
W60X_Arduino
Modules

Here	is	a	list	of	all	modules:
[detail	level	 1 2]

	 SPI_library SPI	library
	▼WiFi_library WiFi	library
	 WiFi_class
	 Client_class
	 Server_class
	 UDP_class
	 IPAddress_class
	 Wire_Library Wire	Library
	 IO Digital	Analog	and	Advanced	I/O
	 Serial Serial
	 Stream Stream
	 Math Math

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
SPI_library

SPI	library.	More...

Functions
void	 SPIClass::begin	(void)

	 Initialize	the	SPI	instance.	More...
	

void	 SPIClass::end	(void)
	 Deinitialize	the	SPI	instance	and	stop	it.	More...
	

void	 SPIClass::beginTransaction	(SPISettings	settings)

	
This	function	should	be	used	to	configure	the	SPI	instance	in
case	you	don't	use	the	default	parameters	set	by	the	begin()
function.	More...

	
void	 SPIClass::endTransaction	(void)

	 settings	associated	to	the	SPI	instance.	More...
	
uint8_t	 SPIClass::transfer	(uint8_t	_data)
	 Transfer	one	byte	on	the	SPI	bus.	More...
	
uint16_t	 SPIClass::transfer16	(uint16_t	_data)
	 Transfer	two	bytes	on	the	SPI	bus	in	16	bits	format.	More...
	

void	 SPIClass::transferWrite	(void	*_buf,	size_t	_count)
	 send	several	bytes.	More...
	

void	 SPIClass::transferRead	(void	*_buf,	size_t	_count)
	 receive	several	bytes.	More...
	

void	 SPIClass::transfer	(void	*_buf,	size_t	_count)
	 Transfer	several	bytes.	Only	one	buffer	used	to	send	and

receive	data.	More...
	

void	 SPIClass::transfer	(void	*_bufout,	void	*_bufin,	size_t	_count)
	 Transfer	several	bytes.	One	buffer	contains	the	data	to	send

and	another	one	will	contains	the	data	received.	More...

	
void	 SPIClass::setBitOrder	(BitOrder)

	 Deprecated	function.	Configure	the	bit	order:	MSB	first	or	LSB
first.	More...

	
void	 SPIClass::setDataMode	(uint8_t	_mode)

	 Deprecated	function.	Configure	the	data	mode	(clock	polarity
and	clock	phase)	More...

	
void	 SPIClass::setFrequency	(uint32_t	freq)

	 Configure	the	spi	frequency.	More...
	

Detailed	Description

SPI	library.

Function	Documentation

◆	begin()
void	SPIClass::begin (void)

Initialize	the	SPI	instance.

Parameters
[in] none

Returns
none

Note
none

◆	beginTransaction()
void	SPIClass::beginTransaction (SPISettings	 settings)

This	function	should	be	used	to	configure	the	SPI	instance	in	case	you
don't	use	the	default	parameters	set	by	the	begin()	function.

Parameters
[in] settings SPI	settings(clock	speed,	bit	order,	data	mode).

Returns
none

Note
none

◆	end()
void	SPIClass::end (void)

Deinitialize	the	SPI	instance	and	stop	it.

Parameters
[in] none

Returns
none

Note
none

◆	endTransaction()
void	SPIClass::endTransaction (void)

settings	associated	to	the	SPI	instance.

Parameters
[in] none

Returns
none

Note
none

◆	setBitOrder()
void	SPIClass::setBitOrder (BitOrder	 _bitOrder)

Deprecated	function.	Configure	the	bit	order:	MSB	first	or	LSB	first.

Parameters
[in] _bitOrderMSBFIRST	or	LSBFIRST

Returns
none

Note
none

◆	setDataMode()
void	SPIClass::setDataMode (uint8_t	 _mode)

Deprecated	function.	Configure	the	data	mode	(clock	polarity	and	clock
phase)

Parameters
[in] _mode SPI_MODE0,	SPI_MODE1,	SPI_MODE2	or

SPI_MODE3

Returns
none

Note
none

◆	setFrequency()
void	SPIClass::setFrequency (uint32_t	 freq)

Configure	the	spi	frequency.

Parameters
[in] freqmax	20MHz

Returns
none

Note
none

◆	transfer()	[1/3]
uint8_t	SPIClass::transfer (uint8_t	 data)

Transfer	one	byte	on	the	SPI	bus.

Parameters
[in] data byte	to	send.

Returns
byte	received	from	the	slave

Note
none

◆	transfer()	[2/3]
void	SPIClass::transfer (void	*	 _buf,

size_t	 _count	
)

Transfer	several	bytes.	Only	one	buffer	used	to	send	and	receive	data.

Parameters
[in] _buf pointer	to	the	bytes	to	send.	The	bytes	received	are

copy	in	this	buffer.
[in] _count number	of	bytes	to	send/receive

Returns
none

Note
none

◆	transfer()	[3/3]
void	SPIClass::transfer (void	*	 _bufout,

void	*	 _bufin,
size_t	 _count	
)

Transfer	several	bytes.	One	buffer	contains	the	data	to	send	and
another	one	will	contains	the	data	received.

Parameters
[in] _bufout pointer	to	the	bytes	to	send.
[in] _bufin pointer	to	the	bytes	received.
[in] _count number	of	bytes	to	send/receive

Returns
none

Note
none

◆	transfer16()
uint16_t	SPIClass::transfer16 (uint16_t	 data)

Transfer	two	bytes	on	the	SPI	bus	in	16	bits	format.

Parameters
[in] data bytes	to	send.

Returns
bytes	received	from	the	slave	in	16	bits	format.

Note
none

◆	transferRead()
void	SPIClass::transferRead (void	*	 _buf,

size_t	 _count	
)

receive	several	bytes.

Parameters
[in] _buf pointer	to	the	bytes	to	received.
[in] _count number	of	bytes	to	received

Returns
none

Note
none

◆	transferWrite()
void	SPIClass::transferWrite (void	*	 _buf,

size_t	 _count	
)

send	several	bytes.

Parameters
[in] _buf pointer	to	the	bytes	to	send.
[in] _count number	of	bytes	to	send

Returns
none

Note
none

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Modules

W60X_Arduino
WiFi_library

WiFi	library.	More...

Modules
	 WiFi_class
	
	 Client_class
	
	 Server_class
	
	 UDP_class
	
	 IPAddress_class
	

Detailed	Description

WiFi	library.

IPAddress	class.

UDP	class.

Server	class.

Client	class.

WiFi	class.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
WiFi_class
WiFi_library

Functions
int	 WiFiSTAClass::begin	(const	char	*ssid,	const	char

*passphrase=NULL,	unsigned	int	channel=0,	const
unsigned	char	bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 WiFiSTAClass::begin	(char	*ssid,	char

*passphrase=NULL,	int	channel=0,	unsigned	char
bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 WiFiSTAClass::begin	()

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
bool	 WiFiSTAClass::reconnect	()

	 This	function	is	used	to	reconect	the	AP.	More...
	

bool	 WiFiSTAClass::disconnect	(bool	wifioff=false)
	 This	function	is	used	to	disconnect	the	wifi.	More...
	

bool	 WiFiSTAClass::isConnected	()
	 This	function	is	used	to	get	the	wifi	mode	connect	status.

More...
	

bool	 WiFiSTAClass::setAutoConnect	(bool	autoConnect)
	 This	function	is	used	to	set	auto	connect	flag.	More...
	

bool	 WiFiSTAClass::getAutoConnect	()
	 This	function	is	used	to	get	auto	connect	flag.	More...
	

bool	 WiFiSTAClass::setAutoReconnect	(bool	autoReconnect)
	 This	function	is	used	to	set	auto	reconnect	flag.	More...

	
bool	 WiFiSTAClass::getAutoReconnect	()

	 This	function	is	used	to	get	auto	reconnect	flag.	More...
	

uint8_t	 WiFiSTAClass::waitForConnectResult	()
	 This	function	is	used	to	suspend	until	the	WiFi	is

connected.	More...
	
IPAddress	 WiFiSTAClass::localIP	()
	 This	function	is	used	to	get	the	local	ip	address.	More...
	

char	*	 WiFiSTAClass::macAddress	()
	 This	function	is	used	to	get	local	MAC	address	used	by	the

module.	More...
	

char	*	 WiFiSTAClass::macAddressStr	()
	 This	function	is	used	to	get	local	MAC	address	used	by	the

module.	More...
	
IPAddress	 WiFiSTAClass::subnetMask	()
	 This	function	is	used	to	get	subnet	mask.	More...
	
IPAddress	 WiFiSTAClass::getwayIP	()
	 This	function	is	used	to	get	gateway	IP	address.	More...
	
IPAddress	 WiFiSTAClass::dnsIP	(uint8_t	dns_no=0)
	 This	function	is	used	to	get	DNS	IP	address.	More...
	

char	*	 WiFiSTAClass::hostname	()
	

bool	 WiFiSTAClass::hostname	(char	*aHostname)
	

bool	 WiFiSTAClass::hostname	(const	char	*aHostname)
	
wl_status_t	 WiFiSTAClass::status	()

	
This	function	is	used	to	get	the	status	during	Station	mode.
More...

	
char	*	 WiFiSTAClass::statusStr	()

	 This	function	is	used	to	get	the	status	during	Station	mode.
More...

	
char	*	 WiFiSTAClass::SSID	()	const

	 This	function	is	used	to	get	the	SSID	used	by	the	module.
More...

	
char	*	 WiFiSTAClass::psk	()	const

	 This	function	is	used	to	get	the	psk	used	by	the	module.
More...

	
uint8_t	*	 WiFiSTAClass::BSSID	()

	 This	function	is	used	to	get	the	BSSID	which	is	connected
by	the	module.	More...

	
char	*	 WiFiSTAClass::BSSIDstr	()

	 This	function	is	used	to	get	the	BSSID	which	is	connected
by	the	module.	More...

	
int32_t	 WiFiSTAClass::RSSI	()

	 This	function	is	used	to	get	the	RSSI.	More...
	

Detailed	Description

Function	Documentation

◆	begin()	[1/3]
int	WiFiSTAClass::begin (const	char	*	 ssid,

const	char	*	 passphrase	=	NULL,
unsigned	int	 channel	=	0,
const	unsigned	char	 bssid[6]	=	NULL,
bool	 connect	=	true	
)

This	function	is	used	to	start	the	wifi	module	as	station	mode.

Parameters
[in] ssid Specify	the	SSID.
[in] passphrase Specify	the	passphrase.
[in] channel Specify	the	channel.
[in] bssid Specify	the	BSSID.
[in] connect Specify	the	connect.

Returns
If	the	paraments	is	invalid,	negative	is	returned.	Otherwise,	wifi
status	is	returned.

Note

◆	begin()	[2/3]
int	WiFiSTAClass::begin (char	*	 ssid,

char	*	 passphrase	=	NULL,
int	 channel	=	0,
unsigned	char	 bssid[6]	=	NULL,
bool	 connect	=	true	
)

This	function	is	used	to	start	the	wifi	module	as	station	mode.

Parameters
[in] ssid Specify	the	SSID.
[in] passphrase Specify	the	passphrase.
[in] channel Specify	the	channel.
[in] bssid Specify	the	BSSID.
[in] connect Specify	the	connect.

Returns
If	the	paraments	is	invalid,	negative	is	returned.	Otherwise,	wifi
status	is	returned.

Note

◆	begin()	[3/3]
int	WiFiSTAClass::begin (void)

This	function	is	used	to	start	the	wifi	module	as	station	mode.

Parameters
[in]None.

Returns
If	the	paraments	is	invalid,	negative	is	returned.	Otherwise,	wifi
status	is	returned.

Note

◆	BSSID()
uint8_t	*	WiFiSTAClass::BSSID ()

This	function	is	used	to	get	the	BSSID	which	is	connected	by	the
module.

Parameters
[in]None

Returns
The	BSSID	of	the	AP.

Note

Parameters
[in] none

Returns
The	BSSID	of	the	AP.

Note

◆	BSSIDstr()
char	*	WiFiSTAClass::BSSIDstr ()

This	function	is	used	to	get	the	BSSID	which	is	connected	by	the
module.

Parameters
[in]None

Returns
The	string	of	the	BSSID	of	the	AP.

Note

◆	disconnect()
bool	WiFiSTAClass::disconnect (bool	 wifioff	=	false)

This	function	is	used	to	disconnect	the	wifi.

Parameters
[in]wifioff Specify	the	parameter.

Returns
true	is	returned.

Note

◆	dnsIP()
IPAddress	WiFiSTAClass::dnsIP (uint8_t	 dns_no	=	0)

This	function	is	used	to	get	DNS	IP	address.

Parameters
[in] dns_no The	index	of	the	dns.

Returns
The	DNS's	IPv4	address.

Note

Parameters
[in] dns_no The	index	of	the	dns.

Returns
The	DNS's	IPv4	address

Note

◆	getAutoConnect()
bool	WiFiSTAClass::getAutoConnect ()

This	function	is	used	to	get	auto	connect	flag.

Parameters
[in]None

Returns
true	-	set	the	auto-connect	flag,	otherwise,	return	false.

Note

◆	getAutoReconnect()
bool	WiFiSTAClass::getAutoReconnect ()

This	function	is	used	to	get	auto	reconnect	flag.

Parameters
[in]None

Returns
true	-	set	the	auto-reconnect	flag,	otherwise,	return	false.

Note

◆	getwayIP()
IPAddress	WiFiSTAClass::getwayIP ()

This	function	is	used	to	get	gateway	IP	address.

Parameters
[in]None

Returns
The	gateway's	IPv4	address.

Note

◆	isConnected()
bool	WiFiSTAClass::isConnected ()

This	function	is	used	to	get	the	wifi	mode	connect	status.

Parameters
[in]None

Returns
true	-	WiFi	status	is	connected,	otherwise,	false.

Note

◆	localIP()
IPAddress	WiFiSTAClass::localIP ()

This	function	is	used	to	get	the	local	ip	address.

Parameters
[in]None

Returns
The	local	IPv4	address	configure	on	the	Module.

Note

◆	macAddress()
char	*	WiFiSTAClass::macAddress ()

This	function	is	used	to	get	local	MAC	address	used	by	the	module.

Parameters
[in]None

Returns
The	MAC	address.

Note

◆	macAddressStr()
char	*	WiFiSTAClass::macAddressStr ()

This	function	is	used	to	get	local	MAC	address	used	by	the	module.

Parameters
[in]None

Returns
The	string	of	the	MAC	address.

Note

◆	psk()
char	*	WiFiSTAClass::psk () const

This	function	is	used	to	get	the	psk	used	by	the	module.

Parameters
[in]None

Returns
The	string	of	the	PSK.

Note

◆	reconnect()
bool	WiFiSTAClass::reconnect ()

This	function	is	used	to	reconect	the	AP.

Parameters
[in]None

Returns
If	reconnect	successfully,	return	true,	otherwise,	return	false.

Note

◆	RSSI()
int32_t	WiFiSTAClass::RSSI ()

This	function	is	used	to	get	the	RSSI.

Parameters
[in]None

Returns
the	value	of	rssi	in	this	connect.

Note

◆	setAutoConnect()
bool	WiFiSTAClass::setAutoConnect (bool	 autoConnect)

This	function	is	used	to	set	auto	connect	flag.

Parameters
[in] autoReconnect Specify	the	auto-connect	flag.

Returns
true	-	set	successfully.

Note

◆	setAutoReconnect()
bool	WiFiSTAClass::setAutoReconnect (bool	 autoReconnect)

This	function	is	used	to	set	auto	reconnect	flag.

Parameters
[in] autoReconnect Specify	the	auto-reconnect	flag.

Returns
true	-	set	successfully.

Note

◆	SSID()
char	*	WiFiSTAClass::SSID () const

This	function	is	used	to	get	the	SSID	used	by	the	module.

Parameters
[in] none

Returns
The	string	of	the	SSID.

Note

Parameters
[in]None

Returns
The	string	of	the	SSID.

Note

◆	status()
wl_status_t	WiFiSTAClass::status ()

This	function	is	used	to	get	the	status	during	Station	mode.

Parameters
[in]None

Returns
The	status	of	WiFi	Mode

Note

◆	statusStr()
char	*	WiFiSTAClass::statusStr ()

This	function	is	used	to	get	the	status	during	Station	mode.

Parameters
[in]None

Returns
The	string	of	the	status	of	WiFi	Mode.

Note

◆	subnetMask()
IPAddress	WiFiSTAClass::subnetMask ()

This	function	is	used	to	get	subnet	mask.

Parameters
[in]None

Returns
The	sub-net	mask.

Note

◆	waitForConnectResult()
uint8_t	WiFiSTAClass::waitForConnectResult ()

This	function	is	used	to	suspend	until	the	WiFi	is	connected.

Parameters
[in]None

Returns
WiFi	status.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions	|	Friends

W60X_Arduino
Client_class
WiFi_library

Functions
	 WiFiClient::WiFiClient	()

	
This	function	is	constructor,	it's	used	to	creates	a	client
that	can	connect	to	to	a	specified	internet	IP	address
and	port	as	defined	in	client.connect().	More...

	
	 WiFiClient::WiFiClient	(const	WiFiClient	&)

	
WiFiClient	&	 WiFiClient::operator=	(const	WiFiClient	&)
	

virtual	 WiFiClient::~WiFiClient	()
	 This	function	is	deconstructor,	it's	used	to	release

WiFiClient	class.	More...
	

uint8_t	 WiFiClient::status	()
	 return	tcp	status	of	WiFiClient.	More...
	

virtual	int	 WiFiClient::connect	(IPAddress	ip,	uint16_t	port)
	 This	function	is	used	to	connect	to	the	IP	address	and

port	specified	in	the	constructor.	More...
	

virtual	int	 WiFiClient::connect	(const	char	*host,	uint16_t	port)
	 This	function	is	used	to	connect	to	the	IP	address	and

port	specified	in	the	constructor.	More...
	

virtual	int	 WiFiClient::connect	(const	String	host,	uint16_t	port)
	
virtual	size_t	 WiFiClient::write	(uint8_t)
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	
virtual	size_t	 WiFiClient::write	(const	uint8_t	*buf,	size_t	size)
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	

virtual	size_t	 WiFiClient::write_P	(PGM_P	buf,	size_t	size)
	

size_t	 WiFiClient::write	(Stream	&stream)
	

size_t	 WiFiClient::write	(Stream	&stream,	size_t	unitSize)
__attribute__((deprecated))

	
virtual	int	 WiFiClient::available	()

	
Returns	the	number	of	bytes	available	for	reading	(That
is,	the	amount	of	data	that	has	been	written	to	the	client
by	the	server	it	is	connected	to).	More...

	
virtual	int	 WiFiClient::read	()

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 WiFiClient::read	(uint8_t	*buf,	size_t	size)

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 WiFiClient::peek	()

	

Read	a	byte	from	the	file	without	advancing	to	the	next
one.	
That	is,	successive	calls	to	peek()	will	return	the	same
value,	as	will	the	next	call	to	read().	More...

	
virtual	size_t	 WiFiClient::peekBytes	(uint8_t	*buffer,	size_t	length)

	
size_t	 WiFiClient::peekBytes	(char	*buffer,	size_t	length)

	
virtual	void	 WiFiClient::flush	()

	 Discard	any	bytes	that	have	been	written	to	the	client
but	not	yet	read.	More...

	
virtual	void	 WiFiClient::stop	()

	 This	function	is	used	to	disconnect	from	the	server.
More...

	
virtual	uint8_t	 WiFiClient::connected	()
	 Whether	or	not	the	client	is	connected.	More...
	

virtual	 WiFiClient::operator	bool	()
	

IPAddress	 WiFiClient::remoteIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the

remote	connection.	More...
	

uint16_t	 WiFiClient::remotePort	()
	 This	function	is	used	to	gets	the	port	of	the	remote

connection.	More...
	

IPAddress	 WiFiClient::localIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the	local

tcp	connection.	More...
	

uint16_t	 WiFiClient::localPort	()
	 This	function	is	used	to	gets	the	port	of	the	local	tcp

connection.	More...
	

bool	 WiFiClient::getNoDelay	()
	 This	function	is	used	to	get	whether	no	delay	of	the	tcp

connection.	More...
	

void	 WiFiClient::setNoDelay	(bool	nodelay)
	 This	function	is	used	to	set	no	delay	for	the	tcp

connection.	More...
	

static	void	 WiFiClient::setLocalPortStart	(uint16_t	port)
	 This	function	is	used	to	set	local	port	number.	More...
	

size_t	 WiFiClient::availableForWrite	()
	 This	function	is	used	to	get	the	length	that	can	be

written.	More...
	

static	void	 WiFiClient::stopAll	()
	 This	function	is	used	to	stop	all	WiFiClient	session.

More...
	

static	void	 WiFiClient::stopAllExcept	(WiFiClient	*c)
	 This	function	is	used	to	stop	all	WiFiClient	session

without	exC.	More...
	

void	 WiFiClient::keepAlive	(uint16_t
idle_sec=TCP_DEFAULT_KEEPALIVE_IDLE_SEC,
uint16_t
intv_sec=TCP_DEFAULT_KEEPALIVE_INTERVAL_SEC,
uint8_t	count=TCP_DEFAULT_KEEPALIVE_COUNT)

	 This	function	is	used	to	set	keep	alive.	More...
	

bool	 WiFiClient::isKeepAliveEnabled	()	const
	 This	function	is	used	to	get	whether	enable	keep	alive.

More...
	

uint16_t	 WiFiClient::getKeepAliveIdle	()	const
	 This	function	is	used	to	get	idle	time	interval.	More...
	

uint16_t	 WiFiClient::getKeepAliveInterval	()	const
	 This	function	is	used	to	get	keep	alive	time	interval.

More...
	

uint8_t	 WiFiClient::getKeepAliveCount	()	const
	 This	function	is	used	to	get	keep	alive	count.	More...
	

void	 WiFiClient::disableKeepAlive	()
	 This	function	is	used	to	set	disable	keep	alive.	More...
	

Friends
class	 WiFiServer
	

Detailed	Description

Function	Documentation

◆	available()
int	WiFiClient::available (void) virtual

Returns	the	number	of	bytes	available	for	reading	(That	is,	the	amount
of	data	that	has	been	written	to	the	client	by	the	server	it	is	connected
to).

Parameters
[in] None
[out]None

Return	values
The number	of	bytes	available

Note
available()	inherits	from	the	Stream	utility	class.

Implements	Client.

◆	availableForWrite()
size_t	WiFiClient::availableForWrite ()

This	function	is	used	to	get	the	length	that	can	be	written.

Parameters
[in] None
[out]None

Return	values
the length	that	can	be	written

Note

◆	connect()	[1/2]
int	WiFiClient::connect (IPAddress	 ip,

uint16_t	 port	
) virtual

This	function	is	used	to	connect	to	the	IP	address	and	port	specified	in
the	constructor.

Parameters
[in] ip the	IP	address	that	the	client	will	connect	to	(array	of

4	bytes)
[in] port the	port	that	the	client	will	connect	to	(int)
[out]None

Return	values
1 the	connection	succeeds
0 the	connection	failed

Note

Implements	Client.

◆	connect()	[2/2]
int	WiFiClient::connect (const	char	*	 host,

uint16_t	 port	
) virtual

This	function	is	used	to	connect	to	the	IP	address	and	port	specified	in
the	constructor.

Parameters
[in] host the	domain	name	the	client	will	connect	to	(string,

ex.:"arduino.cc")
[in] port the	port	that	the	client	will	connect	to	(int)
[out]None

Return	values
1 the	connection	succeeds
0 the	connection	failed

Note

Implements	Client.

◆	connected()
uint8_t	WiFiClient::connected () virtual

Whether	or	not	the	client	is	connected.

Parameters
[in] None
[out]None

Return	values
1 the	client	is	connected
0 the	client	is	disconnected

Note
that	a	client	is	considered	connected	if	the	connection	has	been
closed	but	there	is	still	unread	data.

Implements	Client.

◆	disableKeepAlive()
void	WiFiClient::disableKeepAlive () inline

This	function	is	used	to	set	disable	keep	alive.

Parameters
[in] None
[out]None

Returns
None

Note

◆	flush()
void	WiFiClient::flush () virtual

Discard	any	bytes	that	have	been	written	to	the	client	but	not	yet	read.

Parameters
[in] None
[out]None

Returns
None

Note
flush()	inherits	from	the	Stream	utility	class.

Implements	Client.

◆	getKeepAliveCount()
uint8_t	WiFiClient::getKeepAliveCount () const

This	function	is	used	to	get	keep	alive	count.

Parameters
[in] None
[out]None

Return	values
keep alive	count

Note

◆	getKeepAliveIdle()
uint16_t	WiFiClient::getKeepAliveIdle () const

This	function	is	used	to	get	idle	time	interval.

Parameters
[in] None
[out]None

Return	values
idle time	interval

Note

◆	getKeepAliveInterval()
uint16_t	WiFiClient::getKeepAliveInterval () const

This	function	is	used	to	get	keep	alive	time	interval.

Parameters
[in] None
[out]None

Return	values
keep alive	time	interval

Note

◆	getNoDelay()
bool	WiFiClient::getNoDelay ()

This	function	is	used	to	get	whether	no	delay	of	the	tcp	connection.

Parameters
[in] None
[out]None

Return	values
true no	delay
false delay

Note

◆	isKeepAliveEnabled()
bool	WiFiClient::isKeepAliveEnabled () const

This	function	is	used	to	get	whether	enable	keep	alive.

Parameters
[in] None
[out]None

Return	values
true enable
false disable

Note

◆	keepAlive()
void
WiFiClient::keepAlive (uint16_t	 idle_sec	=	TCP_DEFAULT_KEEPALIVE_IDLE_SEC

uint16_t	 intv_sec	=	TCP_DEFAULT_KEEPALIVE_INTERVAL_SEC
uint8_t	 count	=	TCP_DEFAULT_KEEPALIVE_COUNT	
)

This	function	is	used	to	set	keep	alive.

Parameters
[in] idle_sec idle	time	interval
[in] intv_sec keep	alive	time	interval
[in] count keep	alive	count
[out]None

Return	values
None

Note

◆	localIP()
IPAddress	WiFiClient::localIP ()

This	function	is	used	to	gets	the	IP	address	of	the	local	tcp	connection.

Parameters
[in] None
[out]None

Return	values
the IP	address(4	bytes)

Note

◆	localPort()
uint16_t	WiFiClient::localPort ()

This	function	is	used	to	gets	the	port	of	the	local	tcp	connection.

Parameters
[in] None
[out]None

Return	values
the local	port	number

Note

◆	peek()
int	WiFiClient::peek (void) virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	
That	is,	successive	calls	to	peek()	will	return	the	same	value,	as	will
the	next	call	to	read().

Parameters
[in] None
[out]None

Return	values
-1 none	is	available
other the	next	byte	or	character

Note
This	function	inherited	from	the	Stream	class.	See	the	Stream
class	main	page	for	more	information.

Implements	Client.

◆	read()	[1/2]
int	WiFiClient::read (void) virtual

Read	the	next	byte	received	from	the	server	the	client	is	connected	to
(after	the	last	call	to	read()).

Parameters
[in] None
[out]None

Return	values
-1 none	is	available.
other The	next	character

Note
read()	inherits	from	the	Stream	utility	class

Implements	Client.

◆	read()	[2/2]
int	WiFiClient::read (uint8_t	*	 buf,

size_t	 size	
) virtual

Read	the	next	byte	received	from	the	server	the	client	is	connected	to
(after	the	last	call	to	read()).

Parameters
[in] buf the	byte	to	read
[in] size the	size	of	the	buf
[out]None

Return	values
-1 none	is	available.
other The	next	byte

Note
read()	inherits	from	the	Stream	utility	class

Implements	Client.

◆	remoteIP()
IPAddress	WiFiClient::remoteIP ()

This	function	is	used	to	gets	the	IP	address	of	the	remote	connection.

Parameters
[in] None
[out]None

Return	values
the IP	address(4	bytes)

Note

◆	remotePort()
uint16_t	WiFiClient::remotePort ()

This	function	is	used	to	gets	the	port	of	the	remote	connection.

Parameters
[in] None
[out]None

Return	values
The port	number

Note

◆	setLocalPortStart()
static	void	WiFiClient::setLocalPortStart (uint16_t	 port) inline static

This	function	is	used	to	set	local	port	number.

Parameters
[in] port number
[out]None

Returns
None

Note

◆	setNoDelay()
void	WiFiClient::setNoDelay (bool	 nodelay)

This	function	is	used	to	set	no	delay	for	the	tcp	connection.

Parameters
[in] None
[out]None

Return	values
the local	port	number

Note

◆	status()
uint8_t	WiFiClient::status ()

return	tcp	status	of	WiFiClient.

Parameters
[in] None
[out]None

Return	values
tcp status

Note

◆	stop()
void	WiFiClient::stop () virtual

This	function	is	used	to	disconnect	from	the	server.

Parameters
[in] None
[out]None

Returns
None

Note

Implements	Client.

◆	stopAll()
void	WiFiClient::stopAll () static

This	function	is	used	to	stop	all	WiFiClient	session.

Parameters
[in] None
[out]None

Return	values
None

Note

◆	stopAllExcept()
void	WiFiClient::stopAllExcept (WiFiClient	*	 except) static

This	function	is	used	to	stop	all	WiFiClient	session	without	exC.

Parameters
[in] None
[out]None

Return	values
None

Note

◆	WiFiClient()
WiFiClient::WiFiClient ()

This	function	is	constructor,	it's	used	to	creates	a	client	that	can
connect	to	to	a	specified	internet	IP	address	and	port	as	defined	in
client.connect().

Parameters
[in] None
[out]None

Returns
None

Note

◆	write()	[1/2]
size_t	WiFiClient::write (uint8_t	 b) virtual

This	function	is	used	to	write	data	to	the	server	the	client	is	connected
to.

Parameters
[in] the char	to	write
[out]None

Return	values
the number	of	characters	written.	it	is	not	necessary	to	read	this

value.

Note

Implements	Client.

◆	write()	[2/2]
size_t	WiFiClient::write (const	uint8_t	*	 buf,

size_t	 size	
) virtual

This	function	is	used	to	write	data	to	the	server	the	client	is	connected
to.

Parameters
[in] buf the	byte	to	write
[in] size the	size	of	the	buf
[out]None

Return	values
the number	of	characters	written.	it	is	not	necessary	to	read	this

value.

Note

Implements	Client.

◆	~WiFiClient()
WiFiClient::~WiFiClient () virtual

This	function	is	deconstructor,	it's	used	to	release	WiFiClient	class.

Parameters
[in] None
[out]None

Returns
None

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
Server_class
WiFi_library

Functions
	 WiFiServer::WiFiServer	(IPAddress	addr,	uint16_t	port)

	 This	constructor	is	used	to	init	WiFiServer	object	with	the
address	and	port	specify	by	caller.	More...

	
	 WiFiServer::WiFiServer	(uint16_t	port)

	 This	constructor	is	used	to	init	WiFiServer	object	with
port	specify	by	caller.	More...

	
bool	 WiFiServer::hasClient	()

	
void	 WiFiServer::begin	()

	 This	function	is	used	to	start	the	WiFiServer.	More...
	

void	 WiFiServer::begin	(uint16_t	port)
	 This	function	is	used	to	start	the	WiFiServer.	More...
	

void	 WiFiServer::setNoDelay	(bool	nodelay)
	 This	function	is	used	to	set	no-delay	flag.	More...
	

bool	 WiFiServer::getNoDelay	()
	 This	function	is	used	to	get	no-delay	flag.	More...
	
virtual	size_t	 WiFiServer::write	(uint8_t)
	 This	function	is	used	to	send	the	message	(one	byte)	to

peer.	More...
	
virtual	size_t	 WiFiServer::write	(const	uint8_t	*buf,	size_t	size)
	 This	function	is	used	to	send	the	message	to	peer.

More...
	

uint8_t	 WiFiServer::status	()
	

void	 WiFiServer::close	()
	 This	function	is	used	to	close	the	connection.	More...

	
void	 WiFiServer::stop	()

	 This	function	is	used	to	close	the	connection.	More...
	

long	 WiFiServer::_accept	(tcp_pcb	*newpcb,	long	err)
	

static	err_t	 WiFiServer::_s_accept	(void	*arg,	tcp_pcb	*newpcb,
err_t	err)

	

Detailed	Description

Function	Documentation

◆	begin()	[1/2]
void	WiFiServer::begin (void) virtual

This	function	is	used	to	start	the	WiFiServer.

Parameters
[in] none
[out]

Implements	Server.

◆	begin()	[2/2]
void	WiFiServer::begin (uint16_t	 port)

This	function	is	used	to	start	the	WiFiServer.

Parameters
[in] port Specify	the	port	used	by	the	object.

Returns
None

Note

◆	close()
void	WiFiServer::close ()

This	function	is	used	to	close	the	connection.

Parameters
[in]None

Returns
None

Note

◆	getNoDelay()
bool	WiFiServer::getNoDelay ()

This	function	is	used	to	get	no-delay	flag.

Parameters
[in]None

Returns
If	the	no-delay	flag	is	true,	return	true,	otherwise	return	false.

Note

◆	setNoDelay()
void	WiFiServer::setNoDelay (bool	 nodelay)

This	function	is	used	to	set	no-delay	flag.

Parameters
[in] nodelay Specify	the	flag	of	no-delay

Returns
None

Note

◆	stop()
void	WiFiServer::stop ()

This	function	is	used	to	close	the	connection.

Parameters
[in]None

Returns
None

Note

◆	WiFiServer()	[1/2]
WiFiServer::WiFiServer (IPAddress	 addr,

uint16_t	 port	
)

This	constructor	is	used	to	init	WiFiServer	object	with	the	address	and
port	specify	by	caller.

Parameters
[in] addr Specify	the	IPv4	address.
[in] port Specify	the	port	used	by	the	object.

Returns
None

Note

◆	WiFiServer()	[2/2]
WiFiServer::WiFiServer (uint16_t	 port)

This	constructor	is	used	to	init	WiFiServer	object	with	port	specify	by
caller.

Parameters
[in] port Specify	the	port	used	by	the	object.

Returns
None

Note

◆	write()	[1/2]
size_t	WiFiServer::write (uint8_t	 b) virtual

This	function	is	used	to	send	the	message	(one	byte)	to	peer.

Parameters
[in] b Specify	the	byte	which	will	be	sent	to	peer.

Returns
The	length	of	the	message	sent	to	peer.

Note

Implements	Print.

◆	write()	[2/2]
size_t	WiFiServer::write (const	uint8_t	*	 buffer,

size_t	 size	
) virtual

This	function	is	used	to	send	the	message	to	peer.

Parameters
[in] buf Specify	the	buffer	which	will	be	sent	to	perr.
[in] size Specify	the	length	which	will	be	sent.

Returns
The	length	of	the	message	sent	to	peer.

Note

Reimplemented	from	Print.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
UDP_class
WiFi_library

Functions
	 WiFiUDP::WiFiUDP	()

	
This	function	is	constructor,	it's	used	to	creates	a
named	instance	of	the	WiFiUDP	class	that	can	send
and	receive	UDP	messages.	More...

	
	 WiFiUDP::WiFiUDP	(const	WiFiUDP	&other)

	
WiFiUDP	&	 WiFiUDP::operator=	(const	WiFiUDP	&rhs)

	
	 WiFiUDP::~WiFiUDP	()

	 This	function	is	deconstructor,	it's	used	to	release
WiFiUDP	class.	More...

	
	 WiFiUDP::operator	bool	()	const

	
virtual	uint8_t	 WiFiUDP::begin	(uint16_t	port)

	
This	function	is	used	to	initializes	the	WiFiUDP
library	and	network	settings,	Starts	UDP	socket,
listening	at	local	port.	More...

	
virtual	void	 WiFiUDP::stop	()

	
This	function	is	used	to	disconnect	from	the	server.
Release	any	resource	being	used	during	the	UDP
session.	More...

	
uint8_t	 WiFiUDP::beginMulticast	(IPAddress

interfaceAddr,	IPAddress	multicast,	uint16_t	port)
	 This	function	is	used	to	join	a	multicast	group	and

listen	on	the	given	port.	More...
	

virtual	int	 WiFiUDP::beginPacket	(IPAddress	ip,	uint16_t
port)

	 This	function	is	used	to	starts	a	connection	to	write
UDP	data	to	the	remote	connection.	More...

	
virtual	int	 WiFiUDP::beginPacket	(const	char	*host,	uint16_t

port)

	 This	function	is	used	to	starts	a	connection	to	write
UDP	data	to	the	remote	connection.	More...

	
virtual	int	 WiFiUDP::beginPacketMulticast	(IPAddress

multicastAddress,	uint16_t	port,	IPAddress
interfaceAddress,	int	ttl=1)

	 This	function	is	used	to	start	building	up	a	packet	to
send	to	the	multicast	address.	More...

	
virtual	int	 WiFiUDP::endPacket	()

	
This	function	is	used	to	called	after	writing	UDP	data
to	the	remote	connection.	It	finishes	off	the	packet
and	send	it.	More...

	
virtual	size_t	 WiFiUDP::write	(uint8_t)

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	size_t	 WiFiUDP::write	(const	uint8_t	*buffer,	size_t	size)

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	int	 WiFiUDP::parsePacket	()

	
It	starts	processing	the	next	available	incoming
packet,	checks	for	the	presence	of	a	UDP	packet,
and	reports	the	size.	More...

	
virtual	int	 WiFiUDP::available	()

	
Get	the	number	of	bytes	(characters)	available	for
reading	from	the	buffer.	This	is	is	data	that's	already
arrived.	More...

	
virtual	int	 WiFiUDP::read	()

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character

in	the	buffer.	More...
	

virtual	int	 WiFiUDP::read	(unsigned	char	*buffer,	size_t	len)

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 WiFiUDP::read	(char	*buffer,	size_t	len)

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 WiFiUDP::peek	()

	

Read	a	byte	from	the	file	without	advancing	to	the
next	one.	
That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 WiFiUDP::flush	()

	 Discard	any	bytes	that	have	been	written	to	the
client	but	not	yet	read.	More...

	
virtual	IPAddress	 WiFiUDP::remoteIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the

remote	connection.	More...
	

virtual	uint16_t	 WiFiUDP::remotePort	()
	 This	function	is	used	to	gets	the	port	of	the	remote

UDP	connection.	More...
	

IPAddress	 WiFiUDP::destinationIP	()
	 This	function	is	used	to	distinguish	multicast	and

ordinary	packets.	More...
	

uint16_t	 WiFiUDP::localPort	()
	 This	function	is	used	to	gets	the	port	of	the	local

UDP	connection.	More...

	
static	void	 WiFiUDP::stopAll	()

	 This	function	is	used	to	stop	all	WiFiUDP	session.
More...

	
static	void	 WiFiUDP::stopAllExcept	(WiFiUDP	*exC)

	 This	function	is	used	to	stop	all	WiFiUDP	session
without	exC.	More...

	

Detailed	Description

Function	Documentation

◆	available()
int	WiFiUDP::available (void) virtual

Get	the	number	of	bytes	(characters)	available	for	reading	from	the
buffer.	This	is	is	data	that's	already	arrived.

Parameters
[in] None
[out]None

Return	values
0 parsePacket	hasn't	been	called	yet
other the	number	of	bytes	available	in	the	current	packet

Note
This	function	can	only	be	successfully	called	after	parsePacket().
available()	inherits	from	the	Stream	utility	class.

Implements	UDP.

◆	begin()
uint8_t	WiFiUDP::begin (uint16_t	 port) virtual

This	function	is	used	to	initializes	the	WiFiUDP	library	and	network
settings,	Starts	UDP	socket,	listening	at	local	port.

Parameters
[in] the local	port	to	listen	on
[out]None

Return	values
1 successful
0 there	are	no	sockets	available	to	use

Note

Implements	UDP.

◆	beginMulticast()
uint8_t	WiFiUDP::beginMulticast (IPAddress	 interfaceAddr,

IPAddress	 multicast,
uint16_t	 port	
)

This	function	is	used	to	join	a	multicast	group	and	listen	on	the	given
port.

Parameters
[in] interfaceAddress the	local	IP	address	of	the	interface

that	should	be	used,	use	WiFi.localIP()
or	WiFi.softAPIP()	depending	on	the
interface	you	need

[in] multicast multicast	group
[in] port port	number
[out]None

Return	values
1 successful
0 failed

Note

◆	beginPacket()	[1/2]
int	WiFiUDP::beginPacket (IPAddress	 ip,

uint16_t	 port	
) virtual

This	function	is	used	to	starts	a	connection	to	write	UDP	data	to	the
remote	connection.

Parameters
[in] ip the	IP	address	of	the	remote	connection	(4	bytes)
[in] port the	port	of	the	remote	connection	(int)
[out]None

Return	values
1 successful
0 there	was	a	problem	with	the	supplied	IP	address	or	port

Note

Implements	UDP.

◆	beginPacket()	[2/2]
int	WiFiUDP::beginPacket (const	char	*	 host,

uint16_t	 port	
) virtual

This	function	is	used	to	starts	a	connection	to	write	UDP	data	to	the
remote	connection.

Parameters
[in] host the	address	of	the	remote	host.	It	accepts	a

character	string	or	an	IPAddress
[in] port the	port	of	the	remote	connection	(int)
[out]None

Return	values
1 successful
0 there	was	a	problem	with	the	supplied	IP	address	or	port

Note

Implements	UDP.

◆	beginPacketMulticast()
int
WiFiUDP::beginPacketMulticast (IPAddress	 multicastAddress,

uint16_t	 port,
IPAddress	 interfaceAddress,
int	 ttl	=	1	
) virtual

This	function	is	used	to	start	building	up	a	packet	to	send	to	the
multicast	address.

Parameters
[in] multicastAddressmuticast	address	to	send	to
[in] port port	number
[in] interfaceAddress the	local	IP	address	of	the	interface

that	should	be	used,	use	WiFi.localIP()
or	WiFi.softAPIP()	depending	on	the
interface	you	need

[in] ttl multicast	packet	TTL	(default	is	1)
[out]None

Return	values
1 successful
0 there	was	a	problem	with	the	supplied	IP	address	or	port

Note

◆	destinationIP()
IPAddress	WiFiUDP::destinationIP ()

This	function	is	used	to	distinguish	multicast	and	ordinary	packets.

Parameters
[in] None
[out]None

Return	values
the destination	address	for	incoming	packets

Note

◆	endPacket()
int	WiFiUDP::endPacket () virtual

This	function	is	used	to	called	after	writing	UDP	data	to	the	remote
connection.	It	finishes	off	the	packet	and	send	it.

Parameters
[in] None
[out]None

Return	values
1 the	packet	was	sent	successfully
0 there	was	an	error

Note

Implements	UDP.

◆	flush()
void	WiFiUDP::flush () virtual

Discard	any	bytes	that	have	been	written	to	the	client	but	not	yet	read.

Parameters
[in] None
[out]None

Returns
None

Note
flush()	inherits	from	the	Stream	utility	class.

Implements	UDP.

◆	localPort()
uint16_t	WiFiUDP::localPort ()

This	function	is	used	to	gets	the	port	of	the	local	UDP	connection.

Parameters
[in] None
[out]None

Return	values
the local	port	for	outgoing	packets

Note

◆	parsePacket()
int	WiFiUDP::parsePacket () virtual

It	starts	processing	the	next	available	incoming	packet,	checks	for	the
presence	of	a	UDP	packet,	and	reports	the	size.

Parameters
[in] None
[out]None

Return	values
0 no	packets	are	available
other the	size	of	the	packet	in	bytes

Note
parsePacket()	must	be	called	before	reading	the	buffer	with
read().

Implements	UDP.

◆	peek()
int	WiFiUDP::peek (void) virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	
That	is,	successive	calls	to	peek()	will	return	the	same	value,	as	will
the	next	call	to	read().

Parameters
[in] None
[out]None

Return	values
-1 none	is	available
other the	next	byte	or	character

Note
This	function	inherited	from	the	Stream	class.	See	the	Stream
class	main	page	for	more	information.

Implements	UDP.

◆	read()	[1/3]
int	WiFiUDP::read (void) virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] None
[out]None

Return	values
-1 no	buffer	is	available
other the	characters	in	the	buffer	(char)

Note

Implements	UDP.

◆	read()	[2/3]
int	WiFiUDP::read (unsigned	char	*	 buffer,

size_t	 len	
) virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] buffer buffer	to	hold	incoming	packets	(unsigned	char*)
[in] len maximum	size	of	the	buffer	(int)
[out]None

Return	values
-1 no	buffer	is	available
other the	size	of	the	buffer

Note

Implements	UDP.

◆	read()	[3/3]
virtual	int	WiFiUDP::read (char	*	 buffer,

size_t	 len	
) inline virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] buffer buffer	to	hold	incoming	packets	(char*)
[in] len maximum	size	of	the	buffer	(int)
[out]None

Return	values
-1 no	buffer	is	available
other the	size	of	the	buffer

Note

Implements	UDP.

◆	remoteIP()
IPAddress	WiFiUDP::remoteIP () virtual

This	function	is	used	to	gets	the	IP	address	of	the	remote	connection.

Parameters
[in] None
[out]None

Return	values
the IP	address	of	the	host	who	sent	the	current	incoming

packet(4	bytes)

Note
This	function	must	be	called	after	parsePacket().

Implements	UDP.

◆	remotePort()
uint16_t	WiFiUDP::remotePort () virtual

This	function	is	used	to	gets	the	port	of	the	remote	UDP	connection.

Parameters
[in] None
[out]None

Return	values
The port	of	the	host	who	sent	the	current	incoming	packet

Note
This	function	must	be	called	after	parsePacket().

Implements	UDP.

◆	stop()
void	WiFiUDP::stop () virtual

This	function	is	used	to	disconnect	from	the	server.	Release	any
resource	being	used	during	the	UDP	session.

Parameters
[in] None
[out]None

Returns
None

Note

Implements	UDP.

◆	stopAll()
void	WiFiUDP::stopAll () static

This	function	is	used	to	stop	all	WiFiUDP	session.

Parameters
[in] None
[out]None

Return	values
None

Note

◆	stopAllExcept()
void	WiFiUDP::stopAllExcept (WiFiUDP	*	 exC) static

This	function	is	used	to	stop	all	WiFiUDP	session	without	exC.

Parameters
[in] None
[out]None

Return	values
None

Note

◆	WiFiUDP()
WiFiUDP::WiFiUDP ()

This	function	is	constructor,	it's	used	to	creates	a	named	instance	of
the	WiFiUDP	class	that	can	send	and	receive	UDP	messages.

Parameters
[in] None
[out]None

Returns
None

Note

◆	write()	[1/2]
size_t	WiFiUDP::write (uint8_t	 byte) virtual

This	function	is	used	to	writes	UDP	data	to	the	remote	connection.

Parameters
[in] the outgoing	byte
[out]None

Return	values
single byte	into	the	packet

Note
Must	be	wrapped	between	beginPacket()	and	endPacket().
beginPacket()	initializes	the	packet	of	data,	it	is	not	sent	until
endPacket()	is	called.

Implements	UDP.

◆	write()	[2/2]
size_t	WiFiUDP::write (const	uint8_t	*	 buffer,

size_t	 size	
) virtual

This	function	is	used	to	writes	UDP	data	to	the	remote	connection.

Parameters
[in] buffer the	outgoing	message
[in] size the	size	of	the	buffer
[out]None

Return	values
bytes size	from	buffer	into	the	packet

Note
Must	be	wrapped	between	beginPacket()	and	endPacket().
beginPacket()	initializes	the	packet	of	data,	it	is	not	sent	until
endPacket()	is	called.

Implements	UDP.

◆	~WiFiUDP()
WiFiUDP::~WiFiUDP ()

This	function	is	deconstructor,	it's	used	to	release	WiFiUDP	class.

Parameters
[in] None
[out]None

Returns
None

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
IPAddress_class
WiFi_library

Functions
	 IPAddress::IPAddress	()

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress::IPAddress	(uint8_t	first_oct,	uint8_t	sec_oct,
uint8_t	third_oct,	uint8_t	fourth_oct)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress::IPAddress	(uint32_t	address)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress::IPAddress	(const	uint8_t	*address)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress::operator	uint32_t	()	const

	 This	operator	overloading	function	is	used	to	overloading
'uint32_t'	operator.	More...

	
bool	 IPAddress::operator==	(const	IPAddress	&addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
bool	 IPAddress::operator==	(uint32_t	addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
bool	 IPAddress::operator==	(const	uint8_t	*addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
uint8_t	 IPAddress::operator[]	(int	index)	const

	 This	operator	overloading	function	is	used	to	overloading
'[]'	operator.	More...

	
uint8_t	&	 IPAddress::operator[]	(int	index)

	 This	operator	overloading	function	is	used	to	overloading
'[]'	operator.	More...

	
IPAddress	&	 IPAddress::operator=	(const	uint8_t	*address)
	 This	operator	overloading	function	is	used	to	overloading

'='	operator.	More...
	
IPAddress	&	 IPAddress::operator=	(uint32_t	address)
	 This	operator	overloading	function	is	used	to	overloading

'='	operator.	More...
	

String	 IPAddress::toString	()	const
	 This	function	is	used	to	transform	from	IPAddress	object

to	String	object.	More...
	

bool	 IPAddress::fromString	(const	char	*address)
	 This	function	is	used	to	create	the	object	from	a	string

buffer.	More...
	

bool	 IPAddress::fromString	(const	String	&address)
	 This	function	is	used	to	create	the	object	from	a	String

object.	More...
	
virtual	size_t	 IPAddress::printTo	(Print	&p)	const
	 This	virtual	function	is	used	to	called	by	print/println

function.	More...
	

Detailed	Description

Function	Documentation

◆	fromString()	[1/2]
bool	IPAddress::fromString (const	char	*	 address)

This	function	is	used	to	create	the	object	from	a	string	buffer.

Parameters
[in] address Specify	the	string	buffer.

Returns
bool

Note

◆	fromString()	[2/2]
bool	IPAddress::fromString (const	String	&	 address)

This	function	is	used	to	create	the	object	from	a	String	object.

Parameters
[in] address Specify	the	String	object.

Returns
bool

Note

◆	IPAddress()	[1/4]
IPAddress::IPAddress ()

This	constructor	function	is	used	to	construct	IPAddress	object.

Parameters
[in]None

Returns
None

Note

◆	IPAddress()	[2/4]
IPAddress::IPAddress (uint8_t	 first_octet,

uint8_t	 second_octet,
uint8_t	 third_octet,
uint8_t	 fourth_octet	
)

This	constructor	function	is	used	to	construct	IPAddress	object.

Parameters
[in] first_oct Specify	the	first_oct	-	uint8_t
[in] sec_oct Specify	the	sec_oct	-	uint8_t
[in] third_oct Specify	the	third_oct	-	uint8_t
[in] fourth_oct Specify	the	fourth_oct	-	uint8_t

Returns
None

Note

◆	IPAddress()	[3/4]
IPAddress::IPAddress (uint32_t	 address)

This	constructor	function	is	used	to	construct	IPAddress	object.

Parameters
[in] address Specify	the	address	-	uint32_t

Returns
None

Note

◆	IPAddress()	[4/4]
IPAddress::IPAddress (const	uint8_t	*	 address)

This	constructor	function	is	used	to	construct	IPAddress	object.

Parameters
[in] address Specify	the	address	-	uint8_t	*

Returns
None

Note

◆	operator	uint32_t()
IPAddress::operator	uint32_t () const inline

This	operator	overloading	function	is	used	to	overloading	'uint32_t'
operator.

Parameters
[in]None

Returns
The	value	of	the	IPAddress	object	in	uint32_t	type.

Note

◆	operator=()	[1/2]
IPAddress	&	IPAddress::operator= (const	uint8_t	*	 address)

This	operator	overloading	function	is	used	to	overloading	'='	operator.

Parameters
[in] address Sepcify	the	address	-	uint8_t	*

Returns
the	target	IPAddress	object.

Note

◆	operator=()	[2/2]
IPAddress	&	IPAddress::operator= (uint32_t	 address)

This	operator	overloading	function	is	used	to	overloading	'='	operator.

Parameters
[in] address Sepcify	the	address	-	uint32_t

Returns
the	target	IPAddress	object.

Note

◆	operator==()	[1/3]
bool	IPAddress::operator== (const	IPAddress	&	 addr) const inline

This	operator	overloading	function	is	used	to	overloading	'=='	operator.

Parameters
[in] addr Sepcify	the	address	-	IPAddress

Returns
bool

Note

◆	operator==()	[2/3]
bool	IPAddress::operator== (uint32_t	 addr) const inline

This	operator	overloading	function	is	used	to	overloading	'=='	operator.

Parameters
[in] addr Sepcify	the	address	-	uint32_t

Returns
bool

Note

◆	operator==()	[3/3]
bool	IPAddress::operator== (const	uint8_t	*	 addr) const

This	operator	overloading	function	is	used	to	overloading	'=='	operator.

Parameters
[in] addr Sepcify	the	address	-	uint8_t*

Returns
If	they	are	equal,	true	is	return,	otherwise,	false	is	return.

Note

◆	operator[]()	[1/2]
uint8_t	IPAddress::operator[] (int	 index) const inline

This	operator	overloading	function	is	used	to	overloading	'[]'	operator.

Parameters
[in] index Sepcify	the	address	value	of	index.

Returns
the	target	value	of	IPAddress	object.

Note

◆	operator[]()	[2/2]
uint8_t&	IPAddress::operator[] (int	 index) inline

This	operator	overloading	function	is	used	to	overloading	'[]'	operator.

Parameters
[in] index Sepcify	the	address	value	of	index.

Returns
the	target	value	of	IPAddress	object.

Note

◆	printTo()
size_t	IPAddress::printTo (Print	&	 p) const virtual

This	virtual	function	is	used	to	called	by	print/println	function.

Parameters
[in] p Specify	the	Print	object.

Returns
bool

Note
The	length	of	print	successfully.

Implements	Printable.

◆	toString()
String	IPAddress::toString () const

This	function	is	used	to	transform	from	IPAddress	object	to	String
object.

Parameters
[in]None

Returns
the	target	String	object.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
Wire_Library

Wire	Library.	More...

Functions
void	 TwoWire::begin	(int	sda,	int	scl)

	
void	 TwoWire::pins	(int	sda,	int	scl)

__attribute__((deprecated))
	

void	 TwoWire::begin	()
	

void	 TwoWire::begin	(uint8_t)
	

void	 TwoWire::begin	(int)
	

void	 TwoWire::setClock	(uint32_t)
	

void	 TwoWire::setClockStretchLimit	(uint32_t)
	

void	 TwoWire::beginTransmission	(uint8_t)
	

void	 TwoWire::beginTransmission	(int)
	

uint8_t	 TwoWire::endTransmission	(void)
	

uint8_t	 TwoWire::endTransmission	(uint8_t)
	

size_t	 TwoWire::requestFrom	(uint8_t	address,	size_t	size,
bool	sendStop)

	
uint8_t	 TwoWire::status	()

	
uint8_t	 TwoWire::requestFrom	(uint8_t,	uint8_t)

	
uint8_t	 TwoWire::requestFrom	(uint8_t,	uint8_t,	uint8_t)

	
uint8_t	 TwoWire::requestFrom	(int,	int)

	

uint8_t	 TwoWire::requestFrom	(int,	int,	int)
	
virtual	size_t	 TwoWire::write	(uint8_t)
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 TwoWire::write	(const	uint8_t	*,	size_t)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

virtual	int	 TwoWire::available	(void)

	
available()	gets	the	number	of	bytes	available	in	the
stream.	This	is	only	for	bytes	that	have	already	arrived.
More...

	
virtual	int	 TwoWire::read	(void)

	 read()	reads	characters	from	an	incoming	stream	to	the
buffer.	More...

	
virtual	int	 TwoWire::peek	(void)

	
Read	a	byte	from	the	file	without	advancing	to	the	next
one.	That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 TwoWire::flush	(void)

	
void	 TwoWire::onReceive	(void(*)(int))

	
void	 TwoWire::onRequest	(void(*)(void))

	
size_t	 TwoWire::write	(unsigned	long	n)

	
size_t	 TwoWire::write	(long	n)

	
size_t	 TwoWire::write	(unsigned	int	n)

	
size_t	 TwoWire::write	(int	n)

	

Detailed	Description

Wire	Library.

Function	Documentation

◆	available()
int	TwoWire::available (void) virtual

available()	gets	the	number	of	bytes	available	in	the	stream.	This	is
only	for	bytes	that	have	already	arrived.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
stream	:	an	instance	of	a	class	that	inherits	from	Stream

Note

Implements	Stream.

◆	peek()
int	TwoWire::peek (void) virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	That	is,
successive	calls	to	peek()	will	return	the	same	value,	as	will	the	next
call	to	read().

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
None

Note

Implements	Stream.

◆	read()
int	TwoWire::read (void) virtual

read()	reads	characters	from	an	incoming	stream	to	the	buffer.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
the	first	byte	of	incoming	data	available	(or	-1	if	no	data	is
available)

Note

Implements	Stream.

◆	write()	[1/2]
size_t	TwoWire::write (uint8_t) virtual

This	pure	virtual	function	is	used	to	define	the	operation	that	writes
binary	data.

Parameters
[in] val a	value	to	send	as	a	single	byte

Returns
The	length	of	write	successfully	(1	byte).

Note

Implements	Print.

◆	write()	[2/2]
size_t	TwoWire::write (const	uint8_t	*	 buffer,

size_t	 size	
) virtual

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully	(1	byte).

Note

Reimplemented	from	Print.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
IO

Digital	Analog	and	Advanced	I/O.	More...

Functions
void	 tone	(uint8_t	_pin,	unsigned	int	frequency)
	 Generates	a	square	wave	of	the	specified	frequency	(and	50%

duty	cycle)	on	a	pin.	More...
	
void	 noTone	(uint8_t	_pin)
	 Stops	the	generation	of	a	square	wave	triggered	by	tone().

More...
	
void	 pinMode	(uint32_t	ulPin,	uint32_t	ulMode)
	
void	 digitalWrite	(uint32_t	ulPin,	uint32_t	ulVal)
	

int	 digitalRead	(uint32_t	ulPin)
	

int	 analogRead	(unsigned	char	pin)
	 Reads	the	value	from	the	specified	analog	pin.	More...
	

Detailed	Description

Digital	Analog	and	Advanced	I/O.

Parameters
ulPin The	number	of	the	pin	whose	mode	you	wish	to	set
ulMode Either	INPUT	or	OUTPUT

Function	Documentation

◆	analogRead()
int	analogRead (unsigned	char	 pin)

Reads	the	value	from	the	specified	analog	pin.

Parameters
pin the	number	of	the	analog	input	pin	to	read	from

Return	values
average int	(8192	->	16384,	look	up	for	example	to	learn	how	to

change	it	to	voltage)

◆	noTone()
void	noTone (uint8_t	 _pin)

Stops	the	generation	of	a	square	wave	triggered	by	tone().

Parameters
[in] _pin gpio	pin

Returns
none

Note
none

◆	tone()
void	tone (uint8_t	 _pin,

unsigned	int	 frequency	
)

Generates	a	square	wave	of	the	specified	frequency	(and	50%	duty
cycle)	on	a	pin.

Parameters
[in] _pin gpio	pin
[in] frequency the	frequency	of	the	tone	in	hertz(1	to	156250)

Returns
none

Note
none

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
Serial

Serial.	More...

Functions
	 HardwareSerial::HardwareSerial	(int	serial_no)

	 This	constructor	is	used	to	init	hardware	serial.	More...
	

	 HardwareSerial::HardwareSerial	(int	serial_no,	bool
mul_flag)

	 This	constructor	is	used	to	init	hardware	serial.	More...
	

	 HardwareSerial::HardwareSerial	()
	 This	constructor	is	used	to	init	hardware	serial.	More...
	

void	 HardwareSerial::begin	()

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one
of	these	rates:	300,	600,	1200,	2400,	4800,	9600,	14400,
19200,	28800,	38400,	57600,	or	115200.	You	can,	however,
specify	other	rates	-	for	example,	to	communicate	over	pins
0	and	1	with	a	component	that	requires	a	particular	baud
rate.	More...

	
void	 HardwareSerial::begin	(unsigned	long	baud)

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one
of	these	rates:	300,	600,	1200,	2400,	4800,	9600,	14400,
19200,	28800,	38400,	57600,	or	115200.	You	can,	however,
specify	other	rates	-	for	example,	to	communicate	over	pins
0	and	1	with	a	component	that	requires	a	particular	baud
rate.	More...

	
void	 HardwareSerial::begin	(unsigned	long	baud,	int

modeChoose)

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one
of	these	rates:	300,	600,	1200,	2400,	4800,	9600,	14400,
19200,	28800,	38400,	57600,	or	115200.	You	can,	however,
specify	other	rates	-	for	example,	to	communicate	over	pins

0	and	1	with	a	component	that	requires	a	particular	baud
rate.	More...

	
virtual	int	 HardwareSerial::read	(void)
	 Reads	incoming	serial	data.	read()	inherits	from	the	Stream

utility	class.	More...
	
virtual	int	 HardwareSerial::available	(void)

	

Get	the	number	of	bytes	(characters)	available	for	reading
from	the	serial	port.	This	is	data	that's	already	arrived	and
stored	in	the	serial	receive	buffer	(which	holds	64	bytes).
available()	inherits	from	the	Stream	utility	class.	More...

	
virtual	int	 HardwareSerial::peek	()

	

Returns	the	next	byte	(character)	of	incoming	serial	data
without	removing	it	from	the	internal	serial	buffer.	That	is,
successive	calls	to	peek()	will	return	the	same	character,	as
will	the	next	call	to	read().	peek()	inherits	from	the	Stream
utility	class.	More...

	

Detailed	Description

Serial.

Function	Documentation

◆	available()
int	HardwareSerial::available (void) virtual

Get	the	number	of	bytes	(characters)	available	for	reading	from	the
serial	port.	This	is	data	that's	already	arrived	and	stored	in	the	serial
receive	buffer	(which	holds	64	bytes).	available()	inherits	from	the
Stream	utility	class.

Parameters
[in] none

Returns
the	number	of	bytes	available	to	read

Note

Implements	Stream.

◆	begin()	[1/3]
void	HardwareSerial::begin (void)

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one	of	these
rates:	300,	600,	1200,	2400,	4800,	9600,	14400,	19200,	28800,	38400,
57600,	or	115200.	You	can,	however,	specify	other	rates	-	for	example,
to	communicate	over	pins	0	and	1	with	a	component	that	requires	a
particular	baud	rate.

An	optional	second	argument	configures	the	data,	parity,	and	stop	bits.
The	default	is	8	data	bits,	no	parity,	one	stop	bit.

Parameters
[in]None

Returns
nothing

Note

◆	begin()	[2/3]
void	HardwareSerial::begin (unsigned	long	 baud)

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one	of	these
rates:	300,	600,	1200,	2400,	4800,	9600,	14400,	19200,	28800,	38400,
57600,	or	115200.	You	can,	however,	specify	other	rates	-	for	example,
to	communicate	over	pins	0	and	1	with	a	component	that	requires	a
particular	baud	rate.

An	optional	second	argument	configures	the	data,	parity,	and	stop	bits.
The	default	is	8	data	bits,	no	parity,	one	stop	bit.

Parameters
[in] baud speed:	in	bits	per	second	(baud)	-	long

Returns
nothing

Note

◆	begin()	[3/3]
void	HardwareSerial::begin (unsigned	long	 baud,

int	 modeChoose	
)

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial	data
transmission.	For	communicating	with	the	computer,	use	one	of	these
rates:	300,	600,	1200,	2400,	4800,	9600,	14400,	19200,	28800,	38400,
57600,	or	115200.	You	can,	however,	specify	other	rates	-	for	example,
to	communicate	over	pins	0	and	1	with	a	component	that	requires	a
particular	baud	rate.

An	optional	second	argument	configures	the	data,	parity,	and	stop	bits.
The	default	is	8	data	bits,	no	parity,	one	stop	bit.

Parameters
[in] baud speed:	in	bits	per	second	(baud)	-	long
[in]modeChoose Specify	the	mode.

Returns
nothing

Note

◆	HardwareSerial()	[1/3]
HardwareSerial::HardwareSerial (int	 serial_no)

This	constructor	is	used	to	init	hardware	serial.

Parameters
[in] serial_no Specify	serial_no

Returns
None

Note

◆	HardwareSerial()	[2/3]
HardwareSerial::HardwareSerial (int	 serial_no,

bool	 mul_flag	
)

This	constructor	is	used	to	init	hardware	serial.

Parameters
[in] serial_no Specify	serial_no
[in]mul_flag Specify	mul_flag

Returns
None

Note

◆	HardwareSerial()	[3/3]
HardwareSerial::HardwareSerial () inline

This	constructor	is	used	to	init	hardware	serial.

Parameters
[in] none

Returns
None

Note

◆	peek()
int	HardwareSerial::peek (void) virtual

Returns	the	next	byte	(character)	of	incoming	serial	data	without
removing	it	from	the	internal	serial	buffer.	That	is,	successive	calls	to
peek()	will	return	the	same	character,	as	will	the	next	call	to	read().
peek()	inherits	from	the	Stream	utility	class.

Parameters
[in]None

Returns
the	first	byte	of	incoming	serial	data	available	(or	-1	if	no	data	is
available)	-	int

Note

Implements	Stream.

◆	read()
int	HardwareSerial::read (void) virtual

Reads	incoming	serial	data.	read()	inherits	from	the	Stream	utility
class.

Parameters
[in]None

Returns
the	first	byte	of	incoming	serial	data	available	(or	-1	if	no	data	is
available)	-	int

Note

Implements	Stream.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
Stream

Stream.	More...

Functions
virtual	int	 Stream::available	()=0

	
available()	gets	the	number	of	bytes	available	in	the
stream.	This	is	only	for	bytes	that	have	already	arrived.
More...

	
virtual	int	 Stream::read	()=0

	 read()	reads	characters	from	an	incoming	stream	to	the
buffer.	More...

	
virtual	int	 Stream::peek	()=0

	
Read	a	byte	from	the	file	without	advancing	to	the	next
one.	That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
void	 Stream::setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 Stream::find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 Stream::find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 Stream::find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 Stream::find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 Stream::find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 Stream::findUntil	(const	char	*target,	const	char

*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 Stream::findUntil	(const	uint8_t	*target,	const	char

*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 Stream::findUntil	(const	char	*target,	size_t	targetLen,

const	char	*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 Stream::findUntil	(const	uint8_t	*target,	size_t	targetLen,

const	char	*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
long	 Stream::parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers	(or
the	minus	sign)	are	skipped.	More...

	
float	 Stream::parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not
digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating	point
number.	More...

	
virtual	size_t	 Stream::readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 Stream::readBytes	(uint8_t	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 Stream::readBytesUntil	(char	terminator,	char	*buffer,

size_t	length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
size_t	 Stream::readBytesUntil	(char	terminator,	uint8_t	*buffer,

size_t	length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
String	 Stream::readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 Stream::readStringUntil	(char	terminator)

	
readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator	character

is	detected	or	it	times	out	(see	setTimeout()).	More...
	

Detailed	Description

Stream.

Function	Documentation

◆	available()
virtual	int	Stream::available () pure	virtual

available()	gets	the	number	of	bytes	available	in	the	stream.	This	is
only	for	bytes	that	have	already	arrived.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
stream	:	an	instance	of	a	class	that	inherits	from	Stream

Note

Implemented	in	WiFiUDP,	WiFiClient,	HardwareSerial,	UDP,	Client,
and	TwoWire.

◆	find()	[1/5]
bool	Stream::find (const	char	*	 target)

find()	reads	data	from	the	stream	until	the	target	string	of	given	length
is	found	The	function	returns	true	if	target	string	is	found,	false	if	timed
out.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)

Returns
boolean

Note

◆	find()	[2/5]
bool	Stream::find (uint8_t	*	 target) inline

find()	reads	data	from	the	stream	until	the	target	string	of	given	length
is	found	The	function	returns	true	if	target	string	is	found,	false	if	timed
out.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)

Returns
boolean

Note

◆	find()	[3/5]
bool	Stream::find (const	char	*	 target,

size_t	 length	
)

find()	reads	data	from	the	stream	until	the	target	string	of	given	length
is	found	The	function	returns	true	if	target	string	is	found,	false	if	timed
out.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] length :	Specify	the	length.

Returns
boolean

Note

◆	find()	[4/5]
bool	Stream::find (const	uint8_t	*	 target,

size_t	 length	
) inline

find()	reads	data	from	the	stream	until	the	target	string	of	given	length
is	found	The	function	returns	true	if	target	string	is	found,	false	if	timed
out.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] length :	Specify	the	length.

Returns
boolean

Note

◆	find()	[5/5]
bool	Stream::find (char	 target) inline

find()	reads	data	from	the	stream	until	the	target	string	of	given	length
is	found	The	function	returns	true	if	target	string	is	found,	false	if	timed
out.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)

Returns
boolean

Note

◆	findUntil()	[1/4]
bool	Stream::findUntil (const	char	*	 target,

const	char	*	 terminator	
)

findUntil()	reads	data	from	the	stream	until	the	target	string	of	given
length	or	terminator	string	is	found.

The	function	returns	true	if	target	string	is	found,	false	if	timed	out

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] terminal :	the	terminal	string	in	the	search	(char)

Returns
boolean

Note

◆	findUntil()	[2/4]
bool	Stream::findUntil (const	uint8_t	*	 target,

const	char	*	 terminator	
) inline

findUntil()	reads	data	from	the	stream	until	the	target	string	of	given
length	or	terminator	string	is	found.

The	function	returns	true	if	target	string	is	found,	false	if	timed	out

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] terminal :	the	terminal	string	in	the	search	(char)

Returns
boolean

Note

◆	findUntil()	[3/4]
bool	Stream::findUntil (const	char	*	 target,

size_t	 targetLen,
const	char	*	 terminate,
size_t	 termLen	
)

findUntil()	reads	data	from	the	stream	until	the	target	string	of	given
length	or	terminator	string	is	found.

The	function	returns	true	if	target	string	is	found,	false	if	timed	out

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] terminal :	the	terminal	string	in	the	search	(char)
[in] terminate :	Specify	the	terminate
[in] termLen :	Specify	the	termLen

Returns
boolean

Note

◆	findUntil()	[4/4]
bool	Stream::findUntil (const	uint8_t	*	 target,

size_t	 targetLen,
const	char	*	 terminate,
size_t	 termLen	
) inline

findUntil()	reads	data	from	the	stream	until	the	target	string	of	given
length	or	terminator	string	is	found.

The	function	returns	true	if	target	string	is	found,	false	if	timed	out

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] target :	the	string	to	search	for	(char)
[in] terminal :	the	terminal	string	in	the	search	(char)
[in] terminate :	Specify	the	terminate
[in] termLen :	Specify	the	termLen

Returns
boolean

Note

◆	parseFloat()
float	Stream::parseFloat ()

parseFloat()	returns	the	first	valid	floating	point	number	from	the
current	position.	Initial	characters	that	are	not	digits	(or	the	minus	sign)
are	skipped.	parseFloat()	is	terminated	by	the	first	character	that	is	not
a	floating	point	number.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
float

Note

◆	parseInt()
long	Stream::parseInt ()

parseInt()	returns	the	first	valid	(long)	integer	number	from	the	serial
buffer.	Characters	that	are	not	integers	(or	the	minus	sign)	are	skipped.

In	particular:

--	Initial	characters	that	are	not	digits	or	a	minus

			sign,	are	skipped;

--	Parsing	stops	when	no	characters	have	been	read	

			for	a	configurable	time-out	value,	or	a	non-digit

			is	read;

--	If	no	valid	digits	were	read	when	the	time-out	

			(see	Stream.setTimeout())	occurs,	0	is	returned;

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class	that
inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page	for
more	information.

Parameters
[in]None

Returns
long

Note

◆	peek()
virtual	int	Stream::peek () pure	virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	That	is,
successive	calls	to	peek()	will	return	the	same	value,	as	will	the	next
call	to	read().

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
None

Note

Implemented	in	WiFiUDP,	WiFiClient,	UDP,	HardwareSerial,	Client,
and	TwoWire.

◆	read()
virtual	int	Stream::read () pure	virtual

read()	reads	characters	from	an	incoming	stream	to	the	buffer.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in]None

Returns
the	first	byte	of	incoming	data	available	(or	-1	if	no	data	is
available)

Note

Implemented	in	WiFiUDP,	WiFiClient,	UDP,	HardwareSerial,	Client,
and	TwoWire.

◆	readBytes()	[1/2]
size_t	Stream::readBytes (char	*	 buffer,

size_t	 length	
) virtual

readBytes()	read	characters	from	a	stream	into	a	buffer.	The	function
terminates	if	the	determined	length	has	been	read,	or	it	times	out	(see
setTimeout()).

readBytes()	returns	the	number	of	bytes	placed	in	the	buffer.	A	0
means	no	valid	data	was	found.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] buffer the	buffer	to	store	the	bytes	in	(char[]	or	byte[])
[in]

◆	readBytes()	[2/2]
virtual	size_t	Stream::readBytes (uint8_t	*	 buffer,

size_t	 length	
) inline virtual

readBytes()	read	characters	from	a	stream	into	a	buffer.	The	function
terminates	if	the	determined	length	has	been	read,	or	it	times	out	(see
setTimeout()).

readBytes()	returns	the	number	of	bytes	placed	in	the	buffer.	A	0
means	no	valid	data	was	found.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] buffer the	buffer	to	store	the	bytes	in	(char[]	or	byte[])
[in]

◆	readBytesUntil()	[1/2]
size_t	Stream::readBytesUntil (char	 terminator,

char	*	 buffer,
size_t	 length	
)

readBytesUntil()	reads	characters	from	a	stream	into	a	buffer.	The
function	terminates	if	the	terminator	character	is	detected,	the
determined	length	has	been	read,	or	it	times	out	(see	setTimeout()).

readBytesUntil()	returns	the	number	of	bytes	placed	in	the	buffer.	A	0
means	no	valid	data	was	found.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] character :	the	character	to	search	for	(char)
[in] buffer the	buffer	to	store	the	bytes	in	(char[]	or	byte[])
[in] length :	the	number	of	bytes	to	read	(int)

Returns
The	number	of	bytes	placed	in	the	buffer

Note

◆	readBytesUntil()	[2/2]
size_t	Stream::readBytesUntil (char	 terminator,

uint8_t	*	 buffer,
size_t	 length	
) inline

readBytesUntil()	reads	characters	from	a	stream	into	a	buffer.	The
function	terminates	if	the	terminator	character	is	detected,	the
determined	length	has	been	read,	or	it	times	out	(see	setTimeout()).

readBytesUntil()	returns	the	number	of	bytes	placed	in	the	buffer.	A	0
means	no	valid	data	was	found.

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] character :	the	character	to	search	for	(char)
[in] buffer the	buffer	to	store	the	bytes	in	(char[]	or	byte[])
[in] length :	the	number	of	bytes	to	read	(int)

Returns
The	number	of	bytes	placed	in	the	buffer

Note

◆	readString()
String	Stream::readString ()

readString()	reads	characters	from	a	stream	into	a	string.	The	function
terminates	if	it	times	out	(see	setTimeout()).

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] none

Returns
A	string	read	from	a	stream

Note

◆	readStringUntil()
String	Stream::readStringUntil (char	 terminator)

readStringUntil()	reads	characters	from	a	stream	into	a	string.	The
function	terminates	if	the	terminator	character	is	detected	or	it	times
out	(see	setTimeout()).

This	function	is	part	of	the	Stream	class,	and	is	called	by	any	class
that	inherits	from	it	(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.

Parameters
[in] terminator :	the	character	to	search	for	(char)
[out]

◆	setTimeout()
void	Stream::setTimeout (unsigned	long	 timeout)

setTimeout()	sets	the	maximum	milliseconds	to	wait	for	stream	data,	it
defaults	to	1000	milliseconds.	This	function	is	part	of	the	Stream	class,
and	is	called	by	any	class	that	inherits	from	it	(Wire,	Serial,	etc).	See
the	Stream	class	main	page	for	more	information.

Parameters
[in] timeout :	timeout	duration	in	milliseconds	(long).

Returns
None

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Functions

W60X_Arduino
Math

Math.	More...

Functions
unsigned	int	 millis	(void)
	 This	function	is	used	to	get	milliseconds	since	system

startup.	More...
	

uint32_t	 micros	(void)
	 Returns	the	number	of	microseconds	since	the	Arduino

board	began	running	the	current	program.	More...
	

void	 delay	(unsigned	long	ms)
	 This	function	is	used	to	delay	by	milliseconds.	More...
	

void	 delayMicroseconds	(unsigned	int	us)
	 This	function	is	to	delay	by	micro	seconds.	More...
	

Detailed	Description

Math.

Function	Documentation

◆	delay()
void	delay (unsigned	long	 ms)

This	function	is	used	to	delay	by	milliseconds.

Parameters
[in]ms delay	time,	unit:	ms

Returns
none

Note
none

◆	delayMicroseconds()
void	delayMicroseconds (unsigned	int	 us)

This	function	is	to	delay	by	micro	seconds.

Parameters
[in] usmicro	seconds

Returns
none

Note
none

◆	micros()
uint32_t	micros (void)

Returns	the	number	of	microseconds	since	the	Arduino	board	began
running	the	current	program.

Returns
microseconds

Note
none

◆	millis()
unsigned	int	millis (void)

This	function	is	used	to	get	milliseconds	since	system	startup.

Returns
milliseconds

Note
none

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Data	Structures

Here	are	the	data	structures	with	brief	descriptions:

	 C BufferDataSource
	 C BufferedStreamDataSource
	 C Client
	 C ClientContext
	 C CloudClass
	 C DataSource
	 C DhcpClass
	 C DNSClient
	 C DNSServer
	 C HardwareSerial
	 C IPAddress
	 C Print
	 C Printable
	 C ProgmemStream
	 C Server
	 C SList
	 C SPIClass
	 C SPISettings
	 C Stream
	 C TwoWire
	 C UDP
	 C UdpContext
	 C W600InnerFlashClass
	 C WiFiAPClass

	 C WiFiClass
	 C WiFiClient
	 C WiFiGenericClass
	 C WiFiOneshotClass
	 C WiFiScanClass
	 C WiFiServer
	 C WiFiSTAClass
	 C WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|	Protected	Attributes

W60X_Arduino
BufferDataSource
Class	Reference

Inherits	DataSource.

Public	Member	Functions
	 BufferDataSource	(const	uint8_t	*data,	size_t	size)

	
size_t	 available	()	override

	
const	uint8_t	*	 get_buffer	(size_t	size)	override
	

void	 release_buffer	(const	uint8_t	*buffer,	size_t	size)
override

	

Protected	Attributes
const	uint8_t	*	 _data
	

const	size_t	 _size
	

size_t	 _pos	=	0
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|	Protected	Attributes

W60X_Arduino

BufferedStreamDataSource<	TStream	>	Class
Template	Reference

Inherits	DataSource.

Public	Member	Functions
	 BufferedStreamDataSource	(TStream	&stream,	size_t
size)

	
size_t	 available	()	override

	
const	uint8_t	*	 get_buffer	(size_t	size)	override
	

void	 release_buffer	(const	uint8_t	*buffer,	size_t	size)
override

	

Protected	Attributes
TStream	&	 _stream

	
std::unique_ptr<	uint8_t[]>	 _buffer
	

size_t	 _size
	

size_t	 _pos	=	0
	

size_t	 _bufferSize	=	0
	

size_t	 _streamPos	=	0
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
Client	Class
Reference abstract

Inherits	Stream.

Inherited	by	WiFiClient.

Public	Member	Functions
virtual	int	 connect	(IPAddress	ip,	uint16_t	port)=0

	 This	function	is	used	to	connect	to	the	IP	address	and
port	specified	in	the	constructor.	More...

	
virtual	int	 connect	(const	char	*host,	uint16_t	port)=0

	 This	function	is	used	to	connect	to	the	IP	address	and
port	specified	in	the	constructor.	More...

	
virtual	size_t	 write	(uint8_t)=0
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	
virtual	size_t	 write	(const	uint8_t	*buf,	size_t	size)=0
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	

virtual	int	 available	()=0

	
Returns	the	number	of	bytes	available	for	reading	(That
is,	the	amount	of	data	that	has	been	written	to	the	client
by	the	server	it	is	connected	to).	More...

	
virtual	int	 read	()=0

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 read	(uint8_t	*buf,	size_t	size)=0

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 peek	()=0

	

Read	a	byte	from	the	file	without	advancing	to	the	next
one.	
That	is,	successive	calls	to	peek()	will	return	the	same
value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 flush	()=0

	 Discard	any	bytes	that	have	been	written	to	the	client
but	not	yet	read.	More...

	
virtual	void	 stop	()=0

	 This	function	is	used	to	disconnect	from	the	server.
More...

	
virtual	uint8_t	 connected	()=0
	 Whether	or	not	the	client	is	connected.	More...
	

virtual	 operator	bool	()=0
	
	Public	Member	Functions	inherited	from	Stream

void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	

bool	 find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const	char

*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers
(or	the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not
digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating
point	number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator
character	is	detected,	the	determined	length	has	been
read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator
character	is	detected,	the	determined	length	has	been
read,	or	it	times	out	(see	setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator

	 character	is	detected	or	it	times	out	(see	setTimeout()).
More...

	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(char)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	char,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(int,	int=DEC)
This	function	is	used	to	print	target	to	the	interface

	 defined	by	the	object.	More...

	
size_t	 print	(unsigned	int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Stream

int	 timedRead	()
	

int	 timedPeek	()
	

int	 peekNextDigit	()
	

long	 parseInt	(char	skipChar)
	

float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print

void	 setWriteError	(int	err=1)
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout
	
unsigned	long	 _startMillis
	

Member	Function	Documentation

◆	available()
virtual	int	Client::available () pure	virtual

Returns	the	number	of	bytes	available	for	reading	(That	is,	the	amount
of	data	that	has	been	written	to	the	client	by	the	server	it	is	connected
to).

Parameters
[in] None
[out]None

Return	values
The number	of	bytes	available

Note
available()	inherits	from	the	Stream	utility	class.

Implements	Stream.

Implemented	in	WiFiClient.

◆	connect()	[1/2]
virtual	int	Client::connect (IPAddress	 ip,

uint16_t	 port	
) pure	virtual

This	function	is	used	to	connect	to	the	IP	address	and	port	specified	in
the	constructor.

Parameters
[in] ip the	IP	address	that	the	client	will	connect	to	(array	of

4	bytes)
[in] port the	port	that	the	client	will	connect	to	(int)
[out]None

Return	values
1 the	connection	succeeds
0 the	connection	failed

Note

Implemented	in	WiFiClient.

◆	connect()	[2/2]
virtual	int	Client::connect (const	char	*	 host,

uint16_t	 port	
) pure	virtual

This	function	is	used	to	connect	to	the	IP	address	and	port	specified	in
the	constructor.

Parameters
[in] host the	domain	name	the	client	will	connect	to	(string,

ex.:"arduino.cc")
[in] port the	port	that	the	client	will	connect	to	(int)
[out]None

Return	values
1 the	connection	succeeds
0 the	connection	failed

Note

Implemented	in	WiFiClient.

◆	connected()
virtual	uint8_t	Client::connected () pure	virtual

Whether	or	not	the	client	is	connected.

Parameters
[in] None
[out]None

Return	values
1 the	client	is	connected
0 the	client	is	disconnected

Note
that	a	client	is	considered	connected	if	the	connection	has	been
closed	but	there	is	still	unread	data.

Implemented	in	WiFiClient.

◆	flush()
virtual	void	Client::flush () pure	virtual

Discard	any	bytes	that	have	been	written	to	the	client	but	not	yet	read.

Parameters
[in] None
[out]None

Returns
None

Note
flush()	inherits	from	the	Stream	utility	class.

Implemented	in	WiFiClient.

◆	peek()
virtual	int	Client::peek () pure	virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	
That	is,	successive	calls	to	peek()	will	return	the	same	value,	as	will
the	next	call	to	read().

Parameters
[in] None
[out]None

Return	values
-1 none	is	available
other the	next	byte	or	character

Note
This	function	inherited	from	the	Stream	class.	See	the	Stream
class	main	page	for	more	information.

Implements	Stream.

Implemented	in	WiFiClient.

◆	read()	[1/2]
virtual	int	Client::read () pure	virtual

Read	the	next	byte	received	from	the	server	the	client	is	connected	to
(after	the	last	call	to	read()).

Parameters
[in] None
[out]None

Return	values
-1 none	is	available.
other The	next	character

Note
read()	inherits	from	the	Stream	utility	class

Implements	Stream.

Implemented	in	WiFiClient.

◆	read()	[2/2]
virtual	int	Client::read (uint8_t	*	 buf,

size_t	 size	
) pure	virtual

Read	the	next	byte	received	from	the	server	the	client	is	connected	to
(after	the	last	call	to	read()).

Parameters
[in] buf the	byte	to	read
[in] size the	size	of	the	buf
[out]None

Return	values
-1 none	is	available.
other The	next	byte

Note
read()	inherits	from	the	Stream	utility	class

Implemented	in	WiFiClient.

◆	stop()
virtual	void	Client::stop () pure	virtual

This	function	is	used	to	disconnect	from	the	server.

Parameters
[in] None
[out]None

Returns
None

Note

Implemented	in	WiFiClient.

◆	write()	[1/2]
virtual	size_t	Client::write (uint8_t) pure	virtual

This	function	is	used	to	write	data	to	the	server	the	client	is	connected
to.

Parameters
[in] the char	to	write
[out]None

Return	values
the number	of	characters	written.	it	is	not	necessary	to	read	this

value.

Note

Implements	Print.

Implemented	in	WiFiClient.

◆	write()	[2/2]
virtual	size_t	Client::write (const	uint8_t	*	 buf,

size_t	 size	
) pure	virtual

This	function	is	used	to	write	data	to	the	server	the	client	is	connected
to.

Parameters
[in] buf the	byte	to	write
[in] size the	size	of	the	buf
[out]None

Return	values
the number	of	characters	written.	it	is	not	necessary	to	read	this

value.

Note

Reimplemented	from	Print.

Implemented	in	WiFiClient.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Protected	Member	Functions	|

Static	Protected	Member	Functions

W60X_Arduino
ClientContext	Class
Reference

Public	Member	Functions
	 ClientContext	(tcp_pcb	*pcb,	discard_cb_t	discard_cb,
void	*discard_cb_arg)

	
err_t	 abort	()

	
err_t	 close	()

	
ClientContext	*	 next	()	const
	
ClientContext	*	 next	(ClientContext	*new_next)
	

void	 ref	()
	

void	 unref	()
	

int	 connect	(ip_addr_t	*addr,	uint16_t	port)
	

size_t	 availableForWrite	()
	

void	 setNoDelay	(bool	nodelay)
	

bool	 getNoDelay	()
	

void	 setTimeout	(int	timeout_ms)
	

int	 getTimeout	()
	

uint32_t	 getRemoteAddress	()
	

uint16_t	 getRemotePort	()
	

uint32_t	 getLocalAddress	()
	

uint16_t	 getLocalPort	()

	
size_t	 getSize	()	const

	
char	 read	()

	
size_t	 read	(char	*dst,	size_t	size)

	
char	 peek	()

	
size_t	 peekBytes	(char	*dst,	size_t	size)

	
void	 discard_received	()

	
void	 wait_until_sent	()

	
uint8_t	 state	()	const

	
size_t	 write	(const	uint8_t	*data,	size_t	size)

	
size_t	 write	(Stream	&stream)

	
size_t	 write_P	(PGM_P	buf,	size_t	size)

	
void	 keepAlive	(uint16_t

idle_sec=TCP_DEFAULT_KEEPALIVE_IDLE_SEC,
uint16_t
intv_sec=TCP_DEFAULT_KEEPALIVE_INTERVAL_SEC,
uint8_t	count=TCP_DEFAULT_KEEPALIVE_COUNT)

	
bool	 isKeepAliveEnabled	()	const

	
uint16_t	 getKeepAliveIdle	()	const

	
uint16_t	 getKeepAliveInterval	()	const

	
uint8_t	 getKeepAliveCount	()	const

	

Protected	Member	Functions
bool	 _is_timeout	()

	
void	 _notify_error	()

	
size_t	 _write_from_source	(DataSource	*ds)
	
bool	 _write_some	()

	
void	 _write_some_from_cb	()

	
err_t	 _acked	(tcp_pcb	*pcb,	uint16_t	len)

	
void	 _consume	(size_t	size)

	
err_t	 _recv	(tcp_pcb	*pcb,	pbuf	*pb,	err_t	err)

	
void	 _error	(err_t	err)

	
err_t	 _connected	(struct	tcp_pcb	*pcb,	err_t	err)

	
err_t	 _poll	(tcp_pcb	*)

	

Static	Protected	Member	Functions
static	err_t	 _s_recv	(void	*arg,	struct	tcp_pcb	*tpcb,	struct	pbuf	*pb,

err_t	err)
	
static	void	 _s_error	(void	*arg,	err_t	err)

	
static	err_t	 _s_poll	(void	*arg,	struct	tcp_pcb	*tpcb)
	
static	err_t	 _s_acked	(void	*arg,	struct	tcp_pcb	*tpcb,	uint16_t	len)
	
static	err_t	 _s_connected	(void	*arg,	struct	tcp_pcb	*pcb,	err_t	err)
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
CloudClass	Class
Reference

Public	Member	Functions
	 CloudClass	()

	
This	function	is	used	to	Init	Giz	Cloud	Construct	function	to	init
some	arguements	or	some	configuration	before	use	the	object.
More...

	
bool	 CloudInit	()
	 This	function	is	used	to	Init	Giz	Cloud	method.	More...
	

Constructor	&	Destructor	Documentation

◆	CloudClass()
CloudClass::CloudClass ()

This	function	is	used	to	Init	Giz	Cloud	Construct	function	to	init	some
arguements	or	some	configuration	before	use	the	object.

Returns
None

Note

Member	Function	Documentation

◆	CloudInit()
bool	CloudClass::CloudInit ()

This	function	is	used	to	Init	Giz	Cloud	method.

Returns
If	the	init	process	is	successful,	true	is	returned.

Note
This	function	must	be	called	BEFORE	using	the	object.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
DataSource	Class
Reference abstract

Inherited	by	BufferDataSource,	and	BufferedStreamDataSource<
TStream	>.

Public	Member	Functions
virtual	size_t	 available	()=0

	
virtual	const	uint8_t	*	 get_buffer	(size_t	size)=0
	

virtual	void	 release_buffer	(const	uint8_t	*buffer,	size_t
size)=0

	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
DhcpClass	Class
Reference

Public	Member	Functions
uint32_t	 getLocalIP	()
	
uint32_t	 getSubnetMask	()
	
uint32_t	 getGatewayIp	()
	
uint32_t	 getDhcpServerIp	()
	
uint32_t	 getDnsServerIp	()
	

char	*	 getLocalIPStr	()
	

char	*	 getSubnetMaskStr	()
	

char	*	 getGatewayIpStr	()
	

char	*	 getDhcpServerIpStr	()
	

char	*	 getDnsServerIpStr	()
	

int	 beginWithDHCP	(uint8_t	*,	unsigned	long	timeout=60000,
unsigned	long	responseTimeout=4000)

	
int	 checkLease	()

	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Protected	Member	Functions

W60X_Arduino
DNSClient	Class
Reference

Public	Member	Functions
void	 begin	(unsigned	int	aDNSServer)
	
void	 begin	(const	char	*aDNSServer)
	

int	 getHostByName	(const	char	*aHostname,	unsigned	int	&aResult)
	 This	function	is	used	to	resolve	the	hostname	.	More...
	

int	 getHostByName	(const	char	*aHostname,	char	*&aResult)
	 This	function	is	used	to	resolve	the	hostname.	More...
	

Protected	Member	Functions
uint16_t	 BuildRequest	(const	char	*aName)
	
uint16_t	 ProcessResponse	(uint16_t	aTimeout,	uint32_t	&aAddress)
	

Member	Function	Documentation

◆	getHostByName()	[1/2]
int	DNSClient::getHostByName (const	char	*	 aHostname,

unsigned	int	&	 aResult	
)

This	function	is	used	to	resolve	the	hostname	.

This	function	is	used	to	resolve	the	hostname.

Parameters
[in] aHostname The	hostname	which	user	want	to	resolve.
[out] aResult The	first	IPv4	address	which	resolve	via	DNS

protocol	that	display	as	a	32-bits	value.

Returns
If	the	operation	executes	success,	true	is	returned,	otherwise,
false	is	returned.

Note

◆	getHostByName()	[2/2]
int	DNSClient::getHostByName (const	char	*	 aHostname,

char	*&	 aResult	
)

This	function	is	used	to	resolve	the	hostname.

Parameters
[in] aHostname The	hostname	which	user	want	to	resolve.
[out] aResult The	first	IPv4	address	which	resolve	via	DNS

protocol	that	display	as	a	Dotted	Decimal
Notation	string.

Returns
If	the	operation	executes	success,	true	is	returned,	otherwise,
false	is	returned.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
DNSServer	Class
Reference

Public	Member	Functions
bool	 start	(const	uint16_t	&port,	const	char	*domainName,	const	char

*resolvedIP)
	 This	function	is	used	to	start	DNS	Server.	More...
	
bool	 start	(const	char	*domainName)
	 This	function	is	used	to	start	DNS	Server	with	some	default

arguements	in	port	and	resolvedIP.	More...
	
void	 stop	()
	 This	function	is	used	to	Stop	DNS	Server.	More...
	

Member	Function	Documentation

◆	start()	[1/2]
bool	DNSServer::start (const	uint16_t	&	 port,

const	char	*	 domainName,
const	char	*	 resolvedIP	
)

This	function	is	used	to	start	DNS	Server.

Parameters
[in] port Specify	the	server's	dns	port
[in] domainName Sepcify	the	server's	dns	name
[in] resolvedIP Unused	arguement.

Returns
If	the	operation	executes	success,	true	is	returned,	otherwise,
false	is	returned.

Note

◆	start()	[2/2]
bool	DNSServer::start (const	char	*	 domainName)

This	function	is	used	to	start	DNS	Server	with	some	default
arguements	in	port	and	resolvedIP.

Parameters
[in] domainName specify	the	server's	dns	name

Returns
If	the	operation	executes	success,	true	is	returned,	otherwise,
false	is	returned.

Note

◆	stop()
void	DNSServer::stop ()

This	function	is	used	to	Stop	DNS	Server.

Returns
None

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
HardwareSerial	Class
Reference

Inherits	Stream.

Public	Member	Functions
	 HardwareSerial	(int	serial_no)

	 This	constructor	is	used	to	init	hardware	serial.	More...
	

	 HardwareSerial	(int	serial_no,	bool	mul_flag)
	 This	constructor	is	used	to	init	hardware	serial.	More...
	

	 HardwareSerial	()
	 This	constructor	is	used	to	init	hardware	serial.	More...
	

void	 begin	()

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial
data	transmission.	For	communicating	with	the	computer,
use	one	of	these	rates:	300,	600,	1200,	2400,	4800,
9600,	14400,	19200,	28800,	38400,	57600,	or	115200.
You	can,	however,	specify	other	rates	-	for	example,	to
communicate	over	pins	0	and	1	with	a	component	that
requires	a	particular	baud	rate.	More...

	
void	 begin	(unsigned	long	baud)

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial
data	transmission.	For	communicating	with	the	computer,
use	one	of	these	rates:	300,	600,	1200,	2400,	4800,
9600,	14400,	19200,	28800,	38400,	57600,	or	115200.
You	can,	however,	specify	other	rates	-	for	example,	to
communicate	over	pins	0	and	1	with	a	component	that
requires	a	particular	baud	rate.	More...

	
void	 begin	(unsigned	long	baud,	int	modeChoose)

	

Sets	the	data	rate	in	bits	per	second	(baud)	for	serial
data	transmission.	For	communicating	with	the	computer,
use	one	of	these	rates:	300,	600,	1200,	2400,	4800,
9600,	14400,	19200,	28800,	38400,	57600,	or	115200.
You	can,	however,	specify	other	rates	-	for	example,	to
communicate	over	pins	0	and	1	with	a	component	that
requires	a	particular	baud	rate.	More...

	
virtual	int	 read	(void)

	 Reads	incoming	serial	data.	read()	inherits	from	the
Stream	utility	class.	More...

	
virtual	int	 available	(void)

	

Get	the	number	of	bytes	(characters)	available	for
reading	from	the	serial	port.	This	is	data	that's	already
arrived	and	stored	in	the	serial	receive	buffer	(which
holds	64	bytes).	available()	inherits	from	the	Stream
utility	class.	More...

	
virtual	int	 peek	()

	

Returns	the	next	byte	(character)	of	incoming	serial	data
without	removing	it	from	the	internal	serial	buffer.	That	is,
successive	calls	to	peek()	will	return	the	same	character,
as	will	the	next	call	to	read().	peek()	inherits	from	the
Stream	utility	class.	More...

	
virtual	size_t	 write	(uint8_t	c)

	

Writes	binary	data	to	the	serial	port.	This	data	is	sent	as
a	byte	or	series	of	bytes;	to	send	the	characters
representing	the	digits	of	a	number	use	the	print()
function	instead.	More...

	
	Public	Member	Functions	inherited	from	Stream

void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	

bool	 find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const	char

*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	

long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers	(or
the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not
digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating	point
number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	

String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	
readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator	character
is	detected	or	it	times	out	(see	setTimeout()).	More...

	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...

	

size_t	 print	(char)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	char,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('

').	More...
	

size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Stream

int	 timedRead	()
	

int	 timedPeek	()
	

int	 peekNextDigit	()
	

long	 parseInt	(char	skipChar)
	

float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print

void	 setWriteError	(int	err=1)
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout
	
unsigned	long	 _startMillis
	

Member	Function	Documentation

◆	write()
size_t	HardwareSerial::write (uint8_t	 c) virtual

Writes	binary	data	to	the	serial	port.	This	data	is	sent	as	a	byte	or
series	of	bytes;	to	send	the	characters	representing	the	digits	of	a
number	use	the	print()	function	instead.

Parameters
[in] c Specify	the	byte	which	will	be	sent	to	the	console.

Returns
The	length	of	sending	to	the	console.

Note

Implements	Print.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
IPAddress	Class
Reference

Inherits	Printable.

Public	Member	Functions
	 IPAddress	()

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress	(uint8_t	first_oct,	uint8_t	sec_oct,	uint8_t
third_oct,	uint8_t	fourth_oct)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress	(uint32_t	address)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 IPAddress	(const	uint8_t	*address)

	 This	constructor	function	is	used	to	construct	IPAddress
object.	More...

	
	 operator	uint32_t	()	const

	 This	operator	overloading	function	is	used	to	overloading
'uint32_t'	operator.	More...

	
bool	 operator==	(const	IPAddress	&addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
bool	 operator==	(uint32_t	addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
bool	 operator==	(const	uint8_t	*addr)	const

	 This	operator	overloading	function	is	used	to	overloading
'=='	operator.	More...

	
uint8_t	 operator[]	(int	index)	const

	 This	operator	overloading	function	is	used	to	overloading
'[]'	operator.	More...

	
uint8_t	&	 operator[]	(int	index)

	 This	operator	overloading	function	is	used	to	overloading
'[]'	operator.	More...

	
IPAddress	&	 operator=	(const	uint8_t	*address)
	 This	operator	overloading	function	is	used	to	overloading

'='	operator.	More...
	
IPAddress	&	 operator=	(uint32_t	address)
	 This	operator	overloading	function	is	used	to	overloading

'='	operator.	More...
	

String	 toString	()	const
	 This	function	is	used	to	transform	from	IPAddress	object

to	String	object.	More...
	

bool	 fromString	(const	char	*address)
	 This	function	is	used	to	create	the	object	from	a	string

buffer.	More...
	

bool	 fromString	(const	String	&address)
	 This	function	is	used	to	create	the	object	from	a	String

object.	More...
	
virtual	size_t	 printTo	(Print	&p)	const
	 This	virtual	function	is	used	to	called	by	print/println

function.	More...
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Protected	Member	Functions

W60X_Arduino
Print	Class
Reference abstract

Inherited	by	Server,	and	Stream.

Public	Member	Functions
int	 getWriteError	()

	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	
virtual	size_t	 write	(uint8_t)=0
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(char)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	char,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(double,	int=BIN)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	Printable	&)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Protected	Member	Functions
void	 setWriteError	(int	err=1)
	

Member	Function	Documentation

◆	clearWriteError()
void	Print::clearWriteError () inline

This	function	is	used	to	clear	write	error	number.

Parameters
[in]None

Returns
None

Note

◆	getWriteError()
int	Print::getWriteError () inline

This	function	is	used	to	get	write	error	number.

Parameters
[in]None

Returns
The	write	error	set	by	the	object.

Note

◆	print()	[1/10]
size_t	Print::print (const	String	&	 s)

This	function	is	used	to	print	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] s Specify	the	String.

Returns
The	length	of	print	successfully.

Note

◆	print()	[2/10]
size_t	Print::print (const	char	 str[])

This	function	is	used	to	print	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] s Specify	the	string	buffer.

Returns
The	length	of	print	successfully.

Note

◆	print()	[3/10]
size_t	Print::print (char	 c)

This	function	is	used	to	print	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] c Specify	the	target	-	char.

Returns
The	length	of	print	successfully	(1	byte).

Note

◆	print()	[4/10]
size_t	Print::print (unsigned	char	 b,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] b Specify	the	target	-	char.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.

Note

◆	print()	[5/10]
size_t	Print::print (int	 n,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] n Specify	the	target	-	int.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.

Note

◆	print()	[6/10]
size_t	Print::print (unsigned	int	 n,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] n Specify	the	target	-	unsigned	int.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.

Note

◆	print()	[7/10]
size_t	Print::print (long	 n,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] n Specify	the	target	-	long.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.

Note

◆	print()	[8/10]
size_t	Print::print (unsigned	long	 n,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] n Specify	the	target	-	unsigned	long.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.

Note

◆	print()	[9/10]
size_t	Print::print (double	 n,

int	 digits	=	BIN	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] n Specify	the	target	-	double.
[in] digits Specify	the	digits.

Returns
The	length	of	print	successfully.

Note

◆	print()	[10/10]
size_t	Print::print (const	Printable	&	 x)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object.

Parameters
[in] x Specify	the	target	-	Printable.

Returns
The	length	of	print	successfully.

Note

◆	println()	[1/11]
size_t	Print::println (void)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in]None

Returns
The	length	of	print	successfully.

Note

◆	println()	[2/11]
size_t	Print::println (const	String	&	 s)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] s Specify	the	String.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[3/11]
size_t	Print::println (const	char	 c[])

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] c Specify	the	string	buffer.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[4/11]
size_t	Print::println (char	 c)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] c Specify	the	target	-	char.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[5/11]
size_t	Print::println (unsigned	char	 b,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] n Specify	the	target	-	int.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[6/11]
size_t	Print::println (int	 num,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] num Specify	the	target	-	int.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[7/11]
size_t	Print::println (unsigned	int	 num,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] num Specify	the	target	-	unsigned	int.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[8/11]
size_t	Print::println (long	 num,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] num Specify	the	target	-	long.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[9/11]
size_t	Print::println (unsigned	long	 num,

int	 base	=	DEC	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] num Specify	the	target	-	unsigned	long.
[in] base Specify	the	base.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[10/11]
size_t	Print::println (double	 num,

int	 digits	=	BIN	
)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] num Specify	the	target	-	double.
[in] digits Specify	the	digits.

Returns
The	length	of	print	successfully.	

Note

◆	println()	[11/11]
size_t	Print::println (const	Printable	&	 x)

This	function	is	used	to	print	target	to	the	interface	defined	by	the
object	with	carriage	ret	('')	and	new	line	('
').

Parameters
[in] x Specify	the	target	-	Printable.

Returns
The	length	of	print	successfully.	

Note

◆	write()	[1/4]
virtual	size_t	Print::write (uint8_t) pure	virtual

This	pure	virtual	function	is	used	to	define	the	operation	that	writes
binary	data.

Parameters
[in] val a	value	to	send	as	a	single	byte

Returns
The	length	of	write	successfully	(1	byte).

Note

Implemented	in	WiFiUDP,	HardwareSerial,	WiFiServer,	WiFiClient,
UDP,	TwoWire,	and	Client.

◆	write()	[2/4]
size_t	Print::write (const	uint8_t	*	 buffer,

size_t	 size	
) virtual

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully	(1	byte).

Note

Reimplemented	in	WiFiUDP,	WiFiClient,	WiFiServer,	UDP,	Client,
and	TwoWire.

◆	write()	[3/4]
size_t	Print::write (const	char	*	 str) inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] str Specify	the	buffer	of	string.

Returns
The	length	of	write	successfully.

Note

◆	write()	[4/4]
size_t	Print::write (const	char	*	 buffer,

size_t	 size	
) inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer	of	string.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
Printable	Class
Reference abstract

Inherited	by	IPAddress.

Public	Member	Functions
virtual	size_t	 printTo	(Print	&p)	const	=0
	 This	pure	virtual	function	is	used	to	called	by	print/println

function.	More...
	

Member	Function	Documentation

◆	printTo()
virtual	size_t	Printable::printTo (Print	&	 p) const pure	virtual

This	pure	virtual	function	is	used	to	called	by	print/println	function.

Parameters
[in] p Specify	the	Print	object.

Returns
bool

Note
The	length	of	print	successfully.

Implemented	in	IPAddress.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|	Protected	Attributes

W60X_Arduino
ProgmemStream	Class
Reference

Public	Member	Functions
	 ProgmemStream	(PGM_P	buf,	size_t	size)

	
size_t	 readBytes	(char	*dst,	size_t	size)
	

Protected	Attributes
PGM_P	 _buf
	

size_t	 _left
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
Server	Class
Reference abstract

Inherits	Print.

Inherited	by	WiFiServer.

Public	Member	Functions
virtual	void	 begin	()=0

	 This	pure-virtual	function	is	used	to	start	the	object.
More...

	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	
virtual	size_t	 write	(uint8_t)=0
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...

	
size_t	 print	(char)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	char,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

This	function	is	used	to	print	target	to	the	interface

	 defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Print
void	 setWriteError	(int	err=1)
	

Member	Function	Documentation

◆	begin()
virtual	void	Server::begin () pure	virtual

This	pure-virtual	function	is	used	to	start	the	object.

Parameters
[in] none
[out]

Implemented	in	WiFiServer.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Static	Protected	Member	Functions	|
Protected	Attributes	|	Static	Protected	Attributes

W60X_Arduino
SList<	T	>	Class
Template	Reference

Static	Protected	Member	Functions
static	void	 _add	(T	*self)
	
static	void	 _remove	(T	*self)
	

Protected	Attributes
T	*	 _next

	

Static	Protected	Attributes
static	T	*	 _s_first
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
SPIClass	Class
Reference

Public	Member	Functions
void	 begin	(void)

	 Initialize	the	SPI	instance.	More...
	

void	 end	(void)
	 Deinitialize	the	SPI	instance	and	stop	it.	More...
	

void	 beginTransaction	(SPISettings	settings)

	
This	function	should	be	used	to	configure	the	SPI	instance	in
case	you	don't	use	the	default	parameters	set	by	the	begin()
function.	More...

	
void	 endTransaction	(void)

	 settings	associated	to	the	SPI	instance.	More...
	
uint8_t	 transfer	(uint8_t	_data)
	 Transfer	one	byte	on	the	SPI	bus.	More...
	
uint16_t	 transfer16	(uint16_t	_data)
	 Transfer	two	bytes	on	the	SPI	bus	in	16	bits	format.	More...
	

void	 transferWrite	(void	*_buf,	size_t	_count)
	 send	several	bytes.	More...
	

void	 transferRead	(void	*_buf,	size_t	_count)
	 receive	several	bytes.	More...
	

void	 transfer	(void	*_buf,	size_t	_count)
	 Transfer	several	bytes.	Only	one	buffer	used	to	send	and

receive	data.	More...
	

void	 transfer	(void	*_bufout,	void	*_bufin,	size_t	_count)
	 Transfer	several	bytes.	One	buffer	contains	the	data	to	send

and	another	one	will	contains	the	data	received.	More...

	
void	 setBitOrder	(BitOrder)

	 Deprecated	function.	Configure	the	bit	order:	MSB	first	or	LSB
first.	More...

	
void	 setDataMode	(uint8_t	_mode)

	 Deprecated	function.	Configure	the	data	mode	(clock	polarity
and	clock	phase)	More...

	
void	 setFrequency	(uint32_t	freq)

	 Configure	the	spi	frequency.	More...
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|	Friends

W60X_Arduino
SPISettings	Class
Reference

Public	Member	Functions
	 SPISettings	(uint32_t	clock,	BitOrder	bitOrder,	uint8_t	dataMode)
	

Friends
class	 SPIClass
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Protected	Member	Functions	|

Protected	Attributes

W60X_Arduino
Stream	Class
Reference abstract

Inherits	Print.

Inherited	by	Client,	HardwareSerial,	TwoWire,	and	UDP.

Public	Member	Functions
virtual	int	 available	()=0

	
available()	gets	the	number	of	bytes	available	in	the
stream.	This	is	only	for	bytes	that	have	already	arrived.
More...

	
virtual	int	 read	()=0

	 read()	reads	characters	from	an	incoming	stream	to	the
buffer.	More...

	
virtual	int	 peek	()=0

	
Read	a	byte	from	the	file	without	advancing	to	the	next
one.	That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const	char

*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers	(or
the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not

	 digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating	point
number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	
readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator	character
is	detected	or	it	times	out	(see	setTimeout()).	More...

	

	Public	Member	Functions	inherited	from	Print
int	 getWriteError	()

	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	
virtual	size_t	 write	(uint8_t)=0
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(char)

	
This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	char,	int=DEC)

This	function	is	used	to	print	target	to	the	interface

	 defined	by	the	object.	More...

	
size_t	 print	(int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('

').	More...
	

size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Protected	Member	Functions
int	 timedRead	()

	
int	 timedPeek	()

	
int	 peekNextDigit	()

	
long	 parseInt	(char	skipChar)
	
float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print
void	 setWriteError	(int	err=1)
	

Protected	Attributes
unsigned	long	 _timeout
	
unsigned	long	 _startMillis
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
TwoWire	Class
Reference

Inherits	Stream.

Public	Member	Functions
void	 begin	(int	sda,	int	scl)

	
void	 pins	(int	sda,	int	scl)	__attribute__((deprecated))

	
void	 begin	()

	
void	 begin	(uint8_t)

	
void	 begin	(int)

	
void	 setClock	(uint32_t)

	
void	 setClockStretchLimit	(uint32_t)

	
void	 beginTransmission	(uint8_t)

	
void	 beginTransmission	(int)

	
uint8_t	 endTransmission	(void)

	
uint8_t	 endTransmission	(uint8_t)

	
size_t	 requestFrom	(uint8_t	address,	size_t	size,	bool

sendStop)
	

uint8_t	 status	()
	

uint8_t	 requestFrom	(uint8_t,	uint8_t)
	

uint8_t	 requestFrom	(uint8_t,	uint8_t,	uint8_t)
	

uint8_t	 requestFrom	(int,	int)
	

uint8_t	 requestFrom	(int,	int,	int)

	
virtual	size_t	 write	(uint8_t)
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 write	(const	uint8_t	*,	size_t)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

virtual	int	 available	(void)

	
available()	gets	the	number	of	bytes	available	in	the
stream.	This	is	only	for	bytes	that	have	already	arrived.
More...

	
virtual	int	 read	(void)

	 read()	reads	characters	from	an	incoming	stream	to	the
buffer.	More...

	
virtual	int	 peek	(void)

	
Read	a	byte	from	the	file	without	advancing	to	the	next
one.	That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 flush	(void)

	
void	 onReceive	(void(*)(int))

	
void	 onRequest	(void(*)(void))

	
size_t	 write	(unsigned	long	n)

	
size_t	 write	(long	n)

	
size_t	 write	(unsigned	int	n)

	
size_t	 write	(int	n)

	

virtual	size_t	 write	(uint8_t)=0

	
This	pure	virtual	function	is	used	to	define	the	operation
that	writes	binary	data.	More...

	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	
	Public	Member	Functions	inherited	from	Stream

void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target

string	is	found,	false	if	timed	out.	More...
	

bool	 find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string	of
given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char	*terminator)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const	char

*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	 findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.	More...

	
long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers	(or
the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	
parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not
digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating	point
number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator	character
is	detected,	the	determined	length	has	been	read,	or	it
times	out	(see	setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	

readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator	character

is	detected	or	it	times	out	(see	setTimeout()).	More...
	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(char)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	char,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...

	

size_t	 print	(unsigned	int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(double,	int=BIN)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	Printable	&)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('

').	More...
	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Stream

int	 timedRead	()
	

int	 timedPeek	()
	

int	 peekNextDigit	()
	

long	 parseInt	(char	skipChar)
	

float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print

void	 setWriteError	(int	err=1)
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout
	
unsigned	long	 _startMillis
	

Member	Function	Documentation

◆	write()	[1/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] str Specify	the	buffer	of	string.

Returns
The	length	of	write	successfully.

Note

◆	write()	[2/4]
size_t	Print::write

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully	(1	byte).

Note

◆	write()	[3/4]
virtual	size_t	Print::write

This	pure	virtual	function	is	used	to	define	the	operation	that	writes
binary	data.

Parameters
[in] val a	value	to	send	as	a	single	byte

Returns
The	length	of	write	successfully	(1	byte).

Note

◆	write()	[4/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer	of	string.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
UDP	Class
Reference abstract

Inherits	Stream.

Inherited	by	WiFiUDP.

Public	Member	Functions
virtual	uint8_t	 begin	(uint16_t)=0

	
This	function	is	used	to	initializes	the	UDP	library
and	network	settings,	Starts	UDP	socket,	listening
at	local	port.	More...

	
virtual	void	 stop	()=0

	
This	function	is	used	to	disconnect	from	the	server.
Release	any	resource	being	used	during	the	UDP
session.	More...

	
virtual	int	 beginPacket	(IPAddress	ip,	uint16_t	port)=0

	 This	function	is	used	to	starts	a	connection	to	write
UDP	data	to	the	remote	connection.	More...

	
virtual	int	 beginPacket	(const	char	*host,	uint16_t	port)=0

	 This	function	is	used	to	starts	a	connection	to	write
UDP	data	to	the	remote	connection.	More...

	
virtual	int	 endPacket	()=0

	
This	function	is	used	to	called	after	writing	UDP	data
to	the	remote	connection.	It	finishes	off	the	packet
and	send	it.	More...

	
virtual	size_t	 write	(uint8_t)=0

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)=0

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	int	 parsePacket	()=0

	

It	starts	processing	the	next	available	incoming
packet,	checks	for	the	presence	of	a	UDP	packet,

and	reports	the	size.	More...
	

virtual	int	 available	()=0

	
Get	the	number	of	bytes	(characters)	available	for
reading	from	the	buffer.	This	is	is	data	that's	already
arrived.	More...

	
virtual	int	 read	()=0

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 read	(unsigned	char	*buffer,	size_t	len)=0

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 read	(char	*buffer,	size_t	len)=0

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 peek	()=0

	

Read	a	byte	from	the	file	without	advancing	to	the
next	one.	
That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 flush	()=0

	 Discard	any	bytes	that	have	been	written	to	the
client	but	not	yet	read.	More...

	
virtual	IPAddress	 remoteIP	()=0
	 This	function	is	used	to	gets	the	IP	address	of	the

remote	connection.	More...
	

virtual	uint16_t	 remotePort	()=0

	 This	function	is	used	to	gets	the	port	of	the	remote
UDP	connection.	More...

	
	Public	Member	Functions	inherited	from	Stream

void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to
wait	for	stream	data,	it	defaults	to	1000
milliseconds.	This	function	is	part	of	the	Stream
class,	and	is	called	by	any	class	that	inherits	from	it
(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.	More...

	
bool	 find	(const	char	*target)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(uint8_t	*target)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(const	char	*target,	size_t	length)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(const	uint8_t	*target,	size_t	length)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(char	target)

find()	reads	data	from	the	stream	until	the	target

	 string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char

*terminator)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,

const	char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer
number	from	the	serial	buffer.	Characters	that	are
not	integers	(or	the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point
number	from	the	current	position.	Initial	characters
that	are	not	digits	(or	the	minus	sign)	are	skipped.
parseFloat()	is	terminated	by	the	first	character	that
is	not	a	floating	point	number.	More...

	

virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	

readBytes()	read	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	

readBytes()	read	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream
into	a	buffer.	The	function	terminates	if	the
terminator	character	is	detected,	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,

size_t	length)

	

readBytesUntil()	reads	characters	from	a	stream
into	a	buffer.	The	function	terminates	if	the
terminator	character	is	detected,	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	

readStringUntil()	reads	characters	from	a	stream
into	a	string.	The	function	terminates	if	the
terminator	character	is	detected	or	it	times	out	(see

setTimeout()).	More...
	

	Public	Member	Functions	inherited	from	Print
int	 getWriteError	()

	 This	function	is	used	to	get	write	error	number.
More...

	
void	 clearWriteError	()

	 This	function	is	used	to	clear	write	error	number.
More...

	
size_t	 write	(const	char	*str)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 write	(const	char	*buffer,	size_t	size)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	String	&)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	char	[])

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(char)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	char,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	

size_t	 print	(unsigned	int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(double,	int=BIN)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	Printable	&)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 println	(void)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	String	&s)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	char	[])

This	function	is	used	to	print	target	to	the	interface

	 defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	

size_t	 println	(char)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new

line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	Printable	&)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Stream

int	 timedRead	()
	

int	 timedPeek	()
	

int	 peekNextDigit	()
	

long	 parseInt	(char	skipChar)
	

float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print

void	 setWriteError	(int	err=1)
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout
	
unsigned	long	 _startMillis
	

Member	Function	Documentation

◆	available()
virtual	int	UDP::available () pure	virtual

Get	the	number	of	bytes	(characters)	available	for	reading	from	the
buffer.	This	is	is	data	that's	already	arrived.

Parameters
[in] None
[out]None

Return	values
0 parsePacket	hasn't	been	called	yet
other the	number	of	bytes	available	in	the	current	packet

Note
This	function	can	only	be	successfully	called	after
UDP.parsePacket().	available()	inherits	from	the	Stream	utility
class.

Implements	Stream.

Implemented	in	WiFiUDP.

◆	begin()
virtual	uint8_t	UDP::begin (uint16_t) pure	virtual

This	function	is	used	to	initializes	the	UDP	library	and	network	settings,
Starts	UDP	socket,	listening	at	local	port.

Parameters
[in] the local	port	to	listen	on
[out]None

Return	values
1 successful
0 there	are	no	sockets	available	to	use

Note

Implemented	in	WiFiUDP.

◆	beginPacket()	[1/2]
virtual	int	UDP::beginPacket (IPAddress	 ip,

uint16_t	 port	
) pure	virtual

This	function	is	used	to	starts	a	connection	to	write	UDP	data	to	the
remote	connection.

Parameters
[in] ip the	IP	address	of	the	remote	connection	(4	bytes)
[in] port the	port	of	the	remote	connection	(int)
[out]None

Return	values
1 successful
0 there	was	a	problem	with	the	supplied	IP	address	or	port

Note

Implemented	in	WiFiUDP.

◆	beginPacket()	[2/2]
virtual	int	UDP::beginPacket (const	char	*	 host,

uint16_t	 port	
) pure	virtual

This	function	is	used	to	starts	a	connection	to	write	UDP	data	to	the
remote	connection.

Parameters
[in] host the	address	of	the	remote	host.	It	accepts	a

character	string	or	an	IPAddress
[in] port the	port	of	the	remote	connection	(int)
[out]None

Return	values
1 successful
0 there	was	a	problem	with	the	supplied	IP	address	or	port

Note

Implemented	in	WiFiUDP.

◆	endPacket()
virtual	int	UDP::endPacket () pure	virtual

This	function	is	used	to	called	after	writing	UDP	data	to	the	remote
connection.	It	finishes	off	the	packet	and	send	it.

Parameters
[in] None
[out]None

Return	values
1 the	packet	was	sent	successfully
0 there	was	an	error

Note

Implemented	in	WiFiUDP.

◆	flush()
virtual	void	UDP::flush () pure	virtual

Discard	any	bytes	that	have	been	written	to	the	client	but	not	yet	read.

Parameters
[in] None
[out]None

Returns
None

Note
flush()	inherits	from	the	Stream	utility	class.

Implemented	in	WiFiUDP.

◆	parsePacket()
virtual	int	UDP::parsePacket () pure	virtual

It	starts	processing	the	next	available	incoming	packet,	checks	for	the
presence	of	a	UDP	packet,	and	reports	the	size.

Parameters
[in] None
[out]None

Return	values
0 no	packets	are	available
other the	size	of	the	packet	in	bytes

Note
parsePacket()	must	be	called	before	reading	the	buffer	with
UDP.read().

Implemented	in	WiFiUDP.

◆	peek()
virtual	int	UDP::peek () pure	virtual

Read	a	byte	from	the	file	without	advancing	to	the	next	one.	
That	is,	successive	calls	to	peek()	will	return	the	same	value,	as	will
the	next	call	to	read().

Parameters
[in] None
[out]None

Return	values
-1 none	is	available
other the	next	byte	or	character

Note
This	function	inherited	from	the	Stream	class.	See	the	Stream
class	main	page	for	more	information.

Implements	Stream.

Implemented	in	WiFiUDP.

◆	read()	[1/3]
virtual	int	UDP::read () pure	virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] None
[out]None

Return	values
-1 no	buffer	is	available
other the	characters	in	the	buffer	(char)

Note

Implements	Stream.

Implemented	in	WiFiUDP.

◆	read()	[2/3]
virtual	int	UDP::read (unsigned	char	*	 buffer,

size_t	 len	
) pure	virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] buffer buffer	to	hold	incoming	packets	(unsigned	char*)
[in] len maximum	size	of	the	buffer	(int)
[out]None

Return	values
-1 no	buffer	is	available
other the	size	of	the	buffer

Note

Implemented	in	WiFiUDP.

◆	read()	[3/3]
virtual	int	UDP::read (char	*	 buffer,

size_t	 len	
) pure	virtual

Reads	UDP	data	from	the	specified	buffer.	If	no	arguments	are	given,	it
will	return	the	next	character	in	the	buffer.

Parameters
[in] buffer buffer	to	hold	incoming	packets	(char*)
[in] len maximum	size	of	the	buffer	(int)
[out]None

Return	values
-1 no	buffer	is	available
other the	size	of	the	buffer

Note

Implemented	in	WiFiUDP.

◆	remoteIP()
virtual	IPAddress	UDP::remoteIP () pure	virtual

This	function	is	used	to	gets	the	IP	address	of	the	remote	connection.

Parameters
[in] None
[out]None

Return	values
the IP	address	of	the	host	who	sent	the	current	incoming

packet(4	bytes)

Note
This	function	must	be	called	after	UDP.parsePacket().

Implemented	in	WiFiUDP.

◆	remotePort()
virtual	uint16_t	UDP::remotePort () pure	virtual

This	function	is	used	to	gets	the	port	of	the	remote	UDP	connection.

Parameters
[in] None
[out]None

Return	values
The port	of	the	host	who	sent	the	current	incoming	packet

Note
This	function	must	be	called	after	UDP.parsePacket().

Implemented	in	WiFiUDP.

◆	stop()
virtual	void	UDP::stop () pure	virtual

This	function	is	used	to	disconnect	from	the	server.	Release	any
resource	being	used	during	the	UDP	session.

Parameters
[in] None
[out]None

Returns
None

Note

Implemented	in	WiFiUDP.

◆	write()	[1/2]
virtual	size_t	UDP::write (uint8_t) pure	virtual

This	function	is	used	to	writes	UDP	data	to	the	remote	connection.

Parameters
[in] the outgoing	byte
[out]None

Return	values
single byte	into	the	packet

Note
Must	be	wrapped	between	beginPacket()	and	endPacket().
beginPacket()	initializes	the	packet	of	data,	it	is	not	sent	until
endPacket()	is	called.

Implements	Print.

Implemented	in	WiFiUDP.

◆	write()	[2/2]
virtual	size_t	UDP::write (const	uint8_t	*	 buffer,

size_t	 size	
) pure	virtual

This	function	is	used	to	writes	UDP	data	to	the	remote	connection.

Parameters
[in] buffer the	outgoing	message
[in] size the	size	of	the	buffer
[out]None

Return	values
bytes size	from	buffer	into	the	packet

Note
Must	be	wrapped	between	beginPacket()	and	endPacket().
beginPacket()	initializes	the	packet	of	data,	it	is	not	sent	until
endPacket()	is	called.

Reimplemented	from	Print.

Implemented	in	WiFiUDP.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Types	|	Public	Member	Functions

W60X_Arduino
UdpContext	Class
Reference

Public	Types
typedef	std::function<	void(void)>	 rxhandler_t
	

Public	Member	Functions
void	 ref	()

	
void	 unref	()

	
bool	 connect	(ip_addr_t	addr,	uint16_t	port)

	
bool	 listen	(ip_addr_t	addr,	uint16_t	port)

	
void	 disconnect	()

	
void	 setMulticastInterface	(const	ip_addr_t	&addr)

	
void	 setMulticastTTL	(int	ttl)

	
void	 onRx	(rxhandler_t	handler)

	
size_t	 getSize	()	const

	
size_t	 tell	()	const

	
void	 seek	(const	size_t	pos)

	
bool	 isValidOffset	(const	size_t	pos)	const

	
uint32_t	 getRemoteAddress	()
	
uint16_t	 getRemotePort	()
	
uint32_t	 getDestAddress	()
	
uint16_t	 getLocalPort	()
	

bool	 next	()
	

int	 read	()
	

size_t	 read	(char	*dst,	size_t	size)
	

int	 peek	()
	

void	 flush	()
	

size_t	 append	(const	char	*data,	size_t	size)
	

bool	 send	(ip_addr_t	*addr=0,	uint16_t	port=0)
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
W600InnerFlashClass
Class	Reference

Public	Member	Functions
int	 begin	()

	 This	function	is	used	to	inialize	inner	flash	driver.	More...
	
bool	 flashEraseSector	(uint32_t	sector)
	 This	function	is	used	to	erase	flash	by	sectors.	More...
	
bool	 flashWrite	(uint32_t	offset,	uint8_t	*data,	size_t	size)
	 This	function	is	used	to	write	data	to	flash.	More...
	
bool	 flashRead	(uint32_t	offset,	uint8_t	*data,	size_t	size)
	 This	function	is	used	to	read	data	from	flash.	More...
	

Member	Function	Documentation

◆	begin()
int	W600InnerFlashClass::begin ()

This	function	is	used	to	inialize	inner	flash	driver.

Parameters
[in] None
[out]None

Returns
None

Note

◆	flashEraseSector()
bool	W600InnerFlashClass::flashEraseSector (uint32_t	 sector)

This	function	is	used	to	erase	flash	by	sectors.

Parameters
[in] sector 240-251,	other	sector	can	not	be	erased	for	special

usage
[out]None

Returns
None

Note
Only	sectors	from	240	to	251	can	be	used	to	user	operation.

◆	flashRead()
bool	W600InnerFlashClass::flashRead (uint32_t	 offset,

uint8_t	*	 data,
size_t	 size	
)

This	function	is	used	to	read	data	from	flash.

Parameters
[in] offset range	from	0x00000	to	0xFFFFF

[in/out] data	:	data	to	be	read	from	flash
[in] size :	data	length	to	be	written	to	flash
[out]None

Returns
None

Note

◆	flashWrite()
bool	W600InnerFlashClass::flashWrite (uint32_t	 offset,

uint8_t	*	 data,
size_t	 size	
)

This	function	is	used	to	write	data	to	flash.

Parameters
[in] offset range	from	0xF0000	to	0xFBFFF
[in] data :	data	to	be	written	to	flash
[in] size :	data	length	to	be	written	to	flash
[out]None

Returns
None

Note
Only	area	from	0xF0000	to	0xFBFFF	can	be	written.

Parameters
[in] offset :range	from	0xF0000	to	0xFBFFF
[in] data :	data	to	be	written	to	flash
[in] size :	data	length	to	be	written	to	flash
[out]None

Returns
None

Note
Only	area	from	0xF0000	to	0xFBFFF	can	be	written.

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
WiFiAPClass	Class
Reference

Inherited	by	WiFiClass.

Public	Member	Functions
bool	 softAP	(const	char	*ssid,	const	char	*passphrase=NULL,	int

channel=1,	int	ssid_hidden=0,	int	max_connection=4)
	 This	function	is	used	to	start	wifi	module	as	AP	mode.	More...
	

bool	 softAPConfig	(uint32_t	local_ip,	uint32_t	gateway,	uint32_t
subnet)

	 This	function	is	used	to	config	soft	AP	parameters.	More...
	

bool	 softAPConfig	(const	char	*local_ip,	const	char	*gateway,
const	char	*subnet)

	 This	function	is	used	to	config	soft	AP	parameters.	More...
	

bool	 softAPdisconnect	(bool	wifioff=false)
	 This	function	is	used	to	disconnect	the	ap	function.	More...
	

bool	 softAPdestroy	()
	 This	function	is	used	to	destrory	the	AP	function.	More...
	
uint8_t	 softAPgetStationNum	()

	 This	function	is	used	to	get	the	number	of	station.	More...
	

char	*	 softAPIP	()
	 This	function	is	used	to	get	AP's	IP.	More...
	
uint8_t	*	 softAPmacAddress	(uint8_t	*mac)
	 This	function	is	used	to	get	AP's	MAC	address.	More...
	

char	*	 softAPmacAddress	(void)
	 This	function	is	used	to	get	the	AP's	MAC	address.	More...
	

char	*	 softAPSSID	()	const
	 This	function	is	used	to	get	AP's	SSID.	More...
	

char	*	 softAPPSK	()	const
	 This	function	is	used	to	get	AP's	PSK.	More...
	

Member	Function	Documentation

◆	softAP()
bool	WiFiAPClass::softAP (const	char	*	 ssid,

const	char	*	 passphrase	=	NULL,
int	 channel	=	1,
int	 ssid_hidden	=	0,
int	 max_connection	=	4	
)

This	function	is	used	to	start	wifi	module	as	AP	mode.

Parameters
[in] ssid Specify	the	SSID.
[in] passphrase Specify	the	passphrase.
[in] channel Specify	the	channel.
[in] ssid_hidden Specify	the	ssid_hidden	flag.
[in]max_connection Specify	the	max_connection.

Returns
true	-	operate	successfully,	false	-	operate	failure.

Note

◆	softAPConfig()	[1/2]
bool	WiFiAPClass::softAPConfig (uint32_t	 local_ip,

uint32_t	 gateway,
uint32_t	 subnet	
)

This	function	is	used	to	config	soft	AP	parameters.

Parameters
[in] local_ip Specify	the	local_ip.
[in] gateway Specify	the	gateway.
[in] subnet Specify	the	subnet.

Returns
true	-	operate	successfully,	false	-	operate	failure.	

Note

◆	softAPConfig()	[2/2]
bool	WiFiAPClass::softAPConfig (const	char	*	 local_ip,

const	char	*	 gateway,
const	char	*	 subnet	
)

This	function	is	used	to	config	soft	AP	parameters.

Parameters
[in] local_ip Specify	the	local_ip.
[in] gateway Specify	the	gateway.
[in] subnet Specify	the	subnet.

Returns
true	-	operate	successfully,	false	-	operate	failure.

Note

◆	softAPdestroy()
bool	WiFiAPClass::softAPdestroy ()

This	function	is	used	to	destrory	the	AP	function.

Parameters
[in]None

Returns
true	-	operate	successfully,	false	-	operate	failure.	

Note

◆	softAPdisconnect()
bool	WiFiAPClass::softAPdisconnect (bool	 wifioff	=	false)

This	function	is	used	to	disconnect	the	ap	function.

Parameters
[in]wifioff Specify	the	wifioff.

Returns
true	-	operate	successfully,	false	-	operate	failure.	

Note

◆	softAPgetStationNum()
uint8_t	WiFiAPClass::softAPgetStationNum ()

This	function	is	used	to	get	the	number	of	station.

Parameters
[in]None

Returns
The	number	of	station.

Note

◆	softAPIP()
char	*	WiFiAPClass::softAPIP ()

This	function	is	used	to	get	AP's	IP.

Parameters
[in]None

Returns
The	local	AP's	IPv4	address.

Note

◆	softAPmacAddress()	[1/2]
uint8_t	*	WiFiAPClass::softAPmacAddress (uint8_t	*	 mac)

This	function	is	used	to	get	AP's	MAC	address.

Parameters
[in]macSpecify	the	mac	buffer.

Returns
The	AP's	MAC	address.

Note

◆	softAPmacAddress()	[2/2]
char	*	WiFiAPClass::softAPmacAddress (void)

This	function	is	used	to	get	the	AP's	MAC	address.

Parameters
[in]None

Returns
The	string	of	the	AP's	MAC	address.

Note

◆	softAPPSK()
char	*	WiFiAPClass::softAPPSK () const

This	function	is	used	to	get	AP's	PSK.

Parameters
[in]None

Returns
The	AP's	PSK	is	returned.

Note

◆	softAPSSID()
char	*	WiFiAPClass::softAPSSID () const

This	function	is	used	to	get	AP's	SSID.

Parameters
[in]None

Returns
The	AP's	SSID	is	returned.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
WiFiClass	Class
Reference

Inherits	WiFiGenericClass,	WiFiSTAClass,	WiFiScanClass,
WiFiAPClass,	and	WiFiOneshotClass.

Public	Member	Functions
char	*	 SSID	()	const

	 This	function	is	used	to	get	the	SSID	used	by	the	module.
More...

	
uint8_t	*	 BSSID	()

	 This	function	is	used	to	get	the	BSSID	which	is	connected
by	the	module.	More...

	
char	*	 BSSIDstr	()

	 This	function	is	used	to	get	the	BSSID	which	is	connected
by	the	module.	More...

	
int32_t	 RSSI	()

	 This	function	is	used	to	get	the	RSSI.	More...
	

char	*	 SSID	(uint8_t	networkItem)
	 This	function	is	used	to	get	ssid.	More...
	

uint8_t	*	 BSSID	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

char	*	 BSSIDstr	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

int32_t	 RSSI	(uint8_t	networkItem)
	 This	function	is	used	to	get	RSSI.	More...
	

int32_t	 channel	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	
	Public	Member	Functions	inherited	from	WiFiGenericClass
WiFiMode_t	 getMode	()

This	function	is	used	to	Get	the	WiFi's	work	mode..

	 More...

	
int	 hostByName	(const	char	*aHostname,	IPAddress

&aResult)
	 This	function	is	used	to	resolve	hostname	.	More...
	

int	 hostByName	(const	char	*aHostname,	IPAddress
&aResult,	uint32_t	timeout_ms)

	 This	function	is	used	to	resolve	hostname	.	More...
	
	Public	Member	Functions	inherited	from	WiFiSTAClass

int	 begin	(const	char	*ssid,	const	char	*passphrase=NULL,
unsigned	int	channel=0,	const	unsigned	char
bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 begin	(char	*ssid,	char	*passphrase=NULL,	int	channel=0,

unsigned	char	bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 begin	()

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
bool	 reconnect	()

	 This	function	is	used	to	reconect	the	AP.	More...
	

bool	 disconnect	(bool	wifioff=false)
	 This	function	is	used	to	disconnect	the	wifi.	More...
	

bool	 isConnected	()
	 This	function	is	used	to	get	the	wifi	mode	connect	status.

More...
	

bool	 setAutoConnect	(bool	autoConnect)
	 This	function	is	used	to	set	auto	connect	flag.	More...
	

bool	 getAutoConnect	()
	 This	function	is	used	to	get	auto	connect	flag.	More...
	

bool	 setAutoReconnect	(bool	autoReconnect)
	 This	function	is	used	to	set	auto	reconnect	flag.	More...
	

bool	 getAutoReconnect	()
	 This	function	is	used	to	get	auto	reconnect	flag.	More...
	

uint8_t	 waitForConnectResult	()
	 This	function	is	used	to	suspend	until	the	WiFi	is

connected.	More...
	
IPAddress	 localIP	()
	 This	function	is	used	to	get	the	local	ip	address.	More...
	

char	*	 macAddress	()
	 This	function	is	used	to	get	local	MAC	address	used	by

the	module.	More...
	

char	*	 macAddressStr	()
	 This	function	is	used	to	get	local	MAC	address	used	by

the	module.	More...
	
IPAddress	 subnetMask	()
	 This	function	is	used	to	get	subnet	mask.	More...
	
IPAddress	 getwayIP	()
	 This	function	is	used	to	get	gateway	IP	address.	More...
	
IPAddress	 dnsIP	(uint8_t	dns_no=0)
	 This	function	is	used	to	get	DNS	IP	address.	More...
	

char	*	 hostname	()
	

bool	 hostname	(char	*aHostname)
	

bool	 hostname	(const	char	*aHostname)
	
wl_status_t	 status	()
	 This	function	is	used	to	get	the	status	during	Station

mode.	More...
	

char	*	 statusStr	()
	 This	function	is	used	to	get	the	status	during	Station

mode.	More...
	

char	*	 SSID	()	const
	 This	function	is	used	to	get	the	SSID	used	by	the	module.

More...
	

char	*	 psk	()	const
	 This	function	is	used	to	get	the	psk	used	by	the	module.

More...
	

uint8_t	*	 BSSID	()
	 This	function	is	used	to	get	the	BSSID	which	is	connected

by	the	module.	More...
	

char	*	 BSSIDstr	()
	 This	function	is	used	to	get	the	BSSID	which	is	connected

by	the	module.	More...
	

int32_t	 RSSI	()
	 This	function	is	used	to	get	the	RSSI.	More...
	
	Public	Member	Functions	inherited	from	WiFiScanClass

int8_t	 scanNetworks	(bool	async=false,	bool
show_hidden=false,	uint8_t	channel=0,	uint8_t

*ssid=NULL)

	 This	function	is	used	to	begin	scan	the	WiFi	network.
More...

	
int8_t	 scanComplete	()

	 This	function	is	used	to	get	the	scan	status.	More...
	

void	 scanDelete	()
	 This	function	is	used	to	free	the	buffer	of	last	scan	result.

More...
	

bool	 getNetworkInfo	(uint8_t	networkItem,	char	*&ssid,	uint8_t
&encryptionType,	int32_t	&RSSI,	uint8_t	*&BSSID,
int32_t	&channel,	bool	&isHidden)

	 This	function	is	used	to	get	the	network	info	via	last	scan.
More...

	
char	*	 SSID	(uint8_t	networkItem)

	 This	function	is	used	to	get	ssid.	More...
	

uint32_t	 encryptionType	(uint8_t	networkItem)
	 This	function	is	used	to	get	encryption	type.	More...
	

int32_t	 RSSI	(uint8_t	networkItem)
	 This	function	is	used	to	get	RSSI.	More...
	

uint8_t	*	 BSSID	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

char	*	 BSSIDstr	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

int32_t	 channel	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

bool	 isHidden	(uint8_t	networkItem)

	 This	function	is	used	to	get	the	hidden	flag.	More...
	
	Public	Member	Functions	inherited	from	WiFiAPClass

bool	 softAP	(const	char	*ssid,	const	char	*passphrase=NULL,
int	channel=1,	int	ssid_hidden=0,	int	max_connection=4)

	 This	function	is	used	to	start	wifi	module	as	AP	mode.
More...

	
bool	 softAPConfig	(uint32_t	local_ip,	uint32_t	gateway,

uint32_t	subnet)
	 This	function	is	used	to	config	soft	AP	parameters.	More...
	

bool	 softAPConfig	(const	char	*local_ip,	const	char	*gateway,
const	char	*subnet)

	 This	function	is	used	to	config	soft	AP	parameters.	More...
	

bool	 softAPdisconnect	(bool	wifioff=false)
	 This	function	is	used	to	disconnect	the	ap	function.

More...
	

bool	 softAPdestroy	()
	 This	function	is	used	to	destrory	the	AP	function.	More...
	

uint8_t	 softAPgetStationNum	()
	 This	function	is	used	to	get	the	number	of	station.	More...
	

char	*	 softAPIP	()
	 This	function	is	used	to	get	AP's	IP.	More...
	

uint8_t	*	 softAPmacAddress	(uint8_t	*mac)
	 This	function	is	used	to	get	AP's	MAC	address.	More...
	

char	*	 softAPmacAddress	(void)
	 This	function	is	used	to	get	the	AP's	MAC	address.

More...
	

char	*	 softAPSSID	()	const
	 This	function	is	used	to	get	AP's	SSID.	More...
	

char	*	 softAPPSK	()	const
	 This	function	is	used	to	get	AP's	PSK.	More...
	
	Public	Member	Functions	inherited	from	WiFiOneshotClass

int	 oneshotStart	()
	 This	function	is	used	to	start	oneshot	configuration

network.	More...
	

int	 oneshotStop	()
	 This	function	is	used	to	stop	oneshot	configuration

network.	More...
	

int	 oneshotGetState	()
	 This	function	is	used	to	get	oneshot	state.	More...
	

int	 oneshotSetMode	(ONESHOT_MODE	mode)
	 This	function	is	used	to	get	oneshot	state.	More...
	

int	 oneshotGetMode	()
	 This	function	is	used	to	get	oneshot	mode.	More...
	

Additional	Inherited	Members
	Static	Protected	Member	Functions	inherited	from	WiFiScanClass
static	void	 _scanDone	()

	
static	void	*	 _getScanInfoByIndex	(int	i)
	

Member	Function	Documentation

◆	BSSID()	[1/2]
uint8_t	*	WiFiSTAClass::BSSID

This	function	is	used	to	get	the	BSSID	which	is	connected	by	the
module.

Parameters
[in]None

Returns
The	BSSID	of	the	AP.

Note

Parameters
[in] none

Returns
The	BSSID	of	the	AP.

Note

◆	BSSID()	[2/2]
uint8_t	*	WiFiScanClass::BSSID

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	bssid

Note

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	bssid.

Note

◆	BSSIDstr()	[1/2]
char	*	WiFiSTAClass::BSSIDstr

This	function	is	used	to	get	the	BSSID	which	is	connected	by	the
module.

Parameters
[in]None

Returns
The	string	of	the	BSSID	of	the	AP.

Note

◆	BSSIDstr()	[2/2]
char	*	WiFiScanClass::BSSIDstr

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	string	of	the	bssid.

Note

◆	channel()
int32_t	WiFiScanClass::channel

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	channel	of	the	target.

Note

◆	RSSI()	[1/2]
int32_t	WiFiSTAClass::RSSI

This	function	is	used	to	get	the	RSSI.

Parameters
[in]None

Returns
the	value	of	rssi	in	this	connect.

Note

◆	RSSI()	[2/2]
int32_t	WiFiScanClass::RSSI

This	function	is	used	to	get	RSSI.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	RSSI	of	the	target

Note

◆	SSID()	[1/2]
char	*	WiFiSTAClass::SSID

This	function	is	used	to	get	the	SSID	used	by	the	module.

Parameters
[in] none

Returns
The	string	of	the	SSID.

Note

Parameters
[in]None

Returns
The	string	of	the	SSID.

Note

◆	SSID()	[2/2]
char	*	WiFiScanClass::SSID

This	function	is	used	to	get	ssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	SSID	of	the	target

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Static	Public	Member	Functions	|

Protected	Member	Functions	|
Static	Protected	Member	Functions	|

Protected	Attributes	|	Static	Protected	Attributes
|	Friends

W60X_Arduino
WiFiClient	Class
Reference

Inherits	Client,	and	SList<
WiFiClient	>.

Public	Member	Functions
	 WiFiClient	()

	
This	function	is	constructor,	it's	used	to	creates	a	client
that	can	connect	to	to	a	specified	internet	IP	address
and	port	as	defined	in	client.connect().	More...

	
	 WiFiClient	(const	WiFiClient	&)

	
WiFiClient	&	 operator=	(const	WiFiClient	&)
	

virtual	 ~WiFiClient	()
	 This	function	is	deconstructor,	it's	used	to	release

WiFiClient	class.	More...
	

uint8_t	 status	()
	 return	tcp	status	of	WiFiClient.	More...
	

virtual	int	 connect	(IPAddress	ip,	uint16_t	port)
	 This	function	is	used	to	connect	to	the	IP	address	and

port	specified	in	the	constructor.	More...
	

virtual	int	 connect	(const	char	*host,	uint16_t	port)
	 This	function	is	used	to	connect	to	the	IP	address	and

port	specified	in	the	constructor.	More...
	

virtual	int	 connect	(const	String	host,	uint16_t	port)
	
virtual	size_t	 write	(uint8_t)
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	
virtual	size_t	 write	(const	uint8_t	*buf,	size_t	size)
	 This	function	is	used	to	write	data	to	the	server	the	client

is	connected	to.	More...
	

virtual	size_t	 write_P	(PGM_P	buf,	size_t	size)
	

size_t	 write	(Stream	&stream)
	

size_t	 write	(Stream	&stream,	size_t	unitSize)
__attribute__((deprecated))

	
virtual	int	 available	()

	
Returns	the	number	of	bytes	available	for	reading	(That
is,	the	amount	of	data	that	has	been	written	to	the	client
by	the	server	it	is	connected	to).	More...

	
virtual	int	 read	()

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 read	(uint8_t	*buf,	size_t	size)

	 Read	the	next	byte	received	from	the	server	the	client	is
connected	to	(after	the	last	call	to	read()).	More...

	
virtual	int	 peek	()

	

Read	a	byte	from	the	file	without	advancing	to	the	next
one.	
That	is,	successive	calls	to	peek()	will	return	the	same
value,	as	will	the	next	call	to	read().	More...

	
virtual	size_t	 peekBytes	(uint8_t	*buffer,	size_t	length)

	
size_t	 peekBytes	(char	*buffer,	size_t	length)

	
virtual	void	 flush	()

	 Discard	any	bytes	that	have	been	written	to	the	client
but	not	yet	read.	More...

	
virtual	void	 stop	()

	 This	function	is	used	to	disconnect	from	the	server.
More...

	

virtual	uint8_t	 connected	()
	 Whether	or	not	the	client	is	connected.	More...
	

virtual	 operator	bool	()
	

IPAddress	 remoteIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the

remote	connection.	More...
	

uint16_t	 remotePort	()
	 This	function	is	used	to	gets	the	port	of	the	remote

connection.	More...
	

IPAddress	 localIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the	local

tcp	connection.	More...
	

uint16_t	 localPort	()
	 This	function	is	used	to	gets	the	port	of	the	local	tcp

connection.	More...
	

bool	 getNoDelay	()
	 This	function	is	used	to	get	whether	no	delay	of	the	tcp

connection.	More...
	

void	 setNoDelay	(bool	nodelay)
	 This	function	is	used	to	set	no	delay	for	the	tcp

connection.	More...
	

size_t	 availableForWrite	()
	 This	function	is	used	to	get	the	length	that	can	be

written.	More...
	

void	 keepAlive	(uint16_t
idle_sec=TCP_DEFAULT_KEEPALIVE_IDLE_SEC,

uint16_t
intv_sec=TCP_DEFAULT_KEEPALIVE_INTERVAL_SEC,
uint8_t	count=TCP_DEFAULT_KEEPALIVE_COUNT)

	 This	function	is	used	to	set	keep	alive.	More...
	

bool	 isKeepAliveEnabled	()	const
	 This	function	is	used	to	get	whether	enable	keep	alive.

More...
	

uint16_t	 getKeepAliveIdle	()	const
	 This	function	is	used	to	get	idle	time	interval.	More...
	

uint16_t	 getKeepAliveInterval	()	const
	 This	function	is	used	to	get	keep	alive	time	interval.

More...
	

uint8_t	 getKeepAliveCount	()	const
	 This	function	is	used	to	get	keep	alive	count.	More...
	

void	 disableKeepAlive	()
	 This	function	is	used	to	set	disable	keep	alive.	More...
	
virtual	size_t	 write	(uint8_t)=0
	 This	pure	virtual	function	is	used	to	define	the	operation

that	writes	binary	data.	More...
	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...

	

	Public	Member	Functions	inherited	from	Stream
void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to	wait	for
stream	data,	it	defaults	to	1000	milliseconds.	This
function	is	part	of	the	Stream	class,	and	is	called	by	any
class	that	inherits	from	it	(Wire,	Serial,	etc).	See	the
Stream	class	main	page	for	more	information.	More...

	
bool	 find	(const	char	*target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(uint8_t	*target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	char	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(const	uint8_t	*target,	size_t	length)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 find	(char	target)

	
find()	reads	data	from	the	stream	until	the	target	string
of	given	length	is	found	The	function	returns	true	if	target
string	is	found,	false	if	timed	out.	More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.

More...
	

bool	 findUntil	(const	uint8_t	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const	char

*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the	target
string	of	given	length	or	terminator	string	is	found.
More...

	
long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer	number
from	the	serial	buffer.	Characters	that	are	not	integers
(or	the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point	number
from	the	current	position.	Initial	characters	that	are	not
digits	(or	the	minus	sign)	are	skipped.	parseFloat()	is
terminated	by	the	first	character	that	is	not	a	floating
point	number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	
readBytes()	read	characters	from	a	stream	into	a	buffer.
The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

readBytes()	read	characters	from	a	stream	into	a	buffer.

	 The	function	terminates	if	the	determined	length	has
been	read,	or	it	times	out	(see	setTimeout()).	More...

	

size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t
length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator
character	is	detected,	the	determined	length	has	been
read,	or	it	times	out	(see	setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	terminator
character	is	detected,	the	determined	length	has	been
read,	or	it	times	out	(see	setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	

readStringUntil()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	the	terminator
character	is	detected	or	it	times	out	(see	setTimeout()).
More...

	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	

size_t	 write	(const	char	*str)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 write	(const	char	*buffer,	size_t	size)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	String	&)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	char	[])

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(char)

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	char,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	int,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(unsigned	long,	int=DEC)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(double,	int=BIN)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 print	(const	Printable	&)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object.	More...

	
size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	Printable	&)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Static	Public	Member	Functions
static	void	 setLocalPortStart	(uint16_t	port)
	 This	function	is	used	to	set	local	port	number.	More...
	
static	void	 stopAll	()
	 This	function	is	used	to	stop	all	WiFiClient	session.	More...
	
static	void	 stopAllExcept	(WiFiClient	*c)
	 This	function	is	used	to	stop	all	WiFiClient	session	without

exC.	More...
	

Protected	Member	Functions
	 WiFiClient	(ClientContext	*client)

	
int8_t	 _connected	(void	*tpcb,	int8_t	err)
	
void	 _err	(int8_t	err)

	
	Protected	Member	Functions	inherited	from	Stream
int	 timedRead	()

	
int	 timedPeek	()

	
int	 peekNextDigit	()

	
long	 parseInt	(char	skipChar)

	
float	 parseFloat	(char	skipChar)

	
	Protected	Member	Functions	inherited	from	Print
void	 setWriteError	(int	err=1)

	

Static	Protected	Member	Functions
static	int8_t	 _s_connected	(void	*arg,	void	*tpcb,	int8_t	err)
	
static	void	 _s_err	(void	*arg,	int8_t	err)

	
	Static	Protected	Member	Functions	inherited	from	SList<
WiFiClient	>
static	void	 _add	(WiFiClient	*self)

	
static	void	 _remove	(WiFiClient	*self)

	

Protected	Attributes
ClientContext	*	 _client
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout

	
unsigned	long	 _startMillis

	
	Protected	Attributes	inherited	from	SList<	WiFiClient	>

WiFiClient	*	 _next
	

Static	Protected	Attributes
static	uint16_t	 _localPort	=	0

	
	Static	Protected	Attributes	inherited	from	SList<	WiFiClient	>
static	WiFiClient	*	 _s_first
	

Friends
class	 WiFiServer
	

Member	Function	Documentation

◆	write()	[1/4]
size_t	Print::write

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully	(1	byte).

Note

◆	write()	[2/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] str Specify	the	buffer	of	string.

Returns
The	length	of	write	successfully.

Note

◆	write()	[3/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer	of	string.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

◆	write()	[4/4]
virtual	size_t	Print::write

This	pure	virtual	function	is	used	to	define	the	operation	that	writes
binary	data.

Parameters
[in] val a	value	to	send	as	a	single	byte

Returns
The	length	of	write	successfully	(1	byte).

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
WiFiGenericClass
Class	Reference

Inherited	by	WiFiClass.

Public	Member	Functions
WiFiMode_t	 getMode	()
	 This	function	is	used	to	Get	the	WiFi's	work	mode..

More...
	

int	 hostByName	(const	char	*aHostname,	IPAddress
&aResult)

	 This	function	is	used	to	resolve	hostname	.	More...
	

int	 hostByName	(const	char	*aHostname,	IPAddress
&aResult,	uint32_t	timeout_ms)

	 This	function	is	used	to	resolve	hostname	.	More...
	

Member	Function	Documentation

◆	getMode()
WiFiMode_t	WiFiGenericClass::getMode ()

This	function	is	used	to	Get	the	WiFi's	work	mode..

Returns
enum	of	WiFiMode:	WIFI_OFF,	WIFI_STA	or	WIFI_AP

Note

◆	hostByName()	[1/2]
int	WiFiGenericClass::hostByName (const	char	*	 aHostname,

IPAddress	&	 aResult	
)

This	function	is	used	to	resolve	hostname	.

Parameters
[in] aHostname The	hostname	which	you	want	to	resolve.
[out] aResult The	result	of	resove	the	hostname.

Returns
1	-	success,	0	-	failure.

Note

◆	hostByName()	[2/2]
int	WiFiGenericClass::hostByName (const	char	*	 aHostname,

IPAddress	&	 aResult,
uint32_t	 timeout_ms	
)

This	function	is	used	to	resolve	hostname	.

Parameters
[in] aHostname The	hostname	which	you	want	to	resolve.
[in] timeout_ms The	timeout	when	resolve.
[out] aResult The	result	of	resove	the	hostname.

Returns
1	-	success,	0	-	failure.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
WiFiOneshotClass
Class	Reference

Inherited	by	WiFiClass.

Public	Member	Functions
int	 oneshotStart	()
	 This	function	is	used	to	start	oneshot	configuration	network.	More...
	
int	 oneshotStop	()
	 This	function	is	used	to	stop	oneshot	configuration	network.	More...
	
int	 oneshotGetState	()
	 This	function	is	used	to	get	oneshot	state.	More...
	
int	 oneshotSetMode	(ONESHOT_MODE	mode)
	 This	function	is	used	to	get	oneshot	state.	More...
	
int	 oneshotGetMode	()
	 This	function	is	used	to	get	oneshot	mode.	More...
	

Member	Function	Documentation

◆	oneshotGetMode()
int	WiFiOneshotClass::oneshotGetMode ()

This	function	is	used	to	get	oneshot	mode.

Parameters
[in] None
[out]None

Return	values
0 UDP	MODE	1:	AP+SOCKET	MODE	2:	AP+WEBSEVER	MODE

Note

◆	oneshotGetState()
int	WiFiOneshotClass::oneshotGetState ()

This	function	is	used	to	get	oneshot	state.

Parameters
[in] None
[out]None

Return	values
0 is	in	oneshot	state	1:	is	not	in	oneshot	state

Note

◆	oneshotSetMode()
int	WiFiOneshotClass::oneshotSetMode (ONESHOT_MODE	 mode)

This	function	is	used	to	get	oneshot	state.

Parameters
[in] mode 0:	UDP	MODE	1:	AP+SOCKET	MODE	2:

AP+WEBSEVER	MODE
[out]None

Returns
None

Note

◆	oneshotStart()
int	WiFiOneshotClass::oneshotStart ()

This	function	is	used	to	start	oneshot	configuration	network.

Parameters
[in] None
[out]None

Returns
None

Note

◆	oneshotStop()
int	WiFiOneshotClass::oneshotStop ()

This	function	is	used	to	stop	oneshot	configuration	network.

Parameters
[in] None
[out]None

Returns
None

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Static	Protected	Member	Functions

W60X_Arduino
WiFiScanClass	Class
Reference

Inherited	by	WiFiClass.

Public	Member	Functions
int8_t	 scanNetworks	(bool	async=false,	bool	show_hidden=false,

uint8_t	channel=0,	uint8_t	*ssid=NULL)
	 This	function	is	used	to	begin	scan	the	WiFi	network.	More...
	

int8_t	 scanComplete	()
	 This	function	is	used	to	get	the	scan	status.	More...
	

void	 scanDelete	()
	 This	function	is	used	to	free	the	buffer	of	last	scan	result.

More...
	

bool	 getNetworkInfo	(uint8_t	networkItem,	char	*&ssid,	uint8_t
&encryptionType,	int32_t	&RSSI,	uint8_t	*&BSSID,	int32_t
&channel,	bool	&isHidden)

	 This	function	is	used	to	get	the	network	info	via	last	scan.
More...

	
char	*	 SSID	(uint8_t	networkItem)

	 This	function	is	used	to	get	ssid.	More...
	
uint32_t	 encryptionType	(uint8_t	networkItem)
	 This	function	is	used	to	get	encryption	type.	More...
	
int32_t	 RSSI	(uint8_t	networkItem)

	 This	function	is	used	to	get	RSSI.	More...
	
uint8_t	*	 BSSID	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	

char	*	 BSSIDstr	(uint8_t	networkItem)
	 This	function	is	used	to	get	the	bssid.	More...
	
int32_t	 channel	(uint8_t	networkItem)

	 This	function	is	used	to	get	the	bssid.	More...

	
bool	 isHidden	(uint8_t	networkItem)

	 This	function	is	used	to	get	the	hidden	flag.	More...
	

Static	Protected	Member	Functions
static	void	 _scanDone	()

	
static	void	*	 _getScanInfoByIndex	(int	i)
	

Member	Function	Documentation

◆	BSSID()
uint8_t	*	WiFiScanClass::BSSID (uint8_t	 networkItem)

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	bssid

Note

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	bssid.

Note

◆	BSSIDstr()
char	*	WiFiScanClass::BSSIDstr (uint8_t	 networkItem)

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	string	of	the	bssid.

Note

◆	channel()
int32_t	WiFiScanClass::channel (uint8_t	 networkItem)

This	function	is	used	to	get	the	bssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	channel	of	the	target.

Note

◆	encryptionType()
uint32_t	WiFiScanClass::encryptionType (uint8_t	 networkItem)

This	function	is	used	to	get	encryption	type.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	encryptionType	of	the	target

Note

◆	getNetworkInfo()
bool	WiFiScanClass::getNetworkInfo (uint8_t	 networkItem,

char	*&	 ssid,
uint8_t	&	 encryptionType,
int32_t	&	 RSSI,
uint8_t	*&	 BSSID,
int32_t	&	 channel,
bool	&	 isHidden	
)

This	function	is	used	to	get	the	network	info	via	last	scan.

Parameters
[in] networkItem Specify	the	index	of	scan	result.
[out] ssid The	ssid	in	the	scan	result,	indexed	by

networkItem.
[out] encryptionType The	encryptionType	in	the	scan	result,

indexed	by	networkItem.
[out]RSSI The	RSSI	in	the	scan	result,	indexed	by

networkItem.
[out]BSSID The	BSSID	in	the	scan	result,	indexed	by

networkItem.
[out] channel The	channel	in	the	scan	result,	indexed

by	networkItem.
[out] isHidden The	isHidden	flag	in	the	scan	result,

indexed	by	networkItem.

Returns
None

Note

◆	isHidden()
bool	WiFiScanClass::isHidden (uint8_t	 networkItem)

This	function	is	used	to	get	the	hidden	flag.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
false

Note

◆	RSSI()
int32_t	WiFiScanClass::RSSI (uint8_t	 networkItem)

This	function	is	used	to	get	RSSI.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	RSSI	of	the	target

Note

◆	scanComplete()
int8_t	WiFiScanClass::scanComplete ()

This	function	is	used	to	get	the	scan	status.

Parameters
[in]None

Returns
If	during	scanning,	WM_WIFI_SCANNING_BUSY	is	returned.	If
finish	scanning,	the	number	of	network	is	returned,	otherwise,	-1	is
returned.

Note

◆	scanDelete()
void	WiFiScanClass::scanDelete ()

This	function	is	used	to	free	the	buffer	of	last	scan	result.

Parameters
[in]None

Returns
None

Note

◆	scanNetworks()
int8_t	WiFiScanClass::scanNetworks (bool	 async	=	false,

bool	 show_hidden	=	false,
uint8_t	 channel	=	0,
uint8_t	*	 ssid	=	NULL	
)

This	function	is	used	to	begin	scan	the	WiFi	network.

Parameters
[in] async Specify	the	async.
[in] show_hidden Specify	the	show_hidden.
[in] channel Specify	the	channel.
[in] ssid Specify	the	ssid.

Returns
If	not	SUCCESS,	user	needs	to	call	this	function	again	to	trigger
scan

Note

◆	SSID()
char	*	WiFiScanClass::SSID (uint8_t	 networkItem)

This	function	is	used	to	get	ssid.

Parameters
[in] networkItem Specify	the	index	of	scan	result.

Returns
The	SSID	of	the	target

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Static	Public	Member	Functions	|

Protected	Attributes

W60X_Arduino
WiFiServer	Class
Reference

Inherits	Server.

Public	Member	Functions
	 WiFiServer	(IPAddress	addr,	uint16_t	port)

	 This	constructor	is	used	to	init	WiFiServer	object	with	the
address	and	port	specify	by	caller.	More...

	
	 WiFiServer	(uint16_t	port)

	 This	constructor	is	used	to	init	WiFiServer	object	with
port	specify	by	caller.	More...

	
bool	 hasClient	()

	
void	 begin	()

	 This	function	is	used	to	start	the	WiFiServer.	More...
	

void	 begin	(uint16_t	port)
	 This	function	is	used	to	start	the	WiFiServer.	More...
	

void	 setNoDelay	(bool	nodelay)
	 This	function	is	used	to	set	no-delay	flag.	More...
	

bool	 getNoDelay	()
	 This	function	is	used	to	get	no-delay	flag.	More...
	
virtual	size_t	 write	(uint8_t)
	 This	function	is	used	to	send	the	message	(one	byte)	to

peer.	More...
	
virtual	size_t	 write	(const	uint8_t	*buf,	size_t	size)
	 This	function	is	used	to	send	the	message	to	peer.

More...
	

uint8_t	 status	()
	

void	 close	()
	 This	function	is	used	to	close	the	connection.	More...

	
void	 stop	()

	 This	function	is	used	to	close	the	connection.	More...
	

long	 _accept	(tcp_pcb	*newpcb,	long	err)
	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.	More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.	More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(char)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	char,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(double,	int=BIN)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	Printable	&)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 println	(void)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	String	&s)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(const	char	[])

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('

').	More...
	

size_t	 println	(char)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	
This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

size_t	 println	(const	Printable	&)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new	line	('
').	More...

	

Static	Public	Member	Functions
static	err_t	 _s_accept	(void	*arg,	tcp_pcb	*newpcb,	err_t	err)
	

Protected	Attributes
uint16_t	 _port

	
IPAddress	 _addr
	
tcp_pcb	*	 _pcb

	
bool	 _noDelay	=	false

	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Print
void	 setWriteError	(int	err=1)
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions

W60X_Arduino
WiFiSTAClass	Class
Reference

Inherited	by	WiFiClass.

Public	Member	Functions
int	 begin	(const	char	*ssid,	const	char	*passphrase=NULL,

unsigned	int	channel=0,	const	unsigned	char
bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 begin	(char	*ssid,	char	*passphrase=NULL,	int	channel=0,

unsigned	char	bssid[6]=NULL,	bool	connect=true)

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
int	 begin	()

	 This	function	is	used	to	start	the	wifi	module	as	station
mode.	More...

	
bool	 reconnect	()

	 This	function	is	used	to	reconect	the	AP.	More...
	

bool	 disconnect	(bool	wifioff=false)
	 This	function	is	used	to	disconnect	the	wifi.	More...
	

bool	 isConnected	()
	 This	function	is	used	to	get	the	wifi	mode	connect	status.

More...
	

bool	 setAutoConnect	(bool	autoConnect)
	 This	function	is	used	to	set	auto	connect	flag.	More...
	

bool	 getAutoConnect	()
	 This	function	is	used	to	get	auto	connect	flag.	More...
	

bool	 setAutoReconnect	(bool	autoReconnect)
	 This	function	is	used	to	set	auto	reconnect	flag.	More...
	

bool	 getAutoReconnect	()
	 This	function	is	used	to	get	auto	reconnect	flag.	More...
	

uint8_t	 waitForConnectResult	()
	 This	function	is	used	to	suspend	until	the	WiFi	is

connected.	More...
	
IPAddress	 localIP	()
	 This	function	is	used	to	get	the	local	ip	address.	More...
	

char	*	 macAddress	()
	 This	function	is	used	to	get	local	MAC	address	used	by	the

module.	More...
	

char	*	 macAddressStr	()
	 This	function	is	used	to	get	local	MAC	address	used	by	the

module.	More...
	
IPAddress	 subnetMask	()
	 This	function	is	used	to	get	subnet	mask.	More...
	
IPAddress	 getwayIP	()
	 This	function	is	used	to	get	gateway	IP	address.	More...
	
IPAddress	 dnsIP	(uint8_t	dns_no=0)
	 This	function	is	used	to	get	DNS	IP	address.	More...
	

char	*	 hostname	()
	

bool	 hostname	(char	*aHostname)
	

bool	 hostname	(const	char	*aHostname)
	
wl_status_t	 status	()
	 This	function	is	used	to	get	the	status	during	Station	mode.

More...
	

char	*	 statusStr	()
	 This	function	is	used	to	get	the	status	during	Station	mode.

More...
	

char	*	 SSID	()	const
	 This	function	is	used	to	get	the	SSID	used	by	the	module.

More...
	

char	*	 psk	()	const
	 This	function	is	used	to	get	the	psk	used	by	the	module.

More...
	

uint8_t	*	 BSSID	()
	 This	function	is	used	to	get	the	BSSID	which	is	connected

by	the	module.	More...
	

char	*	 BSSIDstr	()
	 This	function	is	used	to	get	the	BSSID	which	is	connected

by	the	module.	More...
	

int32_t	 RSSI	()
	 This	function	is	used	to	get	the	RSSI.	More...
	

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

Public	Member	Functions	|
Static	Public	Member	Functions

W60X_Arduino
WiFiUDP	Class
Reference

Inherits	UDP,	and	SList<	WiFiUDP	>.

Public	Member	Functions
	 WiFiUDP	()

	
This	function	is	constructor,	it's	used	to	creates	a
named	instance	of	the	WiFiUDP	class	that	can	send
and	receive	UDP	messages.	More...

	
	 WiFiUDP	(const	WiFiUDP	&other)

	
WiFiUDP	&	 operator=	(const	WiFiUDP	&rhs)

	
	 ~WiFiUDP	()

	 This	function	is	deconstructor,	it's	used	to	release
WiFiUDP	class.	More...

	
	 operator	bool	()	const

	
virtual	uint8_t	 begin	(uint16_t	port)

	
This	function	is	used	to	initializes	the	WiFiUDP
library	and	network	settings,	Starts	UDP	socket,
listening	at	local	port.	More...

	
virtual	void	 stop	()

	
This	function	is	used	to	disconnect	from	the	server.
Release	any	resource	being	used	during	the	UDP
session.	More...

	
uint8_t	 beginMulticast	(IPAddress	interfaceAddr,

IPAddress	multicast,	uint16_t	port)
	 This	function	is	used	to	join	a	multicast	group	and

listen	on	the	given	port.	More...
	

virtual	int	 beginPacket	(IPAddress	ip,	uint16_t	port)
	 This	function	is	used	to	starts	a	connection	to	write

UDP	data	to	the	remote	connection.	More...
	

virtual	int	 beginPacket	(const	char	*host,	uint16_t	port)
	 This	function	is	used	to	starts	a	connection	to	write

UDP	data	to	the	remote	connection.	More...
	

virtual	int	 beginPacketMulticast	(IPAddress
multicastAddress,	uint16_t	port,	IPAddress
interfaceAddress,	int	ttl=1)

	 This	function	is	used	to	start	building	up	a	packet	to
send	to	the	multicast	address.	More...

	
virtual	int	 endPacket	()

	
This	function	is	used	to	called	after	writing	UDP	data
to	the	remote	connection.	It	finishes	off	the	packet
and	send	it.	More...

	
virtual	size_t	 write	(uint8_t)

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)

	 This	function	is	used	to	writes	UDP	data	to	the
remote	connection.	More...

	
virtual	int	 parsePacket	()

	
It	starts	processing	the	next	available	incoming
packet,	checks	for	the	presence	of	a	UDP	packet,
and	reports	the	size.	More...

	
virtual	int	 available	()

	
Get	the	number	of	bytes	(characters)	available	for
reading	from	the	buffer.	This	is	is	data	that's	already
arrived.	More...

	
virtual	int	 read	()

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	

virtual	int	 read	(unsigned	char	*buffer,	size_t	len)

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 read	(char	*buffer,	size_t	len)

	
Reads	UDP	data	from	the	specified	buffer.	If	no
arguments	are	given,	it	will	return	the	next	character
in	the	buffer.	More...

	
virtual	int	 peek	()

	

Read	a	byte	from	the	file	without	advancing	to	the
next	one.	
That	is,	successive	calls	to	peek()	will	return	the
same	value,	as	will	the	next	call	to	read().	More...

	
virtual	void	 flush	()

	 Discard	any	bytes	that	have	been	written	to	the
client	but	not	yet	read.	More...

	
virtual	IPAddress	 remoteIP	()
	 This	function	is	used	to	gets	the	IP	address	of	the

remote	connection.	More...
	

virtual	uint16_t	 remotePort	()
	 This	function	is	used	to	gets	the	port	of	the	remote

UDP	connection.	More...
	

IPAddress	 destinationIP	()
	 This	function	is	used	to	distinguish	multicast	and

ordinary	packets.	More...
	

uint16_t	 localPort	()
	 This	function	is	used	to	gets	the	port	of	the	local

UDP	connection.	More...
	

virtual	size_t	 write	(uint8_t)=0

	
This	pure	virtual	function	is	used	to	define	the
operation	that	writes	binary	data.	More...

	
virtual	size_t	 write	(const	uint8_t	*buffer,	size_t	size)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 write	(const	char	*str)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
size_t	 write	(const	char	*buffer,	size_t	size)

	 This	function	is	used	to	write	buffer	to	the	interface
defined	by	the	object.	More...

	
	Public	Member	Functions	inherited	from	Stream

void	 setTimeout	(unsigned	long	timeout)

	

setTimeout()	sets	the	maximum	milliseconds	to
wait	for	stream	data,	it	defaults	to	1000
milliseconds.	This	function	is	part	of	the	Stream
class,	and	is	called	by	any	class	that	inherits	from	it
(Wire,	Serial,	etc).	See	the	Stream	class	main	page
for	more	information.	More...

	
bool	 find	(const	char	*target)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(uint8_t	*target)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(const	char	*target,	size_t	length)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(const	uint8_t	*target,	size_t	length)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 find	(char	target)

	

find()	reads	data	from	the	stream	until	the	target
string	of	given	length	is	found	The	function	returns
true	if	target	string	is	found,	false	if	timed	out.
More...

	
bool	 findUntil	(const	char	*target,	const	char	*terminator)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	const	char

*terminator)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	char	*target,	size_t	targetLen,	const

char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is
found.	More...

	
bool	 findUntil	(const	uint8_t	*target,	size_t	targetLen,

const	char	*terminate,	size_t	termLen)

	
findUntil()	reads	data	from	the	stream	until	the
target	string	of	given	length	or	terminator	string	is

found.	More...
	

long	 parseInt	()

	
parseInt()	returns	the	first	valid	(long)	integer
number	from	the	serial	buffer.	Characters	that	are
not	integers	(or	the	minus	sign)	are	skipped.	More...

	
float	 parseFloat	()

	

parseFloat()	returns	the	first	valid	floating	point
number	from	the	current	position.	Initial	characters
that	are	not	digits	(or	the	minus	sign)	are	skipped.
parseFloat()	is	terminated	by	the	first	character	that
is	not	a	floating	point	number.	More...

	
virtual	size_t	 readBytes	(char	*buffer,	size_t	length)

	

readBytes()	read	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
virtual	size_t	 readBytes	(uint8_t	*buffer,	size_t	length)

	

readBytes()	read	characters	from	a	stream	into	a
buffer.	The	function	terminates	if	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	char	*buffer,	size_t

length)

	

readBytesUntil()	reads	characters	from	a	stream
into	a	buffer.	The	function	terminates	if	the
terminator	character	is	detected,	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
size_t	 readBytesUntil	(char	terminator,	uint8_t	*buffer,

size_t	length)
readBytesUntil()	reads	characters	from	a	stream
into	a	buffer.	The	function	terminates	if	the

	 terminator	character	is	detected,	the	determined
length	has	been	read,	or	it	times	out	(see
setTimeout()).	More...

	
String	 readString	()

	
readString()	reads	characters	from	a	stream	into	a
string.	The	function	terminates	if	it	times	out	(see
setTimeout()).	More...

	
String	 readStringUntil	(char	terminator)

	

readStringUntil()	reads	characters	from	a	stream
into	a	string.	The	function	terminates	if	the
terminator	character	is	detected	or	it	times	out	(see
setTimeout()).	More...

	
	Public	Member	Functions	inherited	from	Print

int	 getWriteError	()
	 This	function	is	used	to	get	write	error	number.

More...
	

void	 clearWriteError	()
	 This	function	is	used	to	clear	write	error	number.

More...
	

size_t	 write	(const	char	*str)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 write	(const	char	*buffer,	size_t	size)
	 This	function	is	used	to	write	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	String	&)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	char	[])

	 This	function	is	used	to	print	buffer	to	the	interface
defined	by	the	object.	More...

	

size_t	 print	(char)
	 This	function	is	used	to	print	buffer	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	char,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	int,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(unsigned	long,	int=DEC)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(double,	int=BIN)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 print	(const	Printable	&)
	 This	function	is	used	to	print	target	to	the	interface

defined	by	the	object.	More...
	

size_t	 println	(void)

	 This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	String	&s)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	char	[])

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(char)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	char,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(int,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	int,	int=DEC)

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new

	 line	('
').	More...

	
size_t	 println	(long,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(unsigned	long,	int=DEC)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(double,	int=BIN)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	
size_t	 println	(const	Printable	&)

	

This	function	is	used	to	print	target	to	the	interface
defined	by	the	object	with	carriage	ret	('')	and	new
line	('
').	More...

	

Static	Public	Member	Functions
static	void	 stopAll	()
	 This	function	is	used	to	stop	all	WiFiUDP	session.	More...
	
static	void	 stopAllExcept	(WiFiUDP	*exC)
	 This	function	is	used	to	stop	all	WiFiUDP	session	without

exC.	More...
	

Additional	Inherited	Members
	Protected	Member	Functions	inherited	from	Stream

int	 timedRead	()
	

int	 timedPeek	()
	

int	 peekNextDigit	()
	

long	 parseInt	(char	skipChar)
	

float	 parseFloat	(char	skipChar)
	
	Protected	Member	Functions	inherited	from	Print

void	 setWriteError	(int	err=1)
	
	Static	Protected	Member	Functions	inherited	from	SList<
WiFiUDP	>

static	void	 _add	(WiFiUDP	*self)
	

static	void	 _remove	(WiFiUDP	*self)
	
	Protected	Attributes	inherited	from	Stream
unsigned	long	 _timeout

	
unsigned	long	 _startMillis

	
	Protected	Attributes	inherited	from	SList<	WiFiUDP	>

WiFiUDP	*	 _next
	
	Static	Protected	Attributes	inherited	from	SList<	WiFiUDP	>
static	WiFiUDP	*	 _s_first
	

Member	Function	Documentation

◆	write()	[1/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] str Specify	the	buffer	of	string.

Returns
The	length	of	write	successfully.

Note

◆	write()	[2/4]
virtual	size_t	Print::write

This	pure	virtual	function	is	used	to	define	the	operation	that	writes
binary	data.

Parameters
[in] val a	value	to	send	as	a	single	byte

Returns
The	length	of	write	successfully	(1	byte).

Note

◆	write()	[3/4]
size_t	Print::write

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Parameters
[in] buffer Specify	the	buffer.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully	(1	byte).

Note

◆	write()	[4/4]
size_t	Print::write inline

This	function	is	used	to	write	buffer	to	the	interface	defined	by	the
object.

Parameters
[in] buffer Specify	the	buffer	of	string.
[in] size Specify	the	size.

Returns
The	length	of	write	successfully.

Note

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Data	Structure	Index

b	|	c	|	d	|	h	|	i	|	p	|	s	|	t	|	u	|	w

		b		 DhcpClass			 Printable			
DNSClient			 ProgmemStream			

BufferDataSource			 DNSServer			 		s		 UDP
BufferedStreamDataSource			 		h		 UdpContext

		c		 Server			
HardwareSerial			SList			

Client			 		i		 SPIClass			 W600InnerFlashClass
ClientContext			 SPISettings			 WiFiAPClass
CloudClass			 IPAddress			 Stream			 WiFiClass

		d		 		p		 		t		 WiFiClient
WiFiGenericClass

DataSource			 Print			 TwoWire			

b	|	c	|	d	|	h	|	i	|	p	|	s	|	t	|	u	|	w

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Class	Hierarchy

This	inheritance	list	is	sorted	roughly,	but	not	completely,	alphabetically:
[detail	level	 1 2 3 4]

	 C ClientContext
	 C CloudClass
	▼ C DataSource
	 C BufferDataSource
	 C BufferedStreamDataSource<	TStream	>
	 C DhcpClass
	 C DNSClient
	 C DNSServer
	▼ C Print
	 ▼ C Server
	 C WiFiServer
	 ▼ C Stream
	 ▼ C Client
	 C WiFiClient
	 C HardwareSerial
	 C TwoWire
	 ▼ C UDP
	 C WiFiUDP
	▼ C Printable
	 C IPAddress
	 C ProgmemStream
	 C SList<	T	>
	▼ C SList<	WiFiClient	>

	 C WiFiClient
	▼ C SList<	WiFiUDP	>
	 C WiFiUDP
	 C SPIClass
	 C SPISettings
	 C UdpContext
	 C W600InnerFlashClass
	▼ C WiFiAPClass
	 C WiFiClass
	▼ C WiFiGenericClass
	 C WiFiClass
	▼ C WiFiOneshotClass
	 C WiFiClass
	▼ C WiFiScanClass
	 C WiFiClass
	▼ C WiFiSTAClass
	 C WiFiClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	a	-

available()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
availableForWrite()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	b	-

begin()	:	HardwareSerial	,	Server	,	SPIClass	,	UDP	,
W600InnerFlashClass	,	WiFiServer	,	WiFiSTAClass	,	WiFiUDP
beginMulticast()	:	WiFiUDP
beginPacket()	:	UDP	,	WiFiUDP
beginPacketMulticast()	:	WiFiUDP
beginTransaction()	:	SPIClass
BSSID()	:	WiFiScanClass	,	WiFiSTAClass
BSSIDstr()	:	WiFiScanClass	,	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	c	-

channel()	:	WiFiScanClass
clearWriteError()	:	Print
close()	:	WiFiServer
CloudClass()	:	CloudClass
CloudInit()	:	CloudClass
connect()	:	Client	,	WiFiClient
connected()	:	Client	,	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	d	-

destinationIP()	:	WiFiUDP
disableKeepAlive()	:	WiFiClient
disconnect()	:	WiFiSTAClass
dnsIP()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	e	-

encryptionType()	:	WiFiScanClass
end()	:	SPIClass
endPacket()	:	UDP	,	WiFiUDP
endTransaction()	:	SPIClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	f	-

find()	:	Stream
findUntil()	:	Stream
flashEraseSector()	:	W600InnerFlashClass
flashRead()	:	W600InnerFlashClass
flashWrite()	:	W600InnerFlashClass
flush()	:	Client	,	UDP	,	WiFiClient	,	WiFiUDP
fromString()	:	IPAddress

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	g	-

getAutoConnect()	:	WiFiSTAClass
getAutoReconnect()	:	WiFiSTAClass
getHostByName()	:	DNSClient
getKeepAliveCount()	:	WiFiClient
getKeepAliveIdle()	:	WiFiClient
getKeepAliveInterval()	:	WiFiClient
getMode()	:	WiFiGenericClass
getNetworkInfo()	:	WiFiScanClass
getNoDelay()	:	WiFiClient	,	WiFiServer
getwayIP()	:	WiFiSTAClass
getWriteError()	:	Print

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	h	-

HardwareSerial()	:	HardwareSerial
hostByName()	:	WiFiGenericClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	i	-

IPAddress()	:	IPAddress
isConnected()	:	WiFiSTAClass
isHidden()	:	WiFiScanClass
isKeepAliveEnabled()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	k	-

keepAlive()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	l	-

localIP()	:	WiFiClient	,	WiFiSTAClass
localPort()	:	WiFiClient	,	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	m	-

macAddress()	:	WiFiSTAClass
macAddressStr()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	o	-

oneshotGetMode()	:	WiFiOneshotClass
oneshotGetState()	:	WiFiOneshotClass
oneshotSetMode()	:	WiFiOneshotClass
oneshotStart()	:	WiFiOneshotClass
oneshotStop()	:	WiFiOneshotClass
operator	uint32_t()	:	IPAddress
operator=()	:	IPAddress
operator==()	:	IPAddress
operator[]()	:	IPAddress

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	p	-

parseFloat()	:	Stream
parseInt()	:	Stream
parsePacket()	:	UDP	,	WiFiUDP
peek()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
print()	:	Print
println()	:	Print
printTo()	:	IPAddress	,	Printable
psk()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	r	-

read()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
readBytes()	:	Stream
readBytesUntil()	:	Stream
readString()	:	Stream
readStringUntil()	:	Stream
reconnect()	:	WiFiSTAClass
remoteIP()	:	UDP	,	WiFiClient	,	WiFiUDP
remotePort()	:	UDP	,	WiFiClient	,	WiFiUDP
RSSI()	:	WiFiScanClass	,	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	s	-

scanComplete()	:	WiFiScanClass
scanDelete()	:	WiFiScanClass
scanNetworks()	:	WiFiScanClass
setAutoConnect()	:	WiFiSTAClass
setAutoReconnect()	:	WiFiSTAClass
setBitOrder()	:	SPIClass
setDataMode()	:	SPIClass
setFrequency()	:	SPIClass
setLocalPortStart()	:	WiFiClient
setNoDelay()	:	WiFiClient	,	WiFiServer
setTimeout()	:	Stream
softAP()	:	WiFiAPClass
softAPConfig()	:	WiFiAPClass
softAPdestroy()	:	WiFiAPClass
softAPdisconnect()	:	WiFiAPClass
softAPgetStationNum()	:	WiFiAPClass
softAPIP()	:	WiFiAPClass
softAPmacAddress()	:	WiFiAPClass
softAPPSK()	:	WiFiAPClass
softAPSSID()	:	WiFiAPClass
SSID()	:	WiFiScanClass	,	WiFiSTAClass
start()	:	DNSServer
status()	:	WiFiClient	,	WiFiSTAClass
statusStr()	:	WiFiSTAClass
stop()	:	Client	,	DNSServer	,	UDP	,	WiFiClient	,	WiFiServer	,
WiFiUDP
stopAll()	:	WiFiClient	,	WiFiUDP
stopAllExcept()	:	WiFiClient	,	WiFiUDP
subnetMask()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	t	-

toString()	:	IPAddress
transfer()	:	SPIClass
transfer16()	:	SPIClass
transferRead()	:	SPIClass
transferWrite()	:	SPIClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	w	-

waitForConnectResult()	:	WiFiSTAClass
WiFiClient()	:	WiFiClient
WiFiServer()	:	WiFiServer
WiFiUDP()	:	WiFiUDP
write()	:	Client	,	HardwareSerial	,	Print	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiServer	,	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	~	-

~WiFiClient()	:	WiFiClient
~WiFiUDP()	:	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	a	-

available()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
availableForWrite()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	b	-

begin()	:	HardwareSerial	,	Server	,	SPIClass	,	UDP	,
W600InnerFlashClass	,	WiFiServer	,	WiFiSTAClass	,	WiFiUDP
beginMulticast()	:	WiFiUDP
beginPacket()	:	UDP	,	WiFiUDP
beginPacketMulticast()	:	WiFiUDP
beginTransaction()	:	SPIClass
BSSID()	:	WiFiScanClass	,	WiFiSTAClass
BSSIDstr()	:	WiFiScanClass	,	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	c	-

channel()	:	WiFiScanClass
clearWriteError()	:	Print
close()	:	WiFiServer
CloudClass()	:	CloudClass
CloudInit()	:	CloudClass
connect()	:	Client	,	WiFiClient
connected()	:	Client	,	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	d	-

destinationIP()	:	WiFiUDP
disableKeepAlive()	:	WiFiClient
disconnect()	:	WiFiSTAClass
dnsIP()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	e	-

encryptionType()	:	WiFiScanClass
end()	:	SPIClass
endPacket()	:	UDP	,	WiFiUDP
endTransaction()	:	SPIClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	f	-

find()	:	Stream
findUntil()	:	Stream
flashEraseSector()	:	W600InnerFlashClass
flashRead()	:	W600InnerFlashClass
flashWrite()	:	W600InnerFlashClass
flush()	:	Client	,	UDP	,	WiFiClient	,	WiFiUDP
fromString()	:	IPAddress

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	g	-

getAutoConnect()	:	WiFiSTAClass
getAutoReconnect()	:	WiFiSTAClass
getHostByName()	:	DNSClient
getKeepAliveCount()	:	WiFiClient
getKeepAliveIdle()	:	WiFiClient
getKeepAliveInterval()	:	WiFiClient
getMode()	:	WiFiGenericClass
getNetworkInfo()	:	WiFiScanClass
getNoDelay()	:	WiFiClient	,	WiFiServer
getwayIP()	:	WiFiSTAClass
getWriteError()	:	Print

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	h	-

HardwareSerial()	:	HardwareSerial
hostByName()	:	WiFiGenericClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	i	-

IPAddress()	:	IPAddress
isConnected()	:	WiFiSTAClass
isHidden()	:	WiFiScanClass
isKeepAliveEnabled()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	k	-

keepAlive()	:	WiFiClient

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	l	-

localIP()	:	WiFiClient	,	WiFiSTAClass
localPort()	:	WiFiClient	,	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	m	-

macAddress()	:	WiFiSTAClass
macAddressStr()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	o	-

oneshotGetMode()	:	WiFiOneshotClass
oneshotGetState()	:	WiFiOneshotClass
oneshotSetMode()	:	WiFiOneshotClass
oneshotStart()	:	WiFiOneshotClass
oneshotStop()	:	WiFiOneshotClass
operator	uint32_t()	:	IPAddress
operator=()	:	IPAddress
operator==()	:	IPAddress
operator[]()	:	IPAddress

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	p	-

parseFloat()	:	Stream
parseInt()	:	Stream
parsePacket()	:	UDP	,	WiFiUDP
peek()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
print()	:	Print
println()	:	Print
printTo()	:	IPAddress	,	Printable
psk()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	r	-

read()	:	Client	,	HardwareSerial	,	Stream	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiUDP
readBytes()	:	Stream
readBytesUntil()	:	Stream
readString()	:	Stream
readStringUntil()	:	Stream
reconnect()	:	WiFiSTAClass
remoteIP()	:	UDP	,	WiFiClient	,	WiFiUDP
remotePort()	:	UDP	,	WiFiClient	,	WiFiUDP
RSSI()	:	WiFiScanClass	,	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	s	-

scanComplete()	:	WiFiScanClass
scanDelete()	:	WiFiScanClass
scanNetworks()	:	WiFiScanClass
setAutoConnect()	:	WiFiSTAClass
setAutoReconnect()	:	WiFiSTAClass
setBitOrder()	:	SPIClass
setDataMode()	:	SPIClass
setFrequency()	:	SPIClass
setLocalPortStart()	:	WiFiClient
setNoDelay()	:	WiFiClient	,	WiFiServer
setTimeout()	:	Stream
softAP()	:	WiFiAPClass
softAPConfig()	:	WiFiAPClass
softAPdestroy()	:	WiFiAPClass
softAPdisconnect()	:	WiFiAPClass
softAPgetStationNum()	:	WiFiAPClass
softAPIP()	:	WiFiAPClass
softAPmacAddress()	:	WiFiAPClass
softAPPSK()	:	WiFiAPClass
softAPSSID()	:	WiFiAPClass
SSID()	:	WiFiScanClass	,	WiFiSTAClass
start()	:	DNSServer
status()	:	WiFiClient	,	WiFiSTAClass
statusStr()	:	WiFiSTAClass
stop()	:	Client	,	DNSServer	,	UDP	,	WiFiClient	,	WiFiServer	,
WiFiUDP
stopAll()	:	WiFiClient	,	WiFiUDP
stopAllExcept()	:	WiFiClient	,	WiFiUDP
subnetMask()	:	WiFiSTAClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	t	-

toString()	:	IPAddress
transfer()	:	SPIClass
transfer16()	:	SPIClass
transferRead()	:	SPIClass
transferWrite()	:	SPIClass

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	w	-

waitForConnectResult()	:	WiFiSTAClass
WiFiClient()	:	WiFiClient
WiFiServer()	:	WiFiServer
WiFiUDP()	:	WiFiUDP
write()	:	Client	,	HardwareSerial	,	Print	,	TwoWire	,	UDP	,
WiFiClient	,	WiFiServer	,	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

W60X_Arduino
	

-	~	-

~WiFiClient()	:	WiFiClient
~WiFiUDP()	:	WiFiUDP

Generated	by			 	1.8.14

http://www.doxygen.org/index.html

	Modules
	SPI_library
	WiFi_library
	WiFi_class
	Client_class
	Server_class
	UDP_class
	IPAddress_class

	Wire_Library
	IO
	Serial
	Stream
	Math

	Data Structures
	Data Structures
	BufferDataSource
	BufferedStreamDataSource
	Client
	ClientContext
	CloudClass
	DataSource
	DhcpClass
	DNSClient
	DNSServer
	HardwareSerial
	IPAddress
	Print
	Printable
	ProgmemStream
	Server
	SList
	SPIClass
	SPISettings
	Stream
	TwoWire
	UDP
	UdpContext
	W600InnerFlashClass
	WiFiAPClass
	WiFiClass
	WiFiClient
	WiFiGenericClass
	WiFiOneshotClass
	WiFiScanClass
	WiFiServer
	WiFiSTAClass
	WiFiUDP

	Data Structure Index
	Class Hierarchy
	ClientContext
	CloudClass
	DataSource
	BufferDataSource
	BufferedStreamDataSource< TStream >

	DhcpClass
	DNSClient
	DNSServer
	Print
	Server
	WiFiServer

	Stream
	Client
	WiFiClient

	HardwareSerial
	TwoWire
	UDP
	WiFiUDP

	Printable
	IPAddress

	ProgmemStream
	SList< T >
	SList< WiFiClient >
	WiFiClient

	SList< WiFiUDP >
	WiFiUDP

	SPIClass
	SPISettings
	UdpContext
	W600InnerFlashClass
	WiFiAPClass
	WiFiClass

	WiFiGenericClass
	WiFiClass

	WiFiOneshotClass
	WiFiClass

	WiFiScanClass
	WiFiClass

	WiFiSTAClass
	WiFiClass

	Data Fields
	All
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	o
	p
	r
	s
	t
	w
	~

	Functions
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	o
	p
	r
	s
	t
	w
	~

