.

New	tiles	are	created	by	tile	definitions.	If	a	tile	definition	appears	outside	a
dialog	box	definition,	it	is	a	prototype	or	a	subassembly.	Prototypes	and
subassemblies	can	be	used	in	dialog	box	definitions	by	tile	references.	Each
reference	to	a	definition	inherits	the	attributes	of	the	original	tile.	When	referring
to	prototypes,	you	can	change	the	values	of	the	inherited	attributes	or	add	new
attributes.	When	referring	to	subassemblies,	you	cannot	change	or	add	attributes.

If	you	need	multiple	instances	of	a	tile	with	some	attributes	in	common,	it	is
easiest	to	define	and	name	a	prototype	that	contains	only	the	common	attributes.
Then,	in	each	reference	to	the	prototype,	you	can	change	attributes	or	add	new
ones,	but	you	do	not	have	to	list	all	the	common	attributes	each	time	you
reference	the	tile.	Because	attributes	are	inherited,	you	will	more	often	need	to
create	tile	references—especially	references	to	the	predefined	tiles—than	to
define	new	tiles.

Tile	Definitions
Tile	References
Attributes	and	Attribute	Values
Comments	in	DCL	Files

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	DCL	Syntax	>	

Tile	Definitions
	
	
	

Tile	definitions	have	the	following	form:

name	:	item1	[:	item2

:	item3	...]	{	

											

					attribute	=	value;	

																	...

}

where	each	item	is	a	previously	defined	tile.	The	new	tile	(name)	inherits	the
attributes	of	all	the	specified	tiles	(item1,	item2,	item3,…).	The	attribute
definitions	within	the	curly	braces	({})	either	supplement,	or,	if	the	attribute's
name	is	identical,	replace	the	inherited	definitions.	When	the	definition	has
multiple	parents,	attributes	take	precedence	in	left-to-right	order.	In	other	words,
if	more	than	one	item	specifies	the	same	attribute,	the	first	one	encountered	is
the	one	used.

If	the	new	definition	contains	no	children,	it	is	a	prototype,	and	you	can	alter	or
augment	its	attributes	when	referring	to	it.	If	it	is	a	subassembly	with	children,
its	attributes	cannot	be	altered.

The	name	of	a	tile	or	tile	prototype	can	contain	only	letters,	numbers,	or	the
underscore	character	(_),	and	must	begin	with	a	letter.

Note Tile	names	are	case-sensitive.	For	example,	bigbutton	is	not	the	same	as
BigButton	or	BIGBUTTON.	Be	careful	when	using	capitalization.

This	is	the	(internal)	definition	of	a	button:

button	:	tile	{

														fixed_height	=	true;

														is_tab_stop	=	true;

}

The	base.dcl	file	defines	a	default_button	as	follows:

default_button	:	button	{

														is_default	=	true;

}

The	default_button	inherits	the	button	tile's	values	for	the
fixed_height	and	is_tab_stop	attributes.	It	adds	a	new	attribute,
is_default,	and	sets	it	to	true.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	DCL	Syntax	>	

Tile	References
	
	
	

Tile	references	have	one	of	the	following	forms:

name;

or

:	name	{	

attribute	=	value;

											.	.	.	

}	

where	name	is	the	name	of	a	previously	defined	tile.	Tile	names	are	case
sensitive.	In	the	first	instance,	all	the	attributes	defined	in	name	are	incorporated
into	the	reference.	In	the	second	instance,	the	attribute	definitions	within	the
curly	braces	either	supplement	or	replace	the	definitions	inherited	from	name.
Because	this	is	a	tile	reference,	as	opposed	to	a	definition,	the	attribute	changes
apply	only	to	this	instance	of	the	tile.

Note The	format	of	the	second	instance	can	refer	only	to	prototypes,	not	to
subassemblies.

The	spacer	tile	is	used	for	layout	in	a	dialog	box	definition.	It	has	no	unique
attributes,	so	references	to	it	specify	only	its	name:

spacer;

The	ok_cancel	tile	defined	in	base.dcl	is	a	subassembly,	so	it	too	can	be
referenced	only	by	name:

ok_cancel;

On	the	other	hand,	you	have	the	option	of	redefining	the	attributes	of	an

individual	tile.	For	example,	the	following	statement	creates	a	button	with	the
same	properties	as	a	previously	defined	button,	but	with	different	text:

:	retirement_button	{

							label	=	"Goodbye";

}

For	more	information,	see	Customizing	Exit	Button	Text.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	DCL	Syntax	>	

Attributes	and	Attribute	Values
	
	
	

Within	the	curly	braces	of	a	tile	definition	or	reference,	you	specify	attributes
and	assign	them	values	using	the	following	form:

attribute	=	value	;

where	attribute	is	a	valid	keyword	and	value	is	the	value	assigned	to	the
attribute.	An	equal	sign	(=)	separates	the	attribute	from	the	value,	and	a
semicolon	(;)	ends	the	assignment	statement.	For	example,	the	key	attribute
defines	the	name	by	which	a	program	can	refer	to	the	tile,	and	the	label	attribute
defines	the	text	displayed	within	the	tile.	See	Synopsis	of	Predefined	Attributes
for	a	complete	list	of	DCL	attributes.

As	with	tile	names,	attribute	names	and	values	are	also	case-sensitive.	Width
and	width	are	not	the	same	thing;	True	and	true	do	not	produce	the	same
results.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Using	DCL	to	Define	Dialog	Boxes	>	DCL	Syntax	>	

Comments	in	DCL	Files
	
	
	

A	statement	preceded	by	two	forward	slashes	(//)	is	treated	as	a	comment	in	a
DCL	file.	Anything	that	appears	between	the	//	and	the	end	of	the	line	is
ignored.	DCL	also	allows	C	language	style	comments.	These	have	the	form
/*comment	text	*/.	The	starting	/*	and	ending	*/	can	be	on	separate
lines.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	

Displaying	Dialog	Boxes	with	Visual	LISP
	
	
	

VLISP	provides	a	tool	for	previewing	dialog	boxes	defined	with	DCL.	To	see
how	this	works,	copy	the	following	DCL	code	into	a	new	file	in	the	VLISP	text
editor:

hello	:	dialog	{

				label	=	"Sample	Dialog	Box";

				:	text	{

						label	=	"Hello,	world";

				}

				:	button	{

						key	=	"accept";

						label	=	"OK";

						is_default	=	true;

				}

}

This	DCL	file	defines	a	dialog	box	labeled	“Sample	Dialog	Box.”	It	contains	a
text	tile	and	an	OK	button.	Save	the	file	as	hello.dcl,	and	specify	“DCL	Source
Files”	in	the	Save	As	Type	field	of	the	Save	As	dialog	box.

Note You	must	include	the	file	extension	when	you	specify	the	file	name.	VLISP
does	not	automatically	add	a	.dcl	file	extension	for	you.

Note	how	the	text	editor	color	codes	the	statements	in	the	DCL	file.	The	default
color	coding	scheme	is	shown	in	the	following	table:

DCL	default	color	coding

DCL	element Color

Tiles	and	tile
attributes

Blue

Strings Magenta

Integers Green

Real	numbers Teal

Comments Magenta,	on
gray
background

Parentheses Red

Preprocessor Dark	blue

Operators	and
punctuation

Dark	red

Unrecognized
items
(for	example,	user
variables)

Black

Choose	Tools	 	Interface	Tools	 	Preview	DCL	in	Editor	to	display	the	dialog
box	defined	in	the	text	editor	window.	Because	you	may	have	more	than	one
dialog	box	defined	in	a	single	.dcl	file,	VLISP	prompts	you	to	specify	the	name
of	the	dialog	you	want	to	view:

If	your	DCL	file	contains	definitions	for	multiple	dialog	boxes,	click	the	pull-
down	arrow	and	choose	the	one	you	want	to	preview.	There	is	only	one	dialog
box	defined	in	hello.dcl,	so	choose	OK	to	view	it:

Choose	OK	to	complete	previewing	the	dialog	box.

Although	buttons	are	a	good	way	to	demonstrate	dialog	box	attributes,	there	are
standard	exit	button	subassemblies	you	should	use	in	your	dialog	boxes.	You	can
create	a	dialog	box	that	is	virtually	the	same	as	the	one	shown	in	the	previous
figure	by	using	the	ok_only	subassembly.	See	Dialog	Box	Exit	Buttons	and
Error	Tiles.

Preview	Error	Handling
Semantic	Auditing	of	DCL	Files

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Displaying	Dialog	Boxes	with	Visual	LISP	>	

Preview	Error	Handling
	
	
	

If	your	DCL	code	contains	errors,	the	VLISP	DCL	previewer	displays	messages
indicating	the	offending	line	and	keyword	or	symbol.	For	example,	introduce	an
error	into	hello.dcl	by	removing	the	colon	before	“button,”	then	try	previewing
the	dialog	box.	You'll	see	the	following	message:

Choose	OK	to	clear	the	message	from	your	screen.	VLISP	may	display
additional	error	messages,	like	the	following:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Displaying	Dialog	Boxes	with	Visual	LISP	>	

Semantic	Auditing	of	DCL	Files
	
	
	

AutoCAD	provides	a	choice	of	four	levels	(0-3)	of	semantic	auditing	for	DCL
files	(see	the	following	table).	Auditing	attempts	to	detect	code	in	the	DCL	file
that	is	likely	to	be	problematic	or	unnecessary.	These	audits	are	done	at	DCL
load	time.	To	set	the	audit	level	for	a	DCL	file,	include	a	line	such	as	the
following	anywhere	within	the	DCL	file,	but	not	inside	any	tile	definitions:

dcl_settings	:	default_dcl_settings	{	audit_level	=	3;	}

If	your	DCL	file	references	other	DCL	files	with	include	directives,	you	should
define	dcl_settings	in	only	one	file.	The	defined	audit	level	is	used	in	all
included	files.	The	following	table	describes	each	audit	level:

Semantic	auditing	levels

Level Description

0 No	checking.	Use	only	if	the	DCL	files	have	been
audited	and	have	not	been	touched	since	the	audit.

1 Errors.	Finds	DCL	bugs	that	may	cause	AutoCAD	to
terminate.	This	level	of	checking	is	the	default	and
involves	almost	no	delay.	Errors	can	include	using
undefined	tiles	and	circular	prototype	definitions.

2 Warnings.	Finds	DCL	bugs	that	result	in	dialog
boxes	with	undesired	layout	or	behavior.	A	modified
DCL	file	should	be	audited	at	this	level	at	least	once.
The	warning	level	catches	mistakes	such	as	missing
required	attributes	and	inappropriate	attribute	values.

3 Hints.	Finds	redundant	attribute	definitions.

To	get	the	most	out	of	the	auditing	facility,	you	should	keep	the	audit_level
at	3	during	program	development.	Remember	to	strip	out	the	dcl_settings
line	before	shipping	DCL	files	to	users.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	

Adjusting	the	Layout	of	Dialog	Boxes
	
	
	

Look	again	at	the	sample	dialog	box	defined	in	the	previous	section.	There	is	a
small	problem	with	it:

Notice	how	the	OK	button	occupies	almost	the	full	width	of	the	dialog	box.	To
improve	the	appearance	of	this	dialog	box,	you	can	edit	the	DCL	file	and	add
two	attributes	to	the	button	tile.	To	prevent	the	button	from	filling	the	available
space,	add	a	fixed_width	attribute	and	set	it	to	true.	This	causes	the
button's	border	to	shrink	so	that	it	is	just	slightly	wider	than	the	text	inside.	To
center	the	button,	add	an	alignment	attribute	that	specifies	centered.	Tiles
in	a	column	are	left-justified	by	default.	Now	the	DCL	description	is	as	follows:

hello	:	dialog	{

				label	=	"Sample	Dialog	Box";

				:	text	{

						label	=	"Hello,	world";

				}

				:	button	{

						key	=	"accept";

						label	=	"OK";

						is_default	=	true;

						fixed_width	=	true;

						alignment	=	centered;

		}

}

The	dialog	box	now	appears	like	the	following:

Many	common	layout	problems	can	be	resolved	with	the	techniques	that	are
described	in	the	following	subsections.	If	the	default	layout	is	not	suitable	to	the
dialog	box	you	are	creating,	adjust	the	layout	by	changing	the	defaults	at	the
prototype	or	subassembly	level.	Adjust	individual	tiles	only	when	necessary.

Distributing	Tiles	in	a	Cluster
Adjusting	the	Space	between	Tiles
Adjusting	Space	at	the	Right	Side	or	Bottom
Fixing	the	Spacing	Around	a	Boxed	Row	or	Column
Customizing	Exit	Button	Text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Adjusting	the	Layout	of	Dialog	Boxes	>	

Distributing	Tiles	in	a	Cluster
	
	
	

When	laying	out	tiles	in	a	dialog	box,	you	need	to	arrange	them	into	rows	and
columns	based	on	the	relative	size	of	each	tile.	The	following	DCL	defines	a	row
of	three	tiles	that	runs	along	the	top	of	another	tile:

:	column	{

										:	row	{

												:	compact_tile	{

												}

												:	compact_tile	{

												}

												:	compact_tile	{

												}

										}

										:	large_tile	{

										}

}

If	the	compact_tile	components	have	fixed_width	and	the
large_tile	is	wider	than	the	minimum	space	required	by	the	row	of
compact_tiles	above	it,	the	default	horizontal	alignment	of	this	assembly
appears	as	follows:

The	leading	edge	of	the	first	compact_tile	in	the	row	aligns	with	the	leading
edge	of	the	large_tile,	and	the	trailing	edge	of	the	last	compact_tile
aligns	with	the	trailing	edge	of	the	large_tile.	Tiles	in	between	are
distributed	evenly.	The	situation	with	adjoining	columns	is	analogous.

You	can	control	the	default	distribution	by	using	the	spacer_0	and
spacer_1	tiles,	which	are	variants	of	the	spacer	tile	defined	in	base.dcl.	See
DCL	Attribute	Catalog	for	more	information	on	these	tiles.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Adjusting	the	Layout	of	Dialog	Boxes	>	

Adjusting	the	Space	between	Tiles
	
	
	

If	two	adjoining	columns	differ	greatly	in	the	amount	of	space	their	tiles	occupy,
then	the	tiles	in	the	one	that	needs	less	space	may	appear	to	be	distributed	too	far
apart.	Their	appearance	can	be	improved	if	you	set	the	incongruous	column's
fixed_height	attribute	to	true.	The	result	for	vertical	tile	distribution	is
shown	in	the	following	diagram:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Adjusting	the	Layout	of	Dialog	Boxes	>	

Adjusting	Space	at	the	Right	Side	or	Bottom
	
	
	

A	dialog	box	may	contain	unused	space	along	its	right	side.	You	can	define	a
text	tile	and	explicitly	specify	a	width	greater	than	the	width	required	by	its
current	value.	For	example,	the	following	code	fragment	defines	a	tile	that	does
not	display	anything	(its	value	is	null)	until	an	application	sets	its	value:

:	text	{

										key	=	"l_text";

										width	=	18;

										fixed_width	=	true;

}

The	width	attribute	reserves	space	for	18	characters	in	the	dialog	box.	The
application	can	add	text	with	a	statement	like	the	following:

(set_tile	"l_text"	"By	layer")

Because	"By	layer"	doesn't	need	all	18	characters,	the	dialog	box	has	surplus
space	along	its	right	side.

A	similar	situation	occurs	when	you	use	an	errtile	to	display	error	messages.
(See	Dialog	Box	Exit	Buttons	and	Error	Tiles.)	Unless	an	error	message	is
currently	shown,	it	looks	as	if	there	is	extra	space	at	the	bottom	of	the	dialog
box.	In	this	case,	an	extra	spacer	tile	at	the	top	of	the	dialog	box	can	help
balance	the	vertical	layout.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Adjusting	the	Layout	of	Dialog	Boxes	>	

Fixing	the	Spacing	Around	a	Boxed	Row	or	Column
	
	
	

If	the	label	attribute	of	a	boxed	row	or	column	is	either	blank	("")	or	null	(""),
the	box	encloses	the	cluster	but	no	text	is	shown.	A	single	blank	does	not	appear
as	a	space	in	the	box.	However,	there	is	a	difference	in	the	way	blank	and	null
labels	are	laid	out:

If	the	label	is	a	single	blank,	any	vertical	space	the	text	occupied
inside	the	box	is	lost,	but	any	vertical	space	the	label	occupied	above	the
box	is	not	lost.

If	the	label	is	a	null	string,	all	vertical	space	is	lost,	whether	above	the
box	or	inside	it.

In	the	following	DCL	code,	the	top	lines	of	the	boxes	around	the	first	two
columns	are	guaranteed	to	line	up	(with	the	same	Y	location),	and	the	top	line	of
the	box	around	the	third	column	is	guaranteed	to	have	no	spacing	above	or
below	it,	except	for	the	default	margins:

:	row	{

								:	boxed_column	{

											label	=	"Some	Text";

								}

								:	boxed_column	{

											label	=	"	";									//	single	blank:	the	default

								}

								:	boxed_column	{

											label	=	"";									//	null	string

								}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Adjusting	the	Layout	of	Dialog	Boxes	>	

Customizing	Exit	Button	Text
	
	
	

For	some	dialog	boxes,	you	may	want	to	change	the	text	of	one	of	the	exit
buttons.	For	example,	if	you	create	a	dialog	box	capable	of	destroying	data,	it's
safer	to	call	the	button	Destroy	instead	of	OK.	To	do	this,	use	the
retirement_button	prototype	as	follows:

destroy_button	:	retirement_button	{

															label	=	"&Destroy";

															key	=	"destroy";

}

Notice	the	use	of	the	ampersand	(&)	in	the	label	attribute.	This	assigns	a
mnemonic	to	the	tile.	In	this	case	the	letter	D	is	underscored	in	the	button	label
and	becomes	the	mnemonic.

Note When	customizing	existing	button	subassemblies,	you	should	obtain	the
proper	DCL	code	from	your	base.dcl	file	rather	than	from	the	manual.

Once	you	have	defined	a	custom	exit	button,	you	need	to	embed	it	in	a
subassembly	that	matches	the	appearance	and	functionality	of	the	standard
clusters.	The	following	example	shows	the	current	definition	of
ok_cancel_help:

ok_cancel_help	:	column	{

													:	row	{

																fixed_width	=	true;

																alignment	=	centered;

																ok_button;

																:	spacer	{	width	=	2;	}

																cancel_button;

																:	spacer	{	width	=	2;	}

																help_button;

														}

}

Create	a	new	subassembly	that	replaces	the	ok_button	with	the	new	button	as
follows:

destroy_cancel_help	:	column	{

														:	row	{

																	fixed_width	=	true;

																	alignment	=	centered;

																	destroy_button;

																	:	spacer	{	width	=	2;	}

																	cancel_button;

																	:	spacer	{	width	=	2;	}

																	help_button;

														}

}

In	the	standard	subassembly,	the	OK	button	is	the	default,	but	this	attribute
wasn't	added	to	destroy_button.	Where	the	dialog	box's	action	can	be
destructive	(or	very	time-consuming),	it	is	strongly	recommended	to	make	the
Cancel	button	the	default.	In	this	case,	it	functions	both	as	the	default	and	as	the
Abort	button:

destroy_cancel_help	:	column	{

														:	row	{

																	fixed_width	=	true;

																	alignment	=	centered;

																	destroy_button;

																	:	spacer	{	width	=	2;	}

																	:	cancel_button	{	is_default	=	true;	}

																	:	spacer	{	width	=	2;	}

																	help_button;

														}

}

Because	an	attribute	has	been	changed,	the	original	Cancel	button	is	used	as	a
prototype,	requiring	a	colon	in	front	of	cancel_button.

Warning When	the	Cancel	button	and	the	Default	button	are	the	same	(both
is_default	and	is_cancel	are	true)	and	you	neglect	to	assign	an	action
that	calls	done_dialog	to	any	other	button,	then	no	other	button	can	exit	the
dialog	box	and	it	will	always	be	canceled.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	

Design	Guidelines
	
	
	

To	design	a	dialog	box	well,	you	must	consider	not	only	the	practical	purpose	of
the	box	but	also	its	aesthetics,	the	ergonomics	of	using	it,	and	the	GUI	standards
for	the	Windows	environment.	The	following	subsections	provide	some
guidelines	for	GUI	design,	dialog	box	design,	and	predefined	tiles	and	clusters.
Refer	to	Programmable	Dialog	Box	Function	Synopsis	for	more	examples	of
tiles	and	clusters.

Aesthetics	and	Ergonomics
Consistent	Design	and	Clear	Language
User	Control
Forgiving	Errors
Providing	Help
Users	with	Disabilities
Using	Capitalization
Avoiding	Abbreviations
Layout
Size	and	Placement
Disabling	Tiles
Nesting	Dialog	Boxes
Closing	a	Dialog	Box	for	User	Selection
Providing	Defaults
Handling	Keyboard	Input
International	Language	Considerations
Guidelines	for	Predefined	Tiles	and	Clusters

Error	Handling	in	Dialog	Boxes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Aesthetics	and	Ergonomics
	
	
	

The	appearance	of	a	dialog	box	is	important.	If	the	box	is	too	cluttered,	it	is
ineffective	and	hard	to	use.	Also,	tiles	should	be	arranged	so	they	are	easy	to	use.
Consider	which	tiles	will	be	used	most	frequently,	make	them	prominent	in	the
design,	and	arrange	them	so	it's	easy	to	move	between	them,	particularly	when
they	are	used	in	conjunction	with	each	other.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Consistent	Design	and	Clear	Language
	
	
	

The	user	interface	of	an	application	should	be	internally	consistent,	and
consistent	with	related	applications.	An	unfamiliar	dialog	box	is	easier	to
understand	if	its	design	is	consistent	with	other	dialog	boxes	in	the	application,
related	applications,	or	the	host	system.	One	example	of	this	is	the	consistent
placement	of	buttons	such	as	OK	and	Cancel.	The	technique	associated	with
each	kind	of	tile—how	you	enter	text	in	a	text	box	and	how	you	select	a	list	box
item—should	also	be	consistent.	The	best	way	to	achieve	consistency	is	to	reuse
tiles	and	the	code	that	controls	them.

Standardization	contributes	to	consistency.	Use	standard	definitions	for	dialog
box	controls.	This	reduces	your	work,	contributes	to	consistency,	and	makes	it
easier	for	users	to	learn	and	use	your	dialog	boxes.

Use	language	that	is	clear.	Although	dialog	boxes	are	considered	part	of	a
graphical	interface,	most	of	the	tiles	and	information	they	present	are	textual.
The	labeling	of	dialog	boxes,	naming	of	buttons,	and	phrasing	of	messages
should	be	direct	and	unambiguous.	Avoid	jargon	and	technical	terms	that	users
may	not	understand.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

User	Control
	
	
	

Give	users	some	control	over	how	they	access	the	dialog	box	to	enter	input.	One
advantage	of	using	dialog	boxes	instead	of	a	command	line	interface	is	that
boxes	don't	confine	users	to	a	strict	sequence	of	prompts.	In	a	dialog	box,	users
should	be	able	to	enter	input	in	any	sequence.	Some	constraints	are	necessary—
when	selecting	one	option	causes	another	to	be	unavailable,	for	example—but
build	in	only	constraints	that	have	underlying	reasons	in	the	way	your
application	works.

For	example,	the	following	figure	shows	the	Object	Grouping	dialog	box.	This
dialog	box	contains	a	Group	Name	field,	where	users	may	enter	a	name	for	a
new	group	they	are	creating.	If	the	Unnamed	option	is	selected,	a	Group	Name
cannot	be	specified.

Multiple	dialog	boxes	should	appear	on	top	of	one	another	rather	than	require
the	user	to	exit	the	current	box	before	calling	another.	Always	let	users	return	to
the	dialog	box	that	was	initially	displayed.	This	design	doesn't	commit	users	to	a
choice	before	they	are	ready	to	leave	the	dialog	box.	Because	the	current	dialog
box	appears	on	top	of	the	previous	one,	it	reminds	users	of	the	context:	where
they	have	come	from	and	where	they'll	return	to.

Whenever	users	do	something	to	change	the	current	status	or	options,	provide
them	with	immediate	feedback.	If	users	select	something,	show	it	or	describe	it
immediately.	If	one	choice	excludes	other	choices,	be	sure	to	make	the	invalid
choices	unavailable	immediately.

In	the	AutoCAD	Color	Selection	dialog	box,	for	example,	an	image	tile	shows
the	color	immediately	after	the	user	selects	its	number.	In	the	sample	Block
Definition	dialog	box,	the	number	of	selected	objects	is	always	displayed	in	a
message	below	the	Select	Objects	button:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Forgiving	Errors
	
	
	

Make	your	dialog	boxes	forgiving,	so	users	feel	free	to	explore	without	fear	of
making	irreversible	mistakes.	Report	minor	errors	by	messages	in	an	error	tile	at
the	bottom	of	the	dialog	box.	Report	more	serious	errors	by	displaying	an	alert
box.	The	alert	function	displays	a	simple	alert	box	(with	a	single	OK	button).
See	in	the	AutoLISP	Reference.

If	the	user	selects	a	potentially	destructive	or	time-consuming	action,	the	dialog
box	should	display	an	alert	box	that	gives	the	user	a	choice	of	proceeding	with
the	operation	or	canceling	it.

For	example,	in	the	Block	Definition	dialog	box,	an	alert	box	appears	when
users	attempt	to	create	a	block	that	already	exists.	Users	can	then	choose	to
proceed	and	overwrite	the	original	block,	or	cancel	the	operation	without	making
changes:

Nested	dialog	boxes	that	alert	users	should	return	to	the	previous	dialog	box.
Terminate	the	current	nest	of	dialog	boxes	only	in	the	case	of	serious	or
potentially	fatal	errors.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Providing	Help
	
	
	

You	should	provide	a	Help	facility.	How	much	Help	you	provide	depends	on
how	complex	your	application	is	and	how	self-explanatory	your	dialog	boxes
are.	At	the	very	least,	it	is	recommended	that	the	main	dialog	box	of	your
application	have	a	Help	button	that	displays	a	single	dialog	box	describing
important	information.	In	most	cases,	the	Help	button	should	call	the	Help
facility	using	the	help	function.

If	your	application	is	more	sophisticated,	consider	using	a	Help	button	in	each
dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Users	with	Disabilities
	
	
	

Considerations	intended	for	users	with	disabilities	can	make	a	program	easier	for
anyone	to	use.	When	designing	your	dialog	boxes,	consider	the	following:

Color

Many	people	cannot	distinguish	between	certain	colors.	If	you	use	color
coding	to	present	information,	supplement	this	by	presenting	the	same
information	in	some	other	way	(usually	with	text).
For	example,	the	standard	AutoCAD	Color	dialog	box	displays	a	text
message	that	states	the	color's	name	or	number	as	well	as	an	image	tile	that
displays	the	color.

Online	Help

Many	users	have	difficulty	either	reading	the	small	print	in	manuals	or
physically	handling	books.	Even	a	single	Help	button	on	the	main	dialog	box
can	be	useful.

Keyboard	Access

Some	users	may	have	difficulty	with	or	be	unable	to	use	a	pointing	device.
Try	to	specify	mnemonics	so	your	dialog	boxes	can	be	used	with	just	the
keyboard.

Clarity	and	Simplicity

Carefully	designed	dialog	boxes	with	clear	and	simple	language	help	users
with	verbal	or	cognitive	impairments.	Don't	force	users	to	remember	many
different	things.	Instead,	use	consistent	terminology	and	present	choices
wherever	possible.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Using	Capitalization
	
	
	

The	following	are	some	general	guidelines	for	capitalizing	text	within	dialog
boxes:

Dialog	Boxes,	Areas,	and	Column	Headings

Use	headline	capitalization:	capitalize	the	first	and	last	words,	and	all	other
words	except	articles,	prepositions,	and	coordinating	conjunctions.	However,
if	the	dialog	box	is	invoked	from	a	menu	(not	from	the	Command	prompt),
its	title	should	match	the	menu	item.

Control	Labels

Use	headline	capitalization	for	labels	of	control	tiles	such	as	buttons.	Do	not
follow	labels	with	a	period.	Follow	the	labels	of	a	text	box	or	a	drop-down
list	with	a	colon	(:).	You	may	want	to	use	sentence-style	capitalization	(in
which	you	capitalize	only	the	first	word	and	proper	nouns)	if	the	label	is
lengthy	or	phrased	as	a	question.

Prompts	and	Messages

Use	sentence-style	capitalization.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Avoiding	Abbreviations
	
	
	

Abbreviations	can	be	ambiguous	and	difficult	to	translate.	If	space	constraints
require	you	to	abbreviate	terms,	abbreviate	them	consistently	within	a	group
(such	as	a	boxed	column).	Be	consistent.	Don't	spell	some	terms	in	full	and
abbreviate	others.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Layout
	
	
	

Arrange	sections	of	the	dialog	box	logically	into	rows	or	columns	so	users	can
scan	them	from	left	to	right	or	from	top	to	bottom.	Align	related	entry	fields
(such	as	edit	boxes	or	list	boxes)	both	vertically	and	horizontally,	so	that	when
users	switch	fields	by	pressing	TAB,	the	cursor	moves	in	a	straight,	orthogonal
line.

If	there	is	a	natural	order	for	entering	data—such	as	the	X,	Y,	and	Z	of
coordinates—order	the	fields	in	the	same	way.	Align	boxed	areas	both	vertically
and	horizontally.	Do	not	leave	a	lot	of	white	space	around	or	between	boxed
areas.	Extend	their	width	to	the	right,	if	necessary.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Size	and	Placement
	
	
	

To	display	information	clearly,	make	the	dialog	box	no	larger	than	necessary.

Note Users	may	have	a	screen	resolution	as	low	as	640×480.	If	you	are
developing	applications	on	displays	using	a	higher	resolution,	remember	to
verify	that	your	dialog	boxes	display	properly	at	lower	resolutions.

By	default,	AutoCAD	initially	displays	all	dialog	boxes	in	the	center	of	the
graphics	window.	However,	you	can	specify	that	dialog	boxes	display	at	an
alternate	location	(such	as	the	last	location	specified	by	the	user).	The
new_dialog	and	done_dialog	AutoLISP	functions	provide	for	dialog	box
placement.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Disabling	Tiles
	
	
	

If	a	tile	or	an	area	is	unavailable	or	irrelevant	given	the	current	option	settings,
disable	it	immediately	so	the	tile	or	area	is	unavailable	and	the	user	can't	select
it.	Try	not	to	overuse	the	disabling	tiles	feature.	Too	many	unavailable	tiles	can
be	distracting.

If	a	tile	displays	a	value,	disabling	the	tile	shouldn't	affect	the	value.	The	tile
should	display	the	same	value	when	it	is	enabled	again.	Values	that	change
magically	create	more	work	for	the	user,	which	is	annoying	and	distracting.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Nesting	Dialog	Boxes
	
	
	

AutoCAD	limits	the	number	of	nested	dialog	boxes	to	eight.	For	information	on
how	to	handle	nested	dialog	boxes,	see	Nesting	Dialog	Boxes.

Insert	an	ellipsis	(…)	in	the	label	of	a	button	that	displays	a	nested	dialog	box
unless	the	nested	dialog	box	is	an	alert	box.	Don't	nest	dialog	boxes	more	than
three	deep.	Four	levels	of	nesting	are	reasonable	if	the	fourth-level	dialog	boxes
are	only	alert	boxes.	Because	dialog	boxes	appear	initially	in	the	center	of	the
screen,	make	the	nested	dialog	boxes	smaller	than	the	main	dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Closing	a	Dialog	Box	for	User	Selection
	
	
	

If	a	user	needs	to	make	a	selection	from	the	graphics	screen	before	the	dialog
box	has	closed,	you	must	close	the	dialog	box	momentarily	so	that	the	user	can
see	the	screen	and	make	the	selection.	This	is	known	as	hiding	a	dialog	box.
Once	the	selection	is	made,	you	need	to	display	the	dialog	box	again.

The	label	of	a	button	that	causes	the	dialog	box	to	be	hidden	should	not	contain
an	ellipsis.	Instead,	use	a	space	followed	by	a	less-than	symbol	(<)	in	the	label.
When	the	dialog	box	hides	itself,	a	prompt	should	be	displayed	that	explains
what	the	user	is	expected	to	do.

In	most	cases,	you	can	get	the	input	with	one	of	the	getxxx	functions.	These
functions	have	an	argument	with	which	you	can	specify	a	prompt.

When	the	dialog	box	reappears,	it	should	contain	feedback	on	the	selection
process.	This	can	be	new	information	in	the	edit	box	fields,	an	updated	list	box,	a
text	message	that	indicates	the	status,	or	a	combination	of	these.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Providing	Defaults
	
	
	

Provide	reasonable	defaults	for	all	entries	and	options.	Well-chosen	defaults	can
help	users	complete	a	dialog	box	quickly	and	easily.

It	is	recommended	that	you	update	the	default	values—in	other	words,	that	you
save	the	user's	previous	settings	and	use	them	as	the	new	defaults—each	time	the
dialog	box	is	used.	Even	if	the	user	has	to	change	some	of	these,	it	is	less	work
than	starting	from	the	beginning	each	time.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Handling	Keyboard	Input
	
	
	

When	you	create	a	custom	dialog	box,	you	can	specify	how	it	handles	keyboard
shortcuts.	Some	keyboard	shortcuts	are	common	to	all	dialog	boxes.	For
example,	the	TAB	key	generally	enables	users	to	move	from	tile	to	tile,	and	the
SPACEBAR	allows	users	to	turn	toggles	off	or	on.	Each	active	tile	should	be	a
tab	stop	(the	default).

Two	keys	commonly	act	as	accelerator	keys.	The	accept	key	(usually	the
ENTER	key)	accepts	the	dialog	box	and	values	entered.	The	cancel	key	(ESC),
discards	the	dialog	box	and	the	values.	When	AutoCAD	first	displays	a	dialog
box,	one	of	its	tiles	has	the	initial	keyboard	focus.	What	the	user	enters	affects
this	tile	until	the	user	moves	focus	to	another	tile.

To	move	from	tile	to	tile,	the	user	can	press	TAB,	choose	another	tile,	or	enter
one	of	the	keyboard	shortcuts	known	as	mnemonic	keystrokes.	Moving	between
tiles	changes	focus	but	doesn't	make	a	selection.	To	select	a	tile	that	has	focus,
users	must	press	ENTER.	For	some	kinds	of	tiles,	a	double-click	is	equivalent	to
pressing	ENTER.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

International	Language	Considerations
	
	
	

Words	in	other	languages	often	require	more	characters	than	their	English
equivalents.	If	your	dialog	boxes	are	going	to	be	translated,	leave	as	much	room
as	possible	for	them	to	grow.	The	following	table	shows	some	familiar
AutoCAD	terms	with	their	equivalents	in	French	and	German.

Equivalent	AutoCAD	terms	in	English,	French,	and
German

English French German

Line Ligne Linie

Arc Arc Bogen

Circle Cercle Kreis

3D	Polylines Polylignes	3D 3D-Polylinien

Diameter
dimensioning

Cotation	de
diamtre

Durchmesserbemaung

Layers Calque Layer

Linetypes Types	de	ligne Linientypen

Entity
creation
modes

Modes	de	cration
des	objets

Modus	fr
Objekterzeugung

Select	objects Choix	des	objets Objekte	whlen

OK OK OK

Cancel Annuler Abbruch

Help Aide Hilfe

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Guidelines	for	Predefined	Tiles	and	Clusters
	
	
	

This	section	lists	recommended	conventions	and	design	guidelines	associated
with	particular	kinds	of	predefined	tiles	and	tile	clusters.

Buttons
Clusters
Edit	Boxes
Image	Buttons	and	Image	Tiles
List	Boxes
Radio	Buttons,	Radio	Rows,	and	Radio	Columns
Sliders
Text
Toggles

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Buttons
	
	
	

The	action	associated	with	a	button	should	be	visible	to	the	user	and	should	take
place	immediately.	The	label	of	a	button	should	be	unambiguous.	Usually,	it
should	be	a	verb	that	describes	the	effect	of	pushing	the	button,	though	another
label—such	as	OK	or	Options—is	acceptable	if	its	meaning	is	clear.	For	buttons
that	call	other	dialog	boxes	or	hide	the	current	dialog	box,	see	Nesting	Dialog
Boxes	and	Closing	a	Dialog	Box	for	User	Selection.

Buttons	in	a	column	should	be	the	same	width.	In	other	cases,	buttons	should
have	a	fixed	width	(either	fixed_width	=	true;,	or
children_fixed_width	=	true;)	in	their	common	parent	cluster.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Clusters
	
	
	

A	boxed	cluster	(a	row	or	column)	is	called	a	group	box	or	an	area.	An	area
provides	a	visual	cue	to	users	by	isolating	and	naming	controls	that	work
together.	The	area	can	contain	as	many	tiles,	rows,	and	columns	(unboxed)	as
necessary.	The	label	of	an	area	should	indicate	its	purpose.

If	controls	relate	to	each	other,	put	them	in	an	area.	The	Base	Point	cluster	in	the
Block	Definition	sample	dialog	box	demonstrates	this	technique	with	an	area
formed	from	a	cluster	with	a	label	and	a	border:

However,	do	not	overuse	areas.	White	space	is	also	an	effective	way	to	group
tiles.	Do	not	put	a	box	around	a	list	box;	this	looks	too	busy.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Edit	Boxes
	
	
	

The	length	of	the	text-entry	portion	of	an	edit	box	should	roughly	equal	the
length	of	an	average	entry.	When	in	doubt,	use	a	character	width	of	10	for	real
number	fields	and	20	for	text	fields.

The	label	of	an	edit	box	should	end	with	a	colon	(:).

If	there	are	restrictions	on	what	users	can	enter	in	the	edit	box,	put	a	text	tile	to
the	right	of	the	edit	box	that	briefly	explains	these	restrictions.	If	users	need	to
enter	a	file	name,	for	example,	there's	no	need	to	explain	what	a	file	name	is.	But
if	the	string	is	a	number	that	cannot	exceed	100,	a	reminder	of	this	limit	is	a
good	idea.

For	data,	such	as	points,	provide	two	or	three	edit	boxes	rather	than	require	users
to	remember	the	Command	line	syntax	of	point	entry.	One	exception	is	an	edit
box	intended	specifically	for	entering	advanced	syntax,	such	as	the	wild-card
pattern	edit	box	in	the	AutoCAD	File	Search	dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Image	Buttons	and	Image	Tiles
	
	
	

If	you	use	an	image	button	or	image	tile	as	an	icon	to	alert	the	user—for
example,	a	warning	signal	such	as	a	stop	sign—use	it	consistently	in	all	dialog
boxes.

When	you	use	image	buttons	to	represent	selections,	supplement	the	image	with
text	that	briefly	describes	it,	especially	if	the	color	of	the	image	(or	part	of	the
image)	is	a	factor	in	selecting	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

List	Boxes
	
	
	

Because	DCL	list	boxes	cannot	be	scrolled	horizontally,	the	width	of	the	list	box
should	accommodate	the	longest	item	in	the	list.	Provide	a	label	(or	a	text	tile)	to
explain	the	contents	of	the	list	box,	unless	the	list	box	is	the	main	tile	in	the
dialog	box.	In	that	case	the	dialog	box's	label	might	be	sufficient—although	you
must	give	the	list	box	a	label	if	you	want	users	to	be	able	to	move	to	that	list	box
by	using	a	mnemonic.

Alphabetize	the	items	in	the	list	unless	you	have	a	logical	reason	to	organize
them	in	some	other	way.	If	the	length	of	the	list	is	fixed	and	short,	consider	using
a	radio	column	instead	of	a	list	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Radio	Buttons,	Radio	Rows,	and	Radio	Columns
	
	
	

Radio	columns	look	better	and	are	easier	to	use	than	radio	rows.

Radio	rows	are	appropriate	only	when	they	contain	a	small	number	of	buttons
(usually,	two	to	four)	or	if	the	labels	are	short.	If	an	option	selected	elsewhere
makes	the	choices	in	the	radio	row	or	radio	column	invalid	or	irrelevant,	then
disable	the	whole	row	or	column.	In	some	situations,	an	option	selected
elsewhere	may	make	certain	radio	buttons	invalid	or	irrelevant.	In	situations	like
this,	you	can	disable	buttons	individually.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Sliders
	
	
	

The	granularity	of	a	slider	should	not	be	too	coarse.	For	example,	if	a	slider	is
assigned	only	four	incremental	values	but	is	laid	out	in	a	two-inch	section	of	the
dialog	box,	users	would	have	to	move	half	an	inch	to	see	a	change.	Avoid
jumpiness	like	this	by	scaling	the	size	of	the	slider.

If	users	need	to	know	the	value	controlled	by	the	slider,	your	dialog	box	should
also	display	the	slider's	current	value.	Update	this	value	whenever	the	slider	is
moved.	It	is	recommended	you	also	display	an	edit	box	that	enables	users	to
enter	the	value	rather	than	use	the	slider.	If	you	use	an	edit	box	this	way,	update
its	value;	otherwise,	display	the	value	in	a	text	tile.	The	following	figure	shows	a
typical	combination	of	slider	and	edit	box:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Text
	
	
	

When	labels	are	not	sufficient,	use	text	tiles	to	identify	the	purpose	of	individual
tiles	or	dialog	box	areas.	You	can	also	use	text	tiles	to	display	status	messages	or
reminders,	including	error	messages	and	warnings.

Text	should	be	direct	and	unambiguous.	Describe	options	and	entry	fields	in
terms	your	users	would	use.	For	example,	the	error	message	“Invalid	entry”	in	a
list	box	conveys	little	information.	A	message	such	as	“Layer	does	not	exist”	is
more	helpful.

Align	messages	with	the	control	tiles	they	describe.

Put	text	that	identifies	a	group	of	control	tiles	or	a	section	of	the	dialog	box
above	the	tiles	that	the	text	describes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Guidelines	for	Predefined	Tiles	and
Clusters	>	

Toggles
	
	
	

When	the	options	controlled	by	toggles	relate	to	the	same	topic,	group	them
together.

Use	a	single	toggle	that	controls	whether	other	tiles,	often	in	a	row	or	column,
are	active.	In	this	case,	the	toggle	should	be	prominent.	When	the	toggle	controls
only	one	other	tile,	you	can	also	place	it	to	the	right	of	that	tile.	The	toggle	in	the
following	dialog	box	enables	or	disables	another	tile:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	

Error	Handling	in	Dialog	Boxes
	
	
	

Dialog	boxes	can	display	error	messages	and	warnings	with	a	text	tile	known	as
an	error	tile	(errtile),	or	with	a	nested	alert	box.	The	following	guidelines
apply	to	both:

Error	messages	should	be	complete	sentences,	punctuated	as	such,	with
an	initial	capital	and	a	period	at	the	end.

Error	messages	should	explain	clearly	the	problem	or	potential	problem.

After	reporting	the	error,	shift	the	dialog	box's	focus	to	the	tile	that
triggered	the	error,	if	possible.
Error	Tiles
Alert	Boxes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Error	Handling	in	Dialog	Boxes	>	

Error	Tiles
	
	
	

Use	an	error	tile	for	minor	errors	or	warnings,	especially	those	that	arise	from
typographical	errors.

Do	not	display	errors	in	text	tiles	used	for	status	messages.	These	are	easy	to
overlook.

Error	tiles	should	appear	at	the	bottom	of	a	dialog	box.	Use	the	standard
errtile	described	in	Dialog	Box	Exit	Buttons	and	Error	Tiles.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	
Designing	Dialog	Boxes	>	Design	Guidelines	>	Error	Handling	in	Dialog	Boxes	>	

Alert	Boxes
	
	
	

You	can	display	a	standard	alert	box	with	a	single	OK	button	by	calling	the
alert	function.	Use	alert	boxes	for	serious	or	potentially	fatal	errors,	but	do
not	overuse	them.	Alert	boxes	require	user	input.	Therefore,	they	can	be
annoying,	especially	when	they	report	minor	errors	or	obscure	the	entry	that
needs	to	be	corrected.

Use	alert	boxes	to	warn	users	that	the	action	about	to	begin	can	destroy	data	or
can	be	time	consuming.	Alert	boxes	of	this	sort	should	give	users	a	choice	of
proceeding	or	canceling	the	action.	If	the	alert	box	offers	users	a	choice,	such	as
Proceed	or	Cancel,	you	must	construct	it	yourself.

If	the	alert	box	provides	users	with	a	choice,	the	text	in	the	alert	box	should	first
describe	the	problem	and	then	pose	the	next	action	as	a	question.	In	such	cases	it
is	important	that	the	button	for	proceeding	be	labeled	with	a	verb	that	describes
what	will	happen.	In	this	context,	Overwrite,	for	example,	is	less	ambiguous	than
OK,	and	is	an	aid	to	experienced	users	who	will	gloss	over	the	text	because	they
have	seen	this	alert	box	many	times.

Unless	the	error	is	truly	fatal,	provide	a	way	for	users	to	return	to	a	previous	step
or	escape	from	the	operation	that	triggered	the	alert	box.

Usually	the	default	button	for	a	dialog	box	is	OK	or	its	equivalent,	but	when	the
situation	described	by	the	alert	box	has	serious	consequences,	make	Cancel	or	its
equivalent	the	default.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	

Managing	Dialog	Boxes
	
	
	

You	can	use	dialog	boxes	to	respond	to	user	input.

With	AutoCAD®,	you	can	design	and	implement	dialog	boxes	to	use	with	your
applications.	The	appearance	of	a	dialog	box	is	defined	by	dialog	control
language	(DCL)	files,	as	described	in	Designing	Dialog	Boxes.	You	control	the
functionality	of	a	dialog	box	with	an	AutoLISP®	application.	This	chapter
describes	how	to	control	dialog	boxes	using	AutoLISP.	Although	this	chapter
shows	some	examples	of	DCL	files,	you	may	find	it	helpful	to	read	Designing
Dialog	Boxes	before	reading	this	chapter.

Controlling	Dialog	Boxes	with	AutoLISP	Programs
Action	Expressions	and	Callbacks
Handling	Tiles
Nesting	Dialog	Boxes
Functions	for	Hiding	Dialog	Boxes
List	Boxes	and	Pop-Up	Lists
Image	Tiles	and	Buttons
Application-Specific	Data
DCL	Error	Handling
Dialog	Box	Function	Summary

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Controlling	Dialog	Boxes	with	AutoLISP	Programs
	
	
	

This	chapter	begins	with	an	overview	of	the	process	you	use	to	display	dialog
boxes	and	respond	to	user	input	from	an	AutoLISP	program.

Quick	Overview
Functions	Restricted	When	a	Dialog	Box	Is	Open

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Controlling	Dialog	Boxes	with	AutoLISP
Programs	>	

Quick	Overview
	
	
	

This	example	starts	with	a	simple	dialog	box:

The	following	DCL	defines	the	dialog	box:

hello	:	dialog	{

				label	=	"Sample	Dialog	Box";

				:	text	{	label	=	"Hello,	world.";	}

				ok_only;

}

This	DCL	defines	a	dialog	box	labeled	Sample	Dialog	Box	that	contains	a	text
tile	and	a	single	OK	button.	The	DCL	resides	in	a	file	named	hello.dcl.

To	display	the	dialog	box	and	respond	to	the	user	pressing	OK

1.	 Use	the	load_dialog	function	to	load	the	DCL	file	into	memory.	For
example:

(setq	dcl_id	(load_dialog	"hello.dcl"))

The	load_dialog	function	returns	a	DCL	identification	number.	You
need	this	to	identify	the	dialog	in	subsequent	function	calls.

2.	 Call	the	new_dialog	function	and	pass	it	the	dialog	name	and	DCL
identification	number	as	arguments,	as	follows:

(new_dialog	"hello"	dcl_id)

3.	 Initialize	the	dialog	box	by	setting	up	tile	values,	lists,	and	images.
The	DCL	example	above	uses	a	predefined	tile	named	ok_only,	so	you
do	not	have	to	initialize	the	tile	unless	you	want	to	override	its	default
values.	The	ok_only	tile	also	has	an	action	named	done_dialog
assigned	to	it.	If	the	user	presses	the	OK	button,	AutoCAD	passes	the
done_dialog	call	to	your	AutoLISP	application	and	ends	the	dialog.

4.	 Call	start_dialog	to	pass	control	of	the	dialog	to	AutoCAD	for
display	to	the	user:

(start_dialog)

5.	 Call	unload_dialog	to	remove	the	dialog	from	memory	after	the
user	responds.
Steps	3,	4,	and	5	are	dependent	on	the	new_dialog	function	returning
a	non-nil	value.	For	the	sake	of	simplicity,	no	error	processing	is
included	in	this	example.

You	can	use	the	following	function	to	call	the	sample	dialog	box:

(defun	C:HELLO(/	dcl_id)

		(setq	dcl_id	(load_dialog	"hello.dcl"))	;	Load	the	DCL	file.

		(if	(not	(new_dialog	"hello"	dcl_id))			;	Initialize	the	dialog.

				(exit)																																;	Exit	if	this	doesn't	

																																										;	work.

)

		(start_dialog)																										;	Display	the	dialog	

																																										;	box.

		(unload_dialog	dcl_id)																		;	Unload	the	DCL	file.

		(princ)

)

Enter	this	code	into	a	new	VLISP	text	editor	window	and	load	the	program	by
choosing	Tools	 	Load	Text	in	Editor	from	the	VLISP	menu.	To	display	the
dialog	box,	enter	(c:hello)	at	the	VLISP	Console	prompt.

Note	that	the	start_dialog	call	remains	active	until	the	user	selects	a	tile
(usually	a	button)	whose	associated	action	expression	calls	done_dialog.	The
done_dialog	call	can	be	issued	explicitly	by	the	tile.	The	done_dialog
call	is	also	issued	by	the	selected	tile	if	its	is_cancel	attribute	is	set	to	true.

Warning In	theory,	the	dialog	box	facility	takes	control	of	input	at	the	time	you
call	start_dialog,	but	in	Windows	it	takes	control	when	you	call
new_dialog.	This	has	no	effect	on	writing	programs.	However,	if	you	invoke
these	functions	interactively	(at	the	AutoCAD	Command	prompt	or	a	VLISP
window),	you	must	enter	them	as	one	statement.	Enclose	them	within	a	progn
or	another	function.	If	you	don't,	the	interactive	call	to	new_dialog	can	freeze
the	screen.	Calling	new_dialog	and	start_dialog	interactively	can	be
useful	during	debugging.	(For	an	example	of	using	these	functions	interactively,
see	DCL	Error	Handling.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Controlling	Dialog	Boxes	with	AutoLISP
Programs	>	

Functions	Restricted	When	a	Dialog	Box	Is	Open
	
	
	

While	a	dialog	box	is	active—that	is,	during	the	start_dialog	call—you
cannot	call	any	function	that	requires	user	input	on	the	AutoCAD	command	line,
or	affects	the	display	outside	the	dialog	box	(for	example,	in	the	AutoCAD
graphics	window).	This	restriction	includes	functions	that	write	text,	such	as
print,	princ,	and	prin1.

You	can	issue	ssget	calls,	as	long	as	you	do	not	use	any	options	that	require
user	input.

If	your	program	calls	one	of	the	restricted	functions	between	the
start_dialog	and	done_dialog	calls,	AutoCAD	terminates	all	dialog
boxes	and	displays	the	following	error	message:

AutoCAD	rejected	function

You	can	test	the	CMDACTIVE	system	variable	to	determine	if	a	dialog	box	is
active.	If	CMDACTIVE	is	greater	than	7,	a	dialog	box	is	active.	The
CMDACTIVE	system	variable	has	bit-coded	values	that	indicate	command,
script,	and	dialog	box	activity.

Note If	your	application	requires	users	to	enter	input	based	on	the	graphics	screen
rather	than	on	the	dialog	box	itself	(for	example,	to	specify	a	point	or	select	an
object),	you	must	hide	the	dialog	box.	That	is,	you	must	call	done_dialog	so
the	graphics	screen	is	visible	again,	and	then	restart	the	dialog	box	after	the	user
has	made	the	selection.	For	more	information,	see	Functions	for	Hiding	Dialog
Boxes.

The	term_dialog	function	terminates	all	current	dialog	boxes	as	if	the	user
had	canceled	each	of	them.	This	function	can	be	used	to	cancel	a	series	of	nested
dialog	boxes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Action	Expressions	and	Callbacks
	
	
	

To	define	the	action	taken	when	a	certain	tile	in	a	dialog	box	is	selected,	you
associate	an	AutoLISP	expression	with	that	tile	by	calling	the	action_tile
function.	This	is	known	as	an	action	expression.	Within	the	action	expression,
you	often	need	access	to	attributes	in	the	DCL	file.	The	get_tile	and
get_attr	functions	provide	this	capability.	The	get_attr	function	retrieves
the	user-defined	attributes	within	the	DCL	file.	The	get_tile	function	gets	the
current	runtime	value	of	a	tile	based	on	user	input	to	that	tile.	Action	expressions
must	be	defined	following	the	new_dialog	call	and	before	the
start_dialog	call.

Information	relating	to	how	the	user	has	selected	a	tile	or	modified	a	tile's
contents	is	returned	to	the	action	expression	as	a	callback.	In	most	cases,	every
active	tile	within	a	dialog	box	can	generate	a	callback.	As	with	reactors,	the
action	expression	that	responds	to	the	callback	is	often	referred	to	as	a	callback
function.	This	function	should	perform	validity	checking	on	the	associated	tile
and	should	update	information	in	the	dialog	box	that	pertains	to	the	value	of	the
tile.	Updating	the	dialog	box	can	include	issuing	an	error	message,	disabling
other	tiles,	and	displaying	the	appropriate	text	in	an	edit	box	or	list	box.

Only	the	OK	button	(or	its	equivalent)	should	query	the	tile	values	to
permanently	save	the	settings	that	the	user	has	finally	selected.	In	other	words,
you	should	update	the	variables	associated	with	tile	values	within	the	callback
for	the	OK	button,	not	the	callback	for	an	individual	tile.	If	permanent	variables
are	updated	within	the	individual	tile	callbacks,	there	is	no	way	to	reset	the
values	if	the	user	selects	the	Cancel	button.	If	the	OK	button's	callback	detects
an	error,	it	should	display	an	error	message	and	return	focus	to	the	tile	in	error;	it
should	not	exit	the	dialog	box.

When	a	dialog	box	includes	several	tiles	whose	handling	is	similar,	it	can	be
convenient	to	associate	those	tiles	with	a	single	callback	function.	The	principle

of	not	committing	to	the	user's	changes	until	the	user	chooses	OK	still	applies.

There	are	two	ways	to	define	actions	other	than	calling	action_tile.	You
can	define	a	default	action	for	the	entire	dialog	box	when	you	call
new_dialog,	and	you	can	define	an	action	by	using	a	tile's	action	attribute.
These	alternative	means	of	defining	actions,	and	the	order	in	which	they	occur,
are	described	in	Default	and	DCL	Actions.

Action	Expressions
Callback	Reasons

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Action	Expressions	and	Callbacks	>	

Action	Expressions
	
	
	

An	action	expression	can	access	the	variables	shown	in	the	following	table,
indicate	which	tile	was	selected,	and	describe	the	tile's	state	at	the	time	of	the
action.	The	variable	names	are	reserved.	Their	values	are	read-only	and	have	no
meaning,	unless	they	are	accessed	within	an	action	expression.

Action	expression	variables

Variable Description

$key The	key	attribute	of	the	tile	that	was
selected.
This	variable	applies	to	all	actions.

$value The	string	form	of	the	current	value	of
the	tile,	such	as	the	string	from	an	edit
box,	or	a	"1"	or	"0"	from	a	toggle.
This	variable	applies	to	all	actions.
If	the	tile	is	a	list	box	(or	pop-up	list)
and	no	item	is	selected,	the	$value
variable	will	be	nil.

$data The	application-managed	data	(if	any)
that	was	set	just	after	new_dialog
time	by	means	of
client_data_tile.

This	variable	applies	to	all	actions,	but

$data	has	no	meaning	unless	your
application	has	already	initialized	it	by
calling	client_data_tile.	See
Application-Specific	Data.

$reason The	reason	code	that	indicates	which
user	action	triggered	the	action.	Used
with	edit_box,	list_box,
image_button,	and	slider	tiles.

This	variable	indicates	why	the	action
occurred.	Its	value	is	set	for	any	kind	of
action,	but	you	need	to	inspect	it	only
when	the	action	is	associated	with	an
edit_box,	list_box,
image_button,	or	slider	tile.	See
Callback	Reasons	in	the	following
section	for	details.

If	edit1	is	a	text	box,	the	action	expression	in	the	following	action_tile
call	is	evaluated	when	the	user	exits	the	text	box:

(action_tile	"edit1"	"(setq	ns	$value)")

The	$value	contains	the	string	that	the	user	entered,	and	the	expression	saves
this	in	the	ns	variable.

The	next	example	saves	the	name	of	the	selected	tile	so	that	the	program	can
refer	to	it:

(action_tile	"edit1"	"(setq	newtile	$key)")

The	newtile	variable	is	set	to	the	key	name	of	the	selected	tile,	in	this	case
"edit1".	The	$key	variable	is	very	useful	within	a	function	that	serves	as	the
action	for	several	separate	tiles.

When	a	tile	is	named	in	more	than	one	action_tile	call,	only	the	last	such
call	(prior	to	start_dialog)	has	any	effect.	(It's	as	if	you	were	to	assign
multiple	values	to	the	same	variable.)	The	programmable	dialog	box	(PDB)

feature	allows	only	one	action	per	tile.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Action	Expressions	and	Callbacks	>	

Callback	Reasons
	
	
	

The	callback	reason,	returned	in	the	$reason	variable,	specifies	why	the	action
occurred.	Its	value	is	set	for	any	kind	of	action,	but	you	need	to	inspect	it	only
when	the	action	is	associated	with	an	edit_box,	list_box,
image_button,	or	slider	tile.	The	following	table	shows	the	possible
values:

Callback	reason	codes

Code Description

1 This	is	the	value	for	most	action	tiles.	The
user	has	selected	the	tile	(possibly	by
pressing	ENTER,	if	the	tile	is	the	default
and	the	platform	recognizes	accelerator
keys).

2 Edit	boxes:	The	user	has	exited	the	edit
box,	but	has	not	made	a	final	selection.

3 Sliders:	The	user	has	changed	the	value	of
the	slider	by	dragging	the	indicator	but
has	not	made	a	final	selection.

4 List	boxes	and	image	buttons:	This
callback	reason	always	follows	a	code	1.
It	usually	means	“commit	to	the	previous
selection.”	It	should	never	undo	the
previous	selection;	this	confuses	and

annoys	the	user.

Code	1	is	described	fully	in	the	table.	The	following	text	describes	the	codes	2,
3,	and	4	in	greater	detail.

Code	2—Edit	Boxes

The	user	has	exited	the	edit	box—by	pressing	the	TAB	key	or	by	choosing	a
different	tile—but	has	not	made	a	final	selection.	If	this	is	the	reason	for	an	edit
box	callback,	your	application	should	not	update	the	value	of	the	associated
variable,	but	should	check	the	validity	of	the	value	in	the	edit	box.

Code	3—Sliders

The	user	has	changed	the	value	of	the	slider	by	dragging	the	indicator	(or	an
equivalent	action),	but	has	not	made	a	final	selection.	If	this	is	the	reason	for	a
slider	callback,	your	application	should	not	update	the	value	of	the	associated
variable	but	should	update	the	text	that	displays	the	slider's	status.	For	more
information,	see	Sliders.	For	code	examples,	see	Handling	Sliders.

Code	4—List	Boxes

The	user	has	double-clicked	on	the	list	box.	You	can	define	the	meaning	of	a
double-click	in	your	application.	If	the	main	purpose	of	the	dialog	box	is	to
select	a	list	item,	a	double-click	should	make	a	selection	and	then	exit	the	dialog
box.	(In	this	case,	the	is_default	attribute	of	the	list_box	tile	should	be	true.)
If	the	list	box	is	not	the	primary	tile	in	the	dialog	box,	then	a	double-click	should
be	treated	as	equivalent	to	making	a	selection	(code	1).

List	boxes	that	allow	the	user	to	select	multiple	items	(multiple_select	=
true)	cannot	support	double-clicking.

Code	4—Image	Buttons

The	user	has	double-clicked	on	the	image	button.	You	can	define	the	meaning	of
a	double-click	in	your	application.	In	many	cases	it	is	appropriate	for	a	single-
click	to	select	the	button,	but	in	others	it	is	better	for	a	single-click	(or	a
keyboard	action)	to	highlight	the	button,	and	then	have	the	ENTER	key	or	a

double-click	select	it.
Default	and	DCL	Actions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Action	Expressions	and	Callbacks	>	Callback
Reasons	>	

Default	and	DCL	Actions
	
	
	

The	action_tile	function	is	not	the	only	way	to	specify	an	action.	A	tile's
DCL	description	can	include	an	action	attribute	in	AutoLISP,	and	the
new_dialog	call	can	specify	a	default	action	for	the	dialog	box	as	a	whole.	A
tile	can	have	only	a	single	action	at	a	time.	If	the	DCL	and	the	application
specify	more	than	one	action,	they	supersede	each	other	in	the	following	order	of
priority	(lowest	to	highest):

The	default	action	specified	by	the	new_dialog	call	(used	only	if	no
action	is	explicitly	assigned	to	the	tile).

The	action	specified	by	the	action	attribute	in	the	DCL	file.

The	action	assigned	by	the	action_tile	call	(highest	priority).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Handling	Tiles
	
	
	

Your	program	has	some	control	over	the	tiles	that	are	in	the	current	dialog	box	at
initialization	time	and	action	(callback)	time.	This	section	introduces	the	tile-
handling	functions	and	shows	how	to	initialize	and	modify	the	tiles'	modes	and
values.

Initializing	Modes	and	Values
Changing	Modes	and	Values	at	Callback	Time
Handling	Radio	Clusters
Handling	Sliders
Handling	Edit	Boxes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Handling	Tiles	>	

Initializing	Modes	and	Values
	
	
	

Initializing	a	tile	can	include	the	following:

Making	it	the	initial	keyboard	focus	of	the	dialog	box

Disabling	or	enabling	it

Highlighting	its	contents,	if	it	is	an	edit	box	or	image

These	operations	are	performed	by	mode_tile	calls.	You	can	set	the	value	of	a
tile	by	using	set_tile.

To	display	a	default	value—such	as	a	surname—in	an	edit	box	and	set	the	dialog
box's	initial	focus	to	that	box,	use	the	following	code:

(setq	name_str	"Kenobi")									;	Default.

(set_tile	"lastname"	name_str)			;	Initializes	field.

(mode_tile	"lastname"	2)									;	2	sets	focus	to	tile.

An	additional	mode_tile	call	can	highlight	all	the	contents	of	an	edit	box,	so
the	user	has	the	option	to	type	immediately	over	the	default	contents,	as	shown
in	the	following	example:

(mode_tile	"lastname"	3)									;	3	selects	box	contents.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Handling	Tiles	>	

Changing	Modes	and	Values	at	Callback	Time
	
	
	

At	callback	time,	you	can	check	the	value	of	a	tile.	If	necessary,	you	can	use
set_tile	again	to	modify	this	value.	During	callbacks,	you	can	also	use
mode_tile	to	change	the	status	of	a	tile.	The	following	table	shows	the	values
of	the	mode_tilemode	argument:

Mode	codes	for
mode_tile

Value Description

0 Enable	tile

1 Disable	tile

2 Set	focus	to	tile

3 Select	edit	box
contents

4 Flip	image
highlighting	on
or	off

When	you	use	mode_tile	to	disable	a	tile	that	has	the	current	focus,	you	must
call	mode_tile	again	to	set	the	focus	to	a	different	tile	(in	most	cases,	the	next
tab	stop	in	the	dialog	box).	Otherwise,	the	focus	will	remain	on	a	disabled	tile,
which	is	illogical	and	can	cause	errors.

A	good	example	of	a	tile	disabling	itself	is	a	series	of	dialog	box	pages	that	the
user	steps	through	by	choosing	a	Next	or	Previous	button.	When	the	user
chooses	Next	on	the	next-to-last	page,	the	button	is	disabled.	The	same	thing
happens	after	choosing	Previous	on	the	second	page.	In	both	cases,	the	code
must	disable	the	button	that	was	chosen,	and	then	set	focus	to	a	different	tile.

Suppose	the	tile	called	group_on	is	a	toggle	that	controls	a	cluster	called
group.	When	the	toggle	is	turned	off,	the	tiles	in	the	cluster	are	inactive	and
should	not	be	modified.	In	this	case,	you	might	define	the	following	action	for
the	toggle.	(Notice	the	use	of	the	\"	control	character,	which	allows	quotation
marks	within	an	action_tile	argument.)

(action_tile	"group_on"	"(mode_tile	\"group\"	(-	1	(atoi	$value)))")

The	subtraction	and	atoi	call	in	the	action	expression	set	the	mode_tile
function's	mode	argument.	Because	a	toggle	is	0	when	it	is	turned	off	and	1
when	it	is	turned	on,	the	subtraction	inverts	its	value	and	the	mode	controls
whether	the	cluster	is	enabled.

You	can	inspect	attributes	other	than	a	tile's	value	with	the	get_attr
function.	For	example,	you	may	want	to	retrieve	the	label	of	a	button	called
"pressme":

(get_attr	"pressme"	"label")

The	get_attr	function	returns	the	value	of	the	specified	attribute	as	a	string.

Note If	you	use	get_attr	to	retrieve	a	value	attribute,	it	gets	the	value
attribute	saved	in	the	DCL	file	(the	initial	value	of	the	tile).	The	get_tile
function,	however,	gets	the	current	runtime	value	of	the	tile.	The	two	values	are
not	necessarily	the	same.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Handling	Tiles	>	

Handling	Radio	Clusters
	
	
	

Radio	buttons	appear	in	radio	clusters.	The	value	of	each	radio	button	is	either
"1"	for	On	or	"0"	for	Off.	The	value	of	the	radio	cluster	is	the	key	attribute	of
the	currently	selected	button.	The	PDB	feature	manages	the	values	of	radio
buttons	in	a	cluster	and	ensures	that	only	one	button	is	turned	on	at	a	time.	You
can	assign	an	action	to	each	radio	button,	but	it	is	more	convenient	to	assign	an
action	to	the	radio	cluster	as	a	whole	and	then	test	the	cluster's	value	to	see
which	radio	button	was	chosen.

Consider	the	following	example:	A	radio	cluster	controls	the	view	of	a	three-
dimensional	object	that	is	displayed	after	a	user	exits	a	dialog	box.	This	cluster
contains	four	radio	buttons:

(action_tile	"view_sel"	"(pick_view	$value)")

		.

		.

		.

(defun	pick_view	(which)

		(cond

				((=	which	"front")	(setq	show_which	0))

				((=	which	"top")	(setq	show_which	1))

				((=	which	"left")	(setq	show_which	2))

				((=	which	"right")	(setq	show_which	3))

)

)

These	examples	show	each	radio	button	associated	with	a	single	variable	that
takes	multiple	values.	These	variables	may	also	cause	additional	actions,	such	as
disabling	selections	in	your	dialog	box.	If	the	radio	cluster	is	large,	you	can	store
the	associated	values	in	a	table.	If	you	use	a	table,	structure	it	so	it	doesn't
depend	on	the	order	of	the	buttons	within	the	cluster.	The	PDB	feature	does	not
impose	this	restriction,	and	the	order	can	change	if	the	DCL	definition	changes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Handling	Tiles	>	

Handling	Sliders
	
	
	

When	you	handle	actions	and	callbacks	from	sliders,	your	application	should
check	the	reason	code	that	it	receives	along	with	the	callback.	This	is	not
required,	but	it	is	a	good	idea	because	it	can	reduce	processing.

A	callback	occurs	when	an	increment	boundary	on	a	slider	is	crossed.	For
example,	if	the	slider	is	defined	with	a	minimum	value	of	0,	a	maximum	value	of
10,	and	both	small	and	big	increments	of	1,	a	callback	is	issued	10	times	as	the
user	traverses	from	one	end	of	the	slider	to	the	other.

The	following	function	shows	the	basic	scheme	of	a	function	to	handle	a	slider.
It	is	called	from	an	action	expression	associated	with	the	slider	tile.	The
slider_info	tile	used	by	the	function	displays	the	slider's	current	value	in
decimal	form.	Often	such	a	tile	is	an	edit	box	as	well,	which	gives	users	the
choice	of	either	manipulating	the	slider	or	entering	its	value	directly.	If	a	user
enters	a	value	in	slider_info,	your	edit	box	callback	should	update	the
value	of	the	slider	as	follows:

(action_tile	

		"myslider"	

		"(slider_action	$value	$reason)"

)

(action_tile	

		"slider_info"	

		"(ebox_action	$value	$reason)"

)

		.

		.

		.

(defun	slider_action(val	why)

		(if	(or	(=	why	2)	(=	why	1))				;	Check	reason	code.

		(set_tile	"slider_info"	val)				;	Show	interim	result.

)

)

(defun	ebox_action(val	why)

		(if	(or	(=	why	2)	(=	why	1))				;	Check	reason	code.

		(set_tile	"myslider"	val)						;	Show	interim	result.

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Handling	Tiles	>	

Handling	Edit	Boxes
	
	
	

Actions	and	callbacks	to	handle	edit	boxes	are	similar	to	those	for	sliders.
However,	because	characters	in	edit	boxes	are	already	visible,	there	is	no	need
for	action	on	interim	results.	Edit	boxes	only	return	a	callback	code	when	the
focus	to	that	tile	is	lost.	The	following	code	example	checks	the	value	but	doesn't
redisplay	it:

(action_tile	"myeditbox"	"(edit_action	$value	$reason)")

		.

		.

		.

(defun	edit_action	(val	why)

		(if	(or	(=	why	2)	(=	why	4))

				.	;	Do	range	checking	on	

				.	;	transient	value	here.

				.	

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Nesting	Dialog	Boxes
	
	
	

You	create	and	manage	nested	dialog	boxes	by	calling	new_dialog	and
start_dialog	from	within	an	action	expression	or	callback	function.	For
example,	by	including	the	following	statement,	a	function	can	display	the
“Hello,	world”	box	when	the	user	chooses	the	button	called	button_1:

(action_tile	"button_1"	"(c:hello)")

The	user	must	exit	the	nested	dialog	box	before	using	the	previous	dialog	box
again.

AutoCAD	imposes	a	limit	of	no	more	than	eight	nested	dialog	boxes,	but	to
avoid	confusion	it	is	recommended	you	nest	dialog	boxes	no	deeper	than	four
levels.

Warning If	you	display	nested	dialog	boxes	by	multiple	new_dialog	calls,	be
careful	to	balance	each	new_dialog	call	with	a	corresponding
done_dialog	call	(whether	called	from	a	callback	or	not).	Otherwise,	your
application	may	fail.

The	term_dialog	function	terminates	all	current	dialog	boxes	as	if	the	user
had	canceled	each	of	them.	You	can	use	this	function	if	you	need	to	cancel	a
series	of	nested	dialog	boxes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Functions	for	Hiding	Dialog	Boxes
	
	
	

A	user	cannot	make	an	interactive	selection	while	a	dialog	box	is	active.	If	you
want	the	user	to	make	a	selection	from	the	graphics	screen,	you	must	hide	your
dialog	box	and	then	restore	it.	Hiding	the	box	is	the	same	as	ending	it	with
done_dialog,	except	your	callback	function	must	use	the	done_dialog
status	argument	to	indicate	that	the	dialog	box	is	hidden—as	opposed	to
ended	or	canceled.	Set	status	to	an	application-defined	value.

The	start_dialog	function	returns	the	application-defined	status	when
the	dialog	box	disappears.	Your	program	must	then	examine	the	status	returned
by	start_dialog	and	determine	what	to	do	next.	For	standard	and
application-defined	status	values,	see	in	the	AutoLISP	Reference.

For	example,	here	is	a	simple	dialog	box	that	may	require	a	user	to	pick	a	point
in	the	AutoCAD	graphics	window:

The	dialog	box	is	defined	with	the	following	DCL:

hidedcl	:	dialog

{	label="Hide	Example";

		:	column

		{	:	text

				{	key="message";

						label="Click	PickMe	to	pick	a	point";

						fixed_width=true;

						fixed_height=true;

						alignment=centered;

				}

				:row

				{	ok_only;

						:retirement_button

						{	label				=	"PickMe";

								key						=	"hide";

								mnemonic	=	"H";

				}}}}

The	function	controlling	the	dialog	box	displays	the	window	until	the	user
presses	OK	or	closes	the	window.	If	the	user	chooses	PickMe,	the	code	hides	the
dialog	box	and	prompts	the	user	to	select	a	point.	The	following	AutoLISP	code
controls	the	dialog	box:

(defun	c:hidedcl	(/	dcl_id	what_next	cnt)

		(setq	dcl_id	(load_dialog	"hidedcl.dcl"))		;Load	the	dialog	box.

		(setq	what_next	2)

		(setq	cnt	1)

		(while	(>=	what_next	2)																				;Begin	display	loop.

				(if	(null	(new_dialog	"hidedcl"	dcl_id))	;Initialize	dialog

						(exit)																																	;box,	exit	if	nil

);	endif																																	;returned.

				;	Set	action	to	take	if	a	button	is	pressed.	Either	button	

				;	results	in	a	done_dialog	call	to	close	the	dialog	box.

				;	Each	button	associates	a	specific	status	code	with	

				;	done_dialog,	and	this	status	code	is	returned	by	

				;	start_dialog.	

				(action_tile	"accept"	"(done_dialog	1)")	;Set	action	for	OK.

				(action_tile	"hide"	"(done_dialog	4)")			;Set	action	for	

																																													;PickMe.

				(setq	what_next	(start_dialog))										;Display	dialog	box.

				;	

				(cond

						((=	what_next	4)																							;Prompt	user	to

								(getpoint	"\npick	a	point")										;pick	pt.

)

						((=	what_next	0)

								(prompt	"\nuser	cancelled	dialog")

)

)

)

		(unload_dialog	dcl_id)

		(princ)

)

Note The	term_dialog	function	terminates	all	dialog	boxes	at	once	but	does
not	return	a	status	code,	so	there	is	no	way	for	an	application	to	distinguish
between	hiding	a	nested	box	and	canceling	boxes	due	to	an	error	condition.

Requesting	a	Password

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Functions	for	Hiding	Dialog	Boxes	>	

Requesting	a	Password
	
	
	

The	following	examples	show	how	to	use	a	simple	dialog	box	to	request	a
password	from	users.

The	getpass.dcl	file	defines	a	dialog	box	named	passdlg,	which	contains	two
tiles:	the	edit_box	tile	where	the	user	enters	the	password,	and	the
ok_cancel	tile.	It	uses	the	password_char	DCL	attribute	to	mask	the	text
a	user	enters:

//	GETPASS.DCL

//

passdlg	:	dialog	{

		label	=	"Password	Protected";

		:	edit_box	{

				label	=	"Password:";

				edit_width	=	20;

				key	=	"password";

				password_char	=	"?";

		}

		ok_cancel;

}

The	getpass.lsp	file	defines	the	GETPASS	function.	This	function	loads	the
getpass.dcl	file	and	displays	the	passdlg	dialog	box.	When	a	user	enters	text
into	the	edit	box,	it	is	masked	by	the	password_char	character	defined	in	the
DCL	file.	The	action	assigned	to	the	edit	box	ensures	that	the	characters	entered
by	the	user	are	set	to	the	pass	variable:

;;	GETPASS.LSP

;;

(defun	GETPASS	(/	dcl_id	pass)

		(setq	dcl_id	(load_dialog	"getpass.dcl"))

		(if	(new_dialog	"passdlg"	dcl_id)

				(progn

						(action_tile	"password"	"(setq	pass	$value)")

						(start_dialog)

						(unload_dialog	dcl_id)

)

				(princ	"Error:	Unable	to	load	GETPASS.DCL.	")

)

		pass

)

The	GETPASS	function	returns	the	string	entered	by	the	user.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

List	Boxes	and	Pop-Up	Lists
	
	
	

The	following	functions	handle	list	boxes	and	pop-up	lists	in	dialog	boxes:

start_list

add_list

end_list

You	set	up	the	lists	displayed	in	list	boxes	and	pop-up	lists	by	using	a	sequence
of	calls	to	these	functions.

List	Operations
Processing	List	Elements

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	List	Boxes	and	Pop-Up	Lists	>	

List	Operations
	
	
	

A	dialog	box	list	operation	always	begins	with	a	start_list	function	call.
The	function	syntax	is	as	follows:

(start_list	key	[operation	[index]])

The	key	argument	is	a	string	that	identifies	the	dialog	box	tile.	The	key
argument	is	case-sensitive.	The	operation	argument	is	an	integer	value	that
indicates	whether	you	are	creating	a	new	list,	changing	a	list,	or	appending	to	a
list.	The	following	are	valid	operation	arguments:

Operation	codes	for	start_list

Value Description

1 Change	selected	list
contents

2 Append	new	list	entry

3 Delete	old	list	and
create	new	list	(the
default)

The	index	argument	is	only	used	in	change	operations.	The	index	indicates	the
list	item	to	change	by	a	subsequent	add_list	call.	The	first	item	in	a	list	is
index	0.

If	you	don't	specify	operation,	it	defaults	to	3	(create	a	new	list).	If	you	do

not	specify	an	index,	the	index	value	defaults	to	0.

You	implement	the	list	operations	as	follows:

Creating	a	New	List	(3)

After	the	start_list	call,	call	add_list	repeatedly	to	add	new	items	to
the	list.	End	list	handling	by	calling	end_list.

Changing	an	Item	in	a	List	(1)

After	calling	start_list,	call	add_list	once	to	replace	the	item	whose
index	was	specified	in	the	start_list	call.	(If	you	call	add_list	more
than	once,	it	replaces	the	same	item	again.)	End	list	handling	by	calling
end_list.

Appending	an	Item	to	a	List	(2)

After	calling	start_list,	call	add_list	to	append	an	item	to	the	end	of
the	list.	If	you	continue	to	call	add_list,	more	items	are	appended	until
you	call	end_list.

Regardless	of	which	list	operation	you	are	doing,	you	must	call	the	three
functions	in	sequence:	start_list,	then	add_list	(possibly	more	than
once),	and	then	end_list.

The	mapcar	function	is	useful	for	turning	a	“raw”	AutoLISP	list	into	a	list	box
display.	In	the	following	example,	the	appnames	list	contains	strings	that	you
want	to	appear	in	a	list	box	called	selections.	You	can	use	this	code
fragment	to	set	up	the	list	and	display	it	as	follows:

(start_list	"selections")					;Specify	the	name	of	the	list	box.

(mapcar	'	add_list	appnames)		;Specify	the	AutoLISP	list.

(end_list)

Because	list	creation	(3)	is	the	default,	this	example	doesn't	specify	it.

The	value	of	a	list_box	tile	is	the	index	of	the	selected	item	(or	the	indexes
of	selected	items,	if	multiple	selections	are	allowed).	If	your	program	needs	to
know	the	actual	text	associated	with	an	index,	it	must	save	the	original	list.	It
must	also	track	changes	to	the	list.

Appending	list	items	is	similar	to	creating	a	new	list.	If,	for	example,
appnames	has	12	items	in	it,	and	you	want	to	append	another	list,	called

newnames,	you	could	use	the	following	code:

(start_list	"selections"	2)

(mapcar	'add_list	newnames)

(end_list)

Changing	a	single	item	requires	only	one	add_list	call.	In	this	case,	you
specify	the	index	of	the	item	to	change:

(start_list	"selections"	1	5)	;Change	the	sixth	item	in	the	list.

(add_list	"SURPRISE!")								;Remember	that	the	first	index	is	0.

(end_list)

You	cannot	delete	a	list	item	or	insert	an	item	without	rebuilding	the	list	from
scratch.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	List	Boxes	and	Pop-Up	Lists	>	

Processing	List	Elements
	
	
	

Because	the	value	of	a	list_box	tile	can	contain	leading	spaces	(especially	if
you	are	retrieving	multiple	items),	do	not	test	the	value	as	a	string	comparison.
Convert	list_box	value	to	an	integer	first	with	the	atoi	function,	before
processing	the	list	box.	You	can	also	use	the	read	function,	which	converts	a
token	to	an	integer	automatically.	For	example,	for	a	list	named	justone	that
accepts	only	a	single	selection,	the	following	code	fragment	checks	to	see	if	the
third	item	in	the	list	was	selected:

(setq	index	(get_tile	"justone"))

(cond

	((/=	index	"")															;See	if	string	is	empty.

					(=	2	(atoi	index))

																														;	Process	the	third	entry.

					...

)

)

It	is	necessary	to	first	check	if	the	string	is	empty,	because	the	atoi	functions
return	0	for	an	empty	string	as	well	as	the	string	"0".

The	value	of	a	pop-up	list	never	has	a	leading	space,	so	you	don't	have	to	convert
the	value.	Pop-up	lists	do	not	allow	for	multiple	selection.

If	the	list	box	supports	multiple	selection,	your	program	must	do	the	conversion
and	step	through	the	multiple	values	in	the	value	string.	The	following	definition
of	MK_LIST	returns	a	list	containing	only	items	the	user	has	selected	from	the
original	displist.	(In	this	example,	the	display	list	displist	is	maintained
as	a	global	variable.)	The	MK_LIST	function	expects	to	be	called	with	the
current	$value	of	the	list	box:

(defun	MK_LIST	(readlist	/	count	item	retlist)

		(setq	count	1)

		(while	(setq	item	(read	readlist))

				(setq	retlist	(cons	(nth	item	displist)	retlist))

				(while	(and	(/=	"	"	(substr	readlist	count	1))

						(/=	""	(substr	readlist	count	1)))

						(setq	count	(1+	count))

)

				(setq	readlist	(substr	readlist	count))

)

		(reverse	retlist)

)

Both	preceding	examples	also	work	for	the	case	of	a	single	selection.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Image	Tiles	and	Buttons
	
	
	

AutoLISP	provides	functions	for	handling	image	tiles	and	image	buttons.
Examples	for	how	to	use	these	functions	are	provided	in	this	section.

Creating	Images
Handling	Image	Buttons

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Image	Tiles	and	Buttons	>	

Creating	Images
	
	
	

The	calling	sequence	to	create	images	for	image	tiles	and	image	buttons	is
similar	to	the	list-handling	sequence.	The	start_image	function	begins	the
creation	of	an	image,	and	end_image	ends	it.	However,	the	type	of	image	to
draw	is	specified	in	separate	function	calls,	instead	of	arguments:

vector_image

Draws	a	vector	(a	single,	straight	line)	in	the	current	image.

fill_image

Draws	a	filled	rectangle	in	the	current	image.

slide_image

Draws	an	AutoCAD	slide	in	the	image.

Vectors	and	filled	rectangles	are	useful	for	simple	images,	such	as	the	color
swatches	(filled	rectangles)	that	the	AutoCAD	Select	Color	dialog	box	uses	to
display	the	user's	choice	of	color.	For	complicated	images,	slides	are	more
convenient.	However,	displaying	slides	can	be	time-consuming.	If	you	use
slides,	keep	them	simple.

Note If	you	use	slides	with	filled	objects	(such	as	wide	polylines,	solids,	and	3D
faces)	in	image	tiles,	the	images	will	appear	as	outlines	unless	you	make	the
slides	from	an	image	created	with	the	SHADEMODE	command.

The	vector_image	function	requires	that	you	specify	absolute	coordinates,
while	fill_image	and	slide_image	require	that	you	specify	a	starting
coordinate	along	with	a	relative	width	and	height.	To	do	this	correctly	you	must
know	the	exact	dimensions	of	the	image	tile	or	image	button.	Because	these
dimensions	are	usually	assigned	when	the	dialog	box	is	laid	out,	the	PDB	feature
provides	functions	that	return	the	width	and	height	of	a	particular	tile.	These

dimension	functions	are	dimx_tile	and	dimy_tile.	You	should	call	them
before	you	begin	creating	an	image.	The	origin	of	a	tile,	(0,0),	is	always	the
upper-left	corner.

Colors	can	be	specified	as	AutoCAD	color	numbers	or	as	one	of	the	logical	color
numbers	shown	in	the	following	table.	(The	values	and	mnemonics	are	defined
by	the	Autodesk	Device	Interface	[ADI].)

Dialog	box	color	attribute

Color
number

ADI
mnemonic Meaning

-2 BGLCOLOR Current	background	of
the	AutoCAD	graphics
screen

-15 DBGLCOLOR Current	dialog	box
background	color

-16 DFGLCOLOR Current	dialog	box
foreground	color	(for
text)

-18 LINELCOLOR Current	dialog	box	line
color

In	the	following	example,	"cur_color"	is	an	image	tile	you	want	to	fill
entirely	with	a	patch	of	red	as	follows:

(setq	width	(dimx_tile		"cur_color")

						height	(dimy_tile	"cur_color"))

(start_image	"cur_color")

(fill_image	0	0	width	height	1)			;1	=	AutoCAD	red.

(end_image)

You	can	use	the	image-drawing	functions	in	conjunction	with	each	other.	The
following	code	fills	an	image	and	then	draws	a	vertical	stripe	over	it:

(setq	width	(dimx_tile	"stripe")

						height	(dimy_tile	"stripe"))

(start_image	"stripe")

(fill_image	0	0	width	height	3)		;3	=	AutoCAD	green.

(setq	x	(/	width	2))													;Center	the	vector	vertically.

(vector_image	x	0	x	height	4)				;4	=	AutoCAD	cyan.

(end_image)

The	slides	you	display	with	slide_image	can	be	standalone	slide	(SLD)	files,
or	part	of	a	slide	library	(SLB)	file.	If	the	slide	is	in	an	SLD	file,	you	specify	its
name	without	the	.sld	extension	(for	example,	"frntview").	If	the	slide	is	in	a
slide	library,	you	specify	the	name	of	the	library,	followed	by	the	name	of	the
slide	enclosed	in	parentheses.	Note	that	the	library	and	slide	names	are	also
specified	without	extensions—for	example,	"allviews(frntview)".	The
slide_image	function	searches	for	the	slide	or	slide	library	file	according	to
the	current	AutoCAD	library	search	path.	(See	in	the	AutoLISP	Reference.)

In	the	following	example,	the	slide	is	in	a	single	file	called	topview.sld:

(setq	x	(dimx_tile	"view")

						y	(dimy_tile	"view"))

(start_image	"view")

(slide_image	0	0	x	y	"topview")

(end_image)

Vectors	in	slides	are	often	drawn	in	white	(color	number	7),	which	is	the	default
background	color	of	an	image.	If	your	image	tile	is	blank	when	you	first	display
a	slide,	try	changing	its	color	attribute	to	graphics_background.	(You
can	also	change	the	background	of	the	image	by	preceding	the	slide_image
call	with	a	fill_image	call.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Image	Tiles	and	Buttons	>	

Handling	Image	Buttons
	
	
	

You	can	handle	an	image	button	simply	as	a	button—that	is,	you	can	use	it	to
trigger	a	single	action.	However,	you	can	also	use	the	PDB	feature	to	define
regions	of	the	button.	With	regions	defined,	the	action	taken	depends	on	the	part
of	the	image	button	the	user	selects.	The	mechanism	for	this	is	straightforward:
an	image	button's	action	or	callback	returns	the	(X,Y)	location	that	the	user
selected.	The	coordinates	are	within	the	range	of	the	particular	image	button	tile
(as	returned	by	the	dimension	functions).	Your	application	must	assign	a
meaning	to	select	locations	by	implicitly	defining	regions	of	the	image.	The
DDVPOINT	dialog	box	makes	good	use	of	this	feature.	You	can	view	this	by
loading	and	running	the	ddvpoint.lsp	file	in	the	AutoCAD	Support	directory.

In	the	following	example,	your	image	button	has	two	color	swatches	created	by
fill_image.	You	want	to	select	either	one	or	the	other,	depending	on	which
region	the	user	selects.	If	the	image	button	is	divided	horizontally	(dark	above
and	light	below),	your	action	needs	to	test	only	the	one	dimension:

(action_tile	"image_sel"	"(pick_shade	$key	$value	$y)")

		...

(defun	pick_shade	(key	val	y)

		(setq	threshold	

				(/	(dimy_tile		key)	2))		;Image	is	divided	horizontally.

		(if	(>	y	threshold)									;Remember	that	the	origin	is	at

				(setq	result	"Light")					;upper	left.

		(setq	result	"Dark"))

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Application-Specific	Data
	
	
	

The	client_data_tile	function	assigns	application-specific	data	to	a	tile.
The	data	is	available	at	callback	time	as	the	$data	variable	and	must	be	a
string.	Client	data	is	not	represented	in	DCL;	it	is	valid	only	while	your
application	is	running.	Using	client	data	is	comparable	to	using	user-defined
attributes.	The	main	difference	is	that	user-defined	attributes	are	read-only,	while
client	data	can	change	at	runtime.	Also,	end-users	can	inspect	user-defined
attributes	in	the	application's	DCL	file,	but	client	data	is	invisible	to	them.

Because	your	program	must	maintain	the	list	displayed	by	a	list	box	(or	pop-up
list),	client	data	is	good	for	handling	this	information.	The	following
modification	to	the	MK_LIST	function	(shown	in	Processing	List	Elements)
makes	the	list	an	argument:

(defun	MK_LIST	(readlist	displist	/)

This	code	eliminates	the	need	for	a	global	list	variable.	The	following	calls	in	the
main	part	of	the	dialog	box	handler	associate	a	short	list	with	the	tile	by	calling
client_data_tile,	and	then	pass	that	list	to	MK_LIST	by	means	of	an
action	expression	as	follows:

(client_data_tile	

		"colorsyslist"

		"Red-Green-Blue	Cyan-Magenta-Yellow	Hue-Saturation-Value"

)

(action_tile	

		"colorsyslist"	

		"(setq	usrchoice	(mk_list	$value	$data))"

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

DCL	Error	Handling
	
	
	

The	PDB	feature	checks	a	DCL	file	for	errors	the	first	time	you	load	it.	If
AutoCAD	encounters	a	syntax	error,	a	misuse	of	attributes,	or	any	other	error
(such	as	failure	to	specify	a	key	attribute	for	an	active	tile),	the	PDB	does	not
load	the	DCL	file.	Instead,	AutoCAD	either	displays	one	or	more	dialog	boxes
alerting	you	to	the	error,	or	writes	a	list	of	errors	to	a	text	file	called	acad.dce.	If
AutoCAD	writes	the	error	messages	to	acad.dce,	it	alerts	you	to	this	with	a
message	similar	to	the	following:

You	can	inspect	the	contents	of	acad.dce	to	find	the	problem.	AutoCAD	places
the	acad.dce	file	in	the	current	working	directory.	When	AutoCAD	reads	a	DCL
file	successfully,	it	deletes	the	acad.dce	file.

If	your	application	uses	multiple	DCL	files,	the	acad.dce	file	is	overwritten	(or
deleted	if	no	errors	occur)	when	each	new	file	is	loaded.	When	you	test	the
program,	acad.dce	shows	errors	(if	any)	from	only	the	DCL	file	most	recently
read.	It	is	recommended	that	you	use	the	VLISP	DCL	Preview	feature	to	debug
your	DCL	files	(see	Displaying	Dialog	Boxes	with	Visual	LISP).	You	can	also
load	and	debug	each	file	manually	in	AutoCAD	with	the	load_dialog
function.	The	following	load_dialog	function	loads	the	DCL	file
hellofile.dcl:

Command:	 (load_dialog	"hellofile")

3

If	the	dialog	box	loads	successfully,	load_dialog	returns	a	positive	integer

that	identifies	the	DCL	file.	You	pass	this	value	to	the	new_dialog	function	to
initialize	individual	dialog	boxes	in	the	file.

The	new_dialog	function	returns	T	if	it	succeeds;	otherwise	it	returns	nil.	If
new_dialog	returns	T,	call	the	start_dialog	function	to	display	the
dialog	box.

Once	you've	debugged	each	DCL	file,	you	can	load	your	program	and	test	the
dialog	boxes	in	combination.	If	your	program	calls	a	restricted	function	between
the	start_dialog	and	done_dialog	calls,	AutoCAD	terminates	all	dialog
boxes	and	displays	the	following	error	message:

AutoCAD	rejected	function

SeeFunctions	Restricted	When	a	Dialog	Box	Is	Open	for	information	on	which
functions	are	restricted.

Setting	the	Auditing	Level	to	Affect	Error	Messages

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	DCL	Error	Handling	>	

Setting	the	Auditing	Level	to	Affect	Error	Messages
	
	
	

The	level	of	semantic	auditing	affects	which	messages	AutoCAD	issues	for	a
DCL	file	(see	Semantic	Auditing	of	DCL	Files).	For	example,	the	hidedcl
dialog	box	defined	in	Functions	for	Hiding	Dialog	Boxes	is	displayed	without
any	warnings,	if	you	use	the	default	audit	level.	If	you	set	the	audit	level	to	3,
though,	AutoCAD	displays	an	alert	dialog	box	with	a	warning	message.	You	can
see	this	for	yourself	by	inserting	the	following	line	at	the	beginning	of
hidedcl:

dcl_settings	:	default_dcl_settings	{	audit_level	=	3;	}

Try	using	the	VLISP	DCL	Preview	feature	to	view	the	dialog	box	defined	in
hidedcl.	You	will	be	alerted	to	view	the	acad.dce	file,	which	contains	the
following	messages:

===	DCL	semantic	audit	of	C:/PROGRA~1/AUTOCA~1/VLISP/vld.dcl	===

Hint	in	"hidedcl".	(widget	type	=	text,	key	=	"message")

				fixed_height	=	true	is	probably	redundant.

At	lower	(less	discriminating)	levels	of	semantic	auditing,	AutoCAD	does	not
look	for	redundant	attribute	definitions	and	the	dialog	box	displays	normally.

Remove	the	fixed_height	=	true	statement	from	the	DCL	to	correct	the
situation	AutoCAD	is	warning	you	about.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	

Dialog	Box	Function	Summary
	
	
	

This	section	summarizes	the	steps	required	in	a	typical	dialog	box	handling
function.	It	also	describes	a	sample	application	you	can	refer	to	when	designing
and	implementing	your	own	dialog	box	functions.

Function	Sequence
The	Sample	Block	Definition	Dialog	Box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Dialog	Box	Function	Summary	>	

Function	Sequence
	
	
	

The	following	demonstrates	the	typical	function	sequence:

1.	 Load	the	DCL	file	with	a	load_dialog	call.

2.	 Call	new_dialog	to	display	a	particular	dialog	box.
Be	sure	to	check	the	value	returned	by	new_dialog.	Calling
start_dialog	when	the	new_dialog	call	has	failed	can	have
unpredictable	results.

3.	 Initialize	the	dialog	box	by	setting	up	tile	values,	lists,	and	images.
Initialize	also	when	you	call	action_tile	to	set	up	action
expressions	or	callback	functions.	Other	functions	typically	called	at	this
time	are	set_tile	and	mode_tile	for	general	tile	values	and	states,
start_list,	add_list,	and	end_list	for	list	boxes,	and	the
dimension	functions	with	start_image,	vector_image,
fill_image,	slide_image,	and	end_image	for	images.	At	this
time	you	can	also	call	client_data_tile	to	associate	application-
specific	data	with	the	dialog	box	and	its	components.

4.	 Call	start_dialog	to	turn	control	over	to	the	dialog	box,	so	that	the
user	can	enter	input.

5.	 Process	user	input	from	within	your	actions	(callbacks).	Process	input
when	you	are	most	likely	to	use	get_tile,	get_attr,	set_tile,
and	mode_tile.
The	user	presses	an	exit	button,	causing	an	action	to	call
done_dialog,	which	causes	start_dialog	to	return	a	value.	At
this	point,	unload	the	DCL	file	by	calling	unload_dialog.
This	scheme	handles	only	one	dialog	box	and	one	DCL	file	at	a	time.
Applications	usually	have	multiple	dialog	boxes.	The	easiest	and

quickest	way	to	handle	these	dialog	boxes	is	to	save	all	of	them	in	a
single	DCL	file.	The	load_dialog	call	then	loads	all	dialog	boxes	at
once,	and	you	can	call	new_dialog	for	any	dialog	box.	If	memory	is
limited,	however,	you	may	need	to	create	multiple	DCL	files	and	use
unload_dialog	to	remove	one	set	of	dialog	boxes	from	memory
before	you	load	another	set.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Managing	Dialog	Boxes	>	Dialog	Box	Function	Summary	>	

The	Sample	Block	Definition	Dialog	Box
	
	
	

The	sample	application	bmake.lsp	and	its	associated	bmake.dcl	file	illustrate	a
number	of	useful	dialog	box	techniques.	These	files	are	in	the	AutoCAD	Support
directory.	The	bmake	application	is	essentially	an	interactive	interface	to	the
entmake	function.	You	can	use	it	to	define	new	blocks	and	to	view	the	names
of	existing	blocks.	Some	of	the	techniques	illustrated	by	bmake	are

Hiding	dialog	boxes	by	defining	special	status	codes	for	done_dialog
to	pass	to	start_dialog.	See	the	main	loop	of	the	C:BMAKE
function	(following	the	load_dialog	and	action_tile	calls).

Using	a	toggle	to	enable	or	disable	another	tile.	See	the	definition	of	the
DO_UNNAMED	function.

Building	a	list	for	a	list	box.	See	the	PAT_MATCH	and	SORT	functions.

Displaying	the	standard	AutoCAD	Help	dialog	box.	See	the	DO_HELP
function.

Aside	from	demonstrating	dialog	box	techniques,	bmake	illustrates	good	design.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog	Boxes	>	

Programmable	Dialog	Box	Reference
	
	
	

You	can	use	attributes	to	work	with	dialog	boxes.

This	chapter	lists	and	describes	all	the	dialog	control	language	(DCL)	tiles	and
their	associated	attributes,	and	summarizes	the	Visual	LISP®	functions	available
for	working	with	programmable	dialog	boxes.

Tile	Attributes
Synopsis	of	Predefined	Attributes
DCL	Attribute	Catalog
action
alignment
allow_accept
aspect_ratio
big_increment
children_alignment
children_fixed_height
children_fixed_width
color
edit_limit
edit_width
fixed_height
fixed_width
fixed_width_font
height
initial_focus

is_bold
is_cancel
is_default
is_enabled
is_tab_stop
key
label
layout
list
max_value
min_value
mnemonic
multiple_select
password_char
small_increment
tabs
tab_truncate
value
width
Functional	Synopsis	of	DCL	Tiles
DCL	Tile	Catalog
boxed_column
boxed_radio_column
boxed_radio_row
boxed_row
button
column
concatenation
dialog

edit_box
errtile
image
image_button
list_box
ok_only
ok_cancel
ok_cancel_help
ok_cancel_help_errtile
ok_cancel_help_info
paragraph
popup_list
radio_button
radio_column
radio_row
row
slider
text
text_part
toggle
spacer
spacer_0
spacer_1
Programmable	Dialog	Box	Function	Synopsis

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

Tile	Attributes
	
	
	

A	tile's	attributes	define	its	layout	and	functionality.	An	attribute	is	similar	to	a
programming	language	variable:	it	consists	of	a	name	and	a	value.

Attribute	Types
Restricted	Attributes
User-Defined	Attributes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Tile	Attributes	>	

Attribute	Types
	
	
	

The	value	of	an	attribute	must	be	one	of	the	following	data	types:

Integer

Numeric	values	(both	integers	and	real	numbers)	that	represent	distances,
such	as	the	width	or	height	of	a	tile,	are	expressed	in	character-width	or
character-height	units.

Real	Number

A	fractional	real	number	must	have	a	leading	digit:	for	example,	0.1,	not
.1.

Quoted	String

A	quoted	string	consists	of	text	enclosed	in	quotation	marks	("").	Attribute
values	are	case-sensitive:	B1	is	not	the	same	as	b1.	If	the	string	must	contain
a	quotation	mark,	precede	the	quotation	mark	character	with	a	backslash
(\").	Quoted	strings	can	contain	other	control	characters	as	well.	The
characters	recognized	by	DCL	are	shown	in	the	following	table:

Control	characters	allowed	in	DCL	strings

Control	character Meaning

\" quote	(embedded)

\\ backslash

\n newline

\t horizontal	tab

Reserved	Word

A	reserved	word	is	an	identifier	made	up	of	alphanumeric	characters,
beginning	with	a	letter.	For	example,	many	attributes	require	a	value	of	either
true	or	false.	Reserved	words	are	also	case-sensitive:	True	does	not
equal	true.

Like	reserved	words	and	strings,	attribute	names	are	case-sensitive;	for	example,
you	cannot	assign	a	width	by	calling	it	Width.

Application	programs	always	retrieve	attributes	as	strings.	If	your	application
uses	numeric	values,	it	must	convert	them	to	and	from	string	values.	For	more
information	on	handling	tile	values	within	an	AutoLISP®	program,	see	Handling
Tiles.

Some	attributes,	such	as	width	and	height,	are	common	to	all	tiles.	Attribute
specifications	are	optional.	Many	attributes	have	default	values	that	are	used	if
the	attribute	is	not	specified.	Other	attributes	are	specifically	meant	for	certain
kinds	of	tiles—for	example,	the	background	color	of	an	image.	If	you	attempt	to
assign	this	attribute	to	a	different	kind	of	tile,	AutoCAD®	may	report	an	error.
Usually,	it	ignores	the	attribute.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Tile	Attributes	>	

Restricted	Attributes
	
	
	

The	following	tile	attributes	are	restricted.	Do	not	use	them	in	your	DCL	files:

horizontal_margin

vertical_margin

type

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Tile	Attributes	>	

User-Defined	Attributes
	
	
	

When	defining	tiles,	you	can	assign	your	own	attributes.	The	name	of	the
attribute	can	be	any	valid	name	that	does	not	conflict	with	the	standard,
predefined	attributes	described	in	Restricted	Attributes	and	summarized	in
Synopsis	of	Predefined	Attributes.	An	attribute	name,	like	a	keyword,	can
contain	letters,	numbers,	or	the	underscore	(_),	and	must	begin	with	a	letter.

If	a	user-defined	attribute	name	conflicts	with	a	predefined	attribute,	the	PDB
feature	does	not	recognize	the	attribute	as	a	new	one,	and	attempts	to	use	the
value	you	assign	it	with	the	standard	attribute.	This	can	be	very	hard	to	debug.

The	values	you	assign	to	the	attribute,	and	their	meanings,	are	defined	by	your
application.	Values	for	user-defined	attributes	must	conform	to	the	types
described	in	Tile	Attributes.

Defining	attributes	is	comparable	to	defining	application-specific	client	data.
Both	techniques	enable	the	PDB	feature	to	manage	data	you	supply.	User-
defined	attributes	are	read-only,	that	is,	they	are	static	while	the	dialog	box	is
active.	If	you	need	to	change	the	values	dynamically,	you	must	use	client	data	at
runtime.	Also,	end	users	can	inspect	the	value	of	user-defined	attributes	in	the
application's	DCL	file,	but	client	data	remains	invisible.

The	definition	of	the	AutoCAD	Drawing	Aids	dialog	box	defines	its	own
attribute,	errmsg,	which	has	a	unique	string	value	for	each	tile.	A	common
error	handler	uses	the	value	of	errmsg	when	it	displays	a	warning.	For
example,	the	tile	could	assign	the	following	value	to	errmsg:

errmsg	=	"Grid	Y	Spacing";

If	the	user	enters	an	unusable	value,	such	as	a	negative	number,	AutoCAD
displays	the	following	error	message:

Invalid	Grid	Y	Spacing.

The	word	Invalid	and	the	trailing	period	(.)	are	supplied	by	the	error	handler.

User-defined	attributes	can	also	be	used	for	limits	on	the	value	of	a	tile	and	the
name	of	a	subdialog	box	that	the	tile	activates	(seeNesting	Dialog	Boxes).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

Synopsis	of	Predefined	Attributes
	
	
	

This	section	lists	the	attributes	defined	by	the	PDB	feature.	The	following	table
summarizes	the	predefined	attributes	in	alphabetical	order.	The	attributes	are
described	in	detail	in	User-Defined	Attributes.

Predefined	attributes

Attribute	name Associated	with
Meaning	(if
specified	or
true)

action All	active	tiles AutoLISP
action
expression

alignment All	tiles Horizontal	or
vertical
position	in	a
cluster

allow_accept edit_box,	image_button,

list_box

Activates
is_default
button	when
this	tile	is
selected

aspect_ratio image,	image_button Aspect	ratio	of
an	image

big_increment slider Incremental
distance	to
move

children_alignment row,	column,	radio_row,
radio_column,	boxed_row,
boxed_column,
boxed_radio_row,
boxed_radio_column

Alignment	of	a
cluster's
children

children_fixed_
height

row,	column,	radio_row,
radio_column,	boxed_row,
boxed_column,
boxed_radio_row,
boxed_radio_column

Height	of	a
cluster's
children	doesn't
grow	during
layout

children_fixed_
width

row,	column,	radio_row,
radio_column,	boxed_row,
boxed_column,
boxed_radio_row,
boxed_radio_column

Width	of	a
cluster's
children	doesn't
grow	during
layout

color image,	image_button Background
(fill)	color	of
an	image

edit_limit edit_box Maximum
number	of
characters
users	can	enter

edit_width edit_box,	popup_list Width	of	the
edit	(input)
portion	of	the
tile

fixed_height All	tiles Height	doesn't
grow	during
layout

fixed_width All	tiles Width	doesn't
grow	during
layout

fixed_width_font list_box,	popup_list Displays	text	in
a	fixed	pitch
font

height All	tiles Height	of	the
tile

initial_focus Dialog Key	of	the	tile
with	initial
focus

is_bold Text Displays	as
bold

is_cancel Button Button	is
activated	when
the	cancel	key
—usually	ESC
—is	pressed

is_default Button Button	is
activated	when
the	accept	key
—usually
ENTER—is
pressed

is_enabled All	active	tiles Tile	is	initially
enabled

is_tab_stop All	active	tiles Tile	is	a	tab
stop

key All	active	tiles Tile	name	used
by	the
application

label boxed_row,	boxed_column,
boxed_radio_row,
boxed_radio_column,
button,	dialog,	edit_box,
list_box,	popup_list,
radio_button,	text,	toggle

Displayed	label
of	the	tile

layout slider Whether	the
slider	is
horizontal	or
vertical

list list_box,	popup_list Initial	values	to
display	in	list

max_value slider Maximum
value	of	a
slider

min_value slider Minimum
value	of	a
slider

mnemonic all	active	tiles Mnemonic
character	for
the	tile

multiple_select list_box List	box	allows
multiple	items
to	be	selected

password_char edit_box Masks
characters
entered	in
edit_box

small_increment slider Incremental
distance	to
move

tabs list_box,	popup_list Tab	stops	for
list	display

tab_truncate list_box,	popup_list Truncates	text
that	is	larger
than	the
associated	tab
stop

value Text,	active	tiles	(except
buttons	and	image	buttons)

Tile's	initial
value

width All	tiles Width	of	the
tile

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

DCL	Attribute	Catalog
	
	
	

DCL	tile	attributes	are	described	in	detail	in	this	section.	The	attributes	are	listed
alphabetically.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

action
	
	
	

action	=	"(function)";	

Specifies	an	AutoLISP	expression	to	perform	an	action	when	this	tile	is	selected.
Also	known	as	a	callback.	For	some	kinds	of	tiles,	an	action	can	also	occur	when
the	user	switches	focus	to	a	different	tile.

The	possible	value	is	a	quoted	string	that	is	a	valid	AutoLISP®	expression.	A	tile
can	have	only	one	action.	If	the	application	assigns	it	an	action	(with
action_tile),	this	overrides	the	action	attribute.

Note You	cannot	call	the	AutoLISP	command	function	from	the	action
attribute.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

alignment
	
	
	

alignment	=	position;	

Specifies	the	horizontal	or	vertical	positioning	(justification)	of	a	tile	within	its
cluster.

For	a	tile	that	is	a	child	of	a	column,	the	possible	values	are	left,	right,	or
centered	(default	is	left).

For	a	tile	that	is	a	child	of	a	row,	the	possible	values	are	top,	bottom,	or
centered	(default	is	centered).

You	cannot	specify	the	alignment	along	the	long	axis	of	a	cluster.	The	first	and
last	tiles	in	the	cluster	always	align	themselves	with	the	ends	of	the	column	or
row.	Other	tiles	in	the	cluster	are	distributed	evenly	unless	you	adjust	the
distribution	by	using	padding	insertion	points	(see	spacer_0).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

allow_accept
	
	
	

allow_accept	=	true-false;	

Specifies	whether	the	tile	is	activated	when	the	user	presses	the	accept	key
(usually	ENTER).	If	true	and	the	user	presses	the	accept	key,	the	default
button	(if	any)	is	pressed.	The	default	button	is	the	button	tile	whose
is_default	attribute	is	set	to	true.	The	allow_accept	attribute	defaults
to	false.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

aspect_ratio
	
	
	

aspect_ratio	=	real;	

Specifies	the	ratio	of	the	width	of	the	image	to	its	height	(width	divided	by
height).	If	zero	(0.0),	the	tile	is	fitted	to	the	size	of	the	image.

Possible	values	are	floating-point	values	(default:	none).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

big_increment
	
	
	

big_increment	=	integer;	

Specifies	the	value	used	by	the	slider's	incremental	controls.	The	default	value	of
big_increment	is	one-tenth	of	the	total	range.	The	value	must	be	within	the
range	specified	by	min_value	and	max_value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

children_alignment
	
	
	

children_alignment	=	position;	

Specifies	the	default	alignment	(similar	to	alignment)	for	all	tiles	in	a	cluster.
Does	not	override	a	child's	alignment	attribute,	if	alignment	is	specified
explicitly.

For	columns,	possible	values	are	left,	right,	or	centered	(default:	left).

For	rows,	possible	values	are	top,	bottom,	or	centered	(default:
centered).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

children_fixed_height
	
	
	

children_fixed_height	=	true-false;	

Specifies	the	default	height	(similar	to	height)	for	all	tiles	in	a	cluster.	Does
not	override	a	child's	height	attribute,	if	it	is	specified	explicitly.

Possible	values	are	true	or	false	(default:	false).

Note Use	the	fixed_	attributes	with	discretion.	Inconsistent	overriding	of
defaults	results	in	inconsistent	layouts.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

children_fixed_width
	
	
	

children_fixed_width	=	true-false;	

Specifies	the	default	width	(similar	to	width)	for	all	tiles	in	a	cluster.	Does	not
override	a	child's	width	attribute,	if	it	is	specified	explicitly.

Possible	values	are	true	or	false	(default:	false).

Note Use	the	fixed_	attributes	with	discretion.	Inconsistent	overriding	of
defaults	results	in	inconsistent	layouts.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

color
	
	
	

color	=	colorname;	

Specifies	the	background	(fill)	color	of	the	image.	Possible	values	are	an	integer
or	reserved	word	(default:	7)	specified	as	an	AutoCAD	color	number	or	as	one
of	the	symbolic	names	shown	in	the	following	table:

Symbolic	names	for	colors

Symbolic	name Meaning

dialog_line Current	dialog	box	line	color

dialog_foreground Current	dialog	box
foreground	color	(for	text)

dialog_background Current	dialog	box
background	color

graphics_background Current	background	of	the
AutoCAD	graphics	screen
(usually	equivalent	to	0)

black AutoCAD	color	=	0	(black)
(appears	light	on	a	black
background)

red AutoCAD	color	=	1	(red)

yellow AutoCAD	color	=	2	(yellow)

green AutoCAD	color	=	3	(green)

cyan AutoCAD	color	=	4	(cyan)

blue AutoCAD	color	=	5	(blue)

magenta AutoCAD	color	=	6
(magenta)

white
graphics_foreground

AutoCAD	color	=	7	(white)
(appears	black	on	a	light
background)

The	symbolic	names	graphics_background	and
graphics_foreground	are	provided	as	alternatives	to	the	names	black
and	white.	The	use	of	a	specific	color	can	be	confusing	because	the	color	that
is	actually	displayed	varies	depending	on	the	current	AutoCAD	configuration.
Also,	vectors	in	slides	that	you	display	in	an	image	are	often	drawn	in	black	or
white.	If	your	image	tile	is	blank	when	you	first	display	it,	try	changing	its
color	to	graphics_background	or	graphics_foreground.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

edit_limit
	
	
	

edit_limit	=	integer;	

Specifies	the	maximum	number	of	characters	a	user	is	allowed	to	enter	in	the
edit	box.	A	possible	value	is	an	integer	(default:	132).	When	the	user	reaches
this	limit,	AutoCAD	rejects	additional	characters	(except	for	BACKSPACE	or
DEL).	The	maximum	edit	limit	allowed	is	256	characters.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

edit_width
	
	
	

edit_width	=	number;

Specifies	the	width	in	character-width	units	of	the	edit	(input)	portion	of	the	box
—the	actual	boxed	portion	of	the	edit_box	tile.	Possible	values	are	an	integer
or	a	real	number.	If	edit_width	is	not	specified	or	is	zero,	and	the	width	of
the	tile	is	not	fixed,	the	box	expands	to	fill	the	available	space.	If	edit_width
is	nonzero,	then	the	box	is	right-justified	within	the	space	occupied	by	the	tile.	If
it's	necessary	to	stretch	the	tile	for	layout	purposes,	the	PDB	feature	inserts	white
space	between	the	label	and	the	edit	portion	of	the	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

fixed_height
	
	
	

fixed_height	=	true-false;	

Specifies	if	a	tile's	height	is	allowed	to	fill	the	available	space.	If	this	attribute	is
true,	the	tile	does	not	fill	the	extra	space	that	becomes	available	in	the
layout/alignment	process.

Possible	values	are	true	or	false	(default:	false).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

fixed_width
	
	
	

fixed_width	=	true-false;	

Specifies	if	a	tile's	width	is	allowed	to	fill	the	available	space.	If	this	attribute	is
true,	the	tile	does	not	fill	the	extra	space	that	becomes	available	in	the
layout/alignment	process.

Possible	values	are	true	or	false	(default:	false).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

fixed_width_font
	
	
	

fixed_width_font	=	true-false;

Specifies	whether	a	list	box	or	pop-up	list	will	display	text	in	a	fixed	pitch	font.
This	allows	for	easier	spacing	and	tab	alignment	of	-columns.

Possible	values	are	true	or	false	(default:	false).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

height
	
	
	

height	=	number;	

Specifies	the	height	of	a	tile.	Possible	values	are	an	integer	or	a	real	number
representing	the	distance	in	character	height	units.	Do	not	specify	this	value
unless	the	assigned	defaults	do	not	have	an	acceptable	appearance.	You	must
specify,	however,	the	height	of	image	tiles	and	image	buttons.

The	height	attribute	specifies	the	minimum	height	of	a	tile.	This	dimension
can	be	expanded	when	the	tile	is	laid	out,	unless	the	height	is	fixed	by	one	of	the
fixed_	attributes.	Defaults	are	dynamically	assigned	based	on	layout
constraints.

Character-height	units	are	defined	as	the	maximum	height	of	screen	characters
(including	line	spacing).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

initial_focus
	
	
	

initial_focus	=	"string";	

Specifies	the	key	of	the	tile	within	the	dialog	box	that	receives	the	initial
keyboard	focus.	Possible	value	is	a	quoted	string	(no	default).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

is_bold
	
	
	

is_bold	=	true-false;	

Specifies	whether	the	text	is	displayed	in	bold	characters.	Possible	values	are
true	or	false	(default:	false).	If	true,	the	text	is	displayed	in	bold
characters.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

is_cancel
	
	
	

is_cancel	=	true-false;	

Specifies	whether	the	button	is	selected	when	the	user	presses	the	ESC	key.
Possible	values	are	true	or	false	(default:	false).

If	the	action	expression	for	buttons	with	the	is_cancel	attribute	set	to	true
does	not	exit	the	dialog	box	(does	not	call	done_dialog),	the	dialog	box	is
automatically	terminated	after	the	action	expression	has	been	carried	out,	and	the
DIASTAT	system	variable	is	set	to	0.

Only	one	button	in	a	dialog	box	can	have	the	is_cancel	attribute	set	to	true.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

is_default
	
	
	

is_default	=	true-false;	

Specifies	whether	the	button	is	the	default	button	selected	(“pushed”)	when	the
user	presses	the	accept	key.	Possible	values	are	true	or	false	(default:
false).	If	the	user	is	in	an	edit_box,	list_box,	or	image_button	that
has	the	allow_accept	attribute	set	to	true,	the	default	button	is	also
selected	if	the	user	presses	the	accept	key	or	(for	list	boxes	and	image	buttons)
double-clicks.	The	default	button	is	not	selected	by	the	accept	key	if	another
button	has	focus.	In	this	case,	the	button	that	has	focus	is	the	one	selected.

Only	one	button	in	a	dialog	box	can	have	the	is_default	attribute	set	to
true.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

is_enabled
	
	
	

is_enabled	=	true-false;	

Specifies	whether	or	not	the	tile	is	initially	available.	Possible	values	are	true
or	false	(default:	true).	If	false,	the	tile	is	unavailable	and	appears	grayed
out.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

is_tab_stop
	
	
	

is_tab_stop	=	true-false;	

Specifies	whether	the	tile	receives	keyboard	focus	when	the	user	moves	between
tiles	by	pressing	the	TAB	key.	Possible	values	are	true	or	false	(default:
true).	If	the	tile	is	disabled,	it	is	not	a	tab	stop	even	if	this	attribute	is	true.	If
false,	the	tile	is	not	a	tab	stop.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

key
	
	
	

key	=	"string";	

Specifies	a	name	that	the	program	uses	to	refer	to	this	specific	tile.	Possible
value	is	a	quoted	string	(no	default).	Within	a	particular	dialog	box,	each	key
value	must	be	unique.	This	string	is	case-sensitive:	if	you	specify	the	key	as
BigTile,	you	cannot	reference	it	as	bigtile.

Because	the	value	of	a	key	is	not	visible	to	the	user,	its	name	can	be	whatever
you	choose	(as	long	as	it	is	unique	to	the	dialog	box).	For	the	same	reason,	key
attributes	do	not	need	to	be	translated	for	applications	offered	in	multiple
languages.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

label
	
	
	

label	=	"string";	

Specifies	the	text	displayed	within	the	tile.	Possible	value	is	a	quoted	string
(default:	a	blank	string,	"	").	The	placement	of	label	text	is	tile-specific.

The	label	attribute	can	specify	a	mnemonic	character	for	the	tile.	The	mnemonic
is	underlined	in	the	tile's	label.

Any	character	in	a	label	string	that	is	preceded	by	an	ampersand	(&)	becomes	the
mnemonic.	The	character	doesn't	have	to	be	unique	to	the	dialog	box.	If	more
than	one	tile	has	the	same	mnemonic,	the	user	presses	that	key	to	cycle	through
the	tiles	sequentially.

Mnemonics	change	focus	but	do	not	select	a	tile.	If	the	user	specifies	a
mnemonic	key	for	a	tile	that	contains	a	group	of	items,	such	as	a	cluster	or	a	list
box,	the	focus	is	put	on	the	first	item	in	the	tile	that	is	a	tab	stop.	Any	active	tile
is	a	tab	stop	unless	its	is_tab_stop	attribute	is	set	to	false.

Note The	mnemonic	attribute	also	specifies	a	mnemonic	character.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

layout
	
	
	

layout	=	position;	

Specifies	the	orientation	of	a	slider.	Possible	values	are	horizontal	or
vertical	(default:	horizontal).	For	horizontal	sliders,	the	value	increases
from	left	to	right.	For	vertical	sliders,	the	value	increases	from	bottom	to	top.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

list
	
	
	

list	=	"string";	

Specifies	the	initial	set	of	lines	(choices)	to	be	placed	in	the	popup_list	or
list_box.	Possible	value	is	a	quoted	string	(no	default).	Lines	are	separated
by	a	new	line	symbol	(\n).	Tab	characters	(\t)	can	occur	within	each	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

max_value
	
	
	

max_value	=	integer;	

Specifies	the	upper	range	of	values	that	a	slider	returns.	Default	maximum	value
is	10000.	This	value	must	be	a	signed,	16-bit	integer	no	greater	than	32767.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

min_value
	
	
	

min_value	=	integer;	

Specifies	the	lower	range	of	values	that	a	slider	returns.	Default	minimum	value
is	0.	This	value	must	be	a	signed,	16-bit	integer	no	less	than	-32768.	The
min_value	can	be	greater	than	the	max_value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

mnemonic
	
	
	

mnemonic	=	"char";	

Specifies	a	keyboard	mnemonic	character	for	the	tile.	The	mnemonic	is
underlined	in	the	tile's	label.	A	possible	value	is	a	quoted	string	of	a	single
character	(no	default).	The	character	must	be	one	of	the	letters	in	the	tile's	label.
The	character	doesn't	have	to	be	unique	to	the	dialog	box.	If	more	than	one	tile
has	the	same	mnemonic,	the	user	presses	that	key	to	cycle	through	the	tiles
sequentially.

From	the	user's	point	of	view,	mnemonics	aren't	case-sensitive.	For	example,	if	a
button's	mnemonic	character	is	A,entering	either	a	or	A	gives	the	A	button	focus.
However,	in	the	DCL	file	the	mnemonic	must	be	one	of	the	characters	in	the
tile's	label,	and	it	must	be	capitalized	as	it	appears	in	the	label	string.

Mnemonics	change	focus.	If	the	user	specifies	a	mnemonic	key	for	a	tile	that
contains	a	group	of	items,	such	as	a	cluster	or	a	list	box,	the	focus	is	put	on	the
first	item	in	the	tile	that	is	a	tab	stop.	Any	active	tile	is	a	tab	stop	unless	its
is_tab_stop	attribute	is	set	to	false.

Note The	label	attribute	can	also	specify	a	mnemonic	character.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

multiple_select
	
	
	

multiple_select	=	true-false;	

Specifies	whether	multiple	items	in	the	list_box	can	be	selected	(highlighted)
at	the	same	time.	Possible	values	are	true	or	false	(default:	false).	If
true,	multiple	items	can	be	selected	at	a	time.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

password_char
	
	
	

password_char	=	"char";

Specifies	the	character	to	be	used	to	mask	user	input.	If	password_char	is
specified	and	is	not	null,	that	character	is	displayed	in	the	edit	box	instead	of	the
characters	entered	by	the	user.	The	use	of	this	attribute	has	no	effect	on	your
application's	retrieval	of	the	value	entered	by	the	user;	it	alters	only	the	display
of	the	characters	in	the	edit	box.

For	an	example	of	using	the	password_char	attribute	in	an	application,	see
Requesting	a	Password.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

small_increment
	
	
	

small_increment	=	integer;	

Specifies	the	value	used	by	the	slider's	incremental	controls.	Default	value	of
small_increment	is	one	one-hundredth	the	total	range.	The	value	must	be
within	the	range	specified	by	min_value	and	max_value.	This	attribute	is
optional.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

tabs
	
	
	

tabs	=	"string";	

Specifies	the	placement	of	tabs	in	character	width	units.	Possible	value	is	a
quoted	string	containing	integers	or	floating-point	numbers,	separated	by	spaces
(no	default).	These	values	are	used	for	vertically	aligning	columns	of	text	in	a
popup_list	or	list_box.

For	example,	the	following	code	specifies	a	tab	stop	at	every	8	characters.

tabs	=	"8	16	24	32";	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

tab_truncate
	
	
	

tab_truncate	=	true-false;

Specifies	whether	the	text	in	a	list	box	or	pop-up	list	is	truncated	if	it	is	larger
than	the	associated	tab	stop.	Possible	values	are	true	or	false	(default:
false).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

value
	
	
	

value	=	"string";	

Specifies	the	initial	value	of	a	tile.	Possible	value	is	a	quoted	string.	The
meaning	of	a	tile's	value	varies	depending	on	the	kind	of	tile.	The	value	of	a	tile
can	change	at	runtime	through	user	input	or	set_tile	calls.

The	value	attribute	of	a	tile	is	not	considered	when	the	dialog	box	is	laid	out.
After	the	layout	is	finished	and	the	dialog	box	has	been	displayed,
new_dialog	uses	the	value	attributes	to	initialize	each	tile	in	the	dialog	box.	A
tile's	value	attribute	has	no	effect	on	the	size	or	spacing	of	tiles	in	the	dialog	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

width
	
	
	

width	=	number;	

Specifies	the	width	of	a	tile.	Possible	values	are	an	integer	or	a	real	number
representing	the	distance	in	character-width	units.	Do	not	specify	this	value
unless	the	assigned	defaults	don't	provide	acceptable	appearance.	You	must
specify,	however,	the	width	of	image	tiles	and	image	buttons.

The	width	of	a	tile	specifies	a	minimum	width.	This	dimension	can	be
expanded	when	the	tile	is	laid	out	unless	the	width	is	fixed	by	one	of	the
fixed_	attributes.	Defaults	are	dynamically	assigned	based	on	layout
constraints.

Character	width	units	are	defined	as	the	average	width	of	all	uppercase	and
lowercase	alphabetic	characters,	or	the	screen	width	divided	by	80,	whichever	is
less	(average	width	is	(width(A	..	Z)	+	width	(a	..	z)))/52).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

Functional	Synopsis	of	DCL	Tiles
	
	
	

This	section	presents	the	DCL	tiles	in	functional	groupings.
Predefined	Active	Tiles
Tile	Clusters
Decorative	and	Informative	Tiles
Text	Clusters
Dialog	Box	Exit	Buttons	and	Error	Tiles
Restricted	Tiles

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Predefined	Active	Tiles
	
	
	

The	AutoCAD	PDB	feature	has	a	set	of	built-in,	or	predefined,	tiles	that	can	be
used	by	themselves	or	as	the	basis	for	more	complex	tiles.	Their	definitions
appear	as	comments	within	the	base.dcl	file.	(See	The	base.dcl	and	acad.dcl
Files.)

When	the	user	chooses	an	active	tile—a	button,	for	example—the	dialog	box
responds	by	notifying	the	application	controlling	the	dialog	box.	Any	predefined
active	tile	can	have	an	associated	action.	The	effect	of	an	action	can	be	visible	to
the	user	or	can	be	purely	internal	(for	example,	a	status	update).	Actions	are
accompanied	by	a	reason	code	that	indicates	what	triggered	the	action.	The
meaning	of	the	reason	depends	on	which	kind	of	tile	triggered	it.	The	following
tiles	are	selectable,	active	tiles:

button popup_list

edit_box radio_button

image_button slider

list_box toggle

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Tile	Clusters
	
	
	

You	can	group	tiles	into	composite	rows	or	columns	(known	collectively	as
clusters).	For	layout	purposes,	a	cluster	is	treated	as	a	single	tile.	The	row	or
column	can	be	boxed,	with	an	optional	label	(a	cluster	without	a	box	cannot	be
labeled).

Users	cannot	select	a	cluster,	only	individual	tiles	within	the	cluster.	Clusters
cannot	have	actions	assigned	to	them,	with	the	exception	of	radio	rows	and	radio
columns.	The	following	tiles	define	clusters:

boxed_column dialog

boxed_radio_column radio_column

boxed_radio_row radio_row

boxed_row row

column 	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Decorative	and	Informative	Tiles
	
	
	

The	tiles	listed	below	do	not	cause	actions	and	cannot	be	selected.	They	are
provided	to	display	information	or	for	visual	emphasis,	or	to	assist	you	in	laying
out	the	dialog	box.

image spacer_0

text spacer_1

spacer 	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Text	Clusters
	
	
	

A	text	tile	is	surrounded	by	margin	space	(like	any	other	kind	of	tile),	which
presents	a	problem	when	you	want	to	combine	pieces	of	text.	For	example,
assume	you	want	to	display	the	following	message:

The	time	is	now	0800	hours	and	37	seconds.

The	actual	values	(0800	and	37)	are	supplied	by	your	program.	You	can	do	this
by	creating	a	concatenated	line	of	text	built	out	of	text_part	tiles.	You	can
also	use	text	parts	vertically	to	create	a	paragraph	that	doesn't	have	too	much
space	between	the	lines.

The	following	text	cluster	tiles	are	prototypes	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Dialog	Box	Exit	Buttons	and	Error	Tiles
	
	
	

The	base.dcl	file	provides	standard	button	subassemblies	for	exiting	(or
“retiring”)	a	dialog	box.	Use	these	standard	versions	to	maintain	a	consistent
appearance	across	applications.

You	can	customize	the	text	in	these	buttons	by	using	the	prototype
retirement_button	as	described	in	Customizing	Exit	Button	Text.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Functional	Synopsis	of	DCL
Tiles	>	

Restricted	Tiles
	
	
	

Your	DCL	files	should	not	use	the	tiles	cluster	or	tile.	Also,	do	not	use	the
basic	exit	button	types	(cancel_button,	help_button,	info_button,
and	ok_button)	unless	you	redefine	the	standard	exit	button	subassemblies	as
described	in	Dialog	Box	Exit	Buttons	and	Error	Tiles.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

DCL	Tile	Catalog
	
	
	

This	section	describes	all	the	predefined	DCL	tiles.	The	syntax	statement,	which
follows	the	tile	name,	lists	all	the	attributes	associated	with	that	tile.	Any	specific
attribute	functionality	is	noted	following	the	tile's	description.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

boxed_column
	
	
	

:	boxed_column	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	boxed	column	has	a	border	around	it.	A	dialog	box	is	laid	out	like	a	boxed
column.	If	a	boxed	column	is	assigned	a	label,	the	label	appears	embedded	in	the
top	border.	If	the	label	is	absent,	blank	(""),	or	null	(""),	only	the	box	is
displayed.

label

Appears	as	a	title.	Spacing	between	a	blank	and	a	null	label	might	be
different.	(See	Fixing	the	Spacing	Around	a	Boxed	Row	or	Column.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

boxed_radio_column
	
	
	

:	boxed_radio_column	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	boxed	radio	column	has	a	border	around	it.	Treat	the	label	the	same	way	that
you	would	treat	the	label	of	a	boxed	column.

label

Appears	as	a	title.	If	the	label	is	absent,	blank	(the	default),	or	null	(""),	only
the	box	appears.	Spacing	between	a	blank	and	a	null	label	might	be	different.
(See	Fixing	the	Spacing	Around	a	Boxed	Row	or	Column	.)

value

Specifies	the	key	of	the	currently	selected	radio	button	(the	one	whose	value
is	"1").

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

boxed_radio_row
	
	
	

:	boxed_radio_row	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	boxed	radio	row	has	a	border	around	it.	You	treat	the	label	the	same	way	that
you	would	treat	the	label	of	a	boxed	row.

label

Appears	as	a	title.	If	the	label	is	absent,	blank	(the	default),	or	null	(""),	only
the	box	appears.	Spacing	between	a	blank	and	a	null	label	might	be	different.
(See	Fixing	the	Spacing	Around	a	Boxed	Row	or	Column.)

value

Specifies	the	key	of	the	currently	selected	radio	button	(the	one	whose	value
is	"1").

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

boxed_row
	
	
	

:	boxed_row	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	boxed	row	has	a	border	around	it.	If	a	boxed	row	has	a	label,	the	label	appears
embedded	in	it.

label

Appears	as	a	title.	If	the	label	is	absent,	blank	(the	default),	or	null	(""),	only
the	box	appears.	Spacing	between	a	blank	and	a	null	label	might	be	different.
(See	Fixing	the	Spacing	Around	a	Boxed	Row	or	Column.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

button
	
	
	

:	button	{

			action alignment fixed_height fixed_width	
			height is_cancel is_default is_enabled	
			is_tab_stop key label mnemonic width	
}

A	button	tile	resembles	a	push	button.	The	button's	label	specifies	text	that
appears	inside	the	button.	Buttons	are	appropriate	for	actions	that	are
immediately	visible	to	the	user	such	as	leaving	the	dialog	box,	or	going	into	a
subdialog	box.

Dialog	boxes	must	include	an	OK	button	(or	its	equivalent)	for	the	user	to	press
after	using	(or	reading)	the	box.	Many	dialog	boxes	also	include	a	Cancel	button
that	enables	the	user	to	leave	the	dialog	box	without	making	any	changes.

Dialog	boxes	should	use	the	standard	exit	button	subassemblies	described	in
Dialog	Box	Exit	Buttons	and	Error	Tiles.	These	subassemblies	guarantee	that	the
attributes	described	in	this	section	are	correctly	assigned.

Note If	you	make	the	default	button	and	the	cancel	button	the	same,	you	must
make	sure	at	least	one	other	exit	button	is	associated	with	an	action	that	calls
done_dialog.	Otherwise,	the	dialog	box	is	always	canceled.

label

Specifies	the	text	that	appears	in	the	button.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

column
	
	
	

:	column	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

Tiles	in	a	column	are	laid	out	vertically	in	the	order	in	which	they	appear	in	the
DCL	file.	A	column	can	contain	any	kind	of	tile	(except	for	solitary	radio
buttons),	including	rows	and	other	columns.

A	column	without	a	box	has	no	additional	attributes	beyond	the	standard	layout
attributes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

concatenation
	
	
	

:	concatenation	{

}

A	concatenation	is	a	line	of	text	made	up	of	multiple,	concatenated	text_part
tiles.	This	is	useful	when	you	want	to	insert	text	that	can	change	at	runtime	into	a
standard	message.	There	is	a	margin	around	the	concatenation	as	a	whole.

The	concatenation	tile	is	defined	in	the	base.dcl	file.	See	paragraph	for	an
example	that	uses	concatenation.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

dialog
	
	
	

:	dialog	{

			initial_focus label value	
}

A	dialog	is	the	tile	that	defines	the	dialog	box.	You	should	not	specify	both	a
label	and	value	attribute:	the	value	attribute	overrides	the	label
attribute.

label

Specifies	the	optional	title	displayed	in	the	title	bar	of	the	dialog	box.

value

Specifies	a	string	to	display	as	the	optional	dialog	box	title.	However,	the
value	isn't	inspected	at	layout	time,	so	if	you	assign	the	title	this	way,	make
sure	the	dialog	box	is	wide	enough	or	the	text	might	be	truncated.
For	a	dialog,	the	label	and	value	are	equivalent	except	for	layout
considerations.	To	change	the	title	(see	in	at	runtime,	use	the	set_tile
function	the	AutoLISP	Reference).

initial_focus

Specifies	the	key	of	the	tile	that	receives	the	initial	keyboard	focus.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

edit_box
	
	
	

:	edit_box	{

			action alignment allow_accept edit_limit 
			edit_width fixed_height fixed_width height 
			is_enabled is_tab_stop key label mnemonic 
			value width password_char
}

An	edit	box	is	a	field	that	enables	the	user	to	enter	or	edit	a	single	line	of	text.
An	optional	label	can	appear	to	the	left	of	the	box.	If	the	entered	text	is	longer
than	the	length	of	the	edit	box,	the	edit	box	scrolls	horizontally.

Left-justifying	the	label	and	right-justifying	the	edit	box	makes	it	easier	to
align	edit_box	tiles	vertically.

label

Appears	as	a	title.	If	specified,	the	label	is	left-justified	within	the	width	of
the	edit_box	tile.

value

The	initial	ASCII	value	placed	in	the	box.	It	is	displayed	left-justified	within
the	edit	(input)	part	of	the	box.	The	value	of	an	edit	box	is	terminated	by	the
null	character.	If	the	user	enters	more	characters	than	the	edit_limit	and
the	string	is	truncated,	the	null	character	is	appended.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

errtile
	
	
	

errtile;	

An	error	tile	is	a	text	tile	that	appears	at	the	bottom	of	a	dialog	box.	By	default	it
is	blank,	but	programs	can	display	messages	in	it	by	setting	the	value	of	the	tile
whose	key	is	"error".	For	example:

(set_tile	"error"	"You	can	only	select	one	option")

The	errtile	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

image
	
	
	

:	image	{

			action alignment aspect_ratio color 
			fixed_height fixed_width height is_enabled 
			is_tab_stop key mnemonic value width	
}

An	image	is	a	rectangle	in	which	a	vector	graphic	picture	is	displayed.	Images
are	used	to	display	icons,	linetypes,	text	fonts,	and	color	patches	in	AutoCAD
dialog	boxes.	See	Creating	Images	for	instructions	on	how	to	generate	images
for	image	tiles.

You	must	assign	an	image	tile	either	an	explicit	width	and	height	attribute,
or	one	of	those	attributes	plus	an	aspect_ratio.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

image_button
	
	
	

:	image_button	{

			action alignment allow_accept aspect_ratio 
			color fixed_height fixed_width height 
			is_enabled is_tab_stop key mnemonic width	
}

The	image	button	tile	is	a	button	that	displays	a	graphic	image	rather	than	a
label.

When	the	user	selects	an	image	button,	the	program	obtains	the	coordinates	of
the	point	that	was	selected.	This	is	useful	if	you	want	to	display	a	miniature
drawing	and	assign	different	meanings	to	selecting	different	regions	in	it.

See	Creating	Images	for	instructions	on	how	to	generate	images	for	image
buttons.

You	must	assign	an	image	button	either	an	explicit	width	and	height
attribute,	or	one	of	those	attributes	plus	an	aspect_ratio.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

list_box
	
	
	

:	list_box	{

			action alignment allow_accept fixed_height 
			fixed_width height is_enabled is_tab_stop 
			key label list mnemonic multiple_select	tabs
			value width	
}

A	list	box	contains	a	list	of	text	strings,	arranged	in	rows.	Usually	the	list	is	of
variable	length,	but	list	boxes	can	be	used	for	fixed-length	lists	when	a	different
kind	of	tile,	such	as	a	set	of	radio	buttons,	takes	up	too	much	space	in	the	dialog
box.	When	users	select	a	row,	it	is	highlighted.	A	list	box	can	contain	more	rows
than	can	fit	in	the	box,	so	a	scroll	bar	always	appears	to	the	right	of	the	list	box.
(The	scroll	bar	is	enabled	only	if	the	list	has	more	items	than	can	appear	at
once.)	By	dragging	the	scroll	bar	cursor	or	clicking	on	its	arrows,	users	can
scroll	through	the	list	box	items.	Some	applications	may	allow	users	to	select
multiple	rows.

See	List	Boxes	and	Pop-Up	Lists	for	instructions	on	how	to	manage	lists	for	list
boxes	and	pop-up	lists.

Note The	list_list	tile	is	limited	to	32,768	entries	with	the	first	element	being	an
index	of	0	and	the	last	being	32,767.	Once	the	limit	is	reached,	the	value	of	any

entry	that	has	an	index	greater	than	32,767	is	not	accurately	reported.

label

Text	displayed	above	the	list	box.

value

A	quoted	string	containing	zero	("")	or	more	integers,	separated	by	spaces
(no	default).	Each	integer	is	a	zero-based	index	that	indicates	a	list	item	that
is	initially	selected.	If	multiple_select	is	false,	value	cannot
contain	more	than	one	integer.
If	the	value	string	is	empty	(""),	then	no	items	in	the	list	are	initially
selected.	In	this	case,	you	don't	need	to	specify	the	value	attribute	at	all.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

ok_only
	
	
	

ok_only;	

The	ok_only	tile	is	a	solitary	OK	button,	such	as	the	kind	that	alert	boxes	use.
The	key	of	the	OK	button	is	"accept".

The	ok_only	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

ok_cancel
	
	
	

ok_cancel;	

The	ok_cancel	tile	is	a	combination	of	the	OK	and	Cancel	buttons,	and	is	the
standard	combination	for	dialog	boxes	that	can	originate	changes	to	data.	The
key	of	the	Cancel	button	is	"cancel".

The	ok_cancel	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

ok_cancel_help
	
	
	

ok_cancel_help;	

This	tile	is	the	ok_cancel	cluster	combined	with	the	Help	button.	The	key	of
the	Help	button	is	"help".	Help	buttons	are	recommended	for	the	main	dialog
box	of	an	application	and	for	complex	dialog	boxes.	The	function	that	handles
the	Help	button	can	display	the	standard	AutoCAD	Help	dialog	box	by	invoking
the	AutoLISP	help	function.

The	ok_cancel_help	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

ok_cancel_help_errtile
	
	
	

ok_cancel_help_errtile;	

The	ok_cancel_help_errtile	tile	provides	a	convenient	way	to	specify
the	exit	buttons	and	error	tile	all	at	once.

The	ok_cancel_help_errtile	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

ok_cancel_help_info
	
	
	

ok_cancel_help_info;	

The	ok_cancel_help_info	tile	does	everything	that	the
ok_cancel_help	tile	does,	but	it	also	includes	an	information	button	for
displaying	additional	material.	It	might	display	the	name	of	your	application,	the
logo	of	your	firm,	the	application's	version	number,	how	to	obtain	support,	and
so	on.	The	key	of	the	Info	button	is	"info".

The	ok_cancel_help_info	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

paragraph
	
	
	

:	paragraph	{

}

A	paragraph	is	a	cluster	of	text_part	or	concatenation	tiles	that	are
arranged	vertically.	You	can	construct	paragraphs	of	running	text	either	statically
or	at	runtime.	There	is	a	margin	around	the	paragraph	as	a	whole.

The	paragraph	tile	is	defined	in	the	base.dcl	file.

The	illustration	above	was	generated	with	the	following	DCL:

:	paragraph	

{

		:	concatenation	

		{

				:	text_part	

				{

						label	=	"One";

				}

				:	text_part

				{

						label	=	"good	turn";

				}

		}

		:	text_part	{

				label	=	"Deserves	another";

		}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

popup_list
	
	
	

:	popup_list	{

			action alignment edit_width fixed_height 
			fixed_width height is_enabled is_tab_stop 
			key label list mnemonic	tabs value width	
}

A	pop-up	list,	or	simply	pop-up,	is	functionally	equivalent	to	a	list	box.	When	a
dialog	box	is	first	displayed,	the	pop-up	is	in	a	collapsed	state	and	looks	like	a
button	except	for	the	downward-pointing	arrow	on	the	right.	When	the	user
selects	the	text	or	the	arrow,	the	list	pops	up	and	displays	more	selections.	A	pop-
up	list	has	a	scroll	bar	on	the	right	that	works	like	the	scroll	bar	of	a	list	box.
When	a	pop-up	list	is	collapsed,	the	current	selection	appears	in	its	display	field.
Pop-up	lists	do	not	allow	multiple	selection.

See	List	Boxes	and	Pop-Up	Lists	for	instructions	on	how	to	manage	lists	for	list
boxes	and	pop-up	lists.

Note The	popup_list	tile	is	limited	to	32,768	entries	with	the	first	element	being
an	index	of	0	and	the	last	being	32,767.	Once	the	limit	is	reached,	the	value	of

any	entry	that	has	an	index	greater	than	32,767	is	not	accurately	reported.

label

Appears	as	a	title	to	the	left	of	the	pop-up	list.	If	specified,	the	label	is	left
justified	within	the	width	of	the	popup_list	tile.

edit_width

Specifies	the	width	of	the	text	portion	of	the	list	in	character-width	units.	It
doesn't	include	the	optional	label	on	the	left	or	the	pop-up	arrow	(or	scroll
bar)	on	the	right.	If	edit_width	isn't	specified	or	is	zero,	and	the	width	of
the	tile	isn't	fixed,	the	box	expands	to	fill	the	available	space.	Possible	value
is	an	integer	or	a	real	number.	If	edit_width	is	nonzero,	then	the	box	is
right-justified	within	the	space	occupied	by	the	tile.	If	it	is	necessary	to
stretch	the	tile	for	layout	purposes,	the	PDB	feature	inserts	white	space
between	the	label	and	the	edit	portion	of	the	box.

value

A	quoted	string	containing	an	integer	(default:	"0").	The	integer	is	a	zero-
based	index	that	indicates	the	currently	selected	item	in	the	list	(the	one	that
is	displayed	when	the	list	isn't	popped	up).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

radio_button
	
	
	

:	radio_button	{

			action alignment fixed_height fixed_width 
			height is_enabled is_tab_stop key label 
			mnemonic value width	
}

A	radio	button	is	one	of	a	group	of	buttons	composing	a	radio	column	or	radio
row.	These	work	like	the	buttons	on	a	car	radio:	only	one	can	be	selected	at	a
time,	and	when	one	is	pressed,	any	other	button	in	the	column	(or	row)	that	is	on
is	turned	off.	An	optional	label	appears	to	the	right	of	the	radio	button.	The
PDB	feature	reports	an	error	if	you	attempt	to	place	a	radio	button	outside	a
radio	column	or	radio	row.

label

The	text	displayed	to	the	right	of	the	radio	button.

value

A	quoted	string	(no	default).	If	the	value	is	"1",	the	radio_button	is
on;	if	it	is	"0",	the	radio_button	is	off;	all	other	values	are	equivalent
to	"0".
If	by	some	chance	more	than	one	radio_button	in	a	radio	cluster	has
value	=	"1",	only	the	last	one	is	turned	on.	(This	can	happen	in	a	DCL
file.	Once	the	dialog	box	starts,	the	PDB	feature	manages	radio	buttons	and
ensures	that	only	one	per	cluster	is	turned	on	at	a	time.)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

radio_column
	
	
	

:	radio_column	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	radio	column	contains	radio	button	tiles,	only	one	of	which	can	be	selected	at
a	time.	Radio	columns	present	the	user	with	a	fixed	set	of	mutually	exclusive
choices.	Radio	columns,	unlike	ordinary	columns,	can	be	assigned	an	action.

value

A	quoted	string	containing	the	key	of	the	currently	selected	radio	button	(the
one	whose	value	is	"1").

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

radio_row
	
	
	

:	radio_row	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

A	radio	row,	like	a	radio	column,	contains	radio	button	tiles,	only	one	of	which
can	be	selected	at	a	time.	Radio	rows	can	be	assigned	an	action.

value

A	quoted	string	containing	the	key	of	the	currently	selected	radio	button	(the
one	whose	value	is	"1").

Note Radio	rows	are	not	as	easy	to	use	as	radio	columns,	because	the	mouse	has
to	travel	farther.	Use	radio	rows	only	if	they	specify	two	to	four	options,	or	if	the
labels	are	short.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

row
	
	
	

:	row	{

			alignment children_alignment 
			children_fixed_height children_fixed_width 
			fixed_height fixed_width height label width	
}

Tiles	in	a	row	are	laid	out	horizontally	in	the	order	in	which	they	appear	in	the
DCL	file.	A	row	can	contain	any	kind	of	tile.

A	row	without	a	box	has	no	additional	attributes	beyond	the	standard	layout
attributes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

slider
	
	
	

:	slider	{

			action alignment big_increment fixed_height 
			fixed_width height key label layout 
			max_value min_value mnemonic small_increment 
			value width
}

A	slider	obtains	a	numeric	value.	The	user	can	drag	the	slider's	indicator	to	the
left	or	right	(or	up	or	down)	to	obtain	a	value	whose	meaning	depends	on	the
application.	This	value	is	returned	as	a	string	containing	a	signed	integer	within	a
specified	range	(the	integer	is	a	16-bit	value,	so	the	maximum	range	is	-32,768	to
32,767).	The	application	can	scale	this	value	as	required.

value

A	quoted	string	that	contains	the	current	(integer)	value	of	the	slider	(default:
min_value).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

text
	
	
	

:	text	{

			alignment fixed_height fixed_width height 
			is_bold key label value width
}

A	text	tile	displays	a	text	string	for	titling	or	informational	purposes.

Because	most	tiles	have	their	own	label	attribute	for	titling	purposes,	you
don't	always	need	to	use	text	tiles.	But	a	text	tile	that	you	usually	keep	blank	is	a
useful	way	to	display	feedback	about	user	actions,	error	messages,	or	warnings.

Alert	boxes	and	error	tiles	are	discussed	in	Dialog	Box	Exit	Buttons	and	Error
Tiles	and	DCL	Error	Handling.

If	you	intend	the	message	to	be	static,	specify	it	in	the	label	attribute	and	don't
specify	a	width	or	value.	If	you	intend	the	message	to	change	at	run-time,
specify	it	in	the	value	attribute	and	assign	a	width	long	enough	to	contain
any	strings	that	you	plan	to	assign	the	value.	Once	the	dialog	box	is	laid	out,
the	size	of	its	tiles	can't	change,	so	if	you	use	set_tile	to	assign	a	string
longer	than	the	width,	the	displayed	text	is	truncated.

label

The	displayed	text.	When	a	text	tile	is	laid	out,	its	width	is	the	larger	of
either	its	width	attribute,	if	that	is	specified	in	the	DCL,	or	the	width
required	by	its	label	attribute,	if	specified.	At	least	one	of	these	attributes
must	be	specified.

value

Like	label,	the	value	attribute	specifies	a	string	to	display	in	the	text	tile.
However,	it	has	no	effect	on	the	tile's	layout.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

text_part
	
	
	

:	text_part	{

			label

}

A	text	part	is	a	text	tile	that	is	part	of	a	larger	piece	of	text.	The	margins	of	a
text_part	are	suppressed,	so	it	can	be	combined	with	other	text_parts
into	a	concatenation	or	paragraph	tile.

The	text_part	tile	is	defined	in	the	base.dcl	file.	Seeparagraph	for	an
example	that	uses	text_part.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

toggle
	
	
	

:	toggle	{

			action alignment fixed_height fixed_width 
			height is_enabled is_tab_stop label width	
}

A	toggle	controls	a	Boolean	value	("0"	or	"1").	A	toggle	appears	as	a	small
box	with	an	optional	label	to	the	right	of	the	box.	A	check	mark	or	X	appears
(or	disappears)	when	the	user	selects	the	box.	Toggles	enable	the	user	to	view	or
change	the	state	of	on/off	options.	Toggles	are	also	known	as	check	boxes.

label

The	text	displayed	to	the	right	of	the	toggle	box.

value

A	quoted	string	containing	an	integer	(default:	"0")	and	specifying	the	initial
state	of	the	toggle.	If	the	string	is	"0",	the	toggle	box	is	blank	(without	a
check	mark).	If	it	is	"1",	the	box	contains	a	check	mark	(or	an	X).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

spacer
	
	
	

:	spacer	{

			alignment fixed_height fixed_width 
			height width	
}

A	spacer	is	a	blank	tile.	It	is	used	only	for	layout	purposes	to	affect	the	size	and
layout	of	adjacent	tiles.	To	ensure	consistency	with	other	dialog	boxes,	use
spacer	tiles	only	in	special	cases,	because	the	PDB	feature	handles	spacing
automatically.	See	Adjusting	the	Layout	of	Dialog	Boxes.

The	spacer	tile	has	no	additional	attributes	beyond	the	standard	layout
attributes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

spacer_0
	
	
	

spacer_0;	

A	spacer_0,	demonstrated	in	the	following	figure,	is	a	spacer	that	normally
has	no	width.	However,	it	indicates	a	point	in	a	tile	group	where	you	want	space
to	be	inserted,	if	the	group	has	to	be	stretched	during	layout.	If	the	spacer_0
tiles	in	a	group	are	assigned	a	positive	width,	all	of	them	are	assigned	an	equal
share	of	the	spacing.

The	spacer_0	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

spacer_1
	
	
	

spacer_1;	

The	spacer_1	tile,	demonstrated	in	the	following	figure,	is	a	spacer	whose
width	and	height	both	equal	one.	It	is	used	for	the	smallest	kind	of	spacer	that
will	still	be	obvious	to	the	user.

The	spacer_1	tile	is	defined	in	the	base.dcl	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	

Programmable	Dialog	Box	Function	Synopsis
	
	
	

The	programmable	dialog	box	functions	perform	dialog	box	opening	and
closing,	tile	and	attribute	handling,	list	box	and	pop-up	list	handling,	image	tile
handling,	and	application-specific	data	handling.	This	section	lists	each	PDB
function	available	in	Visual	LISP,	grouping	them	by	the	type	of	task	each
performs.	For	detailed	information	on	these	functions,	see	the	AutoLISP
Reference.

Dialog	Box	Opening	and	Closing	Functions
Tile-	and	Attribute-Handling	Functions
List	Box	and	Pop-Up	List-Handling	Functions
Image	Tile-Handling	Functions
Application-Specific	Data-Handling	Function

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Programmable	Dialog	Box
Function	Synopsis	>	

Dialog	Box	Opening	and	Closing	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	DCL	opening	and
closing	functions.

Dialog	box	opening	and	closing	functions

Function	name Description

(done_dialog[status]) Terminates	a	dialog	box

(load_dialogdclfile) Loads	a	DCL	file

(new_dialogdlgname	dcl_id	[action	[screen-
pt]])

Begins	a	new	dialog	box
and	displays	it,	and	can
also	specify	a	default
action

(start_dialog) Displays	a	dialog	box	and
begins	accepting	user
input

(term_dialog) Terminates	all	current
dialog	boxes	as	if	the	user
cancels	each	of	them

(unload_dialogdcl_id) Unloads	a	DCL	file

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Programmable	Dialog	Box
Function	Synopsis	>	

Tile-	and	Attribute-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	DCL	tile-	and
attribute-handling	functions.

Tile-	and	attribute-handling	functions

Function	name Description

(action_tilekey	action-expression) Assigns	an	action	to	evaluate	when
the	user	selects	the	specified	tile	in	a
dialog	box

(get_attrkey	attribute) Retrieves	the	DCL	value	of	a	dialog
box	attribute

(get_tilekey) Retrieves	the	current	runtime	value
of	a	dialog	box	tile

(mode_tilekey	mode) Sets	the	mode	of	a	dialog	box	tile

(set_tilekey	value) Sets	the	value	of	a	dialog	box	tile

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Programmable	Dialog	Box
Function	Synopsis	>	

List	Box	and	Pop-Up	List-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	DCL	list	box	and	pop-
up	list-handling	functions.

List	box	and	pop-up	list-handling	functions

Function	name Description

(add_liststring) Adds	or	modifies	a	string	in	the
currently	active	dialog	box	list

(end_list) Ends	processing	of	the	currently	active
dialog	box	list

(start_listkey	[operation
[index]])

Starts	the	processing	of	a	list	in	the	list
box	or	in	the	pop-up	list	dialog	box	tile

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Programmable	Dialog	Box
Function	Synopsis	>	

Image	Tile-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	DCL	image	tile-
handling	functions.

Image	tile-handling	functions

Function	name Description

(dimx_tilekey)	and
(dimy_tilekey)

Retrieves	the	dimensions	of	a	tile	in
dialog	box	units

(end_image) Ends	creation	of	the	currently	active
dialog	box	image

(fill_imagex1	y1	wid	hgt	color) Draws	a	filled	rectangle	in	the	currently
active	dialog	box	image	tile

(slide_imagex1	y1	wid	hgt
sldname)

Displays	an	AutoCAD	slide	in	the
currently	active	dialog	box	image	tile

(start_imagekey) Starts	the	creation	of	an	image	in	the
dialog	box	tile

(vector_imagex1	y1	x2	y2	color) Draws	a	vector	in	the	currently	active
dialog	box	image

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Working	with	Programmable	Dialog
Boxes	>	Programmable	Dialog	Box	Reference	>	Programmable	Dialog	Box
Function	Synopsis	>	

Application-Specific	Data-Handling	Function
	
	
	

The	following	table	provides	a	summary	description	of	the	DCL	application-
specific	data-handling	function.

Application-specific	data-handling	function

Function	name Description

(client_data_tilekey	clientdata) Associates	application-managed	data
with	a	dialog	box	tile

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>		

Appendixes
	
	
	

AutoLISP	Function	Synopsis
Functions	are	categorized	and	described.
Visual	LISP	Environment	and	Formatting	Options
Color-coding	options,	diagnostic	options,	and	page	layout	options	are
described.
AutoLISP	Error	Codes
The	error	codes	generated	by	AutoLISP	are	described.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	

AutoLISP	Function	Synopsis
	
	
	

Functions	are	categorized	and	described.

To	find	a	function	without	knowing	its	name,	use	the	listings	in	this	appendix.
The	AutoLISP®	functions	in	this	synopsis	are	organized	into	functional	groups,
and	listed	alphabetically	within	each	function	group.	Each	function	is	briefly
described	by	its	signature	and	a	single	sentence	indicating	the	function's	purpose.

Category	Summary
Basic	Functions
Utility	Functions
Selection	Set,	Object,	and	Symbol	Table	Functions
Memory	Management	Functions
Visual	LISP	Extensions	to	AutoLISP
Reactor	Functions
VLX	Namespace	Functions
Namespace	Communication	Functions
Windows	Registry	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Category	Summary
	
	
	

Functions	in	this	synopsis	are	organized	into	the	following	categories:

Basic:	Application-handling,	arithmetic,	equality	and	conditional,	error-
handling,	function-handling,	list	manipulation,	string-handling,	and
symbol-handling	functions

Utility:	Conversion,	device	access,	display	control,	file-handling,
geometric,	query	and	command,	and	user	input	functions

Selection	Set,	Object,	and	Symbol	Table:	Extended	data-handling,
object-handling,	selection	set	manipulation,	and	symbol	table-handling
functions

Memory	Management

Visual	LISP	Extensions	to	AutoLISP:	Collection	manipulation,	curve
measurement,	data	conversion,	dictionary-handling,	object-handling,	and
property-handling	functions

Reactor

VLX	Namespace:	Function	exposure,	document	namespace	variable
access,	and	error-handling	functions

Namespace	Communication:	Blackboard-addressing	and	multi-
document	loading	functions

Windows	Registry	Handling

Note	that	programmable	dialog	box	functions	are	listed	in	the	Programmable
Dialog	Box	Function	Synopsis	section	of	this	manual.

Functions	are	grouped	by	data	type	and	by	the	action	they	perform.	Detailed
information	on	each	Visual	LISP®	function	is	provided	in	the	alphabetical
listings	in	the	AutoLISP	Reference.

Note	that	any	functions	not	described	here	or	in	other	parts	of	the	documentation
are	not	officially	supported	and	are	subject	to	change	in	future	releases.

Basic	Functions

Application-Handling
Functions

Application-
Handling
Functions

Arithmetic	Functions Arithmetic
Functions

Equality	and	Conditional
Functions

Equality	and
Conditional
Functions

Error-Handling	Functions Error-Handling
Functions

Function-Handling	Functions Function-
Handling
Functions

List	Manipulation	Functions List
Manipulation
Functions

String-Handling	Functions String-
Handling
Functions

Symbol-Handling	Functions Symbol-
Handling
Functions

Utility	Functions

Conversion	Functions Conversion

Functions

Device	Access	Functions Device	Access
Functions

Display	Control	Functions Display	Control
Functions

File-Handling	Functions File-Handling
Functions

Geometric	Functions Geometric
Functions

Query	and	Command
Functions

Query	and
Command
Functions

User	Input	Functions User	Input
Functions

Selection	Set,	Object,	and	Symbol	Table
Functions

Extended	Data-Handling
Functions

Extended	Data-
Handling
Functions

Object-Handling	Functions Object-
Handling
Functions

Selection	Set	Manipulation
Functions

Selection	Set
Manipulation
Functions

Symbol	Table	and	Dictionary-
Handling	Functions

Symbol	Table
and	Dictionary-

Handling
Functions

Memory	Management
Functions

Memory
Management
Functions

Visual	LISP	AutoLISP	Extensions

ActiveX	Collection
Manipulation	Functions

ActiveX
Collection
Manipulation
Functions

ActiveX	Data	Conversion
Functions

ActiveX	Data
Conversion
Functions

ActiveX	Method	Invocation
Functions

ActiveX
Method
Invocation
Functions

ActiveX	Object-Handling
Functions

ActiveX
Object-
Handling
Functions

ActiveX	Property-Handling
Functions

ActiveX
Property-
Handling
Functions

Curve	Measurement	Functions Curve
Measurement
Functions

Dictionary	Functions Dictionary

Functions

Functions	for	Handling
Drawing	Objects

Functions	for
Handling
Drawing
Objects

Reactor	Functions Reactor
Functions

VLX	Namespace	Functions VLX
Namespace
Functions

Namespace	Communication
Functions

Namespace
Communication
Functions

Windows	Registry	Functions Windows
Registry
Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Basic	Functions
	
	
	

The	basic	functions	consist	of	the	arithmetic,	string-handling,	equality	and
conditional,	list	manipulation,	symbol-handling,	function-handling,	error-
handling,	and	application-handling	functions.

Application-Handling	Functions
Arithmetic	Functions
Equality	and	Conditional	Functions
Error-Handling	Functions
Function-Handling	Functions
List	Manipulation	Functions
String-Handling	Functions
Symbol-Handling	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Application-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	application-
handling	functions.

Application-handling	functions

Function Description

(arx) Returns	a	list	of	the
currently	loaded
ObjectARX	applications

(arxloadapplication
[onfailure])

Loads	an	ObjectARX
application

(arxunloadapplication
[onfailure])

Unloads	an	ObjectARX
application

(autoarxloadfilename
cmdlist)

Predefines	command
names	to	load	an
associated	ObjectARX	file

(autoloadfilename
cmdlist)

Predefines	command
names	to	load	an
associated	AutoLISP	file

(initdia[dialogflag]) Forces	the	display	of	the
next	command's	dialog
box

javascript:hhctrl_d0e44414.Click()
javascript:hhctrl_d0e44424.Click()
javascript:hhctrl_d0e44436.Click()
javascript:hhctrl_d0e44448.Click()
javascript:hhctrl_d0e44460.Click()
javascript:hhctrl_d0e44478.Click()

(loadfilename
[onfailure])

Evaluates	the	AutoLISP
expressions	in	a	file

(startappappcmd	file) Starts	a	Windows
application

(vl-load-allfilename) Loads	a	file	into	all	open
AutoCAD	documents

(vl-vbaload
“filename”)

Loads	a	VBA	project

(vl-vbarun
“macroname”)

Runs	a	VBA	macro

(vlax-add-cmd
“global-name”
'func-sym	[“local-
name”
cmd-flags])

Adds	commands	to	the
AutoCAD	built-in
command	set

Note VLISP	extension:
requires	vl-load-com

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e44490.Click()
javascript:hhctrl_d0e44502.Click()
javascript:hhctrl_d0e44514.Click()
javascript:hhctrl_d0e44526.Click()
javascript:hhctrl_d0e44539.Click()
javascript:hhctrl_d0e44552.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Arithmetic	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	arithmetic
functions.

Arithmetic	functions

Function Description

(+	(add)
[numbernumber]
...)

Returns	the	sum	of	all
numbers

(-	(subtract)
[number	number]
...)

Subtracts	the	second	and
following	numbers	from
the	first	and	returns	the
difference

(*	(multiply)
[number	number]
...)

Returns	the	product	of	all
numbers

(/	(divide)[number
number]	...)

Divides	the	first	number
by	the	product	of	the
remaining	numbers	and
returns	the	quotient

(~	(bitwise
NOT)int)

Returns	the	bitwise	NOT
(1's	complement)	of	the
argument

javascript:hhctrl_d0e44607.Click()
javascript:hhctrl_d0e44625.Click()
javascript:hhctrl_d0e44637.Click()
javascript:hhctrl_d0e44649.Click()
javascript:hhctrl_d0e44661.Click()

(1+
(increment)number)

Returns	the	argument
increased	by	1
(incremented)

(1-
(decrement)number)

Returns	the	argument
reduced	by	1
(decremented)

(absnumber) Returns	the	absolute
value	of	the	argument

(atannum1	[num2]) Returns	the	arctangent	of
a	number	in	radians

(cosang) Returns	the	cosine	of	an
angle	expressed	in	radians

(expnumber) Returns	the	constant	e	(a
real)	raised	to	a	specified
power	(the	natural
antilog)

(exptbase	power) Returns	a	number	raised
to	a	specified	power

(fixnumber) Returns	the	conversion	of
a	real	into	the	nearest
smaller	integer

(floatnumber) Returns	the	conversion	of
a	number	into	a	real

(gcdint1	int2) Returns	the	greatest
common	denominator	of
two	integers

(lognumber) Returns	the	natural	log	of

javascript:hhctrl_d0e44673.Click()
javascript:hhctrl_d0e44685.Click()
javascript:hhctrl_d0e44697.Click()
javascript:hhctrl_d0e44709.Click()
javascript:hhctrl_d0e44721.Click()
javascript:hhctrl_d0e44733.Click()
javascript:hhctrl_d0e44745.Click()
javascript:hhctrl_d0e44757.Click()
javascript:hhctrl_d0e44769.Click()
javascript:hhctrl_d0e44781.Click()
javascript:hhctrl_d0e44793.Click()

a	number	as	a	real

(logand	[int	int	...]) Returns	the	result	of	the
logical	bitwise	AND	of	a
list	of	integers

(logior	[intint	...]) Returns	the	result	of	the
logical	bitwise	inclusive
OR	of	a	list	of	integers

(lsh	[intnumbits]) Returns	the	logical
bitwise	shift	of	an	integer
by	a	specified	number	of
bits

(max	[number
number	...])

Returns	the	largest	of	the
numbers	given

(min	[number
number	...])

Returns	the	smallest	of
the	numbers	given

(minuspnumber) Verifies	that	a	number	is
negative

(rem	[num1	num2
...])

Divides	the	first	number
by	the	second,	and	returns
the	remainder

(sinang) Returns	the	sine	of	an
angle	as	a	real	expressed
in	radians

(sqrtnumber) Returns	the	square	root	of
a	number	as	a	real

(zeropnumber) Verifies	that	a	number
evaluates	to	zero

javascript:hhctrl_d0e44805.Click()
javascript:hhctrl_d0e44818.Click()
javascript:hhctrl_d0e44833.Click()
javascript:hhctrl_d0e44848.Click()
javascript:hhctrl_d0e44861.Click()
javascript:hhctrl_d0e44874.Click()
javascript:hhctrl_d0e44886.Click()
javascript:hhctrl_d0e44899.Click()
javascript:hhctrl_d0e44911.Click()
javascript:hhctrl_d0e44923.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Equality	and	Conditional	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	equality
and	conditional	functions.

Equality	and	conditional	functions

Function Description

(=	(equal	to)numstr
[numstr]	...)

Returns	T	if	all
arguments	are
numerically	equal,	and
returns	nil	otherwise

(/=	(not	equal
to)numstr	[numstr]
...)

Returns	T	if	the
arguments	are	not
numerically	equal,	and
nil	if	the	arguments	are
numerically	equal

(<	(less	than)numstr
[numstr]	...)

Returns	T	if	each
argument	is	numerically
less	than	the	argument	to
its	right,	and	returns	nil
otherwise

(<=	(less	than	or
equal	to)numstr
[numstr]	...)

Returns	T	if	each
argument	is	numerically
less	than	or	equal	to	the
argument	to	its	right,	and

javascript:hhctrl_d0e44964.Click()
javascript:hhctrl_d0e44976.Click()
javascript:hhctrl_d0e44988.Click()
javascript:hhctrl_d0e45001.Click()

returns	nil	otherwise

(>	(greater
than)numstr
[numstr]	...)

Returns	T	if	each
argument	is	numerically
greater	than	the
argument	to	its	right,	and
returns	nil	otherwise

(>=	(greater	than	or
equal	to)numstr
[numstr]	...)

Returns	T	if	each
argument	is	numerically
greater	than	or	equal	to
the	argument	to	its	right,
and	returns	nil	otherwise

(and	[expr	...]) Returns	the	logical	AND
of	a	list	of	expressions

(Boolefunc	int1
[int2	...])

Serves	as	a	general
bitwise	Boolean	function

(cond	[(test	result
...)	...])

Serves	as	the	primary
conditional	function	for
AutoLISP

(eqexpr1	expr2) Determines	whether	two
expressions	are	identical

(equalexpr1	expr2
[fuzz])

Determines	whether	two
expressions	are	equal

(iftestexpr	thenexpr
[elseexpr])

Conditionally	evaluates
expressions

(or	[expr	...]) Returns	the	logical	OR
of	a	list	of	expressions

(repeatint	[expr	...]) Evaluates	each
expression	a	specified

javascript:hhctrl_d0e45013.Click()
javascript:hhctrl_d0e45025.Click()
javascript:hhctrl_d0e45037.Click()
javascript:hhctrl_d0e45050.Click()
javascript:hhctrl_d0e45065.Click()
javascript:hhctrl_d0e45078.Click()
javascript:hhctrl_d0e45090.Click()
javascript:hhctrl_d0e45102.Click()
javascript:hhctrl_d0e45114.Click()
javascript:hhctrl_d0e45127.Click()

number	of	times,	and
returns	the	value	of	the
last	expression

(whiletestexpr	[expr
...])

Evaluates	a	test
expression,	and	if	it	is
not	nil,	evaluates	other
expressions;	repeats	this
process	until	the	test
expression	evaluates	to
nil

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e45142.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Error-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	error-
handling	functions.

Error-handling	functions

Function Description

(alertstring) Displays	an	alert	dialog
box	with	the	error	or
warning	message	passed
as	a	string

(*error*string) A	user-definable	error-
handling	function

(exit) Forces	the	current
application	to	quit

(quit) Forces	the	current
application	to	quit

(vl-catch-all-apply
'functionlist)

Passes	a	list	of	arguments
to	a	specified	function	and
traps	any	exceptions

(vl-catch-all-error-
message
error-obj)

Returns	a	string	from	an
error	object

javascript:hhctrl_d0e45190.Click()
javascript:hhctrl_d0e45202.Click()
javascript:hhctrl_d0e45214.Click()
javascript:hhctrl_d0e45224.Click()
javascript:hhctrl_d0e45238.Click()
javascript:hhctrl_d0e45253.Click()

(vl-catch-all-error-
parg)

Determines	whether	an
argument	is	an	error
object	returned	from	vl-
catch-all-apply

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e45266.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Function-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	function-
handling	functions.

Function-handling	functions

Function Description

(applyfunction	lst) Passes	a	list	of	arguments	to	a
specified	function

(defunsym
([arguments]
[/variables...])
expr	...)

Defines	a	function

(defun-qsym
([arguments]
[/variables...])
expr	...)

Defines	a	function	as	a	list
(intended	for	backward-
compatibility	only)

(defun-q-list-ref
'function)

Displays	the	list	structure	of	a
function	defined	with	defun-
q

(defun-q-list-
set'sym	list)

Defines	a	function	as	a	list
(intended	for	backward-
compatibility	only)

javascript:hhctrl_d0e45307.Click()
javascript:hhctrl_d0e45319.Click()
javascript:hhctrl_d0e45343.Click()
javascript:hhctrl_d0e45367.Click()
javascript:hhctrl_d0e45382.Click()

(evalexpr) Returns	the	result	of
evaluating	an	AutoLISP
expression

(lambdaarguments
expr	...)

Defines	an	anonymous
function

(progn[expr]	...) Evaluates	each	expression
sequentially,	and	returns	the
value	of	the	last	expression

(tracefunction	...) Aids	in	AutoLISP	debugging

(untracefunction
...)

Clears	the	trace	flag	for	the
specified	functions

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e45394.Click()
javascript:hhctrl_d0e45406.Click()
javascript:hhctrl_d0e45424.Click()
javascript:hhctrl_d0e45436.Click()
javascript:hhctrl_d0e45448.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

List	Manipulation	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	list
manipulation	functions.

List	manipulation	functions

Function Description

(acad_strlsortlst) Sorts	a	list	of	strings
by	alphabetical	order

(appendlst	...) Takes	any	number	of
lists	and	runs	them
together	as	one	list

(associtem	alist) Searches	an
association	list	for	an
element	and	returns
that	association	list
entry

(carlst) Returns	the	first
element	of	a	list

(cdrlst) Returns	the	specified
list,	except	for	the
first	element	of	the
list

javascript:hhctrl_d0e45487.Click()
javascript:hhctrl_d0e45499.Click()
javascript:hhctrl_d0e45511.Click()
javascript:hhctrl_d0e45523.Click()
javascript:hhctrl_d0e45535.Click()

(consnew-first-element
lst)

The	basic	list
constructor

(foreachname	lst	[expr
...])

Evaluates	expressions
for	all	members	of	a
list

(lastlst) Returns	the	last
element	in	a	list

(lengthlst) Returns	an	integer
indicating	the	number
of	elements	in	a	list

(list	[expr	...]) Takes	any	number	of
expressions	and
combines	them	into
one	list

(listpitem) Verifies	that	an	item
is	a	list

(mapcarfunctionlist1	...
listn)

Returns	a	list	of	the
result	of	executing	a
function	with	the
individual	elements
of	a	list	or	lists
supplied	as	arguments
to	the	function

(memberexpr	lst) Searches	a	list	for	an
occurrence	of	an
expression	and
returns	the	remainder
of	the	list,	starting
with	the	first
occurrence	of	the
expression

javascript:hhctrl_d0e45547.Click()
javascript:hhctrl_d0e45559.Click()
javascript:hhctrl_d0e45574.Click()
javascript:hhctrl_d0e45586.Click()
javascript:hhctrl_d0e45598.Click()
javascript:hhctrl_d0e45611.Click()
javascript:hhctrl_d0e45623.Click()
javascript:hhctrl_d0e45640.Click()

(nthn	lst) Returns	the	nth
element	of	a	list

(reverselst) Returns	a	list	with	its
elements	reversed

(substnewitem	olditem
lst)

Searches	a	list	for	an
old	item	and	returns	a
copy	of	the	list	with	a
new	item	substituted
in	place	of	every
occurrence	of	the	old
item

(vl-consp	list-variable) Determines	whether
or	not	a	list	is	nil

(vl-everypredicate-
functionlist	[more-
lists]...)

Checks	whether	the
predicate	is	true	for
every	element
combination

(vl-list*object	[more-
objects]...)

Constructs	and
returns	a	list

(vl-list->stringchar-
codes-list)

Combines	the
characters	associated
with	a	list	of	integers
into	a	string

(vl-list-lengthlist-or-
cons-object)

Calculates	list	length
of	a	true	list

(vl-member-
ifpredicate-function
list)

Determines	whether
the	predicate	is	true
for	one	of	the	list
members

javascript:hhctrl_d0e45652.Click()
javascript:hhctrl_d0e45664.Click()
javascript:hhctrl_d0e45676.Click()
javascript:hhctrl_d0e45688.Click()
javascript:hhctrl_d0e45700.Click()
javascript:hhctrl_d0e45717.Click()
javascript:hhctrl_d0e45732.Click()
javascript:hhctrl_d0e45744.Click()
javascript:hhctrl_d0e45756.Click()

(vl-member-if-
notpredicate-function
list)

Determines	whether
the	predicate	is	nil	for
one	of	the	list
members

(vl-positionsymbol	list) Returns	the	index	of
the	specified	list	item

(vl-removeelement-to-
remove
list)

Removes	elements
from	a	list

(vl-remove-ifpredicate-
functionlist)

Returns	all	elements
of	the	supplied	list
that	fail	the	test
function

(vl-remove-if-
notpredicate-
functionlist)

Returns	all	elements
of	the	supplied	list
that	pass	the	test
function

(vl-somepredicate-
functionlist	[more-
lists]...)

Checks	whether	the
predicate	is	not	nil	for
one	element
combination

(vl-sortlist	less?-
function)

Sorts	the	elements	in
a	list	according	to	a
given	compare
function

(vl-sort-ilist	less?-
function)

Sorts	the	elements	in
a	list	according	to	a
given	compare
function,	and	returns
the	element	index

javascript:hhctrl_d0e45768.Click()
javascript:hhctrl_d0e45780.Click()
javascript:hhctrl_d0e45792.Click()
javascript:hhctrl_d0e45807.Click()
javascript:hhctrl_d0e45821.Click()
javascript:hhctrl_d0e45835.Click()
javascript:hhctrl_d0e45852.Click()
javascript:hhctrl_d0e45864.Click()

numbers

(vl-string->liststring) Converts	a	string	into
a	list	of	character
codes

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e45876.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

String-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	string-
handling	functions.

String-handling	functions

Function Description

(read[string]) Returns	the	first	list	or
atom	obtained	from	a
string

(strcasestring	[which]) Returns	a	string	where
all	alphabetic
characters	have	been
converted	to	uppercase
or	lowercase

(strcat	[string1
[string2]	...)

Returns	a	string	that	is
the	concatenation	of
multiple	strings

(strlen	[string]	...) Returns	an	integer	that
is	the	number	of
characters	in	a	string

(substr	string	start
[length])

Returns	a	substring	of
a	string

javascript:hhctrl_d0e45921.Click()
javascript:hhctrl_d0e45933.Click()
javascript:hhctrl_d0e45948.Click()
javascript:hhctrl_d0e45958.Click()
javascript:hhctrl_d0e45968.Click()

(vl-prin1-to-
stringobject)

Returns	the	string
representation	of	any
LISP	object	as	if	it
were	output	by	the
prin1	function

(vl-princ-to-
stringobject)

Returns	the	string
representation	of	any
LISP	object	as	if	it
were	output	by	the
princ	function

(vl-string->liststring) Converts	a	string	into
a	list	of	character
codes

(vl-string-eltstring
position)

Returns	the	ASCII
representation	of	the
character	at	a	specified
position	in	a	string

(vl-string-left-
trimcharacter-
setstring)

Removes	the	specified
characters	from	the
beginning	of	a	string

(vl-string-
mismatchstr1str2
[pos1pos2ignore-case-
p])

Returns	the	length	of
the	longest	common
prefix	for	two	strings,
starting	at	specified
positions

(vl-string-
positionchar-codestr
[start-pos	[from-end-
p]])

Looks	for	a	character
with	the	specified
ASCII	code	in	a	string

(vl-string-right-trim Removes	the	specified

javascript:hhctrl_d0e45978.Click()
javascript:hhctrl_d0e45993.Click()
javascript:hhctrl_d0e46008.Click()
javascript:hhctrl_d0e46020.Click()
javascript:hhctrl_d0e46032.Click()
javascript:hhctrl_d0e46046.Click()
javascript:hhctrl_d0e46068.Click()
javascript:hhctrl_d0e46089.Click()

character-setstring) characters	from	the
end	of	a	string

(vl-string-
searchpatternstring
[start-pos])

Searches	for	the
specified	pattern	in	a
string

(vl-string-substnew-
strpatternstring
[start-pos])

Substitutes	one	string
for	another,	within	a
string

(vl-string-translate
source-setdest-setstr)

Replaces	characters	in
a	string	with	a
specified	set	of
characters

(vl-string-trimchar-
setstr)

Removes	the	specified
characters	from	the
beginning	and	end	of	a
string

(wcmatch	string
pattern)

Performs	a	wild-card
pattern	match	on	a
string

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e46104.Click()
javascript:hhctrl_d0e46121.Click()
javascript:hhctrl_d0e46141.Click()
javascript:hhctrl_d0e46158.Click()
javascript:hhctrl_d0e46172.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Basic
Functions	>	

Symbol-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	symbol-
handling	functions.

Symbol-handling	functions

Function Description

(atomitem) Verifies	that	an	item	is	an
atom

(atoms-
familyformat
[symlist])

Returns	a	list	of	the
currently	defined	symbols

(boundpsym) Verifies	whether	a	value	is
bound	to	a	symbol

(notitem) Verifies	that	an	item
evaluates	to	nil

(nullitem) Verifies	that	an	item	is
bound	to	nil

(numberpitem) Verifies	that	an	item	is	a
real	or	an	integer

(quoteexpr) Returns	an	expression
without	evaluating	it

javascript:hhctrl_d0e46214.Click()
javascript:hhctrl_d0e46226.Click()
javascript:hhctrl_d0e46238.Click()
javascript:hhctrl_d0e46250.Click()
javascript:hhctrl_d0e46262.Click()
javascript:hhctrl_d0e46274.Click()
javascript:hhctrl_d0e46286.Click()

(setsym	expr) Sets	the	value	of	a	quoted
symbol	name	to	an
expression

(setqsym1	expr1
[sym2	expr2]	...)

Sets	the	value	of	a	symbol
or	symbols	to	associated
expressions

(typeitem) Returns	the	type	of	a
specified	item

(vl-symbol-
namesymbol)

Returns	a	string
containing	the	name	of	a
symbol

(vl-symbol-
valuesymbol)

Returns	the	current	value
bound	to	a	symbol

(vl-symbolpobject) Identifies	whether	or	not	a
specified	object	is	a
symbol

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e46298.Click()
javascript:hhctrl_d0e46310.Click()
javascript:hhctrl_d0e46325.Click()
javascript:hhctrl_d0e46337.Click()
javascript:hhctrl_d0e46349.Click()
javascript:hhctrl_d0e46361.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Utility	Functions
	
	
	

The	utility	functions	consist	of	query	and	command,	display	control,	user	input,
geometric,	conversion,	file-handling,	and	device	access	functions.

Conversion	Functions
Device	Access	Functions
Display	Control	Functions
File-Handling	Functions
Geometric	Functions
Query	and	Command	Functions
User	Input	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

Conversion	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	conversion
functions.

Conversion	functions

Function Description

(angtof	string
[mode])

Converts	a	string
representing	an	angle	into
a	real	(floating-point)
value	in	radians

(angtosangle	[mode
[precision]])

Converts	an	angular	value
in	radians	into	a	string

(asciistring) Returns	the	conversion	of
the	first	character	of	a
string	into	its	ASCII
character	code	(an
integer)

(atofstring) Returns	the	conversion	of
a	string	into	a	real

(atoistring) Returns	the	conversion	of
a	string	into	an	integer

(chrinteger) Returns	the	conversion	of

javascript:hhctrl_d0e46422.Click()
javascript:hhctrl_d0e46434.Click()
javascript:hhctrl_d0e46446.Click()
javascript:hhctrl_d0e46458.Click()
javascript:hhctrl_d0e46470.Click()
javascript:hhctrl_d0e46482.Click()

an	integer	representing	an
ASCII	character	code	into
a	single-character	string

(cvunit	value	from
to)

Converts	a	value	from
one	unit	of	measurement
to	another

(distof	string
[mode])

Converts	a	string	that
represents	a	real	(floating-
point)	value	into	a	real
value

(itoaint) Returns	the	conversion	of
an	integer	into	a	string

(rtosnumber	[mode
[precision]])

Converts	a	number	into	a
string

(transpt	from	to
[disp])

Translates	a	point	(or	a
displacement)	from	one
coordinate	system	to
another

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e46494.Click()
javascript:hhctrl_d0e46506.Click()
javascript:hhctrl_d0e46518.Click()
javascript:hhctrl_d0e46530.Click()
javascript:hhctrl_d0e46542.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

Device	Access	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	device
access	functions.

Device	access	functions

Function Description

(grread	[track]
[allkeys	[curtype]])

Reads	values	from	any
of	the	AutoCAD	input
devices

(tabletcode	[row1
row2	row3	direction])

Retrieves	and	sets
digitizer	(tablet)
calibrations

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e46591.Click()
javascript:hhctrl_d0e46603.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

Display	Control	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	display
control	functions.

Display	control	functions

Function Description

(graphscr) Displays	the	AutoCAD
graphics	screen

(grdrawfrom	to	color
[highlight])

Draws	a	vector	between
two	points,	in	the	current
viewport

(grtext[box	text
[highlight]])

Writes	text	to	the	status
line	or	to	screen	menu
areas

(grvecsvlist	[trans]) Draws	multiple	vectors	on
the	graphics	screen

(menucmdstring) Issues	menu	commands,
or	sets	and	retrieves	menu
item	status

(menugroupgroupname) Verifies	that	a	menu	group
is	loaded

javascript:hhctrl_d0e46656.Click()
javascript:hhctrl_d0e46666.Click()
javascript:hhctrl_d0e46678.Click()
javascript:hhctrl_d0e46690.Click()
javascript:hhctrl_d0e46703.Click()
javascript:hhctrl_d0e46715.Click()

(prin1[expr	[file-
desc]])

Prints	an	expression	to	the
command	line	or	writes	an
expression	to	an	open	file

(princ	[expr	[file-
desc]])

Prints	an	expression	to	the
command	line,	or	writes
an	expression	to	an	open
file

(print[expr	[file-
desc]])

Prints	an	expression	to	the
command	line,	or	writes
an	expression	to	an	open
file

(promptmsg) Displays	a	string	on	your
screen's	prompt	area

(redraw[ename
[mode]])

Redraws	the	current
viewport	or	a	specified
object	(entity)	in	the
current	viewport

(terpri) Prints	a	newline	to	the
Command	line

(textpage) Switches	from	the
graphics	screen	to	the	text
screen

(textscr) Switches	from	the
graphics	screen	to	the	text
screen	(like	the	AutoCAD
Flip	Screen	function	key)

(vports) Returns	a	list	of	viewport
descriptors	for	the	current
viewport	configuration

javascript:hhctrl_d0e46728.Click()
javascript:hhctrl_d0e46741.Click()
javascript:hhctrl_d0e46754.Click()
javascript:hhctrl_d0e46767.Click()
javascript:hhctrl_d0e46779.Click()
javascript:hhctrl_d0e46791.Click()
javascript:hhctrl_d0e46801.Click()
javascript:hhctrl_d0e46811.Click()
javascript:hhctrl_d0e46821.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

File-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	file-
handling	functions.

File-handling	functions

Function Description

(closefile-desc) Closes	an	open	file

(findfile	filename) Searches	the	AutoCAD
library	path	for	the
specified	file

(openfilename
mode)

Opens	a	file	for	access
by	the	AutoLISP	I/O
functions

(read-char[file-
desc])

Returns	the	decimal
ASCII	code	representing
the	character	read	from
the	keyboard	input
buffer	or	from	an	open
file

(read-line[file-desc]) Reads	a	string	from	the
keyboard	or	from	an
open	file

javascript:hhctrl_d0e46872.Click()
javascript:hhctrl_d0e46884.Click()
javascript:hhctrl_d0e46896.Click()
javascript:hhctrl_d0e46908.Click()
javascript:hhctrl_d0e46920.Click()

(vl-directory-files
[directory
patterndirectories])

Lists	all	files	in	a	given
directory

(vl-file-copy
"source-filename"
"destination-
filename"
[append?])

Copies	or	appends	the
contents	of	one	file	to
another	file

(vl-file-delete
"filename")

Deletes	a	file

(vl-file-directory-p
"filename")

Determines	if	a	file
name	refers	to	a
directory

(vl-file-rename	"old-
filename"
"new-filename")

Renames	a	file

(vl-file-size
"filename")

Determines	the	size	of	a
file,	in	bytes

(vl-file-systime
"filename")

Returns	last
modification	time	of	the
specified	file

(vl-filename-base
"filename")

Returns	the	name	of	a
file,	after	stripping	out
the	directory	path	and
extension

(vl-filename-
directory
"filename")

Returns	the	directory
path	of	a	file,	after
stripping	out	the	name
and	extension

javascript:hhctrl_d0e46932.Click()
javascript:hhctrl_d0e46950.Click()
javascript:hhctrl_d0e46971.Click()
javascript:hhctrl_d0e46984.Click()
javascript:hhctrl_d0e46997.Click()
javascript:hhctrl_d0e47015.Click()
javascript:hhctrl_d0e47028.Click()
javascript:hhctrl_d0e47041.Click()
javascript:hhctrl_d0e47054.Click()

(vl-filename-
extension
"filename")

Returns	the	extension
from	a	file	name,	after
stripping	out	the	rest	of
the	name

(vl-filename-
mktemp
["pattern"
"directory"
"extension"])

Calculates	a	unique	file
name	to	be	used	for	a
temporary	file

(write-charnum	[file-
desc])

Writes	one	character	to
the	screen	or	to	an	open
file

(write-linestring
[file-desc])

Writes	a	string	to	the
screen	or	to	an	open	file

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e47068.Click()
javascript:hhctrl_d0e47082.Click()
javascript:hhctrl_d0e47093.Click()
javascript:hhctrl_d0e47105.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

Geometric	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	geometric
functions.

Geometric	functions

Function Description

(anglept1	pt2) Returns	an	angle	in
radians	of	a	line	defined
by	two	endpoints

(distancept1	pt2) Returns	the	3D	distance
between	two	points

(interspt1	pt2	pt3
pt4	[onseg])

Finds	the	intersection	of
two	lines

(osnappt	mode) Returns	a	3D	point	that	is
the	result	of	applying	an
Object	Snap	mode	to	a
specified	point

(polarpt	ang	dist) Returns	the	UCS	3D	point
at	a	specified	angle	and
distance	from	a	point

(textbox	elist) Measures	a	specified	text
object,	and	returns	the

javascript:hhctrl_d0e47168.Click()
javascript:hhctrl_d0e47180.Click()
javascript:hhctrl_d0e47192.Click()
javascript:hhctrl_d0e47204.Click()
javascript:hhctrl_d0e47216.Click()
javascript:hhctrl_d0e47228.Click()

diagonal	coordinates	of	a
box	that	encloses	the	text

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

Query	and	Command	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	query	and
command	functions.

Query	and	command	functions

Function Description

(acad_colordlgcolornum
[flag])

Displays	the	standard
AutoCAD	Color
Selection	dialog	box

(acad_helpdlghelpfile
topic)

Invokes	the	Help	facility
(obsolete)

(command	[arguments]
...)

Executes	an	AutoCAD
command

(getcfgcfgname) Retrieves	application	data
from	the	AppData	section
of	the	acad*.cfg	file

(getcnamecname) Retrieves	the	localized	or
English	name	of	an
AutoCAD	command

(getenv	"variable-
name")

Returns	the	string	value
assigned	to	an
environment	variable

javascript:hhctrl_d0e47279.Click()
javascript:hhctrl_d0e47291.Click()
javascript:hhctrl_d0e47303.Click()
javascript:hhctrl_d0e47315.Click()
javascript:hhctrl_d0e47330.Click()
javascript:hhctrl_d0e47342.Click()

(getvar	varname) Retrieves	the	value	of	an
AutoCAD	system
variable

(help[helpfile	[topic
[command]]])

Invokes	the	Help	facility

(setcfgcfgname	cfgval) Writes	application	data	to
the	AppData	section	of
the	acad*.cfg	file

(setenv
"varname""value")

Sets	an	environment
variable	to	a	specified
value

(setfunhelp	"c:fname"
["helpfile"	["topic"
["command"]]])

Registers	a	user-defined
command	with	the	Help
facility	so	the	appropriate
help	file	and	topic	are
called	when	the	user
requests	help	on	that
command

(setvarvarname	value) Sets	an	AutoCAD	system
variable	to	a	specified
value

(ver) Returns	a	string	that
contains	the	current
AutoLISP	version	number

(vl-cmdf	[arguments]
...)

Executes	an	AutoCAD
command	after	evaluating
arguments

(vlax-add-cmdglobal-
name

Adds	commands	to	a
group

javascript:hhctrl_d0e47355.Click()
javascript:hhctrl_d0e47367.Click()
javascript:hhctrl_d0e47382.Click()
javascript:hhctrl_d0e47397.Click()
javascript:hhctrl_d0e47415.Click()
javascript:hhctrl_d0e47451.Click()
javascript:hhctrl_d0e47463.Click()
javascript:hhctrl_d0e47473.Click()
javascript:hhctrl_d0e47487.Click()

func-sym	[local-name
cmd-flags])

Note VLISP	extension:
requires	vl-load-com

(vlax-remove-
cmdglobal-name)

Removes	a	single
command	or	command
group

Note VLISP	extension:
requires	vl-load-com

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e47509.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Utility
Functions	>	

User	Input	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	user	input
functions.

User	input	functions

Function Description

(entsel[msg]) Prompts	the	user	to	select	a
single	object	(entity)	by
specifying	a	point

(getangle[pt]
[msg])

Pauses	for	user	input	of	an
angle,	and	returns	that
angle	in	radians

(getcornerpt
[msg])

Pauses	for	user	input	of	a
rectangle's	second	corner

(getdist[pt]	[msg]) Pauses	for	user	input	of	a
distance

(getfiledtitle
default	ext	flags)

Prompts	the	user	for	a	file
name	with	the	standard
AutoCAD	file	dialog	box,
and	returns	that	file	name

(getint[msg]) Pauses	for	user	input	of	an
integer,	and	returns	that

javascript:hhctrl_d0e47562.Click()
javascript:hhctrl_d0e47574.Click()
javascript:hhctrl_d0e47586.Click()
javascript:hhctrl_d0e47598.Click()
javascript:hhctrl_d0e47610.Click()
javascript:hhctrl_d0e47622.Click()

integer

(getkword[msg]) Pauses	for	user	input	of	a
keyword,	and	returns	that
keyword

(getorient[pt]
[msg])

Pauses	for	user	input	of	an
angle,	and	returns	that
angle	in	radians

(getpoint[pt]
[msg])

Pauses	for	user	input	of	a
point,	and	returns	that
point

(getreal[msg]) Pauses	for	user	input	of	a
real	number,	and	returns
that	real	number

(getstring	[cr]
[msg])

Pauses	for	user	input	of	a
string,	and	returns	that
string

(initget[bits]
[string])

Establishes	keywords	for
use	by	the	next	user	input
function	call

(nentsel	[msg]) Prompts	the	user	to	select
an	object	(entity)	by
specifying	a	point,	and
provides	access	to	the
definition	data	contained
within	a	complex	object

(nentselp	[msg]
[pt])

Provides	similar
functionality	to	that	of	the
nentsel	function	without
the	need	for	user	input

javascript:hhctrl_d0e47634.Click()
javascript:hhctrl_d0e47646.Click()
javascript:hhctrl_d0e47658.Click()
javascript:hhctrl_d0e47670.Click()
javascript:hhctrl_d0e47682.Click()
javascript:hhctrl_d0e47696.Click()
javascript:hhctrl_d0e47708.Click()
javascript:hhctrl_d0e47720.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Selection	Set,	Object,	and	Symbol	Table	Functions
	
	
	

The	selection	set,	object,	and	symbol	table	functions	consist	of	selection	set
manipulation,	object-handling,	extended	data-handling,	and	symbol	table-
handling	functions.

Extended	Data-Handling	Functions
Object-Handling	Functions
Selection	Set	Manipulation	Functions
Symbol	Table	and	Dictionary-Handling	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function
Synopsis	>	Selection	Set,	Object,	and	Symbol	Table	Functions	>	

Extended	Data-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	extended
data-handling	functions.

Extended	data-handling	functions

Function Description

(regapp
application)

Registers	an	application
name	with	the	current
AutoCAD	drawing	in
preparation	for	using
extended	object	data

(xdroom	ename) Returns	the	amount	of
extended	data	(xdata)	space
that	is	available	for	an	object
(entity)

(xdsize	lst) Returns	the	size	(in	bytes)
that	a	list	occupies	when	it	is
linked	to	an	object	(entity)	as
extended	data

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e47785.Click()
javascript:hhctrl_d0e47797.Click()
javascript:hhctrl_d0e47809.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function
Synopsis	>	Selection	Set,	Object,	and	Symbol	Table	Functions	>	

Object-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	object-
handling	functions.

Object-handling	functions

Function Description

(entdel	ename) Deletes	objects	(entities)	or
restores	previously	deleted
objects

(entget	ename
[applist])

Retrieves	an	object's
definition	data

(entlast) Returns	the	name	of	the
last	nondeleted	main	object
in	the	drawing

(entmake	[elist]) Creates	a	new	entity
(graphical	object)	in	the
drawing

(entmakex	[elist]) Makes	a	new	object,	gives
it	a	handle	and	entity	name
(but	does	not	assign	an
owner),	and	then	returns
the	new	entity	name

javascript:hhctrl_d0e47854.Click()
javascript:hhctrl_d0e47866.Click()
javascript:hhctrl_d0e47878.Click()
javascript:hhctrl_d0e47888.Click()
javascript:hhctrl_d0e47900.Click()

(entmod	elist) Modifies	the	definition
data	of	an	object

(entnext[ename]) Returns	the	name	of	the
next	object	in	the	drawing

(entupd	ename) Updates	the	screen	image
of	an	object

(handenthandle) Returns	an	object	name
based	on	its	handle

(vlax-dump-
objectobj)

Lists	an	object's	methods
and	properties

Note VLISP	extension:
requires	vl-load-com

(vlax-erased-p
obj)

Determines	whether	an
object	was	erased

Note VLISP	extension:
requires	vl-load-com

(vlax-get-acad-
object)

Retrieves	the	top-level
AutoCAD	application
object	for	the	current
AutoCAD	session

Note VLISP	extension:
requires	vl-load-com

(vlax-method-
applicable-
pobjmethod)

Determines	whether	an
object	supports	a	particular
method

Note VLISP	extension:
requires	vl-load-com

(vlax-object-
released-pobj)

Determines	whether	an
object	has	been	released

javascript:hhctrl_d0e47912.Click()
javascript:hhctrl_d0e47924.Click()
javascript:hhctrl_d0e47936.Click()
javascript:hhctrl_d0e47948.Click()
javascript:hhctrl_d0e47960.Click()
javascript:hhctrl_d0e47976.Click()
javascript:hhctrl_d0e47992.Click()
javascript:hhctrl_d0e48006.Click()
javascript:hhctrl_d0e48024.Click()

Note VLISP	extension:
requires	vl-load-com

(vlax-read-
enabled-pobj)

Determines	whether	an
object	can	be	read

Note VLISP	extension:
requires	vl-load-com

(vlax-release-
objectobj)

Releases	a	drawing	object

Note VLISP	extension:
requires	vl-load-com

(vlax-typeinfo-
available-pobj)

Determines	whether	type
library	information	is
present	for	the	specified
type	of	object

Note VLISP	extension:
requires	vl-load-com

(vlax-write-
enabled-pobj)

Determines	whether	an
AutoCAD	drawing	object
can	be	modified

Note VLISP	extension:
requires	vl-load-com

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48040.Click()
javascript:hhctrl_d0e48056.Click()
javascript:hhctrl_d0e48072.Click()
javascript:hhctrl_d0e48088.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function
Synopsis	>	Selection	Set,	Object,	and	Symbol	Table	Functions	>	

Selection	Set	Manipulation	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	selection
set	manipulation	functions.

Selection	set	manipulation	functions

Function Description

(ssadd[ename[ss]]) Adds	an	object	(entity)	to
a	selection	set,	or	creates	a
new	selection	set

(ssdelenamess) Deletes	an	object	(entity)
from	a	selection	set

(ssget[mode]	[pt1
[pt2]]	[pt-list]
[filter-list])

Prompts	the	user	to	select
objects	(entities),	and
returns	a	selection	set

(ssgetfirst) Determines	which	objects
are	selected	and	gripped

(sslengthss) Returns	an	integer
containing	the	number	of
objects	(entities)	in	a
selection	set

(ssmembenamess) Tests	whether	an	object
(entity)	is	a	member	of	a

javascript:hhctrl_d0e48137.Click()
javascript:hhctrl_d0e48151.Click()
javascript:hhctrl_d0e48165.Click()
javascript:hhctrl_d0e48180.Click()
javascript:hhctrl_d0e48190.Click()
javascript:hhctrl_d0e48202.Click()

selection	set

(ssnamessindex) Returns	the	object	(entity)
name	of	the	indexed
element	of	a	selection	set

(ssnamexssindex) Retrieves	information
about	how	a	selection	set
was	created

(sssetfirstgripset
[pickset])

Sets	which	objects	are
selected	and	gripped

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48216.Click()
javascript:hhctrl_d0e48230.Click()
javascript:hhctrl_d0e48244.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function
Synopsis	>	Selection	Set,	Object,	and	Symbol	Table	Functions	>	

Symbol	Table	and	Dictionary-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	symbol
table	and	dictionary-handling	functions.

Symbol	table	and	dictionary-handling	functions

Function Description

(dictaddename	symbol
newobj)

Adds	a	non-graphical
object	to	the	specified
dictionary

(dictnextename	symbol
[rewind])

Finds	the	next	item	in
a	dictionary

(dictremoveename
symbol)

Removes	an	entry
from	the	specified
dictionary

(dictrenameename
oldsym	newsym)

Renames	a	dictionary
entry

(dictsearchename	symbol
[setnext])

Searches	a	dictionary
for	an	item

(layoutlist) Returns	a	list	of	all
paper	space	layouts	in
the	current	drawing

javascript:hhctrl_d0e48297.Click()
javascript:hhctrl_d0e48309.Click()
javascript:hhctrl_d0e48321.Click()
javascript:hhctrl_d0e48333.Click()
javascript:hhctrl_d0e48345.Click()
javascript:hhctrl_d0e48357.Click()

(namedobjdict) Returns	the	entity
name	of	the	current
drawing's	named
object	dictionary,
which	is	the	root	of	all
non-graphical	objects
in	the	drawing

(setviewview_description
[vport_id])

Establishes	a	view	for
a	specified	viewport

(snvalidsym_name) Checks	the	symbol
table	name	for	valid
characters

(tblnexttable-name
[rewind])

Finds	the	next	item	in
a	symbol	table

(tblobjnametable-name
symbol)

Returns	the	entity
name	of	a	specified
symbol	table	entry

(tblsearchtable-name
symbol	[setnext])

Searches	a	symbol
table	for	a	symbol
name

(vlax-ldata-listdictkey) Erases	AutoLISP	data
from	a	drawing
dictionary

Note VLISP	extension:
requires	vl-load-com

(vlax-ldata-getdictkey
[default-data])

Retrieves	AutoLISP
data	from	a	drawing
dictionary

Note VLISP	extension:
requires	vl-load-com

javascript:hhctrl_d0e48367.Click()
javascript:hhctrl_d0e48377.Click()
javascript:hhctrl_d0e48389.Click()
javascript:hhctrl_d0e48401.Click()
javascript:hhctrl_d0e48413.Click()
javascript:hhctrl_d0e48425.Click()
javascript:hhctrl_d0e48437.Click()
javascript:hhctrl_d0e48455.Click()

(vlax-ldata-listdict) Lists	AutoLISP	data	in
a	drawing	dictionary

Note VLISP	extension:
requires	vl-load-com

(vlax-ldata-
putdictkeydata)

Stores	AutoLISP	data
in	a	drawing	dictionary

Note VLISP	extension:
requires	vl-load-com

(vlax-ldata-testdata) Determines	whether
data	can	be	saved	over
a	session	boundary

Note VLISP	extension:
requires	vl-load-com

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48476.Click()
javascript:hhctrl_d0e48492.Click()
javascript:hhctrl_d0e48512.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Memory	Management	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	memory
management	functions.

Memory	management	functions

Function Description

(allocint) Sets	the	segment	size	to	a
given	number	of	nodes

(expand
number)

Allocates	node	space	by
requesting	a	specified
number	of	segments

(gc) Forces	a	garbage	collection,
which	frees	up	unused
memory

(mem) Displays	the	current	state	of
memory	in	AutoLISP

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48557.Click()
javascript:hhctrl_d0e48569.Click()
javascript:hhctrl_d0e48587.Click()
javascript:hhctrl_d0e48597.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Visual	LISP	Extensions	to	AutoLISP
	
	
	

The	extended	AutoLISP	functions	provided	with	VLISP	consist	of	curve
measurement,	data	conversion,	object-handling,	property-handling,	collection
manipulation,	and	dictionary-handling	functions.	The	function	names	are
prefixed	with	vlax-.	These	functions	are	in	addition	to	the	ActiveX®	methods
provided	through	vla-*	functions.

Note Before	you	can	use	the	AutoLISP	extensions,	you	must	issue	the	following
command:

(vl-load-com)

The	vl-load-com	function	also	initializes	ActiveX	support	for	AutoLISP.
ActiveX	Collection	Manipulation	Functions
ActiveX	Data	Conversion	Functions
ActiveX	Method	Invocation	Functions
ActiveX	Object-Handling	Functions
ActiveX	Property-Handling	Functions
Curve	Measurement	Functions
Dictionary	Functions
Functions	for	Handling	Drawing	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

ActiveX	Collection	Manipulation	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	ActiveX
collection	manipulation	functions.

Collection	manipulation	functions

Function Description

(vlax-
forsymbolcollection
[expression1
[expression2	...]])

Iterates	through	a
collection	of	objects,
evaluating	each	expression
(VLISP	Function)

(vlax-map-
collectionobj
function)

Applies	a	function	to	all
objects	in	a	collection

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48689.Click()
javascript:hhctrl_d0e48710.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

ActiveX	Data	Conversion	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	ActiveX
data	conversion	functions.

Data	conversion	functions

Function Description

(vlax-3D-pointlist) Creates	an	ActiveX-
compatible	3D	point
structure

(vlax-ename->vla-
object
entname)

Transforms	entity	to
VLA-object

(vlax-make-
safearraytype
'(l-bound	.	u-bound)
['(l-bound	.	u-
bound)...)]

Creates	a	safearray

(vlax-make-
variantvaluetype)

Creates	a	variant	data
type

(vlax-safearray-fillvar	'
element-values)

Stores	elements	in	a
safearray

javascript:hhctrl_d0e48776.Click()
javascript:hhctrl_d0e48800.Click()
javascript:hhctrl_d0e48813.Click()
javascript:hhctrl_d0e48834.Click()
javascript:hhctrl_d0e48848.Click()

(vlax-safearray-get-
dimvar)

Returns	the	number	of
dimensions	in	a
safearray	object

(vlax-safearray-get-
elementvarelement)

Returns	an	element
from	an	array

(vlax-safearray-get-l-
boundvardim)

Returns	the	lower
boundary	(starting
index)	of	a	dimension
of	an	array

(vlax-safearray-get-u-
boundvardim)

Returns	the	upper
boundary	(end	index)
of	a	dimension	of	an
array

(vlax-safearray-put-
elementvar
element	value)

Adds	or	updates	an
element	in	an	array

(vlax-safearray-
typevar)

Returns	the	data	type
of	a	safearray

(vlax-safearray-
>listvar)

Returns	the	elements
of	a	safearray	in	list
form

(vlax-tmatrixlist) Returns	a	suitable
representation	for	a	4
x	4	transformation
matrix	to	be	used	in
VLA	methods

(vlax-variant-change-
typevartype)

Returns	the	value	of	a
variant	after	changing
it	from	one	data	type

javascript:hhctrl_d0e48864.Click()
javascript:hhctrl_d0e48876.Click()
javascript:hhctrl_d0e48890.Click()
javascript:hhctrl_d0e48904.Click()
javascript:hhctrl_d0e48918.Click()
javascript:hhctrl_d0e48933.Click()
javascript:hhctrl_d0e48945.Click()
javascript:hhctrl_d0e48957.Click()
javascript:hhctrl_d0e48969.Click()

to	another

(vlax-variant-typevar) Returns	the	data	type
of	a	variant

(vlax-variant-valuevar) Returns	the	value	of	a
variant

(vlax-vla-object-
>enameobj)

Transforms	a	VLA-
object	to	an	AutoLISP
entity

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e48983.Click()
javascript:hhctrl_d0e48995.Click()
javascript:hhctrl_d0e49007.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

ActiveX	Method	Invocation	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	ActiveX
method	invocation	functions.

Method	invocation	functions

Function Description

(vlax-invoke-
methodobjmethodlist)

Calls	the	specified
method	of	an	object

(vlax-method-
applicable-
pobjmethod)

Determines	if	an
object	supports	a
particular	method

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e49051.Click()
javascript:hhctrl_d0e49081.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

ActiveX	Object-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	ActiveX
object-handling	functions.

ActiveX	Object-handling	functions

Function Description

(vlax-dump-
objectobj)

Lists	an	object's
methods	and	properties

(vlax-erased-pobj) Determines	whether	an
object	was	erased

(vlax-get-acad-
object)

Retrieves	the	top-level
AutoCAD	application
object	for	the	current
AutoCAD	session

(vlax-method-
applicable-
pobjmethod)

Determines	if	an	object
supports	a	particular
method

(vlax-object-released-
pobj)

Determines	if	an	object
has	been	released

(vlax-read-enabled-
pobj)

Determines	whether	an
object	can	be	read

javascript:hhctrl_d0e49115.Click()
javascript:hhctrl_d0e49127.Click()
javascript:hhctrl_d0e49138.Click()
javascript:hhctrl_d0e49148.Click()
javascript:hhctrl_d0e49162.Click()
javascript:hhctrl_d0e49174.Click()

(vlax-release-
objectobj)

Releases	a	graphical
object

(vlax-typeinfo-
available-pobj)

Determines	whether
type	library	information
is	present	for	the
specified	type	of	object

(vlax-write-enabled-
pobj)

Determines	whether	an
AutoCAD	drawing
object	can	be	modified

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e49186.Click()
javascript:hhctrl_d0e49198.Click()
javascript:hhctrl_d0e49210.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

ActiveX	Property-Handling	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	property-
handling	functions.

Property-handling	functions

Function Description

(vlax-get-
propertyobjproperty)

Low-level	property	get
function.	May	be	used	for
custom	ActiveX	object

(vlax-property-
available-p
objprop	[T])

Determines	whether	an
object	has	a	specified
property

(vlax-put-
propertyobjpropertyarg)

Low-level	property	set
function

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e49250.Click()
javascript:hhctrl_d0e49270.Click()
javascript:hhctrl_d0e49285.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

Curve	Measurement	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	curve
measurement	functions.

Curve	measurement	functions

Function Description

(vlax-curve-getArea	curve-obj) Returns	the	area	inside
the	curve

(vlax-curve-getDistAtParam
curve-objparam)

Returns	the	length	of
the	curve's	segment
from	the	curve's
beginning	to	the
specified	point

(vlax-curve-getDistAtPoint
curve-objpoint)

Returns	the	length	of
the	curve's	segment
between	the	curve's
start	point	and	the
specified	point

(vlax-curve-getEndParam
curve-obj)

Returns	the	parameter
of	the	endpoint	of	the
curve

(vlax-curve-getEndPoint
curve-obj)

Returns	the	endpoint
(in	WCS	coordinates)

javascript:hhctrl_d0e49329.Click()
javascript:hhctrl_d0e49344.Click()
javascript:hhctrl_d0e49359.Click()
javascript:hhctrl_d0e49374.Click()
javascript:hhctrl_d0e49387.Click()

of	the	curve

(vlax-curve-getParamAtPoint
curve-objparam)

Returns	the	distance
along	the	curve	from
the	beginning	of	the
curve	to	the	location	of
the	specified	parameter

(vlax-curve-getParamAtPoint
curve-objpoint)

Returns	the	parameter
of	the	curve	at	the
point

(vlax-curve-getPointAtDist
curve-objdist)

Returns	the	point	(in
WCS	coordinates)
along	a	curve	at	the
distance	specified	by
the	user

(vlax-curve-getPointAtParam
curve-objparam)

Determines	the	point
on	the	curve	that
corresponds	to	the
param	parameter	and
returns	the	point

(vlax-curve-getStartParam
curve-obj)

Returns	the	start
parameter	on	the	curve

(vlax-curve-getStartPoint
curve-obj)

Returns	the	start	point
(in	WCS	coordinates)
of	the	curve

(vlax-curve-isClosed
curve-obj)

Determines	if	the
specified	curve	is
closed	(i.e.,	start	point
is	same	as	endpoint)

(vlax-curve-isPeriodic	curve-obj) Determines	if	the

javascript:hhctrl_d0e49401.Click()
javascript:hhctrl_d0e49416.Click()
javascript:hhctrl_d0e49431.Click()
javascript:hhctrl_d0e49446.Click()
javascript:hhctrl_d0e49464.Click()
javascript:hhctrl_d0e49477.Click()
javascript:hhctrl_d0e49490.Click()
javascript:hhctrl_d0e49503.Click()

specified	curve	has	an
infinite	range	in	both
directions	and	there	is
a	period	value	dT,	such
that	there	is	a	point	on
curve	at	(u	+	dT)	=
point	on	curve	(u),	for
any	parameter	u

(vlax-curve-isPlanarcurve-obj) Determines	if	there	is	a
plane	that	contains	the
curve

(vlax-curve-getClosestPointTo
curve-obj	givenPnt	[extend])

Returns	the	point	(in
WCS	coordinates)	on	a
curve	that	is	nearest	to
the	specified	point

(vlax-curve-
getClosestPointToProjectioncurve-
obj	givenPnt	normal	[extend])

Returns	the	point	(in
WCS	coordinates)	on	a
curve	that	is	nearest	to
the	specified	point

(vlax-curve-getFirstDeriv
curve-obj	param)

Returns	the	first
derivative	(in	WCS
coordinates)	of	a	curve
at	the	specified
location

(vlax-curve-getSecondDerivcurve-
obj	param)

Returns	the	second
derivative	(in	WCS
coordinates)	of	a	curve
at	the	specified
location

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e49529.Click()
javascript:hhctrl_d0e49541.Click()
javascript:hhctrl_d0e49557.Click()
javascript:hhctrl_d0e49572.Click()
javascript:hhctrl_d0e49599.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

Dictionary	Functions
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	dictionary
functions.

Dictionary	functions

Function Description

(vlax-ldata-
deletedictkey)

Erases	AutoLISP	data
from	a	drawing	dictionary

(vlax-ldata-
getdictkey
[default-data])

Retrieves	AutoLISP	data
from	a	drawing	dictionary

(vlax-ldata-listdict) Lists	AutoLISP	data	in	a
drawing	dictionary

(vlax-ldata-
putdictkeydata)

Stores	AutoLISP	data	in	a
drawing	dictionary

(vlax-ldata-
testdata)

Determines	whether	data
can	be	saved	over	a
session	boundary

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e49644.Click()
javascript:hhctrl_d0e49658.Click()
javascript:hhctrl_d0e49676.Click()
javascript:hhctrl_d0e49688.Click()
javascript:hhctrl_d0e49704.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	Visual
LISP	Extensions	to	AutoLISP	>	

Functions	for	Handling	Drawing	Objects
	
	
	

The	following	table	provides	summary	descriptions	of	the	AutoLISP	functions
for	handling	drawing	objects.

Functions	for	handling	drawing	objects

Function Description

(vlax-create-object
“prog-id”)

Creates	a	new	instance	of
an	ActiveX	object

(vlax-dump-
objectobj)

Lists	an	object's	methods
and	properties

(vlax-erased-pobj) Determines	whether	an
object	was	erased

(vlax-get-acad-
object)

Retrieves	the	top-level
AutoCAD	application
object	for	the	current
AutoCAD	session

(vlax-get-object
“prog-id”)

Returns	a	running	instance
of	an	ActiveX	object

(vlax-get-or-create-
object
“prog-id”)

Returns	a	running	instance
of	an	ActiveX	object,	if
one	exists,	otherwise
starts	a	new	instance	of

javascript:hhctrl_d0e49765.Click()
javascript:hhctrl_d0e49778.Click()
javascript:hhctrl_d0e49790.Click()
javascript:hhctrl_d0e49801.Click()
javascript:hhctrl_d0e49811.Click()
javascript:hhctrl_d0e49824.Click()

the	object

(vlax-import-type-
library
:tlb-filename
filename
[:methods-prefix
mprefix
:properties-prefix
pprefix
:constants-prefix
cprefix])

Imports	information	from
a	type	library

(vlax-method-
applicable-p
objmethod)

Determines	whether	an
object	supports	a
particular	method

(vlax-object-
released-pobj)

Determines	whether	an
object	has	been	released

(vlax-read-
enabled-pobj)

Determines	whether	an
object	can	be	read

(vlax-release-
objectobj)

Releases	a	drawing	object

(vlax-typeinfo-
available-pobj)

Determines	whether	type
library	information	is
present	for	the	specified
type	of	object

(vlax-write-
enabled-pobj)

Determines	whether	an
AutoCAD	drawing	object
can	be	modified

javascript:hhctrl_d0e49838.Click()
javascript:hhctrl_d0e49864.Click()
javascript:hhctrl_d0e49879.Click()
javascript:hhctrl_d0e49891.Click()
javascript:hhctrl_d0e49903.Click()
javascript:hhctrl_d0e49915.Click()
javascript:hhctrl_d0e49927.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Reactor	Functions
	
	
	

Reactor	functions	define,	query,	and	delete	reactors	and	reactor	properties.

Note Before	you	can	use	these	functions,	you	must	load	AutoLISP	reactor	support
by	issuing	the	following	command:

(vl-load-com)

The	vl-load-com	function	initializes	reactor	support	and	a	number	of	other
AutoLISP	extensions.

Reactor	functions

Function Description

(vl-load-com) Loads	AutoLISP	reactor
support	functions	and	other
AutoLISP	extensions

(vlr-acdb-
reactordatacallbacks)

Constructs	a	database
(global)	reactor	object

(vlr-addobj) Enables	a	disabled	reactor
object

(vlr-added-pobj) Tests	to	determine	whether	a
reactor	object	is	enabled

(vlr-beep-reaction
[args])

Produces	a	beep	sound

javascript:hhctrl_d0e50016.Click()
javascript:hhctrl_d0e50026.Click()
javascript:hhctrl_d0e50040.Click()
javascript:hhctrl_d0e50052.Click()
javascript:hhctrl_d0e50064.Click()

(vlr-current-reaction-
name)

Returns	the	name	(symbol)
of	the	current	event,	if	called
from	within	a	reactor's
callback

(vlr-dataobj) Returns	application-specific
data	associated	with	a	reactor

(vlr-data-setobjdata) Overwrites	application-
specific	data	associated	with
a	reactor

(vlr-deepclone-
reactorobjdata)

Constructs	an	editor	reactor
object	that	provides
notification	of	deep	clone
events

(vlr-docmanager-reactor
objdata)

Constructs	a	reactor	object
that	provides	notification	of
MDI-related	events

(vlr-dwg-
reactorobjdata)

Constructs	an	editor	reactor
object	that	provides
notification	of	a	drawing
event	(for	example,	opening
or	closing	a	drawing	file)

(vlr-dxf-reactorobjdata) Constructs	an	editor	reactor
object	that	notifies	of	an
event	related	to	reading	or
writing	of	a	DXF	file

(vlr-editor-reactordata
callbacks)

Constructs	an	editor	(global)
reactor	object

(vlr-linker-reactordata
callbacks)

Constructs	a	linker	(global)
reactor	object

javascript:hhctrl_d0e50077.Click()
javascript:hhctrl_d0e50087.Click()
javascript:hhctrl_d0e50099.Click()
javascript:hhctrl_d0e50113.Click()
javascript:hhctrl_d0e50127.Click()
javascript:hhctrl_d0e50142.Click()
javascript:hhctrl_d0e50156.Click()
javascript:hhctrl_d0e50170.Click()
javascript:hhctrl_d0e50185.Click()

(vlr-miscellaneous-
reactor
datacallbacks)

Constructs	an	editor	reactor
object	that	does	not	fall
under	any	of	the	other	editor
reactor	types

(vlr-mouse-reactor
datacallbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	a	mouse	event
(for	example,	a	double-click)

(vlr-notificationreactor) Determines	whether	or	not	a
reactor's	callback	function
will	execute	if	its	associated
namespace	is	not	active

(vlr-object-
reactorowners
datacallbacks)

Constructs	an	object	reactor
object

(vlr-owner-
addreactorowner)

Adds	an	object	to	the	list	of
owners	of	an	object	reactor

(vlr-owner-remove
reactorowner)

Removes	an	object	from	the
list	of	owners	of	an	object
reactor

(vlr-ownersreactor) Returns	the	list	of	owners	of
an	object	reactor

(vlr-persreactor) Makes	a	reactor	persistent

(vlr-pers-list	[reactor]) Returns	a	list	of	persistent
reactors	in	the	current
drawing

(vlr-pers-preactor) Determines	whether	or	not	a
reactor	is	persistent

javascript:hhctrl_d0e50200.Click()
javascript:hhctrl_d0e50215.Click()
javascript:hhctrl_d0e50230.Click()
javascript:hhctrl_d0e50242.Click()
javascript:hhctrl_d0e50259.Click()
javascript:hhctrl_d0e50273.Click()
javascript:hhctrl_d0e50288.Click()
javascript:hhctrl_d0e50300.Click()
javascript:hhctrl_d0e50312.Click()
javascript:hhctrl_d0e50325.Click()

(vlr-pers-
releasereactor)

Makes	a	reactor	transient

(vlr-reaction-
namereactor-type)

Returns	a	list	of	all	callback
conditions	for	this	reactor
type

(vlr-reaction-
setreactoreventfunction)

Adds	or	replaces	a	callback
function	in	a	reactor

(vlr-reactionsreactor) Returns	a	list	of	pairs	(event-
name	.	callback_function)	for
the	reactor

(vlr-reactors	[reactor-
type...])

Returns	a	list	of	reactors	of
the	specified	types

(vlr-removereactor) Disables	a	reactor

(vlr-remove-allreactor-
type)

Disables	all	reactors	of	the
specified	type

(vlr-set-
notificationreactor
'range)

Defines	whether	or	not	a
reactor's	callback	function
will	execute	if	its	associated
namespace	is	not	active

(vlr-sysvar-reactordata
callbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	a	change	to	a
system	variable

(vlr-toolbar-reactordata
callbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	a	change	to
the	bitmaps	in	a	toolbar

javascript:hhctrl_d0e50337.Click()
javascript:hhctrl_d0e50349.Click()
javascript:hhctrl_d0e50361.Click()
javascript:hhctrl_d0e50377.Click()
javascript:hhctrl_d0e50395.Click()
javascript:hhctrl_d0e50407.Click()
javascript:hhctrl_d0e50419.Click()
javascript:hhctrl_d0e50431.Click()
javascript:hhctrl_d0e50446.Click()
javascript:hhctrl_d0e50461.Click()

(vlr-trace-reaction) A	pre-defined	callback
function	that	prints	one	or
more	callback	arguments	in
the	Trace	window

(vlr-typereactor) Returns	a	symbol
representing	the	reactor	type

(vlr-types) Returns	a	list	of	all	reactor
types

(vlr-undo-reactordata
callbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	an	undo	event

(vlr-wblock-reactordata
callbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	an	event
related	to	writing	a	block

(vlr-window-
reactordatacallbacks)

Constructs	an	editor	reactor
object	that	notifies	of	an
event	related	to	moving	or
sizing	an	AutoCAD	window

(vlr-xref-
reactordatacallbacks)

Constructs	an	editor	reactor
object	that	provides
notification	of	an	event
related	to	attaching	or
modifying	XREF

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e50476.Click()
javascript:hhctrl_d0e50486.Click()
javascript:hhctrl_d0e50498.Click()
javascript:hhctrl_d0e50508.Click()
javascript:hhctrl_d0e50523.Click()
javascript:hhctrl_d0e50538.Click()
javascript:hhctrl_d0e50552.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

VLX	Namespace	Functions
	
	
	

The	VLX	namespace	functions	listed	below	apply	to	separate-namespace	VLX
applications.	These	functions	allow	separate-namespace	VLX	functions	to	be
accessible	from	a	document	namespace,	enable	the	retrieval	and	updating	of
variables	in	the	associated	document	namespace,	and	provide	error-handling
routines	for	separate-namespace	VLX	functions.

VLX	namespace	functions

Function Description

(vl-arx-import
[function	|
application]

Imports	ADS-DEFUN
functions	into	a	separate-
namespace	VLX

(vl-doc-export
'function)

Makes	a	function	loaded	in	a
VLX	namespace	available	to
the	current	document

(vl-doc-import
['function	|
application])

Imports	a	function	that	was
previously	exported	from
another	separate-namespace
VLX

(vl-doc-
refsymbol)

Retrieves	the	value	of	a
variable	from	the	namespace
of	the	associated	document

(vl-doc-
setsymbolvalue)

Sets	the	value	of	a	variable	in
the	associated	document's

javascript:hhctrl_d0e50614.Click()
javascript:hhctrl_d0e50631.Click()
javascript:hhctrl_d0e50644.Click()
javascript:hhctrl_d0e50658.Click()
javascript:hhctrl_d0e50670.Click()

namespace

(vl-exit-with-
error	“msg”)

Passes	control	from	a	VLX
error	handler	to	the	*error*
function	of	the	associated
document	namespace

(vl-exit-with-
valuevalue)

Returns	a	value	to	the
document	namespace	from
which	the	VLX	was	invoked

(vl-list-
exported-
functions
[“appname”])

Lists	all	functions	exported
by	the	specified	application,
or	all	exported	functions	if
no	application	is	specified

(vl-list-loaded-
vlx)

Returns	a	list	of	all	separate-
namespace	VLX	files
associated	with	the	current
document

(vl-unload-vlx
“appname”)

Unloads	a	VLX	that	is
loaded	in	its	own	namespace
(a	separate-namespace	VLX)

(vl-vlx-loaded-p
“appname”)

Determines	whether	a	VLX
is	loaded	in	its	own
namespace

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e50684.Click()
javascript:hhctrl_d0e50700.Click()
javascript:hhctrl_d0e50712.Click()
javascript:hhctrl_d0e50725.Click()
javascript:hhctrl_d0e50735.Click()
javascript:hhctrl_d0e50748.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Namespace	Communication	Functions
	
	
	

The	namespace	communication	functions	consist	of	blackboard	addressing	and
multi-document-loading	functions.

Namespace	communication	functions

Function Description

(vl-bb-ref
'variable)

Returns	the	value	of	a
variable	from	the	blackboard
namespace

(vl-bb-set
'variable	value)

Sets	the	value	of	a	variable	in
the	blackboard	namespace

(vl-load-all
“filename”)

Loads	a	file	into	all	open
AutoCAD	documents,	and
into	any	document
subsequently	opened	during
the	current	AutoCAD	session

(vl-propagate
'variable)

Copies	the	value	of	a
variable	into	all	open
AutoCAD	documents,	and
into	any	document
subsequently	opened	during
the	current	AutoCAD	session

javascript:hhctrl_d0e50799.Click()
javascript:hhctrl_d0e50812.Click()
javascript:hhctrl_d0e50825.Click()
javascript:hhctrl_d0e50838.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	AutoLISP	Function	Synopsis	>	

Windows	Registry	Functions
	
	
	

Windows	Registry	functions	query	and	update	the	Windows	Registry.

Windows	Registry	functions

Function Description

(vl-registry-
deletereg-key
[val-name])

Deletes	the	specified	key
or	value	from	the
Windows	Registry

(vl-registry-
descendentsreg-key
[val-names])

Returns	a	list	of	subkeys
or	value	names	for	the
specified	Registry	key

(vl-registry-
readreg-key
[val-name])

Returns	data	stored	in	the
Windows	Registry	for	the
specified	key/value	pair

(vl-registry-
writereg-key
[val-name	val-
data])

Creates	a	key	in	the
Windows	Registry

(vlax-product-key) Returns	the	AutoCAD
registry	path

Note This	is	an	extended
function	provided	by

javascript:hhctrl_d0e50892.Click()
javascript:hhctrl_d0e50908.Click()
javascript:hhctrl_d0e50924.Click()
javascript:hhctrl_d0e50940.Click()
javascript:hhctrl_d0e50968.Click()

VLISP.	You	must	issue
vl-load-com	before	you
can	use	the	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	

Visual	LISP	Environment	and	Formatting	Options
	
	
	

Color-coding	options,	diagnostic	options,	and	page	layout	options	are	described.

This	chapter	describes	the	configuration	options	available	on	the	Visual	LISP®
Tools	menu.	The	Window	Attributes	options	set	color-coding	for	the	VLISP	text
editor	windows.	Using	Environment	Options	on	the	Tools	menu,	you	can	set
session-wide	VLISP	options	(for	example,	whether	or	not	to	create	automatic
backup	files,	or	how	to	treat	protected	symbols),	diagnostic	options	(such	as
what	statistics	to	report	during	syntax	checking,	or	what	level	of	detail	to	display
when	inspecting	drawing	objects),	formatting	options	for	AutoLISP®	code,	and
page	layout	options	for	printed	output.

Window	Attributes	Options
Environment	Options
Save	Settings	(Tools	Menu)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	

Window	Attributes	Options
	
	
	

On	the	Visual	LISP	Tools	menu,	the	Window	Attributes	submenu	includes
options	for	customizing	the	VLISP	windowing	environment,	controlling
attributes	such	as	colors,	fonts,	and	code	formatting.	The	Syntax	Coloring,
Current	to	Prototype,	and	All	to	Prototype	options	are	available	only	for	text
editor	windows.

VLISP	allows	you	to	define	prototype	configurations	for	text	editor	windows.
The	prototype	becomes	the	default	configuration	for	these	windows.	For
example,	when	you	open	a	new	file	in	the	VLISP	text	editor,	the	editor	window
assumes	the	attributes	and	properties	of	the	prototype	editor	configuration.	The
window	prototype	includes

Color	scheme

Lexical	coloring	flag

Tab	size

Left	margin	indent

Every	time	you	change	and	save	any	text	editor	window	attribute	settings,
VLISP	will	ask	you	if	the	modified	setting	should	be	used	as	a	prototype	for	the
window	type.

Syntax	Coloring
Configure	Current
Set	Current	Window	to	Prototype
Set	All	Windows	to	Prototype
Font

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Window	Attributes	Options	>	

Syntax	Coloring
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Window	Attributes	submenu,	the	Syntax
Coloring	option	determines	the	type	of	syntax	coloring	that	will	be	used	for	the
current	file	being	edited.	This	option	is	available	when	you	edit	a	file	whose	file
type	is	not	.lsp.	When	chosen,	Syntax	Coloring	displays	the	Color	Style	dialog
box,	which	provides	the	following	options:

None

No	color	coding.

AutoLISP

Use	AutoLISP	syntax	color	coding.	This	color	coding	scheme	is	used	for	all
files	of	type	.lsp.

C++

Use	C++	syntax	color	coding.	This	is	the	default	for	all	files	of	type	.cpp,
.c++,	.c,	.hpp,	.h++,	and	.h.

DCL

Use	DCL	syntax	color	coding.	This	is	the	default	for	all	files	of	type	.dcl.

SQL

Use	SQL	syntax	color	coding.	This	is	the	default	for	all	files	of	type	.sql.

If	a	file	type	does	not	have	a	default	coloring	style,	the	user	is	asked	whether	to
use	the	selected	coloring	style	for	all	files	of	the	same	type.

Note All	formatting	and	“smart”	indentation	features	require	the	AutoLISP	lexical
coloring	style.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Window	Attributes	Options	>	

Configure	Current
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Window	Attributes	submenu,	the
Configure	Current	option	allows	you	to	configure	the	attributes	of	the	current
window.	It	is	applicable	to	the	VLISP	text	editor	and	Console	windows.	The
Configure	Current	option	displays	the	Window	Attributes	dialog	box:

This	dialog	box	lets	you	customize	the	tab	width	and	left	margin	sizes,
customize	various	text	colors	defined	for	the	current	window	type,	and	control
the	lexical	coloring	for	that	window	(if	applicable).	To	select	the	color	with	the
aid	of	the	color	selection	control,	click	the	mouse	button	in	the	rectangle	that	is
painted	with	the	color	you	want	to	set.

Text	Colors

The	upper	row	of	rectangles	indicates	foreground	color;	the	lower	row
indicates	background	color.	When	you	select	a	color,	the	color	palette
changes	its	color	with	respect	to	your	choice.	Use	the	pull-down	list	to	select
the	attribute	of	the	window	whose	colors	you	want	to	change.	The	available

choices	depend	on	which	window	is	current.	The	following	are	possible
window	attributes:

:Input-Zone.	The	input	area	following	the	Console	window	prompt.

:Window-Text.	Text	displayed	in	the	window	(other	than	input	zone).

:Window-Selection.	Selected	text.

:Error-Highlight.	Error	messages	in	the	Build	Output	window.

:Console-Message.	No	effect	(reserved	for	future	use).

:BPT-Active.	Active	breakpoint.

:BPT-Disable.	Disabled	breakpoint.
The	pull-down	list	may	also	provide	options	for	changing	the	lexical	coloring
of	the	following	AutoLISP	code	components:

:LEX-SPACE.	Spaces.

:LEX-STR.	Strings.

:LEX-SYM.	Symbols.

:LEX-NUM.	Reserved	for	future	use.

:LEX-INT.	Integers.

:LEX-REAL.	Real	numbers.

:LEX-COMM.	Reserved	for	future	use.

:LEX-COMM1.	Comments	that	begin	with	one	or	more	semicolons.

:LEX-COMM2.	Inline	and	multi-line	comments	(comments	that
begin	with	;|	and	end	with	|;).

:LEX-PAREN.	Parentheses.

:LEX-SPEC.	Reserved	for	future	use.

:LEX-SPEC1.	Reserved	for	future	use.

:LEX-UNKN.	Unknown	items.

Transparent	FG

Transparent	foreground.

Transparent	BG

Transparent	background.

Lexical	Colors

If	this	option	is	selected,	VLISP	applies	the	selected	color	coding	options.	If
you	want	to	use	the	VLISP	formatter	but	do	not	want	lexical	coloring,	turn
this	option	off.

Tab	Width

Sets	tab	spacing	in	the	current	window.

Left	Margin

Sets	the	left	margin	of	the	current	window.

When	you	change	and	save	the	configuration	of	a	VLISP	editor	window,	you
will	be	asked	whether	or	not	you	want	the	configuration	to	become	the	prototype
for	all	text	editor	windows.	If	you	choose	Yes,	the	configuration	of	the	current
window	becomes	the	new	prototype	for	VLISP	text	editor	windows,	and	all	open
text	editor	windows	assume	the	attributes	of	the	prototype.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Window	Attributes	Options	>	

Set	Current	Window	to	Prototype
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Window	Attributes	submenu,	the	Set
Current	Window	to	Prototype	option	configures	the	current	active	window	with
the	attributes	of	the	prototype	window.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Window	Attributes	Options	>	

Set	All	Windows	to	Prototype
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Window	Attributes	submenu,	the	Set	All
Windows	to	Prototype	option	sets	all	open	windows	with	the	attributes	of	the
prototype.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Window	Attributes	Options	>	

Font
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Window	Attributes	submenu,	the	font
option	opens	a	standard	Windows	Font	dialog	box	where	you	can	select	the	font
to	be	used	in	VLISP	windows.

Note	that	for	code	formatting	to	work	correctly,	you	must	use	a	fixed	(non-
proportional)	font.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	

Environment	Options
	
	
	

On	the	Visual	LISP	Tools	menu,	the	Environment	Options	submenu	allows	you
to	set	session-wide	VLISP	options.	For	example,	you	can	tell	VLISP	whether	to
save	text	editor	files	at	set	intervals	automatically,	whether	to	create	automatic
backup	files,	and	how	you	want	to	treat	attempts	to	modify	protected	symbols.
Environment	Options	is	also	where	you	set	diagnostic	options,	such	as	what
statistics	to	report	during	syntax	checking,	and	what	level	of	detail	to	display
when	inspecting	drawing	objects.	You	can	also	set	formatting	options	for
AutoLISP	code,	and	page	layout	options	for	printed	output.

General	Options	Dialog	Box
Visual	LISP	Format	Options
Page	Format	Options	in	the	Page	Setup	Dialog	Box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	

General	Options	Dialog	Box
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Environment	Options	submenu,	the
General	Options	option	displays	the	General	Options	dialog	box	containing	the
General	and	Diagnostic	tabs.

General	Tab	(General	Options	Dialog	Box)
Diagnostic	Tab	(General	Options	Dialog	Box)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	General	Options	Dialog	Box	>	

General	Tab	(General	Options	Dialog	Box)
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Environment	Options	submenu,	the
General	Options	option	displays	the	General	Options	dialog	box.	In	the	General
Options	dialog	box,	on	the	General	tab,	there	are	three	groups	of	options:	Editor
Options,	Desktop,	and	SETQ	to	Protected	Symbols.

The	Editor	Options	group	contains	the	following	options:

Backup	the	File	Edited	on	First	Save

When	this	option	is	selected,	VLISP	creates	a	backup	copy	of	the	file	the	first
time	you	save	it.

Make	Backup	by	Copy,	Not	Rename

VLISP	creates	a	copy	of	the	original	file.	When	this	option	is	not	selected,	the

backup	file	is	a	renamed	version	of	the	original	file.

Group	Typing	for	Undo/Redo

VLISP	groups	keystrokes	for	the	Undo	and	Redo	Edit	commands.	If	this
option	is	not	selected,	Undo	and	Redo	proceed	one	character	at	a	time.

The	Desktop	group	contains	the	following	options:

Save	Editor	Windows	Settings

The	VLISP	text	editor	window	settings	(toolbar	placement	and
text/background	color)	will	be	saved	along	with	window	sizes,	placements,
and	editor	configurations	when	you	use	the	Save	Settings	option	on	the	Tools
menu.	When	the	Save	Editor	Windows	Setting	option	is	off,	VLISP	editor
window	settings	are	not	saved.

Autosave	Setting	on	Exit	Application

If	Save	Editor	Windows	Settings	is	turned	on,	then	when	you	exit	VLISP,	the
VLISP	text	editor	window	settings	(toolbar	placement	and	text/background
color)	are	saved	along	with	window	sizes,	placements,	and	editor
configuration.

The	SETQ	to	Protected	Symbols	group	controls	how	VLISP	responds	to
attempts	to	redefine	protected	symbols.	(See	Protected	Symbols.)	The	options
are	as	follows:

Transparent

When	this	option	is	selected,	protected	symbols	are	treated	like	any	other
symbol.

Print	Message

When	this	option	is	selected,	AutoLISP	issues	a	warning	message	when	you
modify	a	protected	symbol	but	carries	out	the	modification.

Prompt	to	Enter	Break	Loop

When	this	option	is	selected,	AutoLISP	displays	a	message	box	asking
whether	or	not	to	enter	a	break	loop	when	you	attempt	to	modify	a	protected
symbol.	This	option	is	the	default.	If	you	choose	No,	the	symbol's	value	is
modified	and	processing	continues	normally.
If	you	choose	Yes,	processing	is	interrupted	and	you	enter	a	VLISP	break

loop.	In	a	break	loop,	control	switches	to	the	VLISP	Console	window.	You
can	set	the	symbol	and	continue	processing	by	pressing	the	Continue	button
on	the	VLISP	toolbar,	or	you	can	abort	modification	by	pressing	Reset.

Error

When	this	option	is	selected,	modification	of	protected	symbols	is	prohibited.
Any	attempt	to	modify	a	protected	symbol	results	in	an	error.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	General	Options	Dialog	Box	>	

Diagnostic	Tab	(General	Options	Dialog	Box)
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Environment	Options	submenu,	the
General	Options	option	displays	the	General	Options	dialog	box.	In	the	General
Options	dialog	box,	on	the	Diagnostic	tab,	the	options	control	how	VLISP
provides	information	about	AutoLISP	syntax.

The	Diagnostic	tab's	options	are	as	follows:

Report	Statistics	During	Syntax	Checking

If	this	option	is	selected,	the	syntax	checker	and	the	file	compiler	report	the
statistics	after	checking	or	compiling	each	top-level	form	and	after	each	file.

Print	Top	Level	Results	On	Load

If	this	option	is	selected,	top-level	expressions	are	evaluated	and	printed	in

the	Console	window	when	the	expressions	are	loaded.
A	top-level	expression	is	one	that	appears	outside	any	other	expression	(for
example,	an	expression	that	appears	outside	of	defun).	For	example,	the
following	call	to	list	is	a	top-level	expression:
(list	1	2	3)

(defun	foo	(x)	x)

Loading	a	file	containing	this	code	results	in	the	following	being	printed	in
the	Console	window,	if	Print	Top	Level	Results	on	Load	is	selected:
(1	2	3)

FOO

Print	Notification	Message	After	Load

If	this	option	is	selected,	each	call	to	the	load	function	results	in	messages
printed	to	the	VLISP	Console	window.

Echo	PRINx	Output	to	ACAD

If	this	option	is	selected,	the	default	output	of	functions	print,	princ	and
prin1	is	echoed	to	the	AutoCAD	Command	window	and	the	VLISP
Console	window	instead	of	only	to	the	VLISP	Console	window.

Inspect	Drawing	Objects	Verbosely

If	this	option	is	selected,	the	elements	of	an	object	are	included	in	the	Inspect
window	for	a	drawing	database	object.	If	the	option	is	not	selected,	only	the
object	line	(containing	the	entity	name)	appears	in	drawing	object	Inspect
windows.

Do	Not	Debug	Top-Level

If	this	option	is	selected	and	Stop	Once	mode	is	set,	the	break	will	not	occur
before	evaluating	every	top-level	form	(such	as	defun)	during	the	file	load
process.

Animation	Delay

Determines	the	pause	length	between	program	steps	in	Animate	mode,
measured	in	milliseconds.	The	default	is	100.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	

Visual	LISP	Format	Options
	
	
	

On	the	Visual	LISP	Tools	menu,	on	the	Environment	Options	submenu,	the
Visual	LISP	Format	Options	option	displays	the	Format	Options	dialog	box,
which	is	used	to	set	formatting	and	indentation	options.

Additional	formatting	options	are	available	by	pressing	the	More	Options	button.
These	options	are	covered	in	Additional	Formatting	Options	in	the	Format
Options	Dialog	Box.

Pressing	Revert	to	Default	reverts	the	option	settings	to	the	previous	saved
setting,	or	to	the	system	default,	if	the	user	has	not	previously	changed	and	saved
settings.

Note	that	the	code	formatter	assumes	that	you	are	using	a	fixed	font	to	display	or
print	formatted	text.

Base	Formatting	Options	in	the	Format	Options	Dialog	Box
Additional	Formatting	Options	in	the	Format	Options	Dialog	Box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	Visual	LISP	Format	Options	>	

Base	Formatting	Options	in	the	Format	Options	Dialog	Box
	
	
	

The	following	options	are	shown	at	the	top	of	the	Format	Options	dialog	box.

Right	Text	Margin

Right	margin	for	text.	An	expression	prints	on	a	single	line	if	its	last	character
position	does	not	exceed	the	right	margin.

Narrow	Style	Indentation

Sets	the	standard	indentation	value	used	in	the	Narrow	Formatting	Style	for
function	arguments.

Maximum	Wide-Style	Car	Length

Maximum	length	for	function	expressions	in	Wide	Formatting	Style.	For
longer	expressions,	the	formatter	always	uses	Narrow	Formatting	Style.

Single-Semicolon	Comment	Indentation

Identifies	the	left	margin	alignment	for	single-semicolon	comments.

The	Closing	Paren	Style	group	of	options	controls	the	position	of	closing
parentheses	for	multi-line	formatting	styles.	The	effect	of	each	option	is
demonstrated	by	formatting	the	following	code,	where	Right	Text	Margin	is	set
to	40	and	Preserve	Existing	Line	Breaks	is	not	selected:

(cond		

	((/=	(logand	mask	flg)	0)

	(list	(list	txton)))

)

VLISP	formats	the	preceding	code	as	follows:

Close	at	the	Same	Line

(cond	((/=	(logand	mask	flg)	0)

(list	(list	txton))))

Close	at	the	New	Line	with	Inner	Indentation

(cond	((/=	(logand	mask	flg)	0)

(list	(list	txton))

)

)

Close	at	The	New	Line	with	Outer	Indentation

(cond	((/=	(logand	mask	flg)	0)

(list	(list	txton))

)

)

The	remaining	items	in	this	dialog	box	concern	tabs,	saving	the	current	setting,
and	the	setting	of	several	comment	options.

Insert	Tabs

The	VLISP	formatter	inserts	tab	characters	instead	of	multiple	space
characters	whenever	possible.

Save	Formatting	Options	in	Source	File

The	VLISP	formatter	appends	comments	containing	the	current	formatting
settings	to	the	end	of	the	text	in	the	VLISP	text	editor	window.	If	you	save
these	comments	(and	do	not	modify	them),	VLISP	applies	the	saved
formatting	options	to	the	text	editor	the	next	time	you	open	the	file.

Insert	Form-Closing	Comment

This	option	causes	VLISP	to	add	a	closing	comment	to	an	expression	when
Close	at	the	New	Line	with	Inner	Indentation	or	Close	at	the	New	Line	with
Outer	Indentation	is	selected.	The	comment	takes	the	following	form	at	the
end	of	a	multi-line	function:
;_	end	of	<function	name>

VLISP	does	not	add	the	comment	if	the	line	already	contains	a	comment.

Form-Closing	Comment	Prefix

Determines	the	text	to	be	included	when	Insert	Form-Closing	Comment	is
selected.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	Visual	LISP	Format	Options	>	

Additional	Formatting	Options	in	the	Format	Options
Dialog	Box
	
	
	

Additional	formatting	options	appear	when	you	press	the	More	Options	button	in
the	Format	Options	dialog	box.

Approximate	Line	Length

The	VLISP	formatter	checks	this	value	when	it	chooses	the	formatting	style.
If	the	number	of	characters	in	an	expression	is	greater	than	this	value,	the
formatter	prints	the	expression	as	multi-line.

Preserve	Existing	Line	Breaks

When	this	option	is	selected,	the	VLISP	formatter	inserts	new	lines	whenever
a	new	line	is	detected	in	the	text	being	formatted.	When	the	option	is	off,	the
formatter	can	squeeze	a	multiple-line	expression	to	the	plane	style,	if	it	fits
within	the	right	margin.

Note Selecting	this	option	causes	VLISP	to	ignore	other	formatting	options
when	those	options	would	result	in	a	loss	of	existing	line	breaks.	This	is	often
the	source	of	unexpected	formatting	results.

Split	Comments

When	this	option	is	selected,	the	VLISP	formatter	splits	comments	that
exceed	the	right	margin.

Casing	for	Symbols

These	options	control	whether	or	not	the	VLISP	formatter	converts	the	case
of	alphabetic	text	in	an	AutoLISP	symbol	name.	The	protected	symbols
subgroup	controls	the	case	conversion	of	protected	symbols	(that	is,	symbols
with	the	ASSIGN-PROTECT	flag	set).	The	unprotected	options	subgroup
controls	the	case	conversion	of	unprotected	AutoLISP	symbols.	The

following	options	are	available:
None:	No	case	conversion.
Downcase:	The	formatter	converts	all	characters	in	a	symbol	name	to
lowercase.
Upcase:	The	formatter	converts	all	characters	in	a	symbol	name	to	uppercase.

The	Long	List	format	style	option	controls	the	formatting	of	long	lists.	Long	lists
are	lists	of	formal	arguments	in	defun	and	lambda	expressions,	or	in	quoted
lists	of	atoms	with	more	than	five	elements.	The	style	option	applies	to	long	lists
that	do	not	fit	on	a	single	line	(that	is,	within	the	Right	Text	Margin).	Long	List
format	style	options	are	illustrated	by	formatting	the	following	statement	with
Right	Text	Margin	set	to	45:

(setq	lista	'("abc"	"def"	"ghi"	"jkl"	"mno"	"pqr"))

The	options	are	as	follows

Single-Column	Formatting

(setq	lista	'("abc"

"def"

"ghi"

"jkl"

"mno"

"pqr"

)

)

2-Column	Formatting

(setq	listall	'("abc"	"def"

"ghi"	"jkl"

"mno"	"pqr"

)

)

Multi-Column	Formatting

(setq	listall	'("abc"	"def"	"ghi"

"jkl"	"mno"	"pqr"

)

)

Fill-to-Margin	Formatting

(setq	listall	'("abc"	"def"	"ghi"	"jkl"	“mno”

"pqr"

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	

Page	Format	Options	in	the	Page	Setup	Dialog	Box
	
	
	

Page	format	options	are	shown	in	the	Page	Setup	Dialog	Box.

The	following	options	control	the	appearance	of	printed	output	from	VLISP:

Header	and	Footer

Fields	for	specifying	the	content	of	the	page	header	and	footer.	The	first	input
field	contains	the	header	line	to	print	at	the	top	of	the	page;	the	second	input
field	contains	the	footer	line	to	print	at	the	bottom	of	the	page.	Headers	and
footers	may	contain	text	strings	and	variables.	See	Justification	and
Substitution	Codes	in	the	Page	Setup	Dialog	Box	for	more	information	on
specifying	headers	and	footers.

Print	Page	Margins

Select	either	inches	or	millimeters	as	the	measuring	unit,	then	specify	Top,
Left,	Bottom,	and	Right	margins.

Font	Button

Choose	the	Font	button	to	open	the	Font	dialog	box	for	specifying	the	output
font.

Justification	and	Substitution	Codes	in	the	Page	Setup	Dialog	Box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	Environment	Options	>	Page	Format	Options	in	the	Page
Setup	Dialog	Box	>	

Justification	and	Substitution	Codes	in	the	Page	Setup
Dialog	Box
	
	
	

When	you	specify	a	header	and	footer	in	the	Page	Setup	dialog	box,	only	the
ampersand	character	(&)	is	considered	as	an	escape	character.	Both	the
ampersand	and	the	character	that	follows	are	not	copied	to	the	output	line.
Instead,	they	either	justify	the	following	text,	or	VLISP	replaces	them	with
variable	information.

In	the	Page	Setup	dialog	box,	justification	codes	indicate	how	header	text	is
justified	on	the	printed	page.	You	can	specify	any	of	the	following:

&l

Left-justified	(the	default).

&c

Centered	within	the	page	margins.

&r

Right-justified.

In	the	Page	Setup	dialog	box,	replace	codes	are	variables	for	which	VLISP
substitutes	values.	Specify	any	of	the	following:

&f

VLISP	replaces	this	code	with	the	title	of	the	active	VLISP	window.	When
invoked	from	a	VLISP	text	editor	window,	&f	is	the	name	of	the	file	being
edited,	including	directory	and	extension.

&d

Current	system	date.	To	select	a	date	format,	choose	Edit	 	Extra	Commands	
	Format	Date/Time	from	the	VLISP	menu.

&t

Current	system	time.	To	select	a	time	format,	choose	Edit	 	Extra	Commands
	Format	Date/Time	from	the	VLISP	menu.

&p

Current	page	number.

To	include	an	ampersand	character	in	your	heading	text,	enter	two	in	succession.

The	default	heading	is	set	to	the	following:

&cFile:	&f	&r&dt	

The	default	footing	is	set	as	follows:

&r&p

The	following	is	a	sample	printed	page	from	an	AutoLISP	source	file	using	the
default	page	layout	settings:

												File:	REACTORSTUFF.LSP												12/11/98

(defun	saveDrawingInfo	(calling-reactor	commandInfo	/	dwgname	filesize)

		(setq	dwgname	(cadr	commandInfo)

					filesize	(vl-file-size	dwgname)

)

		(alert	(strcat	"The	file	size	of	“	dwgname	“	is	“))

.

.

.

	(princ)

)

																																													2

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		Visual	LISP	Environment	and
Formatting	Options	>	

Save	Settings	(Tools	Menu)
	
	
	

The	Save	Settings	option	on	the	Visual	LISP	Tools	menu	saves	the	desktop
configuration	and	options	settings.	Note	that	the	desktop	configuration	for	the
child	windows	attributes	(their	presence	on	the	screen,	color,	position,	files
loaded)	is	saved	only	when	the	Save	Editor	Windows	Settings	option	in	the
General	Options	dialog	box	is	turned	on.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>	

AutoLISP	Error	Codes
	
	
	

The	error	codes	generated	by	AutoLISP	are	described.

This	appendix	lists	the	AutoLISP®	error	codes.
Error	Codes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Developer's	Guide	>	Appendixes	>		AutoLISP	Error	Codes	>	

Error	Codes
	
	
	

The	following	table	shows	the	values	of	error	codes	generated	by	AutoLISP.	The
ERRNO	system	variable	is	set	to	one	of	these	values	when	an	AutoLISP	function
call	causes	an	error	that	AutoCAD	detects.	AutoLISP	applications	can	inspect
the	current	value	of	ERRNO	with	(getvar	"errno").

The	ERRNO	system	variable	is	not	always	cleared	to	zero.	Unless	it	is	inspected
immediately	after	an	AutoLISP	function	has	reported	an	error,	the	error	that	its
value	indicates	may	be	misleading.	This	variable	is	always	cleared	when	starting
or	opening	a	drawing.

Note The	possible	values	ofERRNO,	and	their	meanings,	are	subject	to	change.

Online	program	error	codes

Value Meaning

0 No	error

1 Invalid	symbol	table	name

2 Invalid	entity	or	selection	set	name

3 Exceeded	maximum	number	of	selection
sets

4 Invalid	selection	set

5 Improper	use	of	block	definition

6 Improper	use	of	xref

7 Object	selection:	pick	failed

8 End	of	entity	file

9 End	of	block	definition	file

10 Failed	to	find	last	entity

11 Illegal	attempt	to	delete	viewport	object

12 Operation	not	allowed	during	PLINE

13 Invalid	handle

14 Handles	not	enabled

15 Invalid	arguments	in	coordinate
transform	request

16 Invalid	space	in	coordinate	transform
request

17 Invalid	use	of	deleted	entity

18 Invalid	table	name

19 Invalid	table	function	argument

20 Attempt	to	set	a	read-only	variable

21 Zero	value	not	allowed

22 Value	out	of	range

23 Complex	REGEN	in	progress

24 Attempt	to	change	entity	type

25 Bad	layer	name

26 Bad	linetype	name

27 Bad	color	name

28 Bad	text	style	name

29 Bad	shape	name

30 Bad	field	for	entity	type

31 Attempt	to	modify	deleted	entity

32 Attempt	to	modify	seqend	subentity

33 Attempt	to	change	handle

34 Attempt	to	modify	viewport	visibility

35 Entity	on	locked	layer

36 Bad	entity	type

37 Bad	polyline	entity

38 Incomplete	complex	entity	in	block

39 Invalid	block	name	field

40 Duplicate	block	flag	fields

41 Duplicate	block	name	fields

42 Bad	normal	vector

43 Missing	block	name

44 Missing	block	flags

45 Invalid	anonymous	block

46 Invalid	block	definition

47 Mandatory	field	missing

48 Unrecognized	extended	data	(XDATA)
type

49 Improper	nesting	of	list	in	XDATA

50 Improper	location	of	APPID	field

51 Exceeded	maximum	XDATA	size

52 Entity	selection:	null	response

53 Duplicate	APPID

54 Attempt	to	make	or	modify	viewport
entity

55 Attempt	to	make	or	modify	an	xref,
xdef,	or	xdep

56 ssget	filter:	unexpected	end	of	list

57 ssget	filter:	missing	test	operand

58 ssget	filter:	invalid	opcode	(-4)	string

59 ssget	filter:	improper	nesting	or	empty
conditional	clause

60 ssget	filter:	mismatched	begin	and	end
of	conditional	clause

61 ssget	filter:	wrong	number	of	arguments

in	conditional	clause	(for	NOT	or	XOR)

62 ssget	filter:	exceeded	maximum	nesting
limit

63 ssget	filter:	invalid	group	code

64 ssget	filter:	invalid	string	test

65 ssget	filter:	invalid	vector	test

66 ssget	filter:	invalid	real	test

67 ssget	filter:	invalid	integer	test

68 Digitizer	is	not	a	tablet

69 Tablet	is	not	calibrated

70 Invalid	tablet	arguments

71 ADS	error:	Unable	to	allocate	new	result
buffer

72 ADS	error:	Null	pointer	detected

73 Cannot	open	executable	file

74 Application	is	already	loaded

75 Maximum	number	of	applications
already	loaded

76 Unable	to	execute	application

77 Incompatible	version	number

78 Unable	to	unload	nested	application

79 Application	refused	to	unload

80 Application	is	not	currently	loaded

81 Not	enough	memory	to	load	application

82 ADS	error:	Invalid	transformation
matrix

83 ADS	error:	Invalid	symbol	name

84 ADS	error:	Invalid	symbol	value

85 AutoLISP/ADS	operation	prohibited
while	a	dialog	box	was	displayed

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	Introduction
	AutoLISP and Visual LISP
	What Visual LISP Offers
	Working with Visual LISP and AutoCAD
	Using Visual LISP Documentation
	Related Documents
	Using the Visual LISP Environment
	Getting Started
	Starting Visual LISP
	Exploring the Visual LISP User Interface
	Introducing the Visual LISP Text Editor
	Other Visual LISP Windows
	Touring the Visual LISP Menus
	Variable Menu Contents
	Visual LISP Menu Summary
	Understanding the Console Window
	Understanding the Visual LISP Text Editor
	Loading and Running AutoLISP Programs
	Running Selected Lines of Code
	Using Extended AutoLISP Functions
	Exiting Visual LISP
	Developing Programs with Visual LISP
	Getting Organized
	Using the Console Window
	Understanding Console Behavior
	Using the Console Window History
	Interrupting Commands and Clearing the Console Input Area
	Using the Console Window with Multiple Drawings
	Using the Console Shortcut Menu
	Logging Console Window Activity
	Using the Text Editor
	Editing a File
	Undoing Your Last Change
	Creating Automatic Backup Files
	Restoring from a Backup File
	Editing an Existing File
	Using the Text Editor Shortcut Menu
	Using Keyboard Shortcuts in the Text Editor
	Correcting Text
	Selecting Text
	Navigation Shortcuts
	Indenting Shortcuts
	Moving and Copying Text
	Searching for Text
	Choosing Search Options
	Repeating an Earlier Search
	Replacing Text
	Bookmarking Text
	Using Console and Editor Coding Aids
	Understanding Visual LISP Color Coding
	Using the Apropos Feature
	Using the Results of an Apropos Search
	Letting Visual LISP Help You Complete Words
	Completing a Word by Matching
	Completing a Word by Apropos
	Getting Help for AutoLISP Functions
	Formatting Code with Visual LISP
	Understanding Visual LISP Formatting Styles
	Plane Style
	Wide Style
	Narrow Style
	Column Style
	Applying Formatting Options
	Close Parenthesis Style
	Insert Form-Closing Comment
	Preserve Existing Line Breaks
	Split Comments
	Long List Format Style
	Setting Case for Symbols
	Applying Visual LISP Comment Styles
	Saving and Restoring Formatting Options
	Formatter Restrictions
	Formatting Shortcut Keys
	Checking for Syntax Errors
	Checking the Balance of Parentheses
	Using Color Coding to Detect Syntax Errors
	Using the Check Command to Look for Syntax Errors
	Finding the Location of the Syntax Error in Your Program
	Debugging Programs
	Introducing Visual LISP Debugging Features
	Learning by Example
	Stepping through the Debugging Example
	Setting a Breakpoint to Interrupt Program Execution
	Stepping through the Program
	Monitoring the Evaluation Results of an Expression
	Continuing Program Execution
	Running in Animate Mode
	Using the Visual LISP Debugging Features
	Starting a Debugging Session
	Understanding Break Loops
	Continuable Break Loops
	Non-Continuable Break Loops
	Using Breakpoints
	Changing Breakpoint Highlight Colors
	Disabling Breakpoints Temporarily
	Listing and Viewing the Breakpoints in Your Program
	Life Cycle of a Breakpoint
	Using Visual LISP Data Inspection Tools
	Using the Watch Window
	Using the Watch Toolbar
	Using the Watch Item Shortcut Menu
	Understanding the Trace Stack Window
	Stack Element Lists
	Viewing the Current Trace Stack
	Displaying Information on a Trace Stack Element
	Using the Frame Binding Window
	Understanding Keyword Frames
	Understanding Special Function Call Frames
	Viewing an Error Trace Stack
	Using the Symbol Service Dialog Box
	Using the Symbol Service Toolbar
	Understanding Symbol Flags
	Using Inspect Windows
	Using the Inspect Window
	Understanding Object Element List Formats
	Common Inspect Commands
	Copying Inspect Objects to the *obj* IDE Global Variable
	Handling Errors in the Inspect Command
	Closing All Inspect Windows
	Viewing AutoCAD Drawing Entities
	Viewing Entities in the Drawing Database
	Viewing Symbol Tables in the Drawing Database
	Viewing Blocks in the Drawing Database
	Viewing Selected Objects in a Drawing
	Viewing Extended Data
	Building Applications
	Compiling and Linking Programs
	Using the Compiler
	Compiling a Program from a File
	Choosing a Compiler Mode
	Identifying the Input File
	Naming an Output File
	Walking through a Compile Example
	Loading and Running Compiled Programs
	Loading Extended AutoLISP Functions
	Linking Function Calls
	Making Application Modules
	Creating a New Application
	Understanding the Output from Make Application
	Loading and Running Visual LISP Applicationsbuilding applications:making application modules:loading and running VLISP applications
	Changing Application Options
	Rebuilding an Application
	Updating an Application
	Designing for a Multiple Document Environment
	Understanding Namespaces
	Running an Application in Its Own Namespace
	Accessing External ObjectARX Functions from a Separate-Namespace VLX
	Making Functions Available to Documents
	Making Separate-Namespace Functions Available to Other VLX Applications
	Referencing Variables in Document Namespaces
	Sharing Data Between Namespaces
	Handling Errors in an MDI Environment
	Handling Errors in a VLX Application Running in Its Own Namespace
	Limitations on Using AutoLISP in an MDI Environment
	Maintaining Visual LISP Applications
	Managing Multiple LISP Files
	Understanding Visual LISP Projects
	LISP, FAS, and Other File Types
	Defining a Project
	Assigning Project Properties
	Selecting the Files to Include in a Project
	Identifying the Path Name of Project Files
	Changing the Order in Which Visual LISP Loads Files
	Choosing Compiler Build Options
	Using the Project Window to Work with Project Files
	Selecting Multiple Project Members
	Loading Project Files
	Compiling and Recompiling Project Files
	Editing Project Files
	Saving and Closing the Projectclosing:projects
	Working with Existing Projects
	Opening a Project
	Finding a String in Project Source Files
	Including a Project in a Visual LISP Application
	Optimizing Application Code
	Defining Build Options
	Choosing a Compilation Mode
	Analyzing for Optimization Correctness
	Choosing a Link Mode
	Understanding Safe Optimization
	Optimization Conditions Bypassed by Safe Optimization
	Safe Optimization Warning Messages
	Compiler Checking of Optimizing Conditions
	Working with ActiveX
	Using ActiveX Objects with AutoLISP
	Understanding the AutoCAD Object Model
	Object Properties
	Object Methods
	Collections of Objects
	Accessing AutoCAD Objects
	Using the Inspect Tool to View Object Properties
	Moving Forward from the Application Object
	Summarizing the Process
	Performance Considerations
	Using Visual LISP Functions with ActiveX Methods
	Determining the Visual LISP Function You Need
	Determining How to Call a Function
	Converting AutoLISP Data Types to ActiveX Data Types
	Working with Variants
	Working with Safearrays
	Using Safearrays with Variants
	Converting Other AutoLISP Data Types for ActiveX Methods
	Viewing and Updating Object Properties
	Reading Object Properties
	Updating Object Properties
	Determining Whether an Object Is Available for Updating
	Using ActiveX Methods That Return Values in Arguments
	Listing an Object's Properties and Methods
	Determining If a Method or Property Applies to an Object
	Working with Collection Objects
	Retrieving Member Objects in a Collection
	Releasing Objects and Freeing Memory
	Converting Object References
	Converting between Enames and VLA-objects
	Obtaining One Object Identifier from Another
	Handling Errors Returned by ActiveX Methods
	Using ActiveX to Interact with Other Applications
	Importing a Type Library
	Coding Hints for Using vlax-import-type-library
	Establishing a Connection to an Application
	Coding a Sample Application
	Using ActiveX without Importing a Type Library
	Calling an ActiveX Method with vlax-invoke-methodvlax-invoke-method functioncalling ActiveX methodsActiveX:methodsActiveX:interacting with other applications:calling ActiveX methods with vlax-invoke-method
	Obtaining an ActiveX Property with vlax-get-property
	Updating an ActiveX Property with vlax-put-property
	Advanced Topics
	Attaching Reactors to AutoCAD Drawings
	Understanding Reactor Types and Events
	Reactor Callback Events
	Defining Callback Functions
	Defining Object Reactor Callback Functions
	Creating Reactors
	Using Object Reactors
	Attaching Data to Reactor Objects
	Working with Reactors in Multiple Namespaces
	Querying, Modifying, and Removing Reactors
	Inspecting Reactors
	Querying Reactors Using Function Calls
	Modifying Reactors
	Removing Reactors
	Transient versus Persistent Reactors
	Opening a Drawing Containing Persistent Reactors
	Reactor Use Guidelines
	Using the AutoLISP Language
	AutoLISP Basics
	AutoLISP Expressions
	AutoLISP Function Syntax
	AutoLISP Data Types
	Integers
	Reals
	Strings
	Lists
	Selection Sets
	Entity Names
	VLA-objects
	File Descriptors
	Symbols and Variables
	Protected Symbols
	AutoLISP Program Files
	Formatting AutoLISP Code
	Spaces in AutoLISP Code
	Comments in AutoLISP Program Files
	Visual LISP Comment Styles
	Color Coding
	AutoLISP Variables
	Displaying the Value of a Variable
	Nil Variables
	Predefined Variables
	Number Handling
	String Handling
	Basic Output Functions
	Displaying Messages
	Exiting Quietly
	Control Characters in Strings
	Wild-Card Matching
	Equality and Conditional
	List Handling
	Point Lists
	Dotted Pairs
	Symbol and Function Handling
	Using defun to Define a Function
	Compatibility of defun with Previous Versions of AutoCAD
	C:XXX Functions
	Adding Commands
	Redefining AutoCAD Commands
	Local Variables in Functions
	Local Variables versus Global Variables
	Example Using Local Variables
	Functions with Arguments
	Special Forms
	Error Handling in AutoLISP
	Using the *error* Function
	Catching Errors and Continuing Program Execution
	Using AutoLISP to Communicate with AutoCAD
	Accessing Commands and Services
	Command Submission
	Foreign Language Support
	Pausing for User Input
	Passing Pick Points to AutoCAD Commands
	Undoing Commands Issued with the command Function
	System and Environment Variables
	Configuration Control
	Display Control
	Controlling Menus
	Control of Graphics and Text Windows
	Control of Low-Level Graphics
	Getting User Input
	The getxxx Functions
	Control of User-Input Function Conditions
	Input Options for User-Input Functions
	Keyword Options
	Arbitrary Keyboard Input
	Input Validation
	Geometric Utilities
	Object Snap
	Text Extents
	Conversions
	String Conversions
	Angular Conversion
	ASCII Code Conversion
	Unit Conversion
	Converting from Inches to Meters
	The Unit Definition File
	Coordinate System Transformations
	Point Transformations
	File Handling
	File Search
	Accessing Drawing Properties
	Accessing Help Files
	Device Access and Control
	Accessing User Input
	Calibrating Tablets
	Using AutoLISP to Manipulate AutoCAD Objects
	Selection Set Handling
	Selection Set Filter Lists
	Wild-Card Patterns in Filter Lists
	Filtering for Extended Data
	Relational Tests
	Logical Grouping of Filter Tests
	Selection Set Manipulation
	Passing Selection Sets between AutoLISP and ObjectARX Applications
	Object Handling
	Entity Name Functions
	Entity Handles and Their Uses
	Entity Context and Coordinate Transform Data
	Entity Access Functions
	Entity Data Functions
	Deleting an Entity
	Obtaining Entity Information
	Modifying an Entity
	Adding an Entity to a Drawing
	Creating Complex Entities
	Working with Blocks
	Anonymous Blocks
	Entity Data Functions and the Graphics Screen
	Old-Style Polylines and Lightweight Polylines
	Processing Curve-Fit and Spline-Fit Polylines
	Non-Graphic Object Handling
	Symbol Table Objects
	Dictionary Objects
	Extended Data - xdata
	Organization of Extended Data
	Registration of an Application
	Retrieval of Extended Data
	Attachment of Extended Data to an Entity
	Management of Extended Data Memory Use
	Handles in Extended Data
	Xrecord Objects
	Symbol Table and Dictionary Access
	Symbol Tables
	Dictionary Entries
	Accessing AutoCAD Groups
	Working with Programmable Dialog Boxes
	Designing Dialog Boxes
	Dialog Box Components
	Using DCL to Define Dialog Boxes
	The base.dcl and acad.dcl Files
	Referencing DCL Files
	DCL Syntax
	Tile Definitions
	Tile References
	Attributes and Attribute Values
	Comments in DCL Files
	Displaying Dialog Boxes with Visual LISP
	Preview Error Handling
	Semantic Auditing of DCL Files
	Adjusting the Layout of Dialog Boxes
	Distributing Tiles in a Cluster
	Adjusting the Space between Tiles
	Adjusting Space at the Right Side or Bottom
	Fixing the Spacing Around a Boxed Row or Column
	Customizing Exit Button Text
	Design Guidelines
	Aesthetics and Ergonomics
	Consistent Design and Clear Language
	User Control
	Forgiving Errors
	Providing Help
	Users with Disabilities
	Using Capitalization
	Avoiding Abbreviations
	Layout
	Size and Placement
	Disabling Tiles
	Nesting Dialog Boxes
	Closing a Dialog Box for User Selection
	Providing Defaults
	Handling Keyboard Input
	International Language Considerations
	Guidelines for Predefined Tiles and Clusters
	Buttons
	Clusters
	Edit Boxes
	Image Buttons and Image Tiles
	List Boxes
	Radio Buttons, Radio Rows, and Radio Columns
	Sliders
	Text
	Toggles
	Error Handling in Dialog Boxes
	Error Tiles
	Alert Boxes
	Managing Dialog Boxes
	Controlling Dialog Boxes with AutoLISP Programs
	Quick Overview
	Functions Restricted When a Dialog Box Is Open
	Action Expressions and Callbacks
	Action Expressions
	Callback Reasons
	Default and DCL Actions
	Handling Tiles
	Initializing Modes and Values
	Changing Modes and Values at Callback Time
	Handling Radio Clusters
	Handling Sliders
	Handling Edit Boxes
	Nesting Dialog Boxes
	Functions for Hiding Dialog Boxes
	Requesting a Password
	List Boxes and Pop-Up Lists
	List Operations
	Processing List Elements
	Image Tiles and Buttons
	Creating Images
	Handling Image Buttons
	Application-Specific Data
	DCL Error Handling
	Setting the Auditing Level to Affect Error Messages
	Dialog Box Function Summary
	Function Sequence
	The Sample Block Definition Dialog Box
	Programmable Dialog Box Reference
	Tile Attributes
	Attribute Types
	Restricted Attributes
	User-Defined Attributes
	Synopsis of Predefined Attributes
	DCL Attribute Catalog
	action
	alignment
	allow_accept
	aspect_ratio
	big_increment
	children_alignment
	children_fixed_height
	children_fixed_width
	color
	edit_limit
	edit_width
	fixed_height
	fixed_width
	fixed_width_font
	height
	initial_focus
	is_bold
	is_cancel
	is_default
	is_enabled
	is_tab_stop
	key
	label
	layout
	list
	max_value
	min_value
	mnemonic
	multiple_select
	password_char
	small_increment
	tabs
	tab_truncate
	value
	width
	Functional Synopsis of DCL Tiles
	Predefined Active Tiles
	Tile Clusters
	Decorative and Informative Tiles
	Text Clusters
	Dialog Box Exit Buttons and Error Tiles
	Restricted Tiles
	DCL Tile Catalog
	boxed_column
	boxed_radio_column
	boxed_radio_row
	boxed_row
	button
	column
	concatenation
	dialog
	edit_box
	errtile
	image
	image_button
	list_box
	ok_only
	ok_cancel
	ok_cancel_help
	ok_cancel_help_errtile
	ok_cancel_help_info
	paragraph
	popup_list
	radio_button
	radio_column
	radio_row
	row
	slider
	text
	text_part
	toggle
	spacer
	spacer_0
	spacer_1
	Programmable Dialog Box Function Synopsis
	Dialog Box Opening and Closing Functions
	Tile- and Attribute-Handling Functions
	List Box and Pop-Up List-Handling Functions
	Image Tile-Handling Functions
	Application-Specific Data-Handling Function
	Appendixes
	AutoLISP Function Synopsis
	Category Summary
	Basic Functions
	Application-Handling Functions
	Arithmetic Functions
	Equality and Conditional Functions
	Error-Handling Functions
	Function-Handling Functions
	List Manipulation Functions
	String-Handling Functions
	Symbol-Handling Functions
	Utility Functions
	Conversion Functions
	Device Access Functions
	Display Control Functions
	File-Handling Functions
	Geometric Functions
	Query and Command Functions
	User Input Functions
	Selection Set, Object, and Symbol Table Functions
	Extended Data-Handling Functions
	Object-Handling Functions
	Selection Set Manipulation Functions
	Symbol Table and Dictionary-Handling Functions
	Memory Management Functions
	Visual LISP Extensions to AutoLISP
	ActiveX Collection Manipulation Functions
	ActiveX Data Conversion Functions
	ActiveX Method Invocation Functions
	ActiveX Object-Handling Functions
	ActiveX Property-Handling Functions
	Curve Measurement FunctionsAutoLISP:curve measurement functionsAutoLISP:Visual LISP extended functions:curve measurement functions
	Dictionary Functions
	Functions for Handling Drawing Objects
	Reactor Functions
	VLX Namespace Functions
	Namespace Communication Functions
	Windows Registry Functions
	Visual LISP Environment and Formatting Options
	Window Attributes Options
	Syntax Coloring
	Configure Current
	Set Current Window to Prototype
	Set All Windows to Prototype
	Font
	Environment Options
	General Options Dialog Box
	General Tab (General Options Dialog Box)
	Diagnostic Tab (General Options Dialog Box)
	Visual LISP Format Options
	Base Formatting Options in the Format Options Dialog Box
	Additional Formatting Options in the Format Options Dialog Box
	Page Format Options in the Page Setup Dialog Box
	Justification and Substitution Codes in the Page Setup Dialog Box
	Save Settings (Tools Menu)
	AutoLISP Error Codes
	Error Codes

