
Asmc	Macro	Assembler	Reference

Asmc	Macro	Assembler	Reference

This	document	lists	some	of	the	differences	between	Asmc,	JWasm,	and	Masm.

In	This	Section

Asmc	Command-Line	Option
Describes	the	Asmc	command-line	option.

Asmc	Error	Messages
Describes	Asmc	fatal	and	nonfatal	error	messages	and	warnings.

Asmc	Extensions
Provides	links	to	topics	discussing	Masm	versus	Asmc.

Directives	Reference
Provides	links	to	topics	discussing	the	use	of	directives	in	Asmc.

Symbols	Reference
Provides	links	to	topics	discussing	the	use	of	symbols	in	Asmc.

Change	Log	|	Forum

https://github.com/nidud/asmc/raw/master/source/asmc/history.txt
http://masm32.com/board/index.php?board=55.0

Asmc	Macro	Assembler	Reference

Asmc	Command-Line	Reference

Assembles	and	links	one	or	more	assembly-language	source	files.	The
command-line	options	are	case	sensitive.

ASMC	[[options]]	filename	[[[[options]]	filename]]

options

The	options	listed	in	the	following	table.

/[0|1|..|10][p]

Set	CPU:	0=8086	(default),	1=80186,	2=80286,
3=80386,	4=80486,
5=Pentium,6=PPro,7=P2,8=P3,9=P4,10=x86-64.	[p]
allows	privileged	instructions.

/assert Generate	.assert(code).	Same	as	.assert:on.
/bin Generate	plain	binary	file.

/Cs Push	user	registers	before	stack-frame	is	created	in	a
proc.

/coff Generate	COFF	format	object	file.
/Cp Preserves	case	of	all	user	identifiers.
/Cu Maps	all	identifiers	to	upper	case	(default).

/cui Link	switch	used	with	/pe	--	subsystem:console
(default).

/Cx Preserves	case	in	public	and	extern	symbols.

/Dsymbol[[=value]]
Defines	a	text	macro	with	the	given	name.	If	value	is
missing,	it	is	blank.	Multiple	tokens	separated	by
spaces	must	be	enclosed	in	quotation	marks.

/enumber Set	error	limit	number.
/elf Generate	32-bit	ELF	object	file.
/elf64 Generate	64-bit	ELF	object	file.

/EP Generates	a	preprocessed	source	listing	(sent	to
STDOUT).	See	/Sf.

/eq Don't	display	error	messages.
/Fd[file] Write	import	definition	file.

/Fifile Force	file	to	be	included.
/Fl[[filename]] Generates	an	assembled	code	listing.	See	/Sf.
/Fofilename Names	an	object	file.
/Fwfilename Set	errors	file	name.

/FPi Generates	emulator	fix-ups	for	floating-point
arithmetic	(mixed	language	only).

/FPi87 80x87	instructions	(default).
/fpc Disallow	floating-point	instructions.
/fpn Set	FPU:	0=8087,	2=80287,	3=80387.

/Gc
Specifies	use	of	FORTRAN-	or	Pascal-style	function
calling	and	naming	conventions.	Same	as	OPTION
LANGUAGE:PASCAL.

/Gd Specifies	use	of	C-style	function	calling	and	naming
conventions.	Same	as	OPTION	LANGUAGE:C.

/gui Link	switch	used	with	/pe	--	subsystem:windows.

/Gv Specifies	use	of	VECTORCALL-style	function	calling
and	naming	conventions.

/Gz
Specifies	use	of	STDCALL-style	function	calling	and
naming	conventions.	Same	as	OPTION
LANGUAGE:STDCALL.

/homeparams
Copy	Register	Parameters	to	Stack.	Forces	parameters
passed	in	registers	to	be	written	to	their	locations	on
the	stack	upon	function	entry.

/Ipathname Sets	path	for	include	file.
/m[t|s|c|m|l|h|f] Set	memory	model.
/mz Generate	DOS	MZ	binary	file.
/ncname Set	class	name	of	code	segment.
/ndname Set	name	of	data	segment.
/nmname Set	name	of	module.
/ntname Set	name	of	text	segment.
/nologo Suppresses	messages	for	successful	assembly.

/omf Generates	object	module	file	format	(OMF)	type	of
object	module.

/pe Generate	PE	binary	file,	32/64-bit.

/pf Preserve	Flags	(Epilogue/Invoke).
/q Suppress	copyright	message.
/r Recurse	subdirectories	with	use	of	wild	args.
/Sa Turns	on	listing	of	all	available	information.

/safeseh
Marks	the	object	as	either	containing	no	exception
handlers	or	containing	exception	handlers	that	are	all
declared	with	SAFESEH.

/Sf Adds	first-pass	listing	to	listing	file.
/Sg Turns	on	listing	of	assembly-generated	code.
/Sn Turns	off	symbol	table	when	producing	a	listing.
/Sp[n] Set	segment	alignment.

/swc Specifies	use	of	C-style	.SWITCH	convention
(default).

/swn No	jump-table	creation	in	.SWITCH.

/swp Specifies	use	of	Pascal-style	.SWITCH	convention
(auto	break).

/swr Allows	use	of	register	[R|E]AX	in	.SWITCH	code.

/swt Allows	use	of	jump-table	creation	in	.SWITCH	code
(default).

/Sx Turns	on	false	conditionals	in	listing.
/w Same	as	/W0.
/Wlevel Sets	the	warning	level,	where	level	=	0,	1,	2,	or	3.
/win64 Generate	64-bit	COFF	object.

/ws[CodePage] Store	quoted	strings	as	Unicode.	See	OPTION
WSTRING.

/WX Returns	an	error	code	if	warnings	are	generated.
/X Ignore	INCLUDE	environment	path.
/Xc Disable	Asmc	extensions
/zcw No	decoration	for	C	symbols.
/Zd Generates	line-number	information	in	object	file.
/Zf Make	all	symbols	public.
/zf[0|1] Set	FASTCALL	type:	MS/OW.
/Zg Generate	code	to	match	Masm.
/Zi[0|1|2|3] Add	symbolic	debug	info.

/zlc No	OMF	records	of	data	in	code.
/zld No	OMF	records	of	far	call.

/zlf Suppress	items	in	COFF:	No	file	entry.
/zlp Suppress	items	in	COFF:	No	static	procs.
/zls Suppress	items	in	COFF:	No	section	aux	entry.
/Zm Enable	MASM	5.10	compatibility.
/Zne Disable	non	Masm	extensions.
/Zp[[alignment]] Packs	structures	on	the	specified	byte	boundary.
/Zs Perform	syntax	check	only.
/zt<0|1|2> Set	STDCALL	decoration.
/Zv8 Enable	Masm	v8+	PROC	visibility.
/zze No	export	symbol	decoration.
/zzs Store	name	of	start	address.

filename

The	name	of	the	file.

Environment	Variables

INCLUDE Specifies	search	path	for	include	files.

ASMC Specifies	default	command-line
options.

TEMP Specifies	path	for	temporary	files.

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

Asmc	Error	Messages

The	error	messages	generated	by	Asmc	components	fall	into	three	categories:

Fatal	errors	(A1000-A1901):These	indicate	a	severe	problem	that	prevents
the	utility	from	completing	its	normal	process.
Nonfatal	errors	(A2000-A3021):
The	utility	may	complete	its	process.	If	it	does,	its	result	is	not	likely	to	be
the	one	you	want.
Warnings	(A4000-A8020):
These	messages	indicate	conditions	that	may	prevent	you	from	getting	the
results	you	want.

All	error	messages	take	the	following	form:

Utility:	Filename	(Line)	:	[Error_type}	(Code):	Message_text

Utility
The	program	that	sent	the	error	message.

Filename
The	file	that	contains	the	error-generating	condition.

Line
The	approximate	line	where	the	error	condition	exists.

Error_type
Fatal	Error,	Error,	or	Warning.

Code
The	unique	5-	or	6-digit	error	code.

Message_text
A	short	and	general	description	of	the	error	condition.

See	Also

Asmc	Macro	Assembler	Reference

Asmc	Macro	Assembler	Reference

Asmc	Extensions

The	main	goal	with	Asmc	is	an	attempt	to	provide	more	readability	to	the
assembly	language	based	on	Masm	syntax	but	at	the	same	time	keep
compatibility	with	existing	source	code.	In	order	to	achieve	this	some	of	the
main	core	of	the	assembler	has	to	be	rewritten	and	the	HLL	section	enhanced	as
discussed	below.

In	This	Section

Parsing	of	labels
Provides	links	to	topics	discussing	parsing	of	labels.

Expansion	of	macros
Provides	links	to	topics	discussing	expansion	of	macros.

The	invoke	directive
Provides	links	to	topics	discussing	the	invoke	directive.

The	HLL	section
Provides	links	to	topics	discussing	the	HLL	section.

Handling	of	strings
Provides	links	to	topics	discussing	handling	of	strings.

Enhanced	vector	extension
Provides	links	to	topics	discussing	Enhanced	vector	extension.

See	Also

Asmc	Macro	Assembler	Reference

Asmc	Macro	Assembler	Reference

Directives	Reference

OPTION	optionlist

Enables	and	disables	features	of	the	assembler.	Added	options	by	ASMC
include:

OPTION	ASMC
OPTION	CSTACK
OPTION	SWITCH
OPTION	LOOPALIGN
OPTION	CASEALIGN
OPTION	WSTRING

Conditional	Control	Flow

.IF

.WHILE

.REPEAT

.UNTILCXZ

.BREAK

.CONTINUE

.FOR

.SWITCH

.CASE

.ENDC

.GOTOSW

.DEFAULT

.ENDSW

.COMDEF

.CLASSDEF

.ENDS

.ASSERT
Flag	conditions
Signed	compare
Return	code

See	Also

Symbols	Reference

Asmc	Macro	Assembler	Reference

Symbols	Reference

Date	and	Time	Information

@Date

Macro	Functions

@CStr

See	Also

Directives	Reference

0.	Contents
1.	About
2.	Commandline	Options
Options	-0,	-1,	-2,	...,	-10
Option	-bin
Option	-coff
Option	-djgpp
Option	-e
Option	-elf
Option	-elf64
Option	-eq
Option	-Fd
Option	-FPi
Option	-Fw
Options	-Gc,	-Gd,	-Gr,	-Gz
Option	-m
Option	-mz
Option	-nc
Options	-nd,	-nt
Option	-nm
Option	-pe
Option	-win64
Option	-zc
Option	-Zd
Option	-zf
Option	-Zg
Option	-Zi
Options	-zlc	and	-zld
Options	-zlf,	-zlp	and	zls
Option	-Zm
Option	-Zne
Option	-zt
Option	-Zv8
Option	-zze
Option	-zzs

3.	Syntax	Extensions
3.1	Directive	INCBIN
3.2	FASTCALL	Register	Calling	Convention
3.3	IDs	enclosed	in	Back	Quotes
3.4	Floating-Point	Immediates	in	Instructions
3.5	Directive	OPTION	FIELDALIGN
3.6	Directive	OPTION	PROCALIGN
3.7	Directive	OPTION	MZ
3.8	Directive	OPTION	ELF
3.9	Directive	OPTION	WIN64
3.10	Directive	OPTION	FRAME
3.11	Directive	OPTION	RENAMEKEYWORD
3.12	Directive	OPTION	DLLIMPORT
3.13	Directive	OPTION	CODEVIEW
3.14	Directive	OPTION	STACKBASE
3.15	Directives	PUSHCONTEXT	/	POPCONTEXT	ALIGNMENT
3.16	Directives	.X64	and	.X64p
3.17	Attribute	LABEL	for	first	Macro	Parameter
3.18	Member	Argument	for	IF[N]DEF	and	.ERR[N]DEF
3.19	Initialization	of	Data	Items	of	Type	MMWORD/XMMWORD
3.20	Optional	Array	Size	for	LABEL	Directive
3.21	Optional	Name	Argument	for	Simplified	Segment	Directives
3.22	Segment	Attribute	COMDAT
3.23	Attribute	VARARGML	for	last	Macro	Parameter
3.24	Miscellaneous
3.24.1	Numeric	constant	__JWASM__
3.24.2	Operating	System	Argument	for	.MODEL
3.24.3	Accepted	Parameters	for	IF[N]DEF	Directive
3.24.4	Visibility	of	Procedures
3.24.5	Non-RIP-Relative	Addressing	in	64-Bit
4.	Instruction	Sets
5.	Code	Generation	Differences
5.1	Forward	References	in	Macro	Expressions
6.	Output	Formats
6.1	OMF	Output	Format
6.2	COFF	Output	Format
6.3	Win64	Output	Format
6.4	Binary	Output	Format
6.5	PE	Output	Format

7.	Masm	Bugs	fixed	in	JWasm
8.	Optional	Features
9.	Known	Bugs	and	missing	Features
10.	License
Appendix	A.	Reserved	Words
Appendix	B.	Source	Samples
Appendix	C.	Errors	and	Warnings
Appendix	D.	Differences	between	Masm	6	and	Masm	8
Appendix	E.	Restrictions	of	precommpiled	16-bit	Binary	JWASMR.EXE
Appendix	F.	Additional	Features	of	JWasm's	Debug	Version

1.	About
This	document	lists	the	differences	between	JWasm	and	Masm,	as	far	as	the	user
interface	is	concerned.

When	Masm	is	mentioned,	then	usually	Masm	v8.00	is	meant,	unless	stated
otherwise.	Masm	v8.00	also	was	the	first	Masm	version	supporting	64-bit
(ML64.EXE).

The	Masm	documentation	itself	can	be	found	on	numerous	places	in	the	web,	in
plain	text,	HTML,	PDF	and	Windows	Help	format.	However,	it's	usually	just	the
documentation	that	came	whith	Masm	v6.1	-	hence	a	bit	outdated	nowadays	(the
changes	from	Masm	v6	to	Masm	v8	are	listed	in	Appendix	D).

2.	Commandline	Options
Entering	'JWasm	-?'	or	'JWasm	-h'	will	make	JWasm	display	the	options	it
understands.	A	lot	of	them	exist	in	both	Masm	and	JWasm,	but	some	are	valid
for	JWasm	only;	OTOH,	a	few	options	are	missing	in	JWasm.

Options	are	usually	entered	via	the	command	line.	Additionally,	when	starting,
JWasm	will	search	for	environment	variable	JWASM	and	handle	it	similar	to
the	way	Masm	handles	variable	ML.	Hence	it	is	also	possible	to	enter	options
via	this	method.

The	options	specific	to	JWasm	-	and	also	the	options	which	are	handled
somewhat	differently	by	JWasm	compared	to	Masm	-	will	be	handled	in	the
following	chapters.

One	major	difference	should	be	mentioned	here:	JWasm	does	never	launch	a
linker	on	its	own	(which	Masm	does	unless	option	-c	is	given).	This	makes	a
few	Masm	options	useless	for	JWasm,	and	hence	they	are	not	implemented;	see
Chapter	Known	Bugs	and	missing	Features	for	details.

Options	-0,	-1,	-2,	...,	-10:	Select	Cpu
Option	[0|1|..|10]	selects	cpu/instruction	set.	Most	values	correspond	to	cpu
directives:

0 .8086
1 .186
2 .286
3 .386
4 .486
5 .586
6 .686
7 .686	and	.MMX	(P2)
8 .686,	.MMX	and	SSE	instructions	(P3)
9 .686,	.MMX,	SSE	and	SSE2	instructions	(P4)
10 .x64	(x86-64	cpu)

Option	-bin:	Select	Output	Format
Binary
Option	-bin	selects	output	format	BINary.	The	output	module's	default	file
extension	will	be	changed	from	.OBJ	to	.BIN.

For	more	information,	see	Binary	Output	Format.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-coff:	Select	Output	Format
COFF
Option	-coff	selects	output	format	COFF.	The	most	common	use	for	-coff	is	to
produce	modules	for	32-bit	Windows.	However,	it's	not	mandatory	that	the
output	will	be	32-bit	with	-coff;	depending	on	what	cpu	is	selected	when	the
.MODEL	directive	will	be	parsed,	the	output	may	be	32-	or	64-bit.

For	more	information	about	COFF,	see	COFF	Output	Format.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-djgpp:	Select	Output	Format
for	DJGPP	(optional)
Option	-djgpp	selects	Djgpp's	variant	of	COFF	as	output	format.	Since	it	is
rarely	used	nowadays,	this	option	isn't	activated	in	the	precompiled	binaries.	See
Optional	Features	how	to	enable	it.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-e:	Set	error	limit
Allows	to	set	the	number	of	errors	after	which	the	assembly	process	is	aborted.
The	default	value	is	50.

Option	-elf:	Select	32-bit	Output
Format	ELF
Option	-elf	selects	output	format	ELF.	JWasm	will	produce	an	object	module	in
32-bit	Elf	format.

Use	OPTION	ELF	to	set	values	in	the	ELF	header.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-elf64:	Select	64-bit	Output
Format	ELF
Option	-elf64	selects	output	format	ELF64.	JWasm	will	produce	an	object
module	in	64-bit	Elf	format.	Additionally,	this	option	will	set	cpu	to	x86-64	and
model	to	FLAT.

Use	OPTION	ELF	to	set	values	in	the	ELF	header.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-eq:	Suppress	Error	Messages
on	Screen
Option	-eq	will	suppress	displaying	error	messages	on	the	screen.	They	are	still
written	into	an	error	file.

Option	-Fd:	Write	Import	Definitions
Option	-Fd	makes	JWasm	write	import	definitions	in	a	format	understood	by
Open	Watcom's	Wlink	and	JWlink.	Such	definitions	will	tell	the	linker	how	to
resolve	the	external	reference;	no	import	library	is	needed.	This	option	is	only
useful	in	conjunction	with	OPTION	DLLIMPORT	(chapter	3.12).	Syntax	is:

-Fd[=file_name]

If	the	optional	<file_name>	argument	is	given,	the	import	definitions	will	be
written	into	a	file	of	this	name.	This	is	the	only	way	for	Open	Watcom's	Wlink	to
pass	the	information.

If	JWlink	is	used,	the	<file_name>	argument	may	be	omitted.	Then	JWasm	will
write	the	import	definitions	directly	into	the	object	module's	linker	directive
section	(section	".drectve").	This	works	for	output	formats	COFF	and	ELF	only.
See	sample	Win32_7	how	to	use	JWasm	and	JWlink	to	create	a	Windows	binary
without	import	libs.

Option	-FPi:	Activate	Floating-Point
Emulation
Option	-FPi	activates	"inline	FP	instructions	with	emulation".	This	will	make
JWasm	create	fixups	for	floating-point	instructions	if	code	is	16bit.	If	supported
by	the	linker	or	the	OS,	the	FP	instructions	can	then	be	replaced	by	calls	to	an	FP
emulator	if	no	coprocessor	exists.

Option	-Fw:	Set	Error	File	Name
Option	-Fw	will	set	the	file	name	for	warning	and	error	messages.	As	default,
these	messages	are	written	to	a	file	with	a	name	equal	to	the	assembly	source,
but	with	extension	.ERR.	Syntax	is:

-Fw	file_name

Options	-Gc,	-Gd,	-Gr,	-Gz:	Set
Default	Calling	Convention
The	default	calling	convention	set	by	these	options	are:

-Gc Pascal
-Gd C(decl)
-Gr Fastcall
-Gz Stdcall

Option	-m:	Select	Memory	Model
Option	-m	generates	a	line	containing	a	.MODEL	directive	to	select	a	memory
model.	Syntax	is:

-m[t|s|m|c|l|h|f]

where	the	value	behind	'm'	means:

t	=	tiny
s	=	small
m	=	medium
c	=	compact
l	=	large
h	=	huge
f	=	flat

This	option	is	ignored	if	a	64-bit	output	format	(-win64	or	-elf64)	is	active.

Option	-mz:	Select	Output	Format
MZ
Option	-mz	selects	output	format	MZ.	This	will	write	a	binary	in	DOS	MZ
format.	The	module's	default	file	extension	will	be	changed	from	.OBJ	to	.EXE.
All	symbols	in	the	module	must	resolve	internally,	no	externals	are	allowed.
Some	values	in	the	"MZ"	header	can	be	adjusted	by	directive	OPTION	MZ	(see
below).

As	in	all	binary	formats,	the	listing	will	contain	a	binary	map;	see	Binary	Output
Format	for	more	details.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-nc:	Set	Code	Class	Name
Option	-nc	sets	the	code	segment's	class	name	if	simplified	segment	directives
are	used	(default:CODE).	Syntax	is:

-nc=name

where	<name>	will	be	the	code	segment's	class	name.

Options	-nd	and	-nt:	Set	DATA	and
CODE	Segment	Names
Options	-nd	and	-nt	will	set	the	name	of	the	data/code	segments	if	simplified
segment	directives	are	used.	Syntax	is:

-nt=name_of_code
-nd=name_of_data

The	default	names	are	_TEXT	for	code	and	_DATA	for	data.

Option	-nm:	Set	Module	Name
Option	-nm	sets	the	module	name.	Syntax	is:

-nm=module_name

The	default	value	for	<module_name>	is	the	name	of	the	source	file	without
extension.

Option	-pe:	Create	a	PE	Binary
Option	-pe	will	make	JWasm	create	a	binary	in	Windows	PE	format	(32-	and	64-
bit).	The	output	module's	default	file	extension	will	be	changed	from	.OBJ	to
.EXE.

For	more	details	about	the	PE	format	see	PE	Output	Format.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-win64:	Select	Output	Format
Win64
Option	-win64	makes	JWasm	produce	an	object	module	in	PE32+	format,	the
64-bit	format	used	for	Win64	binaries.

Option	-win64	will	also	set	cpu	to	x86-64,	model	to	FLAT	and	default	calling
convention	to	FASTCALL.	This	is	to	make	JWasm	compatible	with	Masm64
(ML64.EXE).

With	OPTION	WIN64,	parameters	specific	to	Win64	may	be	set.

For	more	information	about	Win64,	see	Win64	Output	Format.

Chapter	Output	Formats	lists	all	available	output	formats.

Option	-zc:	Set	Name	Decoration	for
C
This	option	sets	the	name	decoration	for	the	C	(aka	CDECL)	calling
convention.	There	are	two	variants:

-zc[m|w]

-zcm	is	the	default,	C	names	are	decorated	with	an	underscore	prefix.	This	is
also	the	way	Masm	does	it.	The	other	variant,	-zcw,	omits	the	prefix	altogether.
This	is	the	usual	"decoration"	in	Unix/Linux.

Option	-Zd:	Emit	Line	Number
Debugging	Info
Option	-Zd	generates	line	number	debug	information	for	OMF	and	COFF	output
format.	For	other	formats,	this	option	is	ignored.	Line	number	information
allows	a	debugger	to	trace	the	binary	on	the	source	code	level.	Debuggers	that
have	been	verified	to	work	with	this	option:

MS	CodeView OMF 16-bit,	Windows	and	DOS
CDB,	NTSD COFF 32-	and	64-bit,	Windows
WinDbg COFF 32-	and	64-bit,	Windows
MS	Visual	Studio	2008 COFF 32-bit[1],	Windows
MS	Visual	Studio	2010 COFF 32-bit[1],	Windows
OW	WD/WDW OMF/COFF 16-	and	32-bit,	Windows	and	DOS
PellesC	IDE COFF 32-bit[1],	Windows
Borland	TD/TDW/TD32 OMF 16-	and	32-bit,	Windows	and	DOS
[1]:	the	64-bit	version	of	this	software	should	also	be	able	to	debug	64-bit
debuggees.

Option	-zf:	Select	FASTCALL	Type
Option	-zf	selects	the	FASTCALL	calling	convention	type	for	16-	and	32-bit
code.	Syntax	is:

-zf[0|1]

The	default	value	0	is	MS	VC	style,	while	value	1	activates	the	Open	Watcom
fastcall	type.

Option	-Zg:	Masm-compatible	Code
Generation
Option	-Zg	makes	JWasm	try	an	exact	copy	of	Masm's	code	generation,	which
results	in	the	following	changes:

the	default	prologue	for	procedures	will	use
		add	[e]sp,	-	localsize
instead	of
		sub	[e]sp,	localsize.
the	default	epilogue	for	procedures	will	almost	always	prefer	to	generate
opcode	LEAVE	if	possible.
expressions
		<reg>	==	0	and	<reg>	!=	0
will	generate	code
		or	<reg>,<reg>
instead	of
		cmp	<reg>,0.
if	invoke	must	extend	an	argument's	size	from	word	to	dword,	register	eax
remains	unchanged.
the	segment	value	of	FAR	externals	will	always	be	assumed	unknown,	no
matter	whether	the	external	is	defined	inside	or	outside	of	a	segment	block.
Thus	those	labels	are	excluded	from	"far	call	optimization".
if	indirect	addressing	uses	2	(32-	or	64-bit)	registers	and	no	scaling	factor	is
used	and	the	second	register	isn't	ESP/RSP,	then	the	registers	are	swapped:
the	second	becomes	base	and	the	first	becomes	index	(the	registers	in	an
expression	are	counted	from	left	to	right).	[since	v2.10,	this	is	standard
behavior].

Option	-Zi:	Emit	Symbolic
Debugging	Info
Option	-Zi	generates	symbolic	debugging	info	in	CodeView	V4	style	for	OMF
and	COFF	output	format.	For	other	formats,	this	option	is	accepted,	but	ignored.
Note	that	-Zi	will	always	enable	-Zd	(line	number	information).	Debuggers
which	have	been	verified	to	work	with	this	option:

MS	CodeView 16-bit,	Windows	and	DOS
MS	CDB	or	NTSD 32-	and	64-bit,	Windows
MS	WinDbg 32-	and	64-bit,	Windows
MS	Visual	Studio	2008 32-bit[1],	Windows
MS	Visual	Studio	2010 32-bit[1],	Windows
Open	Watcom	WD/WDW 16-	and	32-bit,	Windows	and	DOS
Pelles	C	IDE 32-bit[1],	Windows
[1]:	the	64-bit	version	of	this	software	should	also	be	able	to	debug	64-bit
debuggees.

Usually	both	the	assembler	and	the	linker	must	be	told	that	symbolic	debugging
information	is	to	be	generated	(with	MS	link,	the	linker	option	is	/DEBUG).

The	-Zi	option	accepts	an	optional	numeric	argument	to	control	the	volume	of
information	that	is	emitted.	The	values	currently	accepted	are:

0 Just	global	symbols	will	be	written.

1
Global	&	local	symbols	will	be	written.	No	user-defined	types	are	included.
Usually	this	reduction	does	no	harm,	but	may	decrease	linking	time	-	if	lots	of
modules	are	to	be	linked,	the	effect	may	be	quite	significant.

2 This	is	the	default.	Global	&	local	symbols	and	user-defined	types	are	written.
3 Additionally	to	2,	symbolic	constants	(equates)	will	be	written.

Also	see	OPTION	CODEVIEW	for	additional	switches	to	control	symbolic
debugging	output.

Options	-zlc	and	-zld:	Control
Content	of	OMF	Output	Module
Options	-zlc	and	-zld	do	reduce	size	of	the	OMF	output	module.	They	might	be
useful	if	lots	of	-	small	-	modules	are	to	be	assembled	and	put	into	a	static
library.	Also,	the	OMF	coment	records	written	if	-zlc	or	-zld	is	NOT	set	may	not
be	accepted	by	all	linkers.

Option	-zlc:
suppresses	writing	OMF	coment	records	about	data	in	Code	segments.
These	records	may	help	a	disassembler	to	produce	nicer	listings.

Option	-zld:
suppresses	writing	an	OMF	coment	record	for	each	Code	segment	telling
the	linker	that	far	calls	to	targets	in	the	same	segments	should	be	optimized.
This	is	more	or	less	a	feature	for	16-bit	code	only.

Options	-zlf,	-zlp	and	-zls:	Control
Content	of	COFF	Output	Module
Options	-zlf,	-zlp	and	-zls	do	reduce	size	of	the	COFF	output	module.	They
might	be	useful	if	lots	of	-	small	-	modules	are	to	be	assembled	and	put	into	a
static	library.

Option Meaning

-zlf
suppresses	the	@file	entry	in	the	COFF	symbol	table.	This	entry	is
usually	used	for	debugging	purposes	only	and	hence	a	-	pretty	small	-
amount	of	space	can	be	saved.

-zlp

suppresses	static	(=private)	procedures	to	be	included	into	the	COFF
symbol	table	-	as	long	as	they	aren't	referenced	absolutely.	Such
procedures	aren't	needed	for	the	linking	process.	However,	since	the
linker	has	no	knowledge	of	them	then,	they	will	also	disappear	from	the
linker-generated	map-file.

-zls
suppresses	the	auxiliary	entries	for	sections	in	the	COFF	symbol	table.
These	entries	may	not	be	needed	in	all	cases	and	thus	a	little	space	is
saved.

Option	-Zm:	Enable	Masm	v5
Compatibility
Option	-Zm	(or	setting	OPTION	M510)	will	do:

-	set	OPTION	OLDSTRUCTS
-	set	OPTION	DOTNAME
-	set	OPTION	SETIF2:TRUE
-	set	OPTION	OFFSET:SEGMENT	(if	no	model	is	set)
-	set	OPTION	NOSCOPED	(if	no	model	with	language	specifier	is	set)
-	allow	to	define	data	items	behind	code	labels
-	allow	"invalid"	use	of	REP/REPE/REPNE	instruction	prefixes
-	change	precedence	of	[]	and	()	operator	from	1	to	9.	Hence	expression
-5[bx]	is	parsed	as	(-5)[bx],	while	without	-Zm	it	is	parsed	as	-(5[bx]),
which	generates	an	error.

Other	Masm	v5.1	compatibility	options	aren't	implemented	yet.

Option	-Zne:	Disable	JWasm	Syntax
Extensions
Option	-Zne	will	disable	syntax	extensions	which	aren't	supported	by	Masm.
Currently	these	are:

-	directive	INCBIN
-	calling	convention	FASTCALL
-	IDs	enclosed	in	backquotes
-	floating-point	immediate	operands	in	instructions
-	directive	OPTION	FIELDALIGN
-	directive	OPTION	PROCALIGN
-	directive	OPTION	MZ
-	directive	OPTION	ELF
-	directive	OPTION	WIN64
-	directive	OPTION	FRAME
-	directive	OPTION	RENAMEKEYWORD
-	directive	OPTION	DLLIMPORT
-	directive	OPTION	CODEVIEW
-	directive	OPTION	STACKBASE
-	directives	PUSHCONTEXT	/	POPCONTEXT	ALIGNMENT
-	attribute	LABEL	for	first	macro	parameter
-	member	argument	for	IF[N]DEF	and	.ERR[N]DEF	directives
-	integer	initializer	values	for	items	of	type	[X]MMWORD
-	optional	name	argument	for	.DATA,	.DATA?	and	.CONST	directives
-	forward	references	in	arguments	for	INVOKEd	procedures
-	overrides	inside	square	brackets	for	base/index	registers
-	Optional	Array	Size	for	LABEL	Directive

Some	directives	aren't	touched	by	this	option,	although	Masm	won't	accept
them:

.X64	and	.X64p
INVOKE	in	64-bit	mode
runtime	conditional	directives	.IF,	.REPEAT,	.WHILE	in	64-bit	mode

If	these	directives	are	to	be	disabled,	it	must	be	done	with	OPTION
NOKEYWORD.

Option	-zt:	Set	Name	Decoration	for
STDCALL
Option	-zt	will	fine-tune	name	decoration	for	STDCALL	symbols.	Syntax	is:

-zt[0|1|2]

where	value	0	will	disable	name	decoration,	value	1	will	just	add	an	underscore
prefix	and	value	2	-	which	is	the	default	-	will	emit	full	STDCALL	name
decoration	as	expected	by	most	linkers.

Option	-zt0	will	make	object	modules	compatible	to	ALINK	+	Win32.lib.	It	may
also	ease	adding	assembly	modules	to	Borland's	C++Builder	or	Delphi	projects.

Option	-Zv8:	Enable	Masm	v8
Procedure	Visibility
Option	-Zv8	changes	handling	of	procedure	visibility	to	the	way	done	by	Masm
v8+.	See	Visibility	of	Procedures	for	details.

Option	-zze:	Disable	Export	Name
Decoration
Option	-zze	suppresses	name	decoration	for	procedures	with	the	EXPORT
attribute	(exported	name	only).

Option	-zzs:	Avoid	Wlink	COFF
Incompatibility
Option	-zzs	is	kind	of	a	workaround	for	a	Wlink	incompatibility.	It's	useful	to	be
set	if	1)	the	source	module	has	a	starting	address,	2)	output	format	is	COFF
AND	3)	Wlink	is	to	be	used	as	linker.

3.	Syntax	Extensions
This	chapter	describes	the	syntax	extensions	of	JWasm	compared	to	Masm	v8.

3.1	Directive	INCBIN
This	directive	allows	to	include	the	contents	of	a	file	into	the	object	module.
Syntax	is

INCBIN	filename	[,	starting	offset[,	max	size]]

<filename>	should	be	enclosed	in	<>	or	double	quotes.

3.2	FASTCALL	Register	Calling
Convention
In	16-	and	32-bit	mode,	one	may	use	either	the	Microsoft	or	the	Watcom
register	calling	convention.	It's	selected	by	option	-zf.

The	Microsoft	FASTCALL	convention	uses	registers	AX,	DX	and	BX	in	16-bit
for	the	first	3	parameters,	and	registers	ECX	and	EDX	in	32-bit	for	the	first	2
parameters	which	are	small	enough	to	fit	into	a	register.

The	Open	Watcom	fastcall	convention	uses	up	to	four	registers	(E/AX,	E/DX,
E/BX,	E/CX).

In	64-bit	mode,	FASTCALL	means	the	standard	Windows	64	ABI	if	output
format	is	not	ELF.	For	-elf64,	there	is	no	FASTCALL	support	implemented	yet.

To	make	FASTCALL	the	default	calling	convention,	there	are	3	ways:

Commandline	options	-Gr	(or	-win64)
Second	argument	of	the	.MODEL	directive:	.MODEL	FLAT,	FASTCALL
Directive	OPTION	LANGUAGE:	FASTCALL

3.3	IDs	enclosed	in	Back	Quotes
IDs	can	be	enclosed	in	back	quotes	(`)	and	thus	they	can	contain	characters	not
allowed	in	"normal"	IDs.	However,	there	is	at	least	one	case	where	IDs	in	back
quotes	won't	be	recognized:	if	the	expansion	operator	(%)	is	located	at	position	0
in	a	line.

Example	using	back	quotes:

Module	1:

				`functionname.with.dots`	PROC	C	PUBLIC	a1:dword

Module	2:

				`functionname.with.dots`	PROTO	C	:dword

				.code

				INVOKE	`functionname.with.dots`,	1

Since	IDs	in	back	quotes	are	not	100%	compatible	with	"normal"	IDs,	it	might
be	considered	to	use	the	ALIAS	directive	instead.	Be	aware	that,	since	the	alias
handling	is	a	linker	task,	it	is	necessary	to	define	both	names,	the	alias	name	and
the	target	name,	as	public.

3.4	Floating-Point	Immediates	in
Instructions
Floating-point	immediate	values	are	accepted	as	instruction	operands.	As
default,	the	type	is	a	REAL4,	which	has	a	magnitude	of	32	bits:

	

								mov	eax,	1.0

With	type	coercion,	it's	also	possible	to	define	a	64-bit	"double",	although	it's
probably	useful	in	64-bit	code	only:

	

								mov	rax,	real8	ptr	1.0

Additionally,	operators	LOW32	and	HIGH32	accept	a	floating-point	constant	as
argument.	In	this	case,	the	constant	is	assumed	to	have	format	REAL8.	Thus	it's
possible	to	pass	a	double	constant	directly	as	a	procedure	argument	in	32-bit
code:

	

							push	HIGH32	1.0

							push	LOW32	1.0

							call	WorkWithReal8Value

3.5	Directive	OPTION	FIELDALIGN
OPTION	FIELDALIGN	sets	the	default	value	for	structure	alignment.	The
default	value	is	1	or	the	value	set	by	cmdline	switch	-Zp.	Syntax	is:

OPTION	FIELDALIGN:	[1|2|4|8|16|32]

The	current	default	value	can	be	saved/restored	with	directives
PUSHCONTEXT	/	POPCONTEXT	ALIGNMENT,

3.6	Directive	OPTION	PROCALIGN
With	OPTION	PROCALIGN	parameter	it's	possible	to	automatically	align
procedures.	Syntax	is:

OPTION	PROCALIGN:	[1|2|4|8|16|32]

The	default	value	is	1.	The	current	value	can	be	saved/restored	with	directives
PUSHCONTEXT	/	POPCONTEXT	ALIGNMENT,

Example:

				.386

				.model	flat,	stdcall

				option	PROCALIGN:16

				.code

proc1	PROC

				ret

proc1	endp

proc2	PROC

				ret

proc2	endp

				end

The	listing	shows	that	start	address	of	proc2	is	aligned	to	16	(=10h):

00000000																								proc1	PROC

00000000																												ret

00000000		C3																*			retn

00000001																								proc1	endp

00000010																								proc2	PROC

00000010																												ret

00000010		C3																*			retn

00000011																								proc2	endp

Note:	to	ensure	that	the	procedures	are	aligned	in	the	final	binary	as	it	is
supposed	by	the	OPTION	PROCALIGN	value,	the	alignment	of	the	current	code

segment	must	be	at	least	the	value	of	OPTION	PROCALIGN.

3.7	Directive	OPTION	MZ
Directive	OPTION	MZ	allows	to	fine-tune	the	values	written	to	the	MZ	header
if	output	format	MZ	(see	-mz	cmdline	option)	is	selected.	For	other	output
formats,	this	option	has	no	effect.	The	syntax	for	the	directive	is:

OPTION	MZ:[start_fixups][:header_align][:heap_min][:heap_max]

The	parameters	are:

start_fixups offset	within	the	header	where	segment	fixups	will	start.	The	size
of	the	header	will	always	be	at	least	this	value,	even	if	there	are	no
fixups	at	all.	Default	-	and	minimum	-	value	is	1Eh.

header_align alignment	of	the	header	(including	segment	fixups).	Value	must	be
a	power	of	2,	10h	is	the	default	and	minimum.

heap_min the	additional	space	(in	paragraphs)	which	is	needed	by	the	binary
to	run.	Default	is	the	total	of	the	sizes	of	the	uninitialized	BSS	and
STACK	segments.

heap_max space	(in	paragraphs)	which	the	binary	would	like	to	have.
Default	is	FFFFh.

3.8	Directive	OPTION	ELF
Directive	OPTION	ELF	allows	to	fine-tune	the	values	written	to	the	ELF	header
if	output	format	ELF	(see	-elf	or	-elf64)	is	selected.	For	other	output	formats,
this	option	has	no	effect.	The	syntax	for	the	directive	is:

OPTION	ELF:osabi

The	only	argument	<osabi>	will	be	copied	to	the	ELF	header	field	EI_OSABI.
It's	a	numeric	constant,	and	according	to	the	elf	specs	some	valid	values	are:

0 ELFOSABI_NONE unspecified
1 ELFOSABI_HPUX HP-UX
2 ELFOSABI_NETBSD NetBSD
3 ELFOSABI_LINUX Linux,	default
6 ELFOSABI_SOLARIS Sun	Solaris
7 ELFOSABI_AIX IBM	AIX
9 ELFOSABI_FREEBSD FreeBSD
12 ELFOSABI_OPENBSD OpenBSD

3.9	Directive	OPTION	WIN64
Directive	OPTION	WIN64	allows	to	set	parameters	for	the	Win64	output	format
if	this	format	(see	-win64	cmdline	option)	is	selected.	For	other	output	formats,
this	option	has	no	effect.	The	syntax	for	the	directive	is:

OPTION	WIN64:	switches

accepted	values	for	switches	are:

Store	Register	Arguments	[bit	0]:
-	0:	the	"home	locations"	(also	sometimes	called	"shadow	space")	of	the
first	4	register	parameters	are	uninitialized.	This	is	the	default	setting.
-	1:	register	contents	of	the	PROC's	first	4	parameters	(RCX,	RDX,	R8	and
R9)	will	be	copied	to	the	"home	locations"	within	a	PROC's	prologue.

INVOKE	Stack	Space	Reservation	[bit	1]:
-	0:	for	each	INVOKE	the	stack	is	adjusted	to	reserve	space	for	the
parameters	required	for	the	call.	After	the	call,	the	space	is	released	again.
This	is	the	default	setting.
-	1:	the	maximum	stack	space	required	by	all	INVOKEs	inside	a	procedure
is	computed	by	the	assembler	and	reserved	once	on	the	procedure's	entry.
It's	released	when	the	procedure	is	exited.	If	INVOKEs	are	to	be	used
outside	of	procedures,	the	stack	space	has	to	be	reserved	manually!
Note:	an	assembly	time	variable,	@ReservedStack,	is	created	internally
when	this	option	is	set.	It	will	reflect	the	value	computed	by	the	assembler.
It	should	also	be	mentioned	that	when	this	option	is	on,	and	a	procedure
contains	no	INVOKEs	at	all,	then	nevertheless	the	minimal	amount	of	4*8
bytes	is	reserved	on	the	stack.
Warning:	You	should	have	understood	exactly	what	this	option	does
BEFORE	you're	using	it.	Using	PUSH/POP	instruction	pairs	to	"save"
values	across	an	INVOKE	is	VERBOTEN	if	this	option	is	on.

16-byte	Alignment	for	Local	Stack	Variables	[bit	2]:
0:	standard	8-byte	alignment	for	local	variables.
1:	16-byte	alignment	for	local	variables.	This	setting	is	useful	if	you	want	to
load	or	store	XMM	registers	with	instructions	that	expect	aligned	memory

references	(i.e.	MOVAPS).	Note	that	variables	with	size	<	16	are	not
affected.

3.10	Directive	OPTION	FRAME
This	option	affects	64-bit	only.	It	allows	to	make	JWasm	automatically	generate
prologues	and	epilogues	for	procedures	with	the	FRAME	attribute.	Thus	the
code	complies	to	the	rules	of	Win64	SEH	(Structured	Exception	Handling).
Syntax	is

OPTION	FRAME:<AUTO	|	NOAUTO>

AUTO	will	enable	this	feature,	NOAUTO	(which	is	default)	disables	it.

The	unwind	information	which	is	generated	is	"complete",	that	is,	it	contains	the
".endprologue"	pseudo-op	already.	To	allow	to	save	all	non-volatile	registers	in
the	prologue,	the	"USES"	phrase	is	more	capable	in	this	mode	and	will	accept
XMM	registers	to	be	saved	and	restored.

3.11	Directive	OPTION
RENAMEKEYWORD
This	option	allows	to	rename	a	keyword,	so	it	can	be	used	under	a	different
name.	Syntax:

OPTION	RENAMEKEYWORD:<current_name>=new_name

current_name	is	the	current	name	of	the	keyword	and	must	be	enclosed	in	angle
brackets.	new_name	must	be	a	valid	identifier.	If	a	keyword	is	to	be	renamed,	it
should	be	done	at	the	beginning	of	the	source,	and	a	keyword	shouldn't	be
renamed	multiple	times.	Since	v2.11,	a	keyword	may	be	renamed	temporarily
and	multiple	times.

3.12	Directive	OPTION
DLLIMPORT
a)	Using	OPTION	DLLIMPORT

This	option	makes	the	assembler	assume	that	all	PROTOs	that	follow	this
directive	represent	functions	located	in	a	dll.	Syntax:

OPTION	DLLIMPORT:<dll_name>	|	NONE

<dll_name>	must	be	enclosed	in	angle	brackets.	Argument	NONE	will	switch
back	to	the	default	mode.

b)	Code	Generation	Effects

The	effects	of	setting	this	options	are	subtle	and	useful	only	for	MS	Windows
applications:	if	the	function	described	by	the	prototype	is	called	via	INVOKE,
slightly	more	efficient	code	than	normal	is	generated,	because	the	function's
address	in	the	IAT	is	used.	Example:

INVOKE	GetModuleHandle,	NULL

code	generation	with	OPTION	DLLIMPORT:

	

								push	NULL

								call	DWORD	PTR	[_imp__GetModuleHandle@4]

code	generation	without	OPTION	DLLIMPORT:

	

								push	NULL

								call	_GetModuleHandle@4

								...

				_GetModuleHandle@4:

								jmp	DWORD	PTR	[_imp__GetModuleHandle@4]		;stub	added	by	the	linker

c)	OPTION	DLLIMPORT	in	Conjunction	with	-Fd	Switch

Optionally,	by	using	cmdline	option	-Fd,	JWasm	will	write	the	import
information	received	through	OPTION	DLLIMPORT	lines	to	either	a	file	or
directly	into	the	object	module	(COFF	and	ELF	only).	Example:

	

								.386

								.model	flat,stdcall

								option	dllimport:<kernel32>

				GetModuleHandleA	proto	:dword

				ExitProcess	proto	:dword

								option	dllimport:none

								.code

								invoke	GetModuleHandleA,	0

								invoke	ExitProcess,	0

								end

JWasm	-coff	-Fd=lnk.rsp	sample.asm

After	the	assembly	step,	file	lnk.rsp	will	contain:

import	'_ExitProcess@4'	kernel32.ExitProcess
import	'_GetModuleHandleA@4'	kernel32.GetModuleHandleA

Both	Open	Watcom's	Wlink	and	JWlink	will	be	able	to	directly	use	this
information	and	hence,	as	a	result,	no	further	Windows	import	libraries	are
needed	in	the	link	step:

Wlink	format	windows	pe	file	sample.obj	@lnk.rsp

JWlink	may	even	go	one	step	further	-	it's	able	to	read	import	definitions
contained	in	a	COFF	or	ELF	module's	linker	directive	section	(named	".drectve"
).	Therefore	one	can	omit	the	filename	argument	for	-Fd.	Sample	Win32_7
demonstrates	the	usage.

d)	OPTION	DLLIMPORT	in	Conjunction	with	-pe	Switch

If	output	format	PE	is	selected,	using	OPTION	DLLIMPORT	is	the	only	way	to
resolve	external	references;	see	PE	Output	Format	for	more	information.

3.13	Directive	OPTION	CODEVIEW
The	OPTION	CODEVIEW	directive	allows	to	fine-tune	the	generation	of
symbolic	debugging	information.	It	has	no	effect	at	all	if	commandline	option	-
Zi	isn't	set.	Syntax:

OPTION	CODEVIEW:switches

There	is	currently	only	one	switch	:

[bit	0]:	If	1,	create	symbols	with	indices	S_[L|G]THREAD32	instead	of
S_[L|G]DATA32	for	data	items	that	are	stored	in	segments	with	class	'TLS'.
This	allows	the	debugger	to	display	the	correct	value	of	static	TLS	(Thread
Local	Storage)	variables.	Example:

				option	codeview:1

_TLS	segment	dword	alias(".tls")	public	'TLS'

tvar	DD	-1						;codeview	symbol	tvar	will	be	S_LTHREAD32

_TLS	ends

3.13	Directive	OPTION
STACKBASE
The	OPTION	STACKBASE	directive	allows	to	change	the	way	how	stack
variables	-	defined	by	the	PROC	and	LOCAL	directives	-	are	accessed.	Syntax
is:

OPTION	STACKBASE:register

register	will	be	the	index	register	that	is	used	for	accessing	the	stack	variables.
The	"natural"	register	for	accessing	these	variables	is	the	[E|R]BP	register	(the
"frame	pointer").	With	OPTION	STACKBASE	one	might	set	any	index	register
as	frame	pointer.

OPTION	STACKBASE	will	additionally	define	assembly-time	variable
@StackBase.	The	assembler	will	add	the	value	of	this	variable	to	the	effective
address	of	stack	variables.	@StackBase	can	be	modified	just	like	any
userdefined	variable	-	however,	it	is	initialized	to	zero	by	the	PROC	directive.
The	purpose	for	the	introduction	of	@StackBase	is	to	make	it	feasible	to	use	the
"volatile"	stack-pointer	(ESP/RSP)	register	as	base	for	accessing	stack	variables.

Finally,	OPTION	STACKBASE	will	define	another	assembly-time	variable:
@ProcStatus.	This	variable	is	read-only	and	will	allow	to	query	information
about	the	current	procedure's	status.	The	information	that	is	returned	by
@ProcStatus	is:

Bit Meaning	if	bit	is	1
0 inside	prologue	of	current	procedure.
1 inside	epilogue	of	current	procedure.
2 "frame-pointer	omission"	is	on	for	procedure
7 prologue	of	current	procedure	isn't	created	yet

3.15	Directives	PUSHCONTEXT	/
POPCONTEXT	ALIGNMENT
The	PUSHCONTEXT	/	POPCONTEXT	directives	understand	new	qualifier
ALIGNMENT,	which	saves/restores	current	values	of	FIELDALIGN	and
PROCALIGN	options.

Note:	in	JWasm	v2.00-2.09,	PUSHCONTEXT	/	POPCONTEXT	ALL	did
include	these	alignment	values.	Since	JWasm	v2.10,	this	is	no	longer	true;	this
behavior	is	more	Masm-compatible.

3.16	Directives	.X64	and	.X64p
These	directives	select	a	64-bit	(x86-64)	cpu.	In	contrast	to	.X64,	.X64p	will
allow	to	use	privileged	instructions.

The	.X64	directive	isn't	needed	usually,	because	for	output	formats	WIN64	(see	-
win64)	and	ELF64	(see	-elf64),	.X64	is	the	default.

The	.X64p	directive	is	useful	for	mixed-model	binaries	or	system	software	(see
example	DOS64).

When	the	cpu	is	set	to	64-bit,	the	SEGMENT	directive	accepts	a	new	'size'
value:	USE64.	It	tells	the	assembler	that	this	segment's	offset	is	64-bit	wide	and
uses	64-bit	instructions.

The	SYSCALL	calling	convention	is	renamed	to	SYSCALL_	when	64-bit	is	on,
because	there	exists	a	SYSCALL	instruction	mnemonic	in	this	mode.

3.17	Attribute	LABEL	for	first	Macro
Parameter
The	LABEL	attribute	for	the	first	macro	parameter	allows	access	to	a	label
which	is	assigned	to	the	macro.	Syntax	is:

<macro_name>	MACRO	<param_name>:LABEL	[,<param_name>[,	...]]

The	LABEL	attribute	is	accepted	for	the	first	parameter	only.	A	macro	with	such
a	parameter	can	be	invoked	in	the	following	way:

<label>	<macro_name>	[<argument>,	...]

Example:

	

				foo	macro	lbl:LABEL,	first,	second

				lbl		db	first

									dw	second

				endm

				.data

				data1	foo	1,1000

				data2	foo	2,2000

Note	that	a	code	label	(that	is,	a	label	followed	by	a	colon	or	double-colon)	is
parsed	BEFORE	the	macro	is	evaluated,	hence	such	a	label	will	have	been
defined	already	when	the	macro	"runs".

3.18	Member	Argument	for
IF[N]DEF	and	.ERR[N]DEF
Directives
Since	v2.07,	JWasm's	implementation	of	IF[N]DEF	-	and	.ERR[N]DEF	-	will
additionally	accept	a	struct	member	as	argument.	This	syntax	requires	a	fully
qualified	name:

	

						IFDEF	<struct_name>.<member_name>

3.19	Initialization	of	Data	Items	with
Type	MMWORD/XMMWORD
For	data	items	of	types	MMWORD	or	XMMWORD,	JWasm	will	accept	integer
values	for	initialization:

	

				vmm1		MMWORD		1122334455667788h

				vxmm1	XMMWORD	112233445566778899AABBCCDDEEFFh

Masm	will	accept	just	floating-point	initializers	for	data	items	of	type
[X]MMWORD.	It's	even	worse,	since	floating-point	initializers	are	silently
ignored	for	data	items	with	sizes	!=	4,	8	and	10;	since	XMMWORD	has	size	16,
it's	impossible	to	initialize	such	an	item	directly.	JWasm	copies	this	Masm
behavior,	but	to	allow	to	initialize	a	XMMWORD	with	a	floating-point	value,
one	may	use	type	coercion:

	

				vxmm1	XMMWORD	real4	ptr	1.0			;bytes	4-15	will	be	0

				vxmm2	XMMWORD	real8	ptr	1.0			;bytes	8-15	will	be	0

Variants	that	work	in	both	JWasm	and	Masm,	and	also	allow	to	initialize	the	full
XMMWORD	are:

	

				vxmm1	LABEL	XMMWORD

						real4	1.0,	2.0,	3.0,	4.0

				vxmm2	LABEL	XMMWORD

						real8	1.0,	2.0

3.20	Optional	Array	Size	for	LABEL
Directive
The	LABEL	directive	accepts	an	optional	array	size	argument:

myarray	LABEL	word	:	10	;	myarray	is	assumed	to	be	an	array	of	10	words

				dw	1,2,3,4,5,6,7,8,9,10

Please	note	that	the	array	size	argument	defines	the	array's	number	of	elements,
not	the	array's	size	in	bytes.

This	extension	allows	to	define	large	initialized	arrays,	not	restricted	by	line	size
limits.	The	SIZEOF	and	LENGTHOF	operators	will	return	the	same	values	as	if
the	array	had	been	defined	via	the	DUP	operator.

The	array	size	argument	may	be	a	forward	reference:

myarray	LABEL	word	:	size_myarray	/	sizeof	word

				dw	1,2,3,4,5,6,7,8,9,10

size_myarray	equ	$	-	myarray

3.21	Optional	Name	Argument	for
Simplified	Segment	Directives
Masm	allows	an	optional	argument	for	simplified	segment	directives	.CODE,
.FARDATA	and	.FARDATA?.	This	is	to	set	the	name	of	the	segment	that	is	to
be	opened.	JWasm	will	also	accept	the	name	argument	for	those	directives;
additionally,	it's	accepted	for	.DATA,	.DATA?	and	.CONST	directives.

3.22	Segment	Attribute	COMDAT
With	segment	attribute	COMDAT	one	may	define	COMDAT	sections.	A
COMDAT	section	is	a	section	that	can	be	defined	by	more	than	one	object	file.	A
COMDAT	section	must	contain	at	least	one	symbol,	the	COMDAT	symbol.	The
syntax	to	define	the	section	is:

	

				segname	SEGMENT	COMDAT(selection	[,	assoc_segment])	...

The	selection	argument	tells	the	linker	what	to	do	if	multiple	definitions	of	a
COMDAT	symbol	are	found;	the	accepted	values	are:
Value Description

1 no
duplicates

If	the	symbol	is	already	defined,	the	linker	issues	a	"multiply
defined	symbol"	error.

2 any Any	section	that	defines	the	same	COMDAT	symbol	can	be
linked;	the	rest	are	removed.

3 same	size
The	linker	chooses	an	arbitrary	section	among	the	definitions
for	this	symbol.	If	all	definitions	are	not	the	same	size,	a
"multiply	defined	symbol"	error	is	issued.

4 exact
match

The	linker	chooses	an	arbitrary	section	among	the	definitions
for	this	symbol.	If	all	definitions	do	not	match	exactly,	a
"multiply	defined	symbol"	error	is	issued.

5 associative The	section	is	linked	if	a	certain	other	COMDAT	section	(see
the	assoc_segment	in	the	syntax	description)	is	linked.

6 largest
The	linker	chooses	the	largest	definition	from	among	all	of
the	definitions	for	this	symbol.	If	multiple	definitions	have
this	size,	the	choice	between	them	is	arbitrary.

Currently	support	for	COMDAT	is	restricted	to	COFF.

JWasm	won't	do	anything	special	with	COMDAT	sections;	in	future	releases	this
may	change:	cmdline	options	similar	to	the	Microsoft	VC	compiler	options	-Gf
or	-Gy	may	be	added.

To	create	an	object	module	that	places	each	function	in	its	own	COMDAT

section	(as	it	is	done	by	MS	VC	if	the	-Gy	option	is	given),	it	is	recommended
to	use	COMDAT	in	conjunction	with	ALIAS:

	

				_TEXT_proc1	segment	flat	comdat(1)	alias(".text")

				proc1	proc	c

								...

				proc1	endp

				_TEXT1_proc1	ends

				_TEXT_proc2	segment	flat	comdat(1)	alias(".text")

				proc2	proc	c	private

								...

				proc2	endp

				_TEXT2_proc2	ends

				_TEXT_proc3	segment	flat	comdat(1)	alias(".text")

				proc3	proc	c

								...

				proc3	endp

				_TEXT_proc3	ends

3.23	Attribute	VARARGML	for	last
Macro	Parameter
VARARGML	has	mostly	the	same	effects	as	attribute	VARARG;	the	difference
is	that	VARARGML	will	make	the	assembler	concat	lines	if	the	last	character	on
the	line	is	a	comma.

3.24	Miscellaneous
3.24.1	Numeric	constant	__JWASM__
3.24.2	Operating	System	Argument	for	.MODEL
3.24.3	Accepted	Parameters	for	IF[N]DEF	Directive
3.24.4	Visibility	of	Procedures
3.24.5	Non-RIP-Relative	Addressing	in	64-Bit

3.24.1	Numeric	constant	__JWASM__
__JWASM__	is	a	predefined	symbol,	its	value	is	the	current	JWasm	version	*
100,	that	is,	for	v1.9	the	value	is	190.	The	predefined	text	equate	@Version	won't
contain	JWasm's	version,	for	compatibility	reasons	it	has	value	<800>	(since
v2.06,	previously	the	value	was	<615>).

3.24.2	Operating	System	Argument
for	.MODEL
The	.MODEL	directive	has	an	optional	"operating	system"	argument.	Masm
accepts	value	OS_DOS	only,	JWasm	accepts	values	OS_DOS	and	OS_OS2.
This	setting	will	affect	the	generated	code	of	directives	.STARTUP	and	.EXIT
for	16-bit	memory	models.

3.24.3	Accepted	Parameters	for
IF[N]DEF	Directive
Masm's	IF[N]DEF	directive	accepts	user-defined	symbols	and	registers,	but	fails
for	instructions,	directives	and	other	reserved	words.	JWasm's	IF[N}DEF
implementation	accepts	those	symbols	as	well.	OTOH,	JWasm	is	a	bit	more
picky	and	will	display	a	warning	if	more	than	one	item	is	found	behind	the
directive	-	Masm	just	takes	the	first	and	silently	skips	the	rest.

Also	see	Member	Argument	for	IF[N]DEF	and	.ERR[N]DEF	Directives.

3.24.4	Visibility	of	Procedures
When	a	PROTO	or	EXTERNDEF	directive	for	a	symbol	is	located	in	a	module
before	a	matching	PROC	directive,	the	visibility	of	this	Procedure	("public"	vs
"private",	or	"external"	vs.	"static")	is	handled	differently	in	Masm	v6	or	7	and
Masm	v8	or	newer:

Since	Masm	v8,	a	PROTO	or	EXTERNDEF	for	a	symbol	which	is	later	defined
as	a	PROC	will	make	the	procedure	public,	no	matter	what	a	possible	visibility
attribute	of	the	PROC	itself	-	or	the	default	one	set	with	OPTION	PROC	-	is
telling.

OTOH,	with	Masm	v6/7,	both	the	visibility	attribute	of	the	PROC	directive	and
the	current	default	setting	of	OPTION	PROC	will	affect	the	symbol's	visibility.

																Masm6	Masm8	JWasm	JWasm+Zv8

						On,E,P												x													x

						On,E,Pn											x													x

						On,E,Pp					x					x						x						x

						Op,E,P						x					x						x						x

						Op,E,Pn					x					x													x

						Op,E,Pp					x					x						x						x

						On	=	OPTION	PROC:PRIVATE

						Op	=	OPTION	PROC:PUBLIC

						E		=	PROTO	or	EXTERNDEF	before	PROC

						P		=	PROC	without	visibility	attribute

						Pn	=	PROC	with	PRIVATE	visibility	attribute

						Pp	=	PROC	with	PUBLIC	visibility	attribute

						x		=	procedure	will	be	public

As	default,	JWasm	more	or	less	copies	the	Masm	v6/7	behavior.	The	difference
is	that	an	explicite	visibility	attribute	behind	PROC	has	the	highest	priority	for
JWasm.	However,	since	v2.04,	there's	an	additional	cmdline	option	-Zv8	which
will	make	JWasm	behave	like	Masm	v8+.

It	should	be	noted	that	without	a	PROTO/EXTERNDEF	before	PROC,	there	are
no	differences	between	Masm	v6,	v8	and	JWasm,	and	the	-Zv8	switch	also	has
no	effect	then.

3.24.5	Non-RIP-Relative	Addressing
in	64-Bit
In	64-bit	a	RIP-relative	addressing	mode	was	introduced.	This	mode	is	used	as
default	for	direct	addressing,	because	it	allows	to	access	all	code	or	data	labels
with	a	32-bit	displacement.	However,	for	constant	address	locations	this	mode	is
not	appropriate	and	won't	be	used:

	

					mov	al,	gs:[1000h]

					mov	al,	gs:[100000000h]

If	a	constant	address	is	to	be	accessed	without	segment	prefixes	-	note	that	in	64-
bit,	only	segment	registers	FS	and	GS	can	be	used	as	segment	prefixes	-	one	has
to	use	the	FLAT	keyword	in	JWasm:

	

					mov	al,	FLAT:[1000h]											;invalid	for	Masm

					mov	al,	FLAT:[100000000h]						;invalid	for	Masm

This	syntax	differs	from	Masm's,	because	Masm	won't	accept	FLAT.	In	64-bit
Masm,	the	syntax	for	accessing	constant	addresses	is	instead:

	

					mov	al,	[1000h]															;invalid	for	JWasm

					mov	al,	[100000000h]										;invalid	for	JWasm

The	code	that	will	be	generated	won't	show	any	differences:

		

0000000000000000:	65	8A	04	25	10	00	00	00														mov	al,byte	ptr	gs:[00000010h]

0000000000000008:	65	A0	00	00	00	00	01	00	00	00								mov	al,byte	ptr	gs:[0000000100000000h]

0000000000000012:	8A	04	25	10	00	00	00																	mov	al,byte	ptr	ds:[00000010h]

0000000000000019:	A0	00	00	00	00	01	00	00	00											mov	al,byte	ptr	ds:[0000000100000000h]

4.	Instruction	Sets
JWasm	supports	all	instructions	sets	supported	by	Masm	v8.	These	are

-	the	instructions	implemented	by	8086,	80186,	80286,	80386,	80486.
-	the	Pentium	and	Pentium	Pro	instructions.
-	the	MMX	and	K3D	instruction	set	extensions.
-	the	SSE,	SSE2,	SSE3	and	SSSE3	instruction	set	extensions.
-	the	Intel	VMX	instruction	set	extension	(since	JWasm	v2.09).
-	the	x86-64	64-bit	instruction	set	(implemented	by	ML64).

Additionally	supported	are

-	SSE4.1	and	SSE4.2	instruction	sets	(since	JWasm	v2.01).
-	AVX	instruction	set	(since	JWasm	v2.06).

With	Masm,	SSE4.1	and	SSE4.2	require	Masm	v9;	AVX	requires	Masm	v10.

5.	Code	Generation	Differences
JWasm	might	generate	slightly	different	code	than	Masm	on	some	occasions.
Commandline	option	-Zg	should	eliminate	most	of	these	differences.	However,
some	differences	are	due	to	fixed	Masm	bugs	(see	below),	in	which	case	option	-
Zg	won't	have	any	effect.

For	a	few	instructions,	the	encoding	differs	between	Masm	versions.

Example:

				cmp	al,dl

is	encoded	38	D0	in	Masm	v6,	but	3A	C2	in	Masm	v8.	In	such	cases,	JWasm	will
prefer	to	copy	the	encoding	of	Masm	v8.

5.1	Forward	References	in	Macro
Expressions
Like	Masm,	JWasm	usually	evaluates	expressions	in	preprocessor	directives
during	the	first	pass	only.	However,	due	to	different	jump	optimization	strategies
of	Masm	and	JWasm,	the	results	may	differ.	This	is	very	unlikely	to	impose	a
problem,	but	it	is	mentioned	here	for	completeness.	An	example	(found	in
README.TXT	of	Masm	v6.14):

	

						Label1:

											JMP	Label2

						Label2:

						REPEAT	Label2	-	Label1

											INC	AX

						ENDM

Masm	will	-	incorrectly	-	repeat	the	loop	10	times,	although	the	result	of
expression	Label2	-	Label1	is	2	only.	OTOH,	JWasm	will	repeat	the	loop	2
times	only,	because	it's	using	an	"optimistic"	strategy	concerning	forward
references.

6.	Output	Formats
The	format	of	the	assembler's	output	is	selected	by	commandline	options.	These
are:

-omf
Intel's	"relocatable	Object	Module	Format",	including	32-bit	MS
extensions.
It's	the	default.

-coff (MS)	COFF	object	module	format,	supports	flat	memory	models	only.
It's	usually	used	for	32-bit	Windows	modules.

-elf 32-Bit	ELF	("Executable	and	Linkable	Format")	object	modules.
-elf64 64-bit	ELF	object	modules.
-
win64

64-bit	format	for	Win64	object	modules.	COFF	variant	with	64-bit
extensions.

-djgpp COFF	variant	used	by	DJGPP.	Not	active	in	precompiled	binaries.
-bin raw	binary	format.
-mz DOS	MZ	binary	format.
-pe 32-	and	64-bit	PE	binaries.
The	formats	selected	by	-bin,	-mz	and	-pe	are	binary	formats,	hence	the	output
is	not	supposed	to	be	fed	to	a	linker.

6.1	OMF	Output	Format
The	OMF	format	fully	supports	the	segmented	architecture	of	the	x86	cpu.	The
specification	has	been	extended	around	1990	to	support	32-bit,	including	the
FLAT	memory	model.	However,	since	it's	a	bit	old	now,	there's	no	support	of
some	of	the	new	relocations	introduced	for	64-bit.

OMF	won't	support	the	IMAGEREL	and	SECTIONREL	operators.
JWasm	currently	won't	emit	OMF	LIDATA	records	(unlike	Masm).	This
means	that	if	the	assembly	source	contains	lots	of	arrays	defined	with	DUP,
the	object	module	might	become	significantly	larger	than	a	similiar	object
module	written	by	Masm.
JWasm	emits	a	few	COMENT	records	that	Masm	won't.	These	are
remnants	of	Open	Watcom's	WASM;	they	may	be	suppressed	with
commandline	options	-zlc	and	-zld.	They	shouldn't	do	any	harm,	though.

The	OMF	object	module	consists	of	records	of	certain	types.	JWasm	writes	those
records	in	the	following	order:

Type Description

THEADR 1Marks	the	start	of	an	object	module,	contains	the	name	of	the
source	file.

COMENT,
class	A1h 1MS	extension;	tells	linker	the	CodeView	version	number.	Emitted

if	-Zi	option	is	active.
COMENT,
class	E9h n Borland-style	auto-dependency	record(s).	Emitted	if	-Zd	or	-Zioptions	are	active.
COMENT,
class	9Eh 1MS	extension;	directs	the	linker	to	use	a	"standardized"	segment

ordering.	Emitted	if	the	.DOSSEG	directive	is	found	in	the	source.
COMENT,
class	9Fh n Default	library	search	name(s).	Emitted	if	INCLUDELIBdirectives	are	used.

LNAMES n Defines	names	for	segments	and	groups	(optionally	also	forexternals,	communals	and	publics).
SEGDEF n Defines	segment(s).
COMENT,
class	FEh n Tells	WLink	to	do	FARCALL	optimization	for	a	specific	segment.

Suppressed	with	-zld.
GRPDEF n Defines	group(s).

EXTDEF n Defines	external(s).
COMENT,
class	A8h n Defines	weak	external(s).	Emitted	if	EXTERN	directive	is	usedwith	"altname".
COMDEF n Defines	communal(s).
ALIAS n Defines	alias(es).
PUBDEF n Defines	public(s).
COMENT,
class	A0h n Defines	export(s).	Emitted	if	the	EXPORT	attribute	is	used	in	aPROC	directive.
COMENT,
class	A2h 1 Link	Pass	Separator.	Emitted	if	no	entry	point	is	defined	in	thisobject	module.
LEDATA n Data	record;	defines	segment	content(s).

FIXUPP n Contains	information	to	make	the	linker	resolve	referencesbetween	object	modules.
LINNUM n Line	number	information.	Emitted	if	-Zd	or	-Zi	option	is	active.
COMENT,
class	FDh n Tells	disassembler	that	a	code	segment	contains	data.	Suppressedwith	-zlc.

MODEND 1Marks	the	end	of	the	object	module;	optionally	defines	the	entry
point.

LEDATA,	FIXUPP	and	LINNUM	records	usually	are	intermixed;	a	FIXUPP
and/or	a	LINNUM	record	appears	immediately	after	the	LEDATA	record	to
which	it	refers.
Since	v2.11,	multiple	THEADR	records	are	written	if	cmdline	options	-Zd	or	-Zi
are	set	and	line	number	information	is	written	for	more	than	one	source	file;	this
conforms	to	MASM	behavior.

6.2	COFF	Output	Format
The	COFF	object	module	format	is	suitable	for	flat,	non-segmented	memory
models.	In	most	cases	the	COFF	format	is	used	for	32-bit	code.	However,	it's
possible	to	create	a	64-bit	COFF	module	if	the	current	cpu	is	.x64	when	the
.MODEL	directive	is	parsed	(note	that	-win64	is	the	usual	way	to	create
modules	for	64-bit	Windows).	To	some	extent	16-bit	code	is	also	supported	with
COFF,	although	OMF	will	always	be	the	better	choice	then.

The	-safeseh	cmdline	option	and	the	.SAFESEH	directive	are	supported	by
COFF	only.
Not	supported	by	COFF	are:

the	GROUP	directive
the	directives	to	control	segment	order:	.ALPHA,	.DOSSEG,	.SEQ
code	that	will	generate	"far"	fixups	(i.e.	direct	FAR	calls	or	jumps).

A	few,	common	segment	names	are	translated	in	the	output	module	when
COFF	is	selected:

name	_TEXT	is	translated	to	.text
name	_DATA	is	translated	to	.data
name	CONST	is	translated	to	.rdata
name	_BSS	is	translated	to	.bss

This	also	affects	simplified	segment	directives,	since	_TEXT,	_DATA,
CONST	and	_BSS	segments	are	internally	generated	when	directives
.CODE,	.DATA,	.CONST	or	.DATA?	are	detected.
If	COFF	is	selected,	Masm	will	ignore	segment	combine	type	STACK	and
treat	stack	segments	just	like	normal	data	segments	(the	MS	linker	and
compatibles	will	set	the	stack's	size	with	commandline	options).	JWasm
DOES	NOT	ignore	combine	type	STACK	for	the	COFF	output	format;
additionally,	unless	the	segment	contains	initialized	data,	JWasm	will	reset
the	size	of	stack	segments	to	0.
Directive	EXTERN	name	(altname)	:	<type>	will	define	a	weak	external
with	characteristics	IMAGE_WEAK_EXTERN_SEARCH_LIBRARY	(
see	MS	PE	and	COFF	specification).
Directive	ALIAS	<aliasname>=<actual	name>	will	define	a	weak
external	with	characteristics
IMAGE_WEAK_EXTERN_SEARCH_ALIAS	(see	MS	PE	and	COFF

specification).
There	are	some	cmdline	options	to	control	the	extent	of	symbols	that	are
written	to	the	COFF	output	module:	-zlf,	-zlp	and	-zls.

6.3	Win64	Output	Format
6.3.1	Win64	Basics

This	output	format,	that	is	selected	with	the	-win64	commandline	option,	is	a
variant	of	the	COFF	output	format.	It's	commonly	used	to	create	object	modules
for	64-bit	Windows.	The	default	calling	convention	is	the	Win64	FASTCALL
implementation.

6.3.2	Directive	INVOKE	in	Win64

Unlike	the	64-bit	version	of	Masm,	which	doesn't	support	INVOKE	anymore,
JWasm	still	does;	however,	please	be	aware	of	some	peculiarities:

in	theory,	using	INVOKE	requires	the	FRAME	attribute	for	PROC.	It	will
work	without	FRAME,	but	Win64	SEH	won't	be	happy	with	it	then.
the	default	implementation	in	64-bit	is	very	simple:	for	each	INVOKE
register	RSP	is	reduced	by	the	space	required	for	the	arguments,	then	the
call	is	issued	and	finally	register	RSP	is	restored.	To	enable	a	more	efficient
code	generation	see	OPTION	WIN64,	INVOKE	Stack	Space	Reservation	-
this	option	is	not	active	as	default	because	it	virtually	requires	a	certain
programming	style.
there	is	no	additional	check	that	the	stack	is	aligned	to	16	byte.	The	PROC's
FRAME	attribute	ensures	that	the	stack	is	correctly	aligned	after	the
prologue	is	done.	However,	it's	the	programmers	responsibility	that	the
stack	is	still	aligned	when	the	code	generated	by	INVOKE	starts.
parameter	names	listed	behind	the	PROC	directive	will	always	refer	to	the
parameter's	shadow	space	on	the	stack.	However,	on	a	procedure's	entry	the
actual	values	of	the	first	four	parameters	are	hold	in	registers,	and	the	value
of	the	associated	shadow	spaces	are	undefined.	See	OPTION	WIN64,	Store
Register	Arguments,	how	to	make	JWasm	automatically	save	the	register
arguments	and	thus	initialize	the	shadow	space	on	a	procedure's	entry.

6.3.3	Win64	Structured	Exception	Handling	(SEH)

SEH	in	Win64	differs	significantly	from	the	implementation	in	Win32.	It's	very

well	possible	to	ignore	Win64	SEH	for	assembly.	However,	if	an	assembly
routine	wants	to	comply	to	these	rules,	a	thorough	understanding	of	the	Win64
ABI	is	necessary.	Masm	(the	64-bit	version)	supplies	some	"primitives"	for
SEH	support	(.ALLOCSTACK,	.PUSHREG,	.SAVEREG,	...),	along	with	a	new
FRAME	attribute	for	the	PROC	directive.	These	features	are	also	supported	by
JWasm.	See	sample	Win64_3	how	the	"primitives"	are	to	be	used	for	SEH
support.

The	big	disadvantage	is	that	using	the	FRAME	keyword	in	Masm	"disables"
most	of	the	other	high	level	features	combined	with	PROC	(function	parameters,
locals	and	registers	saved	with	USES)	because	no	function	prologues	and
epilogues	are	generated	anymore.	Additionally,	the	implementation	at	least	in
Masm	v8	seems	to	be	a	bit	buggy,	at	least	in	Masm	v8.	Because	of	this	and	to
ease	the	usage	of	SEH	in	Win64	there	is	a	new	directive	implemented	in	JWasm:

	

								OPTION	FRAME:AUTO

If	this	option	is	set,	JWasm	will	create	Win64	SEH-compatible	prologues	and
epilogues.	If	the	option	is	off,	JWasm	will	behave	Masm-compatible,	that	is,
FRAME	found	in	a	PROC	directive	will	disable	automatic	prologue/epilogue
generation.	See	sample	Win64_3e	how	this	option	is	supposed	to	be	used.

As	for	the	PROC	syntax:	The	Masm	documentation	states	that	FRAME	can	be
used	in	combination	with	USES	and	procedure	parameters	and	must	be	located
behind	all	parameters.	However,	this	syntax	isn't	accepted	by	any	Masm	version.
The	only	syntax	which	Masm	will	accept	without	being	confused	is	FRAME	as
the	one	and	only	parameter	for	PROC.	Therefore	JWasm	doesn't	follow	the
Masm	documentation	in	this	point:	the	optional	FRAME	keyword	is	expected
before	the	procedure	parameters.	The	syntax	in	JWasm	is:

	

				procname	PROC	[public]	FRAME[:exc_handler]	[USES	<reglist>]	[parameters]

The	SEH	"primitives"	will	generate	some	additional	data	in	segments	.pdata	and
.xdata.	This	data	is	somewhat	hidden,	but	JWasm	will	display	the	corresponding
data	definitions	in	the	listing	if	option	-Sg	is	set.

Finally,	JWasm's	default	behavior	of	INVOKE	isn't	fully	SEH-compatible,
because	the	stack	pointer	is	temporarily	changed	to	make	room	for	arguments.

To	make	INVOKE	comply	to	SEH,	OPTION	WIN64	INVOKE	Stack	Space
Reservation	has	to	be	used.

6.4	Binary	Output	Format
If	the	binary	output	format	has	been	selected,	the	contents	of	the	file	are	just	the
raw	data	bytes	emitted	by	the	assembler,	no	header,	relocations	or	symbol	tables
are	generated.	All	references	have	to	be	resolved	internally.

The	binary	format	is	most	useful	for	bootloaders	or	DOS	COM	files,	but	may	be
used	to	create	any	binary	format.	See	sample	Win32_5,	that	demonstrates	how
the	binary	format	is	used	to	create	a	Win32	application.

If	a	listing	file	is	produced,	a	binary	map	will	be	added,	which	shows	the	file	and
memory	layout	of	the	image:

	

																																				.model	tiny

																																				.data

00000000		0D0A48656C6C6F2C20				str1				db	13,10,"Hello,	world!",13,10,'$'

00000000																												.code

																																				org	100h

00000100																								start:

00000100		B409																						mov	ah,	09h

00000102		BA0000																				mov	dx,	offset	str1

00000105		CD21																						int	21h

00000107		B8004C																				mov	ax,	4c00h

0000010A		CD21																						int	21h

																																				end	start

Binary	Map:

Segment																		Pos(file)						VA		Size(fil)	Size(mem)

_TEXT																											0						100									C									C

_DATA																											C						10C								12								12

																																																		1E								1E

Note	that	bytes	with	"undefined	contents"	at	the	start	and	the	end	of	the	output
file	are	skipped	and	won't	become	part	of	the	binary.

6.5	PE	Output	Format
The	(Windows)	PE	output	format	(both	32-	and	64-bit)	is	a	binary	format	-
there's	no	link	step	supposed	to	follow	the	assembly	step.	Hence	all	references
must	be	resolved	internally,	no	external	references	are	possible.	Since	the
Windows	ABI	is	implemented	as	a	set	of	dlls	that	export	function	names,	it's
necessary	to	provide	a	mechanism	to	call	such	external	functions	-	in	the	PE
format	this	is	achieved	with	the	help	of	directive	OPTION	DLLIMPORT;	it
allows	to	attach	a	module	name	to	function	prototypes	used	by	the	assembly
source	and	consequently	give	the	assembler	the	means	to	resolve	all	references
without	the	help	of	a	linker.

The	PE	format	requires	a	.MODEL	FLAT	directive	in	the	source	code.	This
directive	will	trigger	the	creation	of	the	internal	PE-header	section,	the	value	of
the	cpu	at	this	time	will	determine	whether	a	32-	or	64-bit	PE	binary	is	to	be
written.

As	in	all	binary	formats,	the	listing	will	contain	a	binary	map;	see	Binary	Output
Format	for	more	details.

If	-pe	is	set,	a	few	sections	will	be	created	internally:

-.hdr$1	:	section	will	contain	the	DOS	MZ-stub.
-.hdr$2	:	section	will	contain	the	PE	header
-.hdr$3	:	section	will	contain	the	PE	object	table

The	default	values	in	the	PE	header	are
Field 32-bit	Value 64-bit	Value	(if	different)

Signature "PE"
Machine 14Ch 8664h
Timestamp date	&	time
Size	OptionalHeader 0E0h 0F0h
Characteristics 10Fh 12Fh
Magic 10Bh 20Bh
LinkerVersion 5.1

ImageBase 400000h
SectionAlignment 1000h
FileAlignment 200h
OSVersion 4.0
ImageVersion 0.0
SubsystemVersion 4.0
Win32Version 0
Checksum 0
Subsystem 2	(=Console)
DllCharacteristics 0
SizeOfStack 100000h,1000h
SizeOfHeap 100000h,1000h
LoaderFlags 0

To	change	the	default	values	in	the	PE	header	there	are	two	options.	First,	a
predefined	assembly-time	variable	@pe_file_flags	will	map	the	value	of	field
Characteristics	-	changing	the	value	of	@pe_file_flags	will	also	change	the
value	in	the	header	field.	The	other	fields	in	the	PE	header	are	only	accessible	by
setting	the	appropriate	values	in	section	.hdr$2.	Fields	not	listed	in	the	table
above	are	set	internally	by	the	assembler	to	ensure	data	integrity	and	cannot	be
modified	from	within	the	assembly	source.

If	the	PE	binary	is	to	use	resources,	a	.rsrc	section	has	to	be	created	which	is	to
contain	them.	Defining	the	resources	manually	works	and	is	doable,	but	it	might
become	tedious	if	a	lot	of	resource	items	are	to	be	defined.	Therefore	tool
res2inc	is	supplied,	which	allows	to	convert	a	compiled	resource	file	(.RES)	to
an	assembly	include	file.

If	a	dll	is	created	with	-pe,	one	has	to	mark	all	procedures	that	are	to	be	exported
with	the	EXPORT	attribute.	If	the	exported	names	are	to	be	undecorated,	use	the
-zze	cmdline	option.

Sample	Win64_8	shows	how	a	64-bit	Windows	binary	is	created	with	-pe.	It	also
shows	how	to	define	resources	in	.rsrc	manually	and	how	to	modify	default
values	of	PE	header	fields.

7.	Masm	bugs	fixed	in	JWasm

Description
Fixed
Masm
Version

1
the	infamous	"invoke"	bug:	if	an	argument	for	invoke	has	to	be
expanded	(from	BYTE	or	WORD	to	DWORD,	for	example),	bad
code	was	generated.

9

2 PROTOs	contained	twice	in	the	source	caused	an	EXTDEF	entry	to
be	generated	in	the	object	module. -

3 "TYPE	xmm0"	will	return	10	in	Masm	v6	and	v7	-	the	correct	value
is	16. 8

4 a	nested	structure	might	cause	a	GPF	in	Masm	if	the	embedded
STRUCT's	starting	offset	has	to	be	adjusted	due	to	alignment. -

5 defining	huge	arrays	in	Masm	is	very	slow	and	might	even	cause	a
deadlock	if	COFF	has	been	selected	as	output	format. -

6 for	Masm	v6	and	v7,	if	an	array	>	64	kB	is	defined	and	output
format	OMF	is	selected,	the	array's	size	will	be	mod	0x10000	only. 8

7 Masm	doesn't	flag	invalid	numbers	in	struct/array	initializer	strings. -

8
if	an	ALIAS	is	defined	somewhere	in	the	source	and	the	symbol
table	is	listed,	a	'General	Failure'	error	occurs	in	Masm	if	output
format	is	OMF.

-

9
Type	"coerces"	for	DWORD	data	items	defined	in	a	32bit	segment
are	ignored	by	Masm,	i.e.,	"dd	far16	ptr	<symbol>"	will	generate	a
near32	fixup	instead	of	a	far16	one.

-

10
if	the	ALIGN	directive	has	to	add	5	bytes	in	32bit	code	segments,
Masm	includes	an	"add	eax,0"	opcode,	which	isn't	a	no-op	because
flags	are	modified.

-

11 silent	truncation	of	immediate	constants:	Masm	v6	and	v7	will
accept	line	"mov	[word_variable],12345h"	without	error. 8

12
preprocessed	output	with	option	-EP	may	erroneously	contain	text
macros	and	macro	function	calls	if	the	macros	are	located	in	the
initialization	string	of	a	structured	variable.

-

Masm	generates	wrong	code	if	a	conditional	jump	is	coupled	with	a

13 type	coercion	which	modifies	offset	magnitude.	Examples:	"jz
near32	ptr	..."	in	16bit	code	or	"jz	near16	ptr	..."	in	32bit	code).

-

14 if	the	arguments	given	to	Masm	end	with	an	option	which	expects	a
parameter	(i.e.	"ml	-c	-Fo"),	a	'General	Failure'	may	occur. -

15 floating-point	data	items	in	Masm	can	be	followed	by	any	suffix
(example:	REAL4	1.0foo,	2.0bar).	JWasm	won't	accept	this. -

16

If	a	local	is	defined	inside	a	macro,	Masm	will	create	a	unique	name
for	it.	The	name	is	constructed	by	using	'??'	as	prefix,	followed	by	a
hexadecimal	number	with	4	digits.	There	is	no	check	for	overflow,
however,	so	if	the	total	of	locals	in	all	macros	exceeds	65536,
strange	errors	will	occur.

-

17
If	a	weak	external	is	defined	for	-coff	with	the	ALIAS	directive,	an
invalid	fixup	-	and	also	a	strange	entry	in	the	module's	symbol	table
-	is	created.

-

18
If	a	section	contains	more	than	0xffff	relocations	in	COFF,	the
number	of	relocations	that	is	stored	in	the	object	module	is	just	the
value	of	the	lower	16-bit	half	of	the	relocation	count.

8

19

If	a	symbolic	constant	(=equate)	is	made	public	in	OMF	format,
Masm	will	store	the	symbol's	value	in	a	16-bit	record	if	it	is	in	the
range	-32768	...	65535.	If	the	symbol	is	referenced	in	another
module	as	a	32-bit	number,	it	is	always	zero-extended,	never	sign-
extended;	hence	values	-1	...	-32768	will	become	65535	...	32768.

-

20

if	data	labels	become	public	by	the	-Zf	option	(and	not	by	the
PUBLIC	directive),	their	names	are	not	decorated.	Also,	if	format	is
COFF,	they	won't	become	true	publics,	they're	just	included	in	the
symbol	table	with	class	"static",

-

It's	slightly	dangerous	to	fix	old	Masm	bugs,	since	some	code	might	work	only	if
the	bugs	exists.	So	no,	JWasm	won't	achieve	100%	Masm	compatibility.

8.	Optional	Features
There	exist	some	features	that	are	not	activated	in	the	precompiled	binaries.	To
enable	these	options,	the	JWasm	source	must	be	recompiled	with	one	or	more
switches	set	in	the	command	line:

Support	for	Djgpp's	variant	of	COFF

This	option	is	enabled	with	switch	-DDJGPP_SUPPORT.	The	generated
JWasm	binary	will	accept	an	additional	output	format	(-djgpp)	to	be	set	in	the
commandline,	that	makes	the	assembler	generate	COFF	modules	compatible
with	DJGPP.

Support	for	Assembly	Source	generated	by	Intel	C++
compiler

This	option	is	enabled	with	switch	-DDOTNAMEX.	It	will	make	the	assembler
accept	names	that	contain	dots	if	the	name	starts	with	a	dot	or	an	underscore.
Note	that	this	behavior	is	not	compatible	with	standard	Masm	syntax.

9.	Known	Bugs	and	missing	Features
a)	Bugs	which	are	known	but	not	fixed	yet:

There	are	currently	no	known	bugs.

b)	Features	which	aren't	implemented	yet:

-	directives	PAGE,	TITLE,	SUBTITLE,	SUBTTL.	the	directives	are
ignored	and	a	warning	(level	4)	is	displayed.
-	the	following	parameters	of	the	OPTION	directive:

-	OLDMACROS
-	EXPR16
-	READONLY

-	optional	parameter	NONUNIQUE	for	structures	is	ignored.
-	commandline	option	-AT	(Enable	tiny	model).
-	commandline	options	-Sp,	-Ss	and	-St	(set	page	length,	subtitle	and	title).
-	commandline	option	-H	(set	max	external	name	length).
-	commandline	option	-Ta	(Assemble	non-.ASM	file).
-	commandline	option	-Zd	for	ELF	output	format.
-	commandline	option	-Zi	for	ELF	output	format.

If	there's	ever	a	problem	with	one	of	the	missing	features,	it's	very	likely	that	it's
related	to	OPTION	OLDMACROS.	This	option	makes	Masm	6	emulate	two
Masm	5.1	peculiarities:

-	macro	arguments	may	be	separated	by	spaces
-	ampersands	(&)	inside	the	macro	must	match	the	current	level	of	macro
nesting.

c)	Missing	features	which	most	likely	won't	be
implemented:

-	syntax	"mm(n)"	and	"xmm(n)"	(supported	by	Masm	v6	and	v7	only)
-	commandline	option	-Bl,	-F,	-Fe,	-Fm	and	-link:	since	JWasm	doesn't
launch	a	linker,	those	options	are	useless.
-	commandline	options	-Fr	and	-FR	(generate	browser	info).
-	commandline	option	-Sc	(generate	timings	in	listing).
-	commandline	option	-errorReport	(Report	internal	assembler	errors	to
Microsoft).

10.	License
This	manual	was	written	by	Andreas	Grech	(aka	Japheth).

It	may	be	redistributed	as	long	as	it	is	free	of	charge.

Appendix	A.	JWasm	Reserved	Words
Reserved	Words	are	case-insensitive.	Besides	the	items	listed	below	all
instruction	mnemonics	are	also	Reserved	Words.

Registers	16-	and	32-bit	Modes

8-bit	registers AL CL DL BL AH CH DH BH
16-bit	registers AX CX DX BX SP BP SI DI
32-bit	registers EAX ECX EDX EBX ESP EBP ESI EDI
Segment
registers ES CS SS DS FS GS

Floating-point
registers ST ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

MMX	registers MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
SSE	registers XMM0XMM1XMM2XMM3XMM4XMM5XMM6XMM7
AVX	registers YMM0YMM1YMM2YMM3YMM4YMM5YMM6YMM7
Control
registers CR0 CR2 CR3 CR4

Debug
registers DR0 DR1 DR2 DR3 DR6 DR7

Test	registers[1] TR3 TR4 TR5 TR6 TR7
[1]:	invalid	in	64-bit	mode.

Additional	Registers	in	64-bit	Mode

8-bit
registers SPL BPL SIL DIL

R8B R9B R10B R11B R12B R13B R14B R15B
16-bit
registers R8W R9W R10W R11W R12W R13W R14W R15W

32-bit
registers R8D R9D R10D R11D R12D R13D R14D R15D

64-bit
registers RAX RCX RDX RBX RSP RBP RSI RDI

R8 R9 R10 R11 R12 R13 R14 R15
SSE
registers XMM8XMM9XMM10 XMM11 XMM12 XMM13 XMM14 XMM15

AVX
registers YMM8YMM9YMM10 YMM11 YMM12 YMM13 YMM14 YMM15

Control
registers CR8

Types

BYTE
SBYTE
WORD
SWORD
DWORD
SDWORD
REAL4
FWORD
QWORD
SQWORD
REAL8
TBYTE
REAL10
OWORD
YMMWORD
NEAR
FAR
NEAR16
NEAR32
FAR16
FAR32
MMWORD
XMMWORD

Unary	Operators

.TYPE
HIGH
HIGH32
HIGHWORD
IMAGEREL[1]

LENGTH
LENGTHOF
LOW
LOW32
LOWWORD
LROFFSET
MASK
OFFSET
OPATTR
SECTIONREL[1]

SEG
SHORT
SIZE
SIZEOF
THIS
TYPE
WIDTH
[1]:	not	for	OMF	output	format.

Binary	Operators

EQ
NE
GE
GT
LE
LT
MOD
PTR
DUP
SHL[1]

SHR[1]

AND[1]

OR[1]

XOR[1]

[1]:	these	keywords	are	also	instructions.

Directives

.8086

.186

.286

.286C

.286P

.386

.386C

.386P

.486

.486P

.586

.586P

.686

.686P

.K3D

.MMX

.XMM

.X64

.X64P

.8087

.287

.387

.NO87

.CREF

.LIST

.LISTALL

.LISTIF,	.LFCOND

.NOCREF,	.XCREF

.NOLIST,	.XLIST

.NOLISTIF,	.SFCOND

.TFCOND
PAGE
SUBTITLE,	SUBTTL
TITLE
.LISTMACRO,	.XALL
.LISTMACROALL,	.LALL
.NOLISTMACRO,	.SALL
.ALPHA
.DOSSEG,	DOSSEG
.SEQ
.CODE
.STACK
.DATA
.DATA?
.FARDATA
.FARDATA?
.CONST
.IF
.REPEAT
.WHILE
.BREAK
.CONTINUE
.ELSE
.ELSEIF
.ENDIF
.ENDW
.UNTIL
.UNTILCXZ
.EXIT
.STARTUP
.MODEL
.RADIX
.SAFESEH

.ERR

.ERR1

.ERR2

.ERRE

.ERRNZ

.ERRDIF

.ERRDIFI

.ERRIDN

.ERRIDNI

.ERRB

.ERRNB

.ERRDEF

.ERRNDEF
COMMENT
IF
IFE
IF1
IF2
IFDIF
IFDIFI
IFIDN
IFIDNI
IFB
IFNB
IFDEF
IFNDEF
ELSE
ELSEIF
ELSEIFE
ELSEIF1
ELSEIF2
ELSEIFDIF
ELSEIFDIFI

ELSEIFIDN
ELSEIFIDNI
ELSEIFB
ELSEIFNB
ELSEIFDEF
ELSEIFNDEF
ENDIF
FOR,	IRP
FORC,	IRPC
REPEAT,	REPT
WHILE
MACRO
EXITM
ENDM
GOTO
PURGE
INCLUDE
TEXTEQU
CATSTR
SUBSTR
INSTR
SIZESTR
DB
DW
DD
DF
DQ
DT
STRUCT,	STRUC
UNION
TYPEDEF
RECORD
COMM

EXTERN,	EXTRN
EXTERNDEF
PUBLIC
PROTO
PROC
ENDP
LOCAL
LABEL
INVOKE
ORG
ALIGN
EVEN
SEGMENT
ENDS
GROUP
ASSUME
ALIAS
ECHO,	%OUT
END
EQU
INCBIN
INCLUDELIB
NAME
OPTION
POPCONTEXT
PUSHCONTEXT

Additional	Directives	in	64-bit	Mode

.ALLOCSTACK

.ENDPROLOG

.PUSHFRAME

.PUSHREG

.SAVEREG

.SAVEXMM128

.SETFRAME

Other	Reserved	Words

ADDR
FLAT
VARARG
FRAME[1]

C
SYSCALL[2]

STDCALL
PASCAL
FORTRAN
BASIC
FASTCALL
[1]:	in	64-bit	mode	only.
[2]:	in	64-bit,	calling	convention	SYSCALL	is	renamed	to	SYSCALL_,	since	in
this	mode	there	exists	a	SYSCALL	instruction.

Appendix	B.	Source	Samples
Win64_3	-	SEH	Support	in	Win64
Win64_3e	-	SEH	Support	in	Win64	(JWasm	specific)
DOS64	-	Switch	to	Long	Mode	and	Back
Win32_5	-	Create	a	Win32	Binary	with	-bin
Win32_7	-	Usage	of	OPTION	DLLIMPORT	and	-Fd	Switch
Win64_8	-	Create	a	Win64	Binary	with	-pe

Win64_3	-	SEH	Support	in	Win64

;---	This	sample	shows	how	to	use	SEH	primitives.	It	doesn't	use	hll

;---	directives.	Thus	this	source	can	be	assembled	by	both	JWasm	

;---	and	Masm64.

;---

;---	to	assemble	enter:

;---			JWasm	-win64	Win64_3.asm

;---	or:

;---			ml64	-c	Win64_3.asm

;---

;---	to	link	the	binary	enter:

;---			Link	Win64_3.obj

				option	casemap:none

				includelib	kernel32.lib

				includelib	user32.lib

HINSTANCE	typedef	QWORD

HWND						typedef	QWORD

HMENU					typedef	QWORD

HICON					typedef	QWORD

HBRUSH				typedef	QWORD

HCURSOR			typedef	QWORD

WPARAM				typedef	QWORD

LPARAM				typedef	QWORD

LPSTR					typedef	QWORD

LPVOID				typedef	QWORD

UINT						typedef	DWORD

NULL											equ	0

WS_OVERLAPPEDWINDOW	equ	0CF0000h

CW_USEDEFAULT		equ	80000000h

SW_SHOWDEFAULT	equ	10

SW_SHOWNORMAL		equ	1

IDC_ARROW						equ	32512

IDI_APPLICATION	equ	32512

WM_DESTROY					equ	2

CS_VREDRAW					equ	1

CS_HREDRAW					equ	2

COLOR_WINDOW			equ	5

proto_WNDPROC	typedef	proto	:HWND,:QWORD,:WPARAM,:LPARAM

WNDPROC	typedef	ptr	proto_WNDPROC

WNDCLASSEXA	struct	8

cbSize										DWORD			?

style											DWORD			?

lpfnWndProc					WNDPROC	?

cbClsExtra						DWORD			?

cbWndExtra						DWORD			?

hInstance							HINSTANCE	?

hIcon											HICON			?

hCursor									HCURSOR	?

hbrBackground			HBRUSH		?

lpszMenuName				LPSTR			?

lpszClassName			LPSTR			?

hIconSm									HICON			?

WNDCLASSEXA	ends

POINT			struct

x			SDWORD		?

y			SDWORD		?

POINT			ends

MSG	struct	8

hwnd				HWND				?

message	DWORD			?

wParam		WPARAM		?

lParam		LPARAM		?

time				DWORD			?

pt						POINT			<>

MSG	ends

GetModuleHandleA	proto	:LPSTR

GetCommandLineA		proto

ExitProcess						proto	:UINT

LoadIconA								proto	:HINSTANCE,	:LPSTR

LoadCursorA						proto	:HINSTANCE,	:LPSTR

RegisterClassExA	proto	:ptr	WNDCLASSEXA

CreateWindowExA		proto	:DWORD,	:LPSTR,	:LPSTR,	:DWORD,	:SDWORD,	:SDWORD,	:SDWORD,	:SDWORD,	:HWND,	:HMENU,	:HINSTANCE,	:LPVOID

ShowWindow							proto	:HWND,	:SDWORD

UpdateWindow					proto	:HWND

GetMessageA						proto	:ptr	MSG,	:HWND,	:SDWORD,	:SDWORD

TranslateMessage	proto	:ptr	MSG

DispatchMessageA	proto	:ptr	MSG

PostQuitMessage		proto	:SDWORD

DefWindowProcA			proto	:HWND,	:UINT,	:WPARAM,	:LPARAM

;WinMain	proto	:HINSTANCE,	:HINSTANCE,	:LPSTR,	:UINT

				.data

ClassName	db	"SimpleWinClass",0

AppName		db	"Our	First	Window",0

				.data?

hInstance	HINSTANCE	?

CommandLine	LPSTR	?

				.code

WinMainCRTStartup	proc	FRAME

				push			rbp

				.pushreg	rbp

				mov				rbp,rsp

				.setframe	rbp,	0

				.endprolog

				sub				rsp,32

				mov				ecx,NULL

				call			GetModuleHandleA

				mov				hInstance,	rax

				call			GetCommandLineA

				mov				CommandLine,	rax

				mov				rcx,	hInstance

				mov				rdx,	NULL

				mov				r8,	CommandLine

				mov				r9d,	SW_SHOWDEFAULT

				call			WinMain

				mov				ecx,	eax

				call			ExitProcess

				align	4

WinMainCRTStartup	endp

WinMain	proc	FRAME

				push		rbp

				.pushreg	rbp

				mov			rbp,rsp

				.setframe	rbp,	0

				.endprolog

				sub			rsp,	sizeof	WNDCLASSEXA	+	sizeof	MSG	+	sizeof	HWND	+	12*8

hInst					equ	<[rbp+10h]>

hPrevInst	equ	<[rbp+18h]>

CmdLine			equ	<[rbp+20h]>

CmdShow			equ	<[rbp+28h]>

wc			equ	<[rbp	-	sizeof	WNDCLASSEXA].WNDCLASSEXA>

msg		equ	<[rbp	-	sizeof	WNDCLASSEXA	-	sizeof	MSG].MSG>

hwnd	equ	<[rbp	-	sizeof	WNDCLASSEXA	-	sizeof	MSG	-	sizeof	HWND]>

				mov			hInst,	rcx		;store	param1	in	shadow	space

				mov			wc.cbSize,	SIZEOF	WNDCLASSEXA

				mov			wc.style,	CS_HREDRAW	or	CS_VREDRAW

;			mov			rax,	OFFSET	WndProc		;using	LEA	is	preferable

				lea			rax,	[WndProc]

				mov			wc.lpfnWndProc,	rax

				mov			wc.cbClsExtra,	NULL

				mov			wc.cbWndExtra,	NULL

				mov			wc.hInstance,	rcx

				mov			wc.hbrBackground,	COLOR_WINDOW+1

				mov			wc.lpszMenuName,	NULL

;				mov			rax,	OFFSET	ClassName		;using	LEA	is	preferable

				lea			rax,	[ClassName]

				mov			wc.lpszClassName,	rax

				mov			ecx,	NULL

				mov			edx,	IDI_APPLICATION

				call		LoadIconA

				mov			wc.hIcon,	rax

				mov			wc.hIconSm,	rax

				mov			ecx,	NULL

				mov			edx,	IDC_ARROW

				call		LoadCursorA

				mov			wc.hCursor,rax

				lea			rcx,	wc

				call		RegisterClassExA

				mov			ecx,	NULL

				lea			rdx,	[ClassName]

				lea			r8,	[AppName]

				mov			r9d,	WS_OVERLAPPEDWINDOW

				mov			dword	ptr	[rsp+4*8],	CW_USEDEFAULT

				mov			dword	ptr	[rsp+5*8],	CW_USEDEFAULT

				mov			dword	ptr	[rsp+6*8],	CW_USEDEFAULT

				mov			dword	ptr	[rsp+7*8],	CW_USEDEFAULT

				mov			qword	ptr	[rsp+8*8],	NULL

				mov			qword	ptr	[rsp+9*8],	NULL

				mov			rax,	hInst

				mov			[rsp+10*8],	rax

				mov			qword	ptr	[rsp+11*8],	NULL

				call		CreateWindowExA

				mov			hwnd,rax

				mov			rcx,	hwnd

				mov			edx,	SW_SHOWNORMAL

				call		ShowWindow

				mov			rcx,	hwnd

				call		UpdateWindow

;---	message	loop

@@:

								lea	rcx,	msg

								mov	rdx,	NULL

								mov	r8,	0

								mov	r9,	0

								call	GetMessageA

								and	rax,	rax

								jz	@F

								lea	rcx,	msg

								call	TranslateMessage

								lea	rcx,	msg

								call	DispatchMessageA

								jmp	@B

@@:

				mov			rax,	msg.wParam

				add			rsp,	sizeof	WNDCLASSEXA	+	sizeof	MSG	+	sizeof	HWND	+	12*8

				pop			rbp

				ret

				align	4

WinMain	endp

WndProc	proc	FRAME

				sub			rsp,	4*8

				.allocstack	4*8

				.endprolog

				cmp	edx,	WM_DESTROY

				jnz	@F

				mov	ecx,	NULL

				call	PostQuitMessage

				xor	rax,rax

				jmp	exit

@@:

				call	DefWindowProcA

exit:

				add	rsp,	4*8

				ret

				align	4

WndProc	endp

end

Win64_3e	-	SEH	Support	in	Win64
(JWasm	specific)

;---	SEH	support	in	Win64.	Unlike	Win64_3,	

;---	this	version	uses	hll	directives,	so	it	cannot	be	assembled

;---	with	Masm64.	Also,	OPTION	FRAME:AUTO	is	used.

;---

;---	to	create	the	binary	enter:

;---			JWasm	-win64	Win64_3e.asm

;---			Link	Win64_3e.obj

				option	casemap:none

				option	frame:auto				;generate	SEH-compatible	prologues	and	epilogues

				includelib	kernel32.lib

				includelib	user32.lib

HINSTANCE	typedef	QWORD

HWND						typedef	QWORD

HMENU					typedef	QWORD

HICON					typedef	QWORD

HBRUSH				typedef	QWORD

HCURSOR			typedef	QWORD

WPARAM				typedef	QWORD

LPARAM				typedef	QWORD

LPSTR					typedef	QWORD

LPVOID				typedef	QWORD

UINT						typedef	DWORD

NULL											equ	0

WS_OVERLAPPEDWINDOW	equ	0CF0000h

CW_USEDEFAULT		equ	80000000h

SW_SHOWDEFAULT	equ	10

SW_SHOWNORMAL		equ	1

IDC_ARROW						equ	32512

IDI_APPLICATION	equ	32512

WM_DESTROY					equ	2

CS_VREDRAW					equ	1

CS_HREDRAW					equ	2

COLOR_WINDOW			equ	5

proto_WNDPROC	typedef	proto	:HWND,:QWORD,:WPARAM,:LPARAM

WNDPROC	typedef	ptr	proto_WNDPROC

WNDCLASSEXA	struct	8

cbSize										DWORD			?

style											DWORD			?

lpfnWndProc					WNDPROC	?

cbClsExtra						DWORD			?

cbWndExtra						DWORD			?

hInstance							HINSTANCE	?

hIcon											HICON			?

hCursor									HCURSOR	?

hbrBackground			HBRUSH		?

lpszMenuName				LPSTR			?

lpszClassName			LPSTR			?

hIconSm									HICON			?

WNDCLASSEXA	ends

POINT			struct

x			SDWORD		?

y			SDWORD		?

POINT			ends

MSG	struct	8

hwnd				HWND				?

message	DWORD			?

wParam		WPARAM		?

lParam		LPARAM		?

time				DWORD			?

pt						POINT			<>

MSG	ends

GetModuleHandleA	proto	:LPSTR

GetCommandLineA		proto

ExitProcess						proto	:UINT

LoadIconA								proto	:HINSTANCE,	:LPSTR

LoadCursorA						proto	:HINSTANCE,	:LPSTR

RegisterClassExA	proto	:ptr	WNDCLASSEXA

CreateWindowExA		proto	:DWORD,	:LPSTR,	:LPSTR,	:DWORD,	:SDWORD,	:SDWORD,	:SDWORD,	:SDWORD,	:HWND,	:HMENU,	:HINSTANCE,	:LPVOID

ShowWindow							proto	:HWND,	:SDWORD

UpdateWindow					proto	:HWND

GetMessageA						proto	:ptr	MSG,	:HWND,	:SDWORD,	:SDWORD

TranslateMessage	proto	:ptr	MSG

DispatchMessageA	proto	:ptr	MSG

PostQuitMessage		proto	:SDWORD

DefWindowProcA			proto	:HWND,	:UINT,	:WPARAM,	:LPARAM

WinMain	proto	:HINSTANCE,	:HINSTANCE,	:LPSTR,	:UINT

				.data

ClassName	db	"SimpleWinClass",0

AppName		db	"Our	First	Window",0

				.data?

hInstance	HINSTANCE	?

CommandLine	LPSTR	?

				.code

WinMainCRTStartup	proc	FRAME

				invoke	GetModuleHandleA,	NULL

				mov				hInstance,	rax

				invoke	GetCommandLineA

				mov				CommandLine,	rax

				invoke	WinMain,	hInstance,	NULL,	CommandLine,	SW_SHOWDEFAULT

				invoke	ExitProcess,	eax

WinMainCRTStartup	endp

WinMain	proc	FRAME	hInst:HINSTANCE,	hPrevInst:HINSTANCE,	CmdLine:LPSTR,	CmdShow:UINT

				local	wc:WNDCLASSEXA

				local	msg:MSG

				local	hwnd:HWND

				mov			hInst,	rcx

				mov			wc.cbSize,	SIZEOF	WNDCLASSEXA

				mov			wc.style,	CS_HREDRAW	or	CS_VREDRAW

				lea			rax,	[WndProc]

				mov			wc.lpfnWndProc,	rax

				mov			wc.cbClsExtra,	NULL

				mov			wc.cbWndExtra,	NULL

				mov			wc.hInstance,	rcx

				mov			wc.hbrBackground,	COLOR_WINDOW+1

				mov			wc.lpszMenuName,	NULL

				lea			rax,	[ClassName]

				mov			wc.lpszClassName,	rax

				invoke	LoadIconA,	NULL,	IDI_APPLICATION

				mov			wc.hIcon,	rax

				mov			wc.hIconSm,	rax

				invoke	LoadCursorA,	NULL,	IDC_ARROW

				mov			wc.hCursor,rax

				invoke	RegisterClassExA,	addr	wc

				invoke	CreateWindowExA,	NULL,	ADDR	ClassName,	ADDR	AppName,\

											WS_OVERLAPPEDWINDOW,	CW_USEDEFAULT,\

											CW_USEDEFAULT,	CW_USEDEFAULT,CW_USEDEFAULT,	NULL,	NULL,\

											hInst,	NULL

				mov			hwnd,rax

				invoke	ShowWindow,	hwnd,	SW_SHOWNORMAL

				invoke	UpdateWindow,	hwnd

				.while	(1)

								invoke	GetMessageA,	ADDR	msg,	NULL,	0,	0

								.break	.if	(!rax)

								invoke	TranslateMessage,	ADDR	msg

								invoke	DispatchMessageA,	ADDR	msg

				.endw

				mov			rax,	msg.wParam

				ret

WinMain	endp

WndProc	proc	FRAME	hWnd:HWND,	uMsg:UINT,	wParam:WPARAM,	lParam:LPARAM

				.if	(edx	==	WM_DESTROY)

								invoke	PostQuitMessage,	NULL

								xor	rax,rax

				.else

								invoke	DefWindowProcA,	rcx,	edx,	r8,	r9

				.endif

				ret

WndProc	endp

end	WinMainCRTStartup

DOS64	-	Switch	to	Long	Mode	and
Back

;---	DOS	program	which	switches	to	long-mode	and	back.

;---	Note:	requires	at	least	JWasm	v2.

;---	Also:	needs	a	64bit	cpu	in	real-mode	to	run.

;---	Parts	of	the	source	are	based	on	samples	supplied	by

;---	sinsi	and	Tomasz	Grysztar	in	the	FASM	forum.

;---	To	create	the	binary	enter:

;---		JWasm	-mz	DOS64.asm

				.x64p

;---	16bit	start/exit	code

_TEXT16	segment	use16	para	public	'CODE'

				assume	ds:_TEXT16

				assume	es:_TEXT16

GDTR	label	fword								;	Global	Descriptors	Table	Register

				dw	4*8-1												;	limit	of	GDT	(size	minus	one)

				dd	offset	GDT							;	linear	address	of	GDT

IDTR	label	fword								;	Interrupt	Descriptor	Table	Register

				dw	256*16-1									;	limit	of	IDT	(size	minus	one)

				dd	0																;	linear	address	of	IDT

nullidt	label	fword

				dw	3FFh

				dd	0

		

				align	8

GDT	dq	0																				;	null	descriptor

				dw	0FFFFh,0,9A00h,0AFh		;	64-bit	code	descriptor

				dw	0FFFFh,0,9A00h,000h		;	compatibility	mode	code	descriptor

				dw	0FFFFh,0,9200h,000h		;	compatibility	mode	data	descriptor

wPICMask	dw	0			;	variable	to	save/restore	PIC	masks

start16:

				push	cs

				pop	ds

				mov	ax,cs

				movzx	eax,ax

				shl	eax,4

				add	dword	ptr	[GDTR+2],	eax	;	convert	offset	to	linear	address

				mov	word	ptr	[GDT+2*8+2],	ax

				mov	word	ptr	[GDT+3*8+2],	ax

				shr	eax,16

				mov	byte	ptr	[GDT+2*8+4],	al

				mov	byte	ptr	[GDT+3*8+4],	al

				mov	ax,ss

				mov	dx,es

				sub	ax,dx

				mov	bx,sp

				shr	bx,4

				add	bx,ax

				mov	ah,4Ah

				int	21h									;	free	unused	memory

				push	cs

				pop	es

				mov	ax,ss

				mov	dx,cs

				sub	ax,dx

				shl	ax,4

				add	ax,sp

				push	ds

				pop	ss

				mov	sp,ax							;	make	a	TINY	model,	CS=SS=DS=ES

				smsw	ax

				test	al,1

				jz	@F

				mov	dx,offset	err1

				mov	ah,9

				int	21h

				mov	ah,4Ch

				int	21h

err1	db	"Mode	is	V86.	Need	REAL	mode	to	switch	to	LONG	mode!",13,10,'$'

@@:

				xor	edx,edx

				mov	eax,80000001h			;	test	if	long-mode	is	supported

				cpuid

				test	edx,20000000h

				jnz	@F

				mov	dx,offset	err2

				mov	ah,9

				int	21h

				mov	ah,4Ch

				int	21h

err2	db	"No	64bit	cpu	detected.",13,10,'$'

@@:

				mov	bx,1000h

				mov	ah,48h

				int	21h

				jnc	@F

				mov	dx,offset	err3

				mov	ah,9

				int	21h

				mov	ah,4Ch

				int	21h

err3	db	"Out	of	memory",13,10,'$'

@@:

				add	ax,100h-1			;	align	to	page	boundary

				mov	al,0

				mov	es,ax

;---	setup	page	directories	and	tables

				sub	di,di

				mov	cx,4096

				sub	eax,eax

				rep	stosd							;	clear	4	pages

				sub	di,di

				mov	ax,es

				movzx	eax,ax

				shl	eax,4

				mov	cr3,eax													;	load	page-map	level-4	base

				lea	edx,	[eax+5000h]

				mov	dword	ptr	[IDTR+2],	edx

				or	eax,111b

				add	eax,	1000h

				mov	es:[di+0000h],eax			;	first	PDP	table

				add	eax,	1000h

				mov	es:[di+1000h],eax			;	first	page	directory

				add	eax,	1000h

				mov	es:[di+2000h],eax			;	first	page	table

				mov	di,3000h												;	address	of	first	page	table

				mov	eax,0	+	111b

				mov	cx,256														;	number	of	pages	to	map	(1	MB)

@@:

				stosd

				add	di,4

				add	eax,1000h

				loop	@B

;---	setup	ebx/rbx	with	linear	address	of	_TEXT

				mov	bx,_TEXT

				movzx	ebx,bx

				shl	ebx,4

				add	[llg],	ebx

;---	create	IDT

				mov	di,5000h

				mov	cx,32

				mov	edx,	offset	exception

				add	edx,	ebx

make_exc_gates:

				mov	eax,edx

				stosw

				mov	ax,8

				stosw

				mov	ax,8E00h

				stosd

				xor	eax,	eax

				stosd

				stosd

				add	edx,4

				loop	make_exc_gates

				mov	cx,256-32

make_int_gates:

				mov	eax,offset	interrupt

				add	eax,	ebx

				stosw

				mov	ax,8

				stosw

				mov	ax,8E00h

				stosd

				xor	eax,	eax

				stosd

				stosd

				loop	make_int_gates

				mov	di,5000h

				mov	eax,	ebx

				add	eax,	offset	clock

				mov	es:[di+80h*16+0],ax	;	set	IRQ	0	handler

				shr	eax,16

				mov	es:[di+80h*16+6],ax

				mov	eax,	ebx

				add	eax,	offset	keyboard

				mov	es:[di+81h*16+0],ax	;	set	IRQ	1	handler

				shr	eax,16

				mov	es:[di+81h*16+6],ax

;---	clear	NT	flag

				pushf

				pop	ax

				and	ah,0BFh

				push	ax

				popf

;---	reprogram	PIC:	change	IRQ	0-7	to	INT	80h-87h,	IRQ	8-15	to	INT	88h-8Fh

				cli

				in	al,0A1h

				mov	ah,al

				in	al,21h

				mov	[wPICMask],ax

				mov	al,10001b							;	begin	PIC	1	initialization

				out	20h,al

				mov	al,10001b							;	begin	PIC	2	initialization

				out	0A0h,al

				mov	al,80h										;	IRQ	0-7:	interrupts	80h-87h

				out	21h,al

				mov	al,88h										;	IRQ	8-15:	interrupts	88h-8Fh

				out	0A1h,al

				mov	al,100b									;	slave	connected	to	IRQ2

				out	21h,al

				mov	al,2

				out	0A1h,al

				mov	al,1												;	Intel	environment,	manual	EOI

				out	21h,al

				out	0A1h,al

				in	al,21h

				mov	al,11111100b				;	enable	only	clock	and	keyboard	IRQ

				out	21h,al

				in	al,0A1h

				mov	al,11111111b

				out	0A1h,al

				mov	eax,cr4

				or	eax,1	shl	5

				mov	cr4,eax									;	enable	physical-address	extensions	(PAE)

				mov	ecx,0C0000080h		;	EFER	MSR

				rdmsr

				or	eax,1	shl	8						;	enable	long	mode

				wrmsr

				lgdt	[GDTR]

				lidt	[IDTR]

				mov	cx,ss

				movzx	ecx,cx								;	get	base	of	SS

				shl	ecx,4

				movzx	esp,sp

				add	ecx,	esp								;	ECX=linear	address	of	current	SS:ESP

				mov	eax,cr0

				or	eax,80000001h

				mov	cr0,eax									;	enable	paging	+	pmode

				db	66h,	0EAh								;	jmp	0008:oooooooo

llg	dd	offset	long_start

				dw	8

;---	switch	back	to	real-mode	and	exit

backtoreal:

				cli

				mov	eax,cr0

				and	eax,7FFFFFFFh			;	disable	paging

				mov	cr0,eax

				mov	ecx,0C0000080h		;	EFER	MSR

				rdmsr

				and	ah,not	1h							;	disable	long	mode	(EFER.LME=0)

				wrmsr

				mov	ax,24											;	set	SS,DS	and	ES	to	64k	data

				mov	ss,ax

				mov	ds,ax

				mov	es,ax

				mov	eax,cr0									;	switch	to	real	mode

				and	al,0FEh

				mov	cr0,	eax

				db	0eah													;	clear	instruction	cache,	CS=real-mode	seg

				dw	$+4

				dw	_TEXT16

				mov	ax,STACK								;	SS=real-mode	seg

				mov	ss,	ax

				mov	sp,4096

				push	cs													;	DS=real-mode	_TEXT16	seg

				pop	ds

				lidt	[nullidt]						;	IDTR=real-mode	compatible	values

				mov	eax,cr4

				and	al,not	20h						;	disable	physical-address	extensions	(PAE)

				mov	cr4,eax

;---	reprogram	PIC:	change	IRQ	0-7	to	INT	08h-0Fh,	IRQ	8-15	to	INT	70h-77h

				mov	al,10001b							;	begin	PIC	1	initialization

				out	20h,al

				mov	al,10001b							;	begin	PIC	2	initialization

				out	0A0h,al

				mov	al,08h										;	IRQ	0-7:	back	to	ints	8h-Fh

				out	21h,al

				mov	al,70h										;	IRQ	8-15:	back	to	ints	70h-77h

				out	0A1h,al

				mov	al,100b									;	slave	connected	to	IRQ2

				out	21h,al

				mov	al,2

				out	0A1h,al

				mov	al,1												;	Intel	environment,	manual	EOI

				out	21h,al

				out	0A1h,al

				in	al,21h

				mov	ax,[wPICMask]			;	restore	PIC	masks

				out	21h,al

				mov	al,ah

				out	0A1h,al

				sti

				mov	ax,4c00h

				int	21h

_TEXT16	ends

;---	here's	the	64bit	code	segment.

;---	since	64bit	code	is	always	flat	but	the	DOS	mz	format	is	segmented,

;---	there	are	restrictions,	because	the	assembler	doesn't	know	the

;---	linear	address	where	the	64bit	segment	will	be	loaded:

;---	+	direct	addressing	with	constants	isn't	possible	(mov	[0B8000h],rax)

;---			since	the	rip-relative	address	will	be	calculated	wrong.

;---	+	64bit	offsets	(mov	rax,	offset	<var>)	must	be	adjusted	by	the	linear

;---			address	where	the	64bit	segment	was	loaded	(is	in	rbx).

;---

;---	rbx	must	preserve	linear	address	of	_TEXT

_TEXT	segment	para	use64	public	'CODE'

				assume	ds:FLAT,	es:FLAT

long_start:

				xor	eax,eax

				mov	ss,eax

				mov	esp,ecx

				sti													;	now	interrupts	can	be	used

				call	WriteStrX

				db	"Hello	64bit",10,0

nextcmd:

				mov	r8b,0							;	r8b	will	be	filled	by	the	keyboard	irq	routine

nocmd:

				cmp	r8b,0

				jz	nocmd

				cmp	r8b,1							;	ESC?

				jz	esc_pressed

				cmp	r8b,13h					;	'r'?

				jz	r_pressed

				call	WriteStrX

				db	"unknown	key	",0

				mov	al,r8b

				call	WriteB

				call	WriteStrX

				db	10,0

				jmp	nextcmd

;---	'r'	key:	display	some	register	contents

r_pressed:

				call	WriteStrX

				db	10,"cr0=",0

				mov	rax,cr0

				call	WriteQW

				call	WriteStrX

				db	10,"cr2=",0

				mov	rax,cr2

				call	WriteQW

				call	WriteStrX

				db	10,"cr3=",0

				mov	rax,cr3

				call	WriteQW

				call	WriteStrX

				db	10,"cr4=",0

				mov	rax,cr4

				call	WriteQW

				call	WriteStrX

				db	10,"cr8=",0

				mov	rax,cr8

				call	WriteQW

				call	WriteStrX

				db	10,0

				jmp	nextcmd

;---	ESC:	back	to	real-mode

esc_pressed:

				jmp	[bv]

bv		label	fword

				dd	offset	backtoreal

				dw	16

;---	screen	output	helpers

;---	scroll	screen	up	one	line

;---	rsi	=	linear	address	start	of	last	line

;---	rbp	=	linear	address	of	BIOS	area	(0x400)

scroll_screen:

				cld

				mov	edi,esi

				movzx	eax,word	ptr	[rbp+4Ah]

				push	rax

				lea	rsi,	[rsi+2*rax]

				mov	cl,	[rbp+84h]

				mul	cl

				mov	ecx,eax

				rep	movsw

				pop	rcx

				mov	ax,0720h

				rep	stosw

				ret

WriteChr:

				push	rbp

				push	rdi

				push	rsi

				push	rbx

				push	rcx

				push	rdx

				push	rax

				mov	edi,0B8000h

				mov	ebp,400h

				cmp	byte	ptr	[rbp+63h],0B4h

				jnz	@F

				xor	di,di

@@:

				movzx	ebx,	word	ptr	[rbp+4Eh]

				add	edi,	ebx

				movzx	ebx,	byte	ptr	[rbp+62h]

				mov	esi,	edi

				movzx	ecx,	byte	ptr	[rbx*2+rbp+50h+1]	;ROW

				movzx	eax,	word	ptr	[rbp+4Ah]

				mul	ecx

				movzx	edx,	byte	ptr	[rbx*2+rbp+50h]		;COL

				add	eax,	edx

				mov	dh,cl

				lea	edi,	[rdi+rax*2]

				mov	al,	[rsp]

				cmp	al,	10

				jz	newline

				mov	[rdi],	al

				mov	byte	ptr	[rdi+1],	07

				inc	dl

				cmp	dl,	byte	ptr	[rbp+4Ah]

				jb	@F

newline:

				mov	dl,	00

				inc	dh

				cmp	dh,	byte	ptr	[rbp+84h]

				jbe	@F

				dec	dh

				call	scroll_screen

@@:

				mov	[rbx*2+rbp+50h],dx

				pop	rax

				pop	rdx

				pop	rcx

				pop	rbx

				pop	rsi

				pop	rdi

				pop	rbp

				ret

WriteStr:			;write	string	in	rdx

				push	rsi

				mov	rsi,	rdx

				cld

@@:

				lodsb

				and	al,al

				jz	@F

				call	WriteChr

				jmp	@B

@@:

				pop	rsi

				ret

WriteStrX:		;write	string	at	rip

				push	rsi

				mov	rsi,	[rsp+8]

				cld

@@:

				lodsb

				and	al,al

				jz	@F

				call	WriteChr

				jmp	@B

@@:

				mov	[rsp+8],rsi

				pop	rsi

				ret

WriteQW:								;write	QWord	in	rax

				push	rax

				shr	rax,32

				call	WriteDW

				pop	rax

WriteDW:

				push	rax

				shr	rax,16

				call	WriteW

				pop	rax

WriteW:

				push	rax

				shr	rax,8

				call	WriteB

				pop	rax

WriteB:					;write	Byte	in	al

				push	rax

				shr	rax,4

				call	WriteNb

				pop	rax

WriteNb:

				and	al,0Fh

				add	al,'0'

				cmp	al,'9'

				jbe	@F

				add	al,7

@@:

				jmp	WriteChr

;---	exception	handler

exception:

excno	=	0

				repeat	32

				push	excno

				jmp	@F

				excno	=	excno+1

				endm

@@:

				call	WriteStrX

				db	10,"Exception	",0

				pop	rax

				call	WriteB

				call	WriteStrX

				db	"	errcode=",0

				mov	rax,[rsp+0]

				call	WriteQW

				call	WriteStrX

				db	"	rip=",0

				mov	rax,[rsp+8]

				call	WriteQW

				call	WriteStrX

				db	10,0

@@:

				jmp	$

;---	clock	and	keyboard	interrupts

clock:

				push	rbp

				mov	ebp,400h

				inc	dword	ptr	[rbp+6Ch]

				pop	rbp

interrupt:														;	handler	for	all	other	interrupts

				push	rax

				mov	al,20h

				out	20h,al

				pop	rax

				iretq

keyboard:

				push	rax

				in	al,60h

				test	al,80h

				jnz	@F

				mov	r8b,	al

@@:

				in	al,61h											;	give	finishing	information

				out	61h,al										;	to	keyboard...

				mov	al,20h

				out	20h,al										;	...and	interrupt	controller

				pop	rax

				iretq

_TEXT	ends

;---	4k	stack,	used	in	both	modes

STACK	segment	use16	para	stack	'STACK'

				db	4096	dup	(?)

STACK	ends

				end	start16

Win32_5	-	Create	a	Win32	Binary
with	-bin

;---	Win32	"hello	world"	console	application.

;---	Uses	JWasm's	bin	output	format,	so	no	linker	needed.

;---	assemble:	JWasm	-bin	-Fo	Win32_5.exe	Win32_5.ASM

				.386

				option	casemap:none

				.nolist

				include	winnt.inc			;include	PE	image	definitions

				.list

STD_OUTPUT_HANDLE	equ	-11

IMAGEBASE	equ	400000h

PEHDR	segment	dword	FLAT

;---	define	the	DOS	"MZ"	header

				org	IMAGEBASE

				IMAGE_DOS_HEADER	<"ZM",	80h,	1,	0,4,0,-1,0,200h,0,0,0,0,0,<0>,0,0,<0>,IMAGEREL	PEHdr>

				db	0Eh									;push	cs

				db	1Fh									;pop	ds

				db	0BAh,0Eh,0		;mov	dx,text

				db	0B4h,09h				;mov	ah,9

				db	0CDh,21h				;int	21h

				db	0B8h,01h,4Ch;mov	ax,4c01h

				db	0CDh,21h				;int	21h

				db	"This	program	cannot	be	run	in	DOS	mode",13,10,'$'

				org	IMAGEBASE+80h

;---	define	the	Win32	"PE"	header

PEHdr	label	byte

				db	"PE",0,0

				IMAGE_FILE_HEADER	<IMAGE_FILE_MACHINE_I386,	num_sections,	0,	0,	0,	sizeof	IMAGE_OPTIONAL_HEADER32,

								IMAGE_FILE_RELOCS_STRIPPED	or	IMAGE_FILE_EXECUTABLE_IMAGE	or	IMAGE_FILE_32BIT_MACHINE	or	IMAGE_FILE_LOCAL_SYMS_STRIPPED>

				IMAGE_OPTIONAL_HEADER32	{	10Bh,	;magic

								6,0,																								;linker	major,	minor

								1000h,1000h,0,														;sizeof	code,	initialized	data,	uninitialized	data

								IMAGEREL	mainCRTStartup,				;entry	point

								IMAGEREL	start_text,	IMAGEREL	start_rdata,		;baseof	code,	data

								IMAGEBASE,				;imagebase

								1000h,200h,			;section	alignment,	file	alignment

								4,0,										;OS	major,	minor

								0,0,										;Image	major,	minor

								4,0,										;Subsys	major,	minor

								0,												;win32	version

								3000h,								;sizeof	image

								1000h,								;sizeof	header

								0,												;checksum

								IMAGE_SUBSYSTEM_WINDOWS_CUI,

								0,												;dll	characteristics

								100000h,1000h,;stack	res,com

								100000h,1000h,;heap	res,	com

								0,												;loader	flags

								16,											;number	of	directories

								<<0,0>,							;exports

								<	IMAGEREL	start_idata,	SECTIONREL	endof_idata	>,	;imports

								<0,0>,<0,0>,					;resource,	exception

								<>,<>,<>,<>,					;security,	baserelocs,	debug,	architecture

								<>,<>,<>,<>,					;globalptr,	tls,	load_config,	bound_import

								<>,<>,<>,<>>}				;iat,	delay_import,	com	descriptor,	reserved

;---	define	the	section	table

sectiontable	label	byte

				IMAGE_SECTION_HEADER	<".text",	<sizeof_text>,	IMAGEREL	start_text,	sizeof_text,

								200h,	0,	0,	0,	0,	060000020h	>

				IMAGE_SECTION_HEADER	<".rdata",	<SECTIONREL	endof_idata	+	sizeof_const>,	IMAGEREL	start_rdata,	SECTIONREL	endof_idata	+	sizeof_const,

								400h,	0,	0,	0,	0,	040000040h	>

num_sections	equ	($	-		sectiontable)	/	sizeof	IMAGE_SECTION_HEADER

				org	IMAGEBASE+200h			;forces	physical	size	of	header	to	200h	and	sets	VA	to	400200h

PEHDR	ends

;---	the	ALIGNx	segments	are	needed	because

;---	section	alignment	and	file	alignment	are	different

ALIGN1	segment	dword	public	FLAT	'DATA'

				org	0E00h			;	change	pc	to	RVA	1000h

ALIGN1	ends

_TEXT	segment	dword	public	FLAT	'CODE'

_TEXT	ends

ALIGN2	segment	dword	public	FLAT	'DATA'

				org	0E00h			;	change	pc	to	RVA	2000h

ALIGN2	ends

_IDATA	segment	dword	public	FLAT	'DATA'

start_rdata	label	byte

start_idata	label	byte

;---	import	descriptors	go	here

_IDATA	ends

_IDATA$1	segment	dword	public	FLAT	'DATA'

				IMAGE_IMPORT_DESCRIPTOR	<<0>,0,0,0,0>

;---	ILT	entries	go	here

_IDATA$1	ends

_IDATA$2	segment	dword	public	FLAT	'DATA'

				dd	0				;---	end	of	last	ILT

;---	IAT	entries	go	here

_IDATA$2	ends

_IDATA$3	segment	dword	public	FLAT	'DATA'

				dd	0				;---	end	of	last	IAT

;---	import	name	strings	go	here

_IDATA$3	ends

_IDATA$4	segment	dword	public	FLAT	'DATA'

endof_idata	equ	$

_IDATA$4	ends

CONST	segment	dword	public	FLAT	'DATA'

start_const	label	byte

CONST	ends

DefineImpDll	macro	name

_IDATA	segment

				IMAGE_IMPORT_DESCRIPTOR	<<IMAGEREL	name&ILT>,0,0,IMAGEREL	name,	IMAGEREL	name&IAT>

_IDATA	ends

_IDATA$1	segment

ifdef	ImportDefined

				dd	0		;terminate	previous	ILT

endif

name&ILT	label	dword

_IDATA$1	ends

_IDATA$2	segment

ifdef	ImportDefined

				dd	0		;terminate	previous	IAT

endif

name&IAT	label	dword

_IDATA$2	ends

_IDATA$3	segment

name	db	@CatStr(!",name,	!"),0

				align	4

_IDATA$3	ends

ImportDefined	equ	1

				endm

DefineImport	macro	name

_IDATA$1	segment

				dd	IMAGEREL	n&name

_IDATA$1	ends

_IDATA$2	segment

lp&name	typedef	ptr	pr&name

name				lp&name	IMAGEREL	n&name

_IDATA$2	ends

_IDATA$3	segment

n&name	dw	0

				db	@CatStr(!",name,	!"),0

				align	4

_IDATA$3	ends

				endm

prWriteConsoleA	typedef	proto	stdcall	:dword,	:dword,	:dword,	:dword,	:dword

prGetStdHandle		typedef	proto	stdcall	:dword

prExitProcess			typedef	proto	stdcall	:dword

				DefineImpDll	kernel32

				DefineImport	ExitProcess

				DefineImport	WriteConsoleA

				DefineImport	GetStdHandle

if	0	;if	further	dlls	are	to	be	imported

prMessageBoxA			typedef	proto	stdcall	:dword,	:dword,	:dword,	:dword

				DefineImpDll	user32

				DefineImport	MessageBoxA

endif

CONST	segment

string		db	13,10,"hello,	world.",13,10

sizeof_const	equ	$	-	start_const

CONST	ends

_TEXT	segment

				assume	ds:FLAT,es:FLAT

start_text	label	near

;---	start	of	program

main	proc

local	dwWritten:dword

local	hConsole:dword

				invoke		GetStdHandle,	STD_OUTPUT_HANDLE

				mov					hConsole,eax

				invoke		WriteConsoleA,	hConsole,	addr	string,	sizeof	string,	addr	dwWritten,	0

				xor					eax,eax

				ret

main	endp

;---	entry

mainCRTStartup	proc	c

				invoke		main

				invoke		ExitProcess,	eax

mainCRTStartup	endp

sizeof_text	equ	$	-	start_text

				org	200h				;align	size	of	_TEXT	to	next	512	byte	boundary

_TEXT	ends

				end

Win32_7	-	Usage	of	OPTION
DLLIMPORT	and	-Fd	Switch

;---	Win32_7	-	Shows	how	to	use	OPTION	DLLIMPORT	and	switch	-Fd.

;---											No	import	libraries	are	needed	in	the	link	step.

;---

;---	assemble:	JWasm	-coff	-Fd	Win32_7.ASM

;---	link:					JWlink	format	windows	pe	f	Win32_7.OBJ

				.386

				.model	FLAT,	stdcall

				option	casemap:none

STD_OUTPUT_HANDLE	equ	-11

			option	dllimport:<kernel32>

WriteConsoleA	proto	:dword,	:dword,	:dword,	:dword,	:dword

GetStdHandle		proto	:dword

ExitProcess			proto	:dword

			option	dllimport:<user32>

MessageBoxA			proto	:dword,	:dword,	:dword,	:dword

			option	dllimport:<none>

				.const

msg	db	13,10,"hello,	world.",13,10

				db	0

				.code

main	proc

local			written:dword

				invoke		GetStdHandle,	STD_OUTPUT_HANDLE

				mov	ebx,	eax

				invoke		WriteConsoleA,	ebx,	addr	msg,	sizeof	msg,

																addr	written,	0

				invoke		MessageBoxA,	0,	addr	msg,	0,	0

				ret

main	endp

;---	entry

start:

				invoke		main

				invoke		ExitProcess,	0

				end	start

Win64_8	-	Create	a	Win64	Binary
with	-pe

;---	create	a	64-bit	binary	with	-pe	cmdline	option

;---

;---			JWasm	-pe	Win64_8.asm

				.x64																;	-pe	requires	to	set	cpu,	model	&	language

				.model	flat,	fastcall

				option	casemap:none

				option	frame:auto			;	generate	SEH-compatible	prologues	and	epilogues

				option	win64:3						;	init	shadow	space,	reserve	stack	at	PROC	level

;---	resource	IDs

IDR_MENU1			equ	100

IDR_BITMAP1	equ	101

IDM_EXIT				equ	1000

NULL						equ	0

LPSTR					typedef	ptr

LPVOID				typedef	ptr

UINT						typedef	dword

BOOL						typedef	dword

;---	winbase	definitions

HINSTANCE	typedef	ptr

;---	winuser	definitions

HWND						typedef	ptr

HMENU					typedef	ptr

HICON					typedef	ptr

HBRUSH				typedef	ptr

HCURSOR			typedef	ptr

HDC							typedef	ptr

HBITMAP			typedef	ptr

WPARAM				typedef	ptr

LPARAM				typedef	qword

WS_OVERLAPPEDWINDOW	equ	0CF0000h

CW_USEDEFAULT		equ	80000000h

SW_SHOWDEFAULT	equ	10

SW_SHOWNORMAL		equ	1

IDC_ARROW						equ	32512

IDI_APPLICATION	equ	32512

CS_VREDRAW					equ	1

CS_HREDRAW					equ	2

COLOR_WINDOW			equ	5

WM_DESTROY					equ	2

WM_PAINT							equ	000Fh

WM_COMMAND					equ	0111h

proto_WNDPROC	typedef	proto	:HWND,:qword,:WPARAM,:LPARAM

WNDPROC	typedef	ptr	proto_WNDPROC

WNDCLASSEXA	struct	8

cbSize										dword			?

style											dword			?

lpfnWndProc					WNDPROC	?

cbClsExtra						dword			?

cbWndExtra						dword			?

hInstance							HINSTANCE	?

hIcon											HICON			?

hCursor									HCURSOR	?

hbrBackground			HBRUSH		?

lpszMenuName				LPSTR			?

lpszClassName			LPSTR			?

hIconSm									HICON			?

WNDCLASSEXA	ends

POINT			struct

x			sdword		?

y			sdword		?

POINT			ends

MSG	struct	8

hwnd				HWND				?

message	dword			?

wParam		WPARAM		?

lParam		LPARAM		?

time				dword			?

pt						POINT			<>

MSG	ends

RECT	struct

left				sdword		?

top					sdword		?

right			sdword		?

bottom		sdword		?

RECT	ends

PAINTSTRUCT	struct	8

hdc									HDC		?

fErase						BOOL	?

rcPaint					RECT	<>

fRestore				BOOL	?

fIncUpdate		BOOL	?

rgbReserved	byte	32	dup	(?)

PAINTSTRUCT	ends

;---	wingdi	definitions

DIB_RGB_COLORS		equ	0

SRCCOPY									equ	00CC0020h

HGDIOBJ		typedef	ptr

BITMAPINFOHEADER	struct

biSize										dword			?

biWidth									sdword		?

biHeight								sdword		?

biPlanes								word				?

biBitCount						word				?

biCompression			dword			?

biSizeImage					dword			?

biXPelsPerMeter	sdword		?

biYPelsPerMeter	sdword		?

biClrUsed							dword			?

biClrImportant		dword			?

BITMAPINFOHEADER	ends

				option	dllimport:<kernel32>

GetModuleHandleA	proto	:LPSTR

GetCommandLineA		proto

ExitProcess						proto	:UINT

				option	dllimport:<user32>

BeginPaint							proto	:HWND,	:ptr	PAINTSTRUCT

CreateWindowExA		proto	:dword,	:LPSTR,	:LPSTR,	:dword,	:sdword,	:sdword

DefWindowProcA			proto	:HWND,	:UINT,	:WPARAM,	:LPARAM

DestroyWindow				proto	:HWND

DispatchMessageA	proto	:ptr	MSG

EndPaint									proto	:HWND,	:ptr	PAINTSTRUCT

GetClientRect				proto	:HWND,	:ptr	RECT

GetMessageA						proto	:ptr	MSG,	:HWND,	:sdword,	:sdword

LoadBitmapA						proto	:HINSTANCE,	:LPSTR

LoadCursorA						proto	:HINSTANCE,	:LPSTR

LoadIconA								proto	:HINSTANCE,	:LPSTR

PostQuitMessage		proto	:sdword

RegisterClassExA	proto	:ptr	WNDCLASSEXA

ShowWindow							proto	:HWND,	:sdword

TranslateMessage	proto	:ptr	MSG

UpdateWindow					proto	:HWND

				option	DLLIMPORT:<gdi32>

BitBlt													proto	:HDC,	:dword,	:dword,	:dword,	:dword,	:HDC,	:

CreateCompatibleDC	proto	:HDC

DeleteDC											proto	:HDC

GetDIBits										proto	:HDC,	:HBITMAP,	:dword,	:dword,	:ptr,	:ptr	BITMAPINFO,	:

SelectObject							proto	:HDC,	:HGDIOBJ

				option	dllimport:none

WinMain	proto	:HINSTANCE,	:HINSTANCE,	:LPSTR,	:UINT

				.data

ClassName	db	"SimpleWinClass",0

AppName		db	"Bitmap	rendering",0

				.data?

hInstance	HINSTANCE	?

hBitmap			HBITMAP	?

CommandLine	LPSTR	?

				.code

WinMainCRTStartup	proc	FRAME

				invoke	GetModuleHandleA,	NULL

				mov				hInstance,	rax

				invoke	GetCommandLineA

				mov				CommandLine,	rax

				invoke	WinMain,	hInstance,	NULL,	CommandLine,	SW_SHOWDEFAULT

				invoke	ExitProcess,	eax

WinMainCRTStartup	endp

WinMain	proc	FRAME	hInst:HINSTANCE,	hPrevInst:HINSTANCE,	CmdLine:LPSTR,	CmdShow:UINT

				local	wc:WNDCLASSEXA

				local	msg:MSG

				local	hwnd:HWND

				invoke	LoadBitmapA,	hInst,	IDR_BITMAP1

				mov			hBitmap,	rax

				mov			wc.cbSize,	sizeof	WNDCLASSEXA

				mov			wc.style,	CS_HREDRAW	or	CS_VREDRAW

				lea			rax,	[WndProc]

				mov			wc.lpfnWndProc,	rax

				mov			wc.cbClsExtra,	NULL

				mov			wc.cbWndExtra,	NULL

				mov			rcx,	hInst

				mov			wc.hInstance,	rcx

				mov			wc.hbrBackground,	COLOR_WINDOW+1

				mov			wc.lpszMenuName,	IDR_MENU1

				lea			rax,	[ClassName]

				mov			wc.lpszClassName,	rax

				invoke	LoadIconA,	NULL,	IDI_APPLICATION

				mov			wc.hIcon,	rax

				mov			wc.hIconSm,	rax

				invoke	LoadCursorA,	NULL,	IDC_ARROW

				mov			wc.hCursor,rax

				invoke	RegisterClassExA,	addr	wc

				invoke	CreateWindowExA,	NULL,	ADDR	ClassName,	ADDR	AppName,

											WS_OVERLAPPEDWINDOW,	CW_USEDEFAULT,

											CW_USEDEFAULT,	CW_USEDEFAULT,CW_USEDEFAULT,	NULL,	NULL,

											hInst,	NULL

				mov			hwnd,rax

				invoke	ShowWindow,	hwnd,	SW_SHOWNORMAL

				invoke	UpdateWindow,	hwnd

				.while	(1)

								invoke	GetMessageA,	ADDR	msg,	NULL,	0,	0

								.break	.if	(!eax)

								invoke	TranslateMessage,	ADDR	msg

								invoke	DispatchMessageA,	ADDR	msg

				.endw

				mov			rax,	msg.wParam

				ret

WinMain	endp

WndProc	proc	FRAME	hWnd:HWND,	uMsg:UINT,	wParam:WPARAM,	lParam:LPARAM

local	hdc2:HDC

local	ps:PAINTSTRUCT

local	rect:RECT

local	bmi:BITMAPINFOHEADER

				.if	edx	==	WM_DESTROY

								invoke	PostQuitMessage,	NULL

								xor	rax,rax

				.elseif	edx	==	WM_COMMAND

								.if	wParam	==	IDM_EXIT

												invoke	DestroyWindow,	hWnd

								.endif

								xor	eax,	eax

				.elseif	edx	==	WM_PAINT

								invoke	BeginPaint,	hWnd,	addr	ps

								invoke	CreateCompatibleDC,	ps.hdc

								mov	hdc2,	rax

								invoke	SelectObject,	hdc2,	hBitmap

								mov	bmi.biSize,	sizeof	BITMAPINFOHEADER

								mov	bmi.biBitCount,	0

								invoke	GetDIBits,	hdc2,	hBitmap,	0,	0,	0,	addr	bmi,	DIB_RGB_COLORS

								invoke	GetClientRect,	hWnd,	addr	rect

								mov	r8d,	rect.right

								sub	r8d,	bmi.biWidth

								jnc	@F

								xor	r8d,	r8d

@@:

								shr	r8d,	1

								mov	r9d,	rect.bottom

								sub	r9d,	bmi.biHeight

								jnc	@F

								xor	r9d,	r9d

@@:

								shr	r9d,	1

								invoke	BitBlt,	ps.hdc,	r8d,	r9d,	bmi.biWidth,	bmi.biHeight,	hdc2,	0,	0,	SRCCOPY

								invoke	DeleteDC,	hdc2

								invoke	EndPaint,	hWnd,	addr	ps

								xor	eax,eax

				.else

								invoke	DefWindowProcA,	rcx,	edx,	r8,	r9

				.endif

				ret

WndProc	endp

if	1	;for	-pe

RT_BITMAP	equ	2

RT_MENU			equ	4

;---	menu	resource	flags

MF_POPUP			equ	10h

MF_END					equ	80h

IMAGE_RESOURCE_DIRECTORY	struct

Characteristics						dword	?

TimeDateStamp								dword	?

MajorVersion									word		?

MinorVersion									word		?

NumberOfNamedEntries	word		?

NumberOfIdEntries				word		?

IMAGE_RESOURCE_DIRECTORY	ends

IMAGE_RESOURCE_DIRECTORY_ENTRY	struct

union

r0						record	NameIsString:1,	NameOffset:31

Name_			dword			?

Id						word				?

ends

union

OffsetToData	dword			?

r1											record	 DataIsDirectory:1,	OffsetToDirectory:31

ends

IMAGE_RESOURCE_DIRECTORY_ENTRY	ends

IMAGE_RESOURCE_DATA_ENTRY	struct

OffsetToData	dword	?

Size_								dword	?

CodePage					dword	?

Reserved					dword	?

IMAGE_RESOURCE_DATA_ENTRY	ends

				option	dotname

.rsrc	segment	dword	FLAT	public	read	'RSRC'

;---	define	menu	IDR_MENU1	and	bitmap	IDR_BITMAP1

;---	root	level:	enum	the	resource	types

						IMAGE_RESOURCE_DIRECTORY	<0,0,0,0,0,2>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<RT_BITMAP>,	<SECTIONREL	bms			+	80000000h>	>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<RT_MENU>,			<SECTIONREL	menus	+	80000000h>	>

;---	second	level:	enum	the	IDs	of	resource	type	X

bms			IMAGE_RESOURCE_DIRECTORY	<0,0,0,0,0,1>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<IDR_BITMAP1>,	<SECTIONREL	bm1			+	80000000h>	>

menus	IMAGE_RESOURCE_DIRECTORY	<0,0,0,0,0,1>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<IDR_MENU1>,			<SECTIONREL	menu1	+	80000000h>	>

;---	third	level:	enum	the	languages	of	ID	X

bm1			IMAGE_RESOURCE_DIRECTORY	<0,0,0,0,0,1>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<409h>,	<SECTIONREL	bm1_l1>	>

menu1	IMAGE_RESOURCE_DIRECTORY	<0,0,0,0,0,1>

						IMAGE_RESOURCE_DIRECTORY_ENTRY	<	<409h>,	<SECTIONREL	m1_l1>	>

;---	last	level:	define	the	resource	data

;---	data	for	menu	IDR_MENU1,	language	409h

m1_l1	IMAGE_RESOURCE_DATA_ENTRY	<IMAGEREL	m1_l1_data,	size_m1_l1,	0,	0>

m1_l1_data	dw	0,0	 ;menu	header

				dw	MF_POPUP	or	MF_END,	'&','F','i','l','e',0

				dw	MF_END,	IDM_EXIT,			'E','&','x','i','t',0

size_m1_l1	equ	$	-	m1_l1_data

				align	4

;---	data	for	bitmap	IDR_BITMAP1

bm1_l1	IMAGE_RESOURCE_DATA_ENTRY	<IMAGEREL	bm1_l1_data,	size_bm1_l1,	0,	0>

bm1_l1_data	label	word

				incbin	<Win32_8.bmp>,14	 ;skip	bitmap	file	header

size_bm1_l1	equ	$	-	(bm1_l1_data)

.rsrc	ends

;---	set	/subsystem:windows

;---	the	PE	header	is	stored	in	section	.hdr$2

				option	dotname

.hdr$2	segment	dword	FLAT	public	'HDR'

				org	5Ch	;position	to	IMAGE_NT_HEADER64.OptionalHeader.Subsystem

				dw	2				;2=subsystem	windows

.hdr$2	ends

endif

end	WinMainCRTStartup

Appendix	C.	Errors	and	Warnings
The	warning	and	error	numbers	emitted	by	JWasm	differ	from	Masm's.
However,	the	texts	of	the	messages	are	pretty	much	identical.
As	in	Masm,	the	first	digit	shows	the	severity	of	the	issue:	range	1xxx	reports	a
fatal	error	(assembly	process	is	stopped),	range	2xxx	indicates	an	error	(
assembly	process	continues,	but	no	object	module	will	be	created)	and	4xxx	are
warnings.

x029
Multiple	base
registers	not
allowed

In	16-bit	code,	one	cannot	use	both	BX	and	BP	in
indirect	addressing;	in	32/64-bit	code,	ESP/RSP	can
only	appear	once	in	indirect	addressing.

x030

Instruction	or
register	not
accepted	in
current	CPU
mode

x031
Invalid	addressing
mode	with	current
CPU	setting

x032
Cannot	use	TRn-
TRn	with	current
CPU	setting

The	TRx	special	registers	were	restricted	to	80386	and
80486	cpus.

x033Must	be	index	or
base	register

x034
Multiple	index
registers	not
allowed

x035

x036 Scale	factor	mustbe	1,	2,	4	or	8

x037
Cannot	be	used	as
index	register:
<register>

Index	registers	are	restricted.	In	16-bit	mode,	only	SI
and	DI	can	be	index	registers.	In	32-bit	mode,	all
general-purpose	registers	except	ESP	can	be	index
registers.

Base	and	index

x038 register	differ	in
size

x039 Expecting	comma

x040
ORG	needs	a
constant	or	local
offset

x041 POP	CS	is	notallowed

x042
Only	MOV	can
use	special
register

The	special	registers	CRx,	DRx	and	TRx	can	only	be
moved	to/from	general	purpose	registers.

x043
Cannot	use
SHORT	with
CALL

Distance	of	CALL	operands	must	be	NEAR	or	FAR.

x044
Only	SHORT
jump	distance	is
allowed

Some	jump	instructions	accept	short	distances	only
(JCXZ,	JECXZ,	LOOPx).

x045 Syntax	error

x046
Prefix	must	be
followed	by	an
instruction

x047 Syntax	error:Unexpected	colon

x048

Operands	must	be
the	same	size:
<size	op1>	-	<size
op2>

x049 Invalid	instructionoperands

x050
Jump	distance	not
possible	in	current
CPU	mode

Jcc	instructions	won't	accept	type	coercions	that
increase	the	jump	distance	(i.e.	"jz	NEAR	PTR	label")
if	current	cpu	is	<	80386.

x051 Immediate	dataout	of	range
Can	not	use	short
or	near	modifiers

x052with	this
instruction

x053 Jump	out	of	rangeby	<num>	byte(s) A	short	distance	must	be	in	the	range	-128	to	+127.

x054
Displacement	out
of	range:
<displacement>

x055 Initializer	valuetoo	large

x056
Symbol	already
defined:
<symbol>

x057
Offset	magnitude
too	large	for
specified	size

x058
Magnitude	of
offset	exceeds	16
bit

x059Operand	2	too	big

x060Operand	1	toosmall
x061 Line	too	long Size	of	a	line	(after	concatenation)	is	restricted	to	600.

x062 Too	many	tokensin	a	line The	number	of	tokens	in	a	line	is	restricted	to	150.

x063

x064Operand	isexpected

x065Constant	expected

A	constant	(numeric)	value	is	expected	in	the	current
context.	Note	that	a	label	-	more	exactly:	the	offset	part
of	a	label's	address	-	is	not	a	constant	value,	since	the
final	value	is	calculated	by	the	linker	(or	the	OS
loader)	only.

x066Constant	operandis	expected
The	expression	evaluator	accepts	a	constant	only	in	the
current	context.

.ELSE	clause An	.IF	block	may	contain	0	or	1	.ELSE	clauses	and	it

x067 already	occured	in
this	.IF	block

must	be	the	last	clause	before	.ENDIF.

x068Multiple	overrides

x069
Segment,	group	or
segment	register
expected

The	operand	before	the	colon	operator	(:)	must	be	a
segment,	group	or	segment	register.

x070 Identifier	too	long

Identifer	names	are	restricted	to	247.	This	is	a	hard
limit	for	OMF	output	format.	For	other	formats,	the
limit	may	be	extended	by	adjusting	and	recompiling
the	source	code.

x071
Invalid	operand
size	for
instruction

x072Not	supported:<directive>

Message	is	displayed	if	one	of	the	follwing	options	is
specified:	OPTION	READONLY,	OPTION	EXPR16,
OPTION	OLDMACROS.	Those	are	currently	not
supported.

x073 Size	not	specified,assuming:	<type>

this	is	a	warning.	<type>	may	be	BYTE,	WORD	or
DWORD.	The	message	may	occur	if	an	immediate
value	is	written	to	an	untyped	memory	reference:

	

							mov	[ebx],	1

JWasm	makes	a	guess	and	displays	the	warning,	while
Masm	will	display	an	error	in	such	cases.

x074 Floating-pointinitializer	ignored

x075

Only	SHORT	and
NEAR	jump
distance	is
allowed

Conditional	jump	(Jcc)	instruction	destination	cannot
be	far.

x076

Initializer
magnitude	too
large	for	specified
size
Segment	attribute

x077 is	defined	already:
<attribute>

x078
Segment
definition
changed:	%s,	%s

x079Class	name	toolong Segment	class	names	are	restricted	to	255	in	size.

x080Block	nestingerror:	%s

x081 Segment	attributeis	unknown:	%s

x082Must	be	in
segment	block

Instructions	and	directives	that	generate	code	or	data
must	be	inside	a	segment	block.

x083
Segment	not
defined:
<segment>

x084Colon	is	expected

x085 Invalid	qualifiedtype:	%s

x086Qualified	type	isexpected
x087

x088 Library	name	ismissing

x089

Cannot	access
label	through
segment	registers:
<label>

x090
Line	too	long
after	expansion:
<line>

x091 Language	typemust	be	specified

x092

PROC,	MACRO
or	macro	loop
directive	must

precede	LOCAL

x093
Cannot	nest
procedures

x094
VARARG
requires	C	calling
convention

x095

Multiple
.MODEL
directives,
.MODEL	ignored

x096Model	is	not
declared

Without	a	model,	simplified	segment	directives	(
.CODE,	.DATA,	.CONST,	.DATA?,	.STACK,
.FARDATA	and	.FARDATA?)	and	directives
.STARTUP,	.EXIT	cannot	be	used.

x097
Backquote
missing:
`<identifier>

x098COMMENT
delimiter	expected

x099
END	directive
required	at	end	of
file

x100Nesting	level	toodeep

x101Macro	nesting
level	too	deep

x102
Symbol	not
defined	:
<symbol>

x103

x104No	filenamespecified.

x105Out	of	Memory

This	is	a	fatal	error.	With	the	8086-version	of	jwasm,
JWASMR,	you'll	see	this	error	if	you	try	to	assemble
something	that	contains	a	few	thousand	symbols.	The
32-	or	64-bit	versions	of	jwasm	should	always	have

enough	memory	on	modern	machines.

x106
Cannot	open	file:
"<file>"	[<error
code>]

Error	code	ENOENT	means	"file	not	found".	Other
error	codes	are	displayed	as	numbers

x107
Cannot	close	file:
<file>	[<error
code>]

x108
File	write	error:
<file>	[<error
code>]

Usually	happens	if	output	media	is	read-only	or	full.

x109
Invalid	command-
line	option:
<option>

x110
Internal	error	in
<source	file>
(<line>)

This	error	shouldn't	be	seen	in	the	release	version.	It's
displayed	if	the	internal	assert()	function	is	called,
which	usually	is	done	when	a	"virtually	impossible"
error	condition	has	occurred.

x111 Expecting	closingsquare	bracket

x112 Expecting	filename

x113 Too	many	errors Use	commandline	option	-e	to	set	the	max.	number	of
errors	that	are	displayed

x114 forced	error<message> Generic	"forced	error"	message

x115
forced	error:
Value	not	equal	to
0:	<value>	<text>

Error	emitted	by	the	.ERRNZ	directive.

x116
forced	error:
Value	equal	to	0:
<value>	<text>

Error	emitted	by	the	.ERRE	directive.

x117
forced	error:
symbol	defined:
<symbol>

Error	emitted	by	the	.ERRDEF	directive.

forced	error:
symbol	not

x118 defined:
<symbol>

Error	emitted	by	the	.ERRNDEF	directive.

x119
forced	error:
string	blank	:
<string>

Error	emitted	by	the	.ERRB	directive.

x120
forced	error:
string	not	blank	:
<string>

Error	emitted	by	the	.ERRNB	directive.

x121

forced	error:
strings	not	equal	:
<string>	:
<string>

Error	emitted	by	the	.ERRDIF	and	.ERRDIFI
directives.

x122

forced	error:
strings	equal	:
<string>	:
<string>

Error	emitted	by	the	.ERRIDN	and	.ERRIDNI
directives.

x123 <file>(<line>):Included	by
Additional	error	information	if	error	occured	in	an
include	file.

x124
<file>(<line>)
[<macro>]:	Macro
called	from

Additional	error	information	if	error	occured	inside	a
macro.

x125

<file>(<line>):
iteration
<iteration>:
Macro	called	from

Additional	error	information	if	error	occured	inside	a
loop	macro	(FOR,	FORC,	REPEAT,	...).

x126 <file>(<line>):Main	line	code
Additional	error	information	if	error	occured	inside	an
include	file	or	a	macro.

x127 Extending	jump

x128Directive	ignored:%s

x129 number	must	be	apower	of	2

x130
Incompatible	with
segment
alignment:	%s

x131 Segment
expected:	%s

x132
Incompatible
CPU	mode	for	32-
bit	segment

x133
Far	call	is
converted	to	near
call.

x134
CPU	option	%s	is
not	valid	for
selected	CPU.

x135
Segment	'%s'	is	in
another	group
already

x136 Symbol	typeconflict:	%s

x137
Conflicting
parameter
definition:	%s

x138

PROC	and
PROTO	calling
convention
conflict

x139Non-benign	%sredefinition:	%s

x140 Too	many	bits	inRECORD:	%s

x141

Statement	not
allowed	inside
structure
definition

x142Unmatched	blocknesting:	%s

x143 Symbolredefinition:	%s
x144 Text	item	required

x145
INVOKE
argument	type
mismatch:
argument	%u

x146
Too	few
arguments	to
INVOKE:	%s

x147
VARARG
parameter	must	be
last

x148 LABEL	parametermust	be	first

x149
Too	many
arguments	in
macro	call:	%s

This	is	a	warning.	Macro	is	invoked	with	more
arguments	than	expected.

x150Missing	operator
in	expression

x151
Unexpected	literal
found	in
expression:	%s

Literals	enclosed	in	<>	or	{}	are	items	processed	by
the	preprocessor	or	to	initialize	"structured"	data	items.
If	they're	used	otherwise,	this	error	will	occur.

x152
Initializer	must	be
a	string	or	single
item:	%s

x153
Too	many	initial
values	for
structure:	%s

x154
Too	many	initial
values	for	array:
%s

x155 String	or	textliteral	too	long

x156
PROLOGUE
must	be	macro
function

The	user-defined	prologue	macro	must	be	a	macro
function,	that	is,	there	must	be	an	EXITM	somewhere
inside	that	returns	a	literal.

x157
EPILOGUE	must
be	macro
procedure:	%s

The	user-defined	epilogue	macro	must	be	a	macro
procedure,	that	is,	there	must	NOT	be	an	EXITM
somewhere	inside	that	returns	a	literal.

x158Reserved	wordexpected

x159
INVOKE	requires
prototype	for
procedure

x160
Invalid	type	for
data	declaration:
%s

x161
Operand	must	be
RECORD	type	or
field

x162Unmatched	macronesting

x163 Empty	(null)string

x164
No	segment
information	to
create	fixup:	%s

x165
Register	value
overwritten	by
INVOKE

x166Missing	quotation
mark	in	string

x167Divide	by	zero	inexpression
x168General	Failure

x169

Cannot	have
implicit	far	jump
or	call	to	near
label

x170 Invalid	use	ofregister

x171
Distance	invalid
for	current
segment

x172 Initializer
magnitude	too
large:	%s

x173Cannot	add	tworelocatable	labels

x174
Cannot	define	as
public	or	external:
<symbol_name>

Text	macros,	macros,	stack	variables,	structure	fields
or	segment/groups	cannot	be	public	or	external.

x175 Positive	valueexpected

x176
FAR	not	allowed
in	FLAT	model
COMM	variables

x177
Too	many
arguments	to
INVOKE

x178
Directive	must
appear	inside	a
macro

x179 Invalid	typeexpression

x180

Cannot	declare
scoped	code	label
as	PUBLIC:
<label>

x181 Invalid	radix	tag

x182
Instruction
operand	must
have	size

The	instruction	allows	operands	with	more	than	just
one	size,	and	the	wanted	size	cannot	be	guessed	from
the	current	operands.

x183
Use	of	register
assumed	to
ERROR

x184

Instructions	and
initialized	data	not
supported	in
<seg_type>

<seg_type>	may	be	BSS	or	AT.	Such	segments	don't
have	data.

segments

x185 Literal	expectedafter	'='

x186
No	4k	Page-
aligned	segments
in	MS386	OMF

A	4K	page-aligned	segment	isn't	compatible	with	MS
OMF	format,	it's	a	Phar	Lab	extension.	This	warning
won't	appear	in	the	standard	version.

x187
x188Operand	must	be

relocatable

x189
Constant	or
relocatable	label
expected

x190

[ELSE]IF2/.ERR2
not	allowed,
single-pass
assembler

x191
Expression	too
complex	for
UNTILCXZ

x192Operands	must	bein	same	segment

x193
Invalid	use	of
external	symbol:
<symbol_name>

x194

For	-coff	leading
underscore
required	for	start
label:
<start_label>

x195
Invalid	command-
line	value,	default
is	used:	%s

x196

Unknown	fixup
type:	%u	at
<segment>.
<offset>

x197Unsupported
fixup	type	for
<format>:	<type>

x198

Invalid	fixup	type
for	<format>
<type>	at	location
<segment>.
<offset>

x199
Syntax	error	in
control-flow
directive

x200
Invalid	.model
parameter	for	flat
model

x201

Output	format
doesn't	support
externals:
<symbol>

In	formats	BIN	and	MZ	all	references	must	be	local	to
the	module.

x202 Invalid	start	labelfor	-bin

x203No	start	labeldefined

Warning,	format	MZ	only:	MZ-binaries	usually	have	a
start	label.	In	some	cases	(i.e.	overlays)	a	missing	start
label	may	be	ok.

x204No	stack	defined
Warning,	format	MZ	only:	MZ-binaries	usually	have	a
stack.	In	some	cases	(i.e.	overlays)	a	missing	stack
may	be	ok.

x205
Invalid	alignment
-	value	must	be
2^n	(n=4..15)

x206
Index	value	past
end	of	string:
<value>

The	index	argument	of	SUBSTR	or	INSTR	is	beyond
the	string	argument	length

x207Count	value	toolarge

x208Count	must	bepositive	or	zero

x209 Syntax	error:
<item>

The	parser	found	an	item	that	has	no	meaning	in	the
current	context

x210
x211

x212Must	use	floating-
point	initializer

x213ORG	directive	notallowed	in	unions

x214
Struct	alignment
must	be	1,	2,	4,	8,
16	or	32

x215 Structure	cannotbe	instanced
A	structure	that	has	size	0	or	that	contains	an	ORG
directive	cannot	be	instanced.

x216
Missing	angle
bracket	or	brace
in	literal

x217
Nondigit	in
number:
<number>

x218 16bit	fixup	for32bit	label:	%s

x219 Too	many	macroplaceholders
The	number	of	parameters	and	locals	for	a	macro	must
not	exceed	256

x220
Missing	macro
argument:	%s,
parameter	%u

x221
Doesn't	work	with
32-bit	segments:
<directive>

Directives	.STARTUP	and	.EXIT	work	for	16-bit	only.

x222 Segment	exceeds64k	limit:	%s In	MZ	format,	16-bit	segments	are	restricted	to	64k.

x223
Not	supported
with	OMF	format:
%s

Not	supported The	directive	or	feature	isn't	supported	by	all	formats.

x224with	current
output	format:	%s

For	example,	segment-related	directives	or	attributes
won't	make	much	sense	for	flat	formats	like	COFF	or
ELF.

x225
Unknown	default
prologue
argument:	%s

x226 LOADDS	ignoredin	flat	model

x227
Missing	right
parenthesis	in
expression

x228
Invalid	operand
for	<operator>:
<operand>

x229
Structure
improperly
initialized:	%s

x230 Expected:	%s

x231 Invalid	datainitializer

x232 Expected	datalabel
Some	operators	(LENGTH,	SIZE)	work	with	data
labels	only.

x233 Expression	mustbe	a	code	address

x234
-n	Option	needs	a
valid	name
parameter

x235Constant	valuetoo	large:	<value>
the	value	of	the	constant	doesn't	fit	in	64	or	-	if	it	is	a
number	to	be	assigned	to	a	symbolic	constant	-	32	bits.

x236
Text	macro	was
used	before
definition

this	is	a	warning	only.	However,	using	text	macros
before	they	have	been	defined	will	force	JWasm	to	do
a	full	second	pass,	which	increases	assembly	time.

x237
Offset	size
incompatible	with
current	segment
Instruction	form

x238 requires	80386

x239

Group/Segment
offset	size
conflict:	<group
offset>	-
<segment	offset>

Segments	within	a	group	must	all	have	the	same	offset
size.

x240Assembly	passesreached:	<passes>

Although	this	is	a	warning	only	it	usually	indicates	a
severe	problem.	The	assembler	is	very	probably	unable
to	calculate	"final"	values	of	all	labels	and	has	to	be
terminated	by	pressing	Ctrl-C.

x241

Filename
parameter	must	be
enclosed	in	<>	or
quotes

The	INCBIN	directive	requires	delimiters	for	its
filename.

x242

Start	address	on
END	directive
ignored	with
.STARTUP

x243

Invalid	symbol
type	in
expression:
<symbol>

The	expression	evaluator	has	encountered	a	symbol
that	is	meaningless	in	expressions,	for	example	a	(text)
macro.

x244Missing	right
parenthesis

x245Directive	must	bein	control	block

.ELSE,	.ELSEIF	and	.ENDIF	are	valid	inside	.IF-
blocks,	.BREAK,	.CONTINUE	may	occur	inside
.WHILE-	or	.REPEAT-blocks,	.ENDW	needs	a
preceding	.WHILE	and	.UNTIL	needs	a	preceding
.REPEAT.

x246 Expected:memory	model
the	.MODEL	directive	needs	at	least	one	parameter,
the	memory	model.

x247 Type	is	wrongsize	for	register

x248
IF[n]DEF	expects
a	plain	symbol	as
argument

this	is	a	warning.	Masm	accepts	any	expression	as
argument	for	directives	[ELSE]IF[N]DEF,	but	the
result	probably	isn't	always	what	has	been	expected.

x249
Jump	destination
must	specify	a
label

x250 Ignored:<attribute>

An	attribute	or	parameter	of	a	directive	was	found,	but
not	handled.	See	Known	Bugs	and	missing	Features
for	details	about	what	features	aren't	implemented	yet.

x251Missing	argument
for	cmdline	option

x252
Invalid
coprocessor
register

x253

Registers	AH-DH
may	not	be	used
with	SPL-DIL	or
R8-R15

64-bit	only.

x254
.ENDPROLOG
found	before	EH
directives

64-bit	only.

x255

Missing	FRAME
in	PROC,	no
unwind	code	will
be	generated

64-bit	only.

x256
Bad	alignment	for
offset	in	unwind
code

64-bit	only.

x257Nonzero	valueexpected

x258
Size	of	prolog	too
big,	must	be	<
256	bytes

64-bit	only.

x259
Missing
.ENDPROLOG:
%s

64-bit	only.

x260
.SAFESEH
argument	must	be
a	PROC

x261Directive	ignored
without	-%s
switch

x262

ELF	GNU
extensions	(8/16-
bit	relocations)
used

This	is	a	warning	only.	The	extensions	are	not
"official",	but	the	GNU	linker	LD	will	understand
them.

x263 Syntax	error	inexpression

x264Macro	label	not
defined:	%s

The	target	of	a	GOTO	must	be	within	the	very	same
macro.

x265

Procedure
argument	or	local
not	referenced:
%s

This	warning	is	displayed	only	if	at	least	-W3	is
specified.

x266

Group	definition
too	large,
truncated:
<group_name>

The	size	of	the	OMF	record	that	is	to	define	a	group
would	exceed	4	kB.	However,	to	see	this	error	you'll
have	to	define	a	group	that	is	to	comprise	more	than
1000	segments,

x267
COMM	variable
exceeds	64K:
<variable>

in	16-bit,	the	size	of	a	COMM	variable	is	restricted	to
64	kB.

x268Must	be	public	or
external:	%s

Names	that	are	to	be	known	by	the	linker	must	be
public	or	external.

x269
parameter/local
name	is	reserved
word:	%s

This	is	a	warning.	The	names	of	macro	parameters	or
locals	have	highest	priority	and	hence	the	reserved
word	will	become	inaccessible	within	the	macro.

x270
real	or	BCD
number	not
allowed

x271 structure	fieldexpected

x272Constant	valuetoo	large:	<value>
the	value	of	the	constant	doesn't	fit	in	64	or	-	if	it	is	a
number	to	be	assigned	to	a	symbolic	constant	-	32	bits.

x273
ELSE	clause
already	occured	in An	IF	block	may	contain	0	or	1	ELSE	clauses	and	itmust	be	the	last	clause	before	ENDIF.

this	IF	block

x274 Illegal	use	ofsegment	register

x275Group	exceeds64K:	<group>

MZ	format	only:	a	group	that	contains	16-bit	segments
cannot	be	larger	than	64	kB,	because	the	group	must	fit
into	a	physical	segment.

x276 EXPORT	must	beFAR:	<symbol>
A	16-bit	procedure	that	is	to	be	exported	must	be
declared	with	the	FAR	distance	attribute.

Appendix	D.	Differences	between
Masm	6	and	Masm	8
This	is	not	strictly	JWasm-related,	but	since	a	lot	of	documentation	that	can	be
found	about	Masm	still	refers	to	Masm	v6	or	Masm	v6.1	only,	it's	useful	to	list
the	differences.

default	output	format	has	been	changed	from	OMF	to	COFF	in	Masm	8.
expression	evaluator	calculations	are	done	in	64-bit	instead	of	32-bit.	This
is	not	always	reflected	in	the	listing	file,	where	the	values	may	be	truncated
to	32-bit.
some	segment	attributes	have	been	added	in	Masm	8	to	cover	the	COFF
section	attribute	bits.	These	are:

INFO
DISCARD
NOCACHE
NOPAGE
SHARED
EXECUTE
READ
WRITE
ALIAS
ALIGN

the	-safeseh	commandline	option	and	the	.SAFESEH	directive	have	been
added	in	Masm	8.
Masm	8	understands	a	few	new	data	types:

OWORD	-	128-bit	integer
MMWORD	-	64-bit	data	type	for	MMX
XMMWORD	-	128-bit	data	type	for	SSE

several	unary	operators	are	new	for	Masm	8:
LOW32	-	returns	the	lower	32-bit	of	an	expression
HIGH32	-	returns	the	upper	32-bit	of	an	expression
IMAGEREL	-	returns	the	image	relative	offset	of	an	expression	(aka
RVA).	COFF	format	only.
SECTIONREL	-	returns	the	section	relative	offset	of	an	expression.

COFF	format	only.
Please	note:	LOW32	and	HIGH32	operators	won't	accept	plain	numbers
with	values	that	exceed	32-bits.
Masm	8	understands	instruction	sets	up	to	SSE3.	The	last	version	of	Masm
6,	version	6.15,	supports	SSE2	only.	Masm	8	also	understands	Intel's	VMX
and	AMD's	SVM	extensions	(x86	virtualization).
Masm	8	needs	at	least	Windows	2000,	it	won't	run	on	Windows	9x	(without
hacks).
Masm	8	needs	a	MS	VC	runtime	dll	-	MSVCR80.DLL	-	to	run,	while
Masm	6	was	a	stand-alone	binary.
Finally,	Masm	8	fixes	some	bugs	and	introduces	a	few	new	ones.	One	of	the
new	bugs	is	that	Masm	8	has	problems	with	wildcards	in	filenames;
entering

ml.exe	-c	*.asm

to	assemble	all	assembly	files	in	a	directory	won't	work	as	expected.

Appendix	E.	Restrictions	of
precompiled	16-bit	Binary
JWASMR.EXE
JWASMR	lacks	some	features	of	the	other	precompiled	binaries:

no	support	for	long	filenames.
no	support	for	Open	Watcom's	fastcall	register	convention.
supports	OMF,	BIN	and	MZ	output	formats	only.
no	support	for	64-bit,	SSSE3,	SSE4	and	AVX.
no	support	for	OPTION	variants	that	are	specific	for	COFF,	ELF	or	64-bit.
no	support	for	OPTION	CODEVIEW	directive.
no	support	for	directive	LABEL's	array	size	syntax	extension.

Since	the	JWasm	source	is	available,	one	may	enable	this	or	that	feature	if	really
needed,	though.

Appendix	F.	Additional	Features	of
JWasm's	Debug	Version
Note:	there	are	no	precompiled	debug	versions	of	JWasm	available.	Such
versions	have	to	be	created	from	the	source	code.	See	the	comments	in	the
makefiles	how	to	do	that.

The	debug	version	offers	the	following	additional	commandline	options:
-af Display	all	files	used	in	assembly	process
-ce Cause	an	exception
-dm Display	all	messages
-dr Display	reserved	words
-drh Display	reserved	words	hash	table
-ds Display	global	symbols
-dsh Display	global	symbols	hash	table
-dt Display	debug	trace
-ls Display	preprocessed	line	storage
-nbp Disable	back-patching
-nfp Do	full	subsequent	passes	(disables	"fastpass")
-pm=<n> Stop	assembly	after	n	passes
-sp Skip	preprocessor	step

Asmc	Macro	Assembler	Reference

OPTION	CSTACK

OPTION	CSTACK:[ON	|	OFF]

The	CSTACK	option	control	the	stack-frame	creation	by	invoke.
The	default	setting	is	OFF.

Example

	 OPTION	CSTACK:	ON

	 cstack	PROC	USES	esi	edi	ebx	arg

	 sub	 esp,arg

	 ret

	 cstack	ENDP

	 OPTION	CSTACK:	OFF

	 astack	PROC	USES	esi	edi	ebx	arg

	 sub	 esp,arg

	 ret

	 astack	ENDP

Generated	code

	 cstack	PROC	USES	esi	edi	ebx	arg

	 push	 esi

	 push	 edi

	 push	 ebx

	 push	 ebp

	 mov	 ebp,esp

	 sub	 esp,arg

	 leave

	 pop	 ebx

	 pop	 edi

	 pop	 esi

	 retn	 4

	 cstack	ENDP

	 OPTION	CSTACK:	OFF

	 astack	PROC	USES	esi	edi	ebx	arg

	 push	 ebp

	 mov	 ebp,esp

	 push	 esi

	 push	 edi

	 push	 ebx

	 sub	 esp,arg

	 pop	 ebx

	 pop	 edi

	 pop	 esi

	 leave

	 retn	4

	 astack	ENDP

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

OPTION	SWITCH

OPTION	SWITCH:[C	|	PASCAL	|	TABLE	|	NOTABLE	|	NOREGS	|	REGAX	|	NOTEST]

The	switch	comes	in	two	main	types:	a	structured	switch	(Pascal)	or	an
unstructured	switch	(C).	The	default	type	is	unstructured.

The	TABLE	and	NOTABLE	options	control	the	jump-table	creation	in	the
switch.	The	default	setting	is	NOTABLE.

The	NOREGS	and	REGAX	options	control	the	usage	of	registers	in	jump-table
creation	in	the	switch.	The	default	setting	is	NOREGS.

The	NOTEST	option	is	short	lived	and	skips	the	range-test	in	the	jump	code.	The
option	is	turned	off	after	usage.

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

OPTION	WSTRING

OPTION	WSTRING:[ON	|	OFF]

This	toggles	ascii/unicode	string	creation	of	"quoted	strings".

Unicode	strings	may	be	used	in	the	@CStr()	macro,	in	function	calls,	or
decleared	using:

DW	"string",0

The	default	value	is	OFF.	The	command-line	switch	/ws	turns	this	option	ON.

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

Asmc	Fatal	Error	Messages

A1000	cannot	open	file	:	filename
A1001	I/O	error	closing	file	:	filename
A1002	I/O	error	writing	file	:	filename
A1005	assembler	limit	:	macro	parameter	name	table	full
A1006	invalid	command-line	option:	option
A1007	nesting	level	too	deep
A1008	unmatched	macro	nesting
A1009	line	too	long
A1010	unmatched	block	nesting:	
A1011	directive	must	be	in	control	block
A1012	error	count	exceeds	100;	stopping	assembly
A1017	missing	source	filename
A1901	Internal	Assembler	Error

See	Also

Asmc	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	Messages

ML	compatible	errors

ML	Nonfatal	Error	A2004
ML	Nonfatal	Error	A2005
ML	Nonfatal	Error	A2006
ML	Nonfatal	Error	A2007
ML	Nonfatal	Error	A2008
ML	Nonfatal	Error	A2009
ML	Nonfatal	Error	A2010
ML	Nonfatal	Error	A2011
ML	Nonfatal	Error	A2012
ML	Nonfatal	Error	A2013
ML	Nonfatal	Error	A2014
ML	Nonfatal	Error	A2015
ML	Nonfatal	Error	A2016
ML	Nonfatal	Error	A2018
ML	Nonfatal	Error	A2019
ML	Nonfatal	Error	A2022
ML	Nonfatal	Error	A2023
ML	Nonfatal	Error	A2024
ML	Nonfatal	Error	A2025
ML	Nonfatal	Error	A2026
ML	Nonfatal	Error	A2028
ML	Nonfatal	Error	A2029
ML	Nonfatal	Error	A2030
ML	Nonfatal	Error	A2031
ML	Nonfatal	Error	A2032
ML	Nonfatal	Error	A2033
ML	Nonfatal	Error	A2034
ML	Nonfatal	Error	A2036
ML	Nonfatal	Error	A2037
ML	Nonfatal	Error	A2039
ML	Nonfatal	Error	A2041
ML	Nonfatal	Error	A2043
ML	Nonfatal	Error	A2045

ML	Nonfatal	Error	A2046
ML	Nonfatal	Error	A2047
ML	Nonfatal	Error	A2048
ML	Nonfatal	Error	A2050
ML	Nonfatal	Error	A2051
ML	Nonfatal	Error	A2052
ML	Nonfatal	Error	A2053
ML	Nonfatal	Error	A2054
ML	Nonfatal	Error	A2055
ML	Nonfatal	Error	A2056
ML	Nonfatal	Error	A2057
ML	Nonfatal	Error	A2058
ML	Nonfatal	Error	A2059
ML	Nonfatal	Error	A2060
ML	Nonfatal	Error	A2061
ML	Nonfatal	Error	A2062
ML	Nonfatal	Error	A2063
ML	Nonfatal	Error	A2064
ML	Nonfatal	Error	A2065
ML	Nonfatal	Error	A2066
ML	Nonfatal	Error	A2068
ML	Nonfatal	Error	A2070
ML	Nonfatal	Error	A2071
ML	Nonfatal	Error	A2072
ML	Nonfatal	Error	A2074
ML	Nonfatal	Error	A2075
ML	Nonfatal	Error	A2076
ML	Nonfatal	Error	A2077
ML	Nonfatal	Error	A2079
ML	Nonfatal	Error	A2080
ML	Nonfatal	Error	A2081
ML	Nonfatal	Error	A2082
ML	Nonfatal	Error	A2083
ML	Nonfatal	Error	A2084
ML	Nonfatal	Error	A2085
ML	Nonfatal	Error	A2086
ML	Nonfatal	Error	A2087
ML	Nonfatal	Error	A2088
ML	Nonfatal	Error	A2089

ML	Nonfatal	Error	A2090
ML	Nonfatal	Error	A2091
ML	Nonfatal	Error	A2092
ML	Nonfatal	Error	A2093
ML	Nonfatal	Error	A2094
ML	Nonfatal	Error	A2095
ML	Nonfatal	Error	A2096
ML	Nonfatal	Error	A2097
ML	Nonfatal	Error	A2098
ML	Nonfatal	Error	A2100
ML	Nonfatal	Error	A2101
ML	Nonfatal	Error	A2103
ML	Nonfatal	Error	A2104
ML	Nonfatal	Error	A2105
ML	Nonfatal	Error	A2107
ML	Nonfatal	Error	A2108
ML	Nonfatal	Error	A2110
ML	Nonfatal	Error	A2111
ML	Nonfatal	Error	A2112
ML	Nonfatal	Error	A2113
ML	Nonfatal	Error	A2114
ML	Nonfatal	Error	A2119
ML	Nonfatal	Error	A2120
ML	Nonfatal	Error	A2121
ML	Nonfatal	Error	A2123
ML	Nonfatal	Error	A2125
ML	Nonfatal	Error	A2129
ML	Nonfatal	Error	A2131
ML	Nonfatal	Error	A2132
ML	Nonfatal	Error	A2133
ML	Nonfatal	Error	A2136
ML	Nonfatal	Error	A2141
ML	Nonfatal	Error	A2142
ML	Nonfatal	Error	A2143
ML	Nonfatal	Error	A2144
ML	Nonfatal	Error	A2145
ML	Nonfatal	Error	A2147
ML	Nonfatal	Error	A2148
ML	Nonfatal	Error	A2151

ML	Nonfatal	Error	A2154
ML	Nonfatal	Error	A2156
ML	Nonfatal	Error	A2157
ML	Nonfatal	Error	A2159
ML	Nonfatal	Error	A2166
ML	Nonfatal	Error	A2167
ML	Nonfatal	Error	A2169
ML	Nonfatal	Error	A2170
ML	Nonfatal	Error	A2172
ML	Nonfatal	Error	A2175
ML	Nonfatal	Error	A2178
ML	Nonfatal	Error	A2179
ML	Nonfatal	Error	A2181
ML	Nonfatal	Error	A2187
ML	Nonfatal	Error	A2189
ML	Nonfatal	Error	A2190
ML	Nonfatal	Error	A2199
ML	Nonfatal	Error	A2200
ML	Nonfatal	Error	A2202
ML	Nonfatal	Error	A2206
ML	Nonfatal	Error	A2214
ML	Nonfatal	Error	A2217

Non	ML	compatible	errors

ASMC	Nonfatal	Error	A3000
ASMC	Nonfatal	Error	A3001
ASMC	Nonfatal	Error	A3002
ASMC	Nonfatal	Error	A3003
ASMC	Nonfatal	Error	A3004
ASMC	Nonfatal	Error	A3005
ASMC	Nonfatal	Error	A3006
ASMC	Nonfatal	Error	A3007
ASMC	Nonfatal	Error	A3008
ASMC	Nonfatal	Error	A3009
ASMC	Nonfatal	Error	A3010
ASMC	Nonfatal	Error	A3011
ASMC	Nonfatal	Error	A3012
ASMC	Nonfatal	Error	A3013

ASMC	Nonfatal	Error	A3014
ASMC	Nonfatal	Error	A3015
ASMC	Nonfatal	Error	A3016
ASMC	Nonfatal	Error	A3017
ASMC	Nonfatal	Error	A3018
ASMC	Nonfatal	Error	A3019
ASMC	Nonfatal	Error	A3020
ASMC	Nonfatal	Error	A3021
ASMC	Nonfatal	Error	A3022

See	Also

Asmc	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	Messages

ML	compatible	warnings

ML	Warning	A4003
ML	Warning	A4005
ML	Warning	A4006
ML	Warning	A4007
ML	Warning	A4008
ML	Warning	A4011
ML	Warning	A4012
ML	Warning	A4910

ML	compatible	level	3	warnings

ML	Warning	A6003
ML	Warning	A6004
ML	Warning	A6005

Non	ML	compatible	warnings

ASMC	Warning	A8000
ASMC	Warning	A8001
ASMC	Warning	A8002
ASMC	Warning	A8003
ASMC	Warning	A8004
ASMC	Warning	A8005
ASMC	Warning	A8006
ASMC	Warning	A8007
ASMC	Warning	A8008
ASMC	Warning	A8009
ASMC	Warning	A8010
ASMC	Warning	A8011
ASMC	Warning	A8012
ASMC	Warning	A8013
ASMC	Warning	A8014
ASMC	Warning	A8015
ASMC	Warning	A8017

ASMC	Warning	A8018
ASMC	Warning	A8019
ASMC	Warning	A8020

Non	ML	compatible	level	3	warnings

ASMC	Warning	A7000
ASMC	Warning	A7001
ASMC	Warning	A7002
ASMC	Warning	A7003
ASMC	Warning	A7004
ASMC	Warning	A7005
ASMC	Warning	A7006
ASMC	Warning	A7007
ASMC	Warning	A7008

See	Also

Asmc	Error	Messages

Asmc	Macro	Assembler	Reference

Parsing	of	labels

All	expansions	are	pre-processed	by	the	assembler	and	this	may	expand	macros
and	other	directives	before	labels.	If	a	macro	is	added	at	the	same	line	as	a	label
this	may	fail.

Example

foo	 macro	 reg

	 bswap	 reg

	 exitm	 <reg>

	 endm

do:	 mov	 eax,foo(eax)

	 ...

	 mov	 ecx,"3210"

	 jmp	 do

As	a	result	the	code	produced	by	the	macro	will	be	expanded	above	the	label	and
thus	the	jump	will	fail.

	 bswap	 ecx

do:	 mov	 eax,ecx

	 ...

Asmc	will	expand	the	line	left	to	right	in	this	case.

See	Also

Asmc	Extensions

Asmc	Macro	Assembler	Reference

Expansion	of	macros

The	label	issue	becomes	a	problem	in	the	HLL	section	where	labels	are	created
later:

	 .WHILE	 macro(...)

Asmc	will	for	this	reason	delay	expansion	of	macros	in	some	of	the	HLL
directives	until	labels	are	created.	This	include	.WHILE,	.ELSEIF,	and	.CASE.

See	Also

Asmc	Extensions

Asmc	Macro	Assembler	Reference

The	invoke	directive

In	Asmc	a	macro	is	handled	at	the	same	level	as	a	procedure.	The	header	file
may	then	control	the	expansion:

ifdef	__INLINE__

	 strlen	 macro	string

	 	 ...

	 	 endm

else

	 strlen	 proto	:dword

endif

This	is	achieved	by	simply	excluding	invoke	as	appose	to	allow	invocations	of
macros.

	 strlen(esi)

Asmc	sees	the	combination	of	a	procedure	followed	by	an	open	bracket	as
invoke.	Empty	brackets	will	be	given	special	handling	if	the	token	in	front	is	not
a	macro.

plabel	 proto

extern	 elabel:dword

	 .data

dlabel	 label	dword

	 .code

clabel:

	 call	 ax

	 call	 eax

	 call	 plabel

	 call	 elabel

	 call	 dlabel

	 call	 clabel

	 call	 xlabel

	 ax()

	 eax()

	 plabel()

	 elabel()

	 dlabel()

	 clabel()

	 xlabel()

xlabel:

This	simple	solution	avoids	breaking	any	existing	code	with	a	few	exceptions:
Masm	allows	brackets	to	access	memory.

	 .if	edx	<	foo(1)

	 ;	MASM:	cmp	edx,foo+1

	 ;	ASMC:	invoke	foo,	1	:	cmp	edx,eax

So	square	brackets	should	be	used	for	accessing	memory	and	round	brackets	to
execute.	However,	an	error	must	then	be	issued	if	Asmc	extensions	are	turned
off	and	labels	are	accessed	using	round	brackets	to	ensure	compatibility.

The	inside	of	brackets	may	be	recursive	used	at	any	length	including	C-strings.
However,	the	return	code	for	a	procedure	is	[R|E]AX	so	there	is	a	limit	with
regards	to	OR/AND	testing	of	nested	functions.

	 .if	foo(bar(1),	2)	==	TRUE

See	Also

Asmc	Extensions

Asmc	Macro	Assembler	Reference

The	HLL	section

Asmc	extensions	are	allowed	in	the	following	conditional	control	flow
directives:

.IF	expression

.ELSEIF	expression

.UNTIL	expression

.WHILE	expression

.BREAK	.IF	expression

.CONTINUE	.IF	expression

.SWITCH	proc(...)

.CASE	expression

.ENDC	.IF	expression

.ASSERT	expression

See	Also

Asmc	Extensions

Asmc	Macro	Assembler	Reference

Handling	of	strings

Given	"quoted	strings"	may	be	used	as	arguments,	or	in	general	as	a	const	value,
C-strings	are	limited	to	be	used	inside	brackets	of	a	procedure.

	 .if	fopen("readme.txt",	"rt")

See	Also

Asmc	Extensions	|	Symbols	Reference

Asmc	Macro	Assembler	Reference

Enhanced	vector	extension

From	version	2.26	Asmc	support	the	Intel	AVX-512	instruction	set.

This	includes	12	new	128-bit	registers	(XMM16	to	XMM31),	12	new	256-bit
registers	(YMM16	to	YMM31),	32	new	512-bit	registers	(ZMM0	to	ZMM31),
and	8	new	opmask	registers	(K0	to	K7).

The	EVEX	encoding	prefix	will	be	omitted	by	using	an	EVEX	exclusive
instruction	or	any	of	the	extended	SIMD	registers.	A	preceding	prefix	({evex})
may	be	used	for	EVEX	encoding	of	other	instructions.

				vcomisd	xmm0,xmm1								;	normal

				vcomisd	xmm0,xmm16							;	prefix	(auto)

				{evex}	vcomisd	xmm0,xmm1	;	prefix

See	Also

Asmc	Extensions	|	Instruction	Sets

Asmc	Macro	Assembler	Reference

OPTION	ASMC

OPTION	ASMC:[ON	|	OFF	|	0..255]

This	controls	the	main	extension	of	Asmc.	The	default	value	is	ON.	The
command-line	switch	/Xc	turns	this	option	OFF.

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

OPTION	LOOPALIGN

OPTION	LOOPALIGN:[0|2|4|8|16]

This	controls	the	alignment	for	.WHILE	and	.REPEAT	labels.	The	default	value
is	0.

	 jmp	loop_start

*	 ALIGN	<loopalign>	;	align	label	after	jump

	 loop_label:

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

OPTION	CASEALIGN

OPTION	CASEALIGN:[0|2|4|8|16]

This	controls	the	alignment	for	.CASE	labels.	The	default	value	is	0.

*	 ALIGN	<casealign>	;	align	label	after	jump

	 case:

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

.IF

.IF	condition1

			statements

			[[.ELSEIF	condition2

						statements]]

			[[.ELSE

						statements]]

			.ENDIF

Generates	code	that	tests	condition1	(for	example,	AX	>	7)	and	executes	the
statements	if	that	condition	is	true.	If	a	.ELSE	follows,	its	statements	are
executed	if	the	original	condition	was	false.	Note	that	the	conditions	are
evaluated	at	run	time.

See	Also

Directives	Reference	|	Flag	conditions	|	Signed	compare	|	Return	code

Asmc	Macro	Assembler	Reference

.WHILE

.WHILE	condition

			statements

			.ENDW

Generates	code	that	executes	the	block	of	statements	while	condition	remains
true.

See	Also

Directives	Reference	|	Flag	conditions	|	Signed	compare	|	Return	code

Asmc	Macro	Assembler	Reference

.REPEAT

.REPEAT

			statements

			.UNTIL	condition

Generates	code	that	repeats	execution	of	the	block	of	statements	until	condition
becomes	true.	.UNTILCXZ,	which	becomes	true	when	CX	is	zero,	may	be
substituted	for	.UNTIL.	The	condition	is	optional	with	.UNTILCXZ.

See	Also

Directives	Reference	|	Signed	compare	|	Return	code

Asmc	Macro	Assembler	Reference

.UNTILCXZ

See	.REPEAT

See	Also

Directives	Reference,	.UNTILAXZ,	.UNTILBXZ,	.UNTILDXZ

Asmc	Macro	Assembler	Reference

.BREAK

.BREAK(n)	[[.IF	condition]]

Generates	code	to	terminate	a	.WHILE	or	.REPEAT	block	if	condition	is	true.

BREAK[(n)]	is	optional	nesting	level	to	terminate.

				.while	1

								.break										;	break	.while	1

								.while	2

								.break(1)							;	break	.while	1

								.while	3

												.break(2)			;	break	.while	1

												.while	4

																.break(3)			;	break	.while	1

																.break(2)			;	break	.while	2

																.break(1)			;	break	.while	3

												.endw

								.endw

								.endw

				.endw

See	Also

Directives	Reference	|	.CONTINUE

Asmc	Macro	Assembler	Reference

.CONTINUE

.CONTINUE[([0]1..n)]	[[.IF	condition]]

Generates	code	to	jump	to	the	top	of	a	.WHILE	or	.REPEAT	block	if	condition
is	true.

.CONTINUE[(1..n)]	is	optional	nesting	level	to	continue.

				.while	1

								.continue															;	continue	.while	1

								.while	2

								.continue(1)												;	continue	.while	1

								.while	3

												.continue(2)								;	continue	.while	1

												.while	4

																.continue(3)				;	continue	.while	1

																.continue(2)				;	continue	.while	2

																.continue(1)				;	continue	.while	3

												.endw

								.endw

								.endw

				.endw

.CONTINUE[(0[1..n])]	jump's	directly	to	START	label:	no	TEST.

				.while	1

								.continue(0)				;	Jump	to	START	label

								.continue							;	Jump	to	START	label

				.endw

				.while	eax

								.continue(0)				;	Jump	to	START	label

								.continue							;	Jump	to	TEST	label

				.endw

				.repeat

								.continue(0)				;	Jump	to	START	label

								.continue							;	Jump	to	EXIT	label

								.break										;	Jump	to	EXIT	label

				.until	1

See	Also

Directives	Reference	|	.BREAK

Asmc	Macro	Assembler	Reference

.FOR

.FOR[S]	[initialization]	:	[condition]	:	[increment/decrement]

			statements

			.ENDF

Generates	code	that	executes	the	block	of	statements	while	condition	remains
true.

See	Also

Directives	Reference	|	Flag	conditions	|	Signed	compare	|	.ENDF

Asmc	Macro	Assembler	Reference

.SWITCH

The	switch	comes	in	three	main	variants:	a	structured	switch,	as	in	Pascal,	which
takes	exactly	one	branch,	an	unstructured	switch,	as	in	C,	which	functions	as	a
type	of	goto,	and	a	control	table	switch	with	the	added	possibility	of	testing	for
combinations	of	input	values,	using	boolean	style	AND/OR	conditions,	and
potentially	calling	subroutines	instead	of	just	a	single	set	of	values.

The	control	table	switch	is	declared	with	no	arguments	and	each	.CASE	directive
does	all	the	testing.

				.switch

						.case	strchr(esi,	'<')

						.case	strchr(esi,	'>')

	 				jmp	around

						...

				.endsw

The	unstructured	switch	works	as	a	regular	C	switch	where	each	.CASE
directive	is	just	a	label.

				.switch	eax

						.case	0:	.repeat	:	movsb

						.case	7:	movsb

						.case	6:	movsb

						.case	5:	movsb

						.case	4:	movsb

						.case	3:	movsb

						.case	2:	movsb

						.case	1:	movsb	:	.untilcxz

				.endsw

The	structured	switch	works	as	a	regular	Pascal	switch	where	each	.CASE
directive	is	a	closed	branch.

				.switch	eax

						.case	1:	printf("Gold	medal")

						.case	2:	printf("Silver	medal")

						.case	3:	printf("Bronze	medal")

						.default

	 		printf("Better	luck	next	time")

				.endsw

See	Also

Directives	Reference

Asmc	Macro	Assembler	Reference

.CASE

Case	opens	a	case	statement.	The	case	statement	compares	the	value	of	an
ordinal	expression	to	each	selector,	which	can	be	a	constant,	a	subrange,	or	a	list
of	them	separated	by	commas.

The	selector	field	is	separated	from	action	field	by	Colon	or	a	new	line.

	 .CASE	1:	mov	ax,2	:	.ENDC

	 .CASE	2

	 						mov	ax,3

	 						.ENDC

	 .CASE	al

	 .CASE	0,1,4,7

	 .CASE	0..9

In	the	control	table	switch	.CASE	is	equal	to	.IF:

	 .CASE	al

	 .CASE	ax	<=	2	&&	!bx

See	Also

.SWITCH	|	.ENDC	|	.DEFAULT	|	.ENDSW

Asmc	Macro	Assembler	Reference

.ENDC

.ENDC	closes	a	.CASE	statement.

The	name	was	separated	from	BREAK	to	have	more	flexibility	with	regards	to
control	flow	of	loops.	However,	ENDC	have	the	same	qualities	as	BREAK	and
thus	can	be	used	in	combination	with	.IF:

	 .ENDC	.IF	al	==	2

See	Also

.SWITCH	|	.CASE	|	.DEFAULT	|	.GOTOSW	|	.ENDSW

Asmc	Macro	Assembler	Reference

.GOTOSW

.GOTOSW[1|2|3]	[[(<case_val>)]	|	[.IF	condition]]

Generates	code	to	jump	to	the	top	of	a	.SWITCH	block	if	condition	is	true.

.GOTOSW	jump's	directly	to	the	TEST	label.

	 .switch	al

	 		.case	1

	 		...

	 		.case	9

	 				mov	al,1

	 				.gotosw	 	 ;	"Jump"	to	case	1

GOTOSW[1|2|3]	is	optional	nesting	level	to	continue.

	 .switch	al

	 		.case	1

	 				.gotosw	 	 ;	continue	.switch	al

	 				.switch	bl

	 						.case	1

	 	 .gotosw1	 ;	continue	.switch	al

	 	 .switch	cl

	 	 		.case	1

	 	 				.gotosw2	 ;	continue	.switch	al

	 	 				.switch	dl

	 	 						.case	1

	 	 	 .gotosw3	;	continue	.switch	al

	 	 	 .gotosw2	;	continue	.switch	bl

	 	 	 .gotosw1	;	continue	.switch	cl

	 	 	 ;

	 	 	 ;	Direct	jump	to	.switch	cl	/	case	1

	 	 	 ;

	 	 	 .gotosw1(1)

	 	 				.endsw

	 	 .endsw

	 				.endsw

	 .endsw

GOTOSW	can	be	used	in	combination	with	.IF	condition,	or	a	direct	jump	to
.GOTOSW(<case_val>).

See	Also

Directives	Reference	|	.ENDC	|	.SWITCH

Asmc	Macro	Assembler	Reference

.DEFAULT

.DEFAULT	executes	when	none	of	the	other	cases	match	the	control	expression.

See	Also

.SWITCH	|	.CASE	|	.ENDC	|	.ENDSW

Asmc	Macro	Assembler	Reference

.ENDSW

.ENDSW	closes	a	.SWITCH	statement.

See	Also

.SWITCH	|	.CASE	|	.ENDC	|	.DEFAULT

Asmc	Macro	Assembler	Reference

.COMDEF

.COMDEF	name

Declares	a	structure	type	for	a	COM	interface	based	on	the	Component	Object
Model	introduced	by	Microsoft	in	1993.

A	typical	C	declaration	for	a	COM	interface:

typedef	struct	IShellFolderVtbl	{

				BEGIN_INTERFACE

				HRESULT	(STDMETHODCALLTYPE	*QueryInterface)(

						IShellFolder	*	_This,	REFIID	riid,	void	**ppvObject);

				...

				END_INTERFACE

				}	IShellFolderVtbl;

interface	IShellFolder	{

			CONST_VTBL	struct	IShellFolderVtbl	*lpVtbl;

				};

Same	using	.COMDEF:

.comdef	IShellFolder

				QueryInterface	proc	:REFIID,	:ptr

				...

				.ends

The	objects	are	normally	instantiated	with	a	CreateInstance()	function	that	takes
the	class	as	argument	and	we	end	up	with	a	pointer	or	just	AX.	The	call	to	the
method	is	then	something	like	this:

				mov	rcx,rax			;	load	args

				mov	rdx,riid

				mov	r8,ppvObject

				mov	rax,[rcx]	;	make	the	call

				call	[rax].IShellFolderVtbl.QueryInterface

The	assembler	needs	to	know	the	name	of	the	base	class	in	order	to	use	these
methods.	If	the	method	name	is	not	found	in	the	base	class,	'Vtbl'	is	added	to	the
class	name.	If	method	exist	in	classVtbl	the	pointer	is	assumed	to	be	the	first
member	of	the	base	(lpVtbl).

				local	s:IShellFolder

				s.QueryInterface(riid,	ppvObject)

		*	lea	rcx,s

				local	p:ptr	IShellFolder

				p.QueryInterface(riid,	ppvObject)

		*	mov	rcx,p

				assume	rbx:ptr	IShellFolder

				[rbx].QueryInterface(riid,	ppvObject)

		*	mov	rcx,rbx

If	PROC	is	used	inside	a	structure	(normally	an	error)	Asmc	assumes	this	to	be	a
pointer	to	a	function.

		*	T$0001	typedef	proto	WINAPI	:REFIID,	:ptr

		*	P$0001	typedef	ptr	T$0001

		*	QueryInterface	P$0001	?

The	first	method	close	the	base	class	and	open	(in	this	case)	the	IShellFolderVtbl
structure	and	.ENDS	will	then	close	the	current	struct.

				.ends

		*	IShellFolderVtbl	ends

See	Also

.ENDS	|	.CLASSDEF

Asmc	Macro	Assembler	Reference

.CLASSDEF

.CLASSDEF	name	[args]

Declares	a	structure	type	for	a	COM	interface.

.CLASSDEF	adds	the	following	types:

.classdef	Class

		*	LPCLASS	typedef	ptr	Class

		*	LPCLASSVtbl	typedef	ptr	ClassVtbl

		*	Class@Class	proto	:ptr	Class

		*	Class	struct	8

		*	lpVtbl	LPCLASSVtbl	?

Release()	is	added	as	the	first	method:

				Method1	proc	local		;	static

				Method2	proc	:ptr			;	first	virtual	function

		*	Class	ends

		*	ClassVtbl	struct

		*	T$000B	typedef	proto	:ptr	Class

		*	P$000B	typedef	ptr	T$000B

		*	Release	P$000B	?

		*	T$000B	typedef	proto	:ptr	Class

		*	P$000B	typedef	ptr	T$000B

		*	Method2	P$000B	?

To	define	a	method	locally	in	the	base	class	the	keyword	LOCAL	may	be	used.
Locally	defined	functions	are	called	directly	without	the	_this	argument	omitted.

				assume	rcx:LPCLASS

foo	proc

		local	p:LPCLASS

				[rcx].Method1()

				[rcx].Method2(rdx)

				[rcx].Release()

				ret

foo	endp

Code	produced:

			0:	55												push			rbp

			1:	48	8b	ec						mov				rbp,rsp

			4:	48	83	ec	30			sub				rsp,0x30

			8:	ff	51	10						call			QWORD	PTR	[rcx+0x10]

			b:	48	8b	01						mov				rax,QWORD	PTR	[rcx]

			e:	ff	50	08						call			QWORD	PTR	[rax+0x8]

		11:	48	8b	01						mov				rax,QWORD	PTR	[rcx]

		14:	ff	10									call			QWORD	PTR	[rax]

		16:	c9												leave

		17:	c3												ret

See	Also

.ENDS	|	.COMDEF

Asmc	Macro	Assembler	Reference

.ENDS

.ENDS	closes	a	.COMDEF	or	.CLASSDEF	statement.

See	Also

.COMDEF	|	.CLASSDEF

Asmc	Macro	Assembler	Reference

.ASSERT

.ASSERT[D|W|B]	<assert_expression>

.ASSERT:[<handler>	|	ON	|	OFF	|	PUSH	|	POP	|	PUSHF	|	POPF	|	CODE	|	ENDS]

Options

ON/OFF Main	switch.

PUSH/POP Save	and	restore	the	ASMC	flag.	Stack
level	is	128.

PUSHF/POPF Toggles	using	PUSHF[D|Q]	before	calling
handler.

CODE/ENDS Assemble	code	section	if	ASSERT	is	ON.

Handler
The	assert	macro	calls	this	routine	if
expression	is	not	true.	The	default	handler
name	is	assert_exit.

See	Also

Directives	Reference	|	.IF	|	Return	code

Asmc	Macro	Assembler	Reference

Flag	conditions

The	options	listed	may	be	used	as	directive	.IFxx,	.WHILExx,	and	.UNTILxx.

xx
A NBE Above	|	Not	Below	or	Equal
B C/NAE Below	|	Carry	|	Not	Above	or	Equal
G NLE Greater	|	Not	Less	or	Equal	(signed)
L NGE Less	|	Not	Greater	or	Equal	(signed)
O Overflow	(signed)
P PE Parity	|	Parity	Even
S Signed	(signed)
Z E Zero	|	Equal
NA BE Not	Above	|	Not	Below	or	Equal
NB NC/AE Not	Below	|	Not	Carry	|	Above	or	Equal
NG LE Not	Greater	|	Less	or	Equal	(signed)
NL GE Not	Less	|	Greater	or	Equal	(signed)
NO Not	Overflow	(signed)
NP PO No	Parity	|	Parity	Odd
NS Not	Signed	(signed)
NZ NE Not	Zero	|	Not	Equal

Note	that	if	used	with	condition	the	directive	may	have	a	different	meaning.

See	Also

Directives	Reference	|	Signed	compare	|	Return	code

Asmc	Macro	Assembler	Reference

Signed	compare

Flips	the	expression	to	signed	if	the	first	operand	is	a	register.

.IFSx,	.WHILESx,	and	.UNTILSx	<expression>.

xx

S Signed	REG
SB Signed	AL
SW Signed	AX
SD Signed	EAX

See	Also

Directives	Reference	|	Flag	conditions	|	Return	code

Asmc	Macro	Assembler	Reference

Return	code

Sets	size	from	a	function	call	to	xx.

.IFxx,	.WHILExx,	.UNTILxx,	and	.ASSERTx	<expression>.

xx

B BYTE
W WORD
D DWORD
SB SBYTE
SW SWORD
SD SDWORD

See	Also

Directives	Reference	|	Flag	conditions	|	Signed	compare

Asmc	Macro	Assembler	Reference

@Date

@Date

The	system	date	in	the	format	yyyy-mm-dd	(text	macro).

See	Also

Symbols	Reference

Asmc	Macro	Assembler	Reference

@CStr

@CStr(string)

Macro	function	that	creates	a	string	in	the	.DATA	segment.	The	macro	accepts
C-escape	characters	in	the	string.	Strings	are	added	to	a	stack	and	reused	if
duplicated	strings	are	found.	The	macro	returns	offset	string.

Example

	 mov	 eax,@CStr("\tCreate	a	\"C\"	string:	%s%d\n")

	 mov	 ebx,@CStr("string:	%s%d\n")

	 mov	 ecx,@CStr("%s%d\n")

	 mov	 edx,@CStr("%d\n")

	 mov	 edi,@CStr("\n")

Generated	code

	 .data

	 DS0000	db	9,"Create	a	",'"',"C",'"',"	string:	%s%d",10,0

	 .code

	 mov	 eax,offset	DS0000

	 mov	 ebx,offset	DS0000[14]

	 mov	 ecx,offset	DS0000[22]

	 mov	 edx,offset	DS0000[24]

	 mov	 edi,offset	DS0000[26]

See	Also

Symbols	Reference

6.2.1	Win64	Structured	Exception
Handling	(SEH)
SEH	in	Win64	differs	significantly	from	the	implementation	in	Win32.	It's	very
well	possible	to	ignore	Win64	SEH	for	assembly.	However,	if	an	assembly
routine	wants	to	comply	to	these	rules,	a	thorough	understanding	of	the	Win64
ABI	is	necessary.	Masm	(the	64-bit	version)	supplies	some	"primitives"	for
SEH	support	(.ALLOCSTACK,	.PUSHREG,	.SAVEREG,	...),	along	with	a	new
FRAME	attribute	for	the	PROC	directive.	These	features	are	also	supported	by
JWasm.	See	sample	Win64_3	how	the	"primitives"	are	to	be	used	for	SEH
support.

The	big	disadvantage	is	that	using	the	FRAME	keyword	in	Masm	"disables"
most	of	the	other	high	level	features	combined	with	PROC	(function	parameters,
locals	and	registers	saved	with	USES)	because	no	function	prologues	and
epilogues	are	generated	anymore.	Additionally,	the	implementation	in	some
Masm	versions	seems	to	be	a	bit	buggy.	Because	of	this	and	to	ease	the	usage	of
SEH	in	Win64	there	is	a	new	directive	implemented	in	JWasm:

	

								OPTION	FRAME:AUTO

If	this	option	is	set,	JWasm	will	create	Win64	SEH-compatible	prologues	and
epilogues.	If	the	option	is	off,	JWasm	will	behave	Masm-compatible,	that	is,
FRAME	found	in	a	PROC	directive	will	disable	automatic	prologue/epilogue
generation.	See	sample	Win64_3e	how	this	option	is	supposed	to	be	used.

As	for	the	PROC	syntax:	The	Masm	documentation	states	that	FRAME	can	be
used	in	combination	with	USES	and	procedure	parameters	and	must	be	located
behind	all	parameters.	However,	this	syntax	isn't	accepted	by	any	Masm	version.
The	only	syntax	which	Masm	will	accept	without	being	confused	is	FRAME	as
the	one	and	only	parameter	for	PROC.	Therefore	JWasm	doesn't	follow	the
Masm	documentation	in	this	point:	the	optional	FRAME	keyword	is	expected
before	the	procedure	parameters.	The	syntax	in	JWasm	is:

	

				procname	PROC	[public]	FRAME[:exc_handler]	[USES	<reglist>]	[parameters]

The	SEH	"primitives"	will	generate	some	additional	data	in	segments	.pdata	and
.xdata.	This	data	is	somewhat	hidden,	but	JWasm	will	display	the	corresponding
data	definitions	in	the	listing	if	option	-Sg	is	set.

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1000

cannot	open	file	:	filename

The	file	does	not	exist.
The	file	is	in	use	by	another	process.
The	filename	is	not	valid.
A	read-only	file	with	the	output	filename	already	exists.
The	current	drive	is	full.
The	current	directory	is	the	root	and	is	full.
The	device	cannot	be	written	to.
The	drive	is	not	ready.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1001

I/O	error	closing	file

The	operating	system	returned	an	error	when	the	assembler	attempted	to
close	a	file.
This	error	can	be	caused	by	having	a	corrupt	file	system	or	by	removing	a
disk	before	the	file	could	be	closed.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1002

I/O	error	writing	file

The	assembler	was	unable	to	write	to	an	output	file.	One	of	the	following	may	be
a	cause:

The	current	drive	is	full.
The	current	directory	is	the	root	and	is	full.
The	device	cannot	be	written	to.
The	drive	is	not	ready.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1005

Assembler	limit	:	macro	parameter	name	table	full

Too	many	parameters,	locals,	or	macro	labels	were	defined	for	a	macro.	There
was	no	more	room	in	the	macro	name	table.

Define	shorter	or	fewer	names,	or	remove	unnecessary	macros.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1006

Invalid	command-line	option:	option

ASMC	did	not	recognize	the	given	parameter	as	an	option.	This	error	is
generally	caused	when	there	is	a	syntax	error	on	the	command	line.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1007

Nesting	level	too	deep

The	assembler	reached	its	nesting	limit.	The	limit	is	20	levels	except	where
noted	otherwise.

One	of	the	following	was	nested	too	deeply:

A	high-level	directive	such	as	.IF,	.REPEAT,	or	.WHILE
A	structure	definition
A	conditional-assembly	directive
A	procedure	definition
A	PUSHCONTEXT	directive	(the	limit	is	10).
A	segment	definition
An	include	file
A	macro

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1008

Unmatched	macro	nesting

Either	a	macro	was	not	terminated	before	the	end	of	the	file,	or	the	terminating
directive	ENDM	was	found	outside	of	a	macro	block.	One	cause	of	this	error	is
omission	of	the	dot	before	.REPEAT	or	.WHILE.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1009

Line	too	long

A	line	in	a	source	file	exceeded	the	limit	of	1024	characters.

If	multiple	physical	lines	are	concatenated	with	the	line-continuation	character	(\
),	the	resulting	logical	line	is	still	limited	to	1024	characters.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1010

Unmatched	block	nesting	:

A	block	beginning	did	not	have	a	matching	end,	or	a	block	end	did	not	have	a
matching	beginning.	One	of	the	following	may	be	involved:

A	high-level	directive	such	as	.IF,	.REPEAT,	or	.WHILE
A	conditional-assembly	directive	such	as	IF,	REPEAT,	or	WHILE
A	structure	or	union	definition
A	procedure	definition
A	segment	definition
A	POPCONTEXT	directive
A	conditional-assembly	directive,	such	as	an	ELSE,	ELSEIF,	or	ENDIF
without	a	matching	IF

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1011

Directive	must	be	in	control	block

The	assembler	found	a	high-level	directive	where	one	was	not	expected.	One	of
the	following	directives	was	found:

.ELSE	without	.IF

.ENDIF	without	.IF

.ENDW	without	.WHILE

.UNTIL[[CXZ]]	without	.REPEAT

.CONTINUE	without	.WHILE	or	.REPEAT

.BREAK	without	.WHILE	or	.REPEAT

.ELSE	following	.ELSE

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1012

Error	count	exceeds	100;	stopping	assembly

The	number	of	nonfatal	errors	exceeded	the	assembler	limit	of	100.	Nonfatal
errors	are	in	the	range	A2xxx.	When	warnings	are	treated	as	errors	they	are
included	in	the	count.	Warnings	are	considered	errors	if	you	use	the	/Wx
command-line	option,	or	if	you	set	the	Warnings	Treated	as	Errors	option	in	the
Macro	Assembler	Global	Options	dialog	box	of	PWB.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1017

Missing	source	filename

ML	could	not	find	a	file	to	assemble	or	pass	to	the	linker.

This	error	is	generated	when	you	give	ASMC	command-line	options	without
specifying	a	filename	to	act	upon.	To	assemble	files	that	do	not	have	a	.ASM
extension,	use	the	/Ta	command-line	option.

This	error	can	also	be	generated	by	invoking	ASMC	with	no	parameters	if	the
ASMC	environment	variable	contains	command-line	options.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Fatal	Error	A1901

Internal	Assembler	Error

Contact	Product	Support	Services

The	ASMC	driver,	called	ASMC.exe,	generated	a	system	error.	Note	the
circumstances	of	the	error	and	file	a	bug	report	at	ASMC	Development

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

http://masm32.com/board/index.php?board=55.0

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2004

Symbol	type	conflict	:	identifier

The	EXTERNDEF	or	LABEL	directive	was	used	on	a	variable,	symbol,	data
structure,	or	label	that	was	defined	in	the	same	module	but	with	a	different	type.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2005

Symbol	redefinition	:	identifier

The	given	nonredefinable	symbol	was	defined	in	two	places.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2006

Undefined	symbol	:	identifier

An	attempt	was	made	to	use	a	symbol	that	was	not	defined.	One	of	the	following
may	have	occurred:

A	symbol	was	not	defined.
A	field	was	not	a	member	of	the	specified	structure.
A	symbol	was	defined	in	an	include	file	that	was	not	included.
An	external	symbol	was	used	without	an	EXTERN	or	EXTERNDEF
directive.
A	symbol	name	was	misspelled.
A	local	code	label	was	referenced	outside	of	its	scope.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2007

Non-benign	record	redefinition

A	RECORD	definition	conflicted	with	a	previous	definition.	One	of	the
following	occurred:

There	were	different	numbers	of	fields.
There	were	different	numbers	of	bits	in	a	field.
There	was	a	different	label.
There	were	different	initializers.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2008

syntax	error	:

A	token	at	the	current	location	caused	a	syntax	error.	One	of	the	following	may
have	occurred:

A	dot	prefix	was	added	to	or	omitted	from	a	directive.
A	reserved	word	(such	as	C	or	SIZE)	was	used	as	an	identifier.
An	instruction	was	used	that	was	not	available	with	the	current	processor	or
coprocessor	selection.
A	comparison	run-time	operator	(such	as	==)	was	used	in	a	conditional
assembly	statement	instead	of	a	relational	operator	(such	as	EQ).
An	instruction	or	directive	was	given	too	few	operands.
An	obsolete	directive	was	used.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2009

syntax	error	in	expression

An	expression	on	the	current	line	contained	a	syntax	error.	This	error	message
may	also	be	a	side-effect	of	a	preceding	program	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2010

invalid	type	expression

The	operand	to	THIS	or	PTR	was	not	a	valid	type	expression.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2011

distance	invalid	for	word	size	of	current	segment

A	procedure	definition	or	a	code	label	defined	with	LABEL	specified	an	address
size	that	was	incompatible	with	the	current	segment	size.	One	of	the	following
occurred:

A	NEAR16	or	FAR16	procedure	was	defined	in	a	32-bit	segment.
A	NEAR32	or	FAR32	procedure	was	defined	in	a	16-bit	segment.
A	code	label	defined	with	LABEL	specified	FAR16	or	NEAR16	in	a	32-bit
segment.
A	code	label	defined	with	LABEL	specified	FAR32	or	NEAR32	in	a	16-bit
segment.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2012

PROC,	MACRO,	or	macro	repeat	directive	must	precede	LOCAL

A	LOCAL	directive	must	be	immediately	preceded	by	a	MACRO,	PROC,	macro
repeat	directive	(such	as	REPEAT,	WHILE,	or	FOR),	or	another	LOCAL
directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2013

.MODEL	must	precede	this	directive

A	simplified	segment	directive	or	a	.STARTUP	or	.EXIT	directive	was	not
preceded	by	a	.MODEL	directive.	A	.MODEL	directive	must	specify	the	model
defaults	before	a	simplified	segment	directive,	or	a	.STARTUP	or	.EXIT
directive	may	be	used.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2014

cannot	define	as	public	or	external	:	identifier

Only	labels,	procedures,	and	numeric	equates	can	be	made	public	or	external
using	PUBLIC,	EXTERN,	or	EXTERNDEF.	Local	code	labels	cannot	be	made
public.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2015

segment	attributes	cannot	change	:	attribute

A	segment	was	reopened	with	different	attributes	than	it	was	opened	with
originally.

When	a	SEGMENT	directive	opens	a	previously	defined	segment,	the	newly
opened	segment	inherits	the	attributes	the	segment	was	defined	with.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2016

expression	expected

The	assembler	expected	an	expression	at	the	current	location	but	found	one	of
the	following:

A	unary	operator	without	an	operand
A	binary	operator	without	two	operands
An	empty	pair	of	parentheses,	(),	or	brackets,	[]

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2018

invalid	use	of	external	symbol	:	identifier

An	attempt	was	made	to	compare	the	given	external	symbol	using	a	relational
operator.

The	comparison	cannot	be	made	because	the	value	or	address	of	an	external
symbol	is	not	known	at	assembly	time.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2019

operand	must	be	RECORD	type	or	field

The	operand	following	the	WIDTH	or	MASK	operator	was	not	valid.	The
WIDTH	operator	takes	an	operand	that	is	the	name	of	a	field	or	a	record.	The
MASK	operator	takes	an	operand	that	is	the	name	of	a	field	or	a	record	type.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2022

instruction	operands	must	be	the	same	size

The	operands	to	an	instruction	did	not	have	the	same	size.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2023

instruction	operand	must	have	size

At	least	one	of	the	operands	to	an	instruction	must	have	a	known	size.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2024

invalid	operand	size	for	instruction

The	size	of	an	operand	was	not	valid.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2025

operands	must	be	in	same	segment

Relocatable	operands	used	with	a	relational	or	minus	operator	were	not	located
in	the	same	segment.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2026

constant	expected

The	assembler	expected	a	constant	expression	at	the	current	location.	A	constant
expression	is	a	numeric	expression	that	can	be	resolved	at	assembly	time.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2028

expression	must	be	a	code	address

An	expression	evaluating	to	a	code	address	was	expected.	One	of	the	following
occurred:

SHORT	was	not	followed	by	a	code	address.
NEAR	PTR	or	FAR	PTR	was	applied	to	something	that	was	not	a	code
address.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2029

multiple	base	registers	not	allowed

An	attempt	was	made	to	combine	two	base	registers	in	a	memory	expression.

For	example,	the	following	expressions	cause	this	error:

				[bx+bp]

				[bx][bp]

In	another	example,	given	the	following	definition:

				id1	proc	arg1:byte

either	of	the	following	lines	causes	this	error:

				mov	al,	[bx].arg1

				lea	ax,	arg1[bx]

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2030

multiple	index	registers	not	allowed

An	attempt	was	made	to	combine	two	index	registers	in	a	memory	expression.

For	example,	the	following	expressions	cause	this	error:

				[si+di]

				[di][si]

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2031

must	be	index	or	base	register

An	attempt	was	made	to	use	a	register	that	was	not	a	base	or	index	register	in	a
memory	expression.

For	example,	the	following	expressions	cause	this	error:

				[ax]

				[bl]

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2032

invalid	use	of	register

An	attempt	was	made	to	use	a	register	that	was	not	valid	for	the	intended	use.
One	of	the	following	occurred:

OFFSET	was	applied	to	a	register.	(OFFSET	can	be	applied	to	a	register
under	the	M510	option.)
A	special	386	register	was	used	in	an	invalid	context.
A	register	was	cast	with	PTR	to	a	type	of	invalid	size.
A	register	was	specified	as	the	right	operand	of	a	segment	override	operator
(:).
A	register	was	specified	as	the	right	operand	of	a	binary	minus	operator	(–
).
An	attempt	was	made	to	multiply	registers	using	the	*	operator.
Brackets	([])	were	missing	around	a	register	that	was	added	to	something.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2033

invalid	INVOKE	argument	:	argument	number

The	INVOKE	directive	was	passed	a	special	386	register,	or	a	register	pair
containing	a	byte	register	or	special	386	register.	These	registers	are	illegal	with
INVOKE.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2034

must	be	in	segment	block

One	of	the	following	was	found	outside	of	a	segment	block:

An	instruction
A	label	definition
A	THIS	operator
A	$	operator
A	procedure	definition
An	ALIGN	directive
An	ORG	directive

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2036

too	many	initial	values	for	structure:	structure

The	given	structure	was	defined	with	more	initializers	than	the	number	of	fields
in	the	type	declaration	of	the	structure.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2037

statement	not	allowed	inside	structure	definition

A	structure	definition	contained	an	invalid	statement.	A	structure	cannot	contain
instructions,	labels,	procedures,	control-flow	directives,	.STARTUP,	or	.EXIT.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2039

line	too	long

A	source-file	line	exceeded	the	limit	of	1024	characters.

If	multiple	physical	lines	are	concatenated	with	the	line-continuation	character	(\
),	the	resulting	logical	line	is	still	limited	to	1024	characters.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2041

string	or	text	literal	too	long

A	string	or	text	literal,	or	a	macro	function	return	value,	exceeded	the	limit	of
255	characters.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2043

identifier	too	long

An	identifier	exceeded	the	limit	of	247	characters.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2045

missing	angle	bracket	or	brace	in	literal

An	unmatched	angle	bracket	(either	<	or	>)	or	brace	(either	{	or	})	was	found	in
a	literal	constant	or	an	initializer.	One	of	the	following	occurred:

A	pair	of	angle	brackets	or	braces	was	not	complete.
An	angle	bracket	was	intended	to	be	literal,	but	it	was	not	preceded	by	an
exclamation	point	(!)	to	indicate	a	literal	character.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2046

missing	single	or	double	quotation	mark	in	string

An	unmatched	quotation	mark	(either	'	or	")	was	found	in	a	string.	One	of	the
following	may	have	occurred:

A	pair	of	quotation	marks	around	a	string	was	not	complete.
A	pair	of	quotation	marks	around	a	string	was	formed	of	one	single	and	one
double	quotation	mark.
A	single	or	double	quotation	mark	was	intended	to	be	literal,	but	the
surrounding	quotation	marks	were	the	same	kind	as	the	literal	one.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2047

empty	(null)	string

A	string	consisted	of	a	delimiting	pair	of	quotation	marks	and	no	characters
within.

For	a	string	to	be	valid,	it	must	contain	1-255	characters.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2048

nondigit	in	number

A	number	contained	a	character	that	was	not	in	the	set	of	characters	used	by	the
current	radix	(base).

This	error	can	occur	if	a	B	or	D	radix	specifier	is	used	when	the	default	radix	is
one	that	includes	that	letter	as	a	valid	digit.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2050

real	or	BCD	number	not	allowed

A	floating-point	(real)	number	or	binary	coded	decimal	(BCD)	constant	was
used	other	than	as	a	data	initializer.

One	of	the	following	occurred:

A	real	number	or	a	BCD	was	used	in	an	expression.
A	real	number	was	used	to	initialize	a	directive	other	than	DWORD,
QWORD,	or	TBYTE.
A	BCD	was	used	to	initialize	a	directive	other	than	TBYTE.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2051

text	item	required

A	literal	constant	or	text	macro	was	expected.

One	of	the	following	was	expected:

A	literal	constant,	which	is	text	enclosed	in	<	>
A	text	macro	name
A	macro	function	call
A	%	followed	by	a	constant	expression

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2052

forced	error

The	conditional-error	directive	.ERR	or	.ERR1	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2053

forced	error	:	value	equal	to	0

The	conditional-error	directive	.ERRE	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2054

forced	error	:	value	not	equal	to	0

The	conditional-error	directive	.ERRNZ	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2055

forced	error	:	symbol	not	defined

The	conditional-error	directive	.ERRNDEF	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2056

forced	error	:	symbol	defined

The	conditional-error	directive	.ERRDEF	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2057

forced	error	:	string	blank

The	conditional-error	directive	.ERRB	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2058

forced	error	:	string	not	blank

The	conditional-error	directive	.ERRNB	was	used	to	generate	this	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2059

forced	error	:	strings	equal

The	conditional-error	directive	.ERRIDN	or	.ERRIDNI	was	used	to	generate	this
error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2060

forced	error	:	strings	not	equal

The	conditional-error	directive	.ERRDIF	or	.ERRDIFI	was	used	to	generate	this
error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2061

[[[ELSE]]]IF2/.ERR2	not	allowed	:	single-pass	assembler

A	directive	for	a	two-pass	assembler	was	found.

The	Microsoft	Macro	Assembler	(MASM)	is	a	one-pass	assembler.	MASM	does
not	accept	the	IF2,	ELSEIF2,	and	.ERR2	directives.	This	error	also	occurs	if	an
ELSE	directive	follows	an	IF1	directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2062

expression	too	complex	for	.UNTILCXZ

An	expression	used	in	the	condition	that	follows	.UNTILCXZ	was	too	complex.
The	.UNTILCXZ	directive	can	take	only	one	expression,	which	can	contain	only
==	or	!=.	It	cannot	take	other	comparison	operators	or	more	complex	expressions
using	operators	like	||.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2063

can	ALIGN	only	to	power	of	2	:	expression

The	expression	specified	with	the	ALIGN	directive	was	invalid.	The	ALIGN
expression	must	be	a	power	of	2	between	2	and	256,	and	must	be	less	than	or
equal	to	the	alignment	of	the	current	segment,	structure,	or	union.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2064

structure	alignment	must	be	1,	2,	or	4

The	alignment	specified	in	a	structure	definition	was	invalid.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2065

expected	:	token

The	assembler	expected	the	given	token.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2066

incompatible	CPU	mode	and	segment	size

An	attempt	was	made	to	open	a	segment	with	a	USE16,	USE32,	or	FLAT
attribute	that	was	not	compatible	with	the	specified	CPU,	or	to	change	to	a	16-bit
CPU	while	in	a	32bit	segment.

The	USE32	and	FLAT	attributes	must	be	preceded	by	one	of	the	following
processor	directives:	.386,	.386C,	.386P,	.486,	or	.486P.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2068

instruction	prefix	not	allowed

One	of	the	prefixes	REP,	REPE,	REPNE,	or	LOCK	preceded	an	instruction	for
which	it	was	not	valid.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2070

invalid	instruction	operands

One	or	more	operands	were	not	valid	for	the	instruction	they	were	specified
with.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2071

initializer	too	large	for	specified	size

An	initializer	value	was	too	large	for	the	data	area	it	was	initializing.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2072

cannot	access	symbol	in	given	segment	or	group:	identifier

The	given	identifier	cannot	be	addressed	from	the	segment	or	group	specified.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2074

cannot	access	label	through	segment	registers

An	attempt	was	made	to	access	a	label	through	a	segment	register	that	was	not
assumed	to	its	segment	or	group.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2075

jump	destination	too	far	[:	by	'n'	bytes]

The	destination	specified	with	a	jump	instruction	was	too	far	from	the
instruction.	One	of	the	following	may	be	a	solution:

Enable	the	LJMP	option.
Remove	the	SHORT	operator.	If	SHORT	has	forced	a	jump	that	is	too	far,	n
is	the	number	of	bytes	out	of	range.
Rearrange	code	so	that	the	jump	is	no	longer	out	of	range.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2076

jump	destination	must	specify	a	label

A	direct	jumps'	destination	must	be	relative	to	a	code	label.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2077

instruction	does	not	allow	NEAR	indirect	addressing

A	conditional	jump	or	loop	cannot	take	a	memory	operand.	It	must	be	given	a
relative	address	or	label.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2079

instruction	does	not	allow	FAR	direct	addressing

A	conditional	jump	or	loop	cannot	be	to	a	different	segment	or	group.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2080

jump	distance	not	possible	in	current	CPU	mode

A	distance	was	specified	with	a	jump	instruction	that	was	incompatible	with	the
current	processor	mode.

For	example,	48-bit	jumps	require	.386	or	above.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2081

missing	operand	after	unary	operator

An	operator	required	an	operand,	but	no	operand	followed.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2082

cannot	mix	16-	and	32-bit	registers

An	address	expression	contained	both	16-	and	32-bit	registers.	For	example,	the
following	expression	causes	this	error:

				[bx+edi]

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2083

invalid	scale	value

A	register	scale	was	specified	that	was	not	1,	2,	4,	or	8.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2084

constant	value	too	large

A	constant	was	specified	that	was	too	big	for	the	context	in	which	it	was	used.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2085

instruction	or	register	not	accepted	in	current	CPU	mode

An	attempt	was	made	to	use	an	instruction,	register,	or	keyword	that	was	not
valid	for	the	current	processor	mode.

For	example,	32-bit	registers	require	.386	or	above.	Control	registers	such	as
CR0	require	privileged	mode	.386P	or	above.	This	error	will	also	be	generated
for	the	NEAR32,	FAR32,	and	FLAT	keywords,	which	require	.386	or	above.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2086

reserved	word	expected

One	or	more	items	in	the	list	specified	with	a	NOKEYWORD	option	were	not
recognized	as	reserved	words.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2087

instruction	form	requires	80386/486

An	instruction	was	used	that	was	not	compatible	with	the	current	processor
mode.

One	of	the	following	processor	directives	must	precede	the	instruction:	.386,
.386C,	.386P,	.486,	or	.486P.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2088

END	directive	required	at	end	of	file

The	assembler	reached	the	end	of	the	main	source	file	and	did	not	find	an	.END
directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2089

too	many	bits	in	RECORD	:	identifier

One	of	the	following	occurred:

Too	many	bits	were	defined	for	the	given	record	field.
Too	many	total	bits	were	defined	for	the	given	record.
The	size	limit	for	a	record	or	a	field	in	a	record	is	16	bits	when	doing	16-bit
arithmetic	or	32	bits	when	doing	32-bit	arithmetic.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2090

positive	value	expected

A	positive	value	was	not	found	in	one	of	the	following	situations:

The	starting	position	specified	for	SUBSTR	or	@SubStr
The	number	of	data	objects	specified	for	COMM
The	element	size	specified	for	COMM

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2091

index	value	past	end	of	string

An	index	value	exceeded	the	length	of	the	string	it	referred	to	when	used	with
INSTR,	SUBSTR,	@InStr,	or	@SubStr.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2092

count	must	be	positive	or	zero

The	operand	specified	to	the	SUBSTR	directive,	@SubStr	macro	function,	SHL
operator,	SHR	operator,	or	DUP	operator	was	negative.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2093

count	value	too	large

The	length	argument	specified	for	SUBSTR	or	@SubStr	exceeded	the	length	of
the	specified	string.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2094

operand	must	be	relocatable

An	operand	was	not	relative	to	a	label.	One	of	the	following	occurred:

An	operand	specified	with	the	END	directive	was	not	relative	to	a	label.
An	operand	to	the	SEG	operator	was	not	relative	to	a	label.
The	right	operand	to	the	minus	operator	was	relative	to	a	label,	but	the	left
operand	was	not.
The	operands	to	a	relational	operator	were	either	not	both	integer	constants
or	not	both	memory	operands.	Relational	operators	can	take	operands	that
are	both	addresses	or	both	non-addresses	but	not	one	of	each.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2095

constant	or	relocatable	label	expected

The	operand	specified	must	be	a	constant	expression	or	a	memory	offset.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2096

segment,	group,	or	segment	register	expected

A	segment	or	group	was	expected	but	was	not	found.	One	of	the	following
occurred:

The	left	operand	specified	with	the	segment	override	operator	(:)	was	not	a
segment	register	(CS,	DS,	SS,	ES,	FS,	or	GS),	group	name,	segment	name,
or	segment	expression.
The	ASSUME	directive	was	given	a	segment	register	without	a	valid
segment	address,	segment	register,	group,	or	the	special	FLAT	group.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2097

segment	expected	:	identifier

The	GROUP	directive	was	given	an	identifier	that	was	not	a	defined	segment.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2098

invalid	operand	for	OFFSET

The	expression	following	the	OFFSET	operator	must	be	a	memory	expression	or
an	immediate	expression.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2100

segment	or	group	not	allowed

An	attempt	was	made	to	use	a	segment	or	group	in	a	way	that	was	not	valid.
Segments	or	groups	cannot	be	added.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2101

cannot	add	two	relocatable	labels

An	attempt	was	made	to	add	two	expressions	that	were	both	relative	to	a	label.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2103

segment	exceeds	64K	limit

A	16-bit	segment	exceeded	the	size	limit	of	64K.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2104

invalid	type	for	data	declaration	:	type

The	given	type	was	not	valid	for	a	data	declaration.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2105

HIGH	and	LOW	require	immediate	operands

The	operand	specified	with	either	the	HIGH	or	the	LOW	operator	was	not	an
immediate	expression.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2107

cannot	have	implicit	far	jump	or	call	to	near	label

An	attempt	was	made	to	make	an	implicit	far	jump	or	call	to	a	near	label	in
another	segment.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2108

use	of	register	assumed	to	ERROR

An	attempt	was	made	to	use	a	register	that	had	been	assumed	to	ERROR	with
the	ASSUME	directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2110

COMMENT	delimiter	expected

A	delimiter	character	was	not	specified	for	a	COMMENT	directive.

The	delimiter	character	is	specified	by	the	first	character	that	is	not	white	space
(spaces	or	TAB	characters)	after	the	COMMENT	directive.	The	comment
consists	of	all	text	following	the	delimiter	until	the	end	of	the	line	containing	the
next	appearance	of	the	delimiter.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2111

conflicting	parameter	definition

A	procedure	defined	with	the	PROC	directive	did	not	match	its	prototype	as
defined	with	the	PROTO	directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2112

PROC	and	prototype	calling	conventions	conflict

A	procedure	was	defined	in	a	prototype	(using	the	PROTO,	EXTERNDEF,	or
EXTERN	directive),	but	the	calling	convention	did	not	match	the	corresponding
PROC	directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2113

invalid	radix	tag

The	specified	radix	was	not	a	number	in	the	range	2-16.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2114

INVOKE	argument	type	mismatch	:	argument	number

The	type	of	the	arguments	passed	using	the	INVOKE	directive	did	not	match	the
type	of	the	parameters	in	the	prototype	of	the	procedure	being	invoked.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2119

language	type	must	be	specified

A	procedure	definition	or	prototype	was	not	given	a	language	type.

A	language	type	must	be	declared	in	each	procedure	definition	or	prototype	if	a
default	language	type	is	not	specified.	A	default	language	type	is	set	using	either
the	.MODEL	directive,	OPTION	LANG,	or	the	ASMC	command-line	options
/Gc	or	/Gd.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2120

PROLOGUE	must	be	macro	function

The	identifier	specified	with	the	OPTION	PROLOGUE	directive	was	not
recognized	as	a	defined	macro	function.

The	user-defined	prologue	must	be	a	macro	function	that	returns	the	number	of
bytes	needed	for	local	variables	and	any	extra	space	needed	for	the	macro
function.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2121

EPILOGUE	must	be	macro	procedure

The	identifier	specified	with	the	OPTION	EPILOGUE	directive	was	not
recognized	as	a	defined	macro	procedure.	The	user-defined	epilogue	macro
cannot	return	a	value.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2123

text	macro	nesting	level	too	deep

A	text	macro	was	nested	too	deeply.	The	nesting	limit	for	text	macros	is	100.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2125

missing	macro	argument

A	required	argument	to	@InStr,	@SubStr,	or	a	user-defined	macro	was	not
specified.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2129

VARARG	parameter	must	be	last	parameter

A	parameter	other	than	the	last	one	was	given	the	VARARG	attribute.

The	:VARARG	specification	can	be	applied	only	to	the	last	parameter	in	a
parameter	list	for	macro	and	procedure	definitions	and	prototypes.	You	cannot
use	multiple	:VARARG	specifications	in	a	macro.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2131

VARARG	parameter	requires	C	calling	convention

A	VARARG	parameter	was	specified	in	a	procedure	definition	or	prototype,	but
the	C,	SYSCALL,	or	STDCALL	calling	convention	was	not	specified.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2132

ORG	needs	a	constant	or	local	offset

The	expression	specified	with	the	ORG	directive	was	not	valid.	ORG	requires	an
immediate	expression	with	no	reference	to	an	external	label	or	to	a	label	outside
the	current	segment.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2133

register	value	overwritten	by	INVOKE

A	register	was	passed	as	an	argument	to	a	procedure,	but	the	code	generated	by
INVOKE	to	pass	other	arguments	destroyed	the	contents	of	the	register.

The	AX,	AL,	AH,	EAX,	DX,	DL,	DH,	and	EDX	registers	may	be	used	by	the
assembler	to	perform	data	conversion.

Use	a	different	register.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2136

too	many	arguments	to	INVOKE

The	number	of	arguments	passed	using	the	INVOKE	directive	exceeded	the
number	of	parameters	in	the	prototype	for	the	procedure	being	invoked.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2141

too	many	operands	to	instruction

Too	many	operands	were	specified	with	a	string	control	instruction.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2142

cannot	have	more	than	one	.ELSE	clause	per	.IF	block

The	assembler	found	more	than	one	.ELSE	clause	within	the	current	.IF	block.
Use	.ELSEIF	for	all	but	the	last	block.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2143

expected	data	label

The	LENGTHOF,	SIZEOF,	LENGTH,	or	SIZE	operator	was	applied	to	a	non-
data	label,	or	the	SIZEOF	or	SIZE	operator	was	applied	to	a	type.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2144

cannot	nest	procedures

An	attempt	was	made	to	nest	a	procedure	containing	a	parameter,	local	variable,
USES	clause,	or	a	statement	that	generated	a	new	segment	or	group.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2145

EXPORT	must	be	FAR	:	procedure

The	given	procedure	was	given	EXPORT	visibility	and	NEAR	distance.	All
EXPORT	procedures	must	be	FAR.	The	default	visibility	may	have	been	set	with
the	OPTION	PROC:EXPORT	statement	or	the	SMALL	or	COMPACT	memory
models.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2147

macro	label	not	defined	:	macrolabel

The	given	macro	label	was	not	found.	A	macro	label	is	defined	with	:macrolabel.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2148

invalid	symbol	type	in	expression	:	identifier

The	given	identifier	was	used	in	an	expression	in	which	it	was	not	valid.	For
example,	a	macro	procedure	name	is	not	allowed	in	an	expression.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2151

special	register	cannot	be	first	operand

A	special	register	was	specified	to	an	instruction	that	cannot	take	it	as	the	first
operand.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2154

syntax	error	in	control-flow	directive

The	condition	for	a	control-flow	directive	(such	as	.IF	or	.WHILE)	contained	a
syntax	error.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2156

constant	value	out	of	range

An	invalid	value	was	specified	for	the	PAGE	directive.	The	first	parameter	of	the
PAGE	directive	can	be	either	0	or	a	value	in	the	range	10-255.	The	second
parameter	of	the	PAGE	directive	can	be	either	0	or	a	value	in	the	range	60-255.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2157

missing	right	parenthesis

A	right	parenthesis,),	was	missing	from	a	macro	function	call.	Be	sure	that
parentheses	are	in	pairs	if	nested.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2159

structure	cannot	be	instanced

An	attempt	was	made	to	create	an	instance	of	a	structure	when	there	were	no
fields	or	data	defined	in	the	structure	definition	or	when	ORG	was	used	in	the
structure	definition.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2166

structure	field	expected

The	righthand	side	of	a	dot	operator	(.)	is	not	a	structure	field.	This	error	may
occur	with	some	code	acceptable	to	previous	versions	of	the	assembler.	To
enable	the	old	behavior,	use	OPTION	OLDSTRUCTS,	which	is	automatically
enabled	by	OPTION	M510	or	the	/Zm	command-line	option.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2167

unexpected	literal	found	in	expression

A	literal	was	found	where	an	expression	was	expected.	One	of	the	following	may
have	occurred:

A	literal	was	used	as	an	initializer
A	record	tag	was	omitted	from	a	record	constant

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2169

divide	by	zero	in	expression

An	expression	contains	a	divisor	whose	value	is	equal	to	zero.

Check	that	the	syntax	of	the	expression	is	correct	and	that	the	divisor	(whether
constant	or	variable)	is	correctly	initialized.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2170

directive	must	appear	inside	a	macro

A	GOTO	or	EXITM	directive	was	found	outside	the	body	of	a	macro.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2172

too	few	bits	in	RECORD

There	was	an	attempt	to	define	a	record	field	of	0	bits.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2175

invalid	qualified	type

An	identifier	was	encountered	in	a	qualified	type	that	was	not	a	type,	structure,
record,	union,	or	prototype.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2178

invalid	use	of	FLAT

There	was	an	ambiguous	reference	to	FLAT	as	a	group.	This	error	is	generated
when	there	is	a	reference	to	FLAT	instead	of	a	FLAT	subgroup.	For	example,

				mov	ax,	FLAT	;	Generates	A2178

				mov	ax,	SEG	FLAT:_data	;	Correct

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2179

structure	improperly	initialized

There	was	an	error	in	a	structure	initializer.	One	of	the	following	occurred:

The	initializer	is	not	a	valid	expression.
The	initializer	is	an	invalid	DUP	statement.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2181

initializer	must	be	a	string	or	single	item

There	was	an	attempt	to	initialize	a	structure	element	with	something	other	than
a	single	item	or	string.

This	error	can	be	caused	by	omitting	braces	({	})	around	an	initializer.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2187

must	use	floating	point	initializer

A	variable	declared	with	the	REAL4,	REAL8,	and	REAL10	directives	must	be
initialized	with	a	floating-point	number	or	a	question	mark	(?).

This	error	can	be	caused	by	giving	an	initializer	in	integer	form	(such	as	18)
instead	of	in	floating-point	form	(18.0).

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2189

invalid	combination	with	segment	alignment

The	alignment	specified	by	the	ALIGN	or	EVEN	directive	was	greater	than	the
current	segment	alignment	as	specified	by	the	SEGMENT	directive.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2190

INVOKE	requires	prototype	for	procedure

The	INVOKE	directive	must	be	preceded	by	a	PROTO	statement	for	the
procedure	being	called.	When	using	INVOKE	with	an	address	rather	than	an
explicit	procedure	name,	you	must	precede	the	address	with	a	pointer	to	the
prototype.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2199

symbol	language	attribute	conflict

Two	declarations	for	the	same	symbol	have	conflicting	language	attributes	(such
as	C	and	PASCAL).	The	attributes	should	be	identical	or	compatible.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2200

.STARTUP	does	not	work	with	32-bit	segments

The	.STARTUP	directive	cannot	be	used	in	a	32-bit	segment;	it	is	valid	only
when	generating	16-bit	code.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2202

ORG	directive	not	allowed	in	unions

The	ORG	directive	is	not	valid	inside	a	UNION	definition.

You	can	use	the	ORG	directive	inside	STRUCT	definitions,	but	it	is	meaningless
inside	a	UNION.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2206

illegal	use	of	segment	register

You	cannot	use	segment	overrides	for	the	FS	or	GS	segment	registers	when
generating	floating-point	emulation	instructions	with	the	/FPi	command-line
option	or	OPTION	EMULATOR.

*	ML	6.0	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2214

GROUP	directive	not	allowed	with	/coff	option

The	GROUP	directive	is	not	permitted	when	compiling	with	/coff.

See	ML	and	ML64	Command-Line	Reference	for	more	information.

*	ML	8	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A2217

must	be	public	or	external

An	alternate	symbol	was	not	public	or	external.

Example

The	code	sample	below	would	generate	A2217	if	the	line:

	 public	 alternate

were	not	present.

	 .686

	 .model	 flat

	 extrn	 primary(alternate):near

	 .code

	 public	 alternate

alternate:

	 ret

	 end

*	ML	8	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3000

assembly	passes	reached:	passes

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3001

invalid	fixup	type	for	:

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3002

/PE	option	requires	FLAT	memory	model

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3003

/bin:	invalid	start	label

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3004

cannot	use	TR-TR	with	current	CPU	setting

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3005

no	segment	information	to	create	fixup	:

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3006

not	supported	with	current	output	format:

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3007

missing	.ENDPROLOG:

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3008

.ENDPROLOG	found	before	EH	directives

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3009

missing	FRAME	in	PROC,	no	unwind	code	will	be	generated

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3010

size	of	prolog	too	big,	must	be	<	256	bytes

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3011

too	many	unwind	codes	in	FRAME	procedure

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3012

registers	AH-DH	may	not	be	used	with	SPL-DIL	or	R8-R15

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3013

multiple	overrides

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3014

unknown	fixup	type	:	:	at

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3015

filename	parameter	must	be	enclosed	in	<>	or	quotes

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3016

literal	expected	after	'='

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3017

.SAFESEH	argument	must	be	a	PROC

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3018

invalid	operand	for	:

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3019

invalid	fixup	type	for	format	:	type	symbol	at	location	offset

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3020

cannot	open	file:	filename

Same	as	ML	A1000.

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3021

I/O	error	closing	file

Same	as	ML	A1001.

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Nonfatal	Error	A3022

.CASE	redefinition	:	identifierA(val):	identifierB(val)

The	given	nonredefinable	symbol	was	defined	in	two	places.

*	Non	ML	compatible	error

See	Also

ASMC	Error	Messages	|	A2005

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4003

start	address	on	END	directive	ignored	with	.STARTUP

Both	.STARTUP	and	a	program	load	address	(optional	with	the	END	directive)
were	specified.	The	address	specification	with	the	END	directive	was	ignored.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4005

unknown	default	prologue	argument

An	unknown	argument	was	passed	to	the	default	prologue.	The	default	prologue
understands	only	the	FORCEFRAME	and	LOADDS	arguments.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4006

too	many	arguments	in	macro	call

There	were	more	arguments	given	in	the	macro	call	than	there	were	parameters
in	the	macro	definition.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4007

option	untranslated,	directive	required	:	option

There	is	no	ASMC	command-line	equivalent	for	the	given	option.	The	desired
behavior	can	be	obtained	by	using	a	directive	in	the	source	file.

	 				Option	Directive

	 				/A

	 				/P

	 				/S

	 				.ALPHA

	 				OPTION	READONLY

	 				.SEQ

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4008

invalid	command-line	option	value,	default	is	used	:	option

The	value	specified	with	the	given	option	was	not	valid.	The	option	was	ignored,
and	the	default	was	assumed.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4011

multiple	.MODEL	directives	found	:	.MODEL	ignored

More	than	one	.MODEL	directive	was	found	in	the	current	module.	Only	the
first	.MODEL	statement	is	used.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4012

line	number	information	for	segment	without	class	'CODE'

There	were	instructions	in	a	segment	that	did	not	have	a	class	name	that	ends
with	"CODE."	The	assembler	did	not	generate	CodeView	information	for	these
instructions.

CodeView	cannot	process	modules	with	code	in	segments	with	class	names	that
do	not	end	with	"CODE."

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A4910

cannot	open	file:	filename

The	given	filename	could	not	be	in	the	current	path.

Make	sure	that	filename	was	copied	from	the	distribution	disks	and	is	in	the
current	path.

*	ML	6.0	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A6003

conditional	jump	lengthened

A	conditional	jump	was	encoded	as	a	reverse	conditional	jump	around	a	near
unconditional	jump.

You	may	be	able	to	rearrange	code	to	avoid	the	longer	form.

*	ML	6.0	compatible	level	3	warning	(-W3)

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A6004

procedure	argument	or	local	not	referenced

You	passed	a	procedure	argument	or	created	a	variable	with	the	LOCAL
directive	that	was	not	used	in	the	procedure	body.

Unnecessary	parameters	and	locals	waste	code	and	stack	space.	*	ML	6.0	compatible
level	3	warning	(-W3)

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A6005

expression	condition	may	be	pass-dependent

This	warning	message	may	indicate	that	the	code	is	pass-dependent	and	should
be	rewritten.

Example

				mov	al,reg

				reg	equ	<cl>

*	ML	8.0/Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8000

Invalid	command-line	option:	option

ASMC	did	not	recognize	the	given	parameter	as	an	option.	This	error	is
generally	caused	when	there	is	a	syntax	error	on	the	command	line.

Same	as	A1006

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8001

See	A2167

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8002

See	A2189

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8003

See	A2103

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8004

See	A2004

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8005

IF[n]DEF	expects	a	plain	symbol	as	argument	:	argument

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8006

instructions	and	initialized	data	not	supported	in	segment	segments

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8007

16bit	fixup	for	32bit	label	:	label

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8008

displacement	out	of	range:	displacement

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8009

no	start	label	defined

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8010

no	stack	defined

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8011

for	-coff	leading	underscore	required	for	start	label:	label

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8012

library	name	is	missing

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8013

ELF	GNU	extensions	(8/16-bit	relocations)	used

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8014

LOADDS	ignored	in	flat	model

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8015

directive	ignored	without	-switch	switch

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8017

ignored:	symbol

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8018

group	definition	too	large,	truncated	:	group

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8019

size	not	specified,	assuming:

This	is	a	warning.	may	be	BYTE,	WORD	or	DWORD.	The	message	may	occur
if	an	immediate	value	is	written	to	an	untyped	memory	reference:

							mov	[ebx],	1

JWasm	makes	a	guess	and	displays	the	warning,	while	ML	will	display	an	error
in	such	cases.

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages	|	Error	A2070

Asmc	Macro	Assembler	Reference

ASMC	Warning	A8020

constant	expected

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages	|	Error	A2026

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7000

symbol	language	attribute	conflict

Two	declarations	for	the	same	symbol	have	conflicting	language	attributes	(such
as	C	and	PASCAL).	The	attributes	should	be	identical	or	compatible.

Same	as	ML	Error	A2192

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7001

positive	value	expected

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages	|	Error	A2090

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7002

register	value	overwritten	by	INVOKE

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages	|	Error	A2133

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7003

far	call	is	converted	to	near	call

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7004

floating-point	initializer	ignored

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7005

directive	ignored:

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7006

parameter/local	name	is	reserved	word:

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7007

.CASE	without	.ENDC:	assumed	fall	through

In	case	OPTION	SWITCH:C	is	set	(default)

	 .switch	eax

	 		.case	1	:	mov	al,1	 ;	warning

	 		.case	2	:	.endc

	 .endsw

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

ASMC	Warning	A7008

cannot	delay	macro	function:	<token>

Macro	that	normally	would	be	delayed	expanded.

.WHILE	macro(<...>)

.ELSEIF	macro(<...>)

.CASE	macro(<...>)

*	Non	ML	compatible	warning

See	Also

ASMC	Error	Messages

Asmc	Macro	Assembler	Reference

.UNTILAXZ

See	.REPEAT

See	Also

Directives	Reference,	.UNTILBXZ,	.UNTILCXZ,	.UNTILDXZ

Asmc	Macro	Assembler	Reference

.UNTILBXZ

See	.REPEAT

See	Also

Directives	Reference,	.UNTILAXZ,	.UNTILCXZ,	.UNTILDXZ

Asmc	Macro	Assembler	Reference

.UNTILDXZ

See	.REPEAT

See	Also

Directives	Reference,	.UNTILAXZ,	.UNTILBXZ,	.UNTILCXZ

Asmc	Macro	Assembler	Reference

.ENDF

.ENDF	closes	a	.FOR[S]	statement.

See	Also

Directives	Reference	|	.FOR

	ASMC
	Asmc Command-Line Reference
	Asmc Error Messages
	Asmc Extensions
	Directives Reference
	Symbols Reference

	JWASM
	 1. About
	 2. Commandline Options
	 Options -0, -1, -2, ..., -10: Select Cpu
	 Option -bin: Select Output Format Binary
	 Option -coff: Select Output Format COFF
	 Option -djgpp: Select Output Format for DJGPP (optional)
	 Option -e: Set error limit
	 Option -elf: Select 32-bit Output Format ELF
	 Option -elf64: Select 64-bit Output Format ELF
	 Option -eq: Suppress Error Messages on Screen
	 Option -Fd: Write Import Definitions
	 Option -FPi: Activate Floating-Point Emulation
	 Option -Fw: Set Error File Name
	 Options -Gc, -Gd, -Gr, -Gz: Set Default Calling Convention
	 Option -m: Select Memory Model
	 Option -mz: Select Output Format MZ
	 Option -nc: Set Code Class Name
	 Options -nd and -nt: Set DATA and CODE Segment Names
	 Option -nm: Set Module Name
	 Option -pe: Create a PE Binary
	 Option -win64: Select Output Format Win64
	 Option -zc: Set Name Decoration for C
	 Option -Zd: Emit Line Number Debugging Info
	 Option -zf: Select FASTCALL Type
	 Option -Zg: Masm-compatible Code Generation
	 Option -Zi: Emit Symbolic Debugging Info
	 Options -zlc and -zld: Control Content of OMF Output Module
	 Options -zlf, -zlp and -zls: Control Content of COFF Output Module
	 Option -Zm: Enable Masm v5 Compatibility
	 Option -Zne: Disable JWasm Syntax Extensions
	 Option -zt: Set Name Decoration for STDCALL
	 Option -Zv8: Enable Masm v8 Procedure Visibility
	 Option -zze: Disable Export Name Decoration
	 Option -zzs: Avoid Wlink COFF Incompatibility

	 3. Syntax Extensions
	 3.1 Directive INCBIN
	 3.2 FASTCALL Register Calling Convention
	 3.3 IDs enclosed in Back Quotes
	 3.4 Floating-Point Immediates in Instructions
	 3.5 Directive OPTION FIELDALIGN
	 3.6 Directive OPTION PROCALIGN
	 3.7 Directive OPTION MZ
	 3.8 Directive OPTION ELF
	 3.9 Directive OPTION WIN64
	 3.10 Directive OPTION FRAME
	 3.11 Directive OPTION RENAMEKEYWORD
	 3.12 Directive OPTION DLLIMPORT
	 3.13 Directive OPTION CODEVIEW
	 3.13 Directive OPTION STACKBASE
	 3.15 Directives PUSHCONTEXT / POPCONTEXT ALIGNMENT
	 3.16 Directives .X64 and .X64p
	 3.17 Attribute LABEL for first Macro Parameter
	 3.18 Member Argument for IF[N]DEF and .ERR[N]DEF Directives
	 3.19 Initialization of Data Items with Type MMWORD/XMMWORD
	 3.20 Optional Array Size for LABEL Directive
	 3.21 Optional Name Argument for Simplified Segment Directives
	 3.22 Segment Attribute COMDAT
	 3.23 Attribute VARARGML for last Macro Parameter
	 3.24 Miscellaneous
	 3.24.1 Numeric constant __JWASM__
	 3.24.2 Operating System Argument for .MODEL
	 3.24.3 Accepted Parameters for IF[N]DEF Directive
	 3.24.4 Visibility of Procedures
	 3.24.5 Non-RIP-Relative Addressing in 64-Bit

	 4. Instruction Sets
	 5. Code Generation Differences
	 5.1 Forward References in Macro Expressions

	 6. Output Formats
	 6.1 OMF Output Format
	 6.2 COFF Output Format
	 6.3 Win64 Output Format
	 6.4 Binary Output Format
	 6.5 PE Output Format

	 7. Masm bugs fixed in JWasm
	 8. Optional Features
	 9. Known Bugs and missing Features
	 10. License
	Appendix A. JWasm Reserved Words
	Appendix B. Source Samples
	Win64_3 - SEH Support in Win64
	Win64_3e - SEH Support in Win64 (JWasm specific)
	DOS64 - Switch to Long Mode and Back
	Win32_5 - Create a Win32 Binary with -bin
	Win32_7 - Usage of OPTION DLLIMPORT and -Fd Switch
	Win64_8 - Create a Win64 Binary with -pe

	Appendix C. Errors and Warnings
	Appendix D. Differences between Masm 6 and Masm 8
	Appendix E. Restrictions of precompiled 16-bit Binary JWASMR.EXE
	Appendix F. Additional Features of JWasm's Debug Version

