
Welcome	to	ADO
Microsoft®	ActiveX®	Data	Objects	(ADO)	enable	your	client	applications	to
access	and	manipulate	data	from	a	database	server	through	an	OLE	DB	provider.

ADO	Programmer's	Reference
ADO	supports	key	features	for	building	client/server	and	Web-based
applications.	Its	primary	benefits	are	ease	of	use,	high	speed,	low	memory
overhead,	and	a	small	disk	footprint.	ADO	also	features	Remote	Data	Service
(RDS),	by	which	you	can	move	data	from	a	server	to	a	client	application	or	Web
page,	manipulate	the	data	on	the	client,	and	return	updates	to	the	server	in	a
single	round	trip.

To	learn	more	about	ADO,	see	the	ADO	Programmer's	Reference.

ADOX	Programmer's	Reference
ActiveX	Data	Objects	Extensions	for	Data	Definition	Language	and	Security
(ADOX)	extends	ADO	to	include	objects	for	creating,	modifying,	and	deleting
schema	objects,	such	as	tables	and	procedures.	It	also	includes	security	objects	to
maintain	users	and	groups	and	to	grant	and	revoke	permissions	on	objects.

To	learn	more	about	ADOX,	see	the	ADOX	Programmer's	Reference.

ADO	MD	Programmer's	Reference
ActiveX	Data	Objects	(Multidimensional)	(ADO	MD)	extends	ADO	to	include
objects	specific	to	multidimensional	data,	and	allows	you	to	browse
multidimensional	schema,	query	a	cube,	and	retrieve	the	results.

To	learn	more	about	ADO	MD,	see	the	ADO	MD	Programmer's	Reference.

For	More	Information
For	information	about	the	Microsoft	Data	Access	Components	SDK,	see	the
MDAC	SDK	Overview	in	the	Platform	SDK.

Microsoft	ADO	Programmer's
Reference

Microsoft®	ActiveX®	Data	Objects	(ADO)	enable	you	to	write	an	application	to
access	and	manipulate	data	in	a	database	server	through	an	OLE	DB	provider.	Its
primary	benefits	are	ease	of	use,	high	speed,	low	memory	overhead,	and	a	small
disk	footprint.	ADO	supports	key	features	for	building	client/server	and	Web-
based	applications.

ADO	also	features	Remote	Data	Service	(RDS),	by	which	you	can	move	data
from	a	server	to	a	client	application	or	Web	page,	manipulate	the	data	on	the
client,	and	return	updates	to	the	server	in	a	single	round	trip.	Previously	released
as	Microsoft	Remote	Data	Service	1.5,	RDS	has	combined	with	the	ADO
programming	model	to	simplify	client-side	data	remoting.

For	more	information	about	ADO	and	how	RDS	integrates	with	it,	see	Getting
Started	with	ADO.

What's	New	in	ADO

The	following	new	features,	new	reference	topics,	and	new	and	enhanced
documentation	are	included	in	the	ADO	2.5	release.

New	Features

Records	and	Streams

This	release	of	ADO	introduces	the	Record	object,	which	can	represent	and
manage	things	like	directories	and	files	in	a	file	system,	and	folders	and
messages	in	an	e-mail	system.	A	Record	can	also	represent	a	row	in	a	Recordset,
although	Record	and	Recordset	objects	have	different	methods	and	properties.

The	new	Stream	object	provides	the	means	to	read,	write,	and	manage	the	binary
stream	of	bytes	or	text	that	comprise	a	file	or	message	stream.

URL	Usage

This	release	also	introduces	the	use	of	Uniform	Resource	Locators	(URLs),	as	an
alternative	to	connection	strings	and	command	text,	to	name	data	store	objects.
URLs	may	be	used	with	the	existing	Connection	and	Recordset	objects,	as	well
as	with	the	new	Record	and	Stream	objects.

With	this	release,	ADO	supports	OLE	DB	providers	that	recognize	their	own
URL	schemes.	For	example,	the	OLE	DB	Provider	for	Internet	Publishing,
which	accesses	the	Windows	2000	file	system,	recognizes	the	existing	HTTP
scheme.

Special	Fields	for	Document	Source	Providers

A	special	class	of	providers,	called	document	source	providers,	manage	folders
and	documents.	When	a	Record	object	represents	a	document,	or	a	Recordset
object	represents	a	folder	of	documents,	the	document	source	provider	populates
those	objects	with	a	unique	set	of	fields	that	describe	characteristics	of	the
document.	These	fields	constitute	a	resource	Record	or	Recordset.

New	Reference	Topics

The	following	new	properties	are	included	in	this	release.

Property Description

Charset Indicates	the	character	set	into	which	the	contents	of
a	text	Stream	object	should	be	translated.

EOS Indicates	whether	the	current	position	is	at	the	end	of
the	stream.

LineSeparator Indicates	the	binary	character	to	be	used	as	the	line
separator	in	text	Stream	objects.

Mode Indicates	the	available	permissions	for	modifying
data	in	a	Connection,	Record,	or	Stream	object.

ParentURL Indicates	an	absolute	URL	string	that	points	to	the
parent	Record	of	the	current	Record	object.

Position Indicates	the	current	position	within	a	Stream
object.

RecordType Indicates	the	type	of	Record	object.
Size Indicates	the	size	of	the	stream	in	number	of	bytes.

Source Indicates	the	entity	represented	by	the	Record
object.

State

Indicates	for	all	applicable	objects	whether	the	state
of	the	object	is	open	or	closed.

Indicates	for	all	applicable	objects	executing	an
asynchronous	method,	whether	the	current	state	of
the	object	is	connecting,	executing,	or	retrieving.

Type Indicates	the	type	of	data	contained	in	the	Stream
object	(binary	or	text).

The	following	new	methods	are	included	in	this	release.

Method Description

CopyRecord Copies	a	file	or	directory,	and	its	contents,	to	another
location.

CopyTo
Copies	the	specified	number	of	characters	or	bytes
(depending	on	Type)	in	the	Stream	object	to
another	Stream	object.

DeleteRecord Deletes	a	file	or	directory,	and	all	its	subdirectories.

Flush
Forces	the	contents	of	the	Stream	object	remaining
in	the	ADO	buffer	to	the	underlying	object	with
which	the	Stream	object	is	associated.

GetChildren
Returns	a	Recordset	whose	rows	represent	the	files
and	subdirectories	in	the	directory	represented	by
this	Record.

LoadFromFile Loads	the	contents	of	an	existing	file	into	a	Stream
object.

MoveRecord Moves	a	file,	or	a	directory	and	its	contents,	to
another	location.

Open Opens	an	existing	Record	object,	or	creates	a	new
file	or	directory.

Open Opens	a	Stream	object	to	manipulate	streams	of
binary	or	text	data.

Read Reads	a	specified	number	of	bytes	from	a	binary
Stream	object.

ReadText Reads	specified	number	of	characters	from	a	text
Stream	object.

SaveToFile Saves	the	binary	contents	of	a	Stream	to	a	file.
SetEOS Sets	the	position	that	is	the	end	of	the	stream.

SkipLine Skips	one	entire	line	when	reading	a	text	Stream
object.

Write Writes	binary	data	to	a	Stream	object.
WriteText Writes	a	specified	text	string	to	a	Stream	object.

New	and	Enhanced	Documentation

Code	Example	Topics

The	examples	have	been	expanded	to	contain	code	examples	written	in
Microsoft	Visual	C++®	and	Microsoft	Visual	J++®.	You	can	copy	and	paste
these	code	examples	into	your	editor.

Provider	Topics

A	new	topic	is	included	that	explains	how	to	use	ADO	with	the	OLE	DB
Provider	for	Internet	Publishing.

Programming	with	ADO

This	new	section	contains	tips	and	tricks	for	using	ADO	with	various
programming	languages.	It	contains	the	existing	syntax	indexes	for	the	Visual
C++	Extensions	for	ADO	and	ADO/WFC,	as	well	as	new	information	specific	to
developers	using	Microsoft	Visual	Basic®,	Microsoft	Visual	Basic®	Scripting
Edition,	Microsoft	JScript®,	Microsoft	Visual	C++,	or	Microsoft	Visual	J++.

Getting	Started	with	ADO

This	section	contains	overview	information	about	ADO	and	Remote	Data
Service	(RDS),	tutorials	using	the	ADO	and	RDS	programming	models	to	query
and	update	a	data	source,	and	scenarios	using	ADO	and	RDS.	To	get	started	with
ADO,	see	the	following	sections:

Overview	of	ADO
Overview	of	RDS

The	ADO	documentation	also	includes	the	following	sections	to	help	you	learn
and	use	ADO:

ADO	Features			Describes	important	features	of	ADO	and	how	to	use	them
in	your	applications.

ADO	API	Reference			Describes	in	detail	each	object,	collection,	property,
method,	event,	and	enumerated	constant	in	ADO,	as	well	as	error
information.

Programming	with	ADO			Describes	tips	and	tricks	to	help	you	use	ADO	in
several	development	languages.	Includes	syntax	indexes	for	the	Visual	C++
Extensions	to	ADO,	Visual	C++	with	COM,	and	Visual	J++	(ADO/WFC).

ADO	Samples			Provides	code	examples	for	the	ADO	properties	and
methods	in	Visual	Basic,	C++,	Java,	and	VBScript,	as	well	as	sample
applications	showing	practical	ADO	and	RDS	usage.

Using	Providers	with	ADO			Describes	how	to	use	ADO	with	a	variety	of

OLE	DB	data	providers	and	service	providers.

ADO	Glossary			Defines	terms	specific	to	data	access	programming.

Technical	Articles			Includes	information	about	technical	issues.	A	part	of
the	MDAC	SDK,	this	section	contains	technical	articles	on	a	variety	of
subjects.

mk:@MSITStore:WP210.chm::/htm/dasdkTechArtOverview.htm

ADO	Overview

This	section	contains	a	series	of	topics	that	you	can	read	in	a	prescribed	order.
The	following	topics	are	included:

Solutions	for	Local	Data	Access	
Basic	ADO	Programming	Model

ADO	Programming	Model	in	Detail

ADO	Programming	Model	with	Objects

ADO	Object	Model	Summary

This	section	also	contains	the	ADO	tutorial,	which	demonstrates	how	to	query
and	update	a	data	source.

Next			Solutions	for	Local	Data	Access.

Solutions	for	Local	Data	Access

The	Issue

You	want	a	simple,	consistent	application	programming	interface	(API)	that
enables	applications	to	gain	access	to,	and	modify	a	wide	variety	of	data	sources.
A	data	source	may	be	as	simple	as	a	text	file,	as	complex	as	a	cluster	of	different
types	of	databases,	or	something	yet	to	be	invented.	Furthermore,	the	API	should
not	presume	the	means	of	gaining	access	to	and	manipulating	the	data	source.

Although	these	are	your	specific	requirements,	the	typical	data	source	is	a
relational	database	that	supports	the	Open	Database	Connectivity	(ODBC)
standard	and	is	manipulated	with	commands	written	in	Structured	Query
Language	(SQL).

The	general	solution	Microsoft	offers	to	this	problem	is	OLE	DB,	a	set	of
Component	Object	Model	(COM)	interfaces	that	provide	uniform	access	to	data
stored	in	diverse	information	sources.	However,	because	the	OLE	DB
application	programming	interface	is	designed	to	provide	optimal	functionality
in	a	wide	variety	of	applications;	it	does	not	meet	the	requirement	for	simplicity.

You	need	an	API	that	is	a	bridge	between	the	application	and	OLE	DB.	ActiveX
Data	Objects	(ADO)	is	that	bridge.

The	Solution

ADO	defines	a	programming	model—the	sequence	of	activities	necessary	to
gain	access	to	and	update	a	data	source.	The	programming	model	summarizes
the	entire	functionality	of	ADO.

The	programming	model	suggests	an	object	model—the	set	of	objects	that
correspond	to	and	implement	the	programming	model.	Objects	possess	methods
—which	perform	some	operation	on	data—and	properties—which	either
represent	some	attribute	of	the	data	or	control	the	behavior	of	some	object
method.

Associated	with	objects	are	events—which	are	notifications	that	some	operation
has	occurred,	or	is	about	to	occur.

Next			Basic	ADO	Programming	Model.

Basic	ADO	Programming	Model

ADO	provides	the	means	for	you	to	perform	the	following	sequence	of	actions:

1.	 Connect	to	a	data	source.	Optionally,	you	can	ensure	that	all	changes	to	the
data	source	occur	either	successfully	or	not	at	all.

2.	 Specify	a	command	to	gain	access	to	the	data	source,	optionally	with
variable	parameters,	or	optionally	optimized	for	performance.

3.	 Execute	the	command.

4.	 If	the	command	causes	data	to	be	returned	in	the	form	of	rows	in	a	table,
store	the	rows	in	a	cache	that	you	can	easily	examine,	manipulate,	or
change.

5.	 If	appropriate,	update	the	data	source	with	changes	from	the	cache	of	rows.

6.	 Provide	a	general	means	to	detect	errors	(usually	as	a	result	of	making	a
connection	or	executing	a	command).

Typically,	you	will	employ	all	these	steps	in	the	programming	model.	However,
it	is	worth	noting	that	ADO	is	flexible	enough	that	you	can	do	useful	work	by
executing	just	part	of	the	model.	For	example,	you	could	store	data	from	a	file
directly	into	a	cache	of	rows,	then	use	ADO	resources	solely	to	examine	the
data.

Next			ADO	Programming	Model	in	Detail.

ADO	Programming	Model	in	Detail

The	following	are	key	elements	of	the	ADO	programming	model:

Connection

Command

Parameter

Recordset

Field

Error

Property

Record

Stream

Collection

Event

Connection

You	gain	access	from	your	application	to	a	data	source	through	a	connection—
the	environment	necessary	for	exchanging	data.	Your	application	can	gain	access

to	a	data	source	directly	(sometimes	called	a	two-tier	system),	or	indirectly
(sometimes	called	a	three-tier	system)	through	an	intermediary,	such	as
Microsoft	Internet	Information	Services	(IIS).

The	object	model	embodies	the	concept	of	a	connection	with	the	Connection
object.

A	transaction	delimits	the	beginning	and	end	of	a	series	of	data	access
operations	that	transpire	across	a	connection.	ADO	ensures	that	changes	to	a
data	source	resulting	from	operations	in	a	transaction	either	all	occur
successfully,	or	not	at	all.

If	you	cancel	the	transaction	or	one	of	its	operations	fails,	then	the	ultimate	result
will	be	as	if	none	of	the	operations	in	the	transaction	had	occurred.	The	data
source	will	be	as	it	was	before	the	transaction	began.

The	object	model	does	not	explicitly	embody	the	concept	of	a	transaction,	but
represents	it	with	a	set	of	Connection	object	methods.

ADO	accesses	data	and	services	from	OLE	DB	providers.	The	Connection
object	is	used	to	specify	a	particular	provider	and	any	parameters.	For	example,
Remote	Data	Service	(RDS)	can	be	invoked	explicitly	or	implicitly	with	the
Microsoft	OLE	DB	Remoting	Provider.	(Please	see	Step	2	of	the	RDS	Tutorial
for	an	example	of	invoking	RDS	via	the	OLE	DB	Remoting	Provider.)

The	data	source	that	is	the	target	of	a	connection	may	be	specified	with	a
connection	string	or	a	Uniform	Resource	Locator	(URL).

Command

A	command	issued	across	an	established	connection	manipulates	the	data	source
in	some	way.	Typically	the	command	adds,	deletes,	or	updates	data	in	the	data
source,	or	retrieves	data	in	the	form	of	rows	in	a	table.

The	object	model	embodies	the	concept	of	a	command	with	the	Command
object.	The	existence	of	a	Command	object	gives	ADO	the	opportunity	to
optimize	the	execution	of	the	command.

Parameter

Often,	commands	require	variable	parts,	or	parameters,	that	can	be	altered
before	you	issue	the	command.	For	example,	you	could	issue	the	same	data
retrieval	command	repeatedly,	but	each	time	vary	your	specification	of	the
information	to	be	retrieved.

Parameters	are	especially	useful	for	executing	commands	that	behave	like
functions.	In	this	case	you	know	what	the	command	does,	but	not	necessarily
how	it	works.	For	example,	you	issue	a	bank	transfer	command	that	debits	one
account	and	credits	another.	You	specify	the	amount	of	money	to	be	transferred
as	a	parameter.

The	object	model	embodies	the	concept	of	a	parameter	with	the	Parameter
object.

Recordset

If	your	command	is	a	query	that	returns	data	as	rows	of	information	in	a	table
(that	is,	it	is	a	row-returning	query),	then	those	rows	are	placed	in	local	storage.

The	object	model	embodies	this	storage	as	a	Recordset	object.

The	Recordset	is	the	primary	means	of	examining	and	modifying	data	in	the
rows.	The	Recordset	object	allows	you	to:

Specify	which	rows	are	available	for	examination.

Traverse	the	rows.

Specify	the	order	in	which	the	rows	may	be	traversed.

Add,	change,	or	delete	rows.

Update	the	data	source	with	changed	rows.

Manage	the	overall	state	of	the	Recordset.

Field

A	row	of	a	Recordset	consists	of	one	or	more	fields.	If	you	envision	the
Recordset	as	a	two-dimensional	grid,	the	fields	line	up	to	form	columns.	Each

field	(column)	has	among	its	attributes	a	name,	a	data	type,	and	a	value.	It	is	this
value	that	contains	the	actual	data	from	the	data	source.

The	object	model	embodies	a	field	as	a	Field	object.

In	order	to	modify	data	in	the	data	source,	you	modify	the	value	of	Field	objects
in	Recordset	rows.	Ultimately,	changes	to	a	Recordset	are	propagated	to	the
data	source.	As	an	option,	the	transaction	management	methods	on	the
Connection	object	can	guarantee	that	the	changes	succeed	or	fail	in	unison.

Error

Errors	can	occur	at	any	time	in	your	application,	usually	as	the	result	of	not
being	able	to	establish	a	connection,	execute	a	command,	or	perform	an
operation	on	an	object	in	a	suitable	state	(for	example,	attempting	to	use	a
Recordset	object	that	has	not	been	initialized).

The	object	model	embodies	an	error	as	an	Error	object.

Any	given	error	produces	one	or	more	Error	objects.	The	next	error	that	occurs
will	discard	the	previous	set	of	Error	objects.

Property

Each	ADO	object	has	a	set	of	unique	properties	that	either	describe	or	control
the	behavior	of	that	object.

There	are	two	types	of	properties:	built-in	and	dynamic.	Built-in	properties	are
part	of	the	ADO	object	and	are	always	available.	Dynamic	properties	are	added
to	the	ADO	object's	Properties	collection	by	the	underlying	data	provider	or
service	provider,	and	exist	only	while	that	provider	is	being	used.

The	object	model	embodies	a	property	as	a	Property	object.

Record

Not	all	data	sources	exist	as	tables	in	a	database.	Information	storage	systems,
such	as	file	and	e-mail	systems,	consist	of	container	and	content	components.	A
container	may	hold	content	or	other,	subordinate	containers.

In	a	file	system,	the	containers	and	contents	are	directories	and	files;	in	an	e-mail
system,	the	containers	and	contents	are	folders	and	messages.

The	object	model	embodies	a	container	or	content	as	a	Record	object.
Furthermore,	a	row	of	a	Recordset	may	be	embodied	as	a	Record	object.

The	Record	object	provides	the	means	to:

Copy,	delete,	or	move	the	item	it	represents.

Create	a	new	Record	suitable	for	representing	items	such	as	a	directory	or
file,	or	a	row	of	a	Recordset.

A	Record	object	is	used	in	conjunction	with	other	ADO	objects,	such	as	the
Connection	and	Recordset	objects.	However,	a	Record	object	is	designed	to
solve	a	different	set	of	issues	than	the	ADO	objects	described	in	the	Basic	ADO
Programming	Model.	See	Records	and	Streams	for	more	information.

Stream

The	content	of	an	information	storage	system,	such	as	a	file	in	a	file	system,
consists	of	a	stream	of	bytes.	Also,	a	buffer	in	memory	consists	of	a	stream	of
bytes.

The	object	model	embodies	a	stream	of	bytes	as	a	Stream	object.

The	Stream	object	provides	means	to:

Read	or	write	a	series	of	bytes,	or	lines	of	text.

Populate	itself	from,	or	persist	itself	to,	a	file.

A	Stream	object	is	used	only	in	conjunction	with	the	Record	object.	A	Stream
object	is	designed	to	solve	a	different	set	of	issues	than	the	ADO	objects
described	in	the	Basic	ADO	Programming	Model.	See	Records	and	Streams	for
more	information.

Collection

ADO	provides	collections,	a	type	of	object	that	conveniently	contains	other

objects	of	a	particular	type.	The	objects	in	the	collection	can	be	retrieved	with	a
collection	property	either	by	name,	as	a	text	string,	or	by	ordinal,	as	an	integer
number.

ADO	provides	four	types	of	collections:

The	Connection	object	has	the	Errors	collection,	which	contains	all	Error
objects	created	in	response	to	a	single	failure	involving	the	data	source.

The	Command	object	has	the	Parameters	collection,	which	contains	all
Parameter	objects	that	apply	to	that	Command	object.

The	Recordset	and	Record	objects	have	the	Fields	collection,	which
contains	all	Field	objects	that	define	the	columns	of	that	Recordset	object.

In	addition,	the	Connection,	Command,	Recordset,	and	Field	objects	all
have	the	Properties	collection,	which	contains	all	the	Property	objects	that
apply	to	their	respective	containing	objects.

ADO	objects	possess	properties	in	which	you	set	or	retrieve	values	with
common	data	types	like	INTEGER,	CHARACTER,	or	BOOLEAN.	However,	it
is	useful	to	think	of	certain	properties	as	returning	values	of	data	type
"COLLECTION	OBJECT."	The	collection	object,	in	turn,	has	methods	to	store
and	retrieve	other	objects	suitable	for	the	collection.

For	example,	you	can	think	of	the	Recordset	object	as	having	a	Properties
property	that	returns	a	collection	object.	That	collection	object	has	methods	to
store	and	retrieve	Property	objects	describing	attributes	of	that	Recordset.

Events

Events	are	notifications	that	certain	operations	are	about	to	occur,	or	have
already	occurred.	You	can	use	events	to	efficiently	orchestrate	an	application
consisting	of	several	asynchronous	tasks.

The	object	model	does	not	explicitly	embody	events,	but	represents	them	as	calls
to	event	handler	routines.

Event	handlers	called	before	the	operation	starts	offer	you	the	opportunity	to
examine	or	modify	the	operation	parameters,	then	either	cancel	or	allow	the

operation	to	complete.

Event	handlers	called	after	an	operation	completes	notify	you	at	the	completion
of	an	asynchronous	operation.	Several	operations	have	been	enhanced	to
optionally	execute	asynchronously.	For	example,	an	application	that	starts	an
asynchronous	Recordset.Open	operation	is	notified	by	an	execution	complete
event	when	the	operation	concludes.

For	more	information	about	events,	see	ADO	Event	Model,	Synchronous	and
Asynchronous	Operations.

Next			ADO	Programming	Model	with	Objects.

ADO	Programming	Model	with	Objects

The	goal	of	ADO	is	to	gain	access	to,	edit,	and	update	data	sources.	The
programming	model	embodies	the	sequence	of	activities	necessary	to
accomplish	this	goal.	ADO	provides	classes	and	objects	to	perform	each	of	the
following	activities:

Make	a	connection	to	a	data	source	(Connection).	Optionally,	begin	a
transaction.

Optionally,	create	an	object	to	represent	a	command,	for	example,	an	SQL
command	(Command).

Optionally,	specify	columns,	tables,	and	values	in	the	SQL	command	as
variable	parameters	(Parameter).

Execute	the	command	(Command,	Connection,	or	Recordset).

If	the	command	is	row-returning,	store	the	rows	in	a	cache	(Recordset).

Optionally,	create	a	view	of	the	cache	so	you	can	sort,	filter,	and	navigate
the	data	(Recordset).

Edit	the	data	by	adding,	deleting,	or	changing	rows	and	columns
(Recordset).

If	appropriate,	update	the	data	source	with	changes	from	the	cache
(Recordset).

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the

transaction.	End	the	transaction	(Connection).

Next			ADO	Object	Model	Summary.

ADO	Object	Model	Summary

ADO	Object	Summary

Object Description
Connection Enables	exchange	of	data.
Command Embodies	an	SQL	statement.
Parameter Embodies	a	parameter	of	an	SQL	statement.
Recordset Enables	navigation	and	manipulation	of	data.

Field Embodies	a	column	of	a	Recordset	or	Record
object.

Error Embodies	an	error	on	a	connection.
Property Embodies	a	characteristic	of	an	ADO	object.
Record Embodies	a	directory	or	file.
Stream Embodies	the	content	of	a	file.

ADO	Collection	Summary

Collection Description

Errors All	the	Error	objects	created	in	response	to	a	single	failure
on	a	connection.

Parameters All	the	Parameter	objects	associated	with	a	Command
object.

Fields All	the	Field	objects	associated	with	a	Recordset	object.

Properties All	the	Property	objects	associated	with	a	Connection,
Command,	Recordset,	or	Field	object.

ADO	Event	Handler	Summary

ConnectionEvents Description

BeginTransComplete,	
CommitTransComplete,	
RollbackTransComplete

Transaction	Management	—
Notification	that	the	current	transaction
on	the	connection	has	started,	committed,
or	rolled	back.

WillConnect,	ConnectComplete,
Disconnect

Connection	Management	—
Notification	that	the	current	connection
will	start,	has	started,	or	ended.

WillExecute,	ExecuteComplete

Command	Execution	Management	—
Notification	that	the	execution	of	the
current	command	on	the	connection	will
start,	or	has	ended.

InfoMessage
Informational	—	Notification	that	there
is	additional	information	about	the
current	operation.

RecordsetEvents Description

FetchProgress,	FetchComplete
Retrieval	Status	—	Notification	of	the
progress	of	a	data	retrieval	operation,	or	that	the
retrieval	operation	has	completed.

WillChangeField,
FieldChangeComplete

Field	Change	Management	—	Notification
that	the	value	of	the	current	field	will	change,
or	has	changed.

WillMove,	MoveComplete,
EndOfRecordset

Navigation	Management	—	Notification	that
the	current	row	position	in	a	Recordset	will
change,	has	changed,	or	has	reached	the	end	of
the	Recordset.

WillChangeRecord,
RecordChangeComplete

Row	Change	Management	—	Notification
that	something	in	the	current	row	of	the
Recordset	will	change,	or	has	changed.

WillChangeRecordset,
RecordsetChangeComplete

Recordset	Change	Management	—
Notification	that	something	in	the	current
Recordset	will	change,	or	has	changed.

ADO	Tutorial

This	tutorial	illustrates	how	to	use	the	ADO	programming	model	to	query	and
update	a	data	source.	First,	it	describes	the	steps	necessary	to	accomplish	this
task.	Then,	the	tutorial	is	repeated	in	Microsoft	Visual	Basic;	Microsoft	Visual
C++,	featuring	Visual	C++	Extensions;	and	Microsoft	Visual	J++,	featuring
ADO	for	Windows	Foundation	Classes	(ADO/WFC).

This	tutorial	is	coded	in	different	languages	for	two	reasons:

The	documentation	for	ADO	assumes	the	reader	codes	in	Visual	Basic.	This
makes	the	documentation	convenient	for	Visual	Basic	programmers,	but
less	useful	for	programmers	who	use	other	languages.

If	you	are	uncertain	about	a	particular	ADO	feature	and	you	know	a	little	of
another	language,	you	may	be	able	to	resolve	your	question	by	looking	for
the	same	feature	expressed	in	another	language.

How	the	Tutorial	is	Presented

This	tutorial	is	divided	into	steps	that	correspond	to	the	ADO	programming
model.	Each	step	is	discussed	and	illustrated	with	a	fragment	of	Visual	Basic
code.	At	the	end	of	the	tutorial,	all	the	code	fragments	are	integrated	into	a
Visual	Basic	example.

The	integrated	example	is	then	repeated	in	other	programming	languages.	Each
step	in	each	programming	language	example	is	numbered.	Use	the	number	of	the
step	to	refer	to	the	corresponding	discussion	in	this	descriptive	tutorial.

The	ADO	programming	model	is	stated	below.	Use	it	as	a	roadmap	as	you
proceed	through	the	tutorial.

ADO	Programming	Model	with	Objects

Make	a	connection	to	a	data	source	(Connection).	Optionally,	begin	a
transaction.

Optionally,	create	an	object	to	represent	an	SQL	command	(Command).

Optionally,	specify	columns,	tables,	and	values	in	the	SQL	command	as
variable	parameters	(Parameter).

Execute	the	command	(Command,	Connection,	or	Recordset).

If	the	command	is	row-returning,	store	the	rows	in	a	storage	object
(Recordset).

Optionally,	create	a	view	of	the	storage	object	so	that	you	can	sort,	filter,
and	navigate	the	data	(Recordset).

Edit	the	data,	either	adding,	deleting,	or	changing	rows	and	columns
(Recordset).

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object
(Recordset).

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction	(Connection).

Next			Step	1:	Open	a	Connection

Step	1:	Open	a	Connection	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.
Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows	in	a
storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object.
Optionally,	embed	the	update	in	a	transaction.

If	you	used	a	transaction,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

You	require	a	means	to	establish	the	conditions	necessary	to	exchange	data;	that
is,	a	connection.	The	data	source	you	connect	to	is	specified	in	a	connection
string,	although	the	parameters	specified	in	a	connection	string	may	differ	for
each	provider	and	data	source.

The	main	way	ADO	opens	a	connection	is	with	the	Connection.Open	method.
Alternatively,	you	can	invoke	the	shortcut	method,	Recordset.Open,	to	both
open	a	connection	and	issue	a	command	over	that	connection	in	one	operation.
The	following	is	the	syntax	for	each	method	in	Visual	Basic:

connection.Open	ConnectionString,	UserID,	Password,	OpenOptions

recordset.Open	Source,	ActiveConnection,	CursorType,	LockType,	Options

Comparing	these	two	methods	will	highlight	some	useful	characteristics	of	ADO
method	parameters	in	general.

A	method	parameter	can	be	specified	in	several	ways.	For	example,
Recordset.Open	takes	an	ActiveConnection	parameter,	which	could	be	a	literal
string,	a	variable	representing	that	string,	or	a	Connection	object	representing	an
open	connection.

This	tutorial	uses	the	literal	connection	string,	"DSN=Pubs;uid=sa;pwd=;".	(The
data	source	is	indirectly	specified	by	the	"DSN="	keyword.	See	the	"Typical
Connection	String"	section	in	Microsoft	OLE	DB	Provider	for	ODBC	for	more
information.)

Many	objects	have	properties	that	can	provide	an	argument	if	a	method
parameter	is	omitted.	For	example,	supply	the	connection	string	information	for
the	Connection.Open	method	by	setting	the	Connection	object
ConnectionString	property,	then	omit	the	ConnectionString	parameter	from	the
Open	method.

This	tutorial	uses	the	following	Connection	object	declaration	and	Open
method:

Dim	cnn	As	New	ADODB.Connection

cnn.Open	"DSN=Pubs;uid=sa;pwd=;"

Next			Step	2:	Create	a	Command

Step	2:	Create	a	Command	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.

Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows	in	a
storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object.
Optionally,	embed	the	update	in	a	transaction.

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

A	command	is	an	instruction	understood	by	the	data	provider	that	will	modify,
manage,	or	manipulate	the	data	source.	Commands	are	typically	written	in	SQL,
although	no	particular	command	language	is	required.	A	query	command
requests	that	the	data	provider	return	a	Recordset	object	containing	rows	of
information.

Specify	a	command	as	either:

Command	text,	that	is,	a	literal	string,	or	a	variable	that	represents	the
string.

An	object	that	represents	the	command.	In	this	case,	it	is	the	value	of	a
Command	object	CommandText	property	set	to	the	command	text.

See	the	sidebar	for	a	brief	discussion	of	parameterized	commands.

This	tutorial	queries	for	all	the	information	in	the	Authors	table	of	the	Pubs
database.	The	Command	object	is	declared,	set	with	the	open	Connection
object,	and	the	command	text.	The	code	looks	like	this:

Dim	cmd	As	New	ADODB.Command

Set	cmd.ActiveConnection	=	cnn

cmd.CommandText	=	"SELECT	*	from	Authors"

Next			Step	3:	Execute	the	Command

Step	3:	Execute	the	Command	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.

Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows
in	a	storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object.
Optionally,	embed	the	update	in	a	transaction.

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

The	three	methods	that	return	a	Recordset	are	Connection.Execute,
Command.Execute,	and	Recordset.Open.	This	is	their	syntax	in	Visual	Basic:

connection.Execute(CommandText,	RecordsAffected,	Options)

command.Execute(RecordsAffected,	Parameters,	Options)

recordset.Open	Source,	ActiveConnection,	CursorType,	LockType,	Options

These	methods	are	optimized	to	take	advantage	of	the	strengths	of	their

particular	objects.

Before	you	issue	a	command,	you	must	implicitly	or	explicitly	open	a
connection.	Each	method	that	issues	a	command	represents	the	connection
differently:

The	Connection.Execute	method	uses	the	connection	embodied	by	the
Connection	object	itself.

The	Command.Execute	method	uses	the	Connection	object	set	in	its
ActiveConnection	property.

The	Recordset.Open	method	uses	a	connection	string,	its
ActiveConnection	parameter,	or	the	Connection	object	set	in	its
ActiveConnection	property.

Another	difference	is	the	way	the	command	is	specified	in	the	three	methods:

In	the	Connection.Execute	method,	the	command	is	command	text.

In	the	Command.Execute	method,	the	command	is	not	visible—it	is
specified	in	the	Command.CommandText	property.	Furthermore,	the
command	can	be	parameterized.

In	the	Recordset.Open	method,	the	command	is	the	Source	argument,
which	can	be	command	text	or	a	Command	object.	(The	Source	argument
can	also	be	a	string	specifying	a	table	name,	a	stored	procedure,	or	the	file
name	of	a	persisted	Recordset.)

Each	method	trades	off	functionality	versus	performance:

The	Execute	methods	are	intended	for,	but	not	limited	to,	executing
commands	that	don't	return	data.

Both	Execute	methods	return	read-only,	forward-only	Recordset	objects.

The	Command.Execute	method	allows	you	to	use	parameterized
commands	that	can	be	reused	efficiently.

The	Open	method	allows	you	to	specify	the	CursorType	(strategy	and
object	used	to	access	the	data);	and	LockType	(specify	the	degree	of
isolation	from	other	users,	and	whether	the	cursor	should	support	updates	in
immediate	or	batch	modes	(discussed	in	greater	detail	later)).

Study	these	options;	they	embody	much	of	the	functionality	of	a	Recordset.	Of
particular	importance	is	the	decision	to	use	the	Microsoft	Cursor	Service	for
OLE	DB.	Please	refer	to	Microsoft	Cursor	Service	for	OLE	DB	for	details	about
the	implications	of	this	decision.

This	tutorial	will	make	changes	to	the	Recordset	in	batch	mode;	therefore,	a
LockType	of	adLockBatchOptimistic	is	specified.	Batch	processing	requires
the	Cursor	Service,	so	the	CursorLocation	property	is	set	to	adUseClient.	Since
the	Command	object	is	already	set	to	an	open	connection,	the
ActiveConnection	parameter	cannot	be	specified	in	the	Open	method.

The	Recordset	is	declared	and	used	like	this:

Dim	rs	As	New	ADODB.Recordset

rst.CursorLocation	=	adUseClient

rst.Open	cmd,	,	adOpenStatic,	adLockBatchOptimistic

Next			Step	4:	Manipulate	the	Data

Step	4:	Manipulate	the	Data	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.

Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows	in	a
storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object.
Optionally,	embed	the	update	in	a	transaction.

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

The	bulk	of	the	Recordset	object	methods	and	properties	are	devoted	to
examining,	navigating,	and	manipulating	the	Recordset	data.

You	can	think	of	a	Recordset	as	an	array	of	rows.	The	row	you	can	examine	and
manipulate	at	any	given	time	is	the	current	row,	and	your	location	in	the
Recordset	is	the	current	row	position.	Every	time	you	move	to	another	row,	that
row	becomes	the	new	current	row.

Several	methods	explicitly	move	or	"navigate"	through	the	Recordset	(the	Move
methods).	Some	methods	(the	Find	method)	do	so	as	a	side	effect	of	their
operation.	In	addition,	setting	certain	properties	(Bookmark	property)	can	also
change	your	row	position.	The	Recordset	object	CursorType	property,	or	Open
method	CursorType	parameter,	determines	whether	you	can	navigate	forward
and	backward	through	the	Recordset.

The	Filter	property	controls	the	rows	you	can	access	(that	is,	which	rows	are
"visible"	to	you).	The	Sort	property	controls	the	order	in	which	you	navigate	the
rows	of	the	Recordset.

You	can	create	new	rows	with	the	AddNew	method	or	delete	existing	rows	with
the	Delete	method.

A	Recordset	has	a	Fields	collection	that	is	the	set	of	Field	objects	that	represent
each	field,	or	field	(or	column)	in	a	row.	Assign	or	retrieve	the	data	for	a	field
with	the	Field	object	Value	property.	You	can	also	access	field	data	in	bulk	with
the	GetRows	method.	After	you	have	modified	the	Recordset,	propagate	your
changes	to	the	data	source	using	the	Update	methods.

In	this	tutorial,	you	will:

Set	the	Optimize	property	on	the	Properties	collection	of	the	au_lname
Field	object	to	improve	the	performance	of	sorting	and	filtering.

Sort	the	Recordset	on	each	author's	last	name.

Filter	the	Recordset	so	the	only	accessible	rows	will	be	those	where	the
author's	telephone	number	is	in	area	code	"415"	and	the	exchange	begins
with	"5".

Change	the	filtered	telephone	numbers	to	the	mythical	area	code	"777."

Use	the	Move	methods	to	navigate	from	the	beginning	of	the	sorted,	filtered
Recordset	to	the	end.	Stop	when	the	Recordset	object	EOF	property	indicates
you've	reached	the	last	row.	As	you	move	through	the	Recordset,	display	the
author's	first	and	last	name	and	the	original	telephone	number,	and	then	change
the	area	code	in	the	phone	field	to	"777".	(Telephone	numbers	in	the	phone	field
are	formatted	as	"aaa	xxx-yyyy"	where	aaa	is	the	area	code	and	xxx	is	the

exchange.)

As	each	row	is	changed,	it	no	longer	matches	the	criteria	specified	by	the	filter
so	it	is	no	longer	visible	in	the	Recordset.	All	the	rows	reappear	when	the	filter
is	cleared.

See	the	schema	sidebar	for	the	layout	of	the	Authors	table.	The	code	looks	like
this:

rst!au_lname.Properties("Optimize")	=	True

rst.Sort	=	"au_lname"

rst.Filter	=	"phone	LIKE	'415	5*'"

rst.MoveFirst

Do	While	Not	rst.EOF

				Debug.Print	"Name	=	";	rst!au_fname;	"	";	rst!au_lname;	_

								",	Phone	=	";	rst!phone

				rst!phone	=	"777"	&	Mid(rst!phone,	4)

				rst.MoveNext

Loop

rst.Filter	=	adFilterNone

Next			Step	5:	Update	the	Data

Step	5:	Update	the	Data	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.

Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows	in	a
storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage
object.	Optionally,	embed	the	update	in	a	transaction.

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

You've	just	changed	the	data	in	several	rows	of	the	Recordset.	ADO	supports
two	basic	notions	relating	to	the	addition,	deletion,	and	modification	of	rows	of
data.

The	first	notion	is	that	changes	aren't	immediately	made	to	the	Recordset;
instead,	they	are	made	to	an	internal	copy	buffer.	If	you	decide	you	don't	want
the	changes,	then	the	modifications	in	the	copy	buffer	are	discarded.	If	you
decide	to	keep	the	changes,	then	the	changes	in	the	copy	buffer	are	applied	to	the

Recordset.

The	second	notion	is	that	changes	are	either	propagated	to	the	data	source	as
soon	as	you	declare	the	work	on	a	row	complete	(that	is,	immediate	mode).	Or,
all	changes	to	a	set	of	rows	are	collected	until	you	declare	the	work	for	the	set
complete	(that	is,	batch	mode).	The	LockType	property	determines	when	the
changes	are	made	to	the	underlying	data	source.	The	CursorLocation	property
can	affect	which	LockType	settings	are	available.	For	instance,	the
adLockPessimistic	setting	is	not	supported	if	the	CursorLocation	property	is
set	to	adUseClient.

In	immediate	mode,	each	invocation	of	the	Update	method	propagates	the
changes	to	the	data	source.	In	batch	mode,	each	invocation	of	Update	or
movement	of	the	current	row	position	saves	the	changes	to	the	copy	buffer,	but
only	the	UpdateBatch	method	propagates	the	changes	to	the	data	source.	The
Recordset	was	opened	in	batch	mode	(adLockBatchOptimistic)	so	updates
will	be	made	in	batch	mode.

Optionally,	updates	can	be	performed	in	a	transaction.	A	transaction	establishes
an	environment	where	the	operations	in	the	transaction	either	all	succeed,	or
their	effects	are	all	canceled.

A	common	example	of	a	transaction	is	a	banking	application	where	an	operation
to	deduct	an	amount	from	one	account,	and	another	operation	to	deposit	the
same	amount	to	another	account,	must	both	succeed.	If	one	operation	fails,	then
the	other	must	be	undone;	otherwise	the	accounts	will	be	out	of	balance.

Transactions	typically	allocate	and	hold	limited	resources	on	the	data	source	for
long	periods	of	time.	For	that	reason	it	is	advisable	that	a	transaction	exist	for	as
brief	a	period	as	possible.	(That	is	why	this	tutorial	didn't	begin	the	transaction
as	soon	as	the	connection	was	made.)

Practically	speaking,	this	tutorial	does	not	require	a	transaction,	but	one	is
included	for	purposes	of	illustration.	The	code	to	start	a	transaction	and	perform
a	batch	update	looks	like	this:

cnn.BeginTrans

rst.UpdateBatch

Next			Step	6:	Conclude	the	Update

Step	6:	Conclude	the	Update	(ADO	Tutorial)

You	are	Here...

Make	a	connection	to	a	data	source.

Optionally,	create	an	object	to	represent	an	SQL	query	command.

Optionally,	specify	values	in	the	SQL	command	as	variable	parameters.

Execute	the	command.	If	the	command	is	row-returning,	store	the	rows	in	a
storage	object.

Optionally,	navigate,	examine,	manipulate,	and	edit	the	data.

If	appropriate,	update	the	data	source	with	changes	from	the	storage	object.
Optionally,	embed	the	update	in	a	transaction.

If	a	transaction	was	used,	accept	or	reject	the	changes	made	during	the
transaction.	End	the	transaction.

Discussion

Imagine	that	the	batch	update	concluded	with	errors.	How	you	resolve	the	errors
depends	on	the	nature	and	severity	of	the	errors	and	the	logic	of	your
application.	However,	if	the	database	is	shared	with	other	users,	one	typical	error
is	that	someone	else	modifies	the	field	before	you	do.	This	type	of	error	is	called
a	conflict.	ADO	detects	this	situation	and	reports	an	error.

This	step	in	the	tutorial	has	two	parts:	If	there	are	no	update	errors,	then	the	data
source	reflects	the	update	changes.	The	transaction	is	committed.	Committing	the

transaction	finalizes	and	ends	the	transaction.

The	code	to	accept	the	update	looks	like	this:

cnn.CommitTrans

If	there	are	update	errors,	they	will	be	trapped	in	an	error-handling	routine.	Filter
the	Recordset	with	the	adFilterConflictingRecords	constant	so	only	the
conflicting	rows	are	visible.	The	error-resolution	strategy	is	merely	to	print	the
author's	first	and	last	names	(au_fname	and	au_lname),	then	roll	back	(that	is,
undo)	the	transaction.	Rolling	back	the	transaction	discards	any	successful
updates	and	ends	the	transaction.

The	code	to	reject	the	update	looks	like	this:

rst.Filter	=	adFilterConflictingRecords

rst.MoveFirst

Do	While	Not	rst.EOF

				Debug.Print	"Conflict:	Name	=		";	rst!au_fname;	"	";	rst!au_lname

				rst.MoveNext

Loop

cnn.RollbackTrans

After	the	update	concludes,	the	Recordset	and	Connection	objects	are	closed
and	the	example	exits.	The	code	looks	like	this:

rst.Close

cnn.Close

This	is	the	end	of	the	descriptive	tutorial.

ADO	Tutorial	(Visual	Basic)

This	is	the	ADO	tutorial,	written	in	Microsoft	Visual	Basic.	See	the	ADO
Tutorial	for	a	description	of	the	purpose	of	this	tutorial.

Public	Sub	Main()				'	Tutorial	in	VB

Dim	cnn	As	New	ADODB.Connection

Dim	cmd	As	New	ADODB.Command

Dim	rst	As	New	ADODB.Recordset

'	Step	1	-	Open	a	Connection

cnn.Open	"DSN=Pubs;uid=sa;pwd=;"

'	Step	2	-	Create	a	Command

Set	cmd.ActiveConnection	=	cnn

cmd.CommandText	=	"SELECT	*	from	Authors"

'	Step	3	-	Execute	the	Command

rst.CursorLocation	=	adUseClient

rst.Open	cmd,	,	adOpenStatic,	adLockBatchOptimistic

'	Step	4	-	Manipulate	the	Data

rst!au_lname.Properties("Optimize")	=	True

rst.Sort	=	"au_lname"

rst.Filter	=	"phone	LIKE	'415	5*'"

rst.MoveFirst

Do	While	Not	rst.EOF

				Debug.Print	"Name	=	";	rst!au_fname;	"	";	rst!au_lname;	_

								",	Phone	=	";	rst!phone

				rst!phone	=	"777"	&	Mid(rst!phone,	4)

				rst.MoveNext

Loop

rst.Filter	=	adFilterNone

'	Step	5	-	Update	the	Data

cnn.BeginTrans

On	Error	GoTo	ConflictHandler

rst.UpdateBatch

'Step	6,	part	A	-	Conclude	the	Update	(Accept	changes)

cnn.CommitTrans

ExitTutorial:

On	Error	GoTo	0

rst.Close

cnn.Close

Exit	Sub

'Step	6,	part	B	-	Conclude	the	Update	(Reject	changes)

ConflictHandler:

rst.Filter	=	adFilterConflictingRecords

rst.MoveFirst

Do	While	Not	rst.EOF

				Debug.Print	"Conflict:	Name	=		";	rst!au_fname;	"	";	rst!au_lname

				rst.MoveNext

Loop

cnn.RollbackTrans

Resume	ExitTutorial

End	Sub

This	is	the	end	of	the	Visual	Basic	tutorial.

ADO	Tutorial	(Visual	C++)

This	is	the	ADO	tutorial,	written	in	Microsoft	Visual	C++,	along	with	the
#import	directive.	See	the	ADO	Tutorial	for	a	description	of	the	purpose	of	this
tutorial.

The	#import	directive	generates	functions	from	the	ADO	type	library	into	a
header	file	which	provides	ADO	and	Visual	C++	with	some	of	the	ease-of-use	of
Microsoft	Visual	Basic.

This	tutorial	also	features	the	Visual	C++	Extensions	for	ADO.	The	Visual	C++
Extensions	automatically	convert	and	populate	local	instance	variables	with	the
value	of	fields	in	a	specified	Recordset.	The	Visual	C++	Extensions	also	support
versions	of	the	AddNew	and	Update	methods.

The	#import	directive	generates	an	error	handling	routine	for	each	ADO
property	and	method.	The	function,	TESTHR(),	is	provided	in	this	tutorial	as	a
convenient	way	to	invoke	the	same	error	handling	mechanism	for	non-ADO
functions.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<icrsint.h>			//Include	support	for	VC++	Extensions

void	dump_com_error(_com_error	&e)

			{

			printf("Error:\n");

			printf("Code	=	%08lx\n",	e.Error());

			printf("Code	meaning	=	%s\n",	e.ErrorMessage());

			printf("Source	=	%s\n",	(LPCSTR)	e.Source());

			printf("Description	=	%s\n",	(LPCSTR)	e.Description());

			}

inline	void	TESTHR(HRESULT	_hr)	

			{	if	FAILED(_hr)	_com_issue_error(_hr);	}

class	CCustomRs	:	

			public	CADORecordBinding

{

BEGIN_ADO_BINDING(CCustomRs)

			ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szau_fname,	

									sizeof(m_szau_fname),	lau_fnameStatus,	false)

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szau_lname,	

									sizeof(m_szau_lname),	lau_lnameStatus,	false)

			ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_szphone,				

									sizeof(m_szphone),				lphoneStatus,				true)

END_ADO_BINDING()

public:

			CHAR			m_szau_fname[22];

			ULONG			lau_fnameStatus;

			CHAR			m_szau_lname[42];

			ULONG			lau_lnameStatus;

			CHAR			m_szphone[14];

			ULONG			lphoneStatus;

};

VOID			main()									//	Tutorial	in	VC

			{

			IADORecordBinding			*picRs	=	NULL;

			

			::CoInitialize(NULL);

			try	

						{

						_ConnectionPtr	pConn("ADODB.Connection");

						_RecordsetPtr	pRs("ADODB.Recordset");

						_CommandPtr	pCmd("ADODB.Command");

						CCustomRs	rs;

//	Step	1:	Open	a	connection

						pConn->Open("dsn=Pubs;",	"sa",	"",	adConnectUnspecified);

//	Step	2:	Create	a	command

						pCmd->CommandText	=	"select	*	from	Authors";

						pCmd->ActiveConnection	=	pConn;

//	Step	3:	Execute	the	command

						pRs->CursorLocation	=	adUseClient;

						pRs->Open((IDispatch	*)	pCmd,	vtMissing,

									adOpenStatic,	adLockBatchOptimistic,	adCmdUnspecified);

						TESTHR(pRs->QueryInterface(__uuidof(IADORecordBinding),	

															(LPVOID*)&picRs));

						TESTHR(picRs->BindToRecordset(&rs));

//	Step	4:	Manipulate	the	data

						pRs->Fields->GetItem("au_lname")->Properties->GetItem("Optimize")->Value	=	true;	

						pRs->Sort	=	"au_lname	ASC";

						pRs->Filter	=	"phone	LIKE	'415	5*'";

						pRs->MoveFirst();

						while	(VARIANT_FALSE	==	pRs->EndOfFile)

									{

									printf("Name:	%s\t	%s\tPhone:	%s\n",		

												(rs.lau_fnameStatus	==	adFldOK	?	rs.m_szau_fname	:	""),	

												(rs.lau_lnameStatus	==	adFldOK	?	rs.m_szau_lname	:	""),

												(rs.lphoneStatus	==	adFldOK	?	rs.m_szphone			:	""));

									if	(rs.lphoneStatus	==	adFldOK)

												memcpy(rs.m_szphone,	"777",	3);

												

									TESTHR(picRs->Update(&rs));			//	Add	change	to	the	batch

						//	Change	the	current	row	of	the	Recordset.	

						//	Recordset	data	for	the	new	current	row	will	automatically	be	

						//	extracted	and	placed	in	the	CCustomRs	C++	instance	variables.

									pRs->MoveNext();

									}

						pRs->Filter	=	(long)	adFilterNone;

//	Step	5:	Update	the	data

						pConn->BeginTrans();

						try	

									{

									pRs->UpdateBatch(adAffectAll);

//	Step	6,	part	A:	Conclude	the	update	-	Accept	changes

									pConn->CommitTrans();

									}

//	Step	6,	part	B:	Conclude	the	update	-	Reject	changes

						catch	(_com_error	&e)

									{

									dump_com_error(e);

									pRs->Filter	=	(long)	adFilterConflictingRecords;

									pRs->MoveFirst();

									while	(VARIANT_FALSE	==	pRs->EndOfFile)

												{

												printf("Conflict:	Name	=	%s\t	%s\n",	

															(rs.lau_fnameStatus	==	adFldOK	?	rs.m_szau_fname	:	""),	

															(rs.lau_lnameStatus	==	adFldOK	?	rs.m_szau_lname	:	""));

												pRs->MoveNext();

												}

									pConn->RollbackTrans();

									}

						if	(picRs)	picRs->Release();

						pRs->Close();

						pConn->Close();

						}

			catch	(_com_error	&e)

						{

						dump_com_error(e);

						}

			CoUninitialize();

			}

This	is	the	end	of	the	Visual	C++	tutorial.

ADO	Tutorial	(Visual	J++)

This	is	the	ADO	tutorial	written	in	Microsoft	Visual	J++,	featuring	the
ADO/WFC	classes.	See	the	ADO	Tutorial	for	a	description	of	the	purpose	of	this
tutorial.

import	com.ms.wfc.data.*;

/**

*	ADOTutorial:

*	Purpose:	Demonstrates	the	usage	of	Ado	in	Java.	

*										Opens	a	recordset	through	a	command	object

*										and	illustrates	update	within	a	transaction

*/

public	class	ADOTutorial

{

			//odbc-style	connection	string

			public	static	String	strConn	=	

						"Driver={SQL	Server};SERVER=YourServer;DATABASE=JetQA;"	+	

						"UID=testmod;PWD=testmod;";

			public	static	void	main(String	args[])			//	Tutorial	in	VJ

			{

						try

						{

									Connection	conn	=	new	Connection();

									Command	cmd	=	new	Command();

									Recordset	rs	=	new	Recordset();

						

									Field	fld;

									AdoProperties	fldProps;

//	STEP	1:	Open	the	connection

									conn.open(strConn);

												

//	STEP	2:	Create	a	command	

									cmd.setActiveConnection(conn);

									cmd.setCommandText("SELECT	*	from	Authors");

//	STEP	3:	Open	the	recordset	with	the	source	as	a	command	object

									rs.setCursorLocation(AdoEnums.CursorLocation.CLIENT);	

									rs.setCursorType(AdoEnums.CursorType.DYNAMIC);

									rs.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

									rs.open	(cmd);

									

//	STEP	4:	Manipulate	the	data	

									fldProps		=	rs.getField("au_lname").getProperties();

									fldProps.getItem("Optimize").setBoolean(true);

									rs.setSort("au_lname");

									rs.setFilter("phone	like	'415	5*'");	

									rs.moveFirst();

									while	(!rs.getEOF())

									{	

												StringBuffer	strBuf	=	new	StringBuffer();

												System.out.println("	Name:	"	+	

															rs.getField("au_fname").getString()	+	

															"		"	+	rs.getField("au_lname").getString()	+

															"			Phone	:	"	+	rs.getField("phone").getString());

	

												//Change	area	code	415	to	777.	

												fld	=		rs.getField("phone");

												strBuf.append(fld.getString());

												strBuf.setCharAt(0,	'7');

												strBuf.setCharAt(1,	'7');

												strBuf.setCharAt(2,	'7');

												//set	the	field	to	the	new	value

												fld.setString(strBuf.toString());

												

												rs.moveNext();

									}

									rs.setFilter(new	Integer(AdoEnums.FilterGroup.NONE));

//	STEP	5:	Update	the	data

									conn.beginTrans();

									try

									{

												rs.updateBatch();

												

//	STEP	6	PART	A:	Conclude	the	Update	-	Accept	changes

												conn.commitTrans();

									}

//	STEP	6	PART	B:	Conclude	the	Update	-	Reject	changes

									catch(AdoException	ex)

									{

												rs.setFilter(new	Integer

																								(AdoEnums.FilterGroup.CONFLICTINGRECORDS));

												rs.moveFirst();

												while(!rs.getEOF())

												{

															//print	conflicting	records

															System.out.println("Conflict	:	Name	:	"	+	

																		rs.getField("au_fname").getString()	+	"	"	+

																		rs.getField("au_lname").getString());

															rs.moveNext();

												}

												conn.rollbackTrans();

									}

									rs.close();

									conn.close();

						}

						catch(Exception	ex)

						{

									ex.printStackTrace();

						}

			}

}

This	is	the	end	of	the	Visual	J++	tutorial.

RDS	Overview

This	section	contains	a	series	of	topics	that	you	can	read	in	a	prescribed	order.
The	following	topics	are	included:

Solutions	for	Remote	Data	Access	
Basic	RDS	Programming	Model

RDS	Programming	Model	in	Detail

RDS	Programming	Model	with	Objects

The	RDS	Object	Model	Summary

This	section	also	contains	the	RDS	tutorial	and	an	RDS	Scenario,	which
demonstrate	how	to	access	and	update	a	data	source,	and	a	series	of	topics	called
Using	RDS,	which	discusses	more	advanced	RDS	topics.

Next			Solutions	for	Remote	Data	Access.

Solutions	for	Remote	Data	Access

The	Issue

ADO	enables	your	application	to	directly	gain	access	to	and	modify	data	sources
(sometimes	called	a	two-tier	system).	For	example,	if	your	connection	is	to	the
data	source	that	contains	your	data,	then	that	is	a	direct	connection	in	a	two-tier
system.

However,	you	may	want	to	access	data	sources	indirectly	through	an
intermediary	such	as	Microsoft	Internet	Information	Services	(IIS).	This
arrangement	is	sometimes	called	a	three-tier	system.	IIS	is	a	client/server	system
that	provides	an	efficient	way	for	a	local,	or	client,	application	to	invoke	a
remote,	or	server,	program	across	the	Internet	or	an	intranet.	The	server	program
gains	access	to	the	data	source	and	optionally	processes	the	acquired	data.

For	example,	your	intranet	Web	page	contains	an	application	written	in
Microsoft	Visual	Basic,	Scripting	Edition	(VBScript),	which	connects	to	IIS.	IIS
in	turn	connects	to	the	actual	data	source,	retrieves	the	data,	processes	it	in	some
way,	and	then	returns	the	processed	information	to	your	application.

In	this	example,	your	application	never	directly	connected	to	the	data	source;	IIS
did.	And	IIS	accessed	the	data	by	means	of	ADO.

Note			The	client/server	application	doesn't	have	to	be	based	on	the	Internet	or	an
intranet	(that	is,	Web-based)—it	could	consist	solely	of	compiled	programs	on	a
local	area	network.	However,	the	typical	case	is	a	Web-based	application.

Because	some	visual	control,	such	as	a	grid,	check	box,	or	list,	may	use	the
returned	information,	the	returned	information	must	be	easily	used	by	a	visual

control.

You	want	a	simple	and	efficient	application-programming	interface	that	supports
three-tier	systems,	and	returns	information	as	easily	as	if	it	had	been	retrieved	on
a	two-tier	system.	Remote	Data	Service	(RDS)	is	this	interface.

The	Solution

RDS	defines	a	programming	model—the	sequence	of	activities	necessary	to	gain
access	to	and	update	a	data	source—to	gain	access	to	data	through	an
intermediary,	such	as	Internet	Information	Services	(IIS).	The	programming
model	summarizes	the	entire	functionality	of	RDS.

Next			Basic	RDS	Programming	Model.

Basic	RDS	Programming	Model

RDS	addresses	applications	that	exist	in	the	following	environment:	A	client
application	specifies	a	program	that	will	execute	on	a	server	and	the	parameters
required	to	return	the	desired	information.	The	program	invoked	on	the	server
gains	access	to	the	specified	data	source,	retrieves	the	information,	optionally
processes	the	data,	then	returns	the	resulting	information	to	your	client
application	in	a	form	that	it	can	easily	use.	RDS	provides	the	means	for	you	to
perform	the	following	sequence	of	actions:

1.	 Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	way	to	refer
to	it	from	the	client.	(This	reference	is	sometimes	called	a	proxy.	It
represents	the	remote	server	program.	The	client	application	will	"call"	the
proxy	as	if	it	were	a	local	program,	but	it	actually	invokes	the	remote	server
program.)

2.	 Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identify	the	data	source	and	the	command	to	issue.	(The	server	program
actually	uses	ADO	to	gain	access	to	the	data	source.	ADO	makes	a
connection	with	one	of	the	given	parameters,	then	issues	the	command
specified	in	the	other	parameter.)

3.	 The	server	program	obtains	a	Recordset	object	from	the	data	source.
Optionally,	the	Recordset	object	is	processed	on	the	server.

4.	 The	server	program	returns	the	final	Recordset	object	to	the	client
application.

5.	 On	the	client,	the	Recordset	object	is	put	into	a	form	that	can	be	easily	used
by	visual	controls.

6.	 Any	modifications	to	the	Recordset	object	are	sent	back	to	the	server
program,	which	uses	them	to	update	the	data	source.

This	programming	model	contains	certain	convenience	features.	If	you	don't
need	a	complex	server	program	to	access	the	data	source,	and	if	you	provide	the
required	connection	and	command	parameters,	RDS	will	automatically	retrieve
the	specified	data	with	a	simple,	default	server	program.

However,	if	you	need	more	complex	processing,	you	can	specify	your	own
custom	server	program.	For	example,	because	a	custom	server	program	has	the
full	power	of	ADO	at	its	disposal,	it	could	connect	to	several	different	data
sources,	combine	their	data	in	some	complex	way,	and	then	return	a	simple,
processed	result	to	the	client	application.

Finally,	if	your	needs	are	somewhere	in	between,	ADO	now	supports
customizing	the	behavior	of	the	default	server	program.

Next			RDS	Programming	Model	in	Detail.

RDS	Programming	Model	in	Detail

The	following	are	key	elements	of	the	RDS	programming	model:

RDS.DataSpace

RDSServer.DataFactory

RDS.DataControl

Event

RDS.DataSpace

Your	client	application	must	specify	the	server	and	the	server	program	to	invoke.
In	return,	your	application	receives	a	reference	to	the	server	program	and	can
treat	the	reference	as	if	it	were	the	server	program	itself.

The	RDS	object	model	embodies	this	functionality	with	the	RDS.DataSpace
object.

The	server	program	is	specified	with	a	program	identifier,	or	ProgID.	The	server
uses	the	ProgID	and	the	server	machine's	registry	to	locate	information	about	the
actual	program	to	initiate.

RDS	makes	a	distinction	internally	depending	on	whether	the	server	program	is
on	a	remote	server	across	the	Internet	or	an	intranet;	a	server	on	a	local	area
network;	or	not	on	a	server	at	all,	but	instead	on	a	local	dynamic-link	library
(DLL).	This	distinction	determines	how	information	is	exchanged	between	the
client	and	the	server,	and	makes	a	tangible	difference	in	the	type	of	reference
returned	to	your	client	application.	However,	from	your	point	of	view,	this

distinction	has	no	special	meaning.	All	that	matters	is	that	you	receive	a	usable
program	reference.

RDSServer.DataFactory

RDS	provides	a	default	server	program	that	can	either	perform	an	SQL	query
against	the	data	source	and	return	a	Recordset	object,	or	take	a	Recordset	object
and	update	the	data	source.

The	RDS	object	model	embodies	this	functionality	with	the
RDSServer.DataFactory	object.

In	addition,	this	object	has	a	method	for	creating	an	empty	Recordset	object	that
you	can	fill	programmatically	(CreateRecordset),	and	another	method	for
converting	a	Recordset	object	into	a	text	string	to	build	a	Web	page
(ConvertToString).

With	ADO,	you	can	override	some	of	the	standard	connection	and	command
behavior	of	the	RDSServer.DataFactory	with	a	DataFactory	handler	and	a
customization	file	that	contains	connection,	command,	and	security	parameters.

The	server	program	is	sometimes	called	a	business	object.	You	can	write	your
own	custom	business	object	that	can	perform	complicated	data	access,	validity
checks,	and	so	on.	Even	when	writing	a	custom	business	object,	you	can	create
an	instance	of	an	RDSServer.DataFactory	object	and	use	some	of	its	methods
to	accomplish	your	own	tasks.

RDS.DataControl

RDS	provides	a	means	to	combine	the	functionality	of	the	RDS.DataSpace	and
RDSServer.DataFactory,	and	also	enable	visual	controls	to	easily	use	the
Recordset	object	returned	by	a	query	from	a	data	source.	RDS	attempts,	for	the
most	common	case,	to	do	as	much	as	possible	to	automatically	gain	access	to
information	on	a	server	and	display	it	in	a	visual	control.

The	RDS	object	model	embodies	this	functionality	with	the	RDS.DataControl
object.

The	RDS.DataControl	has	two	aspects.	One	aspect	pertains	to	the	data	source.
If	you	set	the	command	and	connection	properties	of	the	RDS.DataControl,	it

will	automatically	use	the	RDS.DataSpace	to	create	a	reference	to	the	default
RDSServer.DataFactory	object.	Then	the	RDSServer.DataFactory	will	use
the	connection	property	value	to	connect	to	the	data	source,	use	the	command
property	value	to	obtain	a	Recordset	from	the	data	source,	and	then	return	the
Recordset	object	to	the	RDS.DataControl.

The	second	aspect	pertains	to	the	display	of	returned	Recordset	information	in	a
visual	control.	You	can	associate	a	visual	control	with	the	RDS.DataControl	(in
a	process	called	binding)	and	gain	access	to	the	information	in	the	associated
Recordset	object,	displaying	query	results	on	a	Web	page	in	Internet	Explorer.
Each	RDS.DataControl	object	binds	one	Recordset	object,	representing	the
results	of	a	single	query,	to	one	or	more	visual	controls	(for	example,	a	text	box,
combo	box,	grid	control,	and	so	forth).	There	may	be	more	than	one
RDS.DataControl	object	on	each	page.	Each	RDS.DataControl	object	can	be
connected	to	a	different	data	source	and	contain	the	results	of	a	separate	query.

The	RDS.DataControl	object	also	has	its	own	methods	for	navigating,	sorting,
and	filtering	the	rows	of	the	associated	Recordset	object.	These	methods	are
similar,	but	not	the	same	as	the	methods	on	the	ADO	Recordset	object.

Events

RDS	supports	two	of	its	own	events,	which	are	independent	of	the	ADO	event
model.	The	onReadyStateChange	event	is	called	whenever	the
RDS.DataControl	ReadyState	property	changes,	thus	notifying	you	when	an
asynchronous	operation	has	successfully	completed,	terminated,	or	experienced
an	error.	The	onError	event	is	called	whenever	an	error	occurs,	even	if	the	error
occurs	during	an	asynchronous	operation.

Note			Microsoft	Internet	Explorer	provides	two	additional	events	to	RDS
—onDataSetChanged	(the	Recordset	is	functional	but	still	retrieving	rows)	and
onDataSetComplete	(the	Recordset	has	finished	retrieving	rows).

Next			RDS	Programming	Model	with	Objects.

RDS	Programming	Model	with	Objects

The	goal	of	RDS	is	to	gain	access	to	and	update	data	sources	through	an
intermediary	such	as	IIS.	The	programming	model	specifies	the	sequence	of
activities	necessary	to	accomplish	this	goal.	The	object	model	specifies	the
objects	whose	methods	and	properties	affect	the	programming	model.

RDS	provides	the	means	to	perform	the	following	sequence	of	actions:

1.	 Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	way	(proxy)
to	refer	to	it	from	the	client.	(RDS.DataSpace)

2.	 Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.	(proxy	or
RDS.DataControl)

3.	 The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.	Optionally,	the	Recordset	object	is	processed	on
the	server.	(RDSServer.DataFactory)

4.	 The	server	program	returns	the	final	Recordset	object	to	the	client
application.	(proxy)

5.	 On	the	client,	the	Recordset	object	is	put	into	a	form	that	can	be	easily	used
by	visual	controls.	(visual	control	and	RDS.DataControl)

6.	 Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.	(RDS.DataControl	or	RDSServer.DataFactory)

Next			RDS	Object	Model	Summary.

RDS	Object	Model	Summary

Object Description

RDS.DataSpace

This	object	only	contains	a	method	to	obtain	a
server	proxy.	The	proxy	may	be	the	default	or	a
custom	server	program	(business	object).	The
server	program	may	be	invoked	on	the	Internet,
an	intranet,	a	local	area	network,	or	be	a	local
dynamic-link	library.

RDSServer.DataFactory
This	object	represents	the	default	server
program.	It	executes	the	default	RDS	data
retrieval	and	update	behavior.

RDS.DataControl

This	object	can	automatically	invoke	the
RDS.DataSpace	and	RDSServer.DataFactory
objects.

Use	this	object	to	invoke	the	default	RDS	data
retrieval	or	update	behavior.

This	object	also	provides	the	means	for	visual
controls	to	access	the	returned	Recordset	object.

RDS	Tutorial

This	tutorial	illustrates	using	the	RDS	programming	model	to	query	and	update	a
data	source.	First,	it	describes	the	steps	necessary	to	accomplish	this	task.	Then
the	tutorial	is	repeated	in	Microsoft	Visual	Basic,	Scripting	Edition	and
Microsoft	Visual	J++,	featuring	ADO	for	Windows	Foundation	Classes
(ADO/WFC).

This	tutorial	is	coded	in	different	languages	for	two	reasons:

The	documentation	for	RDS	assumes	the	reader	codes	in	Visual	Basic.	This
makes	the	documentation	convenient	for	Visual	Basic	programmers,	but
less	useful	for	programmers	who	use	other	languages.

If	you	are	uncertain	about	a	particular	RDS	feature	and	you	know	a	little	of
another	language,	you	may	be	able	to	resolve	your	question	by	looking	for
the	same	feature	expressed	in	another	language.

How	the	Tutorial	is	Presented

This	tutorial	is	based	on	the	RDS	programming	model.	It	discusses	each	step	of
the	programming	model	individually.	In	addition,	it	illustrates	each	step	with	a
fragment	of	Visual	Basic	code.

The	code	example	is	repeated	in	other	languages	with	minimal	discussion.	Each
step	in	a	given	programming	language	tutorial	is	marked	with	the	corresponding
step	in	the	programming	model	and	descriptive	tutorial.	Use	the	number	of	the
step	to	refer	to	the	discussion	in	the	descriptive	tutorial.

The	RDS	programming	model	is	stated	below.	Use	it	as	a	roadmap	as	you
proceed	through	the	tutorial.

RDS	Programming	Model	with	Objects

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	way	(proxy)
to	refer	to	it	from	the	client.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.	Optionally,	the	Recordset	object	is	processed	on
the	server.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Next			Step	1:	Specify	a	Server	Program

Step	1:	Specify	a	Server	Program	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.
Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

In	the	most	general	case,	use	the	RDS.DataSpace	object	CreateObject	method	to
specify	the	default	server	program,	RDSServer.DataFactory,	or	your	own	custom
server	program	(business	object).	A	server	program	is	instantiated	on	the	server,
and	a	reference	to	the	server	program,	or	proxy,	is	returned.

This	tutorial	uses	the	default	server	program:

Sub	RDSTutorial1()

			Dim	DS	as	New	RDS.DataSpace

			Dim	DF	as	Object

			Set	DF	=	DS.CreateObject("RDSServer.DataFactory",	"http://yourServer")

...

Next			Step	2:	Invoke	the	Server	Program

Step	2:	Invoke	the	Server	Program	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

When	you	invoke	a	method	on	the	client	proxy,	the	actual	program	on	the	server
executes	the	method.	In	this	step,	you'll	execute	a	query	on	the	server.

Part	A			If	you	weren't	using	RDSServer.DataFactory	in	this	tutorial,	the	most
convenient	way	to	perform	this	step	would	be	to	use	the	RDS.DataControl
object.	The	RDS.DataControl	combines	the	previous	step	of	creating	a	proxy,
with	this	step,	issuing	the	query.

Set	the	RDS.DataControl	object	Server	property	to	identify	where	the	server
program	should	be	instantiated;	the	Connect	property	to	specify	the	connect
string	to	access	the	data	source;	and	the	SQL	property	to	specify	the	query
command	text.	Then	issue	the	Refresh	method	to	cause	the	server	program	to
connect	to	the	data	source,	retrieve	rows	specified	by	the	query,	and	return	a
Recordset	object	to	the	client.

This	tutorial	doesn't	use	the	RDS.DataControl,	but	this	is	how	it	would	look	if	it
did:

Sub	RDSTutorial2A()

			Dim	DC	as	New	RDS.DataControl

			DC.Server	=	"http://yourServer"

			DC.Connect	=	"DSN=Pubs"

			DC.SQL	=	"SELECT	*	FROM	Authors"

			DC.Refresh

...

Nor	does	the	tutorial	invoke	RDS	with	ADO	objects,	but	this	is	how	it	would
look	if	it	did:

Dim	rs	as	New	ADODB.Recordset

			rs.Open	"SELECT	*	FROM	Authors",	"Provider=MS	Remote;Data	Source=Pubs;

Part	B			The	general	method	of	performing	this	step	is	to	invoke	the
RDSServer.DataFactory	object	Query	method.	That	method	takes	a	connect
string,	which	is	used	to	connect	to	a	data	source,	and	a	command	text,	which	is
used	to	specify	the	rows	to	be	returned	from	the	data	source.

This	tutorial	uses	the	DataFactory	object	Query	method:

Sub	RDSTutorial2B()

			Dim	DS	as	New	RDS.DataSpace

			Dim	DF

			Dim	RS	as	ADODB.Recordset

			Set	DF	=	DS.CreateObject("RDSServer.DataFactory",	"http://yourServer")

			Set	RS	=	DF.Query	("DSN=Pubs",	"SELECT	*	FROM	Authors")

...

Next			Step	3:	Server	Obtains	a	Recordset

Step	3:	Server	Obtains	a	Recordset	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

The	server	program	uses	the	connect	string	and	command	text	to	query	the	data
source	for	the	desired	rows.	ADO	is	typically	used	to	retrieve	this	Recordset,
although	other	Microsoft	data	access	interfaces,	such	as	OLE	DB,	could	be	used.
See	the	ADO	Tutorial	for	a	detailed	explanation	of	how	a	query	is	performed.

A	custom	server	program	might	look	like	this:

Public	Function	ServerProgram(cn	as	String,	qry	as	String)	as	Object

Dim	rs	as	New	ADODB.Recordset

			rs.CursorLocation	=	adUseClient

			rs.Open	qry,	cn	

			rs.ActiveConnection	=	Nothing

			Set	ServerProgram	=	rs

End	Function

Next			Step	4:	Server	Returns	the	Recordset

Step	4:	Server	Returns	the	Recordset	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

RDS	converts	the	retrieved	Recordset	object	to	a	form	that	can	be	sent	back	to
the	client	(that	is,	it	marshals	the	Recordset).	The	exact	form	of	the	conversion
and	how	it	is	sent	depends	on	whether	the	server	is	on	the	Internet	or	an	intranet,
a	local	area	network,	or	is	a	dynamic-link	library.	However,	this	detail	isn't
critical;	all	that	matters	is	that	RDS	sends	the	Recordset	back	to	the	client.

On	the	client	side,	a	Recordset	object	is	returned	and	assigned	to	a	local
variable.

Sub	RDSTutorial4()

			Dim	DS	as	New	RDS.DataSpace

			Dim	RS	as	ADODB.Recordset

			Dim	DF	as	Object

			Set	DF	=	DS.CreateObject("RDSServer.DataFactory",	"http://yourServer")

			Set	RS	=	DF.Query("DSN=Pubs",	"SELECT	*	FROM	Authors")

...

Next			Step	5:	DataControl	is	made	usable

Step	5:	DataControl	is	Made	Usable	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that
can	be	easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

The	returned	Recordset	object	is	available	for	use.	You	can	examine,	navigate,
or	edit	it	as	you	would	any	other	Recordset.	What	you	can	do	with	the
Recordset	depends	on	your	environment.	Visual	Basic	and	Visual	C++	have
visual	controls	that	can	use	a	Recordset	directly,	or	indirectly,	with	the	aid	of	an
enabling	data	control.

For	example,	if	you	are	displaying	a	Web	page	in	Microsoft	Internet	Explorer,
you	might	want	to	display	the	Recordset	object	data	in	a	visual	control.	Visual

controls	on	a	Web	page	cannot	access	a	Recordset	object	directly.	However,
they	can	access	the	Recordset	object	through	the	RDS.DataControl.	The
RDS.DataControl	becomes	usable	by	a	visual	control	when	its	SourceRecordset
property	is	set	to	the	Recordset	object.

The	visual	control	object	must	have	its	DATASRC	parameter	set	to	the
RDS.DataControl,	and	its	DATAFLD	property	set	to	a	Recordset	object	field
(column).

In	this	tutorial,	set	the	SourceRecordset	property.

Sub	RDSTutorial5()

			Dim	DS	as	New	RDS.DataSpace

			Dim	RS	as	ADODB.Recordset

			Dim	DC	as	New	RDS.DataControl

			Dim	DF	as	Object

			Set	DF	=	DS.CreateObject("RDSServer.DataFactory",	"http://yourServer")

			Set	RS	=	DF.Query	("DSN=Pubs",	"SELECT	*	FROM	Authors")

			DC.SourceRecordset	=	RS												'	Visual	controls	can	now	bind	to	DC.

...

Next			Step	6:	Changes	are	Sent	to	the	Server

Step	6:	Changes	are	Sent	to	the	Server	(RDS	Tutorial)

You	are	Here...

Specify	the	program	to	be	invoked	on	the	server,	and	obtain	a	proxy.

Invoke	the	server	program.	Pass	parameters	to	the	server	program	that
identifies	the	data	source	and	the	command	to	issue.

The	server	program	obtains	a	Recordset	object	from	the	data	source,
typically	by	using	ADO.

The	server	program	returns	the	final	Recordset	object	to	the	client
application.

On	the	client,	the	Recordset	object	is	optionally	put	into	a	form	that	can	be
easily	used	by	visual	controls.

Changes	to	the	Recordset	object	are	sent	back	to	the	server	and	used	to
update	the	data	source.

Discussion

If	the	Recordset	object	is	edited,	any	changes	(that	is,	rows	that	are	added,
changed,	or	deleted)	can	be	sent	back	to	the	server.

Note			The	default	behavior	of	RDS	can	be	invoked	implicitly	with	ADO	objects
and	the	Microsoft	OLE	DB	Remoting	Provider.	Queries	can	return	recordsets,
and	edited	recordsets	can	update	the	data	source.	This	tutorial	doesn't	invoke
RDS	with	ADO	objects,	but	this	is	how	it	would	look	if	it	did:

Dim	rs	as	New	ADODB.Recordset

rs.Open	"SELECT	*	FROM	Authors",	"Provider=MS	Remote;Data	Source=Pubs;

...														'	Edit	the	recordset

rs.UpdateBatch			'	The	equivalent	of	SubmitChanges

...

Part	A			Assume	for	this	case	that	you	have	only	used	the	RDS.DataControl	and
that	a	Recordset	object	is	now	associated	with	the	RDS.DataControl.	The
SubmitChanges	method	updates	the	data	source	with	any	changes	to	the
Recordset	object	if	the	Server	and	Connect	properties	are	still	set.

Sub	RDSTutorial6A()

Dim	DC	as	New	RDS.DataControl

Dim	RS	as	ADODB.Recordset

DC.Server	=	"http://yourServer"

DC.Connect	=	"DSN=Pubs"

DC.SQL	=	"SELECT	*	FROM	Authors"

DC.Refresh

...

Set	RS	=	DC.Recordset

			'	Edit	the	Recordset

...

DC.SubmitChanges

...

Part	B			Alternatively,	you	could	update	the	server	with	the
RDSServer.DataFactory	object,	specifying	a	connection	and	a	Recordset	object.

Sub	RDSTutorial6B()

Dim	DS	As	New	RDS.DataSpace

Dim	RS	As	ADODB.Recordset

Dim	DC	As	New	RDS.DataControl

Dim	DF	As	Object

Dim	blnStatus	As	Boolean

Set	DF	=	DS.CreateObject("RDSServer.DataFactory",	"http://yourServer")

Set	RS	=	DF.Query	("DSN=Pubs",	"SELECT	*	FROM	Authors")

DC.SourceRecordset	=	RS				'	Visual	controls	can	now	bind	to	DC.

				'	Edit	the	Recordset

blnStatus	=	DF.SubmitChanges	"DSN=Pubs",	RS

End	Sub

This	is	the	end	of	the	tutorial.

RDS	Tutorial	(VBScript)

This	is	the	RDS	Tutorial,	written	in	Microsoft	Visual	Basic,	Scripting	Edition.
See	the	RDS	Tutorial	for	a	description	of	the	purpose	of	this	tutorial.

In	this	tutorial,	RDS.DataControl	and	RDS.DataSpace	are	created	at	design	time
—that	is,	they	are	defined	with	object	tags,	like	this:	<OBJECT>...</OBJECT>.
Alternatively,	they	could	be	created	at	run	time	with	the	Server.CreateObject
method.	For	example,	the	RDS.DataControl	object	could	be	created	like	this:

Set	DC	=	Server.CreateObject("RDS.DataControl")

				<!--	RDS.DataControl	-->

				<OBJECT	

								ID="DC1"	CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E33">

				</OBJECT>

				<!--	RDS.DataSpace	-->

				<OBJECT	

								ID="DS1"	WIDTH=1	HEIGHT=1

								CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">

				</OBJECT>

				

				<SCRIPT	LANGUAGE="VBScript">

				Sub	RDSTutorial()

				Dim	DF1	

Step	1—Specify	a	server	program

VBScript	can	discover	the	name	of	the	IIS	Web	server	it	is	running	on	by
accessing	the	VBScript	Request.ServerVariables	method	available	to	Active
Server	Pages:

"http://<%=Request.ServerVariables("SERVER_NAME")%>"

However,	for	this	tutorial,	use	the	imaginary	server,	"yourServer".

Note			Pay	attention	to	the	data	type	of	ByRef	arguments.	VBScript	does	not	let
you	specify	the	variable	type,	so	you	must	always	pass	a	Variant.	When	using
HTTP,	RDS	will	allow	you	to	pass	a	Variant	to	a	method	that	expects	a	non-
Variant	if	you	invoke	it	with	the	RDS.DataSpace	object	CreateObject	method.
When	using	DCOM	or	an	in-process	server,	match	the	parameter	types	on	the
client	and	server	sides	or	you	will	receive	a	"Type	Mismatch"	error.

Set	DF1	=	DS1.CreateObject("RDSServer.DataFactory",	"http://yourServer")

Step	2a—Invoke	the	server	program	with	RDS.DataControl

This	example	is	merely	a	comment	demonstrating	that	the	default	behavior	of
the	RDS.DataControl	is	to	perform	the	specified	query.

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="DC1">

				<PARAM	NAME="SQL"	VALUE="SELECT	*	FROM	Authors">

				<PARAM	NAME="Connect"	VALUE="DSN=Pubs;">

				<PARAM	NAME="Server"	VALUE="http://YourServer/">

</OBJECT>

...

<SCRIPT	LANGUAGE="VBScript">

Sub	RDSTutorial2A()

			Dim	RS

			DC1.Refresh

			Set	RS	=	DC1.Recordset

...

Step	2b—Invoke	the	server	program	with	RDSServer.DataFactory

Step	3—Server	obtains	a	Recordset

Step	4—Server	returns	the	Recordset

Set	RS	=	DF1.Query("DSN=Pubs;",	"SELECT	*	FROM	Authors")

Step	5—DataControl	is	made	usable	by	visual	controls

'	Assign	the	returned	recordset	to	the	DataControl.

DC1.SourceRecordset	=	RS

Step	6a—Changes	are	sent	to	the	server	with	RDS.DataControl

This	example	is	merely	a	comment	demonstrating	how	the	RDS.DataControl
performs	updates.

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="DC1">

				<PARAM	NAME="SQL"	VALUE="SELECT	*	FROM	Authors">

				<PARAM	NAME="Connect"	VALUE="DSN=Pubs;">

				<PARAM	NAME="Server"	VALUE="http://YourServer/">

</OBJECT>

...

<SCRIPT	LANGUAGE="VBScript">

Sub	RDSTutorial6A()

Dim	RS

DC1.Refresh

...

Set	RS	=	DC1.Recordset

'	Edit	the	Recordset	object...

'	The	SERVER	and	CONNECT	properties	are	already	set	from	Step	2A.

Set	DC1.SourceRecordset	=	RS

...

DC1.SubmitChanges

Step	6b—Changes	are	sent	to	the	server	with	RDSServer.DataFactory

DF.SubmitChanges	"DSN=Pubs",	RS

End	Sub

</SCRIPT>

</BODY>

</HTML>

This	is	the	end	of	the	tutorial.

RDS	Tutorial	(VJ++)

ADO/WFC	doesn't	completely	follow	the	RDS	object	model	in	that	it	does	not
implement	the	RDS.DataControl	object.	ADO/WFC	only	implements	the	client-
side	class,	RDS.DataSpace.

The	DataSpace	class	implements	one	method,	CreateObject,	which	returns	an
ObjectProxy	object.	The	DataSpace	class	also	implements	the	InternetTimeout
property.

The	ObjectProxy	class	implements	one	method,	call,	which	can	invoke	any
server-side	business	object.

This	is	the	beginning	of	the	tutorial.

import	com.ms.wfc.data.*;

public	class	RDSTutorial	

{

				public	void	tutorial()

				{

//	Step	1:	Specify	a	server	program	

								ObjectProxy	obj	=	

												DataSpace.createObject(

																"RDSServer.DataFactory",	

																"http://YourServer");

//	Step	2:	Server	returns	a	Recordset	

								Recordset	rs	=	(Recordset)	obj.call(

																"Query",	

																new	Object[]	{"DSN=Pubs;",	"SELECT	*	FROM	Authors"});

//	Step	3:	Changes	are	sent	to	the	server	

								...																																//	Edit	Recordset

								obj.call(

																"SubmitChanges",	

																new	Object[]	{"DSN=Pubs;",	rs});				

								return;

				}

}

This	is	the	end	of	the	tutorial.

RDS	Scenario

The	Address	Book	application	is	a	scenario	that	shows	you	how	to	use	Remote
Data	Service	(RDS)	to	build	a	simple,	data-aware	Web	application—an	online
corporate	address	book.	This	scenario	is	useful	for	Microsoft	Visual	Basic,
Scripting	Edition	(VBScript)	and	COM	programmers	who	want	to	learn	how	to
use	data-aware	ActiveX	controls	with	RDS,	and	for	more	experienced
application	developers	who	want	to	build	data-centric	Web	applications.

This	scenario	assumes	you	know	how	to	use	basic	HTML	layout	tags,	use
DHTML	data	binding	techniques,	and	program	with	ActiveX	controls.

The	complete	source	code	for	the	Address	Book	sample	application	can	be	found
at	<drive>:\Platform	SDK\samples\dataaccess\rds\AddrBook\AddrBook.asp	if
you	have	installed	the	Platform	SDK.	To	view	the	Address	Book	scenario,	in
Internet	Explorer	4.0	or	later,	type
http://webserver/RDS/AddrBook/AddrBook.asp	where	webserver	is	the	name
given	to	your	Windows	NT	4.0	or	Windows	2000	Web	server	computer	running
Internet	Information	Services	(IIS)	and	ASP.

Introduction	to	Address	Book

The	Address	Book	sample	application	provides	a	simple	online	address	book
that	you	can	use	to	publish	a	searchable	directory	over	an	intranet.	The	address
book	is	designed	so	that	a	user	can	enter	a	search	string	in	one	or	more	fields	to
request	information	about	employees.	To	show	you	the	basic	features	of	Remote
Data	Service,	the	sample	application	is	intentionally	kept	small,	with	a	minimum
number	of	objects	and	search	fields.

The	application	interface	consists	of	the	following	parts:

A	non-visual	RDS.DataControl	data-binding	object	utilized	by	the	client	to
connect	to	the	database.

HTML	text	boxes	that	act	as	input	fields	for	employee	attribute	search
criteria.

HTML	command	buttons	to	build	queries,	clear	search	fields,	update	the
database	with	employee	information,	cancel	pending	changes,	and	navigate
the	rows	of	data	displayed	in	the	grid.

DHTML	data	binding	to	display	data	returned	from	queries	against	a	back-
end	database	(through	the	RDS.DataControl	data-binding	object)	in	a
table.

VBScript	routines	that	connect	each	of	the	elements	above	and	allow	them
to	interact.	VBScript	code	is	also	used	to	initialize	the	RDS.DataControl
object	and	dynamically	create	the	column	headings	in	the	HTML	table	from
the	names	of	the	RDS.DataControl	recordset	fields.

Follow	the	links	from	step	to	step	to	set	up	and	run	the	scenario	and	to	learn
more	about	how	the	scenario	works.

Next			System	Requirements	for	the	Address	Book	Application

System	Requirements	for	the	Address	Book	Application

To	set	up	the	Address	Book	sample	application,	you	need	to	meet	the	following
software	and	database	requirements.

Software	Requirements

The	server	computer	software	requirements	for	running	this	Web	application
include:

Microsoft	Windows	NT®	Server	4.0,	with	Service	Pack	3	or	later,	or
Microsoft	Windows®	2000	Server.

Microsoft	Internet	Information	Services	(IIS)	version	3.0	or	later,	with
Active	Server	Pages.

The	client	computer	software	requirements	for	running	this	Web	application
include:

Microsoft	Internet	Explorer	4.0	or	later.

Microsoft	Windows	NT	4.0	Workstation	or	Server,	Windows	2000,	or
Microsoft	Windows	98.

Database	Requirements

To	use	this	sample,	you	must	have:

An	operational	Microsoft	SQL	Server	version	6.5	or	later	database	server.

Privileges	to	create	the	database	and	populate	it	with	the	sample	data.

Verification	of	the	populated	data	through	Enterprise	Manager	or	the	ISQL
utilities	(called	Query	Analyzer	in	SQL	Server	7.0).

If	you	don't	have	privileges,	your	database	administrator	may	need	to	set	up	the
system	and	give	you	access	permission	to	the	database,	or	set	up	the	database	for
you.

Next			Running	the	Address	Book	SQL	Script

Running	the	Address	Book	SQL	Script

You	must	use	either	the	ISQL/Query	Analyzer	command-line	utility	or	the	SQL
Server	Enterprise	Manager	to	run	the	included	SQL	script	(Sampleemp.sql)	that:

Creates	a	new	database,	AddrBookDB,	on	the	default	device.

Connects	to	the	database,	AddrBookDB.

Creates	an	Employee	table.

Populates	the	table	with	sample	data.

Runs	a	simple	SELECT	statement	to	verify	the	population	of	the	database
table.

Sets	up	a	user	account	called	"rdsdemo"	with	a	password	of	"rdsdemo."

To	run	the	Sampleemp.sql	script

In	Microsoft	SQL	Server	6.5:

1.	 Click	Start,	point	to	Programs,	and	then	point	to	Microsoft	SQL	Server
6.5.	Click	SQL	Enterprise	Manager.

2.	 From	the	Tools	menu,	click	SQL	Query	Tool.

3.	 Click	Load	SQL	Script	and	browse	to	c:\Platform
SDK\Samples\DataAccess\RDS\AddrBook.

4.	 Select	the	file	Sampleemp.sql.	Click	Open.

5.	 Click	the	Execute	Query	button	(the	green	arrow	on	the	toolbar).

6.	 After	it	executes,	close	the	Query	and	Enterprise	Manager	windows.

In	Microsoft	SQL	Server	7.0:

1.	 Click	Start,	point	to	Programs,	and	then	point	to	Microsoft	SQL	Server
7.0.	Click	Enterprise	Manager.

2.	 Be	sure	that	the	SQL	Server	that	you	want	to	use	is	selected	from	your	list
of	registered	servers	in	Enterprise	Manager.

3.	 From	the	Tools	menu,	click	SQL	Server	Query	Analyzer.

4.	 Click	the	Load	SQL	Script	button	(the	open	folder	on	the	toolbar)	and
browse	to	c:\Platform	SDK\Samples\DataAccess\RDS\AddrBook.

5.	 Select	the	file	Sampleemp.sql.	Click	Open.

6.	 Click	the	Execute	Query	button	(the	green	arrow	on	the	toolbar)	or	F5.

7.	 After	it	executes,	close	the	Query,	Query	Analyzer,	and	Enterprise
Manager	windows.

Next			Running	the	Address	Book	Sample	Application

Running	the	Address	Book	Sample	Application

To	run	the	Address	Book	application,	follow	this	procedure.

To	run	this	application

1.	 Make	sure	that	Microsoft	SQL	Server	is	running.	Click	Start,	point	to
Programs,	point	to	Microsoft	SQL	Server	7.0,	and	then	click	Service
Manager.	If	there	is	a	green	arrow	in	the	white	circle,	then	SQL	Server	is
running.	If	it	isn't	(there	will	be	a	red	square	in	the	white	circle),	click
Start/Continue.

2.	 In	Microsoft	Internet	Explorer	4.0	or	later,	type	the	following	address:

http://webserver/RDS/AddrBook/AddrBook.asp

where	webserver	is	the	name	of	the	Web	server	where	the	RDS	server
components	are	installed.

3.	 You	can	then	try	various	scenarios	in	the	Address	Book	sample	application,
such	as	searching	for	a	person	based	on	his	or	her	e-mail	name,	listing	all
people	with	the	title	"Program	Manager,"	or	editing	existing	records.	Click
Find	to	fill	the	data	grid	with	all	the	available	names.

Next			Address	Book	Data-Binding	Object

Address	Book	Data-Binding	Object

The	Address	Book	application	uses	the	RDS.DataControl	object	to	bind	data
from	the	SQL	Server	database	to	a	visual	object	(in	this	case,	a	DHTML	table)	in
the	application's	client	HTML	page.	The	event-driven	VBScript	program	logic
uses	the	RDS.DataControl	to:

Query	the	database,	send	updates	to	the	database,	and	refresh	the	data	grid.

Allow	users	to	move	to	the	first,	next,	previous,	or	last	record	in	the	data
grid.

The	following	code	defines	the	RDS.DataControl	component:

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=DC1	Width=1	Height=1>

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=sqloledb;

Initial	Catalog=AddrBookDb;User	ID=adcdemo;Password=adcdemo;">

</OBJECT>

The	OBJECT	tag	defines	the	RDS.DataControl	component	in	the	program.	The
tag	includes	two	types	of	parameters:

Those	associated	with	the	generic	OBJECT	tag.

Those	specific	to	the	RDS.DataControl	object.

Generic	OBJECT	Tag	Parameters

The	following	table	describes	the	parameters	associated	with	the	OBJECT	tag.

Parameter Description

CLASSID

A	unique,	128-bit	number	that	identifies	the	type	of	embedded
object	to	the	system.	This	identifier	is	maintained	in	the	local
computer's	system	registry.	(For	the	class	IDs	of	the
RDS.DataControl	object,	see	RDS.DataControl	Object.)

ID Defines	a	document-wide	identifier	for	the	embedded	object
that	is	used	to	identify	it	in	code.

RDS.DataControl	Tag	Parameters

The	following	table	describes	the	parameters	specific	to	the	RDS.DataControl
object.	(For	a	complete	list	of	the	RDS.DataControl	object	parameters,	and
when	to	implement	them,	see	RDS.DataControl	object.)

Parameter Description

SERVER If	you	are	using	HTTP,	the	value	is	the	name	of	the	server
computer	preceded	by	HTTP://.

CONNECT Provides	the	necessary	connection	information	for	the
RDS.DataControl	to	connect	to	SQL	Server.

SQL Sets	or	returns	the	query	string	used	to	retrieve	the	Recordset.

Next			Address	Book	Command	Buttons

Address	Book	Command	Buttons

The	Address	Book	application	includes	the	following	command	buttons:

A	Find	button	to	submit	a	query	to	the	database.

A	Clear	button	to	clear	the	text	boxes	before	starting	a	new	search.

An	Update	Profile	button	to	save	changes	to	an	employee	record.

A	Cancel	Changes	button	to	discard	changes.

Find	Button

Clicking	the	Find	button	activates	the	VBScript	Find_OnClick	Sub	procedure,
which	builds	and	sends	the	SQL	query.	Clicking	this	button	populates	the	data
grid.

Building	the	SQL	Query

The	first	part	of	the	Find_OnClick	Sub	procedure	builds	the	SQL	query,	one
phrase	at	a	time,	by	appending	text	strings	to	a	global	SQL	SELECT	statement.
It	begins	by	setting	the	variable	myQuery	to	an	SQL	SELECT	statement	that
requests	all	rows	of	data	from	the	data	source	table.	Next,	the	Sub	procedure
scans	each	of	the	four	input	boxes	on	the	page.

Because	the	program	uses	the	word	like	in	building	the	SQL	statements,	the
queries	are	substring	searches	rather	than	exact	matches.

For	example,	if	the	Last	Name	box	contained	the	entry	"Berge"	and	the	Title

box	contained	the	entry	"Program	Manager",	the	SQL	statement	(value	of
myQuery)	would	read:

Select	FirstName,	LastName,	Title,	Email,	Building,	Room,	Phone	from	Employee	where	lastname	like	'Berge%'	and	title	like	'Program	Manager%'

If	the	query	was	successful,	all	persons	with	a	last	name	containing	the	text
"Berge"	(such	as	Berge	and	Berger),	with	a	title	containing	the	words	"Program
Manager"	(for	example,	Program	Manager,	Advanced	Technologies)	are
displayed	in	the	HTML	data	grid.

Preparing	and	Sending	the	Query

The	last	part	of	the	Find_OnClick	Sub	procedure	consists	of	two	statements.	The
first	statement	assigns	the	SQL	property	of	the	RDS.DataControl	object	equal	to
the	dynamically	built	SQL	query.	The	second	statement	causes	the
RDS.DataControl	object	(DC1)	to	query	the	database,	and	then	display	the	new
results	of	the	query	in	the	grid.

Sub	Find_OnClick

				‘...

				DC1.SQL	=	myQuery

				DC1.Refresh

End	Sub

Update	Profile	Button

Clicking	the	Update	Profile	button	activates	the	VBScript	Update_OnClick	Sub
procedure,	which	executes	the	RDS.DataControl	object's	(DC1)	SubmitChanges
and	Refresh	methods.

Sub	Update_OnClick

				DC1.SubmitChanges

				DC1.Refresh

End	Sub

When	DC1.SubmitChanges	executes,	the	Remote	Data	Service	packages	all	the
update	information	and	sends	it	to	the	server	via	HTTP.	The	update	is	all-or-
nothing;	if	a	part	of	the	update	isn't	successful,	none	of	the	changes	is	made,	and
a	status	message	is	returned.	DC1.Refresh	isn't	necessary	after	SubmitChanges
with	Remote	Data	Service,	but	it	ensures	fresh	data.

Cancel	Changes	Button

Clicking	Cancel	Changes	activates	the	VBScript	Cancel_OnClick	Sub
procedure,	which	executes	the	RDS.DataControl	object's	(DC1)	CancelUpdate
method.

Sub	Cancel_OnClick

				DC1.CancelUpdate

End	Sub

When	DC1.CancelUpdate	executes,	it	discards	any	edits	that	a	user	has	made	to
an	employee	record	on	the	data	grid	since	the	last	query	or	update.	It	restores	the
original	values.

Next			Address	Book	Navigation	Buttons

Address	Book	Navigation	Buttons

The	Address	Book	application	displays	the	navigation	buttons	at	the	bottom	of
the	Web	page.	You	can	use	the	navigation	buttons	to	navigate	through	the	data	in
the	HTML	grid	display	by	selecting	either	the	first	or	last	row	of	data,	or	rows
adjacent	to	the	current	selection.

Navigation	Sub	Procedures

The	Address	Book	application	contains	several	procedures	that	allow	users	to
click	the	First,	Next,	Previous,	and	Last	buttons	to	move	around	the	data.

For	example,	clicking	the	First	button	activates	the	VBScript	First_OnClick	Sub
procedure.	The	procedure	executes	a	MoveFirst	method,	which	makes	the	first
row	of	data	the	current	selection.	Clicking	the	Last	button	activates	the
Last_OnClick	Sub	procedure,	which	invokes	the	MoveLast	method,	making	the
last	row	of	data	the	current	selection.	The	remaining	navigation	buttons	work	in
a	similar	fashion.

'	Move	to	the	first	record	in	the	bound	recordset.

Sub	First_OnClick

				DC1.Recordset.MoveFirst

End	Sub

'	Move	to	the	next	record	from	the	current	position	

'	in	the	bound	recordset.

Sub	Next_OnClick

				If	Not	DC1.Recordset.EOF	Then				'	cannot	move	beyond	bottom	record

								DC1.Recordset.MoveNext

								Exit	Sub

				End	If				

End	Sub

'	Move	to	the	previous	record	from	the	current	position	in	the	bound	

'	recordset.

Sub	Prev_OnClick

				If	Not	DC1.Recordset.BOF	Then				'	cannot	move	beyond	top	record

								DC1.Recordset.MovePrevious

								Exit	Sub

				End	If

End	Sub

'	Move	to	the	last	record	in	the	bound	recordset.

Sub	Last_OnClick

				DC1.Recordset.MoveLast

End	Sub

Using	RDS

Use	the	information	in	this	section	to	set	your	server	up	and	use	RDS	quickly.
This	information	includes	specific	configuration	steps	that	you	may	need	to	take
when	implementing	RDS,	describes	some	of	the	key	relationships	between	RDS
and	other	technologies,	and	helps	discover	solutions	to	issues	you	may	encounter
when	setting	up	an	RDS	solution.

This	section	contains	information	about:

Configuring	RDS
Using	Related	Technologies	with	RDS

Troubleshooting	RDS

Configuring	RDS

To	implement	RDS	efficiently,	be	sure	you	are	familiar	with	the	various
configurations	available	to	you.	This	section	includes	important	information	on
security	and	scalability	in	your	implementation	of	RDS.	See	the	following	topics
for	information	about	configuring	your	computers	to	use	RDS.

Granting	Guest	Privileges	to	a	Web	Server	Computer
Registering	a	Custom	Business	Object

Marking	Business	Objects	as	Safe	for	Scripting

Registering	Business	Objects	on	the	Client	for	Use	with	DCOM

Setting	DCOM	Stream	Marshaling	Format

Enabling	a	DLL	to	Run	on	DCOM

Configuring	Virtual	Servers	on	IIS

Specifying	Threads	Per	Processor	on	IIS

Securing	RDS	Applications

Configuring	DataFactory	for	Safe	or	Unrestricted	Modes

Granting	Guest	Privileges	to	a	Web	Server	Computer

The	anonymous	Web	server	account	(IUSR_ComputerName)	must	be	added	to
the	Guests	local	group	on	the	Web	server	computer	to	use	RDS.

To	grant	guest	privileges	to	a	Web	server	computer

1.	 On	your	Windows	2000	Server	computer,	click	Start,	point	to	Programs,
point	to	Administrative	Tools,	and	then	click	Computer	Management.

2.	 In	the	console	tree,	in	Local	Users	and	Groups,	click	Groups.

3.	 Select	the	Guests	local	group.	From	the	Action	menu,	choose	Properties.

4.	 In	the	Guests	Properties	dialog	box,	click	Add.

5.	 If	the	anonymous	Web	server	account	doesn't	appear	in	the	list	in	the	Select
Users	or	Groups	dialog	box,	type	its	name	(IUSR_ComputerName)	into
the	bottom	blank	box,	then	click	Add.

6.	 Click	OK.

Registering	a	Custom	Business	Object

To	successfully	launch	a	custom	business	object	(.dll	or	.exe)	through	the	Web
server,	the	business	object's	ProgID	must	be	entered	into	the	registry	as
explained	in	this	procedure.	This	RDS	feature	protects	the	security	of	your	Web
server	by	running	only	sanctioned	executables.

Note			For	MDAC	2.0	and	later,	the	default	business	object,
RDSServer.DataFactory,	is	not	registered	by	default	during	MDAC	installation.
However,	if	RDSServer.DataFactory	was	registered	as	safe	for	execution	on
the	computer	prior	to	the	installation,	the	registry	entry	is	maintained	for	the	new
installation.

To	register	a	custom	business	object

1.	 Click	Start	and	then	click	Run.

2.	 Type	RegEdit	and	click	OK.

3.	 In	the	Registry	Editor,	navigate	to	the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\W3SVC\Parameters\ADCLaunch
registry	key.

4.	 Select	the	ADCLaunch	key,	and	then	from	the	Edit	menu,	point	to	New
and	click	Key.

5.	 Type	the	ProgID	of	your	custom	business	object	and	click	Enter.	Leave	the
Value	entry	blank.

Marking	Business	Objects	as	Safe	for	Scripting

To	help	ensure	a	secure	Internet	environment,	you	need	to	mark	any	business
objects	instantiated	with	the	RDS.DataSpace	object's	CreateObject	method	as
"safe	for	scripting."	You	need	to	ensure	they	are	marked	as	such	in	the	License
area	of	the	system	registry	before	they	can	be	used	in	DCOM.

To	manually	mark	your	business	object	as	safe	for	scripting,	create	a	text	file
with	a	.reg	extension	that	contains	the	following	text.	The	following	two
numbers	enable	the	safe-for-scripting	feature:

[HKEY_CLASSES_ROOT\CLSID\<MyActiveXGUID>\Implemented	

Categories\{7DD95801-9882-11CF-9FA9-00AA006C42C4}]

[HKEY_CLASSES_ROOT\CLSID\<MyActiveXGUID>\Implemented	

Categories\{7DD95802-9882-11CF-9FA9-00AA006C42C4}]

where	<MyActiveXGUID>	is	the	hexadecimal	GUID	number	of	your	business
object.	Save	it	and	merge	it	into	your	registry	by	using	the	Registry	Editor	or
double-clicking	the	.reg	file	in	the	Windows	Explorer.

Business	objects	created	in	Microsoft	Visual	Basic	can	be	automatically	marked
as	"safe	for	scripting"	with	the	Package	and	Deployment	Wizard.	When	the
wizard	asks	you	to	specify	safety	settings,	select	Safe	for	initialization	and	Safe
for	scripting.

On	the	last	step,	the	Application	Setup	Wizard	creates	an	.htm	and	a	.cab	file.
You	can	then	copy	these	two	files	to	the	target	computer	and	double-click	the
.htm	file	to	load	the	page	and	correctly	register	the	server.

Because	the	business	object	will	be	installed	in	the	Windows\System32\Occache
directory	by	default,	you	should	move	it	to	the	Windows\System32	directory	and

change	HKEY_CLASSES_ROOT\CLSID\
<MyActiveXGUID>\InprocServer32	registry	key	to	match	the	correct	path.

Registering	Business	Objects	on	the	Client	for	Use	with	DCOM

Custom	business	objects	need	to	ensure	that	the	client	side	can	map	their
program	name	(ProgId)	to	an	identifier	(CLSID)	that	can	be	used	over	DCOM.
For	this	reason,	the	ProgID	of	the	DCOM	object	must	be	in	the	client-side
registry	and	map	to	the	class	ID	of	the	server-side	business	object.	For	the	other
supported	protocols	(HTTP,	HTTPS,	and	in-process),	this	isn't	necessary.

For	example,	if	you	expose	a	server-side	business	object	called	MyBObj	with	a
specific	class	ID,	for	instance,	"{00112233-4455-6677-8899-
00AABBCCDDEE}",	you	should	make	sure	the	following	entries	are	added	to
the	client-side	registry:

[HKEY_CLASSES_ROOT]

\MyBObj

				\Clsid

				(Default)	"{00112233-4455-6677-8899-00AABBCCDDEE}"

Setting	DCOM	Stream	Marshaling	Format

A	client	computer	using	components	from	RDS	1.5	or	prior	is	not	compatible
with	a	server	using	components	from	RDS	2.0	or	later.	When	using	DCOM	as
the	underlying	protocol,	the	support	for	RDS	2.0	or	later	is	more	efficient	in
transporting	Recordset	objects.	If	your	client	is	running	components	from	RDS
1.5	or	earlier,	you	can	set	your	server	to	work	with	the	previous	RDS	support
(called	RDS	1.0)	or	the	newer	RDS	support	(called	RDS	2.0	or	later).	Set	either
of	the	following	registry	entries:

[HKEY_CLASSES_ROOT]

\CLSID

				\[58ECEE30-E715-11CF-B0E3-00AA003F000F}

								\ADTGOptions]"MarshalFormat"="RDS10"

-or-

[HKEY_CLASSES_ROOT]

\CLSID

				\[58ECEE30-E715-11CF-B0E3-00AA003F000F}

								\ADTGOptions]"MarshalFormat"="RDS20"

Enabling	a	DLL	to	Run	on	DCOM

The	following	steps	outline	how	to	enable	a	business	object	.dll	to	use	both
DCOM	and	Microsoft	Internet	Information	Services	(HTTP)	via	Component
Services.

1.	 Create	a	new	empty	package	in	the	Component	Services	MMC	snap-in.

You	will	use	the	Component	Services	MMC	snap-in	to	create	a	package	and
add	the	DLL	into	this	package.	This	makes	the	.dll	accessible	through
DCOM,	but	it	removes	the	accessibility	through	IIS.	(If	you	check	in	the
registry	for	the	.dll,	the	Inproc	key	is	now	empty;	setting	the	Activation
attribute,	explained	later	in	this	topic,	adds	a	value	in	the	Inproc	key.)

2.	 Install	a	business	object	into	the	package.

-or-

Import	the	RDSServer.DataFactory	object	into	the	package.

3.	 Set	the	Activation	attribute	for	the	package	to	In	the	creator's	process
(Library	application).

To	make	the	.dll	accessible	through	DCOM	and	IIS	on	the	same	computer,
you	must	set	the	component's	Activation	attribute	in	the	Component
Services	MMC	snap-in.	After	you	set	the	attribute	to	In	the	creator's
process,	you	will	notice	that	an	Inproc	server	key	in	the	registry	has	been
added	that	points	to	a	Component	Services	surrogate	.dll.

See	Also			For	more	information	about	Component	Services	(or	Microsoft
Transaction	Service,	if	you	are	using	Windows	NT)	and	how	to	perform

these	steps,	refer	to	the	Component	Services	documentation	or	visit	the
Transaction	Server	Web	site	at	http://www.microsoft.com/com/tech/mts.asp.

http://msdn.microsoft.com/library/sdkdoc/cossdk/betaintr_8cfn.htm
http://www.microsoft.com/com/tech/mts.asp

Configuring	Virtual	Servers	on	IIS

When	creating	virtual	servers	in	Internet	Information	Services	4.0,	the	following
two	extra	steps	are	needed	in	order	to	configure	the	virtual	server	to	work	with
RDS:

1.	 When	setting	up	the	server,	check	"Allow	Execute	Access."

2.	 Move	msadcs.dll	to	vroot\msadc,	where	vroot	is	the	home	directory	of	your
virtual	server.

Specifying	Threads	Per	Processor	on	IIS

When	using	RDS	with	Internet	Information	Services	(IIS)	4.0	or	later,	the
number	of	threads	created	per	processor	can	be	controlled	by	manipulating	the
registry	on	the	Web	server.	The	number	of	threads	per	processor	can	affect
performance	in	a	high	traffic	situation,	or	in	low	traffic	situations	with	large
query	sizes.	The	user	should	experiment	for	best	results.

The	method	used	to	determine	and	change	the	default	value	for	this	setting
depends	upon	the	configuration	of	the	IIS	4.0	server.

With	MDAC	2.1.2.4202.3	(GA)	or	later	installed	on	the	IIS	server,	RDS	uses	the
same	Component	Services	(or	Microsoft	Transaction	Services,	if	you	are	using
Windows	NT)	thread	pool	as	ASP	scripts	use.	The	default	value	for	the	number
of	threads	per	processor	is	10.	To	change	the	default,	you	must	add	the	following
key	to	the	server	registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\InetInfo\Parameters\

where	MaxPoolThreads	is	a	REG_DWORD.	MaxPoolThreads	does	not	appear
in	the	Registry	unless	it	is	specifically	added.	Valid	values	range	from	5	to	a
recommended	maximum	of	20.	If	the	value	specified	by	the	registry	key	is
greater	than	the	value	of	the	PoolThreadLimit	key	(located	under	the	same	path),
then	PoolThreadLimit	value	is	used.

Alternatively,	if	MDAC	2.1	2.1.1.3711.11	(GA)	or	earlier	is	installed	on	the	IIS
server,	the	default	value	for	the	number	of	threads	per	processor	is	6.	To	change
the	default,	you	must	add	the	following	key	to	the	registry	on	the	IIS	server:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters

where	ADCThreads	is	a	REG_DWORD.	ADCThreads	does	not	appear	in	the
Registry	unless	it	is	specifically	added.	The	range	of	valid	values	is	1	to	50.	If
the	value	specified	by	the	registry	key	is	greater	than	50,	then	the	maximum
value	is	used	(50).

Securing	RDS	Applications

Microsoft	Internet	Explorer	Security	Issues

With	new	security	enhancements	added	to	Microsoft	Internet	Explorer,	some
ADO	and	RDS	objects	are	restricted	to	running	only	in	a	"safe"	mode
environment.	This	requires	that	you	are	aware	of	these	issues,	including	different
zones,	security	levels,	restrictive	behavior,	unsafe	operations,	and	customized
security	settings.

For	more	information	about	these	issues,	see	"ADO	and	RDS	Security	Issues	in
Microsoft	Internet	Explorer"	under	ActiveX	Data	Objects	(ADO)	Technical
Articles	in	Microsoft	Data	Access	Technical	Articles.

Security	and	Your	Web	Server

If	you	use	the	RDSServer.DataFactory	object	on	your	Internet	Web	server,
remember	that	doing	so	creates	a	potential	security	risk.	External	users	who
obtain	valid	data	source	name	(DSN),	user	ID,	and	password	information	could
write	pages	to	send	any	query	to	that	data	source.	If	you	want	more	restricted
access	to	a	data	source,	one	option	is	to	unregister	and	delete	the
RDSServer.DataFactory	object	(msadcf.dll),	and	instead	use	custom	business
objects	with	hard-coded	queries.

For	more	information	on	the	security	implications	of	using	the
RDSServer.Datafactory	object,	refer	to	Microsoft	Security	Bulletin	MS99-025
on	the	Microsoft	Security	Web	site	at
http://www.microsoft.com/security/default.asp.

Client	Impersonation	and	Security

mk:@MSITStore:wp210.chm::/htm/mdmscSecurityWithADO.htm
http://www.microsoft.com/security/default.asp

If	the	Password	Authentication	property	for	your	IIS	Web	server	is	set	to
Windows	NT	Challenge/Response	authentication	(for	Windows	NT	4.0)	or	to
Integrated	Windows	authentication	(for	Windows	2000),	then	business	objects
are	invoked	under	the	client's	security	context.	This	is	a	new	feature	in	RDS	1.5
that	allows	Client	Impersonation	over	HTTP.	When	working	in	this	mode,	the
logon	to	the	Web	server	(IIS)	is	not	anonymous	but	uses	the	user	ID	and
password	that	the	client	computer	is	running	under.	If	the	ODBC	DSNs	are	set
up	to	use	Trusted	Connection,	then	access	to	databases,	such	as	SQL	Server,	also
happens	under	the	client's	security	context.	But	this	only	works	if	the	database	is
on	the	same	computer	as	the	IIS;	the	client	credentials	cannot	be	carried	over	to
yet	another	computer.

For	example,	a	client,	John	Doe,	with	userid="JohnD"	and	password="secret"	is
logged	on	to	a	client	computer.	He	runs	a	browser-based	application	that	needs
to	access	the	RDSServer.DataFactory	object	to	create	a	Recordset	by	executing
an	SQL	query	on	the	"MyServer"	computer	running	IIS.	MyServer,	a	system
running	Windows	NT	Server	4.0,	is	set	up	to	use	Windows	NT
Challenge/Response	authentication,	its	ODBC	DSN	has	"Use	Trusted
Connection"	selected,	and	the	server	also	contains	the	SQL	Server	data	source.
When	a	request	is	received	on	the	Web	server,	it	asks	the	client	for	the	user	ID
and	password.	Thus,	the	request	is	logged	on	MyServer	as	coming	from
"JohnD"/"Secret"	instead	of	IUSER_MyServer	(which	is	the	default	when
Anonymous	Password	Authentication	is	on).	Similarly,	when	logging	on	to	SQL
Server,	"JohnD"/"Secret"	is	used.

Consequently,	the	IIS	Windows	NT	Challenge/Response	authentication	mode
allows	HTML	pages	to	be	created	without	the	user	being	explicitly	prompted	for
the	user	ID	and	password	information	needed	to	log	on	to	the	database.	If	the	IIS
Basic	Authentication	were	being	used,	then	this	also	would	be	required.

Password	Authentication

RDS	can	communicate	with	an	IIS	Web	server	running	in	any	one	of	the	three
Password	Authentication	modes:	Anonymous,	Basic,	or	NT	Challenge/Response
authentication	(called	Integrated	Windows	authentication	in	Windows	2000).
These	settings	define	how	a	Web	server	controls	access	through	it,	such	as
requiring	that	a	client	computer	have	explicit	access	privileges	on	the	NT	Web
server.

Configuring	DataFactory	for	Safe	or	Unrestricted	Modes

By	default,	ADO	is	installed	with	a	"safe"	RDSServer.DataFactory
configuration.	Safe	mode	for	RDS	Server	components	means	that	the	following
are	true:

1.	 Handler	is	required	with	the	RDSServer.DataFactory	(this	is	mandated	by	a
registry	key	setting).

2.	 The	default	handler,	msdfmap.handler,	is	registered,	present	in	the	safe-
handler	list,	and	marked	as	the	default	handler.

3.	 Msdfmap.ini	file	is	installed	in	the	Windows	directory.	You	must	configure
this	file	according	to	your	needs,	before	using	RDS	in	three-tier	mode.

Optionally,	you	can	configure	an	unrestricted	DataFactory	installation.
DataFactory	can	be	used	directly	without	the	custom	handler.	Users	can	still	use
a	custom	handler	by	modifying	the	connection	strings,	but	it	is	not	required.	For
more	information	on	the	implications	of	using	the	RDSServer.DataFactory
object,	see	Securing	RDS	Applications.

The	registry	file	handsafe.reg	has	been	provided	to	set	up	the	handler	registry
entries	for	a	safe	configuration.	To	run	in	safe	mode,	run	handsafe.reg.

The	registry	file	handunsf.reg	has	been	provided	to	set	up	the	handler	registry
entries	for	an	unrestricted	configuration.	To	run	in	unrestricted	mode,	run
handunsf.reg.

For	more	information	about	using	the	customization	handler	feature	of	RDS,	see
the	technical	article	"Using	the	Customization	Handler	Feature	in	RDS	2.0,"
available	at	http://www.microsoft.com/data/ado/rds/custhand.htm.

http://www.microsoft.com/data/ado/rds/custhand.htm

Using	Related	Technologies	with	RDS

This	section	contains	specific	information	about	using	RDS	with	aspects	of	the
following	technologies:

ODBC	Connection	Pooling
Microsoft	Component	Services

Many	other	technologies	interact	with	Remote	Data	Service	or	are	used	in	its
implementation.

Internet	Information	Services			For	more	information	about	Microsoft	Internet
Information	Services	(IIS)	or	Active	Server	Pages	(ASP),	see	the	IIS	Web	site	at
http://www.microsoft.com/ntserver/web/exec/feature/Datasheet.asp	.

Microsoft	Component	Services			For	more	information	about	Component
Services	(known	as	Microsoft	Transaction	Server	in	Windows	NT),	see	the
Windows	Web	page	at	http://www.microsoft.com/windows/default.asp.	For
information	about	Microsoft	Transaction	Server,	see	the	MTS	Web	site	at
http://www.microsoft.com/com/tech/mts.asp.

Microsoft	SQL	Server			For	more	information	about	Microsoft	SQL	Server,	see
the	SQL	Server	Web	site	at	http://www.microsoft.com/sql/.

Microsoft	Internet	Explorer			For	more	information	about	Microsoft	Internet
Explorer,	see	the	Internet	Explorer	Web	page	at
http://www.microsoft.com/windows/ie/default.htm	and	the	MSDN	Online	Web
Workshop	page	at	http://msdn.microsoft.com/workshop/default.asp.

Microsoft	Windows	NT	Server/Windows	2000	Server			For	more	information
about	security	in	Microsoft	Windows	NT	Server	or	Windows	2000	Server,	see

http://www.microsoft.com/ntserver/web/exec/feature/Datasheet.asp
http://www.microsoft.com/windows/default.asp
http://www.microsoft.com/com/tech/mts.asp
http://www.microsoft.com/sql/
http://www.microsoft.com/windows/ie/default.htm
http://msdn.microsoft.com/workshop/default.asp

the	Windows	Web	page	at	http://www.microsoft.com/windows/default.asp.

http://www.microsoft.com/windows/default.asp

Using	RDS	with	ODBC	Connection	Pooling

If	you're	using	an	ODBC	data	source,	you	can	use	the	connection	pooling	option
in	Internet	Information	Services	(IIS)	to	achieve	high	performance	handling	of
client	load.	Connection	pooling	is	a	resource	manager	for	connections,
maintaining	the	open	state	on	frequently	used	connections.

To	enable	connection	pooling,	refer	to	the	Internet	Information	Services
documentation.

Please	note	that	enabling	connection	pooling	may	subject	the	Web	server	to
other	restrictions,	as	noted	in	the	Microsoft	Internet	Information	Services
documentation.

To	ensure	that	connection	pooling	is	stable	and	provides	additional	performance
gains,	you	must	configure	Microsoft	SQL	Server	to	use	the	TCP/IP	Socket
network	library.

To	do	this,	you	need	to:

Configure	the	SQL	Server	computer	to	use	TCP/IP	Sockets.

Configure	the	Web	server	to	use	TCP/IP	Sockets.

Configuring	the	SQL	Server	Computer	to	Use	TCP/IP	Sockets

On	the	SQL	Server	computer,	run	the	SQL	Server	Setup	program	so	that
interactions	with	the	data	source	use	the	TCP/IP	Socket	network	library.

To	specify	the	TCP/IP	Socket	network	library	on	the	SQL	Server	computer

In	Microsoft	SQL	Server	6.5:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
6.5,	and	then	click	SQL	Setup.

2.	 Click	Continue	twice.

3.	 In	the	Microsoft	SQL	Server	—Options	dialog	box,	select	Change
Network	Support,	and	then	click	Continue.

4.	 Make	sure	the	TCP/IP	Sockets	check	box	is	selected,	and	click	OK.

5.	 Click	Continue	to	finish,	and	exit	setup.

In	Microsoft	SQL	Server	7.0:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
7.0,	and	then	click	Server	Network	Utility.

2.	 On	the	General	tab	of	the	dialog	box,	click	Add.

3.	 In	the	Add	Network	Library	Configuration	dialog	box,	click	TCP/IP.

4.	 In	the	Port	number	and	Proxy	address	boxes,	enter	the	port	number	and
proxy	address	provided	by	your	network	administrator.

5.	 Click	OK	to	finish,	and	exit	setup.

Configuring	the	Web	Server	to	Use	TCP/IP	Sockets

There	are	two	options	for	configuring	the	Web	server	to	use	TCP/IP	Sockets.
What	you	do	depends	on	whether	all	SQL	Servers	are	accessed	from	the	Web
server,	or	only	a	specific	SQL	Server	is	accessed	from	the	Web	server.

If	all	SQL	Servers	are	accessed	from	the	Web	server,	you	need	to	run	the	SQL
Server	Client	Configuration	Utility	on	the	Web	server	computer.	The	following
steps	change	the	default	network	library	for	all	SQL	Server	connections	made
from	this	IIS	Web	server	to	use	the	TCP/IP	Sockets	network	library.

To	configure	the	Web	server	(all	SQL	Servers)

For	Microsoft	SQL	Server	6.5:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
6.5	,	and	then	click	SQL	Client	Configuration	Utility.

2.	 Click	the	Net	Library	tab.

3.	 In	the	Default	Network	box,	select	TCP/IP	Sockets.

4.	 Click	Done	to	save	changes	and	exit	the	utility.

For	Microsoft	SQL	Server	7.0:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
7.0	,	and	then	click	Client	Network	Utility.

2.	 Click	the	General	tab.

3.	 In	the	Default	network	library	box,	click	TCP/IP.

4.	 Click	OK	to	save	changes	and	exit	the	utility.

If	a	specific	SQL	Server	is	accessed	from	a	Web	server,	you	need	to	run	the	SQL
Server	Client	Configuration	Utility	on	the	Web	server	computer.	To	change	the
network	library	for	a	specific	SQL	Server	connection,	configure	the	SQL	Server
Client	software	on	the	Web	server	computer	as	follows.

To	configure	the	Web	server	(a	specific	SQL	Server)

For	Microsoft	SQL	Server	6.5:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
6.5,	and	then	click	SQL	Client	Configuration	Utility.

2.	 Click	the	Advanced	tab.

3.	 In	the	Server	box,	type	the	name	of	the	server	to	connect	to	using	TCP/IP
Sockets.

4.	 In	the	DLL	Name	box,	select	TCP/IP	Sockets.

5.	 Click	Add/Modify.	All	data	sources	pointing	to	this	server	will	now	use
TCP/IP	Sockets.

6.	 Click	Done.

For	Microsoft	SQL	Server	7.0:

1.	 From	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL	Server
7.0,	and	then	click	Client	Configuration	Utility.

2.	 Click	the	General	tab.

3.	 Click	Add.

4.	 Enter	the	alias	of	the	server	in	the	Server	alias	box.	In	the	Network
libraries	box,	click	TCP/IP.	In	the	Computer	name	box,	enter	the
computer	name	of	the	computer	that	listens	for	TCP/IP	Sockets	clients.	In
the	Port	number	box,	enter	the	port	on	which	the	SQL	Server	listens.

5.	 Click	OK,	and	then	OK	again	to	exit	the	utility.

Running	Business	Objects	in	Component	Services

Business	objects	can	be	executable	files	(.exe)	or	dynamic-link	libraries	(.dll).
The	configuration	you	use	to	run	the	business	object	depends	on	whether	the
object	is	a	.dll	or	.exe	file:

Business	objects	created	as	.exe	files	can	be	called	through	DCOM.	If	these
business	objects	are	used	through	Internet	Information	Services	(IIS),	they
are	subject	to	additional	marshaling	of	data,	which	will	slow	client
performance.

Business	objects	created	as	.dll	files	can	be	used	via	IIS	(and	therefore
HTTP).	They	can	also	be	used	over	DCOM	only	via	Component	Services
(or	Microsoft	Transaction	Server,	if	you	are	using	Windows	NT).	Business
object	DLLs	will	need	to	be	registered	on	the	IIS	server	computer	to	give
you	accessibility	via	IIS.	(For	steps	on	how	to	configure	a	DLL	to	run	on
DCOM,	see	the	section,	"Enabling	a	DLL	to	Run	on	DCOM.")

Note			When	business	objects	on	the	middle	tier	are	implemented	as
Component	Services	components	(using	GetObjectContext,	SetComplete,
and	SetAbort),	they	can	use	Component	Services	(or	MTS,	if	you	are	using
Windows	NT)	context	objects	to	maintain	their	state	across	multiple	client
calls.	This	scenario	is	possible	with	DCOM,	which	is	typically	implemented
between	trusted	clients	and	servers	(an	intranet).	In	this	case,	the
RDS.DataSpace	object	and	CreateObject	method	on	the	client	side	are
replaced	by	the	transaction	context	object	and	CreateInstance	method
(provided	by	the	ITransactionContext	interface),	implemented	by
Component	Services.

Troubleshooting	RDS

Refer	to	this	section	for	solutions	to	specific	errors	or	issues	with	RDS.	The
issues	discussed	in	this	section	are:

"Internet	Server	Error:	Access	Denied"
Deadlocks	With	Read	Repeatable	Isolation	Level

Ensuring	Sufficient	TempDB	Space

Minimizing	Log	File	Space	Usage

"Internet	Server	Error:	Access	Denied"

If	you	get	this	error,	it	usually	means	that	Microsoft	Internet	Information
Services	(IIS)	returned	the	following	status:

HTTP_STATUS_DENIED	401

Make	sure	the	directories	accessed	by	IIS	have	proper	permissions.	RDS	can
communicate	with	an	IIS	Web	server	running	in	any	one	of	the	three	Password
Authentication	modes:	Anonymous,	Basic,	or	NT	Challenge/Response	(called
Integrated	Windows	authentication	in	Windows	2000).	Also,	the	Web	server
must	have	permissions	to	the	data	source	computer	if	it	is	a
Windows	NT/Windows	2000	computer.

Deadlocks	With	Read	Repeatable	Isolation	Level

If	a	custom	business	object	uses	an	isolation	level	of	read	repeatable	to	access	a
SQL	Server,	and	the	business	object	is	called	simultaneously	by	two	clients	that
send	a	query	and	update	in	the	same	transaction,	a	deadlock	is	possible.	Remote
Data	Service	is	designed	to	allow	one	of	the	processes	to	time	out	to	release	the
deadlock,	but	the	update	will	fail	for	that	client.

Use	the	Cursor	Service	Command	Time	Out	dynamic	property	to	modify	the
length	of	the	timeout.

Ensuring	Sufficient	TempDB	Space

If	errors	occur	while	handling	Recordset	objects	that	need	processing	space	on
Microsoft	SQL	Server	6.5,	you	may	need	to	increase	the	size	of	the	TempDB.
(Some	queries	require	temporary	processing	space;	for	example,	a	query	with	an
ORDER	BY	clause	requires	a	sort	of	the	Recordset,	which	requires	some
temporary	space.)

Important			Read	through	this	procedure	before	performing	the	actions	because
it	isn't	as	easy	to	shrink	a	device	once	it	is	expanded.

Note			By	default	in	Microsoft	SQL	Server	7.0	and	later,	TempDB	is	set	to
automatically	grow	as	needed.	Therefore,	this	procedure	may	only	be	necessary
on	servers	running	versions	earlier	than	7.0.

To	increase	the	TempDB	space	on	SQL	Server	6.5

1.	 Start	Microsoft®	SQL	Server	Enterprise	Manager,	open	the	tree	for	the
Server,	and	then	open	the	Database	Devices	tree.

2.	 Select	a	(physical)	device	to	expand,	such	as	Master,	and	double-click	the
device	to	open	the	Edit	Database	Device	dialog	box.

This	dialog	box	shows	how	much	space	the	current	databases	are	using.

3.	 In	the	Size	box,	increase	the	device	to	the	desired	amount	(for	example,	50
megabytes	(MB)	of	hard	disk	space).

4.	 Click	Change	Now	to	increase	the	amount	of	space	to	which	the	(logical)
TempDB	can	expand.

5.	 Open	the	Databases	tree	on	the	server,	and	then	double-click	TempDB	to
open	the	Edit	Database	dialog	box.	The	Database	tab	lists	the	amount	of
space	currently	allocated	to	TempDB	(Data	Size).	By	default,	this	is	2	MB.

6.	 Under	the	Size	group,	click	Expand.	The	graphs	show	the	available	and
allocated	space	on	each	of	the	physical	devices.	The	bars	in	maroon	color
represent	available	space.

7.	 Select	a	Log	Device,	such	as	Master,	to	display	the	available	size	in	the
Size	(MB)	box.

8.	 Click	Expand	Now	to	allocate	that	space	to	the	TempDB	database.

The	Edit	Database	dialog	box	displays	the	new	allocated	size	for	TempDB.

See	Also			For	more	information	about	this	topic,	search	the	Microsoft	SQL
Server	Enterprise	Manager	Help	file	for	"Expand	Database	dialog	box."

Minimizing	Log	File	Space	Usage

A	log	file	may	fill	quickly	(thus	halting	the	server)	if	there	is	a	large	volume	of
activity	on	an	SQL	Server	database.	You	can	set	the	log	file	to	Truncate	on
Checkpoint	to	significantly	extend	the	life	of	the	log	file	for	a	database.

To	enable	Truncate	on	Checkpoint	in	Microsoft	SQL	Server	6.5

1.	 Start	Microsoft	SQL	Server	Enterprise	Manager,	open	the	tree	for	the
Server,	and	then	open	the	Database	Devices	tree.

2.	 Double-click	the	name	of	the	database	on	which	this	feature	will	be
enabled.

3.	 From	the	Database	tab,	select	Truncate.

4.	 From	the	Options	tab,	select	Truncate	Log	on	Checkpoint,	and	then	click
OK.

To	enable	Truncate	on	Checkpoint	in	Microsoft	SQL	Server	7.0

1.	 Start	Microsoft	SQL	Server	Enterprise	Manager,	open	the	tree	for	the
Server,	and	then	open	the	Databases	tree.

2.	 Right-click	the	name	of	the	database	on	which	this	feature	will	be	enabled
and	choose	Properties.

3.	 From	the	Options	tab,	select	Truncate	log	on	checkpoint,	and	then	click
OK.

See	Also			For	more	information	about	the	Truncate	on	Checkpoint

feature,	see	the	Microsoft	SQL	Server	documentation.

ADO	Features

The	following	topics	describe	various	features	available	in	ADO	and	RDS.

Shorthand	for	Creating	a	Recordset
Recordset	Persistence

Index	Support	and	Find,	Sort,	and	Filter

Records	and	Streams

ADO	Event	Model,	Synchronous	and	Asynchronous	Operations

Data	Shaping

DataFactory	Customization

Shorthand	for	Creating	a	Recordset

ADO	provides	a	shorthand	method	to	create	a	Recordset	by	appending	new	Field
objects	to	the	Fields	collection	of	a	Recordset.	Later,	you	can	open	the
Recordset	and	insert	data	from	any	source—not	necessarily	a	database—into	it.
You	can	also	manufacture	the	data	programmatically.

The	new	Recordset	can	employ	all	the	data	manipulation	methods	available	to
any	Recordset.	Use	the	Recordset	to	supply	information	to	a	visual	control,	or
even	to	update	an	actual	data	source.

The	following	Visual	Basic	code	shows	an	example	of	the	shorthand	method	to
create	a	Recordset.

Sub	CreateRS()

				Dim	rs	As	New	ADODB.Recordset

				

				rs.Fields.Append	"Field1",	adChar,	10

				rs.Fields.Append	"Field2",	adInteger

				rs.Open

				rs.AddNew

				rs("Field1")	=	"any	string"

				rs("Field2")	=	9

				

				Do	While	Not	rs.EOF

								Debug.Print	rs("Field1")	&	"	"	&	rs("Field2")

								rs.MoveNext

				Loop

				

				rs.Close

				Set	rs	=	Nothing

End	Sub

Recordset	Persistence

The	Microsoft	OLE	DB	Persistence	Provider	supports	storing	a	Recordset
object	in	a	file	with	the	Recordset	object's	Save	method.	The	persistently	stored
file	may	exist	on	a	local	drive,	network	server,	or	as	a	URL	on	a	Web	site.	Later,
the	file	can	be	restored	with	either	the	Recordset	object's	Open	method,	or	the
Connection	object's	Execute	method.

In	addition,	the	GetString	method	converts	a	Recordset	object	to	a	form	in
which	the	columns	and	rows	are	delimited	with	characters	you	specify.

To	persist	a	Recordset,	begin	by	converting	it	to	a	form	that	can	be	stored	in	a
file.	Recordset	objects	can	be	stored	in	the	proprietary	Advanced	Data
TableGram	(ADTG)	format,	or	the	open	Extensible	Markup	Language	(XML)
format.

Note			Two	limitations	apply	when	saving	hierarchical	Recordsets	(data	shapes)
to	XML	format.	You	cannot	save	to	XML	if	the	hierarchical	Recordset	contains
pending	updates,	and	you	cannot	save	a	parameterized	hierarchical	Recordset.

Then,	save	any	pending	changes	in	the	persisted	file.	Doing	this	allows	you	to
issue	a	query	that	returns	a	Recordset	object;	edits	the	recordset;	saves	it	and	the
pending	changes;	later,	restores	the	recordset;	then	updates	the	data	source	with
the	saved	pending	changes.

For	information	about	persistently	storing	Stream	objects,	see	Streams	and
Persistence.

For	an	example	of	Recordset	persistence,	see	the	XML	Recordset	Persistence
Scenario.

Example

Save	a	Recordset:

Dim	rs	as	New	ADODB.Recordset

rs.Save	"c:\yourFile.adtg",	adPersistADTG

Open	a	persisted	file	with	Recordset.Open:

Dim	rs	as	New	ADODB.Recordset

rs.Open	"c:\yourFile.adtg",	"Provider=MSPersist",,,adCmdFile

Optionally,	if	the	Recordset	does	not	have	an	active	connection,	you	can	accept
all	the	defaults	and	simply	code	the	following:

Dim	rs	as	New	ADODB.Recordset

rs.Open	"c:\yourFile.adtg"

Open	a	persisted	file	with	Connection.Execute:

Dim	conn	as	New	ADODB.Connection

Dim	rs	as	ADODB.Recordset

conn.Open	"Provider=MSPersist"

Set	rs	=	conn.execute("c:\yourFile.adtg")

Open	a	persisted	file	with	RDS.DataControl:

In	this	case,	the	Server	property	is	not	set.

Dim	dc	as	New	RDS.DataControl

dc.Connection	=	"Provider=MSPersist"

dc.SQL	=	"c:\yourFile.adtg"

dc.Refresh

XML	Recordset	Persistence	Scenario

In	this	scenario,	you	will	create	an	Active	Server	Pages	(ASP)	application	that
saves	the	contents	of	a	Recordset	object	directly	to	the	ASP	Response	object.

Note			This	scenario	requires	that	your	server	have	Internet	Information	Server
5.0	(IIS)	or	later	installed.

The	returned	Recordset	is	displayed	in	Internet	Explorer	using	an
RDS.DataControl.

The	following	steps	are	necessary	to	create	this	scenario:

1.	 Set	up	the	application.

2.	 Get	the	data.

3.	 Send	the	data.

4.	 Receive	the	data.

5.	 Display	the	data.

Next			Step	1:	Set	Up	the	Application

Step	1:	Set	Up	the	Application

Create	an	IIS	virtual	directory	named	"XMLPersist"	with	script	permissions.
Create	two	new	text	files	in	the	folder	to	which	the	virtual	directory	points,	one
named	"XMLResponse.asp",	the	other	named	"Default.htm".

Next			Step	2:	Get	the	Data

Step	2:	Get	the	Data

In	this	step	you	will	write	the	code	to	open	an	ADO	Recordset	and	prepare	to
send	it	to	the	client.	Open	the	file	XMLResponse.asp	with	a	text	editor,	such	as
Windows	Notepad,	and	insert	the	following	code.

<%@	codepage="65001"	%>

<object	id="rstCustomers"	progid="ADODB.Recordset"	runat="Server">

</object>

<!--	metadata	name="Microsoft	ActiveX	Data	Objects	2.5	Library"	

					type="TypeLib"	uuid="{00000205-0000-0010-8000-00AA006D2EA4}"	-->

<%

		Option	Explicit

		Response.Buffer	=	True

		Dim	strSQL,	strConnection

		Response.ContentType	=	"text/xml"

		Response.Expires	=	0

		Response.Buffer	=	False

		strSQL="SELECT	title_id,	title,	type	FROM	titles"	&	_

									"	ORDER	By	title"

		strConnection	=	"Provider=MSDataShape;Data	Provider=SQLOLEDB;"	&	_

																						"Database=Pubs;Data	Source=SRV;User	Id=sa;"	&	_

																								"Password=;"

		rstCustomers.Open	strSQL,	strConnection,	adOpenStatic,	

						adLockBatchOptimistic

Be	sure	to	change	the	value	of	the	Data	Source	parameter	in	strConnection	to	the
name	of	your	Microsoft	SQL	Server	computer.	The	codepage	for	the	page	is	set
to	65001	(Unicode)	so	that	it	will	return	XML.

Keep	the	file	open,	and	go	on	to	the	next	step.

Next			Step3:	Send	the	Data

Step	3:	Send	the	Data

Now	that	you	have	a	Recordset,	you	need	to	send	it	to	the	client	by	saving	it	as
XML	to	the	ASP	Response	object.	Add	the	following	code	to	the	bottom	of
XMLResponse.asp.

		Response.Write	"<?xml	version='1.0'	encoding='ISO-8859-1'?>"	&	vbCRLF

		rstCustomers.save	Response,	adPersistXML

		rstCustomers.Close

%>

Notice	that	the	ASP	Response	object	is	specified	as	the	destination	for	the
Recordset	Save	method.	The	destination	of	the	Save	method	can	be	any	object
that	supports	the	IStream	interface	such	as	an	ADO	Stream	object,	or	a	file	name
that	includes	the	complete	path	to	which	the	Recordset	is	to	be	saved.

Save	and	close	XMLResponse.asp	before	going	to	the	next	step.

Next			Step4:	Receive	the	Data

Step	4:	Receive	and	Display	the	Data

In	this	step	you	will	create	an	HTML	file	with	an	embedded	RDS.DataControl
object	that	points	at	the	XMLResponse.asp	file	to	get	the	Recordset.	Open
default.htm	with	a	text	editor	such	as	Windows	Notepad	and	add	the	code	below.
Replace	"yourserver"	in	the	URL	with	the	name	of	your	server	computer.

<HTML>

<HEAD><TITLE>ADO	Recordset	Persistence	Sample</TITLE></HEAD>

<BODY>

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="RDC1"

			<PARAM	NAME="URL"	

										VALUE="http://yourserver/XMLPersist/XMLResponse.asp">

</OBJECT>

<TABLE	DATASRC="#RDC1">

		<TR>

<TD></TD>

<TD></TD>

<TD></TD>

		</TR>

</TABLE>

</BODY>

</HTML>

Save	and	close	default.htm.	Using	Internet	Explorer	4.0	or	later,	open	the	URL
http://yourserver/XMLPersist/default.htm	and	observe	the	results.	The	data	is
displayed	in	a	bound	DHTML	table.	Now	open	the	URL
http://yourserver/XMLPersist/XMLResponse.asp	and	observe	the	results.	The
XML	is	displayed.

Index	Support	and	Find,	Sort,	and
Filter

Indexes	on	fields	can	greatly	enhance	the	performance	of	the	Recordset	object's
Find	method,	and	Sort	and	Filter	properties.	You	can	create	an	internal	index	for
a	Field	object	by	setting	its	dynamic	Optimize	property.	This	dynamic	property
is	added	to	the	Field	object's	Properties	collection	when	you	set	the
CursorLocation	property	to	adUseClient.	Remember	that	this	index	is	internal	to
ADO—you	can't	gain	access	to	it	or	use	it	for	any	other	purpose.	Also,	this	index
is	distinct	from	the	Recordset	object's	Index	property.

The	Sort	property	determines	the	order	in	which	rows	of	a	Recordset	are
traversed;	the	Filter	property	determines	which	rows	are	accessible	when
traversing	rows;	and	the	Find	method	quickly	locates	a	value	within	a	column
(field)	of	a	Recordset.	You	can	often	improve	the	speed	of	the	Find	method's
operation	on	a	column	by	using	the	Optimize	property	to	create	an	index	on	it.

Records	and	Streams

ADO	currently	provides	a	simple	means	of	accessing	information	in	data
sources,	such	as	relational	databases.	However,	a	lot	of	information	does	not
exist	as	tables	in	databases,	but	as	messages	in	electronic	mail	systems	and	files
in	modern	file	systems.	The	Record	and	Stream	objects	facilitate	access	to
information	stored	in	sources	other	than	relational	databases.

The	Record	object	can	represent	and	manage	data	such	as	directories	and	files	in
a	file	system,	or	folders	and	messages	in	an	e-mail	system.	A	Record	can	also
represent	a	row	in	a	Recordset,	although	Record	and	Recordset	objects	have
different	methods	and	properties.

The	Stream	object	provides	the	means	to	read,	write,	and	manage	the	binary
stream	of	bytes	that	comprise	a	file	or	message.

Uniform	Resource	Locators	(URLs)	can	be	used	as	an	alternative	to	connection
strings	and	command	text	to	specify	data	sources	and	the	location	of	files	and
directories.	You	can	use	URLs	with	the	existing	Connection	and	Recordset
objects,	as	well	as	with	the	Record	and	Stream	objects.

Several	ADO	objects	have	been	enhanced	to	work	in	conjunction	with	Record
and	Stream	objects.

The	Fields	collection	Append	method,	which	creates	and	adds	a	Field
object	to	the	collection,	can	also	specify	the	value	of	the	Field.

The	Update	method	finalizes	the	addition	or	deletion	of	fields	to	the
collection.	

As	a	shortcut	and	alternative	to	the	Append	method,	you	may	create	fields
by	simply	assigning	a	value	to	an	undefined	or	previously	deleted	field.

(For	purposes	of	discussion,	subsequent	use	of	the	term	directory	will	also	mean
folders,	and	the	term	file	will	also	mean	messages.)

See	the	following	topics	to	learn	more	about	using	Record	and	Stream	objects.

Absolute	and	Relative	URLs

Records	and	Provider-Supplied	Extra	Fields

Streams

Streams	and	Persistence

Using	ADO	with	the	OLE	DB	Provider	for	Internet	Publishing

Internet	Publishing	Scenario

Absolute	and	Relative	URLs

A	URL	specifies	the	location	of	a	target	stored	on	a	local	or	networked	computer,
such	as	a	file,	directory,	HTML	page,	image,	program,	and	so	on.	In	this
discussion,	an	absolute	URL	is	of	the	form:

scheme://server/path/resource

where:

scheme

Specifies	how	the	resource	is	to	be	accessed.

server

Specifies	the	name	of	the	computer	where	the	resource	is	located.

path

Specifies	the	sequence	of	directories	leading	to	the	target.	If	resource	is	omitted,
then	the	target	is	the	last	directory	in	path.

resource

If	included,	resource	is	the	target,	and	is	typically	the	name	of	a	file.	It	may	be	a
simple	file,	containing	a	single	binary	stream	of	bytes,	or	a	structured	document,
containing	one	or	more	storages	and	binary	streams	of	bytes.

An	absolute	URL	contains	all	the	information	necessary	to	locate	a	resource.

A	relative	URL	locates	a	resource	using	an	absolute	URL	as	a	starting	point.	In
effect,	the	"complete	URL"	of	the	target	is	specified	by	concatenating	the
absolute	and	relative	URLs.	A	relative	URL	typically	consists	only	of	the	path,
and	optionally,	the	resource,	but	no	scheme	or	server.

Defining	Context	with	a	URL

One	function	of	an	open	connection,	represented	by	a	Connection	object,	is	to
restrict	subsequent	operations	to	the	data	source	represented	by	that	connection.
That	is,	the	connection	defines	the	context	for	subsequent	operations.

With	this	release,	an	absolute	URL	may	also	define	a	context.	For	example,
when	a	Record	object	is	opened	with	an	absolute	URL,	a	Connection	object	is
implicitly	created	to	represent	the	resource	specified	by	the	URL.

An	absolute	URL	that	defines	a	context	may	be	specified	in	the
ActiveConnection	parameter	of	the	Record	object	Open	method.	An	absolute
URL	may	also	be	specified	as	the	value	of	the	new	"URL="	keyword	in	the
Connection	object	Open	method	ConnectionString	parameter,	and	the	Recordset
object	Open	method	ActiveConnection	parameter.

Context	may	also	be	defined	with	an	open	Record	or	Recordset	object	that
represents	a	directory,	because	these	objects	already	have	an	implicitly	or
explicitly	declared	Connection	object	that	specifies	context.

Scoped	Operations

The	context	simultaneously	defines	a	scope,	that	is,	the	directory	and	its
subdirectories	that	may	participate	in	subsequent	operations.	The	Record	object
has	several	scoped	methods,	including	CopyRecord,	MoveRecord,	and
DeleteRecord,	that	operate	on	a	directory	and	all	its	subdirectories.

Relative	URLs	as	Command	Text

A	string	specifying	a	command	to	be	executed	on	the	data	source	may	be
specified	in	the	Connection	object	Execute	method	CommandText	parameter,
and	the	Recordset	object	Open	method	Source	parameter.

A	relative	URL	may	be	specified	in	the	CommandText	or	Source	parameter.	The

relative	URL	does	not	actually	specify	a	command	(such	as	an	SQL	command);
it	is	merely	specified	in	those	parameters.	In	addition,	the	context	of	the	active
connection	must	be	an	absolute	URL,	and	the	Option	parameter	must	be	set	to
adCmdTableDirect.

For	example,	a	Recordset	could	be	opened	on	the	Readme25.txt	file	of	the
Winnt/system32	directory	like	this:

recordset.Open	"system32/Readme25.txt",						"URL=http://YourServer/Winnt/",,,adCmdTableDirect

The	absolute	URL	in	the	connection	string	specifies	the	server	(YourServer)	and
the	path	(Winnt).	This	URL	also	defines	the	context.

The	relative	URL	in	the	command	text	uses	the	absolute	URL	as	a	starting	point
and	specifies	the	remainder	of	the	path	(system32)	and	the	file	to	open
(Readme25.txt).

The	options	field	(adCmdTableDirect)	indicates	that	the	command	type	is	a
relative	URL.

As	another	example,	the	following	code	will	open	a	Recordset	on	the	contents
of	the	Winnt	directory:

recordset.Open	"",	"URL=http://YourServer/Winnt/",,,adCmdTableDirect

OLE	DB	Provider-Supplied	URL	Schemes

The	leading	part	of	a	fully-qualified	URL	is	the	scheme	used	to	access	the
resource	identified	by	the	remainder	of	the	URL.	Examples	are	HTTP
(HyperText	Transfer	Protocol)	and	FTP	(File	Transfer	Protocol).

With	this	release,	ADO	supports	OLE	DB	providers	that	recognize	their	own
URL	schemes.	For	example,	the	OLE	DB	Provider	for	Internet	Publishing,
which	accesses	"published"	Windows	2000	files,	recognizes	the	existing	HTTP
scheme.

Records	and	Provider-Supplied	Fields

When	a	Record	object	is	opened,	its	source	can	be	the	current	row	of	an	open
Recordset,	an	absolute	URL,	or	a	relative	URL	in	conjunction	with	an	open
Connection	object.

If	the	Record	is	opened	from	a	Recordset,	the	Record	object	Fields	collection
will	contain	all	the	fields	from	the	Recordset,	plus	any	fields	added	by	the
underlying	provider.

The	provider	may	insert	additional	fields	that	serve	as	supplementary
characteristics	of	the	Record.	As	a	result,	a	Record	may	have	unique	fields	not
in	the	Recordset	as	a	whole,	or	any	Record	derived	from	another	row	of	the
Recordset.

For	example,	all	rows	of	a	Recordset	derived	from	an	e-mail	data	source	might
have	columns	such	as	From,	To,	and	Subject.	A	Record	derived	from	that
Recordset	will	have	the	same	fields.	However,	the	Record	may	also	have	other
fields	unique	to	the	particular	message	represented	by	that	Record,	such	as
Attachment	and	Cc	(carbon	copy).

Although	the	Record	object	and	current	row	of	the	Recordset	have	the	same
fields,	they	are	different	because	Record	and	Recordset	objects	have	different
methods	and	properties.

A	field	held	in	common	by	the	Record	and	Recordset	can	be	modified	on	either
object.	However,	the	field	cannot	be	deleted	on	the	Record	object,	although	the
underlying	provider	may	support	setting	the	field	to	null.

After	the	Record	is	opened,	you	can	programmatically	add	fields.	You	can	also
delete	fields	you	have	added,	but	you	cannot	delete	fields	from	the	original

Recordset.

You	may	also	open	the	Record	object	directly	from	a	URL.	In	this	case,	the
fields	added	to	the	Record	depend	on	the	underlying	provider.	Currently,	most
providers	add	a	set	of	fields	that	describe	the	entity	represented	by	the	Record.
If	the	entity	consists	of	a	stream	of	bytes,	such	as	a	simple	file,	then	a	Stream
object	can	usually	be	opened	from	the	Record.

Special	Fields	for	Document	Source	Providers

A	special	class	of	providers,	called	document	source	providers,	manages	folders
and	documents.	When	a	Record	object	represents	a	document,	or	a	Recordset
object	represents	a	folder	of	documents,	the	document	source	provider	populates
those	objects	with	a	unique	set	of	fields	that	describe	characteristics	of	the
document,	instead	of	the	actual	document	itself.	Typically,	one	field	contains	a
reference	to	the	Stream	that	represents	the	document.

These	fields	constitute	a	resource	record	or	recordset,	and	are	listed	for	the
specific	providers	that	support	them	in	Using	Providers	with	ADO.

Two	constants	index	the	Fields	collection	of	a	resource	Record	or	Recordset	to
retrieve	a	pair	of	commonly	used	fields.	The	Field	object	Value	property	returns
the	desired	content.

The	field	accessed	with	the	adDefaultStream	constant	contains	a	default
stream	associated	with	the	Record	or	Recordset	object.	The	provider
assigns	a	default	stream	to	an	object.

The	field	accessed	with	the	adRecordURL	constant	contains	the	absolute
URL	that	identifies	the	document.

A	document	source	provider	does	not	support	the	Properties	collection	of
Record	and	Field	objects.	The	content	of	the	Properties	collection	is	null	for
such	objects.

A	document	source	provider	may	add	a	provider-specific	property	such	as
Datasource	Type	to	identify	whether	it	is	a	document	source	provider.	For	more
information	about	how	to	determine	your	type	of	provider,	see	your	provider
documentation.

Resource	Recordset	Columns

A	resource	recordset	consists	of	the	following	columns.

Column	Name Type Description

RESOURCE_PARSENAME adVarWChar Read-only.	Indicates	the
URL	of	the	resource.

RESOURCE_PARENTNAME adVarWChar
Read-only.	Indicates	the
absolute	URL	of	the
parent	record.

RESOURCE_ABSOLUTEPARSENAME adVarWChar

Read-only.	Indicates	the
absolute	URL	of	the
resource,	which	is	the
concatenation	of
PARENTNAME	and
PARSENAME.

RESOURCE_ISHIDDEN adBoolean

True	if	the	resource	is
hidden.	No	rows	will	be
returned	unless	the
command	that	creates	the
rowset	explicitly	selects
rows	where
RESOURCE_ISHIDDEN
is	TRUE.

RESOURCE_ISREADONLY adBoolean

True	if	the	resource	is
read-only.	Attempts	to
open	this	resource	with
DBBINDFLAG_WRITE
and	will	fail	with
DB_E_READONLY.
This	property	may	be
edited	even	when	the
resource	has	only	been
opened	for	reading.

RESOURCE_CONTENTTYPE adVarWChar

Indicates	the	MIME	type
of	the	document,
indicating	the	format
such	as	"text/html

RESOURCE_CONTENTCLASS adVarWChar

Indicates	the	likely	use	of
the	document,	for
example,	a	lawyer's	brief.
This	may	correspond	to
the	Office	template	used
to	create	the	document.

RESOURCE_CONTENTLANGUAGE adVarWChar
Indicates	the	language	in
which	the	content	is
stored.

RESOURCE_CREATIONTIME adFileTime

Read-only.	Indicates	a
FILETIME	structure
containing	the	time	the
resource	was	created.	The
time	is	reported	in
Coordinated	Universal
Time	(UTC)	format.

RESOURCE_LASTACCESSTIME adFileTime

Read-only.	Indicates	a
FILETIME	structure
containing	the	time	that
the	resource	was	last
accessed.	The	time	is	in
UTC	format.	The
FILETIME	members	are
zero	if	the	provider	does
not	support	this	time
member.

RESOURCE_LASTWRITETIME adFileTime

Read-only.	Indicates	a
FILETIME	structure
containing	the	time	that
the	resource	was	last
written.	The	time	is	in
UTC	format.	The
FILETIME	members	are
zero	if	the	provider	does
not	support	this	time
member.

RESOURCE_STREAMSIZE asUnsignedBigInt
Read-only.	Indicates	the
size	of	the	resource's

default	stream,	in	bytes.

RESOURCE_ISCOLLECTION adBoolean

Read-only.	True	if	the
resource	is	a	collection,
such	as	a	directory.	False
if	the	resource	is	a	simple
file.

RESOURCE_ISSTRUCTUREDDOCUMENT adBoolean

True	if	the	resource	is	a
structured	document.
False	if	the	resource	is
not	a	structured
document.	It	could	be	a
collection	or	a	simple
file.

DEFAULT_DOCUMENT adVarWChar

Read-only.	Indicates	that
this	resource	contains	a
URL	to	the	default	simple
document	of	a	folder	or	a
structured	document.
Used	when	the	default
stream	is	requested	from
a	resource.	This	property
is	blank	for	a	simple	file.

CHAPTERED_CHILDREN adChapter

Read-only.	Optional.
Indicates	the	chapter	of
the	rowset	containing	the
children	of	the	resource.
(The	OLE	DB	Provider
for	Internet	Publishing
does	not	use	this
column.)

RESOURCE_DISPLAYNAME adVarWChar
Read-only.	Indicates	the
display	name	of	the
resource.

RESOURCE_ISROOT adBoolean

Read-only.	True	if	the
resource	is	the	root	of	a
collection	or	structured
document.

Streams

A	Stream	object	can	be	opened	on:

A	simple	file	specified	with	a	URL.

A	field	of	a	Record	or	Recordset	containing	a	Stream	object.

The	default	stream	of	a	Record	or	Recordset	object	representing	a
directory	or	compound	file.

A	resource	field	containing	the	URL	of	a	simple	file.

No	particular	source	at	all.	In	this	case,	a	Stream	object	is	opened	in
memory,	and	data	can	be	written	to	it,	and	then	saved	in	another	Stream	or
file.

A	BLOB	field	in	a	Recordset.

Streams	and	Persistence

The	Recordset	object	Save	method	stores,	or	persists,	a	Recordset	in	a	file,	and
the	Open	method	restores	the	Recordset	from	that	file.

Now,	the	Save	and	Open	methods	can	persist	a	Recordset	to	a	Stream	object	as
well.	This	feature	is	especially	useful	when	working	with	Remote	Data	Service
(RDS)	and	Active	Server	Pages	(ASP).

See	the	current	ASP	documentation	for	more	information	about	how	persistence
can	be	used	by	itself	on	ASP	pages.

The	following	are	a	few	scenarios	that	show	how	Stream	objects	and	persistence
can	be	used.

Scenario	1:

This	scenario	simply	saves	a	Recordset	to	a	file,	then	to	a	Stream.	It	then	opens
the	persisted	stream	into	another	Recordset.

Dim	rs1	As	ADODB.Recordset

Dim	rs2	As	ADODB.Recordset

Dim	stm	As	ADODB.Stream

rs1.Open				"SELECT	*	FROM	Authors",	"DSN=Pubs;uid=sa;pwd=;",	_

												adopenStatic,	adLockReadOnly,	adCmdText

rs1.Save	"c:\myfolder\mysubfolder\myrs.xml",	adPersistXML

rs1.Save	stm,	adPersistXML

rs2.Open	stm

Scenario	2:

This	scenario	persists	a	Recordset	into	a	Stream	in	XML	format.	It	then	reads
the	Stream	into	a	string	that	you	can	examine,	manipulate,	or	display.

Dim	rs	As	New	ADODB.Recordset

Dim	stm	As	New	ADODB.Stream

Dim	strRst	As	String

'	Open,	save,	and	close	the	recordset.	

rs.Open	"select	*	from	Authors",	"dsn=Pubs;uid=sa;pwd=;"

rs.Save	stm,	adPersistXML

rs.Close

Set	rs	=	nothing

'	Put	saved	recordset	into	a	string	variable.

strRst	=	stm.ReadText(adReadAll)

'	Examine,	manipulate,	or	display	the	XML	data.

...

Scenario	3:

This	example	code	shows	ASP	code	persisting	a	Recordset	as	XML	directly	to
the	Response	object.

...

<%

response.ContentType	=	"text/xml"

'	Create	and	open	a	recordset.

Set	rs	=	Server.CreateObject("ADODB.Recordset")

rs.Open	"select	*	from	Authors",	"dsn=Pubs;uid=sa;pwd=;"

'	Save	recordset	directly	into	output	stream.

rs.Save	Response,	adPersistXML	

'	Close	recordset

rs.Close

Set	rs	=	nothing

%>

...

Scenario	4:

In	this	scenario,	ASP	code	writes	the	contents	of	the	Recordset	in	ADTG	format
to	the	client.	The	Cursor	Service	can	use	this	data	to	create	a	disconnected

Recordset.

A	new	property	on	the	RDS	DataControl,	URL,	points	to	the	.asp	page	that
generates	the	Recordset.	This	means	a	Recordset	object	can	be	obtained
without	RDS	using	the	server-side	DataFactory	object	or	the	user	writing	a
business	object.	This	simplifies	the	RDS	programming	model	significantly.

Server-side	code	named,	http://server/directory/recordset.asp:

<%

Dim	rs	

Set	rs	=	Server.CreateObject("ADODB.Recordset")

rs.Open	"select	au_fname,	au_lname,	phone	from	Authors",	"dsn=Pubs"

response.ContentType	=	"multipart/mixed"

rs.Save	response,	adPersistADTG

%>

Client-side	code:

<HTML>

<HEAD>

<TITLE>RDS	Query	Page</TITLE>

</HEAD>

<body>

<CENTER>

<H1>Remote	Data	Service	2.5</H1>

<TABLE	DATASRC="#DC1">

				<TR>	

								<TD></TD>

								<TD></TD>

								<TD></TD>

				</TR>

</TABLE>

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=DC1	HEIGHT=1	WIDTH	=	1>

				<PARAM	NAME="URL"	VALUE="http://server/directory/recordset.asp">				

</OBJECT>

</SCRIPT>

</BODY>

</HTML>

Developers	also	have	the	option	of	using	a	Recordset	object	on	the	client.

...

function	GetRs()	

				{

				rs	=	CreateObject("ADODB.Recordset");

				rs.Open	"http://server/directory/recordset.asp"

				DC1.SourceRecordset	=	rs;

				}

...

Using	ADO	with	the	OLE	DB	Provider	for	Internet
Publishing

The	ADO	Record	and	Stream	objects	can	be	used	with	the	Microsoft	OLE	DB
Provider	for	Internet	Publishing	(Internet	Publishing	Provider)	to	access	and
manipulate	resources,	such	as	Web	folders	or	files	served	by	Microsoft
FrontPage®.	With	ADO,	you	can	specify	the	source	of	a	Record,	Stream,	or
Recordset	to	be	a	URL.	You	can	then	upload,	download,	move,	copy,	and	delete
resources,	or	directly	manipulate	resource	properties.

For	example	code	using	Records	and	Streams	with	the	Internet	Publishing
Provider,	see	the	Internet	Publishing	Scenario.

The	Internet	Publishing	Provider	is	installed	with	Microsoft	Windows	2000.
Earlier	versions	of	the	Internet	Publishing	Provider	were	also	available	with
Microsoft	Office	2000	and	Microsoft	Internet	Explorer	5.0.

There	are	three	ways	to	connect	ADO	to	the	Internet	Publishing	Provider:

Specify	"URL="	in	the	connection	string.	For	example:

objConn.Open	"URL=http://servername"

Specify	MSDAIPP.DSO	for	the	Provider	keyword	of	the	connection	string.
For	example:

objConn.Open	"provider=MSDAIPP.DSO;data	source=http://servername"

Specify	MSDAIPP.DSO	for	the	Provider	property	of	the	Connection	object.
For	example:

objConn.Provider	=	"MSDAIPP.DSO"

objConn.Open	"http://servername"

Note			If	MSDAIPP.DSO	is	explicitly	specified	as	the	value	of	the	provider,
either	with	the	Provider	connection	string	keyword	or	the	Provider
property,	you	cannot	use	"URL="	in	the	connection	string.	If	you	do,	an
error	will	occur.	Instead,	simply	specify	the	URL	as	shown	above.

For	more	specific	information	about	the	Internet	Publishing	Provider,	see
Microsoft	OLE	DB	Provider	for	Internet	Publishing,	or	the	provider
documentation	provided	with	the	source	application	with	which	the	OLE	DB
Provider	for	Internet	Publishing	was	installed:	Windows	2000,	Office	2000,	or
Internet	Explorer	5.0.

Internet	Publishing	Scenario

This	code	example	demonstrates	how	to	use	ADO	with	the	Microsoft	OLE	DB
Provider	for	Internet	Publishing.	In	this	scenario,	you	will	create	a	Visual	Basic
application	that	uses	Recordset,	Record,	and	Stream	objects	to	display	the
contents	of	resources	published	with	the	Internet	Publishing	Provider.

The	following	steps	are	necessary	to	create	this	scenario:

Step	1:	Set	Up	the	Visual	Basic	Project
Step	2:	Initialize	the	Main	List	Box

Step	3:	Populate	the	Fields	List	Box

Step	4:	Populate	the	Details	Text	Box

Next			Step	1:	Set	Up	the	Visual	Basic	Project

Step	1:	Set	Up	the	Visual	Basic	Project

In	this	scenario,	it	is	assumed	that	you	have	Microsoft	Visual	Basic	6.0	or	later,
ADO	2.5	or	later,	and	the	Microsoft	OLE	DB	Provider	for	Internet	Publishing
installed	on	your	system.

To	create	an	ADO	project:

1.	 In	Microsoft	Visual	Basic,	create	a	new	Standard	EXE	project.

2.	 From	the	Project	menu,	choose	References.

3.	 Select	"Microsoft	ActiveX	Data	Objects	2.5	Library"	and	click	OK.

To	insert	controls	on	the	main	form:

1.	 Add	a	ListBox	control	to	Form1.	Set	its	Name	property	to	lstMain.

2.	 Add	another	ListBox	control	to	Form1.	Set	its	Name	property	to	lstDetails.

3.	 Add	a	TextBox	control	to	Form1.	Set	its	Name	property	to	txtDetails.

Next			Step	2:	Initialize	the	Main	List	Box

Step	2:	Initialize	the	Main	List	Box

To	declare	global	Record	and	Recordset	objects

Insert	the	following	code	into	the	(General)	(Declarations)	for	Form1:

Option	Explicit

Dim	grec	As	Record

Dim	grs	As	Recordset

This	code	declares	global	object	references	for	Record	and	Recordset	that
will	be	used	later	in	this	scenario.

To	connect	to	a	URL	and	populate	lstMain

Insert	the	following	code	into	the	Form	Load	event	handler	for	Form1:

Private	Sub	Form_Load()

				Set	grec	=	New	Record

				Set	grs	=	New	Recordset

				grec.Open	"",	"URL=http://servername/foldername/",	,	_

								adOpenIfExists	Or	adCreateCollection

				Set	grs	=	grec.GetChildren

				While	Not	grs.EOF

								lstMain.AddItem	grs(0)

								grs.MoveNext

				Wend

End	Sub

This	code	instantiates	the	global	Record	and	Recordset	objects.	The
Record,	grec,	is	opened	with	a	URL	specified	as	the	ActiveConnection.	If
the	URL	exists,	it	is	opened;	if	it	doesn't	already	exist,	it	is	created.	Note
that	you	should	replace	"http://servername/foldername/"	with	a	valid	URL
from	your	environment.

The	Recordset,	grs,	is	opened	on	the	children	of	the	Record,	grec.	Then
lstMain	is	populated	with	the	file	names	of	the	resources	published	to	the
URL.

Next			Step	3:	Populate	the	Fields	List	Box

Step	3:	Populate	the	Fields	List	Box

To	populate	the	Fields	list	box:

Insert	the	following	code	into	the	Click	event	handler	of	lstMain:

Private	Sub	lstMain_Click()

				Dim	rec	As	Record

				Dim	rs	As	Recordset

				Set	rec	=	New	Record

				Set	rs	=	New	Recordset

				grs.MoveFirst

				grs.Move	lstMain.ListIndex

				lstDetails.Clear

				rec.Open	grs

				Select	Case	rec.RecordType

								Case	adCollectionRecord:

												Set	rs	=	rec.GetChildren

												While	Not	rs.EOF

																lstDetails.AddItem	rs(0)

																rs.MoveNext

												Wend

								Case	adSimpleRecord:

												recFields	rec,	lstDetails,	txtDetails

												

								Case	adStructDoc:

				End	Select

				

End	Sub

This	code	declares	and	instantiates	local	Record	and	Recordset	objects,	rec	and
rs	respectively.

The	row	corresponding	to	the	resource	selected	in	lstMain	is	made	the	current
row	of	grs.	Then	the	Details	list	box	is	cleared	and	rec	is	opened	with	the

current	row	of	grs	as	the	source.

If	the	resource	is	a	collection	record	(as	specified	by	RecordType),	the	local
Recordset,	rs,	is	opened	on	the	children	of	rec.	Then,	lstDetails	is	filled	with
the	values	from	the	rows	of	rs.

If	the	resource	is	a	simple	record,	recFields	is	called.	For	information	about
recFields,	see	the	next	step.

No	code	is	implemented	if	the	resource	is	a	structured	document.

Next			Step	4:	Populate	the	Details	Text	Box

Step	4:	Populate	the	Details	Text	Box

To	populate	the	Details	text	box:

Create	a	new	Sub	routine	named	recFields	and	insert	the	following	code:

Sub	recFields(r	As	Record,	l	As	ListBox,	t	As	TextBox)

				Dim	f	As	Field

				Dim	s	As	Stream

				Set	s	=	New	Stream

				Dim	str	As	String

				

				For	Each	f	In	r.Fields

								l.AddItem	f.Name	&	":	"	&	f.Value

				Next

				t.Text	=	""

				If	r!RESOURCE_CONTENTCLASS	=	"text/plain"	Then

								s.Open	r,	adModeRead,	adOpenStreamFromRecord

								str	=	s.ReadText(1)

								s.Position	=	0

								If	Asc(Mid(str,	1,	1))	=	63	Then	'//63	=	"?"

												s.Charset	=	"ascii"

												s.Type	=	adTypeText

								End	If

								t.Text	=	s.ReadText(adReadAll)

				End	If

End	Sub

This	code	populates	lstDetails	with	the	fields	and	values	of	the	simple	record
passed	to	recFields.	If	the	resource	is	a	text	file,	a	text	Stream	is	opened	from
the	resource	record.	The	code	determines	if	the	character	set	is	ASCII	and	copies
the	Stream	contents	into	txtDetails.

ADO	Event	Model,	Synchronous	and
Asynchronous	Operations

The	ADO	event	model	supports	certain	synchronous	and	asynchronous	ADO
operations	that	issue	events,	or	notifications,	before	the	operation	starts	or	after	it
completes.	An	event	is	actually	a	call	to	an	event	handler	routine	that	you	define
in	your	application.

Event	handlers	that	are	called	before	the	operation	starts	allow	you	to	examine	or
modify	the	operation	parameters,	and	then	either	cancel	the	operation	or	allow	it
to	complete.

Event	handlers	that	are	called	after	an	operation	completes	are	especially
important	because	ADO	supports	asynchronous	operations.	For	example,	an
application	that	starts	an	asynchronous	Recordset.Open	operation	is	notified	by
an	execution	complete	event	when	the	operation	concludes.

Using	the	ADO	event	model	adds	some	overhead	to	your	application	but
provides	far	more	flexibility	than	other	methods	of	dealing	with	asynchronous
operations,	such	as	monitoring	the	State	property	of	an	object	with	a	loop.

See	the	following	topics	for	more	information	about	events	in	ADO:

ADO	Event	Handler	Summary
Types	of	Events

Event	Parameters

How	Event	Handlers	Work	Together

ADO	Events	in	ADO/WFC

ADO	Event	Instantiation	by	Language

ADO	Event	Handler	Summary

ADO	events	are	grouped	into	two	families.	The	ConnectionEvent	family
pertains	to	operations	on	the	Connection	object,	and	the	RecordsetEvent	family
pertains	to	operations	on	the	Recordset	object.

ConnectionEvents	—	Events	are	issued	when	a	transaction	on	a
connection	begins,	is	committed,	or	is	rolled	back;	when	a	Command
executes;	when	a	warning	occurs	during	a	ConnectionEvent	operation;	and
when	a	Connection	starts	or	ends.

RecordsetEvents	—	Events	are	issued	around	asynchronous	fetch
operations,	as	well	as	when	you	navigate	through	the	rows	of	a	Recordset
object,	change	a	field	in	a	row	of	a	Recordset,	change	a	row	in	a
Recordset,	open	a	Recordset	with	a	server-side	cursor,	close	a	Recordset,
or	make	any	change	whatsoever	in	the	Recordset.

ADO	Event	Handler	Summary

The	following	tables	summarize	the	events	and	their	descriptions.

ConnectionEvent Description
BeginTransComplete,	
CommitTransComplete,	
RollbackTransComplete

Transaction	Management	—	Notification	that	the
current	transaction	on	the	connection	has	started,
committed,	or	rolled	back.

WillConnect,
ConnectComplete,
Disconnect

Connection	Management	—	Notification	that	the
current	connection	will	start,	has	started,	or	has
ended.

WillExecute, Command	Execution	Management	—
Notification	that	the	execution	of	the	current

ExecuteComplete command	on	the	connection	will	start,	or	has	ended.

InfoMessage Informational	—	Notification	that	there	is
additional	information	about	the	current	operation.

RecordsetEvent Description

FetchProgress,
FetchComplete

Retrieval	Status	—	Notification	of	the	progress	of
a	data	retrieval	operation,	or	that	the	retrieval
operation	has	completed.

WillChangeField,
FieldChangeComplete

Field	Change	Management	—	Notification	that
the	value	of	the	current	field	will	change,	or	has
changed.

WillMove,	MoveComplete,
EndOfRecordset

Navigation	Management	—	Notification	that	the
current	row	position	in	a	Recordset	will	change,
has	changed,	or	has	reached	the	end	of	the
Recordset.

WillChangeRecord,
RecordChangeComplete

Row	Change	Management	—	Notification	that
something	in	the	current	row	of	the	Recordset	will
change,	or	has	changed.

WillChangeRecordset,
RecordsetChangeComplete

Recordset	Change	Management	—	Notification
that	something	in	the	current	Recordset	will
change,	or	has	changed.

Types	of	Events

Will	Events

Event	handlers	called	before	the	operation	starts	offer	you	the	opportunity	to
examine	or	modify	the	operation	parameters,	and	then	either	cancel	the	operation
or	allow	it	to	complete.	These	event	handler	routines	usually	have	names	of	the
form	WillEvent.

Complete	Events

Event	handlers	called	after	an	operation	completes	can	notify	your	application
that	an	operation	has	concluded.	Such	an	event	handler	is	also	notified	when	a
Will	event	handler	cancels	a	pending	operation.	These	event	handler	routines
usually	have	names	of	the	form	EventComplete.

Will	and	Complete	events	are	typically	used	in	pairs.

Other	Events

The	other	event	handlers—that	is,	events	whose	names	are	not	of	the	form
WillEvent	or	EventComplete—are	called	only	after	an	operation	completes.

Event	Parameters

Every	event	handler	has	a	status	parameter	that	controls	the	event	handler.	Most
Complete	events	have	an	error	parameter	to	report	whether	the	operation
causing	the	event	succeeded,	as	well	as	an	object	parameter	to	identify	the	ADO
object	to	which	the	operation	applied.	(The	ExecuteComplete	event	actually
includes	object	parameters	for	the	Command,	Recordset	and	Connection
objects	associated	with	the	event.)

The	parameters	are	also	passed	to	the	Will	events	to	be	used	in	the	pending
operation.	This	gives	you	the	opportunity	to	examine	the	parameters	and
determine	whether	the	operation	should	complete.

Some	event	handlers	have	a	reason	parameter,	which	provides	additional
information	about	why	the	event	occurred.

Status	Parameter

When	the	event	handler	routine	is	called,	the	status	parameter	is	set	to	one	of	the
following	informational	values.

Value Description

adStatusOK The	operation	that	caused	the	event
occurred	successfully.

adStatusErrorsOccurred

The	operation	that	caused	the	event
occurred	unsuccessfully,	or	a	Will
event	canceled	the	operation.	Check	the
error	parameter	for	more	details.

adStatusCantDeny
A	Will	event	cannot	request
cancellation	of	the	operation	about	to

occur.

Before	the	event	handler	routine	returns,	leave	the	status	parameter	unchanged	or
set	it	to	one	of	the	following	request	values.

Value Description

adStatusUnwantedEvent Request	that	this	event	handler	receive
no	further	notifications.

adStatusCancel Request	cancellation	of	the	operation
that	is	about	to	occur.

Depending	on	event	type,	the	status	parameter	can	have	one	of	the	following
values	when	the	event	handler	is	called.

Event	Type Value
Will adStatusOK,	adStatusCantDeny

Complete adStatusOK,
adStatusErrorsOccurred

Depending	on	event	type,	the	status	parameter	can	have	one	of	the	following
values	when	the	event	handler	returns.

Event	Type Value

Will
adStatusOK,	adStatusCancel,
adStatusUnwantedEvent,
adStatusCantDeny

Complete adStatusOK,
adStatusUnwantedEvent

Error	Parameter

The	error	parameter	is	a	reference	to	an	ADO	Error	object	containing	details
about	why	the	operation	failed	if	the	status	parameter	equals
adStatusErrorsOccurred.

Object	Parameter

The	object	parameter	is	a	reference	to	the	ADO	object	for	which	the	operation
applies.	(The	ExecuteComplete	event	actually	includes	object	parameters	for	the
Command,	Recordset	and	Connection	objects	associated	with	the	operation.)

Note			The	object	parameter	does	not	apply	to	Microsoft	Visual	Basic.	You	must
create	separate	event	handlers	for	each	object.

Reason	Parameter

The	reason	parameter,	adReason,	provides	additional	information	about	why	the
event	occurred.	Events	with	an	adReason	parameter	may	be	called	several
times,	even	for	the	same	operation,	but	for	a	different	reason	each	time.

For	example,	the	WillChangeRecord	event	handler	is	called	for	operations	that
are	about	to	do	or	undo	the	insertion,	deletion,	or	modification	of	a	record.	Use
the	adReason	parameter	as	a	filter	to	process	only	particular	events.

You	must	return	adStatusUnwantedEvent	in	the	adStatus	parameter	to	request
that	an	event	handler	without	an	adReason	parameter	stop	receiving	event
notifications.	However,	an	event	handler	with	an	adReason	parameter	may
receive	several	notifications,	each	for	a	different	reason.	Therefore,	you	must
return	adStatusUnwantedEvent	for	each	notification	caused	by	a	different
reason.

For	example,	assume	you	have	a	WillChangeRecord	event	handler	coded	in
Visual	Basic.	If	you	don't	want	to	receive	any	further	notifications,	simply	code
the	following:

adStatus	=	adStatusUnwantedEvent

However,	if	you	want	to	process	events	where	the	row	is	about	to	be	deleted,	but
cancel	notifications	for	all	other	reasons,	then	code	the	following:

if	(adReason	=	adRsnDelete)

'	Process	an	event	for	this	reason.

...

else

'	Stop	receiving	events	for	any	other	reason.

adStatus	=	adStatusUnwantedEvent

...	

How	Event	Handlers	Work	Together

All	the	event	handlers	in	the	ConnectionEvent	and	RecordsetEvent	families
must	be	implemented,	regardless	of	whether	you	actually	use	events.	The
amount	of	implementation	work	you	have	to	do	depends	on	your	programming
language.	For	more	information,	see	ADO	Event	Instantiation	by	Language.

Will	and	Complete	event	handlers	can	be	used	in	pairs	or	separately.

Paired	Event	Handlers

The	following	scenario	depicts	what	happens	when	a	Will	event	succeeds.

A	Recordset	object	has	paired	WillChangeField	and
FieldChangeComplete	events.	In	your	application,	you	start	to	change	the
value	of	a	field.	The	WillChangeField	event	handler	is	called.	You	return
an	indication	that	it	is	acceptable	to	change	the	field.	The	operation
completes	and	a	FieldChangeComplete	event	notifies	your	application	that
the	operation	has	ended.	The	event	handler	status	parameter	reports	the
success	of	the	operation.

The	following	scenario	depicts	what	happens	when	a	Will	event	cancels	an
operation.

In	the	same	application,	you	change	another	field.	The	WillChangeField
event	handler	is	called.	You	decide	for	some	reason	that	it	is	not	acceptable
to	change	the	field,	so	you	return	adStatusCancel	in	the	status	parameter.
As	a	result,	the	operation	does	not	complete.

The	FieldChangeComplete	event	notifies	you	that	the	operation	has	ended.

The	event	handler	status	parameter	is	set	to	adStatusErrorsOccurred;	the
error	parameter	refers	to	an	Error	object;	and	the	Error	object	Number
property	is	set	to	either	an	ADO	or	provider	value	indicating	that	the
operation	is	canceled.

More	than	one	Will	and	Complete	event	handler	can	be	called	for	the	same
operation.	The	following	scenario	depicts	what	happens	when	multiple	Will
events	succeed.

A	Recordset	object	has	paired	WillChangeField,	FieldChangeComplete,
WillChangeRecord,	and	RecordChangeComplete	events.	You	start	to
change	the	value	of	a	field;	the	WillChangeField	event	handler	is	called,
and	you	return	an	indication	that	it	is	acceptable	to	change	the	field.

Next,	the	WillChangeRecord	event	handler	is	called,	and	once	again	you
indicate	that	the	operation	should	complete.

Note			In	general,	all	the	Will	event	handlers	pertaining	to	a	particular
instance	of	an	ADO	object	will	be	called.	However,	they	will	be	called	in
no	particular	order.

When	the	operation	is	complete,	the	FieldChangeComplete	and
RecordChangeComplete	event	handlers	are	called.

More	than	one	Will	and	Complete	event	handler	can	be	called	for	the	same
operation,	but	one	may	cancel	the	pending	operation.	The	following
scenario	depicts	what	happens	when	the	last	of	multiple	Will	events	cancels
an	operation.

Once	again,	a	Recordset	has	paired	WillChangeField,
FieldChangeComplete,	WillChangeRecord,	and
RecordChangeComplete	events.	You	start	to	change	the	value	of	a	field;
the	WillChangeField	event	handler	is	called,	and	you	return	an	indication
that	it	is	acceptable	to	change	the	field.

Next,	the	WillChangeRecord	event	handler	is	called.	Perhaps	you
determine	the	field	change	is	acceptable	in	itself,	but	it	will	create	an	error
in	the	record	as	a	whole.	You	return	adStatusCancel	to	indicate	it	is	not
acceptable	to	change	the	field.	The	WillChangeField	event	handler	has
already	allowed	the	operation.

The	operation	does	not	complete	because	the	WillChangeRecord	event
handler	canceled	it.	The	FieldChangeComplete	event	handler	is	called
with	the	status	parameter	set	to	adStatusErrorsOccurred;	the	error
parameter	is	set	appropriately.

Next,	the	RecordChangeComplete	event	handler	is	also	called	with	the
status	parameter	set	to	adStatusErrorsOccurred.	The	matching	Complete
event	is	called	for	the	Will	event.

More	than	one	Will	and	Complete	event	handler	can	be	called	for	the	same
operation,	but	one	may	cancel	the	pending	operation.	The	following
scenario	depicts	what	happens	when	an	event	handler	other	than	the	last	of
multiple	Will	events,	cancels	an	operation.

Once	again,	a	Recordset	has	paired	WillChangeField,
FieldChangeComplete,	WillChangeRecord,	and
RecordChangeComplete	events.	You	start	to	change	the	value	of	a	field;
the	WillChangeField	event	handler	is	called,	and	you	return
adStatusCancel	to	indicate	it	is	not	acceptable	to	change	the	field.	The
operation	does	not	complete;	the	FieldChangeComplete	event	notifies	you
that	the	operation	has	ended	with	the	status	and	error	parameters	set
appropriately.

However,	the	WillChangeRecord	(and	thus	the	RecordChangeComplete)
event	handler	is	not	called	because	the	first	Will	event	canceled	the
operation.	In	general,	if	a	Will	event	cancels	an	operation,	no	remaining
Will	event	handlers	will	be	called.

Unpaired	Event	Handlers

You	can	turn	off	event	notifications	for	any	event	by	returning
adStatusUnwantedEvent	in	the	status	parameter.	For	example,	when	your
Complete	event	handler	is	called	the	first	time,	return
adStatusUnwantedEvent.	You	will	subsequently	receive	only	Will	events.

Single	Will	event	handlers	can	be	useful	when	you	want	to	examine	the
parameters	that	will	be	used	in	an	operation.	You	can	modify	those	operation
parameters	or	cancel	the	operation.

Alternatively,	leave	Complete	event	notification	enabled.	When	your	first	Will
event	handler	is	called,	return	adStatusUnwantedEvent.	You	will	subsequently
receive	only	Complete	events.

Single	Complete	event	handlers	can	be	useful	for	managing	asynchronous
operations.	Each	asynchronous	operation	has	an	appropriate	Complete	event.

For	example,	it	can	take	a	long	time	to	populate	a	large	Recordset	object.	If	your
application	is	appropriately	written,	you	can	start	a
Recordset.Open(...,adAsyncExecute)	operation	and	continue	with	other
processing.	You	will	eventually	be	notified	when	the	Recordset	is	populated	by
an	ExecuteComplete	event.

Single	Event	Handlers	and	Multiple	Objects

The	flexibility	of	a	programming	language	like	Microsoft	Visual	C++	enables
you	to	have	one	event	handler	process	events	from	multiple	objects.	For
example,	you	could	have	one	Disconnect	event	handler	process	events	from
several	Connection	objects.	If	one	of	the	connections	ended,	the	Disconnect
event	handler	would	be	called.	You	could	tell	which	connection	caused	the	event
because	the	event	handler	object	parameter	would	be	set	to	the	corresponding
Connection	object.

Note			This	technique	cannot	be	used	in	Visual	Basic	because	that	language	can
correlate	only	one	object	to	an	event.

Multiple	Event	Handlers	and	Single	Operations

It	is	possible	to	associate	one	ADO	object	and	its	operations	to	multiple	sets	of
events.	For	example,	you	could	create	multiple	WillChangeField	events	so	that
each	performs	a	particular	field	validation	edit.	If	a	field	were	about	to	change,
one	Will	event	could	validate	some	aspect	of	the	field	value,	then	another	Will
event	could	validate	a	different	aspect.

Preferably,	you	could	simply	perform	or	call	all	your	edits	from	a	single	event
handler.

ADO	Events	in	ADO/WFC

ADO	for	Windows	Foundation	Classes	(ADO/WFC)	builds	on	the	ADO	event
model	and	presents	a	simplified	application	programming	interface.	In	general,
ADO/WFC	intercepts	ADO	events,	consolidates	the	event	parameters	into	a
single	event	class,	and	then	calls	your	event	handler.

To	use	ADO	events	in	ADO/WFC

1.	 Define	your	own	event	handler	to	process	an	event.	For	example,	if	you
wanted	to	process	the	ConnectComplete	event	in	the	ConnectionEvent
family,	you	might	use	this	code:

public	void	onConnectComplete(Object	sender,ConnectionEvent	e)

{

				System.out.println("onConnectComplete:"	+	e);

}

2.	 Define	a	handler	object	to	represent	your	event	handler.	The	handler	object
should	be	of	data	type	ConnectEventHandler	for	an	event	of	type
ConnectionEvent,	or	data	type	RecordsetEventHandler	for	an	event	of
type	RecordsetEvent.	For	example,	code	the	following	for	your
ConnectComplete	event	handler:

				ConnectionEventHandler	handler	=	

								new	ConnectionEventHandler(this,	"onConnectComplete");

The	first	argument	of	the	ConnectionEventHandler	constructor	is	a
reference	to	the	class	that	contains	the	event	handler	named	in	the	second
argument.

The	Microsoft	Visual	J++	compiler	also	supports	an	equivalent	syntax:

				ConnectionEventHandler	handler	=	

								new	ConnectionEventHandler(this.onConnectComplete);

The	single	argument	is	a	reference	to	the	desired	class	(that	is,	this)	and
method	within	the	class	(that	is,	onConnectComplete).

3.	 Add	your	event	handler	to	a	list	of	handlers	designated	to	process	a
particular	type	of	event.	Use	the	method	with	a	name	such	as
addOnEventName(handler).

4.	 ADO/WFC	internally	implements	all	the	ADO	event	handlers.	Therefore,
an	event	caused	by	a	Connection	or	Recordset	operation	is	intercepted	by
an	ADO/WFC	event	handler.

The	ADO/WFC	event	handler	passes	ADO	ConnectionEvent	parameters
in	an	instance	of	the	ADO/WFC	ConnectionEvent	class,	or	ADO
RecordsetEvent	parameters	in	an	instance	of	the	ADO/WFC
RecordsetEvent	class.	These	ADO/WFC	classes	consolidate	the	ADO
event	parameters;	that	is,	each	ADO/WFC	class	contains	one	data	member
for	each	unique	parameter	in	all	the	ADO	ConnectionEvent	or
RecordsetEvent	methods.

5.	 ADO/WFC	then	calls	your	event	handler	with	the	ADO/WFC	event	object.
For	example,	your	onConnectComplete	handler	has	a	signature	like	this:

				public	void	onConnectComplete(Object	sender,ConnectionEvent	e)

The	first	argument	is	the	type	of	object	that	sent	the	event	(Connection	or
Recordset),	and	the	second	argument	is	the	ADO/WFC	event	object
(ConnectionEvent	or	RecordsetEvent).

The	signature	of	your	event	handler	is	simpler	than	an	ADO	event.
However,	you	must	still	understand	the	ADO	event	model	to	know	what
parameters	apply	to	an	event	and	how	to	respond.

6.	 Return	from	your	event	handler	to	the	ADO/WFC	handler	for	the	ADO
event.	ADO/WFC	copies	pertinent	ADO/WFC	event	data	members	back	to
the	ADO	event	parameters,	then	the	ADO	event	handler	returns.

7.	 When	you	are	finished	processing,	remove	your	handler	from	the	list	of

ADO/WFC	event	handlers.	Use	the	method	with	a	name	such	as
removeOnEventName(handler).

ADO	Event	Instantiation	by	Language

Each	programming	language	creates	instances	of	ADO	events	differently.	All	the
examples	that	follow	create	a	ConnectComplete	event	handler.

Visual	Basic

There	are	two	ways	to	create	instances	of	ADO	events	in	Visual	Basic.	Both
require	that	the	object	variable	that	is	declared	using	the	WithEvents	keyword	be
part	of	a	Class	module	and	that	the	object	have	scope	that	is	visible	to	all	code	in
the	module.	In	the	first	instance,	you	create	an	events	object	and	a	separate
object	to	work	with.	(Form	objects	are	Classes	in	Visual	Basic.)

Dim	WithEvents	connEvent	as	Connection

Dim	conn	as	New	Connection

Private	Sub	MySub()

				set	connEvent	=	conn								'	Enable	event	support.

				conn.Open(...)

				...

				set	connEvent	=	Nothing				'	Disable	event	support.

				...

End	Sub

Private	Sub	connEvent_ConnectComplete(ByVal	err	as	ADODB.Error,	&	_

	adStatus	as	ADODB.EventStatus,	ByVal	pConnection	as	ADODB.Connection)

				'	Check	the	error	object	only	if	adStatus	

				'	equals	adStatusErrorsOccurred.

				...

End	Sub

The	second	uses	only	a	single	object.

Dim	WithEvents	conn	as	New	Connection

Private	Sub	MySub()

				conn.Open(...)

				...

				set	conn	=	Nothing				'	Disable	event	support.

				...

End	Sub

Private	Sub	conn_ConnectComplete(ByVal	err	as	ADODB.Error,	&	_

	adStatus	as	ADODB.EventStatus,	ByVal	pConnection	as	ADODB.Connection)

				'	Check	the	error	object	only	if	adStatus	

				'	equals	adStatusErrorsOccurred.

				...

End	Sub

Visual	C++

This	is	a	schematic	description	of	how	to	instantiate	ADO	events	in	Visual	C++.
See	ADO	Events	Model	Example	(Visual	C++)	for	a	complete	description.

Create	classes	derived	from	the	ConnectionEventsVt	and	RecordsetEventsVt
interfaces	found	in	file	adoint.h.

class	CConnEvent	:	public	ConnectionEventsVt

{

				public:

				STDMETHODIMP	InfoMessage(

												ADOError	*pError,

												EventStatusEnum	*adStatus,

												_ADOConnection	*pConnection);

...

}

class	CRstEvent	:	public	RecordsetEventsVt	

{

				public:

								STDMETHODIMP	WillChangeField(

																LONG	cFields,

																VARIANT	Fields,

																EventStatusEnum	*adStatus,

																_ADORecordset	*pRecordset);

...

}

Implement	each	of	the	event	handler	methods	in	both	classes.	It	is	sufficient	that
each	method	merely	return	an	HRESULT	of	S_OK.	However,	when	you	make	it
known	that	your	event	handlers	are	available,	they	will	be	called	continuously	by
default.	Instead,	you	may	want	to	request	no	further	notification	after	the	first
time	by	setting	adStatus	to	adStatusUnwantedEvent.

STDMETHODIMP	CConnEvent::ConnectComplete(

												ADOError	*pError,

												EventStatusEnum	*adStatus,

												_ADOConnection	*pConnection)	

								{

								*adStatus	=	adStatusUnwantedEvent;

								return	S_OK;

								}

The	event	classes	inherit	from	IUnknown,	so	you	must	also	implement	the
QueryInterface,	AddRef,	and	Release	methods.	Also	implement	class
constructors	and	destructors.	Choose	the	Visual	C++	tools	with	which	you	are
most	comfortable	that	will	simplify	this	part	of	the	task.

Make	it	known	that	your	event	handlers	are	available	by	issuing	QueryInterface
on	the	Recordset	and	Connection	objects	for	the	IConnectionPointContainer
and	IConnectionPoint	interfaces.	Then	issue	IConnectionPoint::Advise	for
each	class.

For	example,	assume	you	are	using	a	Boolean	function	that	returns	True	if	it
successfully	informs	a	Recordset	object	that	you	have	event	handlers	available.

HRESULT				hr;

DWORD						dwEvtClass;

IConnectionPointContainer				*pCPC	=	NULL;

IConnectionPoint													*pCP	=	NULL;

CRstEvent																				*pRStEvent	=	NULL;

...

_RecordsetPtr																pRs;

pRs.CreateInstance(__uuidof(Recordset));

pRStEvent	=	new	CRstEvent();

if	(pRStEvent	==	NULL)	return	FALSE;

...

hr	=	pRs->QueryInterface(IID_IConnectionPointContainer,	&pCPC);

if	(FAILED(hr))	return	FALSE;

hr	=	pCPC->FindConnectionPoint(IID_ADORecordsetEvents,	&pCP);

pCPC->Release();				//	Always	Release	now,	even	before	checking.

if	(FAILED(hr))	return	FALSE;

hr	=	pCP->Advise(pRstEvent,	&dwEvtClass);				//Turn	on	event	support.

pCP->Release();

if	(FAILED(hr))	return	FALSE;

...

return	TRUE;

...

At	this	point,	events	for	the	RecordsetEvent	family	are	enabled	and	your
methods	will	be	called	as	Recordset	events	occur.

Later,	when	you	want	to	make	your	event	handlers	unavailable,	get	the
connection	point	again	and	issue	the	IConnectionPoint::Unadvise	method.

...

hr	=	pCP->UnAdvise(dwEvtClass);				//Turn	off	event	support.

pCP->Release();

if	(FAILED(hr))	return	FALSE;

...

Of	course,	you	must	release	interfaces	and	destroy	class	objects	as	is	appropriate.

Visual	J++

import	wfc.data.*;

public	class	MyClass

{

ConnectionEventHandler	handler	=	

				new	ConnectionEventHandler(this,"onConnectComplete");

				public	void	onConnectComplete(Object	sender,ConnectionEvent	e)

				{

								if	(e.adStatus	==	AdoEnums.EventStatus.ERRORSOCCURRED)	

												System.out.println("Connection	failed");

								else

												System.out.println("Connection	completed");

								return;

				}

				

				void	main(void)

				{

								Connection	conn	=	new	Connection();

				

								conn.addOnConnectComplete(handler);					//	Enable	event	support.

								conn.open("DSN=Pubs");

								conn.close();

								conn.removeOnConnectComplete(handler);		//	Disable	event	support.

				}

}

Microsoft	Visual	Basic	Scripting	Edition

VBScript	does	not	support	events.

Data	Shaping

Data	shaping	provides	a	way	to	query	a	data	source	and	return	a	Recordset	that
represents	a	parent-child	relationship	between	two	or	more	logical	entities	(a
hierarchy).	A	classic	example	of	a	hierarchical	relationship	is	customers	and
orders.	For	every	customer	in	a	database,	there	can	be	zero	or	more	orders.
Regular	SQL	provides	a	means	of	retrieving	the	data	using	JOIN	syntax,	but	this
can	be	inefficient	and	unwieldy	because	redundant	parent	data	is	repeated	in
each	record	returned	for	a	given	parent-child	relationship.	Data	shaping	can
relate	a	single	parent	record	in	the	parent	recordset	to	multiple	child	records	in
the	child	recordset,	avoiding	the	redundancy	of	a	JOIN.

The	data	shaping	syntax	also	provides	other	capabilities.	Developers	can	create
new	Recordset	objects	without	an	underlying	datasource	by	using	the	NEW
keyword	to	describe	the	fields	of	the	parent	and	child	recordsets.	The	new
Recordset	object	can	be	populated	with	data	and	persistently	stored.	Developers
can	also	perform	various	calculations	or	aggregations	(for	example,	SUM,	AVG,
or	MAX)	on	child	fields	and	then	create	a	parent	recordset	by	deriving	parent
column	values	from	these	grouped	child	records.

See	the	following	topics	to	learn	more	about	data	shaping:

Data	Shaping	Summary
Required	Providers	for	Data	Shaping

Shape	Commands	in	General

Shape	Append	Clause

Shape	Compute	Clause

Fabricating	Hierarchical	Recordsets

Accessing	Rows	in	a	Hierarchical	Recordset

Formal	Shape	Grammar

Visual	Basic	for	Applications	Functions

Data	Shaping	Summary

The	following	describes	concepts	of	data	shaping,	hierarchical	recordsets,
reshaping,	grandchild	aggregates,	and	the	shape	command	syntax.

Data	Shaping

Data	shaping	enables	you	to	define	the	columns	of	a	shaped	Recordset,	the
relationships	between	the	entities	represented	by	the	columns,	and	the	manner	in
which	the	Recordset	is	populated	with	data.

Columns	of	a	shaped	Recordset	may	contain	data	from	a	data	provider	such	as
SQL	Server,	references	to	another	Recordset,	values	derived	from	a	calculation
on	a	single	row	of	a	Recordset,	values	derived	from	an	operation	over	a	column
of	an	entire	Recordset;	or	they	may	be	a	newly	fabricated,	empty	column.

When	you	retrieve	the	value	of	a	column	that	contains	a	reference	to	another
Recordset,	ADO	automatically	returns	the	actual	Recordset	represented	by	the
reference.	A	Recordset	that	contains	another	Recordset	is	called	a	hierarchical
recordset.	Hierarchical	recordsets	exhibit	a	parent-child	relationship,	wherein	the
parent	is	the	containing	recordset,	and	the	child	is	the	contained	recordset.	The
reference	to	a	Recordset	is	actually	a	reference	to	a	subset	of	the	child,	called	a
chapter.	A	single	parent	may	reference	more	than	one	child	Recordset.

The	shape	command	syntax	enables	you	to	programmatically	create	a	shaped
Recordset.	You	can	then	access	the	components	of	the	Recordset
programmatically	or	through	an	appropriate	visual	control.	A	shape	command	is
issued	like	any	other	ADO	command	text.

You	can	make	hierarchical	Recordset	objects	in	two	ways	with	the	shape
command	syntax.	The	first	appends	a	child	Recordset	to	a	parent	Recordset.

The	parent	and	child	typically	have	at	least	one	column	in	common:	the	value	of
the	column	in	a	row	of	the	parent	is	the	same	as	the	value	of	the	column	in	all
rows	of	the	child.

The	second	way	generates	a	parent	Recordset	from	a	child	Recordset.	There
must	be	a	chapter	column	in	the	parent	that	references	the	child	Recordset.	You
can	create	other	parent	columns	by	computing	an	aggregate	operation	over	a
column	of	the	child,	calculating	expressions	on	a	row	of	a	Recordset,	specifying
a	grouping	column	with	the	BY	keyword,	or	appending	a	new,	empty	column.

You	can	nest	hierarchical	Recordset	objects	to	any	depth	(that	is,	create	child
Recordset	objects	of	child	Recordset	objects,	and	so	on).

You	can	access	the	Recordset	components	of	the	shaped	Recordset
programmatically	or	through	an	appropriate	visual	control.

Microsoft	provides	a	visual	tool	that	generates	shape	commands	for	you	(see	the
topic	in	the	Visual	Basic	documentation	titled,	"The	Data	Environment
Designer")	and	another	visual	tool	that	displays	hierarchical	cursors	(see	the
topic	in	the	Visual	Basic	documentation	titled,	"Using	the	Microsoft	Hierarchical
Flexgrid	Control").

Reshaping

A	Recordset	created	by	a	clause	of	a	shape	command	may	be	assigned	an	alias
name	(typically	with	the	AS	keyword).	The	alias	of	a	shaped	Recordset	can	be
referenced	in	an	entirely	different	command.	That	is,	you	may	reuse,	or	reshape,
a	previously	shaped	Recordset	in	a	new	shape	command.	To	support	this
feature,	ADO	provides	a	property,	Reshape	Name.

Reshaping	has	two	main	functions.	The	first	is	to	associate	an	existing
Recordset	with	a	new	parent	Recordset.

Example

.	.	.	

rs1.Open	"SHAPE	{select	*	from	Customers}	"	&	_

												"APPEND	({select	*	from	Orders}	AS	chapOrders	"	&	_

												"RELATE	CustomerID	to	CustomerID)",	cn

rs2.Open	"SHAPE	{select	*	from	Employees}	"	&	_

http://msdn.microsoft.com/library/devprods/vs6/vbasic/vb98/vbrgndedesigner.htm
http://msdn.microsoft.com/library/devprods/vs6/vbasic/vbcon98/vbconhflexgridcontrol.htm

												"APPEND	(chapOrders	RELATE	EmployeeID	to	EmployeeID)",	cn

.	.	.	

The	second	function	is	to	enable	non-chaptered	access	to	existing	child
Recordset	objects,	using	the	syntax	"SHAPE	<recordset	reshape	name>".

Note			You	may	not	append	columns	to	an	existing	Recordset,	reshape	a
parameterized	Recordset	or	the	Recordset	objects	in	any	intervening
COMPUTE	clause,	or	perform	aggregate	operations	on	any	Recordset
decendant	from	the	Recordset	being	reshaped.	The	Recordset	being	reshaped
and	the	new	shape	command	must	both	use	the	same	Connection.

Grandchild	Aggregates

The	chapter	column	created	in	a	clause	of	a	shape	command	may	be	given
chapter-alias	name	(typically	with	the	AS	keyword).	You	may	identify	any
column,	in	any	chapter,	of	the	shaped	Recordset	with	a	fully	qualified	name
identifying	the	child	containing	the	column.	For	example,	if	the	parent	chapter,
chap1,	contains	a	child	chapter,	chap2,	that	has	an	amount	column,	amt,	then	the
qualified	name	would	be	chap1.chap2.amt.	The	qualified	name	may	then	be	used
as	an	argument	to	one	of	the	aggregate	functions	(SUM,	AVG,	MAX,	MIN,
COUNT,	STDEV,	or	ANY).

Parameterized	Commands	with	Intervening	COMPUTE	Commands

A	typical	parameterized	shape	APPEND	command	has	a	clause	that	creates	a
parent	Recordset	with	a	query	command,	and	another	clause	that	creates	a	child
Recordset	with	a	parameterized	query	command—that	is,	a	command
containing	a	parameter	placeholder	(a	question	mark,	"?").	The	resulting	shaped
Recordset	has	two	levels	wherein	the	parent	occupies	the	upper	level	and	the
child	occupies	the	lower	level.

The	clause	that	creates	the	child	Recordset	may	now	be	an	arbitrary	number	of
nested	shape	COMPUTE	commands,	where	the	most	deeply	nested	command
contains	the	parameterized	query.	The	resulting	shaped	Recordset	has	multiple
levels,	wherein	the	parent	occupies	the	uppermost	level,	the	child	occupies	the
lowermost	level,	and	an	arbitrary	number	of	Recordsets	generated	by	the	shape
COMPUTE	commands	occupy	the	intervening	levels.

The	typical	use	for	this	feature	is	to	invoke	the	aggregate	function	and	grouping

abilities	of	shape	COMPUTE	commands	to	create	intervening	Recordset	objects
with	analytical	information	about	the	child	Recordset.	Furthermore,	because	this
is	a	parameterized	shape	command,	each	time	a	chapter	column	of	the	parent	is
accessed,	a	new	child	Recordset	may	be	retrieved.	Because	the	intervening
levels	are	derived	from	the	child,	they	too	will	be	recomputed.

Persisting	Hierarchical	Recordsets

You	can	save	a	hierarchical	Recordset	to	a	file	in	either	ADTG	or	XML	format
by	calling	the	Save	method.	However,	two	limitations	apply	when	saving
hierarchical	Recordsets	in	XML	format:	You	cannot	save	in	XML	if	the
hierarchical	Recordset	contains	pending	updates,	and	you	cannot	save	a
parameterized	hierarchical	Recordset.

For	more	information	on	the	Data	Shaping	provider,	see	Microsoft	Data	Shaping
Service	for	OLE	DB	(ADO)	and	The	Data	Shaping	Service	for	OLE	DB	(OLE
DB).

mk:@MSITStore:OLEDB.chm::/htm/oledbprovThe_Data_Shaping_Service_for_OLE_DB.htm

Required	Providers	for	Data	Shaping

Data	shaping	typically	requires	two	providers.	The	service	provider,	Data
Shaping	Service	for	OLE	DB,	supplies	the	data	shaping	functionality,	and	a	data
provider,	such	as	the	OLE	DB	Provider	for	SQL	Server,	supplies	rows	of	data	to
populate	the	shaped	Recordset.

The	name	of	the	service	provider	can	be	specified	as	the	value	of	the	Connection
object	Provider	property,	or	the	connection	string	keyword,	"Provider=".

The	name	of	the	data	provider	can	be	specified	as	the	value	of	the	"Data
Provider"	dynamic	property	which	is	added	to	the	Connection	object	Properties
collection	by	the	Data	Shaping	Service	for	OLE	DB,	or	the	connection	string
keyword,	"Data	Provider=".

No	data	provider	is	required	if	the	Recordset	is	not	populated	(for	example,	as
in	a	fabricated	Recordset	where	columns	are	created	with	the	NEW	keyword).
In	that	case	specify	"Data	Provider=none".

Example

Dim	cnn	As	New	ADODB.Connection

cnn.Provider	=	"MSDataShape"

cnn.Open	"Data	Provider=MSDASQL;DSN=vfox;uid=sa;pwd=vfox;database=Pubs”

Shape	Commands	in	General

Data	shaping	defines	the	columns	of	a	shaped	Recordset,	the	relationships
between	the	entities	represented	by	the	columns,	and	the	manner	in	which	the
Recordset	is	populated	with	data.

A	shaped	Recordset	may	consist	of	the	following	types	of	columns:

Column	Type Description

data Fields	from	a	Recordset	returned	by	a	query	command	to	a
data	provider,	table,	or	previously	shaped	Recordset.

chapter

A	reference	to	another	Recordset,	called	a	chapter.	Chapter
columns	make	it	possible	to	define	a	parent-child	relationship
where	the	parent	is	the	Recordset	containing	the	chapter
column	and	the	child	is	the	Recordset	represented	by	the
chapter.

aggregate
The	value	of	the	column	is	derived	by	executing	an	aggregate
function	on	all	the	rows,	or	a	column	of	all	the	rows	of	a	child
Recordset.	(See	Aggregate	Functions	in	the	following	table.)

calculated
expression

The	value	of	the	column	is	derived	by	calculating	a	Visual
Basic	for	Applications	expression	on	columns	in	the	same
row	of	the	Recordset.	The	expression	is	the	argument	to	the
CALC	function.	(See	Calculated	Expression	in	the	following
table,	and	Visual	Basic	for	Applications	Functions.)

new
Empty,	fabricated	fields,	which	may	be	populated	with	data	at
a	later	time.	The	column	is	defined	with	the	NEW	keyword.
(See	NEW	Keyword	in	the	following	table.)

A	shape	command	may	contain	a	clause	specifying	a	query	command	to	an

underlying	data	provider	that	will	return	a	Recordset	object.	The	query's	syntax
depends	on	the	requirements	of	the	underlying	data	provider.	This	will	usually
be	Structured	Query	Language	(SQL),	although	ADO	doesn't	require	the	use	of
any	particular	query	language.

You	could	use	an	SQL	JOIN	clause	to	relate	two	tables;	however,	a	hierarchical
Recordset	may	represent	the	information	more	efficiently.	Each	row	of	a
Recordset	created	by	a	JOIN	repeats	information	redundantly	from	one	of	the
tables.	A	hierarchical	Recordset	has	only	one	parent	Recordset	for	each	of
multiple	child	Recordset	objects.

Shape	commands	can	be	issued	by	Recordset	objects	or	by	setting	the
CommandText	property	of	the	Command	object	and	then	calling	the	Execute
method.

Shape	commands	can	be	nested.	That	is,	the	parent-command	or	child-command
may	itself	be	another	shape	command.

For	information	about	navigating	a	hierarchical	Recordset,	see	Accessing	Rows
in	a	Hierarchical	Recordset.

For	precise	information	about	syntactically	correct	shape	commands,	see	Formal
Shape	Grammar.

Aggregate	Functions,	the	CALC	Function,	and	the	NEW	Keyword

Data	shaping	supports	the	following	functions.	The	name	assigned	to	the	chapter
containing	the	column	to	be	operated	on	is	the	chapter-alias.

A	chapter-alias	may	be	fully	qualified,	consisting	of	each	chapter	column	name
leading	to	the	chapter	containing	the	column-name,	all	separated	by	periods.	For
example,	if	the	parent	chapter,	chap1,	contains	a	child	chapter,	chap2,	that	has	an
amount	column,	amt,	then	the	qualified	name	would	be	chap1.chap2.amt.

Aggregate	Functions Description

SUM(chapter-alias.column-name) Calculates	the	sum	of	all	values	in	the
specified	column.

AVG(chapter-alias.column-name) Calculates	the	average	of	all	values	in
the	specified	column.

MAX(chapter-alias.column-name) Calculates	the	maximum	value	in	the
specified	column.

MIN(chapter-alias.column-name) Calculates	the	minimum	value	in	the
specified	column.

COUNT(chapter-alias[.column-name]) Counts	the	number	of	rows	in	thespecified	alias	or	column.

STDEV(chapter-alias.column-name) Calculates	the	standard	deviation	in	the
specified	column.

ANY(chapter-alias.column-name) The	value	of	a	column	(where	the	value
of	the	column	is	the	same	for	all	rows).

Calculated	Expression Description

CALC(expression)

Calculates	an	arbitrary	expression,	but
only	on	the	row	of	the	Recordset
containing	the	CALC	function.	Any
expression	using	these	Visual	Basic	for
Applications	(VBA)	Functions	is
allowed.

NEW	Keyword Description
NEW	field-type	[(width	|	scale	|
precision	|	error	[,	scale	|	error])]

Adds	an	empty	column	of	the	specified
type	to	the	Recordset.

The	field-type	passed	with	the	NEW	keyword	can	be	any	of	the	following	data
types.

OLE	DB	Data	Types ADO	Data	Type	Equivalent(s)
DBTYPE_BSTR adBSTR
DBTYPE_BOOL adBoolean
DBTYPE_DECIMAL adDecimal
DBTYPE_UI1 adUnsignedTinyInt
DBTYPE_I1 adTinyInt
DBTYPE_UI2 adUnsignedSmallInt
DBTYPE_UI4 adUnsignedInt

DBTYPE_I8 adBigInt
DBTYPE_UI8 adUnsignedBigInt
DBTYPE_GUID adGuid

DBTYPE_BYTES adBinary,	AdVarBinary,
adLongVarBinary

DBTYPE_STR adChar,	adVarChar,	adLongVarChar

DBTYPE_WSTR adWChar,	adVarWChar,
adLongVarWChar

DBTYPE_NUMERIC adNumeric
DBTYPE_DBDATE adDBDate
DBTYPE_DBTIME adDBTime
DBTYPE_DBTIMESTAMP adDBTimeStamp
DBTYPE_VARNUMERIC adVarNumeric
DBTYPE_FILETIME adFileTime
DBTYPE_ERROR adError

When	the	new	field	is	of	type	decimal	(in	OLE	DB,	DBTYPE_DECIMAL	or,	in
ADO,	adDecimal),	you	must	specify	the	precision	and	scale	values.

Issuing	Commands	to	the	Underlying	Data	Provider

Any	command	that	does	not	begin	with	SHAPE	is	passed	through	to	the	data
provider.	This	is	equivalent	to	issuing	a	shape	command	of	the	form	"SHAPE
{provider	command}".	These	commands	do	not	have	to	produce	a	Recordset.
For	instance,	"SHAPE	{DROP	TABLE	MyTable}	is	a	perfectly	valid	shape
command,	assuming	the	data	provider	supports	DROP	TABLE.

This	capability	allows	both	normal	provider	commands	and	shape	commands	to
share	the	same	connection	and	transaction.

Shape	Append	Clause

The	shape	command	APPEND	clause	appends	a	column	or	columns	to	a
Recordset.	Often	these	columns	are	chapter	columns,	which	refer	to	a	child
Recordset.

Syntax

SHAPE	[parent-command	[[AS]	parent-alias]]

						APPEND	(column-list	[[[AS]	child-alias]

															[RELATE	parent-column	TO	child-column],	...])

						[[AS]	chapter-alias]

						[,	...]

Description	of	parts

The	parentheses	("()")	are	a	required	keyword;	they	append	a	chapter	column	to
the	parent	Recordset	returned	by	the	provider	command.

The	parts	of	this	clause	are	the	following:

parent-command

Zero	or	one	of	the	following	(you	may	omit	the	parent-command	entirely):

A	provider	command	within	curly	braces	("{}")	that	returns	a	Recordset
object.	The	command	is	issued	to	the	underlying	data	provider,	and	its
syntax	depends	on	the	requirements	of	that	provider.	This	will	typically	be

the	SQL	language,	although	ADO	doesn't	require	any	particular	query
language.

Another	shape	command	embedded	in	parentheses.

The	TABLE	keyword,	followed	by	the	name	of	a	table.

parent-alias

An	optional	alias	that	refers	to	the	parent	Recordset.

column-list

One	or	more	of	the	following:

A	chapter	column	(indicated	by	parenthesis	('()'),	usually	surrounding	a
provider	command	within	curly	braces	("{}")).

The	name	of	an	existing	shaped	Recordset.

Another	shape	command	embedded	in	parentheses.

The	TABLE	keyword,	followed	by	the	name	of	a	table.

An	aggregate	column.

A	calculated	column.

A	new	column	created	with	the	NEW	clause.

child-alias

An	alias	that	refers	to	the	child	Recordset.

parent-column

A	column	in	the	Recordset	returned	by	the	parent-command.

child-column

A	column	in	the	Recordset	returned	by	the	child-command.

chapter-alias

An	alias	that	refers	to	the	chapter	column	appended	to	the	parent.

...

The	"parent-column	TO	child-column"	clause	is	actually	a	list,	where	each
relation	defined	is	separated	by	a	comma.

...

The	clause	after	the	APPEND	keyword	is	actually	a	list,	where	each	clause	is
separated	by	a	comma,	and	defines	another	column	to	be	appended	to	the	parent.

Operation	of	Non-Parameterized	Commands

The	parent-command	(if	present)	is	issued	and	a	parent	Recordset	is	returned.
Then	the	child-command	is	issued	and	the	child	Recordset	is	returned.

For	example,	the	parent-command	could	return	a	Recordset	of	customers	for	a
company	from	a	Customers	table,	and	the	child-command	could	return	a
Recordset	of	orders	for	all	customers	from	an	Orders	table.

SHAPE	{SELECT	*	FROM	Customers}	

			APPEND	({SELECT	*	FROM	Orders}	AS	chapOrders	

			RELATE	customerID	TO	customerID)

For	non-parameterized	parent-child	relationships,	each	parent	and	child
Recordset	object	must	have	a	column	in	common	to	associate	them.	The
columns	are	named	in	the	RELATE	clause,	parent-column	first,	and	then	child-
column.	The	columns	may	have	different	names	in	their	respective	Recordset
objects,	but	must	refer	to	the	same	information	in	order	to	specify	a	meaningful
relation.	For	example,	the	Customers	and	Orders	Recordset	objects	could	both
have	a	customerID	field.

Data	shaping	appends	a	chapter	column	to	the	parent	Recordset.	The	values	in
the	chapter	column	are	references	to	rows	in	the	child	Recordset,	which	satisfy
the	RELATE	clause.	That	is,	the	same	value	is	in	the	parent-column	of	a	given
parent	row,	as	in	the	child-column	of	all	the	rows	of	the	chapter	child.	When

multiple	TO	clauses	are	used	in	the	same	RELATE	clause,	they	are	implicitly
combined	using	an	AND	operator.

When	you	access	the	reference	in	the	chapter	column,	ADO	automatically
retrieves	the	Recordset	represented	by	the	reference.	Note	that	in	a	non-
parameterized	command,	although	the	entire	child	Recordset	has	been	retrieved,
the	chapter	only	presents	a	subset	of	rows.

If	the	appended	column	has	no	chapter-alias,	a	name	will	be	generated	for	it
automatically.	A	Field	object	for	the	column	will	be	appended	to	the	Recordset
object's	Fields	collection	and	its	data	type	will	be	adChapter.

For	information	about	navigating	a	hierarchical	Recordset,	see	Accessing	Rows
in	a	Hierarchical	Recordset.

Operation	of	Parameterized	Commands

If	you	are	working	with	a	large	child	Recordset,	especially	compared	to	the	size
of	the	parent	Recordset,	but	only	need	to	access	a	few	child	chapters,	then	you
may	find	it	more	efficient	to	use	a	parameterized	command.

A	non-parameterized	command	retrieves	both	the	entire	parent	and	child
Recordsets,	appends	a	chapter	column	to	the	parent,	and	then	assigns	a
reference	to	the	related	child	chapter	for	each	parent	row.

A	parameterized	command	retrieves	the	entire	parent	Recordset,	but	only
retrieves	the	chapter	Recordset	when	the	chapter	column	is	accessed.	This
difference	in	retrieval	strategy	can	yield	significant	performance	benefits.

For	example,	you	can	specify	the	following:

SHAPE	{SELECT	*	FROM	customer}	

			APPEND	({SELECT	*	FROM	orders	WHERE	cust_id	=	?}	

			RELATE	cust_id	TO	PARAMETER	0)

The	parent	and	child	tables	have	a	column	name	in	common,	cust_id.	The	child-
command	has	a	"?"	placeholder,	to	which	the	RELATE	clause	refers	(that	is,
"...PARAMETER	0").

Note			The	PARAMETER	clause	pertains	solely	to	the	shape	command	syntax.	It
is	not	associated	with	either	the	ADO	Parameter	object	or	Parameters	collection.

When	the	parameterized	shape	command	is	executed,	the	following	happens:

1.	 The	parent-command	is	executed	and	returns	a	parent	Recordset	from	the
Customers	table.

2.	 A	chapter	column	is	appended	to	the	parent	Recordset.

3.	 When	the	chapter	column	of	a	parent	row	is	accessed,	the	value	of	the
customer.cust_id	column	replaces	the	placeholder	for	orders.cust_id,	and
the	child-command	is	executed.

4.	 All	the	rows	from	the	Orders	table	where	the	value	of	the	orders.cust_id
column	matches	the	value	of	the	customer.cust_id	column,	are	retrieved.
By	default	the	child	Recordsets	will	be	cached	on	the	client	until	all
references	to	the	parent	Recordset	are	released.	To	change	this	behavior,
set	the	Recordset	dynamic	property	Cache	Child	Rows	to	False.

5.	 A	reference	to	the	retrieved	child	rows	(that	is,	the	chapter	of	the	child
Recordset)	is	placed	in	the	chapter	column	of	the	current	row	of	the	parent
Recordset.

6.	 Steps	3-5	are	repeated	when	the	chapter	column	of	another	row	is	accessed.

The	Cache	Child	Rows	dynamic	property	is	set	to	True	by	default.	The	caching
behavior	varies	depending	upon	the	parameter	values	of	the	query.	In	a	query
with	a	single	parameter,	the	child	recordset	for	a	given	parameter	value	will	be
cached	between	requests	for	a	child	with	that	value.	The	following	code
demonstrates	this:

...

SCmd	=	"SHAPE	{select	*	from	customer}	"	&	_

									"APPEND({select	*	from	orders	where	cust_id	=	?}	"	&	_

									"RELATE	cust_id	TO	PARAMETER	0)	AS	chpCustOrder"

Rst1.Open	sCmd,	Cnn1

Set	RstChild	=	Rst1("chpCustOrder").Value

Rst1.MoveNext						'	Next	cust_id	passed	to	Param	0,	&	new	rs	fetched	

																			'	into	RstChild.

Rst1.MovePrev						'	RstChild	now	holds	cached	rs,	saving	round	trip.

...

In	a	query	with	two	or	more	parameters,	a	cached	child	is	used	only	if	all	the

parameter	values	match	the	cached	values.

Hybrid	Commands

Hybrid	commands	are	partially	parameterized	commands.	For	example:

SHAPE	{select	*	from	plants}	

			APPEND({select	*	from	customers	where	country	=	?}	

											RELATE	PlantCountry	TO	PARAMETER	0,	

													PlantRegion	TO	CustomerRegion)	

The	caching	behavior	for	a	hybrid	command	is	the	same	as	that	of	regular
parameterized	command.

Intervening	Shape	COMPUTE	Clauses

It	is	valid	to	embed	the	parameterized	command	of	a	parameterized	shape
command	in	an	arbitrarily	nested	number	of	shape	COMPUTE	commands,	as	in
the	following	example.

SHAPE	{select	au_lname,	state	from	authors}	APPEND	

			((SHAPE	

						(SHAPE	

									{select	*	from	authors	where	state	=	?}	rs	

						COMPUTE	rs,	ANY(rs.state)	state,	ANY(rs.au_lname)	au_lname	

						BY	au_id)	rs2	

			COMPUTE	rs2,	ANY(rs2.state)	BY	au_lname)	

RELATE	state	TO	PARAMETER	0)

Shape	Compute	Clause

A	shape	COMPUTE	clause	generates	a	parent	Recordset,	whose	columns
consist	of	a	reference	to	the	child	Recordset;	optional	columns	whose	contents
are	chapter,	new,	or	calculated	columns,	or	the	result	of	executing	aggregate
functions	on	the	child	Recordset	or	a	previously	shaped	Recordset;	and	any
columns	from	the	child	Recordset	listed	in	the	optional	BY	clause.

Syntax

SHAPE	child-command	[AS]	child-alias

						COMPUTE	child-alias	[[AS]	name],	[appended-column-list]

						[BY	grp-field-list]

Description	of	parts

The	parts	of	this	clause	are:

child-command

Consists	of	one	of	the	following:

A	query	command	within	curly	braces	("{}")	that	returns	a	child	Recordset
object.	The	command	is	issued	to	the	underlying	data	provider,	and	its
syntax	depends	on	the	requirements	of	that	provider.	This	will	typically	be
the	SQL	language,	although	ADO	doesn't	require	any	particular	query
language.

The	name	of	an	existing	shaped	Recordset.

Another	shape	command.

The	TABLE	keyword,	followed	by	the	name	of	a	table.

child-alias

An	alias	used	to	refer	to	the	Recordset	returned	by	the	child-command.	The
child-alias	is	required	in	the	list	of	columns	in	the	COMPUTE	clause	and
defines	the	relation	between	the	parent	and	child	Recordset	objects.

appended-column-list

A	list	in	which	each	element	defines	a	column	in	the	generated	parent.	Each
element	contains	either	a	chapter	column,	a	new	column,	a	calculated	column,	or
a	value	resulting	from	an	aggregate	function	on	the	child	Recordset.

grp-field-list			

A	list	of	columns	in	the	parent	and	child	Recordset	objects	that	specifies	how
rows	should	be	grouped	in	the	child.

For	each	column	in	the	grp-field-list,	there	is	a	corresponding	column	in	the
child	and	parent	Recordset	objects.	For	each	row	in	the	parent	Recordset,	the
grp-field-list	columns	have	unique	values,	and	the	child	Recordset	referenced
by	the	parent	row	consists	solely	of	child	rows	whose	grp-field-list	columns	have
the	same	values	as	the	parent	row.

If	the	COMPUTE	clause	does	not	contain	a	BY	clause,	then	there	is	a	single
parent	row	with	an	aggregate	value	for	the	entire	child	Recordset.	If	there	is	a
BY	clause,	then	there	may	be	multiple	parent	rows,	each	with	a	reference	and	an
aggregate	value	for	a	child	Recordset.

Operation

The	child-command	is	issued	to	the	provider,	which	returns	a	child	Recordset.

The	COMPUTE	clause	specifies	the	columns	of	the	parent	Recordset,	which
may	be	a	reference	to	the	child	Recordset,	one	or	more	aggregates,	a	calculated
expression,	or	new	columns.	If	there	is	a	BY	clause,	then	the	columns	it	defines
are	also	appended	to	the	parent	Recordset.	The	BY	clause	specifies	how	the

rows	of	the	child	Recordset	are	grouped.

For	example,	assume	you	have	a	table—Demographics—consisting	of	State,
City,	and	Population	fields	(the	population	figures	are	solely	for	illustration).

State City Population
WA Seattle 700,000
OR Medford 200,000
OR Portland 600,000
CA Los	Angeles 900,000
CA San	Diego 400,000
WA Tacoma 500,000
OR Corvallis 300,000

Now,	issue	this	shape	command:

rst.Open		"SHAPE	{select	*	from	demographics}	AS	rs	"		&	_

										"COMPUTE	rs,	SUM(rs.population)	BY	state",	_

											objConnection

This	command	opens	a	shaped	Recordset	with	two	levels.	The	parent	level	is	a
generated	Recordset	with	an	aggregate	column	(SUM(rs.population)),	a
column	referencing	the	child	Recordset	(rs),	and	a	column	for	grouping	the
child	Recordset	(state).	The	child	level	is	the	Recordset	returned	by	the	query
command	(select	*	from	demographics).

The	child	Recordset	detail	rows	will	be	grouped	by	state,	but	otherwise	in	no
particular	order.	That	is,	the	groups	will	not	be	in	alphabetical	or	numerical
order.

You	can	now	navigate	the	opened	parent	Recordset,	and	access	the	child	detail
Recordset	objects.	See	Accessing	Rows	in	a	Hierarchical	Recordset.

Resultant	Parent	and	Child	Detail	Recordsets

Parent

SUM	(rs.Population) rs State

1,300,000 Reference	to	child1 CA
1,200,000 Reference	to	child2 WA
1,100,000 Reference	to	child3 OR

Child1

State City Population
CA Los	Angeles 900,000
CA San	Diego 400,000

Child2

State City Population
WA Seattle 700,000
WA Tacoma 500,000

Child3

State City Population
OR Medford 200,000
OR Portland 600,000
OR Corvallis 300,000

Fabricating	Hierarchical	Recordsets

The	following	example	shows	how	to	fabricate	a	hierarchical	Recordset	without
an	underlying	data	source	by	using	the	data	shaping	grammar	to	define	columns
for	parent,	child,	and	grandchild	recordsets.

To	fabricate	a	hierarchical	Recordset,	you	must	specify	the	Microsoft	Data
Shaping	Service	for	OLE	DB	(MSDataShape)	and	a	Data	Provider	value	of
NONE	in	the	connection	string	parameter	of	the	Connection	object's	Open
method.	Refer	to	Required	Providers	for	Data	Shaping	for	more	information.

Dim	cn	As	New	ADODB.Connection

Dim	rsCustomers	As	New	ADODB.Recordset

cn.Open	"Provider=MSDataShape;Data	Provider=NONE;"

	

strShape	=	_

"SHAPE	APPEND	NEW	adInteger	AS	CustID,"	&	_

												"	NEW	adChar(25)	AS	FirstName,"	&	_

												"	NEW	adChar(25)	AS	LastName,"	&	_

												"	NEW	adChar(12)	AS	SSN,"	&	_

												"	NEW	adChar(50)	AS	Address,"	&	_

									"	((SHAPE	APPEND	NEW	adChar(80)	AS	VIN_NO,"	&	_

																								"	NEW	adInteger	AS	CustID,"	&	_

																								"	NEW	adChar(20)	AS	BodyColor,	"	&	_

																					"	((SHAPE	APPEND	NEW	adChar(80)	AS	VIN_NO,"	&	_

																																				"	NEW	adChar(20)	AS	Make,	"	&	_

																																				"	NEW	adChar(20)	AS	Model,"	&	_

																																				"	NEW	adChar(4)	AS	Year)	"	&	_

																								"	AS	VINS	RELATE	VIN_NO	TO	VIN_NO))"	&	_

												"	AS	Vehicles	RELATE	CustID	TO	CustID)	"

	

rsCustomers.Open	strShape,	cn,	adOpenStatic,	adLockOptimistic,	-1

Once	the	Recordset	has	been	fabricated,	it	can	be	populated,	manipulated,	or
persisted	to	a	file.

Accessing	Rows	in	a	Hierarchical	Recordset

The	following	example	shows	the	steps	necessary	to	access	rows	in	a
hierarchical	Recordset:

1.	 Recordset	objects	from	the	authors	and	titleauthor	tables	are	related	by
author	ID.

2.	 The	outer	loop	displays	each	author's	first	and	last	name,	state,	and
identification.

3.	 The	appended	Recordset	for	each	row	is	retrieved	from	the	Fields
collection	and	assigned	to	rstTitleAuthor.

4.	 The	inner	loop	displays	four	fields	from	each	row	in	the	appended
Recordset.

(The	StayInSync	property	is	set	to	FALSE	for	purposes	of	illustration—so	you
can	see	the	chapter	change	explicitly	in	each	iteration	of	the	outer	loop.
However,	the	example	will	be	more	efficient	if	the	assignment	in	Step	3	is
moved	before	the	first	line	in	Step	2,	so	that	the	assignment	is	only	performed
once.	Then	set	the	StayInSync	property	to	TRUE,	so	rstTitleAuthor	will
implicitly	and	automatically	change	to	the	corresponding	chapter	whenever	rst
moves	to	a	new	row.)

Example

Sub	datashape()

				Dim	cnn	As	New	ADODB.Connection

				Dim	rst	As	New	ADODB.Recordset

				Dim	rstTitleAuthor	As	New	ADODB.Recordset

				cnn.Provider	=	"MSDataShape"

				cnn.Open				"Data	Provider=MSDASQL;"	&	_

																"Data	Source=SRV;User	Id=sa;Password=;Database=Pubs"

'	STEP	1

				rst.StayInSync	=	FALSE

				rst.Open				"SHAPE		{select	*	from	authors}	"		&	_	

																"APPEND	({select	*	from	titleauthor}	"	&	_

																"RELATE	au_id	TO	au_id)	AS	chapTitleAuthor",	_

																cnn

'	STEP	2

				While	Not	rst.EOF

								Debug.Print				rst("au_fname"),	rst("au_lname"),	_

																							rst("state"),	rst("au_id")

'	STEP	3

								Set	rstTitleAuthor	=	rst("chapTitleAuthor").Value

'	STEP	4

								While	Not	rstTitleAuthor.EOF

												Debug.Print	rstTitleAuthor(0),	rstTitleAuthor(1),	_

																								rstTitleAuthor(2),	rstTitleAuthor(3)

												rstTitleAuthor.MoveNext

								Wend

								rst.MoveNext

				Wend

End	Sub

Formal	Shape	Grammar

This	is	the	formal	grammar	for	creating	any	shape	command.

Required	grammatical	terms	are	text	strings	delimited	by	angle	brackets	("
<>").

Optional	terms	are	delimited	by	square	brackets	("[]").

Alternatives	are	indicated	by	a	virgule	("|").

Repeating	alternatives	are	indicated	by	an	ellipsis	("...").

Alpha	indicates	a	string	of	alphabetical	letters.

Digit	indicates	a	string	of	numbers.

Unicode-digit	indicates	a	string	of	unicode	digits.

All	other	terms	are	literals.

Term Definition

<shape-command> SHAPE	[<table-exp>	[[AS]	<alias>]][<shape-action>]

<table-exp>

{<native-sql-statement>}	|

(<shape-command>)	|

TABLE	<quoted-name>	|

<quoted-name>

<shape-action>

APPEND	<aliased-field-list>	|	

COMPUTE	<aliased-field-list>	[BY	<field-list>]

<aliased-field-list> <aliased-field>	[,	<aliased-field...>]

<aliased-field> <field-exp>	[[AS]	<alias>]

<field-exp>

(<relation-exp>)	|

<calculated-exp>	|

<aggregate-exp>	|

<new-exp>

<relation_exp>

<table-exp>	[[AS]	<alias>]	

				RELATE	<relation-cond-list>

<relation-cond-list> <relation-cond>	[,	<relation-cond>...]

<relation-cond> <field-name>	TO	<child-ref>

<child-ref>

<field-name>	|	

PARAMETER	<param-ref>

<param-ref> <number>

<field-list> <field-name>	[,	<field-name>]

<aggregate-exp>

SUM(<qualified-field-name>)	|

AVG(<qualified-field-name>)	|

MIN(<qualified-field-name>)	|

MAX(<qualified-field-name>)	|

COUNT(<alias>	|	<qualified-field-name>)	|

STDEV(<qualified-field-name>)	|

ANY(<qualified-field-name>)	

<calculated-exp> CALC(<expression>)

<qualified-field-name> <alias>.[<alias>...]<field-name>

<alias> <quoted-name>

<field-name> <quoted-name>	[[AS]	<alias>]

<quoted-name>

"<string>"	|

'<string>'	|

[<string>]	|

<name>

<name> alpha	[alpha	|	digit	|	_	|	#	...]

<number> digit	[digit...]

<new-exp> NEW	<field-type>	[(<number>	[,	<number>])]

<field-type> An	OLE	DB	or	ADO	data	type.

<string> unicode-char	[unicode-char...]

<expression>
A	Visual	Basic	for	Applications	expression	whose	operands
are	other	non-CALC	columns	in	the	same	row.

Visual	Basic	for	Applications	Functions

The	following	Visual	Basic	for	Applications	functions	can	be	used	in	data
shaping	CALC	expressions:

Abs Asc Atn CBool CByte CCur
CDate CDbl Chr ChrB ChrW Chr$
ChrB$ CInt CLng Cos CSng CStr
Cvar CVDate CVErr Date Date$ DateAdd
DateDiff DatePart DateSerial DateValue Day DDB
Error Error$ Exp Fix Format Format$
FV Hex Hex$ Hour IIF InStr
Int IPmt IRR IsDate IsEmpty IsError
IsNull IsNumeric IsObject LCase LCase$ Left
LeftB Left$ LeftB$ Len Log LTrim
LTrim$ Mid Mid$ Minute MIRR Month
Now NPer NPV Oct Oct$ Pmt
PPmt PV QBColor Rate RGB Right
RightB Right$ RightB$ Rnd RTrim RTrim$
Second Sgn Sin SLN Space Space$
Sqr Str Str$ StrComp StrConv String
String$ SYD Tan Time Time$ Timer
TimeSerial TimeValue Trim Trim$ TypeName UCase
UCase$ Val VarType Weekday Year 	

DataFactory	Customization

Remote	Data	Service	(RDS)	provides	a	way	to	easily	perform	data	access	in	a
three-tier	client/server	system.	A	client	data	control	specifies	connection	and
command	string	parameters	to	perform	a	query	on	a	remote	data	source,	or
connection	string	and	Recordset	object	parameters	to	perform	an	update.

The	parameters	are	passed	to	a	server	program,	which	performs	the	data-access
operation	on	the	remote	data	source.	RDS	provides	a	default	server	program
called	the	RDSServer.DataFactory	object.	The	RDSServer.DataFactory	object
returns	any	Recordset	object	produced	by	a	query	to	the	client.

However,	the	RDSServer.DataFactory	is	limited	to	performing	queries	and
updates.	It	cannot	perform	any	validation	or	processing	on	the	connection	or
command	strings.

With	ADO,	you	can	specify	that	the	DataFactory	work	in	conjunction	with
another	type	of	server	program	called	a	handler.	The	handler	can	modify	client
connection	and	command	strings	before	they	are	used	to	access	the	data	source.
In	addition,	the	handler	can	enforce	access	rights,	which	govern	the	ability	of	the
client	to	read	and	write	data	to	the	data	source.

The	parameters	the	handler	uses	to	modify	client	parameters	and	access	rights
are	specified	in	sections	of	a	customization	file.

See	the	following	topics	for	more	information	about	customizing	the
DataFactory	object:

Understanding	the	Customization	File
Customization	File	Connect	Section

Customization	File	SQL	Section

Customization	File	UserList	Section

Customization	File	Logs	Section

Required	Client	Settings

Writing	Your	Own	Customized	Handler

Understanding	the	Customization	File

Each	section	header	in	the	customization	file	consists	of	square	brackets	([])
containing	a	type	and	parameter.	The	four	section	types	are	indicated	by	the
literal	strings	connect,	sql,	userlist,	or	logs.	The	parameter	is	the	literal	string,
the	default,	a	user-specified	identifier,	or	nothing.

Therefore,	each	section	is	marked	with	one	of	the	following	section	headers:

[connect				default]

[connect				identifier]

[sql												default]

[sql												identifier]

[userlist				identifier]

[logs]

The	section	headers	have	the	following	parts:

Part Description
connect A	literal	string	that	modifies	a	connection	string.
sql A	literal	string	that	modifies	a	command	string.

userlist A	literal	string	that	modifies	the	access	rights	of	a	specific
user.

logs A	literal	string	that	specifies	a	log	file	recording
operational	errors.

default A	literal	string	that	is	used	if	no	identifier	is	specified	or
found.
A	string	that	matches	a	string	in	the	connect	or	command
string.

Use	this	section	if	the	section	header	contains

identifier

connect	and	the	identifier	string	is	found	in	the
connection	string.

Use	this	section	if	the	section	header	contains	sql	and
the	identifier	string	is	found	in	the	command	string.

Use	this	section	if	the	section	header	contains
userlist	and	the	identifier	string	matches	a	connect
section	identifier.

The	DataFactory	calls	the	handler,	passing	client	parameters.	The	handler
searches	for	whole	strings	in	the	client	parameters	that	match	identifiers	in	the
appropriate	section	headers.	If	a	match	is	found,	the	contents	of	that	section	are
applied	to	the	client	parameter.

A	particular	section	is	used	under	the	following	circumstances:

A	connect	section	is	used	if	the	value	part	of	the	client	connect	string
keyword,	"Data	Source=value",	matches	a	connect	section	identifier.

An	sql	section	is	used	if	the	client	command	string	contains	a	string	that
matches	an	sql	section	identifier.

A	connect	or	sql	section	with	a	default	parameter	is	used	if	there	is	no
matching	identifier.

A	userlist	section	is	used	if	the	userlist	section	identifier	matches	a
connect	section	identifier.	If	there	is	a	match,	the	contents	of	the	userlist
section	are	applied	to	the	connection	governed	by	the	connect	section.

If	the	string	in	a	connection	or	command	string	does	not	match	the
identifier	in	any	connect	or	sql	section	header,	and	there	is	no	connect	or
sql	section	header	with	a	default	parameter,	then	the	client	string	is	used
without	modification.

The	logs	section	is	used	whenever	the	DataFactory	is	in	operation.

Customization	File	Connect	Section

The	default	behavior	of	the	handler	is	to	deny	all	connections.	The	connect
section	specifies	exceptions	to	that	behavior.	For	example,	if	all	the	connect
sections	were	absent	or	empty,	then	by	default	no	connections	could	be	made.

The	connect	section	can	contain:

A	default	access	entry	that	specifies	the	default	read	and	write	operations
allowed	on	this	connection.	If	there	is	no	default	access	entry	in	the	section,
the	section	will	be	ignored.

A	new	connection	string	that	replaces	the	client	connection	string.

Syntax

A	default	access	entry	is	of	the	form:

Access=accessRight

A	replacement	connection	string	entry	is	of	the	form:

Connect=connectionString

Part Description

Connect A	literal	string	that	indicates	this	is	a	connection
string	entry.

connectionString A	string	that	replaces	the	whole	client	connection
string.

Access A	literal	string	that	indicates	this	is	an	access	entry.
One	of	the	following	access	rights:

accessRight

NoAccess	—	User	cannot	access	the	data
source.

ReadOnly	—	User	can	read	the	data	source.

ReadWrite	—	User	can	read	or	write	to	the
data	source.

If	you	want	to	allow	any	connection	(in	effect,	disabling	the	default	handler
behavior),	set	the	access	entry	in	the	connect	default	section	to
Access=ReadWrite,	and	delete	or	comment	out	any	other	connect	identifier
section.

Customization	File	SQL	Section

The	sql	section	can	contain	a	new	SQL	string	that	replaces	the	client	command
string.	If	there	is	no	SQL	string	in	the	section,	the	section	will	be	ignored.

The	new	SQL	string	may	be	parameterized.	That	is,	parameters	in	the	sql	section
SQL	string	(designated	by	the	'?'	character)	can	be	replaced	by	corresponding
arguments	in	an	identifier	in	the	client	command	string	(designated	by	a	comma-
delimited	list	in	parentheses).	The	identifier	and	argument	list	behave	like	a
function	call.

For	example,	assume	the	client	command	string	is	"CustomerByID(4)",	the	SQL
section	header	is	[SQL	CustomerByID],	and	the	new	SQL	section	string	is
"SELECT	*	FROM	Customers	WHERE	CustomerID	=	?".	The	Handler	will
generate	"SELECT	*	FROM	Customers	WHERE	CustomerID	=	4"	and	use	that
string	to	query	the	data	source.

If	the	new	SQL	statement	is	the	null	string	(""),	then	the	section	is	ignored.

If	the	new	SQL	statement	string	is	not	valid,	then	the	execution	of	the	statement
will	fail.	The	client	parameter	is	effectively	ignored.	You	can	do	this
intentionally	to	"turn	off"	all	client	SQL	commands	by	specifying:

[SQL	default]	

SQL	=	"	"

Syntax

A	replacement	SQL	string	entry	is	of	the	form:

SQL=sqlString

Part Description

SQL A	literal	string	that	indicates	this	is	an	SQL	section
entry.

sqlString An	SQL	string	that	replaces	the	client	string.

Customization	File	UserList	Section

The	userlist	section	pertains	to	the	connect	section	with	the	same	section
identifier	parameter.

This	section	can	contain	a	user	access	entry,	which	specifies	access	rights	for	the
specified	user	and	overrides	the	default	access	entry	in	the	matching	connect
section.

Syntax

A	user	access	entry	is	of	the	form:

userName=accessRights

Part Description

userName
The	user	name	of	the	person	employing	this
connection.	Valid	user	names	are	established	with
the	IIS	Service	Manager	dialog.

accessRights

One	of	the	following	access	rights:

NoAccess	—	User	cannot	access	the	data
source.

ReadOnly	—	User	can	read	the	data	source.

ReadWrite	—	User	can	read	or	write	to	the
data	source.

Customization	File	Logs	Section

The	logs	section	contains	a	log	file	entry,	which	specifies	the	name	of	a	file	that
records	errors	during	the	operation	of	the	DataFactory.

Syntax

A	log	file	entry	is	of	the	form:

err=FileName

Part Description
err A	literal	string	that	indicates	this	is	a	log	file	entry.

FileName A	complete	path	and	file	name.	The	typical	file	name
is	c:\msdfmap.log.

The	log	file	will	contain	the	user	name,	HRESULT,	date,	and	time	of	each	error.

Required	Client	Settings

Specify	the	following	settings	to	use	a	custom	DataFactory	handler.

Specify	"Provider=MS	Remote"	in	the	Connection	object	Provider	property
or	the	Connection	object	connection	string	"Provider="	keyword.

Set	the	CursorLocation	property	to	adUseClient.

Specify	the	name	of	the	handler	to	use	in	the	RDS.DataControl	object's
Handler	property,	or	the	Recordset	object's	connection	string	"Handler="
keyword.	(You	cannot	set	the	handler	in	the	Connection	object	connect
string.)

RDS	provides	a	default	handler	on	the	server	named	MSDFMAP.Handler.
(The	default	customization	file	is	named	MSDFMAP.INI.)

Example

Assume	that	the	following	sections	in	MSDFMAP.INI	and	the	data	source
name,	AdvWorks,	have	been	previously	defined:

[connect	CustomerDataBase]

Access=ReadWrite

Connect="DSN=AdvWorks"

[sql	CustomerById]

SQL="SELECT	*	FROM	Customers	WHERE	CustomerID	=	?"

The	following	code	snippets	are	written	in	Visual	Basic:

RDS.DataControl	Version

Dim	dc	as	New	RDS.DataControl

Set	dc.Handler	=	"MSDFMAP.Handler"

Set	dc.Server	=	"http://YourServer"

Set	dc.Connect	=	"Data	Source=CustomerDatabase"

Set	dc.SQL	=	"CustomerById(4)"

dc.Refresh

Recordset	Version

Dim	rs	as	New	ADODB.Recordset

rs.CursorLocation	=	adUseClient

Specify	either	the	Handler	property	or	keyword;	the	Provider	property	or
keyword;	and	the	CustomerById	and	CustomerDatabase	identifiers.	Then	open
the	Recordset	object.

rs.Open	"CustomerById(4)",	"Handler=MSDFMAP.Handler;"	&	_

				"Provider=MS	Remote;Data	Source=CustomerDatabase;"	&	_

				"Remote	Server=http://YourServer"

Writing	Your	Own	Customized	Handler

You	may	want	to	write	your	own	handler	if	you	are	an	IIS	server	administrator
who	wants	the	default	RDS	support,	but	more	control	over	user	requests	and
access	rights.

The	MSDFMAP.Handler	implements	the	IDataFactoryHandler	interface.

IDataFactoryHandler	Interface

This	interface	has	two	methods,	GetRecordset	and	Reconnect.	Both	methods
require	that	the	CursorLocation	property	be	set	to	adUseClient.

Both	methods	take	arguments	that	appear	after	the	first	comma	in	the
"Handler="	keyword.	For	example,	"Handler=progid,arg1,arg2;"	will	pass
an	argument	string	of	"arg1,arg2",	and	"Handler=progid"	will	pass	a	null
argument.

GetRecordset	Method

This	method	queries	the	data	source	and	creates	a	new	Recordset	object	using
the	arguments	provided.	The	Recordset	must	be	opened	with
adLockBatchOptimistic,	and	must	not	be	opened	asynchronously.

Arguments

conn			The	connection	string.

args			The	arguments	for	the	handler.

query			The	command	text	for	making	a	query.

ppRS			The	pointer	where	the	Recordset	should	be	returned.

Reconnect	Method

This	method	updates	the	data	source.	It	creates	a	new	Connection	object	and
attaches	the	given	Recordset.

Arguments

conn			The	connection	string.

args			The	arguments	for	the	handler.

pRS			A	Recordset	object.

msdfhdl.idl

This	is	the	interface	definition	for	IDataFactoryHandler	that	appears	in	the
msdfhdl.idl	file.

[

		uuid(D80DE8B3-0001-11d1-91E6-00C04FBBBFB3),

		version(1.0)

]

library	MSDFHDL

{

				importlib("stdole32.tlb");

				importlib("stdole2.tlb");

				//	TLib	:	Microsoft	ActiveX	Data	Objects	2.0	Library

				//	{00000200-0000-0010-8000-00AA006D2EA4}

				#ifdef	IMPLIB

				importlib("implib\\x86\\release\\ado\\msado15.dll");

				#else

				importlib("msado20.dll");

				#endif

				[

						odl,

						uuid(D80DE8B5-0001-11d1-91E6-00C04FBBBFB3),

						version(1.0)

]

				interface	IDataFactoryHandler	:	IUnknown

				{

HRESULT	_stdcall	GetRecordset(

								[in]	BSTR	conn,

								[in]	BSTR	args,

								[in]	BSTR	query,

								[out,	retval]	_Recordset	**ppRS);

//	DataFactory	will	use	the	ActiveConnection	property

//	on	the	recordset	after	calling	Reconnect.

				HRESULT	_stdcall	Reconnect(

								[in]	BSTR	conn,

								[in]	BSTR	args,

								[in]	_Recordset	*pRS);

				};

};

ADO	API	Reference

This	section	of	the	ADO	documentation	contains	topics	for	each	ADO	and	RDS
object,	collection,	property,	dynamic	property,	method,	event,	and	enumeration.
For	more	information,	search	for	a	specific	topic	in	the	index	or	refer	to	the
following	topics:

ADO	Object	Model
ADO	Objects

ADO	Collections

ADO	Properties

ADO	Dynamic	Properties

ADO	Methods

ADO	Events

ADO	Enumerated	Constants

ADO	Errors

ADO	Object	Model

The	following	figures	show	the	ADO	objects	and	their	collections.	Click	an
object	or	collection	for	more	information.

	

ADO	Objects

The	relationships	between	these	objects	are	represented	in	the	ADO	Object
Model.

Each	object	can	be	contained	in	its	corresponding	collection.	For	example,	an
Error	object	can	be	contained	in	an	Errors	collection.	For	more	information,	see
ADO	Collections	or	a	specific	collection	topic.

ADO	Object	Summary

Object Description

Command Defines	a	specific	command	that	you	intend	to	execute
against	a	data	source.

Connection Represents	an	open	connection	to	a	data	source.

DataControl	(RDS)
Binds	a	data	query	Recordset	to	one	or	more	controls	(for
example,	a	text	box,	grid	control,	or	combo	box)	to	display
the	Recordset	data	on	a	Web	page.

DataFactory	(RDS
Server)

Implements	methods	that	provide	read/write	data	access	to
specified	data	sources	for	client-side	applications.

DataSpace	(RDS) Creates	client-side	proxies	to	custom	business	objects
located	on	the	middle	tier.

Error Contains	details	about	data	access	errors	that	pertain	to	a
single	operation	involving	the	provider.

Field Represents	a	column	of	data	with	a	common	data	type.

Parameter
Represents	a	parameter	or	argument	associated	with	a
Command	object	based	on	a	parameterized	query	or	stored
procedure.

Property Represents	a	dynamic	characteristic	of	an	ADO	object	that
is	defined	by	the	provider.

Record Represents	a	row	of	a	Recordset,	or	a	directory	or	file	in	a
file	system.

Recordset

Represents	the	entire	set	of	records	from	a	base	table	or	the
results	of	an	executed	command.	At	any	time,	the
Recordset	object	refers	to	only	a	single	record	within	the
set	as	the	current	record.

Stream Represents	a	binary	stream	of	data.

Command	Object

				 				

				 				

Defines	a	specific	command	that	you	intend	to	execute	against	a	data	source.

	

Remarks

Use	a	Command	object	to	query	a	database	and	return	records	in	a	Recordset
object,	to	execute	a	bulk	operation,	or	to	manipulate	the	structure	of	a	database.
Depending	on	the	functionality	of	the	provider,	some	Command	collections,
methods,	or	properties	may	generate	an	error	when	referenced.

With	the	collections,	methods,	and	properties	of	a	Command	object,	you	can	do
the	following:

Define	the	executable	text	of	the	command	(for	example,	an	SQL
statement)	with	the	CommandText	property.

Define	parameterized	queries	or	stored-procedure	arguments	with
Parameter	objects	and	the	Parameters	collection.	

Execute	a	command	and	return	a	Recordset	object	if	appropriate	with	the
Execute	method.

Specify	the	type	of	command	with	the	CommandType	property	prior	to
execution	to	optimize	performance.

Control	whether	the	provider	saves	a	prepared	(or	compiled)	version	of	the
command	prior	to	execution	with	the	Prepared	property.

Set	the	number	of	seconds	that	a	provider	will	wait	for	a	command	to
execute	with	the	CommandTimeout	property.

Associate	an	open	connection	with	a	Command	object	by	setting	its
ActiveConnection	property.

Set	the	Name	property	to	identify	the	Command	object	as	a	method	on	the
associated	Connection	object.

Pass	a	Command	object	to	the	Source	property	of	a	Recordset	in	order	to
obtain	data.

Note			To	execute	a	query	without	using	a	Command	object,	pass	a	query
string	to	the	Execute	method	of	a	Connection	object	or	to	the	Open	method
of	a	Recordset	object.	However,	a	Command	object	is	required	when	you
want	to	persist	the	command	text	and	re-execute	it,	or	use	query	parameters.

To	create	a	Command	object	independently	of	a	previously	defined	Connection
object,	set	its	ActiveConnection	property	to	a	valid	connection	string.	ADO	still
creates	a	Connection	object,	but	it	doesn't	assign	that	object	to	an	object
variable.	However,	if	you	are	associating	multiple	Command	objects	with	the
same	connection,	you	should	explicitly	create	and	open	a	Connection	object;
this	assigns	the	Connection	object	to	an	object	variable.	If	you	do	not	set	the
Command	object's	ActiveConnection	property	to	this	object	variable,	ADO

creates	a	new	Connection	object	for	each	Command	object,	even	if	you	use	the
same	connection	string.

To	execute	a	Command,	simply	call	it	by	its	Name	property	on	the	associated
Connection	object.	The	Command	must	have	its	ActiveConnection	property
set	to	the	Connection	object.	If	the	Command	has	parameters,	pass	their	values
as	arguments	to	the	method.

If	two	or	more	Command	objects	are	executed	on	the	same	connection	and
either	Command	object	is	a	stored	procedure	with	output	parameters,	an	error
occurs.	To	execute	each	Command	object,	use	separate	connections	or
disconnect	all	other	Command	objects	from	the	connection.

The	Parameters	collection	is	the	default	member	of	the	Command	object.	As	a
result,	the	following	two	code	statements	are	equivalent.

objCmd.Parameters.Item(0)

objCmd(0)

Connection	Object

				 				

				 				

				

Represents	an	open	connection	to	a	data	source.

	

Remarks

A	Connection	object	represents	a	unique	session	with	a	data	source.	In	the	case
of	a	client/server	database	system,	it	may	be	equivalent	to	an	actual	network
connection	to	the	server.	Depending	on	the	functionality	supported	by	the
provider,	some	collections,	methods,	or	properties	of	a	Connection	object	may
not	be	available.

With	the	collections,	methods,	and	properties	of	a	Connection	object,	you	can

do	the	following:

Configure	the	connection	before	opening	it	with	the	ConnectionString,
ConnectionTimeout,	and	Mode	properties.	ConnectionString	is	the	default
property	of	the	Connection	object.

Set	the	CursorLocation	property	to	invoke	the	Cursor	Service	for	OLE	DB,
which	supports	batch	updates.

Set	the	default	database	for	the	connection	with	the	DefaultDatabase
property.

Set	the	level	of	isolation	for	the	transactions	opened	on	the	connection	with
the	IsolationLevel	property.

Specify	an	OLE	DB	provider	with	the	Provider	property.

Establish,	and	later	break,	the	physical	connection	to	the	data	source	with
the	Open	and	Close	methods.

Execute	a	command	on	the	connection	with	the	Execute	method	and
configure	the	execution	with	the	CommandTimeout	property.

Note			To	execute	a	query	without	using	a	Command	object,	pass	a	query
string	to	the	Execute	method	of	a	Connection	object.	However,	a
Command	object	is	required	when	you	want	to	persist	the	command	text
and	re-execute	it,	or	use	query	parameters.

Manage	transactions	on	the	open	connection,	including	nested	transactions
if	the	provider	supports	them,	with	the	BeginTrans,	CommitTrans,	and
RollbackTrans	methods	and	the	Attributes	property.

Examine	errors	returned	from	the	data	source	with	the	Errors	collection.

Read	the	version	from	the	ADO	implementation	used	with	the	Version
property.

Obtain	schema	information	about	your	database	with	the	OpenSchema
method.

You	can	create	Connection	objects	independently	of	any	other	previously
defined	object.

You	can	execute	commands	or	stored	procedures	as	if	they	were	native	methods
on	the	Connection	object.

To	execute	a	command,	give	the	command	a	name	using	the	Command	object
Name	property.	Set	the	Command	object's	ActiveConnection	property	to	the
connection.	Then	issue	a	statement	where	the	command	name	is	used	as	if	it
were	a	method	on	the	Connection	object,	followed	by	any	parameters,	then
followed	by	a	Recordset	object	if	any	rows	are	returned.	Set	the	Recordset
properties	to	customize	the	resulting	Recordset.	For	example:

Dim	cnn	As	New	ADODB.Connection

Dim	cmd	As	New	ADODB.Command

Dim	rst	As	New	ADODB.Recordset

...

cnn.Open	"..."

cmd.Name	=	"yourCommandName"

cmd.ActiveConnection	=	cnn

...

'Your	command	name,	any	parameters,	and	an	optional	Recordset.

cnn.yourCommandName	"parameter",	rst

To	execute	a	stored	procedure,	issue	a	statement	where	the	stored	procedure
name	is	used	as	if	it	were	a	method	on	the	Connection	object,	followed	by	any
parameters.	ADO	will	make	a	"best	guess"	of	parameter	types.	For	example:

Dim	cnn	As	New	ADODB.Connection

...

'Your	stored	procedure	name	and	any	parameters.

cnn.sp_yourStoredProcedureName	"parameter"

DataControl	Object	(RDS)

				 				

				 				

Binds	a	data	query	Recordset	to	one	or	more	controls	(for	example,	a	text	box,
grid	control,	or	combo	box)	to	display	the	Recordset	data	on	a	Web	page.

Syntax

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="DataControl"

				<PARAM	NAME="Connect"	VALUE="DSN=DSNName;UID=usr;PWD=pw;">

				<PARAM	NAME="Server"	VALUE="http://awebsrvr">

				<PARAM	NAME="SQL"	VALUE="QueryText">

</OBJECT>

Remarks

The	class	ID	for	the	RDS.DataControl	object	is	BD96C556-65A3-11D0-983A-

00C04FC29E33.

Note			If	you	get	an	error	that	an	RDS.DataSpace	or	RDS.DataControl	object
doesn't	load,	make	sure	you	are	using	the	correct	class	ID.	The	class	IDs	for
these	objects	have	changed	from	version	1.0	and	1.1.

For	a	basic	scenario,	you	need	to	set	only	the	SQL,	Connect,	and	Server
properties	of	the	RDS.DataControl	object,	which	will	automatically	call	the
default	business	object,	RDSServer.DataFactory.

All	the	properties	in	the	RDS.DataControl	are	optional	because	custom
business	objects	can	replace	their	functionality.

Note			If	you	query	for	multiple	results,	only	the	first	Recordset	is	returned.	If
multiple	result	sets	are	needed,	assign	each	to	its	own	DataControl.	An	example
of	a	query	for	multiple	results	could	be	the	following:

"Select	*	from	Authors,	Select	*	from	Topics"

Adding	"DFMode=20;"	to	your	connection	string	when	using	the
RDS.DataControl	object	can	improve	your	server's	performance	when	updating
data.	With	this	setting,	the	RDSServer.DataFactory	object	on	the	server	uses	a
less	resource-intensive	mode.	However,	the	following	features	are	not	available
in	this	configuration:

Using	parameterized	queries.

Getting	parameter	or	column	information	before	calling	the	Execute
method.

Setting	Transact	Updates	to	True.

Getting	row	status.

Calling	the	Resync	method.

Refreshing	(explicitly	or	automatically)	via	the	Update	Resync	property.

Setting	Command	or	Recordset	properties.

Using	adCmdTableDirect.

The	RDS.DataControl	object	runs	in	asynchronous	mode	by	default.	If	you
require	synchronous	execution	for	your	application,	set	the	ExecuteOptions
parameter	equal	to	adcExecSync	and	the	FetchOptions	parameter	equal	to
adcFetchUpFront,	as	shown	in	the	following	example.

<SCRIPT	LANGUAGE=VBSCRIPT>

Const	adcExecSync	=	1

Const	adcFetchUpFront	=	1

…

</SCRIPT>

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	

				ID="DataControl"

			<PARAM	NAME="Connect"	VALUE="DSN=DSNName;UID=usr;PWD=pw;">

			<PARAM	NAME="Server"	VALUE="http://awebsrvr">

			<PARAM	NAME="SQL"	VALUE="QueryText">

			<PARAM	NAME="ExecuteOptions"	VALUE="adcExecSync">

			<PARAM	NAME="FetchOptions"	VALUE="adcFetchUpFront">

</OBJECT>

Use	one	RDS.DataControl	object	to	link	the	results	of	a	single	query	to	one	or
more	visual	controls.	For	example,	suppose	you	code	a	query	requesting
customer	data	such	as	Name,	Residence,	Place	of	Birth,	Age,	and	Priority
Customer	Status.	You	can	use	a	single	RDS.DataControl	object	to	display	a
customer's	Name,	Age,	and	Region	in	three	separate	text	boxes;	Priority
Customer	Status	in	a	check	box;	and	all	the	data	in	a	grid	control.

Use	different	RDS.DataControl	objects	to	link	the	results	of	multiple	queries	to
different	visual	controls.	For	example,	suppose	you	use	one	query	to	obtain
information	about	a	customer,	and	a	second	query	to	obtain	information	about
merchandise	that	the	customer	has	purchased.	You	want	to	display	the	results	of
the	first	query	in	three	text	boxes	and	one	check	box,	and	the	results	of	the
second	query	in	a	grid	control.	If	you	use	the	default	business	object
(RDSServer.DataFactory),	you	need	to	do	the	following:

Add	two	RDS.DataControl	objects	to	your	Web	page.

Write	two	queries,	one	for	each	SQL	property	of	the	two
RDS.DataControl	objects.	One	RDS.DataControl	object	will	contain	an
SQL	query	requesting	customer	information;	the	second	will	contain	a
query	requesting	a	list	of	merchandise	the	customer	has	purchased.

In	each	of	the	bound	controls'	OBJECT	tags,	specify	the	DATAFLD	value
to	set	the	values	for	the	data	you	want	to	display	in	each	visual	control.

There	is	no	count	restriction	on	the	number	of	RDS.DataControl	objects	that
you	can	embed	via	OBJECT	tags	on	a	single	Web	page.

When	you	define	the	RDS.DataControl	object	on	a	Web	page,	use	nonzero
Height	and	Width	values	such	as	1	(to	avoid	the	inclusion	of	extra	space).

Remote	Data	Service	client	components	are	already	included	as	part	of	Internet
Explorer	4.0;	therefore,	you	don't	need	to	include	a	CODEBASE	parameter	in
your	RDS.DataControl	object	tag.

With	Internet	Explorer	4.0	or	later,	you	can	bind	to	data	by	using	HTML	controls
and	ActiveX®	controls	only	if	they	are	marked	as	apartment	model	controls.

Microsoft	Visual	Basic	Users			The	RDS.DataControl	is	used	only	in	Web-
based	applications.	A	Visual	Basic	client	application	has	no	need	for	it.

DataFactory	Object	(RDSServer)

				 				

				 				

This	default	server-side	business	object	implements	methods	that	provide
read/write	data	access	to	specified	data	sources	for	client-side	applications.

Remarks

The	RDSServer.DataFactory	object	is	designed	as	a	server-side	Automation
object	that	receives	client	requests.	In	an	Internet	implementation,	it	resides	on	a
Web	server	and	is	instantiated	by	the	ADISAPI	component.	The
RDSServer.DataFactory	object	provides	read	and	write	access	to	specified	data
sources,	but	doesn't	contain	any	validation	or	business	rules	logic.

If	you	use	a	method	that	is	available	in	both	the	RDSServer.DataFactory	and
RDS.DataControl	objects,	Remote	Data	Service	uses	the	RDS.DataControl

version	by	default.	The	default	assumes	a	basic	programming	scenario,	where
the	RDSServer.DataFactory	serves	as	a	generic	server-side	business	object.

If	you	want	your	Web	application	to	handle	task-specific	server-side	processing,
you	can	replace	the	RDSServer.DataFactory	with	a	custom	business	object.

You	can	create	server-side	business	objects	that	call	the
RDSServer.DataFactory	methods,	such	as	Query	and	CreateRecordset.	This	is
helpful	if	you	want	to	add	functionality	to	your	business	objects,	but	take
advantage	of	existing	Remote	Data	Service	technologies.

The	class	ID	for	the	RDSServer.DataFactory	object	is	9381D8F5-0288-11D0-
9501-00AA00B911A5.

DataSpace	Object	(RDS)

				 				

				 				

Creates	client-side	proxies	to	custom	business	objects	located	on	the	middle	tier.

Remarks

Remote	Data	Service	needs	business	object	proxies	so	that	client-side
components	can	communicate	with	business	objects	located	on	the	middle	tier.
Proxies	facilitate	the	packaging,	unpackaging,	and	transport	(marshaling)	of	the
application's	Recordset	data	across	process	or	machine	boundaries.

Remote	Data	Service	uses	the	RDS.DataSpace	object's	CreateObject	method	to
create	business	object	proxies.	The	business	object	proxy	is	dynamically	created
whenever	an	instance	of	its	middle-tier	business	object	counterpart	is	created.
Remote	Data	Service	supports	the	following	protocols:	HTTP,	HTTPS	(HTTP

Secure	Sockets),	DCOM,	and	in-process	(client	components	and	the	business
object	reside	on	the	same	computer).

Note			RDS	behaves	in	a	"stateless"	manner	when	the	RDS.DataSpace	object
uses	the	HTTP	or	HTTPS	protocols.	That	is,	any	internal	information	about	a
client	request	is	discarded	after	the	server	returns	a	response.

Although	the	business	object	appears	to	exist	for	the	lifetime	of	the	business
object	proxy,	the	business	object	actually	exists	only	until	a	response	is	sent	to	a
request.	When	a	request	is	issued	(that	is,	a	method	is	invoked	on	the	business
object),	the	proxy	opens	a	new	connection	to	the	server	and	the	server	creates	a
new	instance	of	the	business	object.	After	the	business	object	responds	to	the
request,	the	server	destroys	the	business	object	and	closes	the	connection.

This	behavior	means	you	cannot	pass	data	from	one	request	to	another	using	a
business	object	property	or	variable.	You	must	employ	some	other	mechanism,
such	as	a	file	or	a	method	argument,	to	persist	state	data.

The	class	ID	for	the	RDS.DataSpace	object	is	BD96C556-65A3-11D0-983A-
00C04FC29E36.

Error	Object

				 				

				 				

Contains	details	about	data	access	errors	that	pertain	to	a	single	operation
involving	the	provider.

	

Remarks

Any	operation	involving	ADO	objects	can	generate	one	or	more	provider	errors.
As	each	error	occurs,	one	or	more	Error	objects	are	placed	in	the	Errors
collection	of	the	Connection	object.	When	another	ADO	operation	generates	an
error,	the	Errors	collection	is	cleared,	and	the	new	set	of	Error	objects	is	placed
in	the	Errors	collection.

Note			Each	Error	object	represents	a	specific	provider	error,	not	an	ADO	error.

ADO	errors	are	exposed	to	the	run-time	exception-handling	mechanism.	For
example,	in	Microsoft	Visual	Basic,	the	occurrence	of	an	ADO-specific	error
will	trigger	an	On	Error	event	and	appear	in	the	Error	object.	For	a	complete
list	of	ADO	errors,	see	the	ErrorValueEnum	topic.

You	can	read	an	Error	object's	properties	to	obtain	specific	details	about	each
error,	including	the	following:

The	Description	property,	which	contains	the	text	of	the	error.	This	is	the
default	property.

The	Number	property,	which	contains	the	Long	integer	value	of	the	error
constant.

The	Source	property,	which	identifies	the	object	that	raised	the	error.	This	is
particularly	useful	when	you	have	several	Error	objects	in	the	Errors
collection	following	a	request	to	a	data	source.

The	SQLState	and	NativeError	properties,	which	provide	information	from
SQL	data	sources.

When	a	provider	error	occurs,	it	is	placed	in	the	Errors	collection	of	the
Connection	object.	ADO	supports	the	return	of	multiple	errors	by	a	single	ADO
operation	to	allow	for	error	information	specific	to	the	provider.	To	obtain	this
rich	error	information	in	an	error	handler,	use	the	appropriate	error-trapping
features	of	the	language	or	environment	you	are	working	with,	then	use	nested
loops	to	enumerate	the	properties	of	each	Error	object	in	the	Errors	collection.

Microsoft	Visual	Basic	and	VBScript	Users			If	there	is	no	valid	Connection
object,	you	will	need	to	retrieve	error	information	from	the	Error	object.

Just	as	providers	do,	ADO	clears	the	OLE	Error	Info	object	before	making	a
call	that	could	potentially	generate	a	new	provider	error.	However,	the	Errors
collection	on	the	Connection	object	is	cleared	and	populated	only	when	the
provider	generates	a	new	error,	or	when	the	Clear	method	is	called.

Some	properties	and	methods	return	warnings	that	appear	as	Error	objects	in	the
Errors	collection	but	do	not	halt	a	program's	execution.	Before	you	call	the
Resync,	UpdateBatch,	or	CancelBatch	methods	on	a	Recordset	object;	the	Open

method	on	a	Connection	object;	or	set	the	Filter	property	on	a	Recordset	object,
call	the	Clear	method	on	the	Errors	collection.	That	way,	you	can	read	the
Count	property	of	the	Errors	collection	to	test	for	returned	warnings.

Field	Object

				 				

				 				

Represents	a	column	of	data	with	a	common	data	type.

	

Remarks

Each	Field	object	corresponds	to	a	column	in	the	Recordset.	You	use	the	Value
property	of	Field	objects	to	set	or	return	data	for	the	current	record.	Depending
on	the	functionality	the	provider	exposes,	some	collections,	methods,	or
properties	of	a	Field	object	may	not	be	available.

With	the	collections,	methods,	and	properties	of	a	Field	object,	you	can	do	the

following:

Return	the	name	of	a	field	with	the	Name	property.

View	or	change	the	data	in	the	field	with	the	Value	property.	Value	is	the
default	property	of	the	Field	object.

Return	the	basic	characteristics	of	a	field	with	the	Type,	Precision,	and
NumericScale	properties.

Return	the	declared	size	of	a	field	with	the	DefinedSize	property.

Return	the	actual	size	of	the	data	in	a	given	field	with	the	ActualSize
property.

Determine	what	types	of	functionality	are	supported	for	a	given	field	with
the	Attributes	property	and	Properties	collection.

Manipulate	the	values	of	fields	containing	long	binary	or	long	character
data	with	the	AppendChunk	and	GetChunk	methods.

If	the	provider	supports	batch	updates,	resolve	discrepancies	in	field	values
during	batch	updating	with	the	OriginalValue	and	UnderlyingValue
properties.

All	of	the	metadata	properties	(Name,	Type,	DefinedSize,	Precision,	and
NumericScale)	are	available	before	opening	the	Field	object's	Recordset.
Setting	them	at	that	time	is	useful	for	dynamically	constructing	forms.

Parameter	Object

				 				

				 				

Represents	a	parameter	or	argument	associated	with	a	Command	object	based	on
a	parameterized	query	or	stored	procedure.

	

Remarks

Many	providers	support	parameterized	commands.	These	are	commands	in
which	the	desired	action	is	defined	once,	but	variables	(or	parameters)	are	used
to	alter	some	details	of	the	command.	For	example,	an	SQL	SELECT	statement
could	use	a	parameter	to	define	the	matching	criteria	of	a	WHERE	clause,	and
another	to	define	the	column	name	for	a	SORT	BY	clause.

Parameter	objects	represent	parameters	associated	with	parameterized	queries,

or	the	in/out	arguments	and	the	return	values	of	stored	procedures.	Depending	on
the	functionality	of	the	provider,	some	collections,	methods,	or	properties	of	a
Parameter	object	may	not	be	available.

With	the	collections,	methods,	and	properties	of	a	Parameter	object,	you	can	do
the	following:

Set	or	return	the	name	of	a	parameter	with	the	Name	property.

Set	or	return	the	value	of	a	parameter	with	the	Value	property.	Value	is	the
default	property	of	the	Parameter	object.

Set	or	return	parameter	characteristics	with	the	Attributes,	Direction,
Precision,	NumericScale,	Size,	and	Type	properties.

Pass	long	binary	or	character	data	to	a	parameter	with	the	AppendChunk
method.

If	you	know	the	names	and	properties	of	the	parameters	associated	with	the
stored	procedure	or	parameterized	query	you	wish	to	call,	you	can	use	the
CreateParameter	method	to	create	Parameter	objects	with	the	appropriate
property	settings	and	use	the	Append	method	to	add	them	to	the	Parameters
collection.	This	lets	you	set	and	return	parameter	values	without	having	to	call
the	Refresh	method	on	the	Parameters	collection	to	retrieve	the	parameter
information	from	the	provider,	a	potentially	resource-intensive	operation.

Property	Object

				 				

				 				

Represents	a	dynamic	characteristic	of	an	ADO	object	that	is	defined	by	the
provider.

	

Remarks

ADO	objects	have	two	types	of	properties:	built-in	and	dynamic.

Built-in	properties	are	those	properties	implemented	in	ADO	and	immediately
available	to	any	new	object,	using	the	MyObject.Property	syntax.	They	do	not

appear	as	Property	objects	in	an	object's	Properties	collection,	so	although	you
can	change	their	values,	you	cannot	modify	their	characteristics.

Dynamic	properties	are	defined	by	the	underlying	data	provider,	and	appear	in
the	Properties	collection	for	the	appropriate	ADO	object.	For	example,	a
property	specific	to	the	provider	may	indicate	if	a	Recordset	object	supports
transactions	or	updating.	These	additional	properties	will	appear	as	Property
objects	in	that	Recordset	object's	Properties	collection.	Dynamic	properties	can
be	referenced	only	through	the	collection,	using	the	MyObject.Properties(0)	or
MyObject.Properties("Name")	syntax.

You	cannot	delete	either	kind	of	property.

A	dynamic	Property	object	has	four	built-in	properties	of	its	own:

The	Name	property	is	a	string	that	identifies	the	property.

The	Type	property	is	an	integer	that	specifies	the	property	data	type.

The	Value	property	is	a	variant	that	contains	the	property	setting.	Value	is
the	default	property	for	a	Property	object.

The	Attributes	property	is	a	long	value	that	indicates	characteristics	of	the
property	specific	to	the	provider.

Record	Object

				 				

				 				

Represents	a	row	in	a	Recordset,	or	a	file	or	directory	in	a	file	system.

	

Remarks

You	can	view	the	fields	associated	with	the	Record	object	by	way	of	the	Fields
collection	on	the	Record	object.	ADO	allows	object-valued	columns	including
Recordset,	SafeArray,	and	scalar	values	in	the	Fields	collection	of	Record
objects.

If	the	Record	object	represents	a	row	in	a	Recordset,	then	it	is	possible	to	return
to	that	original	Recordset.

The	Record	object	can	model	tree-structured	namespaces.	Each	node	in	the	tree

is	a	Record	object	with	associated	columns.	The	columns	can	represent	the
attributes	of	that	node	and	other	relevant	information.	The	Record	object	can
represent	both	a	leaf	node	and	a	non-leaf	node	in	the	tree	structure.	Non-leaf
nodes	have	other	nodes	as	their	contents	while	leaf	nodes	do	not	have	such
contents.	Leaf	nodes	typically	contain	binary	streams	of	data	while	non-leaf
nodes	may	also	have	a	default	binary	stream	associated	with	them.	Properties	on
the	Record	object	identify	the	type	of	node.

The	Record	object	also	represents	an	alternative	way	for	navigating
hierarchically	organized	data.	A	Record	object	may	be	created	to	represent	the
root	of	a	specific	sub-tree	in	a	large	tree	structure	and	new	Record	objects	may
be	opened	to	represent	child	nodes.

A	file	or	directory	(that	is,	a	resource)	is	uniquely	identified	by	an	absolute	URL.
A	Connection	object	is	implicitly	created	and	set	to	the	Record	object	when	the
Record	is	opened	with	an	absolute	URL.	A	Connection	object	may	explicitly	be
set	to	the	Record	object	via	the	ActiveConnection	property.	The	files	and
directories	accessible	via	the	Connection	object	define	the	context	in	which
Record	operations	may	occur.

Data	modification	and	navigation	methods	on	the	Record	object	also	accept	a
relative	URL,	which	locates	a	resource	using	an	absolute	URL	or	the
Connection	object	context	as	a	starting	point.

A	Connection	object	is	associated	with	each	Record	object.	Therefore,	Record
object	operations	can	be	part	of	a	transaction	by	invoking	Connection	object
transaction	methods.

The	Record	object	does	not	support	ADO	events,	and	therefore	will	not	respond
to	notifications.

With	the	methods	and	properties	of	a	Record	object,	you	can	do	the	following:

Set	or	return	the	associated	Connection	object	with	the	ActiveConnection
property.

Indicate	access	permissions	with	the	Mode	property.

Return	the	URL	of	the	directory,	if	any,	that	contains	the	resource
represented	by	the	Record	with	the	ParentURL	property.

Indicate	the	absolute	URL,	relative	URL,	or	Recordset	from	which	the
Record	is	derived	with	the	Source	property.

Indicate	the	current	status	of	the	Record	with	the	State	property.

Indicate	the	type	of	Record—simple,	collection,	or	structured	document—
with	the	RecordType	property.

Halt	execution	of	an	asynchronous	operation	with	the	Cancel	method.

Disassociate	the	Record	from	a	data	source	with	the	Close	method.

Copy	the	file	or	directory	represented	by	a	Record	to	another	location	with
the	CopyRecord	method.

Delete	the	file,	or	directory	and	subdirectories,	represented	by	a	Record
with	the	DeleteRecord	method.

Open	a	Recordset	containing	rows	that	represent	the	subdirectories	and
files	of	the	entity	represented	by	the	Record	with	the	GetChildren	method.

Move	(rename)	the	file,	or	directory	and	subdirectories,	represented	by	a
Record	to	another	location	with	the	MoveRecord	method.

Associate	the	Record	with	an	existing	data	source,	or	create	a	new	file	or
directory	with	the	Open	method.

Recordset	Object

				 				

				 				

				

Represents	the	entire	set	of	records	from	a	base	table	or	the	results	of	an
executed	command.	At	any	time,	the	Recordset	object	refers	to	only	a	single
record	within	the	set	as	the	current	record.

	

Remarks

You	use	Recordset	objects	to	manipulate	data	from	a	provider.	When	you	use
ADO,	you	manipulate	data	almost	entirely	using	Recordset	objects.	All
Recordset	objects	consist	of	records	(rows)	and	fields	(columns).	Depending	on
the	functionality	supported	by	the	provider,	some	Recordset	methods	or
properties	may	not	be	available.

ADODB.Recordset	is	the	ProgID	that	should	be	used	to	create	a	Recordset
object.	Existing	applications	that	reference	the	outdated	ADOR.Recordset
ProgID	will	continue	to	work	without	recompiling,	but	new	development	should
reference	ADODB.Recordset.

There	are	four	different	cursor	types	defined	in	ADO:

Dynamic	cursor	—	allows	you	to	view	additions,	changes,	and	deletions
by	other	users;	allows	all	types	of	movement	through	the	Recordset	that
doesn't	rely	on	bookmarks;	and	allows	bookmarks	if	the	provider	supports
them.

Keyset	cursor	—	behaves	like	a	dynamic	cursor,	except	that	it	prevents
you	from	seeing	records	that	other	users	add,	and	prevents	access	to	records
that	other	users	delete.	Data	changes	by	other	users	will	still	be	visible.	It
always	supports	bookmarks	and	therefore	allows	all	types	of	movement
through	the	Recordset.

Static	cursor	—	provides	a	static	copy	of	a	set	of	records	for	you	to	use	to
find	data	or	generate	reports;	always	allows	bookmarks	and	therefore
allows	all	types	of	movement	through	the	Recordset.	Additions,	changes,
or	deletions	by	other	users	will	not	be	visible.	This	is	the	only	type	of	cursor
allowed	when	you	open	a	client-side	Recordset	object.

Forward-only	cursor	—	allows	you	to	only	scroll	forward	through	the
Recordset.	Additions,	changes,	or	deletions	by	other	users	will	not	be
visible.	This	improves	performance	in	situations	where	you	need	to	make
only	a	single	pass	through	a	Recordset.

Set	the	CursorType	property	prior	to	opening	the	Recordset	to	choose	the	cursor
type,	or	pass	a	CursorType	argument	with	the	Open	method.	Some	providers
don't	support	all	cursor	types.	Check	the	documentation	for	the	provider.	If	you
don't	specify	a	cursor	type,	ADO	opens	a	forward-only	cursor	by	default.

If	the	CursorLocation	property	is	set	to	adUseClient	to	open	a	Recordset,	the
UnderlyingValue	property	on	Field	objects	is	not	available	in	the	returned
Recordset	object.	When	used	with	some	providers	(such	as	the	Microsoft
ODBC	Provider	for	OLE	DB	in	conjunction	with	Microsoft	SQL	Server),	you
can	create	Recordset	objects	independently	of	a	previously	defined	Connection

object	by	passing	a	connection	string	with	the	Open	method.	ADO	still	creates	a
Connection	object,	but	it	doesn't	assign	that	object	to	an	object	variable.
However,	if	you	are	opening	multiple	Recordset	objects	over	the	same
connection,	you	should	explicitly	create	and	open	a	Connection	object;	this
assigns	the	Connection	object	to	an	object	variable.	If	you	do	not	use	this	object
variable	when	opening	your	Recordset	objects,	ADO	creates	a	new	Connection
object	for	each	new	Recordset,	even	if	you	pass	the	same	connection	string.

You	can	create	as	many	Recordset	objects	as	needed.

When	you	open	a	Recordset,	the	current	record	is	positioned	to	the	first	record
(if	any)	and	the	BOF	and	EOF	properties	are	set	to	False.	If	there	are	no	records,
the	BOF	and	EOF	property	settings	are	True.

You	can	use	the	MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
methods;	the	Move	method;	and	the	AbsolutePosition,	AbsolutePage,	and	Filter
properties	to	reposition	the	current	record,	assuming	the	provider	supports	the
relevant	functionality.	Forward-only	Recordset	objects	support	only	the
MoveNext	method.	When	you	use	the	Move	methods	to	visit	each	record	(or
enumerate	the	Recordset),	you	can	use	the	BOF	and	EOF	properties	to
determine	if	you've	moved	beyond	the	beginning	or	end	of	the	Recordset.

Recordset	objects	can	support	two	types	of	updating:	immediate	and	batched.	In
immediate	updating,	all	changes	to	data	are	written	immediately	to	the
underlying	data	source	once	you	call	the	Update	method.	You	can	also	pass
arrays	of	values	as	parameters	with	the	AddNew	and	Update	methods	and
simultaneously	update	several	fields	in	a	record.

If	a	provider	supports	batch	updating,	you	can	have	the	provider	cache	changes
to	more	than	one	record	and	then	transmit	them	in	a	single	call	to	the	database
with	the	UpdateBatch	method.	This	applies	to	changes	made	with	the	AddNew,
Update,	and	Delete	methods.	After	you	call	the	UpdateBatch	method,	you	can
use	the	Status	property	to	check	for	any	data	conflicts	in	order	to	resolve	them.

Note			To	execute	a	query	without	using	a	Command	object,	pass	a	query	string
to	the	Open	method	of	a	Recordset	object.	However,	a	Command	object	is
required	when	you	want	to	persist	the	command	text	and	re-execute	it,	or	use
query	parameters.

The	Mode	property	governs	access	permissions.

The	Fields	collection	is	the	default	member	of	the	Recordset	object.	As	a	result,
the	following	two	code	statements	are	equivalent.

Debug.Print	objRs.Fields.Item(0)		'	Both	statements	print	

Debug.Print	objRs(0)														'		the	Value	of	Item(0).

Stream	Object

				 				

				 				

Represents	a	stream	of	binary	data	or	text.

Remarks

In	tree-structured	hierarchies	such	as	a	file	system	or	an	e-mail	system,	a	Record
may	have	a	default	binary	stream	of	bits	associated	with	it	that	contains	the
contents	of	the	file	or	the	e-mail.	A	Stream	object	can	be	used	to	manipulate
fields	or	records	containing	these	streams	of	data.	A	Stream	object	can	be
obtained	in	these	ways:

From	a	URL	pointing	to	an	object	(typically	a	file)	containing	binary	or	text
data.	This	object	can	be	a	simple	document,	a	Record	object	representing	a
structured	document,	or	a	folder.

By	opening	the	default	Stream	object	associated	with	a	Record	object.	You
can	obtain	the	default	stream	associated	with	a	Record	object	when	the
Record	is	opened,	to	eliminate	a	round-trip	just	to	open	the	stream.

By	instantiating	a	Stream	object.	These	Stream	objects	can	be	used	to
store	data	for	the	purposes	of	your	application.	Unlike	a	Stream	associated
with	a	URL,	or	the	default	Stream	of	a	Record,	an	instantiated	Stream	has
no	association	with	an	underlying	source	by	default.

With	the	methods	and	properties	of	a	Stream	object,	you	can	do	the	following:

Open	a	Stream	object	from	a	Record	or	URL	with	the	Open	method.

Close	a	Stream	with	the	Close	method.

Input	bytes	or	text	to	a	Stream	with	the	Write	and	WriteText	methods.

Read	bytes	from	the	Stream	with	the	Read	and	ReadText	methods.

Write	any	Stream	data	still	in	the	ADO	buffer	to	the	underlying	object	with
the	Flush	method.

Copy	the	contents	of	a	Stream	to	another	Stream	with	the	CopyTo	method.

Control	how	lines	are	read	from	the	source	file	with	the	SkipLine	method
and	the	LineSeparator	property.

Determine	the	end	of	stream	position	with	the	EOS	property	and	SetEOS
method.

Save	and	restore	data	in	files	with	the	SaveToFile	and	LoadFromFile
methods.

Specify	the	character	set	used	for	storing	the	Stream	with	the	Charset
property.

Halt	an	asynchronous	Stream	operation	with	the	Cancel	method.

Determine	the	number	of	bytes	in	a	Stream	with	the	Size	property.

Control	the	current	position	within	a	Stream	with	the	Position	property.

Determine	the	type	of	data	in	a	Stream	with	the	Type	property.

Determine	the	current	state	of	the	Stream	(closed,	open,	or	executing)	with
the	State	property.

Specify	the	access	mode	for	the	Stream	with	the	Mode	property.

ADO	Collections

The	relationships	between	these	collections	and	the	ADO	objects	are	represented
in	the	ADO	Object	Model.

Each	collection	can	contain	its	corresponding	object.	For	example,	an	Error
object	can	be	contained	in	an	Errors	collection.	For	more	information	about
objects,	see	ADO	Objects	or	a	specific	object	topic.

ADO	Collection	Summary

Collection Description

Errors Contains	all	the	Error	objects	created	in	response	to	a
single	provider-related	failure.

Fields Contains	all	the	Field	objects	of	a	Recordset	object.
Parameters Contains	all	the	Parameter	objects	of	a	Command	object.

Properties Contains	all	the	Property	objects	for	a	specific	instance	of
an	object.

Errors	Collection

				 				

				

Contains	all	the	Error	objects	created	in	response	to	a	single	provider-related
failure	provider.

	

Remarks

Any	operation	involving	ADO	objects	can	generate	one	or	more	provider	errors.
As	each	error	occurs,	one	or	more	Error	objects	can	be	placed	in	the	Errors
collection	of	the	Connection	object.	When	another	ADO	operation	generates	an
error,	the	Errors	collection	is	cleared,	and	the	new	set	of	Error	objects	can	be
placed	in	the	Errors	collection.

Each	Error	object	represents	a	specific	provider	error,	not	an	ADO	error.	ADO
errors	are	exposed	to	the	run-time	exception-handling	mechanism.	For	example,
in	Microsoft	Visual	Basic,	the	occurrence	of	an	ADO-specific	error	will	trigger
an	onError	event	and	appear	in	the	Err	object.

ADO	operations	that	don't	generate	an	error	have	no	effect	on	the	Errors
collection.	Use	the	Clear	method	to	manually	clear	the	Errors	collection.

The	set	of	Error	objects	in	the	Errors	collection	describes	all	errors	that
occurred	in	response	to	a	single	statement.	Enumerating	the	specific	errors	in	the
Errors	collection	enables	your	error-handling	routines	to	more	precisely
determine	the	cause	and	origin	of	an	error,	and	take	appropriate	steps	to	recover.

Some	properties	and	methods	return	warnings	that	appear	as	Error	objects	in	the
Errors	collection	but	do	not	halt	a	program's	execution.	Before	you	call	the
Resync,	UpdateBatch,	or	CancelBatch	methods	on	a	Recordset	object,	the	Open
method	on	a	Connection	object,	or	set	the	Filter	property	on	a	Recordset	object,
call	the	Clear	method	on	the	Errors	collection.	That	way	you	can	read	the
Count	property	of	the	Errors	collection	to	test	for	returned	warnings.

Note			See	the	Error	object	topic	for	a	more	detailed	explanation	of	the	way	a
single	ADO	operation	can	generate	multiple	errors.

Fields	Collection

				 				

				

Contains	all	the	Field	objects	of	a	Recordset	or	Record	object.

	

Remarks

A	Recordset	object	has	a	Fields	collection	made	up	of	Field	objects.	Each	Field
object	corresponds	to	a	column	in	the	Recordset.	You	can	populate	the	Fields
collection	before	opening	the	Recordset	by	calling	the	Refresh	method	on	the
collection.

Note			See	the	Field	object	topic	for	a	more	detailed	explanation	of	how	to	use
Field	objects.

The	Fields	collection	has	an	Append	method,	which	provisionally	creates	and
adds	a	Field	object	to	the	collection,	and	an	Update	method,	which	finalizes	any
additions	or	deletions.

A	Record	object	has	two	special	fields	that	can	be	indexed	with	FieldEnum
constants.	One	constant	accesses	a	field	containing	the	default	stream	for	the

Record,	and	the	other	accesses	a	field	containing	the	absolute	URL	string	for	the
Record.

Certain	providers	(for	example,	the	Microsoft	OLE	DB	Provider	for	Internet
Publishing)	may	populate	the	Fields	collection	with	a	subset	of	available	fields
for	the	Record	or	Recordset.	Other	fields	will	not	be	added	to	the	collection
until	they	are	first	referenced	by	name	or	indexed	by	your	code.

If	you	attempt	to	reference	a	nonexistent	field	by	name,	a	new	Field	object	will
be	appended	to	the	Fields	collection	with	a	Status	of	adFieldPendingInsert.
When	you	call	Update,	ADO	will	create	a	new	field	in	your	data	source	if
allowed	by	your	provider.

Parameters	Collection

				 				

				

Contains	all	the	Parameter	objects	of	a	Command	object.

	

Remarks

A	Command	object	has	a	Parameters	collection	made	up	of	Parameter
objects.

Using	the	Refresh	method	on	a	Command	object's	Parameters	collection
retrieves	provider	parameter	information	for	the	stored	procedure	or
parameterized	query	specified	in	the	Command	object.	Some	providers	do	not
support	stored	procedure	calls	or	parameterized	queries;	calling	the	Refresh
method	on	the	Parameters	collection	when	using	such	a	provider	will	return	an
error.

If	you	have	not	defined	your	own	Parameter	objects	and	you	access	the
Parameters	collection	before	calling	the	Refresh	method,	ADO	will
automatically	call	the	method	and	populate	the	collection	for	you.

You	can	minimize	calls	to	the	provider	to	improve	performance	if	you	know	the

properties	of	the	parameters	associated	with	the	stored	procedure	or
parameterized	query	you	wish	to	call.	Use	the	CreateParameter	method	to	create
Parameter	objects	with	the	appropriate	property	settings	and	use	the	Append
method	to	add	them	to	the	Parameters	collection.	This	lets	you	set	and	return
parameter	values	without	having	to	call	the	provider	for	the	parameter
information.	If	you	are	writing	to	a	provider	that	does	not	supply	parameter
information,	you	must	manually	populate	the	Parameters	collection	using	this
method	to	be	able	to	use	parameters	at	all.	Use	the	Delete	method	to	remove
Parameter	objects	from	the	Parameters	collection	if	necessary.

Properties	Collection

				 				

				

Contains	all	the	Property	objects	for	a	specific	instance	of	an	object.

	

Remarks

Some	ADO	objects	have	a	Properties	collection	made	up	of	Property	objects.
Each	Property	object	corresponds	to	a	characteristic	of	the	ADO	object	specific
to	the	provider.

Note			See	the	Property	object	topic	for	a	more	detailed	explanation	of	how	to
use	Property	objects.

ADO	Properties

ADO	Property	Summary

Property Description
AbsolutePage Indicates	on	which	page	the	current	record	resides.

AbsolutePosition Indicates	the	ordinal	position	of	a	Recordset	object's
current	record.

ActiveCommand Indicates	the	Command	object	that	created	the
associated	Recordset	object.

ActiveConnection
Indicates	to	which	Connection	object	the	specified
Command,	Recordset,	or	Record	object	currently
belongs.

ActualSize Indicates	the	actual	length	of	a	field's	value.
Attributes Indicates	one	or	more	characteristics	of	an	object.

BOF	and	EOF

BOF	—	indicates	that	the	current	record	position	is
before	the	first	record	in	a	Recordset	object.
EOF	—	indicates	that	the	current	record	position	is
after	the	last	record	in	a	Recordset	object.

Bookmark

Indicates	a	bookmark	that	uniquely	identifies	the
current	record	in	a	Recordset	object	or	sets	the	current
record	in	a	Recordset	object	to	the	record	identified	by
a	valid	bookmark.

CacheSize Indicates	the	number	of	records	from	a	Recordset
object	that	are	cached	locally	in	memory.

CharSet Indicates	the	character	set	into	which	the	contents	of	a
text	Stream	should	be	translated.

CommandText Indicates	the	text	of	a	command	to	be	issued	against	a
provider.

CommandTimeout Indicates	how	long	to	wait	while	executing	a	command
before	terminating	the	attempt	and	generating	an	error.

CommandType Indicates	the	type	of	a	Command	object.

Connect	(RDS) Indicates	the	database	name	from	which	the	query	and
update	operations	are	run.

ConnectionString
Property

Indicates	the	information	used	to	establish	a	connection
to	a	data	source.

ConnectionTimeout
Indicates	how	long	to	wait	while	establishing	a
connection	before	terminating	the	attempt	and
generating	an	error.

Count Indicates	the	number	of	objects	in	a	collection.
CursorLocation Indicates	the	location	of	the	cursor	service.
CursorType Indicates	the	type	of	cursor	used	in	a	Recordset	object.

DataMember
Indicates	the	name	of	the	data	member	that	will	be
retrieved	from	the	object	referenced	by	the	DataSource
property.

DataSource Indicates	an	object	that	contains	data	to	be	represented
as	a	Recordset	object.

DefaultDatabase Indicates	the	default	database	for	a	Connection	object.
DefinedSize Indicates	the	data	capacity	of	a	Field	object.
Description Describes	an	Error	object.

Direction
Indicates	whether	the	Parameter	represents	an	input
parameter,	an	output	parameter,	or	both,	or	if	the
parameter	is	the	return	value	from	a	stored	procedure.

EditMode Indicates	the	editing	status	of	the	current	record.

EOS Indicates	whether	the	current	position	is	at	the	end	of
the	stream.

ExecuteOptions	(RDS) Indicates	whether	asynchronous	execution	is	enabled.
FetchOptions	(RDS) Indicates	the	type	of	asynchronous	fetching.
Filter Indicates	a	filter	for	data	in	a	Recordset.

FilterColumn	(RDS) Indicates	the	column	on	which	to	evaluate	the	filter
criteria.

FilterCriterion	(RDS) Indicates	the	evaluation	operator	to	use	in	the	filter
value.

FilterValue	(RDS) Indicates	the	value	to	filter	records.

Handler	(RDS)

Indicates	the	name	of	a	server-side	customization
program	(handler)	that	extends	the	functionality	of	the
RDSServer.DataFactory,	and	any	parameters	used	by
the	handler.

HelpContext	and
HelpFile

Indicates	the	help	file	and	topic	associated	with	an
Error	object.

HelpContextID	—	returns	a	context	ID,	as	a	Long
value,	for	a	topic	in	a	Help	file.
HelpFile	—	returns	a	String	value	that	evaluates	to	a
fully	resolved	path	to	a	Help	file.

Index Indicates	the	name	of	the	index	currently	in	effect	for	a
Recordset	object.

InternetTimeout	(RDS) Indicates	the	number	of	milliseconds	to	wait	before	arequest	times	out.
IsolationLevel Indicates	the	level	of	isolation	for	a	Connection	object.

Item Indicates	a	specific	member	of	a	collection,	by	name	or
ordinal	number.

LineSeparator Indicates	the	binary	character	to	be	used	as	the	line
separator	in	text	Stream	objects.

LockType Indicates	the	type	of	locks	placed	on	records	during
editing.

MarshalOptions Indicates	which	records	are	to	be	marshaled	back	to	the
server.

MaxRecords Indicates	the	maximum	number	of	records	to	return	to	a
Recordset	from	a	query.

Mode Indicates	the	available	permissions	for	modifying	data
in	a	Connection,	Record,	or	Stream	object.

Name Indicates	the	name	of	an	object.

NativeError Indicates	the	provider-specific	error	code	for	a	given
Error	object.

Number Indicates	the	number	that	uniquely	identifies	an	Error
object.

NumericScale
Indicates	the	scale	of	numeric	values	in	a	Parameter	or
Field	object.

OriginalValue Indicates	the	value	of	a	Field	that	existed	in	the	record
before	any	changes	were	made.

PageCount Indicates	how	many	pages	of	data	the	Recordset	object
contains.

PageSize Indicates	how	many	records	constitute	one	page	in	the
Recordset.

ParentURL Indicates	an	absolute	URL	string	that	points	to	the
parent	Record	of	the	current	Record	object.

Position Indicates	the	current	position	within	a	Stream	object.

Precision Indicates	the	degree	of	precision	for	numeric	values	in	a
Parameter	object	or	for	numeric	Field	objects.

Prepared Indicates	whether	to	save	a	compiled	version	of	a
command	before	execution.

Provider Indicates	the	name	of	the	provider	for	a	Connection
object.

ReadyState	(RDS) Indicates	the	progress	of	a	DataControl	object	as	it
fetches	data	into	its	Recordset	object.

RecordCount Indicates	the	number	of	records	in	a	Recordset	object.
Recordset	and
SourceRecordset
(RDS)

Indicates	the	Recordset	object	returned	from	a	custom
business	object.

RecordType Indicates	the	type	of	Record	object.

Server	(RDS) Indicates	the	Internet	Information	Services	(IIS)	name
and	communication	protocol.

Size Indicates	the	maximum	size,	in	bytes	or	characters,	of	a
Parameter	object.

Size	(ADO	Stream) Indicates	the	total	size	of	the	stream	in	number	of	bytes.

Sort
Indicates	one	or	more	field	names	on	which	the
Recordset	is	sorted,	and	whether	each	field	is	sorted	in
ascending	or	descending	order.

SortColumn	(RDS) Indicates	by	which	column	to	sort	the	records.

SortDirection	(RDS) Indicates	whether	a	sort	order	is	ascending	or
descending.

Source	(ADO	Error) Indicates	the	name	of	the	object	or	application	that
originally	generated	an	error.

Source	(ADO	Record) Indicates	the	entity	represented	by	the	Record	object.

Source	(ADO
Recordset) Indicates	the	source	for	the	data	in	a	Recordset	object

SQL	(RDS) Indicates	the	query	string	used	to	retrieve	the
Recordset.

SQLState Indicates	the	SQL	state	for	a	given	Error	object.

State

Indicates	for	all	applicable	objects	whether	the	state	of
the	object	is	open	or	closed.
Indicates	for	all	applicable	objects	executing	an
asynchronous	method,	whether	the	current	state	of	the
object	is	connecting,	executing,	or	retrieving

Status	(ADO	Field) Indicates	the	status	of	a	Field	object.
Status	(ADO
Recordset)

Indicates	the	status	of	the	current	record	with	respect	to
batch	updates	or	other	bulk	operations.

StayInSync
Indicates,	in	a	hierarchical	Recordset	object,	whether
the	reference	to	the	underlying	child	records	(that	is,	the
chapter)	changes	when	the	parent	row	position	changes.

Type Indicates	the	operational	type	or	data	type	of	a
Parameter,	Field,	or	Property	object.

Type	(ADO	Stream) Indicates	the	type	of	data	contained	in	the	Stream
(binary	or	text).

UnderlyingValue Indicates	a	Field	object's	current	value	in	the	database.

URL	(RDS) Indicates	a	string	that	contains	a	relative	or	absolute
URL.

Value Indicates	the	value	assigned	to	a	Field,	Parameter,	or
Property	object.

Version Indicates	the	ADO	version	number.

AbsolutePage	Property

				 				

Indicates	on	which	page	the	current	record	resides.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	from	1	to	the	number	of	pages	in	the	Recordset
object	(PageCount),	or	returns	one	of	the	PositionEnum	values.

Remarks

Use	the	AbsolutePage	property	to	identify	the	page	number	on	which	the
current	record	is	located.	Use	the	PageSize	property	to	logically	divide	the
Recordset	object	into	a	series	of	pages,	each	of	which	has	the	number	of	records
equal	to	PageSize	(except	for	the	last	page,	which	may	have	fewer	records).	The
provider	must	support	the	appropriate	functionality	for	this	property	to	be
available.

Like	the	AbsolutePosition	property,	AbsolutePage	is	1-based	and	equals	1	when
the	current	record	is	the	first	record	in	the	Recordset.	Set	this	property	to	move
to	the	first	record	of	a	particular	page.	Obtain	the	total	number	of	pages	from	the
PageCount	property.

AbsolutePosition	Property

				 				

Indicates	the	ordinal	position	of	a	Recordset	object's	current	record.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	from	1	to	the	number	of	records	in	the	Recordset
object	(RecordCount),	or	returns	one	of	the	PositionEnum	values.

Remarks

Use	the	AbsolutePosition	property	to	move	to	a	record	based	on	its	ordinal
position	in	the	Recordset	object,	or	to	determine	the	ordinal	position	of	the
current	record.	The	provider	must	support	the	appropriate	functionality	for	this
property	to	be	available.

Like	the	AbsolutePage	property,	AbsolutePosition	is	1-based	and	equals	1	when
the	current	record	is	the	first	record	in	the	Recordset.	You	can	obtain	the	total
number	of	records	in	the	Recordset	object	from	the	RecordCount	property.

When	you	set	the	AbsolutePosition	property,	even	if	it	is	to	a	record	in	the
current	cache,	ADO	reloads	the	cache	with	a	new	group	of	records	starting	with
the	record	you	specified.	The	CacheSize	property	determines	the	size	of	this
group.

Note			You	should	not	use	the	AbsolutePosition	property	as	a	surrogate	record
number.	The	position	of	a	given	record	changes	when	you	delete	a	preceding
record.	There	is	also	no	assurance	that	a	given	record	will	have	the	same
AbsolutePosition	if	the	Recordset	object	is	requeried	or	reopened.	Bookmarks
are	still	the	recommended	way	of	retaining	and	returning	to	a	given	position	and
are	the	only	way	of	positioning	across	all	types	of	Recordset	objects.

ActiveCommand	Property

				 				

Indicates	the	Command	object	that	created	the	associated	Recordset	object.

Return	Value

Returns	a	Variant	that	contains	a	Command	object.	Default	is	a	null	object
reference.

Remarks

The	ActiveCommand	property	is	read-only.

If	a	Command	object	was	not	used	to	create	the	current	Recordset,	then	a	Null
object	reference	is	returned.

Use	this	property	to	find	the	associated	Command	object	when	you	are	given
only	the	resulting	Recordset	object.

ActiveConnection	Property

				 				

Indicates	to	which	Connection	object	the	specified	Command,	Recordset,	or
Record	object	currently	belongs.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	contains	a	definition	for	a	connection	if	the
connection	is	closed,	or	a	Variant	containing	the	current	Connection	object	if
the	connection	is	open.	Default	is	a	null	object	reference.	See	the
ConnectionString	property.

Remarks

Use	the	ActiveConnection	property	to	determine	the	Connection	object	over
which	the	specified	Command	object	will	execute	or	the	specified	Recordset
will	be	opened.

Command

For	Command	objects,	the	ActiveConnection	property	is	read/write.

If	you	attempt	to	call	the	Execute	method	on	a	Command	object	before	setting
this	property	to	an	open	Connection	object	or	valid	connection	string,	an	error

occurs.

Microsoft	Visual	Basic			Setting	the	ActiveConnection	property	to	Nothing
disassociates	the	Command	object	from	the	current	Connection	and	causes	the
provider	to	release	any	associated	resources	on	the	data	source.	You	can	then
associate	the	Command	object	with	the	same	or	another	Connection	object.
Some	providers	allow	you	to	change	the	property	setting	from	one	Connection
to	another,	without	having	to	first	set	the	property	to	Nothing.

If	the	Parameters	collection	of	the	Command	object	contains	parameters
supplied	by	the	provider,	the	collection	is	cleared	if	you	set	the
ActiveConnection	property	to	Nothing	or	to	another	Connection	object.	If	you
manually	create	Parameter	objects	and	use	them	to	fill	the	Parameters
collection	of	the	Command	object,	setting	the	ActiveConnection	property	to
Nothing	or	to	another	Connection	object	leaves	the	Parameters	collection
intact.

Closing	the	Connection	object	with	which	a	Command	object	is	associated	sets
the	ActiveConnection	property	to	Nothing.	Setting	this	property	to	a	closed
Connection	object	generates	an	error.

Recordset

For	open	Recordset	objects	or	for	Recordset	objects	whose	Source	property	is
set	to	a	valid	Command	object,	the	ActiveConnection	property	is	read-only.
Otherwise,	it	is	read/write.

You	can	set	this	property	to	a	valid	Connection	object	or	to	a	valid	connection
string.	In	this	case,	the	provider	creates	a	new	Connection	object	using	this
definition	and	opens	the	connection.	Additionally,	the	provider	may	set	this
property	to	the	new	Connection	object	to	give	you	a	way	to	access	the
Connection	object	for	extended	error	information	or	to	execute	other
commands.

If	you	use	the	ActiveConnection	argument	of	the	Open	method	to	open	a
Recordset	object,	the	ActiveConnection	property	will	inherit	the	value	of	the
argument.

If	you	set	the	Source	property	of	the	Recordset	object	to	a	valid	Command
object	variable,	the	ActiveConnection	property	of	the	Recordset	inherits	the

setting	of	the	Command	object's	ActiveConnection	property.

Remote	Data	Service	Usage			When	used	on	a	client-side	Recordset	object,	this
property	can	be	set	only	to	a	connection	string	or	(in	Microsoft	Visual	Basic	or
Visual	Basic,	Scripting	Edition)	to	Nothing.

Record

This	property	is	read/write	when	the	Record	object	is	closed,	and	may	contain	a
connection	string	or	reference	to	an	open	Connection	object.	This	property	is
read-only	when	the	Record	object	is	open,	and	contains	a	reference	to	an	open
Connection	object.

A	Connection	object	is	created	implicitly	when	the	Record	object	is	opened
from	a	URL.	Open	the	Record	with	an	existing,	open	Connection	object	by
assigning	the	Connection	object	to	this	property,	or	using	the	Connection	object
as	a	parameter	in	the	Open	method	call.	If	the	Record	is	opened	from	an	existing
Record	or	Recordset,	then	it	is	automatically	associated	with	that	Record	or
Recordset	object's	Connection	object.

ActualSize	Property

				 				

Indicates	the	actual	length	of	a	field's	value.

Settings	and	Return	Values

Returns	a	Long	value.	Some	providers	may	allow	this	property	to	be	set	to
reserve	space	for	BLOB	data,	in	which	case	the	default	value	is	0.

Remarks

Use	the	ActualSize	property	to	return	the	actual	length	of	a	Field	object's	value.
For	all	fields,	the	ActualSize	property	is	read-only.	If	ADO	cannot	determine	the
length	of	the	Field	object's	value,	the	ActualSize	property	returns	adUnknown.

The	ActualSize	and	DefinedSize	properties	are	different,	as	shown	in	the
following	example.	A	Field	object	with	a	declared	type	of	adVarChar	and	a
maximum	length	of	50	characters	returns	a	DefinedSize	property	value	of	50,
but	the	ActualSize	property	value	it	returns	is	the	length	of	the	data	stored	in	the
field	for	the	current	record.	Fields	with	a	DefinedSize	greater	than	255	bytes	are
treated	as	variable	length	columns.

Attributes	Property

				 				

Indicates	one	or	more	characteristics	of	an	object.

Settings	and	Return	Values

Sets	or	returns	a	Long	value.

For	a	Connection	object,	the	Attributes	property	is	read/write,	and	its	value	can
be	the	sum	of	one	or	more	XactAttributeEnum	values.	The	default	is	zero	(0).

For	a	Parameter	object,	the	Attributes	property	is	read/write,	and	its	value	can
be	the	sum	of	any	one	or	more	ParameterAttributesEnum	values.	The	default	is
adParamSigned.

For	a	Field	object,	the	Attributes	property	can	be	the	sum	of	one	or	more
FieldAttributeEnum	values.	It	is	normally	read-only,	However,	for	new	Field
objects	that	have	been	appended	to	the	Fields	collection	of	a	Record,	Attributes
is	read/write	only	after	the	Value	property	for	the	Field	has	been	specified	and
the	new	Field	has	been	successfully	added	by	the	data	provider	by	calling	the
Update	method	of	the	Fields	collection.

For	a	Property	object,	the	Attributes	property	is	read-only,	and	its	value	can	be
the	sum	of	any	one	or	more	PropertyAttributesEnum	values.

Remarks

Use	the	Attributes	property	to	set	or	return	characteristics	of	Connection
objects,	Parameter	objects,	Field	objects,	or	Property	objects.

When	you	set	multiple	attributes,	you	can	sum	the	appropriate	constants.	If	you
set	the	property	value	to	a	sum	including	incompatible	constants,	an	error	occurs.

Remote	Data	Service	Usage			This	property	is	not	available	on	a	client-side
Connection	object.

BOF,	EOF	Properties

				 				

BOF	—	Indicates	that	the	current	record	position	is	before	the	first	record
in	a	Recordset	object.

EOF	—	Indicates	that	the	current	record	position	is	after	the	last	record	in	a
Recordset	object.

Return	Value

The	BOF	and	EOF	properties	return	Boolean	values.

Remarks

Use	the	BOF	and	EOF	properties	to	determine	whether	a	Recordset	object
contains	records	or	whether	you've	gone	beyond	the	limits	of	a	Recordset	object
when	you	move	from	record	to	record.

The	BOF	property	returns	True	(-1)	if	the	current	record	position	is	before	the
first	record	and	False	(0)	if	the	current	record	position	is	on	or	after	the	first
record.

The	EOF	property	returns	True	if	the	current	record	position	is	after	the	last
record	and	False	if	the	current	record	position	is	on	or	before	the	last	record.

If	either	the	BOF	or	EOF	property	is	True,	there	is	no	current	record.

If	you	open	a	Recordset	object	containing	no	records,	the	BOF	and	EOF
properties	are	set	to	True,	and	the	Recordset	object's	RecordCount	property
setting	is	zero.	When	you	open	a	Recordset	object	that	contains	at	least	one
record,	the	first	record	is	the	current	record	and	the	BOF	and	EOF	properties	are
False.

If	you	delete	the	last	remaining	record	in	the	Recordset	object,	the	BOF	and
EOF	properties	may	remain	False	until	you	attempt	to	reposition	the	current
record.

This	table	shows	which	Move	methods	are	allowed	with	different	combinations
of	the	BOF	and	EOF	properties.

	 MoveFirst,
MoveLast

MovePrevious,
Move	<	0 Move	0

MoveNext,
Move	>	0

BOF=True,
EOF=False Allowed Error Error Allowed

BOF=False,
EOF=True Allowed Allowed Error Error

Both	True Error Error Error Error
Both	False Allowed Allowed Allowed Allowed

Allowing	a	Move	method	doesn't	guarantee	that	the	method	will	successfully
locate	a	record;	it	only	means	that	calling	the	specified	Move	method	won't
generate	an	error.

The	following	table	shows	what	happens	to	the	BOF	and	EOF	property	settings
when	you	call	various	Move	methods	but	are	unable	to	successfully	locate	a
record.

	 BOF EOF
MoveFirst,	MoveLast Set	to	True Set	to	True
Move	0 No	change No	change
MovePrevious,	Move	<	0 Set	to	True No	change
MoveNext,	Move	>	0 No	change Set	to	True

Bookmark	Property

				 				

Indicates	a	bookmark	that	uniquely	identifies	the	current	record	in	a	Recordset
object	or	sets	the	current	record	in	a	Recordset	object	to	the	record	identified	by
a	valid	bookmark.

Settings	and	Return	Values

Sets	or	returns	a	Variant	expression	that	evaluates	to	a	valid	bookmark.

Remarks

Use	the	Bookmark	property	to	save	the	position	of	the	current	record	and	return
to	that	record	at	any	time.	Bookmarks	are	available	only	in	Recordset	objects
that	support	bookmark	functionality.

When	you	open	a	Recordset	object,	each	of	its	records	has	a	unique	bookmark.
To	save	the	bookmark	for	the	current	record,	assign	the	value	of	the	Bookmark
property	to	a	variable.	To	quickly	return	to	that	record	at	any	time	after	moving
to	a	different	record,	set	the	Recordset	object's	Bookmark	property	to	the	value
of	that	variable.

The	user	may	not	be	able	to	view	the	value	of	the	bookmark.	Also,	users	should
not	expect	bookmarks	to	be	directly	comparable—two	bookmarks	that	refer	to

the	same	record	may	have	different	values.

If	you	use	the	Clone	method	to	create	a	copy	of	a	Recordset	object,	the
Bookmark	property	settings	for	the	original	and	the	duplicate	Recordset	objects
are	identical	and	you	can	use	them	interchangeably.	However,	you	cannot	use
bookmarks	from	different	Recordset	objects	interchangeably,	even	if	they	were
created	from	the	same	source	or	command.

Remote	Data	Service	Usage			When	used	on	a	client-side	Recordset	object,	the
Bookmark	property	is	always	available.

CacheSize	Property

				 				

Indicates	the	number	of	records	from	a	Recordset	object	that	are	cached	locally
in	memory.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	must	be	greater	than	0.	Default	is	1.

Remarks

Use	the	CacheSize	property	to	control	how	many	records	the	provider	keeps	in
its	buffer	and	how	many	to	retrieve	at	one	time	into	local	memory.	For	example,
if	the	CacheSize	is	10,	after	first	opening	the	Recordset	object,	the	provider
retrieves	the	first	10	records	into	local	memory.	As	you	move	through	the
Recordset	object,	the	provider	returns	the	data	from	the	local	memory	buffer.	As
soon	as	you	move	past	the	last	record	in	the	cache,	the	provider	retrieves	the	next
10	records	from	the	data	source	into	the	cache.

The	value	of	this	property	can	be	adjusted	during	the	life	of	the	Recordset
object,	but	changing	this	value	only	affects	the	number	of	records	in	the	cache
after	subsequent	retrievals	from	the	data	source.	Changing	the	property	value
alone	will	not	change	the	current	contents	of	the	cache.

If	there	are	fewer	records	to	retrieve	than	CacheSize	specifies,	the	provider
returns	the	remaining	records	and	no	error	occurs.

A	CacheSize	setting	of	zero	is	not	allowed	and	returns	an	error.

Records	retrieved	from	the	cache	don't	reflect	concurrent	changes	that	other
users	made	to	the	source	data.	To	force	an	update	of	all	the	cached	data,	use	the
Resync	method.

If	CacheSize	is	set	to	a	value	greater	than	one,	the	navigation	methods	(Move,
MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious)	may	result	in	navigation
to	a	deleted	record,	if	deletion	occurs	after	the	records	were	retrieved.	After	the
initial	fetch,	subsequent	deletions	will	not	be	reflected	in	your	data	cache	until
you	attempt	to	access	a	data	value	from	a	deleted	row.	However,	setting
CacheSize	to	one	eliminates	this	issue	since	deleted	rows	cannot	be	fetched.

Charset	Property

				 				

Indicates	the	character	set	into	which	the	contents	of	a	text	Stream	should	be
translated.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	specifies	the	character	set	into	which	the
contents	of	the	Stream	will	be	translated.	The	default	value	is	"Unicode".
Allowed	values	are	typical	strings	passed	over	the	interface	as	Internet	character
set	strings	(for	example,	"iso-8859-1",	"Windows-1252",	etc.).	For	a	list	of	the
character	set	strings	that	is	known	by	a	system,	see	the	subkeys	of
HKEY_CLASSES_ROOT\MIME\Database\Charset	in	the	Windows	Registry.

Remarks

In	a	text	Stream	object,	text	data	is	stored	as	Unicode.	The	Charset	property
translates	the	data	read	from	the	Stream	into	the	specified	character	set.
Similarly,	data	written	to	the	Stream	in	the	specified	character	set	is	translated
into	Unicode	for	storage	in	the	Stream	object.

For	an	open	Stream,	the	current	Position	must	be	at	the	beginning	of	the	Stream
(0)	to	be	able	to	set	Charset.

Charset	is	used	only	with	text	Stream	objects	(Type	is	adTypeText).	This
property	is	ignored	if	Type	is	adTypeBinary.

CommandText	Property

				 				

Indicates	the	text	of	a	command	to	be	issued	against	a	provider.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	contains	a	provider	command,	such	as	an	SQL
statement,	a	table	name,	a	relative	URL,	or	a	stored	procedure	call.	Default	is	""
(zero-length	string).

Remarks

Use	the	CommandText	property	to	set	or	return	the	text	of	a	command
represented	by	a	Command	object.	Usually	this	will	be	an	SQL	statement,	but
can	also	be	any	other	type	of	command	statement	recognized	by	the	provider,
such	as	a	stored	procedure	call.	An	SQL	statement	must	be	of	the	particular
dialect	or	version	supported	by	the	provider's	query	processor.

If	the	Prepared	property	of	the	Command	object	is	set	to	True	and	the
Command	object	is	bound	to	an	open	connection	when	you	set	the
CommandText	property,	ADO	prepares	the	query	(that	is,	a	compiled	form	of
the	query	that	is	stored	by	the	provider)	when	you	call	the	Execute	or	Open
methods.

Depending	on	the	CommandType	property	setting,	ADO	may	alter	the
CommandText	property.	You	can	read	the	CommandText	property	at	any	time
to	see	the	actual	command	text	that	ADO	will	use	during	execution.

Use	the	CommandText	property	to	set	or	return	a	relative	URL	that	specifies	a
resource,	such	as	a	file	or	directory.	The	resource	is	relative	to	a	location
specified	explicitly	by	an	absolute	URL,	or	implicitly	by	an	open	Connection
object.

CommandTimeout	Property

				 				

Indicates	how	long	to	wait	while	executing	a	command	before	terminating	the
attempt	and	generating	an	error.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	indicates,	in	seconds,	how	long	to	wait	for	a
command	to	execute.	Default	is	30.

Remarks

Use	the	CommandTimeout	property	on	a	Connection	object	or	Command
object	to	allow	the	cancellation	of	an	Execute	method	call,	due	to	delays	from
network	traffic	or	heavy	server	use.	If	the	interval	set	in	the	CommandTimeout
property	elapses	before	the	command	completes	execution,	an	error	occurs	and
ADO	cancels	the	command.	If	you	set	the	property	to	zero,	ADO	will	wait
indefinitely	until	the	execution	is	complete.	Make	sure	the	provider	and	data
source	to	which	you	are	writing	code	support	the	CommandTimeout
functionality.

The	CommandTimeout	setting	on	a	Connection	object	has	no	effect	on	the
CommandTimeout	setting	on	a	Command	object	on	the	same	Connection;
that	is,	the	Command	object's	CommandTimeout	property	does	not	inherit	the

value	of	the	Connection	object's	CommandTimeout	value.

On	a	Connection	object,	the	CommandTimeout	property	remains	read/write
after	the	Connection	is	opened.

CommandType	Property

				 				

Indicates	the	type	of	a	Command	object.

Settings	and	Return	Values

Sets	or	returns	one	or	more	CommandTypeEnum	values.	You	can	also	use	the
adExecuteNoRecords	constant	from	the	ExecuteOptionEnum	to	improve
performance	by	minimizing	internal	processing.	This	constant	never	stands
alone;	it	is	always	combined	with	adCmdText	or	adCmdStoredProc	(for
example,	adCmdText+adExecuteNoRecords).	An	error	results	if
adExecuteNoRecords	is	used	with	the	Open	method,	or	a	Command	object
used	by	that	method.

Remarks

Use	the	CommandType	property	to	optimize	evaluation	of	the	CommandText
property.

If	the	CommandType	property	value	equals	adCmdUnknown	(the	default
value),	you	may	experience	diminished	performance	because	ADO	must	make
calls	to	the	provider	to	determine	if	the	CommandText	property	is	an	SQL
statement,	a	stored	procedure,	or	a	table	name.	If	you	know	what	type	of
command	you're	using,	setting	the	CommandType	property	instructs	ADO	to

go	directly	to	the	relevant	code.	If	the	CommandType	property	does	not	match
the	type	of	command	in	the	CommandText	property,	an	error	occurs	when	you
call	the	Execute	method.

Connect	Property	(RDS)

				 				

Indicates	the	database	name	from	which	the	query	and	update	operations	are	run.

You	can	set	the	Connect	property	at	design	time	in	the	RDS.DataControl
object's	OBJECT	tags,	or	at	run	time	in	scripting	code	(for	instance,	VBScript).

Syntax

Design	time:	<PARAM	NAME="Connect"	VALUE="ConnectionString">

Run	time:	DataControl.Connect	=	"ConnectionString"

Parameters

ConnectionString		A	valid	connection	string.	For	more	general	information	about
connection	strings,	see	the	ConnectionString	property	or	your	provider
documentation.

Note			Specifying	MS	Remote	as	the	provider	for	the	RDS.DataControl	would
create	a	four-tier	scenario.	Scenarios	greater	than	three	tiers	have	not	been	tested
and	should	not	be	needed.

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

ConnectionString	Property

				 				

Indicates	the	information	used	to	establish	a	connection	to	a	data	source.

Settings	and	Return	Values

Sets	or	returns	a	String	value.

Remarks

Use	the	ConnectionString	property	to	specify	a	data	source	by	passing	a
detailed	connection	string	containing	a	series	of	argument	=	value	statements
separated	by	semicolons.

ADO	supports	five	arguments	for	the	ConnectionString	property;	any	other
arguments	pass	directly	to	the	provider	without	any	processing	by	ADO.	The
arguments	ADO	supports	are	as	follows.

Argument Description
Provider= Specifies	the	name	of	a	provider	to	use	for	the	connection.

File	Name=

Specifies	the	name	of	a	provider-specific	file	(for
example,	a	persisted	data	source	object)	containing	preset
connection	information.

Remote	Provider= Specifies	the	name	of	a	provider	to	use	when	opening	a
client-side	connection.	(Remote	Data	Service	only.)

Remote	Server= Specifies	the	path	name	of	the	server	to	use	when	opening
a	client-side	connection.	(Remote	Data	Service	only.)

URL= Specifies	the	connection	string	as	an	absolute	URL
identifying	a	resource,	such	as	a	file	or	directory.

After	you	set	the	ConnectionString	property	and	open	the	Connection	object,
the	provider	may	alter	the	contents	of	the	property,	for	example,	by	mapping	the
ADO-defined	argument	names	to	their	provider	equivalents.

The	ConnectionString	property	automatically	inherits	the	value	used	for	the
ConnectionString	argument	of	the	Open	method,	so	you	can	override	the	current
ConnectionString	property	during	the	Open	method	call.

Because	the	File	Name	argument	causes	ADO	to	load	the	associated	provider,
you	cannot	pass	both	the	Provider	and	File	Name	arguments.

The	ConnectionString	property	is	read/write	when	the	connection	is	closed	and
read-only	when	it	is	open.

Duplicates	of	an	argument	in	the	ConnectionString	property	are	ignored.	The
last	instance	of	any	argument	is	used.

Remote	Data	Service	Usage			When	used	on	a	client-side	Connection	object,
the	ConnectionString	property	can	include	only	the	Remote	Provider	and
Remote	Server	parameters.

ConnectionTimeout	Property

				 				

Indicates	how	long	to	wait	while	establishing	a	connection	before	terminating
the	attempt	and	generating	an	error.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	indicates,	in	seconds,	how	long	to	wait	for	the
connection	to	open.	Default	is	15.

Remarks

Use	the	ConnectionTimeout	property	on	a	Connection	object	if	delays	from
network	traffic	or	heavy	server	use	make	it	necessary	to	abandon	a	connection
attempt.	If	the	time	from	the	ConnectionTimeout	property	setting	elapses	prior
to	the	opening	of	the	connection,	an	error	occurs	and	ADO	cancels	the	attempt.
If	you	set	the	property	to	zero,	ADO	will	wait	indefinitely	until	the	connection	is
opened.	Make	sure	the	provider	to	which	you	are	writing	code	supports	the
ConnectionTimeout	functionality.

The	ConnectionTimeout	property	is	read/write	when	the	connection	is	closed
and	read-only	when	it	is	open.

Count	Property

				 				

Indicates	the	number	of	objects	in	a	collection.

Return	Value

Returns	a	Long	value.

Remarks

Use	the	Count	property	to	determine	how	many	objects	are	in	a	given	collection.

Because	numbering	for	members	of	a	collection	begins	with	zero,	you	should
always	code	loops	starting	with	the	zero	member	and	ending	with	the	value	of
the	Count	property	minus	1.	If	you	are	using	Microsoft	Visual	Basic	and	want	to
loop	through	the	members	of	a	collection	without	checking	the	Count	property,
use	the	For	Each...Next	command.

If	the	Count	property	is	zero,	there	are	no	objects	in	the	collection.

CursorLocation	Property

				 				

Indicates	the	location	of	the	cursor	service.

Settings	And	Return	Values

Sets	or	returns	a	Long	value	that	can	be	set	to	one	of	the	CursorLocationEnum
values.

Remarks

This	property	allows	you	to	choose	between	various	cursor	libraries	accessible	to
the	provider.	Usually,	you	can	choose	between	using	a	client-side	cursor	library
or	one	that	is	located	on	the	server.

This	property	setting	affects	connections	established	only	after	the	property	has
been	set.	Changing	the	CursorLocation	property	has	no	effect	on	existing
connections.

Cursors	returned	by	the	Execute	method	inherit	this	setting.	Recordset	objects
will	automatically	inherit	this	setting	from	their	associated	connections.

This	property	is	read/write	on	a	Connection	or	a	closed	Recordset,	and	read-only
on	an	open	Recordset.

Remote	Data	Service	Usage			When	used	on	a	client-side	Recordset	or
Connection	object,	the	CursorLocation	property	can	only	be	set	to
adUseClient.

CursorType	Property

				 				

Indicates	the	type	of	cursor	used	in	a	Recordset	object.

Settings	and	Return	Values

Sets	or	returns	a	CursorTypeEnum	value.	The	default	value	is
adOpenForwardOnly.

Remarks

Use	the	CursorType	property	to	specify	the	type	of	cursor	that	should	be	used
when	opening	the	Recordset	object.

Only	a	setting	of	adOpenStatic	is	supported	if	the	CursorLocation	property	is
set	to	adUseClient.	If	an	unsupported	value	is	set,	then	no	error	will	result;	the
closest	supported	CursorType	will	be	used	instead.

If	a	provider	does	not	support	the	requested	cursor	type,	it	may	return	another
cursor	type.	The	CursorType	property	will	change	to	match	the	actual	cursor
type	in	use	when	the	Recordset	object	is	open.	To	verify	specific	functionality	of
the	returned	cursor,	use	the	Supports	method.	After	you	close	the	Recordset,	the
CursorType	property	reverts	to	its	original	setting.

The	following	chart	shows	the	provider	functionality	(identified	by	Supports
method	constants)	required	for	each	cursor	type.

For	a	Recordset	of	this
CursorType

The	Supports	method	must	return	True	for	all	of
these	constants

adOpenForwardOnly none

adOpenKeyset adBookmark,	adHoldRecords,	adMovePrevious,
adResync

adOpenDynamic adMovePrevious

adOpenStatic adBookmark,	adHoldRecords,	adMovePrevious,
adResync

Note			Although	Supports(adUpdateBatch)	may	be	true	for	dynamic	and
forward-only	cursors,	for	batch	updates	you	should	use	either	a	keyset	or	static
cursor.	Set	the	LockType	property	to	adLockBatchOptimistic	and	the
CursorLocation	property	to	adUseClient	to	enable	the	Cursor	Service	for	OLE
DB,	which	is	required	for	batch	updates.

The	CursorType	property	is	read/write	when	the	Recordset	is	closed	and	read-
only	when	it	is	open.

Remote	Data	Service	Usage			When	used	on	a	client-side	Recordset	object,	the
CursorType	property	can	be	set	only	to	adOpenStatic.

DataMember	Property

				 				

Indicates	the	name	of	the	data	member	that	will	be	retrieved	from	the	object
referenced	by	the	DataSource	property.

Settings	and	Return	Values

Sets	or	returns	a	String	value.	The	name	is	not	case	sensitive.

Remarks

This	property	is	used	to	create	data-bound	controls	with	the	Data	Environment.
The	Data	Environment	maintains	collections	of	data	(data	sources)	containing
named	objects	(data	members)	that	will	be	represented	as	a	Recordset	object.

The	DataMember	and	DataSource	properties	must	be	used	in	conjunction.

The	DataMember	property	determines	which	object	specified	by	the
DataSource	property	will	be	represented	as	a	Recordset	object.	The	Recordset
object	must	be	closed	before	this	property	is	set.	An	error	is	generated	if	the
DataMember	property	isn't	set	before	the	DataSource	property,	or	if	the
DataMember	name	isn't	recognized	by	the	object	specified	in	the	DataSource
property.

Usage

Dim	rs	as	New	ADODB.Recordset

rs.DataMember	=	"Command"					'Name	of	the	rowset	to	bind	to

Set	rs.DataSource	=	myDE						'Name	of	the	object	containing	an	IRowset

DataSource	Property

				 				

Indicates	an	object	that	contains	data	to	be	represented	as	a	Recordset	object.

Remarks

This	property	is	used	to	create	data-bound	controls	with	the	Data	Environment.
The	Data	Environment	maintains	collections	of	data	(data	sources)	containing
named	objects	(data	members)	that	will	be	represented	as	a	Recordset	object.

The	DataMember	and	DataSource	properties	must	be	used	in	conjunction.

The	object	referenced	must	implement	the	IDataSource	interface	and	must
contain	an	IRowset	interface.

Usage

Dim	rs	as	New	ADODB.Recordset

rs.DataMember	=	"Command"					'Name	of	the	rowset	to	bind	to

Set	rs.DataSource	=	myDE						'Name	of	the	object	containing	an	IRowset

DefaultDatabase	Property

				 				

Indicates	the	default	database	for	a	Connection	object.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	evaluates	to	the	name	of	a	database	available
from	the	provider.

Remarks

Use	the	DefaultDatabase	property	to	set	or	return	the	name	of	the	default
database	on	a	specific	Connection	object.

If	there	is	a	default	database,	SQL	strings	may	use	an	unqualified	syntax	to
access	objects	in	that	database.	To	access	objects	in	a	database	other	than	the	one
specified	in	the	DefaultDatabase	property,	you	must	qualify	object	names	with
the	desired	database	name.	Upon	connection,	the	provider	will	write	default
database	information	to	the	DefaultDatabase	property.	Some	providers	allow
only	one	database	per	connection,	in	which	case	you	cannot	change	the
DefaultDatabase	property.

Some	data	sources	and	providers	may	not	support	this	feature,	and	may	return	an
error	or	an	empty	string.

Remote	Data	Service	Usage			This	property	is	not	available	on	a	client-side
Connection	object.

DefinedSize	Property

				 				

Indicates	the	data	capacity	of	a	Field	object.

Return	Value

Returns	a	Long	value	that	reflects	the	defined	size	of	a	field	as	a	number	of
bytes.

Remarks

Use	the	DefinedSize	property	to	determine	the	data	capacity	of	a	Field	object.

The	DefinedSize	and	ActualSize	properties	are	different.	For	example,	consider
a	Field	object	with	a	declared	type	of	adVarChar	and	a	DefinedSize	property
value	of	50,	containing	a	single	character.	The	ActualSize	property	value	it
returns	is	the	length	in	bytes	of	the	single	character.

Description	Property

				 				

Describes	an	Error	object.

Return	Value

Returns	a	String	value	that	contains	a	description	of	the	error.

Remarks

Use	the	Description	property	to	obtain	a	short	description	of	the	error.	Display
this	property	to	alert	the	user	to	an	error	that	you	cannot	or	do	not	want	to
handle.	The	string	will	come	from	either	ADO	or	a	provider.

Providers	are	responsible	for	passing	specific	error	text	to	ADO.	ADO	adds	an
Error	object	to	the	Errors	collection	for	each	provider	error	or	warning	it
receives.	Enumerate	the	Errors	collection	to	trace	the	errors	that	the	provider
passes.

Direction	Property

				 				

Indicates	whether	the	Parameter	represents	an	input	parameter,	an	output
parameter,	an	input	and	an	output	parameter,	or	if	the	parameter	is	the	return
value	from	a	stored	procedure.

Settings	and	Return	Values

Sets	or	returns	a	ParameterDirectionEnum	value.

Remarks

Use	the	Direction	property	to	specify	how	a	parameter	is	passed	to	or	from	a
procedure.	The	Direction	property	is	read/write;	this	allows	you	to	work	with
providers	that	don't	return	this	information	or	to	set	this	information	when	you
don't	want	ADO	to	make	an	extra	call	to	the	provider	to	retrieve	parameter
information.

Not	all	providers	can	determine	the	direction	of	parameters	in	their	stored
procedures.	In	these	cases,	you	must	set	the	Direction	property	before	you
execute	the	query.

EditMode	Property

				 				

Indicates	the	editing	status	of	the	current	record.

Return	Value

Returns	an	EditModeEnum	value.

Remarks

ADO	maintains	an	editing	buffer	associated	with	the	current	record.	This
property	indicates	whether	changes	have	been	made	to	this	buffer,	or	whether	a
new	record	has	been	created.	Use	the	EditMode	property	to	determine	the
editing	status	of	the	current	record.	You	can	test	for	pending	changes	if	an
editing	process	has	been	interrupted	and	determine	whether	you	need	to	use	the
Update	or	CancelUpdate	method.

See	the	AddNew	method	for	a	more	detailed	description	of	the	EditMode
property	under	different	editing	conditions.

Note			EditMode	can	return	a	valid	value	only	if	there	is	a	current	record.
EditMode	will	return	an	error	if	BOF	or	EOF	is	true,	or	if	the	current	record	has
been	deleted.

EOS	Property

				 				

Indicates	whether	the	current	position	is	at	the	end	of	the	stream.

Return	Values

Returns	a	Boolean	value	that	indicates	whether	the	current	position	is	at	the	end
of	the	stream.	EOS	returns	True	if	there	are	no	more	bytes	in	the	stream;	it
returns	False	if	there	are	more	bytes	following	the	current	position.

To	set	the	end	of	stream	position,	use	the	SetEOS	method.	To	determine	the
current	position,	use	the	Position	property.

ExecuteOptions	Property	(RDS)

				 				

Indicates	whether	asynchronous	execution	is	enabled.

Settings	and	Return	Values

Sets	or	returns	one	of	the	following	values.

Constant Description

adcExecSync Executes	the	next	refresh	of	the	Recordset
synchronously.

adcExecAsync Default.	Executes	the	next	refresh	of	the	Recordset
asynchronously.

Note			Each	client-side	executable	file	that	uses	these	constants	must	provide
declarations	for	them.	You	can	cut	and	paste	the	constant	declarations	that	you
want	from	the	file	Adcvbs.inc,	located	in	the	C:\Program	Files\Common
Files\System\MSADC	folder.

Remarks

If	ExecuteOptions	is	set	to	adcExecAsync,	then	this	asynchronously	executes
the	next	Refresh	call	on	the	RDS.DataControl	object's	Recordset.

If	you	try	to	call	Reset,	Refresh,	SubmitChanges,	CancelUpdate,	or	Recordset
while	another	asynchronous	operation	that	might	change	the	RDS.DataControl
object's	Recordset	is	executing,	an	error	occurs.

If	an	error	occurs	during	an	asynchronous	operation,	the	RDS.DataControl
object's	ReadyState	value	changes	from	adcReadyStateLoaded	to
adcReadyStateComplete,	and	the	Recordset	property	value	remains	Nothing.

FetchOptions	Property	(RDS)

				 				

Indicates	the	type	of	asynchronous	fetching.

Setting	and	Return	Values

Sets	or	returns	one	of	the	following	values.

Constant Description

adcFetchUpFront

All	the	records	of	the	Recordset	are	fetched	before
control	is	returned	to	the	application.	The	complete
Recordset	is	fetched	before	the	application	is
allowed	to	do	anything	with	it.

adcFetchBackground

Control	can	return	to	the	application	as	soon	as	the
first	batch	of	records	has	been	fetched.	A
subsequent	read	of	the	Recordset	that	attempts	to
access	a	record	not	fetched	in	the	first	batch	will	be
delayed	until	the	sought	record	is	actually	fetched,
at	which	time	control	returns	to	the	application.
Default.	Control	returns	immediately	to	the
application	while	records	are	fetched	in	the
background.	If	the	application	attempts	to	read	a
record	that	hasn't	yet	been	fetched,	the	record

adcFetchAsync
closest	to	the	sought	record	will	be	read	and	control
will	return	immediately,	indicating	that	the	current
end	of	the	Recordset	has	been	reached.	For
example,	a	call	to	MoveLast	will	move	the	current
record	position	to	the	last	record	actually	fetched,
even	though	more	records	will	continue	to	populate
the	Recordset.

Note			Each	client-side	executable	file	that	uses	these	constants	must	provide
declarations	for	them.	You	can	cut	and	paste	the	constant	declarations	you	want
from	the	file	Adcvbs.inc,	located	in	the	C:\Program	Files\Common
Files\System\MSADC	folder.

Remarks

In	a	Web	application,	you	will	usually	want	to	use	adcFetchAsync	(the	default
value),	because	it	provides	better	performance.	In	a	compiled	client	application,
you	will	usually	want	to	use	adcFetchBackground.

Filter	Property

				 				

Indicates	a	filter	for	data	in	a	Recordset.

Settings	and	Return	Values

Sets	or	returns	a	Variant	value,	which	can	contain	one	of	the	following:

Criteria	string	—	a	string	made	up	of	one	or	more	individual	clauses
concatenated	with	AND	or	OR	operators.

Array	of	bookmarks	—	an	array	of	unique	bookmark	values	that	point	to
records	in	the	Recordset	object.

A	FilterGroupEnum	value.

Remarks

Use	the	Filter	property	to	selectively	screen	out	records	in	a	Recordset	object.
The	filtered	Recordset	becomes	the	current	cursor.	Other	properties	that	return
values	based	on	the	current	cursor	are	affected,	such	as	AbsolutePosition,
AbsolutePage,	RecordCount,	and	PageCount.	This	is	because	setting	the	Filter
property	to	a	specific	value	will	move	the	current	record	to	the	first	record	that
satisfies	the	new	value.

The	criteria	string	is	made	up	of	clauses	in	the	form	FieldName-Operator-Value
(for	example,	"LastName	=	'Smith'").	You	can	create	compound	clauses	by
concatenating	individual	clauses	with	AND	(for	example,	"LastName	=	'Smith'
AND	FirstName	=	'John'")	or	OR	(for	example,	"LastName	=	'Smith'	OR
LastName	=	'Jones'").	Use	the	following	guidelines	for	criteria	strings:

FieldName	must	be	a	valid	field	name	from	the	Recordset.	If	the	field
name	contains	spaces,	you	must	enclose	the	name	in	square	brackets.

Operator	must	be	one	of	the	following:	<,	>,	<=,	>=,	<>,	=,	or	LIKE.

Value	is	the	value	with	which	you	will	compare	the	field	values	(for
example,	'Smith',	#8/24/95#,	12.345,	or	$50.00).	Use	single	quotes	with
strings	and	pound	signs	(#)	with	dates.	For	numbers,	you	can	use	decimal
points,	dollar	signs,	and	scientific	notation.	If	Operator	is	LIKE,	Value	can
use	wildcards.	Only	the	asterisk	(*)	and	percent	sign	(%)	wild	cards	are
allowed,	and	they	must	be	the	last	character	in	the	string.	Value	cannot	be
null.

Note			To	include	single	quotation	marks	(')	in	the	filter	Value,	use	two
single	quotation	marks	to	represent	one.	For	example,	to	filter	on	O'Malley,
the	criteria	string	should	be	"col1	=	'O''Malley'".	To	include	single	quotation
marks	at	both	the	beginning	and	the	end	of	the	filter	value,	enclose	the
string	with	pound	signs	(#).	For	example,	to	filter	on	'1',	the	criteria	string
should	be	"col1	=	#'1'#".

There	is	no	precedence	between	AND	and	OR.	Clauses	can	be	grouped
within	parentheses.	However,	you	cannot	group	clauses	joined	by	an	OR
and	then	join	the	group	to	another	clause	with	an	AND,	like	this:

(LastName	=	'Smith'	OR	LastName	=	'Jones')	AND	FirstName	=	'John'

Instead,	you	would	construct	this	filter	as

(LastName	=	'Smith'	AND	FirstName	=	'John')	OR	(LastName	=	'Jones'	AND	FirstName	=	'John')

In	a	LIKE	clause,	you	can	use	a	wildcard	at	the	beginning	and	end	of	the
pattern	(for	example,	LastName	Like	'*mit*'),	or	only	at	the	end	of	the
pattern	(for	example,	LastName	Like	'Smit*').

The	filter	constants	make	it	easier	to	resolve	individual	record	conflicts	during
batch	update	mode	by	allowing	you	to	view,	for	example,	only	those	records	that
were	affected	during	the	last	UpdateBatch	method	call.

Setting	the	Filter	property	itself	may	fail	because	of	a	conflict	with	the
underlying	data	(for	example,	a	record	has	already	been	deleted	by	another	user).
In	such	a	case,	the	provider	returns	warnings	to	the	Errors	collection	but	does	not
halt	program	execution.	A	run-time	error	occurs	only	if	there	are	conflicts	on	all
the	requested	records.	Use	the	Status	property	to	locate	records	with	conflicts.

Setting	the	Filter	property	to	a	zero-length	string	("")	has	the	same	effect	as
using	the	adFilterNone	constant.

Whenever	the	Filter	property	is	set,	the	current	record	position	moves	to	the	first
record	in	the	filtered	subset	of	records	in	the	Recordset.	Similarly,	when	the
Filter	property	is	cleared,	the	current	record	position	moves	to	the	first	record	in
the	Recordset.

See	the	Bookmark	property	for	an	explanation	of	bookmark	values	from	which
you	can	build	an	array	to	use	with	the	Filter	property.

FilterColumn	Property	(RDS)

				 				

Indicates	the	column	on	which	to	evaluate	the	filter	criteria.

Syntax

DataControl.FilterColumn	=	String

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

String			A	String	value	that	specifies	the	column	on	which	to	evaluate	the	filter
criteria.	The	filter	criteria	are	specified	in	the	FilterCriterion	property.

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the
criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

FilterCriterion	Property	(RDS)

				 				

Indicates	the	evaluation	operator	to	use	in	the	filter	value.

Syntax

DataControl.FilterCriterion	=	String

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

String			A	String	value	that	specifies	the	evaluation	operator	of	the	FilterValue	to
the	records.	Can	be	any	one	of	the	following:	<,	<=,	>,	>=,	=,	or	<>.

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the
criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

The	"!="	operator	is	not	valid	for	FilterCriterion;	instead,	use	"<>".

If	both	the	filter	and	sort	properties	are	set	and	you	call	the	Reset	method,	the
rowset	is	first	filtered	and	then	it	is	sorted.	For	ascending	sorts,	the	null	values
are	at	the	top;	for	descending	sorts,	null	values	are	at	the	bottom	(ascending	is
default	behavior).

FilterValue	Property	(RDS)

				 				

Indicates	the	value	with	which	to	filter	records.

Syntax

DataControl.FilterValue	=	String

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

String			A	String	value	that	represents	a	data	value	with	which	to	filter	records
(for	example,	'Programmer'	or	125).

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the
criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

Null	values	result	in	a	type	mismatch	error.

Handler	Property	(RDS)

				 				

Indicates	the	name	of	a	server-side	customization	program	(handler)	that	extends
the	functionality	of	the	RDSServer.DataFactory,	and	any	parameters	used	by	the
handler.

Syntax

DataControl.Handler	=	String

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

String			A	String	value	that	contains	the	name	of	the	handler	and	any	parameters,
all	separated	by	commas	(for	example,
"handlerName,parm1,parm2,...,parmN").

Remarks

This	property	supports	customization,	a	functionality	that	requires	setting	the
CursorLocation	property	to	adUseClient.

The	name	of	the	handler	and	its	parameters,	if	any,	are	separated	by	commas

(",").	Unpredictable	behavior	will	result	if	a	semicolon	(";")	appears	anywhere
within	String.	You	can	write	your	own	handler,	provided	it	supports	the
IDataFactoryHandler	interface.

The	name	of	the	default	handler	is	MSDFMAP.Handler,	and	its	default
parameter	is	a	customization	file	named	MSDFMAP.INI.	Use	this	property	to
invoke	alternate	customization	files	created	by	your	server	administrator.

The	alternative	to	setting	the	Handler	property	is	to	specify	a	handler	and
parameters	in	the	ConnectionString	property;	that	is,
"Handler=handlerName,parm1,parm2,...;".

HelpContext,	HelpFile	Properties

				 				

Indicates	the	help	file	and	topic	associated	with	an	Error	object.

Return	Values

HelpContextID	—	returns	a	context	ID,	as	a	Long	value,	for	a	topic	in	a
Help	file.

HelpFile	—	returns	a	String	value	that	evaluates	to	a	fully	resolved	path	to
a	Help	file.

Remarks

If	a	Help	file	is	specified	in	the	HelpFile	property,	the	HelpContext	property	is
used	to	automatically	display	the	Help	topic	it	identifies.	If	there	is	no	relevant
help	topic	available,	the	HelpContext	property	returns	zero	and	the	HelpFile
property	returns	a	zero-length	string	("").

Index	Property

				 				

Indicates	the	name	of	the	index	currently	in	effect	for	a	Recordset	object.

Settings	and	Return	Values

Sets	or	returns	a	String	value,	which	is	the	name	of	the	index.

Remarks

The	index	named	by	the	Index	property	must	have	previously	been	declared	on
the	base	table	underlying	the	Recordset	object.	That	is,	the	index	must	have
been	declared	programmatically	either	as	an	ADOX	Index	object,	or	when	the
base	table	was	created.

A	run-time	error	will	occur	if	the	index	cannot	be	set.	The	Index	property	cannot
be	set:

Within	a	WillChangeRecordset	or	RecordsetChangeComplete	event
handler.

If	the	Recordset	is	still	executing	an	operation	(which	can	be	determined
by	the	State	property).

If	a	filter	has	been	set	on	the	Recordset	with	the	Filter	property.

The	Index	property	can	always	be	set	successfully	if	the	Recordset	is	closed,
but	the	Recordset	will	not	open	successfully,	or	the	index	will	not	be	usable,	if
the	underlying	provider	does	not	support	indexes.

If	the	index	can	be	set,	the	current	row	position	may	change.	This	will	cause	an
update	to	the	AbsolutePosition	property,	and	the	generation	of
WillChangeRecordset,	RecordsetChangeComplete,	WillMove,	and
MoveComplete	events.

If	the	index	can	be	set	and	the	LockType	property	is	adLockPessimistic	or
adLockOptimistic,	then	an	implicit	UpdateBatch	operation	is	performed.	This
releases	the	current	and	affected	groups.	Any	existing	filter	is	released,	and	the
current	row	position	is	changed	to	the	first	row	of	the	reordered	Recordset.

The	Index	property	is	used	in	conjunction	with	the	Seek	method.	If	the
underlying	provider	does	not	support	the	Index	property,	and	thus	the	Seek
method,	consider	using	the	Find	method	instead.	Determine	whether	the
Recordset	object	supports	indexes	with	the	Supports(adIndex)	method.

The	built-in	Index	property	is	not	related	to	the	dynamic	Optimize	property,
although	they	both	deal	with	indexes.

InternetTimeout	Property	(RDS)

				 				

Indicates	the	number	of	milliseconds	to	wait	before	a	request	times	out.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	represents	the	number	of	milliseconds	before	a
request	will	time	out.

Remarks

This	property	applies	only	to	requests	sent	with	the	HTTP	or	HTTPS	protocols.

Requests	in	a	three-tier	environment	can	take	several	minutes	to	execute.	Use
this	property	to	specify	additional	time	for	long-running	requests.

IsolationLevel	Property

				 				

Indicates	the	level	of	isolation	for	a	Connection	object.

Settings	and	Return	Values

Sets	or	returns	an	IsolationLevelEnum	value.	The	default	is	adXactChaos.

Remarks

Use	the	IsolationLevel	property	to	set	the	isolation	level	of	a	Connection
object.	The	setting	does	not	take	effect	until	the	next	time	you	call	the
BeginTrans	method.	If	the	level	of	isolation	you	request	is	unavailable,	the
provider	may	return	the	next	greater	level	of	isolation.

The	IsolationLevel	property	is	read/write.

Remote	Data	Service	Usage			When	used	on	a	client-side	Connection	object,
the	IsolationLevel	property	can	be	set	only	to	adXactUnspecified.

Because	users	are	working	with	disconnected	Recordset	objects	on	a	client-side
cache,	there	may	be	multiuser	issues.	For	instance,	when	two	different	users	try
to	update	the	same	record,	Remote	Data	Service	simply	allows	the	user	who
updates	the	record	first	to	"win."	The	second	user's	update	request	will	fail	with

an	error.

Item	Property

				 				

Indicates	a	specific	member	of	a	collection,	by	name	or	ordinal	number.

Syntax

Set	object	=	collection.Item	(Index)

Return	Value

Returns	an	object	reference.

Parameters

Index			A	Variant	expression	that	evaluates	either	to	the	name	or	to	the	ordinal
number	of	an	object	in	a	collection.

Remarks

Use	the	Item	property	to	return	a	specific	object	in	a	collection.	If	Item	cannot
find	an	object	in	the	collection	corresponding	to	the	Index	argument,	an	error
occurs.	Also,	some	collections	don't	support	named	objects;	for	these	collections,
you	must	use	ordinal	number	references.

The	Item	property	is	the	default	property	for	all	collections;	therefore,	the
following	syntax	forms	are	interchangeable:

collection.Item	(Index)

collection	(Index)

LineSeparator	Property

				 				

Indicates	the	binary	character	to	be	used	as	the	line	separator	in	text	Stream
objects.

Settings	and	Return	Values

Sets	or	returns	a	LineSeparatorsEnum	value	that	indicates	the	line	separator
character	used	in	the	Stream.	The	default	value	is	adCRLF.

Remarks

LineSeparator	is	used	to	interpret	lines	when	reading	the	content	of	a	text
Stream.	Lines	can	be	skipped	with	the	SkipLine	method.

LineSeparator	is	used	only	with	text	Stream	objects	(Type	is	adTypeText).
This	property	is	ignored	if	Type	is	adTypeBinary.

LockType	Property

				 				

Indicates	the	type	of	locks	placed	on	records	during	editing.

Settings	and	Return	Values

Sets	or	returns	a	LockTypeEnum	value.	The	default	value	is	adLockReadOnly.

Remarks

Set	the	LockType	property	before	opening	a	Recordset	to	specify	what	type	of
locking	the	provider	should	use	when	opening	it.	Read	the	property	to	return	the
type	of	locking	in	use	on	an	open	Recordset	object.

Providers	may	not	support	all	lock	types.	If	a	provider	cannot	support	the
requested	LockType	setting,	it	will	substitute	another	type	of	locking.	To
determine	the	actual	locking	functionality	available	in	a	Recordset	object,	use
the	Supports	method	with	adUpdate	and	adUpdateBatch.

The	adLockPessimistic	setting	is	not	supported	if	the	CursorLocation	property
is	set	to	adUseClient.	If	an	unsupported	value	is	set,	then	no	error	will	result;	the
closest	supported	LockType	will	be	used	instead.

The	LockType	property	is	read/write	when	the	Recordset	is	closed	and	read-

only	when	it	is	open.

Remote	Data	Service	Usage			When	used	on	a	client-side	Recordset	object,	the
LockType	property	can	only	be	set	to	adLockOptimisticBatch.

MarshalOptions	Property

				 				

Indicates	which	records	are	to	be	marshaled	back	to	the	server.

Settings	And	Return	Values

Sets	or	returns	a	MarshalOptionsEnum	value.	The	default	value	is
adMarshalAll.

Remarks

When	using	a	client-side	Recordset,	records	that	have	been	modified	on	the
client	are	written	back	to	the	middle	tier	or	Web	server	through	a	technique
called	marshaling,	the	process	of	packaging	and	sending	interface	method
parameters	across	thread	or	process	boundaries.	Setting	the	MarshalOptions
property	can	improve	performance	when	modified	remote	data	is	marshaled	for
updating	back	to	the	middle	tier	or	Web	server.

Remote	Data	Service	Usage			This	property	is	used	only	on	a	client-side
Recordset.

MaxRecords	Property

				 				

Indicates	the	maximum	number	of	records	to	return	to	a	Recordset	from	a	query.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	indicates	the	maximum	number	of	records	to
return.	Default	is	zero	(no	limit).

Remarks

Use	the	MaxRecords	property	to	limit	the	number	of	records	that	the	provider
returns	from	the	data	source.	The	default	setting	of	this	property	is	zero,	which
means	the	provider	returns	all	requested	records.

The	MaxRecords	property	is	read/write	when	the	Recordset	is	closed	and	read-
only	when	it	is	open.

Mode	Property

				 				

Indicates	the	available	permissions	for	modifying	data	in	a	Connection,	Record,
or	Stream	object.

Settings	and	Return	Values

Sets	or	returns	a	ConnectModeEnum	value.	The	default	value	for	a	Connection
is	adModeUnknown.	The	default	value	for	a	Record	object	is	adModeRead.
The	default	value	for	a	Stream	associated	with	an	underlying	source	(opened
with	a	URL	as	the	source,	or	as	the	default	Stream	of	a	Record)	is
adReadOnly.	The	default	value	for	a	Stream	not	associated	with	an	underlying
source	(instantiated	in	memory)	is	adModeUnknown.

Remarks

Use	the	Mode	property	to	set	or	return	the	access	permissions	in	use	by	the
provider	on	the	current	connection.	You	can	set	the	Mode	property	only	when
the	Connection	object	is	closed.

For	a	Stream	object,	if	the	access	mode	is	not	specified,	it	is	inherited	from	the
source	used	to	open	the	Stream	object.	For	example,	if	a	Stream	is	opened	from
a	Record	object,	by	default	it	is	opened	in	the	same	mode	as	the	Record.

This	property	is	read/write	while	the	object	is	closed	and	read-only	while	the
object	is	open.

Remote	Data	Service	Usage			When	used	on	a	client-side	Connection	object,
the	Mode	property	can	only	be	set	to	adModeUnknown.

Name	Property

				 				

Indicates	the	name	of	an	object.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	indicates	the	name	of	an	object.

Remarks

Use	the	Name	property	to	assign	a	name	to	or	retrieve	the	name	of	a	Command,
Property,	Field,	or	Parameter	object.

The	value	is	read/write	on	a	Command	object	and	read-only	on	a	Property
object.

For	a	Field	object,	Name	is	normally	read-only.	However,	for	new	Field	objects
that	have	been	appended	to	the	Fields	collection	of	a	Record,	Name	is	read/write
only	after	the	Value	property	for	the	Field	has	been	specified	and	the	data
provider	has	successfully	added	the	new	Field	by	calling	the	Update	method	of
the	Fields	collection.

For	Parameter	objects	not	yet	appended	to	the	Parameters	collection,	the	Name
property	is	read/write.	For	appended	Parameter	objects	and	all	other	objects,

the	Name	property	is	read-only.	Names	do	not	have	to	be	unique	within	a
collection.

You	can	retrieve	the	Name	property	of	an	object	by	an	ordinal	reference,	after
which	you	can	refer	to	the	object	directly	by	name.	For	example,	if
rstMain.Properties(20).Name	yields	Updatability,	you	can	subsequently
refer	to	this	property	as	rstMain.Properties("Updatability").

NativeError	Property

				 				

Indicates	the	provider-specific	error	code	for	a	given	Error	object.

Return	Value

Returns	a	Long	value	that	indicates	the	error	code.

Remarks

Use	the	NativeError	property	to	retrieve	the	database-specific	error	information
for	a	particular	Error	object.	For	example,	when	using	the	Microsoft	ODBC
Provider	for	OLE	DB	with	a	Microsoft	SQL	Server	database,	native	error	codes
that	originate	from	SQL	Server	pass	through	ODBC	and	the	ODBC	Provider	to
the	ADO	NativeError	property.

Number	Property

				 				

Indicates	the	number	that	uniquely	identifies	an	Error	object.

Return	Value

Returns	a	Long	value	that	may	correspond	to	one	of	the	ErrorValueEnum
constants.

Remarks

Use	the	Number	property	to	determine	which	error	occurred.	The	value	of	the
property	is	a	unique	number	that	corresponds	to	the	error	condition.

The	Errors	collection	returns	an	HRESULT	in	either	hexadecimal	format	(for
example,	0x80004005)	or	long	value	(for	example,	2147467259).	These
HRESULTs	can	be	raised	by	underlying	components,	such	as	OLE	DB	or	even
OLE	itself.	For	more	information	about	these	numbers,	see	Chapter	16	of	the
OLE	DB	Programmer's	Reference.

mk:@MSITStore:OLEDB.chm::/htm/oledbErrors.htm

NumericScale	Property

				 				

Indicates	the	scale	of	numeric	values	in	a	Parameter	or	Field	object.

Settings	and	Return	Values

Sets	or	returns	a	Byte	value	that	indicates	the	number	of	decimal	places	to	which
numeric	values	will	be	resolved.

Remarks

Use	the	NumericScale	property	to	determine	how	many	digits	to	the	right	of	the
decimal	point	will	be	used	to	represent	values	for	a	numeric	Parameter	or	Field
object.

For	Parameter	objects,	the	NumericScale	property	is	read/write.

For	a	Field	object,	NumericScale	is	normally	read-only.	However,	for	new
Field	objects	that	have	been	appended	to	the	Fields	collection	of	a	Record,
NumericScale	is	read/write	only	after	the	Value	property	for	the	Field	has	been
specified	and	the	data	provider	has	successfully	added	the	new	Field	by	calling
the	Update	method	of	the	Fields	collection.

OriginalValue	Property

				 				

Indicates	the	value	of	a	Field	that	existed	in	the	record	before	any	changes	were
made.

Return	Value

Returns	a	Variant	value	that	represents	the	value	of	a	field	prior	to	any	change.

Remarks

Use	the	OriginalValue	property	to	return	the	original	field	value	for	a	field	from
the	current	record.

In	immediate	update	mode	(in	which	the	provider	writes	changes	to	the
underlying	data	source	after	you	call	the	Update	method),	the	OriginalValue
property	returns	the	field	value	that	existed	prior	to	any	changes	(that	is,	since
the	last	Update	method	call).	This	is	the	same	value	that	the	CancelUpdate
method	uses	to	replace	the	Value	property.

In	batch	update	mode	(in	which	the	provider	caches	multiple	changes	and	writes
them	to	the	underlying	data	source	only	when	you	call	the	UpdateBatch
method),	the	OriginalValue	property	returns	the	field	value	that	existed	prior	to
any	changes	(that	is,	since	the	last	UpdateBatch	method	call).	This	is	the	same

value	that	the	CancelBatch	method	uses	to	replace	the	Value	property.	When	you
use	this	property	with	the	UnderlyingValue	property,	you	can	resolve	conflicts
that	arise	from	batch	updates.

Record

For	Record	objects,	the	OriginalValue	property	will	be	empty	for	fields	added
before	Update	is	called.

PageCount	Property

				 				

Indicates	how	many	pages	of	data	the	Recordset	object	contains.

Return	Value

Returns	a	Long	value	that	indicates	the	number	of	pages	in	the	Recordset.

Remarks

Use	the	PageCount	property	to	determine	how	many	pages	of	data	are	in	the
Recordset	object.	Pages	are	groups	of	records	whose	size	equals	the	PageSize
property	setting.	Even	if	the	last	page	is	incomplete	because	there	are	fewer
records	than	the	PageSize	value,	it	counts	as	an	additional	page	in	the
PageCount	value.	If	the	Recordset	object	does	not	support	this	property,	the
value	will	be	-1	to	indicate	that	the	PageCount	is	indeterminable.

See	the	PageSize	and	AbsolutePage	properties	for	more	on	page	functionality.

PageSize	Property

				 				

Indicates	how	many	records	constitute	one	page	in	the	Recordset.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	indicates	how	many	records	are	on	a	page.	The
default	is	10.

Remarks

Use	the	PageSize	property	to	determine	how	many	records	make	up	a	logical
page	of	data.	Establishing	a	page	size	allows	you	to	use	the	AbsolutePage
property	to	move	to	the	first	record	of	a	particular	page.	This	is	useful	in	Web-
server	scenarios	when	you	want	to	allow	the	user	to	page	through	data,	viewing
a	certain	number	of	records	at	a	time.

This	property	can	be	set	at	any	time,	and	its	value	will	be	used	for	calculating	the
location	of	the	first	record	of	a	particular	page.

ParentURL	Property

				 				

Indicates	an	absolute	URL	string	that	points	to	the	parent	Record	of	the	current
Record	object.

Return	Value

Returns	a	String	value	that	indicates	the	URL	of	the	parent	Record.

Remarks

The	ParentURL	property	depends	upon	the	source	used	to	open	the	Record
object.	For	example,	the	Record	may	be	opened	with	a	source	containing	a
relative	path	name	of	a	directory	referenced	by	the	ActiveConnection	property.

Suppose	"second"	is	a	folder	contained	under	"first".	Open	the	Record	object
with	the	following:

record.ActiveConnection	=	"http://first"

record.Open	"second"

Now,	the	value	of	the	ParentURL	property	is	"http://first",	the	same	as
ActiveConnection.

The	source	may	also	be	an	absolute	URL	such	as,	"http://first/second".	The
ParentURL	property	is	then	"http://first",	the	level	above	"second".

This	property	may	be	a	null	value	if:

There	is	no	parent	for	the	current	object;	for	example,	if	the	Record	object
represents	the	root	of	a	directory.

The	Record	object	represents	an	entity	that	cannot	be	specified	with	a
URL;	for	example,	a	row	of	a	Recordset	derived	from	a	database.

This	property	is	read-only.

Note			This	property	is	only	supported	by	document	source	providers,	such	as
the	Microsoft	OLE	DB	Provider	for	Internet	Publishing.	For	more	information,
see	Records	and	Provider-Supplied	Fields.

Position	Property

				 				

Indicates	the	current	position	within	a	Stream	object.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	specifies	the	offset,	in	number	of	bytes,	of	the
current	position	from	the	beginning	of	the	stream.	The	default	is	0,	which
represents	the	first	byte	in	the	stream.

Remarks

The	current	position	can	be	moved	to	a	point	after	the	end	of	the	stream.	If	you
specify	the	current	position	beyond	the	end	of	the	stream,	the	Size	of	the	Stream
object	will	be	increased	accordingly.	Any	new	bytes	added	in	this	way	will	be
null.

Notes			Position	always	measures	bytes.	For	text	streams	using	multibyte
character	sets,	multiply	the	position	by	the	character	size	to	determine	the
character	number.	For	example,	for	a	two-byte	character	set,	the	first	character	is
at	position	0,	the	second	character	at	position	2,	the	third	character	at	position	4,
and	so	on.

Negative	values	cannot	be	used	to	change	the	current	position	in	a	Stream.	Only

positive	numbers	can	be	used	for	Position.

For	read-only	Stream	objects,	ADO	will	not	return	an	error	if	Position	is	set	to	a
value	greater	than	the	Size	of	the	Stream.	This	does	not	change	the	size	of	the
Stream,	or	alter	the	Stream	contents	in	any	way.	However,	doing	this	should	be
avoided	because	it	results	in	a	meaningless	Position	value.

Precision	Property

				 				

Indicates	the	degree	of	precision	for	numeric	values	in	a	Parameter	object	or	for
numeric	Field	objects.

Settings	and	Return	Values

Sets	or	returns	a	Byte	value	that	indicates	the	maximum	number	of	digits	used	to
represent	values.

Remarks

Use	the	Precision	property	to	determine	the	maximum	number	of	digits	used	to
represent	values	for	a	numeric	Parameter	or	Field	object.

The	value	is	read/write	on	a	Parameter	object.

For	a	Field	object,	Precision	is	normally	read-only.	However,	for	new	Field
objects	that	have	been	appended	to	the	Fields	collection	of	a	Record,	Precision
is	read/write	only	after	the	Value	property	for	the	Field	has	been	specified	and
the	data	provider	has	successfully	added	the	new	Field	by	calling	the	Update
method	of	the	Fields	collection.

Prepared	Property

				 				

Indicates	whether	to	save	a	compiled	version	of	a	command	before	execution.

Settings	and	Return	Values

Sets	or	returns	a	Boolean	value	that,	if	set	to	True,	indicates	that	the	command
should	be	prepared.

Remarks

Use	the	Prepared	property	to	have	the	provider	save	a	prepared	(or	compiled)
version	of	the	query	specified	in	the	CommandText	property	before	a	Command
object's	first	execution.	This	may	slow	a	command's	first	execution,	but	once	the
provider	compiles	a	command,	the	provider	will	use	the	compiled	version	of	the
command	for	any	subsequent	executions,	which	will	result	in	improved
performance.

If	the	property	is	False,	the	provider	will	execute	the	Command	object	directly
without	creating	a	compiled	version.

If	the	provider	does	not	support	command	preparation,	it	may	return	an	error	as
soon	as	this	property	is	set	to	True.	If	it	does	not	return	an	error,	it	simply
ignores	the	request	to	prepare	the	command	and	sets	the	Prepared	property	to

False.

Provider	Property

				 				

Indicates	the	name	of	the	provider	for	a	Connection	object.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	indicates	the	provider	name.

Remarks

Use	the	Provider	property	to	set	or	return	the	name	of	the	provider	for	a
connection.	This	property	can	also	be	set	by	the	contents	of	the
ConnectionString	property	or	the	ConnectionString	argument	of	the	Open
method;	however,	specifying	a	provider	in	more	than	one	place	while	calling	the
Open	method	can	have	unpredictable	results.	If	no	provider	is	specified,	the
property	will	default	to	MSDASQL	(Microsoft	OLE	DB	Provider	for	ODBC).

The	Provider	property	is	read/write	when	the	connection	is	closed	and	read-only
when	it	is	open.	The	setting	does	not	take	effect	until	you	either	open	the
Connection	object	or	access	the	Properties	collection	of	the	Connection	object.
If	the	setting	is	not	valid,	an	error	occurs.

ReadyState	Property	(RDS)

				 				

Indicates	the	progress	of	a	DataControl	object	as	it	retrieves	data	into	its
Recordset	object.

Settings	and	Return	Values

Sets	or	returns	one	of	the	following	values.

Value Description

adcReadyStateLoaded
The	current	query	is	still	executing	and	no
rows	have	been	fetched.	The	DataControl
object's	Recordset	is	not	available	for	use.

adcReadyStateInteractive

An	initial	set	of	rows	retrieved	by	the	current
query	has	been	stored	in	the	DataControl
object's	Recordset	and	are	available	for	use.
The	remaining	rows	are	still	being	fetched.

adcReadyStateComplete

All	rows	retrieved	by	the	current	query	have
been	stored	in	the	DataControl	object's
Recordset	and	are	available	for	use.

This	state	will	also	exist	if	an	operation
aborted	due	to	an	error,	or	if	the	Recordset

object	is	not	initialized.

Note			Each	client-side	executable	file	that	uses	these	constants	must	provide
declarations	for	them.	You	can	cut	and	paste	the	constant	declarations	you	want
from	the	file	Adcvbs.inc,	located	in	the	C:\Program	Files\Common
Files\System\MSADC	folder.

Remarks

Use	the	onReadyStateChange	event	to	monitor	changes	in	the	ReadyState
property	during	an	asynchronous	query	operation.	This	is	more	efficient	than
periodically	checking	the	value	of	the	property.

If	an	error	occurs	during	an	asynchronous	operation,	the	ReadyState	property
changes	to	adcReadyStateComplete,	the	State	property	changes	from
adStateExecuting	to	adStateClosed,	and	the	Recordset	object	Value	property
remains	Nothing.

RecordCount	Property

				 				

Indicates	the	number	of	records	in	a	Recordset	object.

Return	Value

Returns	a	Long	value	that	indicates	the	number	of	records	in	the	Recordset.

Remarks

Use	the	RecordCount	property	to	find	out	how	many	records	are	in	a	Recordset
object.	The	property	returns	-1	when	ADO	cannot	determine	the	number	of
records	or	if	the	provider	or	cursor	type	does	not	support	RecordCount.
Reading	the	RecordCount	property	on	a	closed	Recordset	causes	an	error.

If	the	Recordset	object	supports	approximate	positioning	or	bookmarks—that	is,
Supports	(adApproxPosition)	or	Supports	(adBookmark),	respectively,	return
True—this	value	will	be	the	exact	number	of	records	in	the	Recordset,
regardless	of	whether	it	has	been	fully	populated.	If	the	Recordset	object	does
not	support	approximate	positioning,	this	property	may	be	a	significant	drain	on
resources	because	all	records	will	have	to	be	retrieved	and	counted	to	return	an
accurate	RecordCount	value.

The	cursor	type	of	the	Recordset	object	affects	whether	the	number	of	records

can	be	determined.	The	RecordCount	property	will	return	-1	for	a	forward-only
cursor;	the	actual	count	for	a	static	or	keyset	cursor;	and	either	-1	or	the	actual
count	for	a	dynamic	cursor,	depending	on	the	data	source.

Recordset,	SourceRecordset	Properties	(RDS)

				 				

Indicates	the	Recordset	object	returned	from	a	custom	business	object.

Syntax

DataControl.SourceRecordset	=	Recordset

Recordset	=	DataControl.Recordset

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Recordset			An	object	variable	that	represents	a	Recordset	object.

Remarks

You	can	set	the	SourceRecordset	property	to	a	Recordset	returned	from	a
custom	business	object.

These	properties	allow	an	application	to	handle	the	binding	process	by	means	of
a	custom	process.	They	receive	a	rowset	wrapped	in	a	Recordset	so	that	you	can
interact	directly	with	the	Recordset,	performing	actions	such	as	setting
properties	or	iterating	through	the	Recordset.

You	can	set	the	SourceRecordset	property	or	read	the	Recordset	property	at	run
time	in	scripting	code.

SourceRecordset	is	a	write-only	property,	in	contrast	to	the	Recordset	property,
which	is	a	read-only	property.

RecordType	Property

				 				

Indicates	the	type	of	Record	object.

Return	Value

Returns	a	RecordTypeEnum	value.

Remarks

The	RecordType	property	is	read-only.

Server	Property	(RDS)

				 				

Indicates	the	Internet	Information	Services	(IIS)	name	and	communication
protocol.

You	can	set	the	Server	property	at	design	time	in	the	RDS.DataControl	object's
OBJECT	tags,	or	at	run	time	in	scripting	code.

Syntax

Protocol Design-time	syntax

HTTP <PARAM	NAME="Server"

VALUE="http://awebsrvr:port">

HTTPS <PARAM	NAME="Server"

VALUE="https://awebsrvr:port">

DCOM <PARAM	NAME="Server"	VALUE="computername">

In-process <PARAM	NAME="Server"	VALUE="">

Protocol Run-time	syntax
HTTP DataControl.Server="http://awebsrvr:port"

HTTPS DataControl.Server="https://awebsrvr:port"

DCOM DataControl.Server="computername"

In-process DataControl.Server=""

Parameters

awebsrvr	or	computername			A	String	value	that	contains	an	Internet	or	intranet
path,	or	computer	name,	if	the	server	is	on	a	remote	computer;	or,	an	empty
string	if	the	server	is	on	the	local	computer.

port			Optional.	A	port	that	is	used	to	connect	to	an	IIS	server.	The	port	number
is	set	in	Internet	Explorer	(on	the	View	menu,	click	Options,	and	then	select	the
Connection	tab)	or	in	IIS.

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Remarks

The	server	is	the	location	where	the	RDS.DataControl	request	(that	is,	a	query
or	update)	is	processed.	By	default,	all	requests	are	processed	by	the
RDSServer.DataFactory	object,	MSDFMAP.Handler	component,	and
MSDFMAP.INI	file	on	the	specified	server.	Remember	that	when	changing
servers	to	reconcile	settings	in	the	old	and	new	MSDFMAP.INI	files.
Incompatibilities	may	cause	requests	that	succeed	on	one	server	to	fail	on
another.

Size	Property

				 				

Indicates	the	maximum	size,	in	bytes	or	characters,	of	a	Parameter	object.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	indicates	the	maximum	size	in	bytes	or
characters	of	a	value	in	a	Parameter	object.

Remarks

Use	the	Size	property	to	determine	the	maximum	size	for	values	written	to	or
read	from	the	Value	property	of	a	Parameter	object.

If	you	specify	a	variable-length	data	type	for	a	Parameter	object	(for	example,
any	String	type,	such	as	adVarChar),	you	must	set	the	object's	Size	property
before	appending	it	to	the	Parameters	collection;	otherwise,	an	error	occurs.

If	you	have	already	appended	the	Parameter	object	to	the	Parameters
collection	of	a	Command	object	and	you	change	its	type	to	a	variable-length	data
type,	you	must	set	the	Parameter	object's	Size	property	before	executing	the
Command	object;	otherwise,	an	error	occurs.

If	you	use	the	Refresh	method	to	obtain	parameter	information	from	the	provider

and	it	returns	one	or	more	variable-length	data	type	Parameter	objects,	ADO
may	allocate	memory	for	the	parameters	based	on	their	maximum	potential	size,
which	could	cause	an	error	during	execution.	To	prevent	an	error,	you	should
explicitly	set	the	Size	property	for	these	parameters	before	executing	the
command.

The	Size	property	is	read/write.

Size	Property	(ADO	Stream)

				 				

Indicates	the	size	of	the	stream	in	number	of	bytes.

Return	Values

Returns	a	Long	value	that	specifies	the	size	of	the	stream	in	number	of	bytes.
The	default	value	is	the	size	of	the	stream,	or	-1	if	the	size	of	the	stream	is	not
known.

Remarks

Size	can	be	used	only	with	open	Stream	objects.

Note			Any	number	of	bits	can	be	stored	in	a	Stream	object,	limited	only	by
system	resources.	If	the	Stream	contains	more	bits	than	can	be	represented	by	a
Long	value,	Size	is	truncated	and	therefore	does	not	accurately	represent	the
length	of	the	Stream.

Sort	Property

				 				

Indicates	one	or	more	field	names	on	which	the	Recordset	is	sorted,	and	whether
each	field	is	sorted	in	ascending	or	descending	order.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	indicates	the	field	names	in	the	Recordset	on
which	to	sort.	Each	name	is	separated	by	a	comma,	and	is	optionally	followed	by
a	blank	and	the	keyword,	ASC,	which	sorts	the	field	in	ascending	order,	or
DESC,	which	sorts	the	field	in	descending	order.	By	default,	if	no	keyword	is
specified,	the	field	is	sorted	in	ascending	order.

Remarks

This	property	requires	the	CursorLocation	property	to	be	set	to	adUseClient.	A
temporary	index	will	be	created	for	each	field	specified	in	the	Sort	property	if	an
index	does	not	already	exist.

The	sort	operation	is	efficient	because	data	is	not	physically	rearranged,	but	is
simply	accessed	in	the	order	specified	by	the	index.

Setting	the	Sort	property	to	an	empty	string	will	reset	the	rows	to	their	original
order	and	delete	temporary	indexes.	Existing	indexes	will	not	be	deleted.

Suppose	a	Recordset	contains	three	fields	named	firstName,	middleInitial,	and
lastName.	Set	the	Sort	property	to	the	string,	"lastName	DESC,	firstName
ASC",	which	will	order	the	Recordset	by	last	name	in	descending	order,	then	by
first	name	in	ascending	order.	The	middle	initial	is	ignored.

No	field	can	be	named	"ASC"	or	"DESC"	because	those	names	conflict	with	the
keywords	ASC	and	DESC.	Give	a	field	with	a	conflicting	name	an	alias	by
using	the	AS	keyword	in	the	query	that	returns	the	Recordset.

SortColumn	Property	(RDS)

				 				

Indicates	by	which	column	to	sort	the	records.

Syntax

DataControl.SortColumn	=	String

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

String			A	String	value	that	represents	the	name	or	alias	of	the	column	by	which
to	sort	the	records.

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the
criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

To	sort	on	a	Recordset,	you	must	first	save	any	pending	changes.	If	you	are
using	the	RDS.DataControl,	you	can	use	the	SubmitChanges	method.	For
example,	if	your	RDS.DataControl	is	named	ADC1,	your	code	would	be
ADC1.SubmitChanges.	If	you	are	using	an	ADO	Recordset,	you	can	use	its
UpdateBatch	method.	Using	UpdateBatch	is	the	recommended	method	for
Recordset	objects	created	with	the	CreateRecordset	method.	For	example,	your
code	could	be	myRS.UpdateBatch	or	ADC1.Recordset.UpdateBatch.

SortDirection	Property	(RDS)

				 				

Indicates	whether	a	sort	order	is	ascending	or	descending.

Syntax

DataControl.SortDirection	=	value

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Value			A	Boolean	value	that,	when	set	to	True,	indicates	the	sort	direction	is
ascending.	False	indicates	descending	order.

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the
criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

Source	Property	(ADO	Error)

				 				

Indicates	the	name	of	the	object	or	application	that	originally	generated	an	error.

Return	Value

Returns	a	String	value	that	indicates	the	name	of	an	object	or	application.

Remarks

Use	the	Source	property	on	an	Error	object	to	determine	the	name	of	the	object
or	application	that	originally	generated	an	error.	This	could	be	the	object's	class
name	or	programmatic	ID.	For	errors	in	ADO,	the	property	value	will	be
ADODB.ObjectName,	where	ObjectName	is	the	name	of	the	object	that
triggered	the	error.	For	ADOX	and	ADO	MD,	the	value	will	be
ADOX.ObjectName	and	ADOMD.ObjectName,	respectively.

Based	on	the	error	documentation	from	the	Source,	Number,	and	Description
properties	of	Error	objects,	you	can	write	code	that	will	handle	the	error
appropriately.

The	Source	property	is	read-only	for	Error	objects.

Source	Property	(ADO	Record)

				 				

Indicates	the	entity	represented	by	the	Record	object.

Settings	and	Return	Values

Sets	or	returns	a	Variant	value	that	indicates	the	entity	represented	by	the
Record.

Remarks

The	Source	property	returns	the	Source	argument	of	the	Record	object	Open
method.	It	can	contain	an	absolute	or	relative	URL	string.	An	absolute	URL	can
be	used	without	setting	the	ActiveConnection	property	to	directly	open	the
Record	object.	An	implicit	Connection	object	is	created	in	this	case.

The	Source	property	can	also	contain	a	reference	to	an	already	open	Recordset,
which	opens	a	Record	object	representing	the	current	row	in	the	Recordset.

If	the	ActiveConnection	property	is	also	set,	then	the	Source	property	must
point	to	some	object	that	exists	within	the	scope	of	that	connection.	For	example,
in	tree-structured	namespaces,	if	the	Source	property	contains	an	absolute	URL,
it	must	point	to	a	node	that	exists	inside	the	scope	of	the	node	identified	by	the
URL	in	the	connection	string.	If	the	Source	property	contains	a	relative	URL,

then	it	is	validated	within	the	context	set	by	the	ActiveConnection	property.

The	Source	property	is	read/write	while	the	Record	object	is	closed,	and	is	read-
only	while	the	Record	object	is	open.

Source	Property	(ADO	Recordset)

				 				

Indicates	the	data	source	for	a	Recordset	object.

Settings	and	Return	Values

Sets	a	String	value	or	Command	object	reference;	returns	only	a	String	value
that	indicates	the	source	of	the	Recordset.

Remarks

Use	the	Source	property	to	specify	a	data	source	for	a	Recordset	object	using
one	of	the	following:	a	Command	object	variable,	an	SQL	statement,	a	stored
procedure,	or	a	table	name.

If	you	set	the	Source	property	to	a	Command	object,	the	ActiveConnection
property	of	the	Recordset	object	will	inherit	the	value	of	the	ActiveConnection
property	for	the	specified	Command	object.	However,	reading	the	Source
property	does	not	return	a	Command	object;	instead,	it	returns	the
CommandText	property	of	the	Command	object	to	which	you	set	the	Source
property.

If	the	Source	property	is	an	SQL	statement,	a	stored	procedure,	or	a	table	name,
you	can	optimize	performance	by	passing	the	appropriate	Options	argument	with

the	Open	method	call.

The	Source	property	is	read/write	for	closed	Recordset	objects	and	read-only
for	open	Recordset	objects.

SQL	Property	(RDS)

				 				

Indicates	the	query	string	used	to	retrieve	the	Recordset.

You	can	set	the	SQL	property	at	design	time	in	the	RDS.DataControl	object's
OBJECT	tags,	or	at	run	time	in	scripting	code.

Syntax

Design	time:	<PARAM	NAME="SQL"	VALUE="QueryString">

Run	time:	DataControl.SQL	=	"QueryString"

Parameters

QueryString			A	String	value	that	contains	a	valid	SQL	data	request.

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Remarks

In	general,	this	is	an	SQL	statement	(using	the	dialect	of	the	database	server),
such	as	"Select	*	from	NewTitles".	To	ensure	that	records	are	matched	and
updated	accurately,	an	updatable	query	must	contain	a	field	other	than	a	Long

Binary	field	or	a	computed	field.

The	SQL	property	is	optional	if	a	custom	server-side	business	object	retrieves
the	data	for	the	client.

SQLState	Property

				 				

Indicates	the	SQL	state	for	a	given	Error	object.

Return	Value

Returns	a	five-character	String	value	that	follows	the	ANSI	SQL	standard	and
indicates	the	error	code.

Remarks

Use	the	SQLState	property	to	read	the	five-character	error	code	that	the
provider	returns	when	an	error	occurs	during	the	processing	of	an	SQL
statement.	For	example,	when	using	the	Microsoft	OLE	DB	Provider	for	ODBC
with	a	Microsoft	SQL	Server	database,	SQL	state	error	codes	originate	from
ODBC,	based	either	on	errors	specific	to	ODBC	or	on	errors	that	originate	from
Microsoft	SQL	Server,	and	are	then	mapped	to	ODBC	errors.	These	error	codes
are	documented	in	the	ANSI	SQL	standard,	but	may	be	implemented	differently
by	different	data	sources.

State	Property

				 				

Indicates	for	all	applicable	objects	whether	the	state	of	the	object	is	open	or
closed.

Indicates	for	all	applicable	objects	executing	an	asynchronous	method,	whether
the	current	state	of	the	object	is	connecting,	executing,	or	retrieving.

Return	Value

Returns	a	Long	value	that	can	be	an	ObjectStateEnum	value.	The	default	value
is	adStateClosed.

Remarks

You	can	use	the	State	property	to	determine	the	current	state	of	a	given	object	at
any	time.

The	object's	State	property	can	have	a	combination	of	values.	For	example,	if	a
statement	is	executing,	this	property	will	have	a	combined	value	of
adStateOpen	and	adStateExecuting.

The	State	property	is	read-only.

Status	Property	(ADO	Field)

				 				

Indicates	the	status	of	a	Field	object.

Return	Value

Returns	a	FieldStatusEnum	value.	The	default	value	is	adFieldOK.

Remarks

This	property	always	returns	adFieldOK	for	fields	of	a	Recordset	object.

Additions	and	deletions	to	the	Fields	collections	of	the	Record	object	are	cached
until	the	Update	method	is	called.	The	Status	property	enables	you	to	determine
which	fields	have	been	successfully	added	or	deleted.

To	enhance	performance,	schema	changes	are	cached	until	Update	is	called,	and
then	the	changes	are	made	in	a	batch	optimistic	update.	If	the	Update	method	is
not	called,	the	server	is	not	updated.	If	any	updates	fail	then	an	error	is	returned
and	the	Status	property	indicates	the	combined	values	of	the	operation	and	error
status	code.	For	example,	adFieldPendingInsert	OR
adFieldPermissionDenied.	The	Status	property	for	each	Field	can	be	used	to
determine	why	the	Field	was	not	added,	modified,	or	deleted.	Status	is	only
meaningfully	exposed	on	the	Record.Fields	collection	and	not	the

Recordset.Fields	collection.

Two	problems	can	arise	when	adding,	modifying,	or	deleting	a	Field.	If	the	user
deletes	a	Field,	it	is	marked	for	deletion	from	the	Fields	collection.	If	the
subsequent	Update	returns	an	error	because	the	user	tried	to	delete	a	Field	for
which	they	do	not	have	permission,	the	Field	will	have	a	status	of
adFieldPermissionDenied	OR	adFieldPendingDelete.	Calling	the
CancelUpdate	method	restores	original	values	and	sets	the	Status	to
adFieldOK.	Similarly,	the	Update	method	may	return	an	error	because	a	new
Field	was	added	and	given	an	inappropriate	value.	In	that	case	the	new	Field
will	be	in	the	Fields	collection	and	have	a	status	of	adFieldPendingInsert	and
perhaps	adFieldCantCreate.	You	can	supply	an	appropriate	value	for	the	new
Field	and	call	Update	again.	Note	that	calling	Resync	instead	requeries	the
provider.

Status	Property	(ADO	Recordset)

				 				

Indicates	the	status	of	the	current	record	with	respect	to	batch	updates	or	other
bulk	operations.

Return	Value

Returns	a	sum	of	one	or	more	RecordStatusEnum	values.

Remarks

Use	the	Status	property	to	see	what	changes	are	pending	for	records	modified
during	batch	updating.	You	can	also	use	the	Status	property	to	view	the	status	of
records	that	fail	during	bulk	operations,	such	as	when	you	call	the	Resync,
UpdateBatch,	or	CancelBatch	methods	on	a	Recordset	object,	or	set	the	Filter
property	on	a	Recordset	object	to	an	array	of	bookmarks.	With	this	property,
you	can	determine	how	a	given	record	failed	and	resolve	it	accordingly.

StayInSync	Property

				 				

Indicates,	in	a	hierarchical	Recordset	object,	whether	the	reference	to	the
underlying	child	records	(that	is,	the	chapter)	changes	when	the	parent	row
position	changes.

Settings	and	Return	Values

Sets	or	returns	a	Boolean	value.	The	default	value	is	True.	If	True,	the	chapter
will	be	updated	if	the	parent	Recordset	object	changes	row	position;	if	False,
the	chapter	will	continue	to	refer	to	data	in	the	previous	chapter	even	though	the
parent	Recordset	object	has	changed	row	position.

Remarks

This	property	applies	to	hierarchical	recordsets,	such	as	those	supported	by	the
Microsoft	Data	Shaping	Service	for	OLE	DB,	and	must	be	set	on	the	parent
Recordset	before	the	child	Recordset	is	retrieved.	This	property	simplifies
navigating	hierarchical	recordsets.

Type	Property

				 				

Indicates	the	operational	type	or	data	type	of	a	Parameter,	Field,	or	Property
object.

Settings	and	Return	Values

Sets	or	returns	a	DataTypeEnum	value.

Remarks

For	Parameter	objects,	the	Type	property	is	read/write.	For	new	Field	objects
that	have	been	appended	to	the	Fields	collection	of	a	Record,	Type	is	read/write
only	after	the	Value	property	for	the	Field	has	been	specified	and	the	data
provider	has	successfully	added	the	new	Field	by	calling	the	Update	method	of
the	Fields	collection.

For	all	other	objects,	the	Type	property	is	read-only.

Type	Property	(ADO	Stream)

				 				

Indicates	the	type	of	data	contained	in	the	Stream	(binary	or	text).

Settings	and	Return	Values

Sets	or	returns	a	StreamTypeEnum	value	that	specifies	the	type	of	data	contained
in	the	Stream	object.	The	default	value	is	adTypeText.	However,	if	binary	data
is	initially	written	to	a	new,	empty	Stream,	the	Type	will	be	changed	to
adTypeBinary.

Remarks

The	Type	property	is	read/write	only	when	the	current	position	is	at	the
beginning	of	the	Stream	(Position	is	0),	and	read-only	at	any	other	position.

UnderlyingValue	Property

				 				

Indicates	a	Field	object's	current	value	in	the	database.

Return	Value

Returns	a	Variant	value	that	indicates	the	value	of	the	Field.

Remarks

Use	the	UnderlyingValue	property	to	return	the	current	field	value	from	the
database.	The	field	value	in	the	UnderlyingValue	property	is	the	value	that	is
visible	to	your	transaction	and	may	be	the	result	of	a	recent	update	by	another
transaction.	This	may	differ	from	the	OriginalValue	property,	which	reflects	the
value	that	was	originally	returned	to	the	Recordset.

This	is	similar	to	using	the	Resync	method,	but	the	UnderlyingValue	property
returns	only	the	value	for	a	specific	field	from	the	current	record.	This	is	the
same	value	that	the	Resync	method	uses	to	replace	the	Value	property.

When	you	use	this	property	with	the	OriginalValue	property,	you	can	resolve
conflicts	that	arise	from	batch	updates.

Record

For	Record	objects,	this	property	will	be	empty	for	fields	added	before	Update	is
called.

URL	Property	(RDS)

				 				

Indicates	a	string	that	contains	a	relative	or	absolute	URL.

You	can	set	the	URL	property	at	design	time	in	the	DataControl	object's
OBJECT	tag,	or	at	run	time	in	scripting	code.

Syntax

Design	time:	<PARAM	NAME="URL"	VALUE="Server">

Run	time:	DataControl.URL="Server"

Parameters

Server			A	String	value	that	contains	a	valid	URL.

DataControl			An	object	variable	that	represents	a	DataControl	object.

Remarks

Typically,	the	URL	identifies	an	Active	Server	Page	(.asp)	file	that	can	produce
and	return	a	Recordset.	Therefore,	the	user	can	obtain	a	Recordset	without
having	to	invoke	the	server-side	DataFactory	object,	or	program	a	custom

business	object.

If	the	URL	property	has	been	set,	SubmitChanges	will	submit	changes	to	the
location	specified	by	the	URL.

Value	Property

				 				

Indicates	the	value	assigned	to	a	Field,	Parameter,	or	Property	object.

Settings	and	Return	Values

Sets	or	returns	a	Variant	value	that	indicates	the	value	of	the	object.	Default
value	depends	on	the	Type	property.

Remarks

Use	the	Value	property	to	set	or	return	data	from	Field	objects,	to	set	or	return
parameter	values	with	Parameter	objects,	or	to	set	or	return	property	settings
with	Property	objects.	Whether	the	Value	property	is	read/write	or	read-only
depends	upon	numerous	factors—see	the	respective	object	topics	for	more
information.

ADO	allows	setting	and	returning	long	binary	data	with	the	Value	property.

Notes			For	Parameter	objects,	ADO	reads	the	Value	property	only	once	from
the	provider.	If	a	command	contains	a	Parameter	whose	Value	property	is
empty,	and	you	create	a	Recordset	from	the	command,	ensure	that	you	first	close
the	Recordset	before	retrieving	the	Value	property.	Otherwise,	for	some
providers,	the	Value	property	may	be	empty,	and	won't	contain	the	correct	value.

For	new	Field	objects	that	have	been	appended	to	the	Fields	collection	of	a
Record	object,	the	Value	property	must	be	set	before	any	other	Field	properties
can	be	specified.	First,	a	specific	value	for	the	Value	property	must	have	been
assigned	and	Update	on	the	Fields	collection	called.	Then,	other	properties	such
as	Type	or	Attributes	can	be	accessed.

Version	Property

				 				

Indicates	the	ADO	version	number.

Return	Value

Returns	a	String	value	that	indicates	the	version.

Remarks

Use	the	Version	property	to	return	the	version	number	of	the	ADO
implementation.

The	version	of	the	provider	will	be	available	as	a	dynamic	property	in	the
Properties	collection.

ADO	Dynamic	Properties

Dynamic	properties	can	be	added	to	the	Properties	collections	of	the	Connection,
Command,	or	Recordset	objects.	The	source	for	these	properties	is	either	a	data
provider,	such	as	the	OLE	DB	Provider	for	SQL	Server,	or	a	service	provider,
such	as	the	Microsoft	Cursor	Service	for	OLE	DB.	Refer	to	the	appropriate	data
provider	or	service	provider	documentation	for	more	information	about	a
specific	dynamic	property.

The	ADO	Dynamic	Property	Index	provides	a	cross-reference	between	the	ADO
and	OLE	DB	names	for	each	standard	OLE	DB	provider	dynamic	property.

The	following	dynamic	properties	are	of	special	interest,	and	are	also
documented	in	the	sources	mentioned	above.	Special	functionality	with	ADO	is
documented	in	the	ADO	help	topics	listed	below.

ADO	Dynamic	Property	Summary

Property Description

Optimize Specifies	whether	an	index	should	be
created	on	this	field.

Prompt
Specifies	whether	the	OLE	DB
provider	should	prompt	the	user	for
initialization	information.

Reshape	Name Specifies	a	name	for	the	Recordset
object.

Resync	Command

Specifies	a	user-supplied	command
string	that	the	Resync	method	issues	to
refresh	the	data	in	the	table	named	in

the	Unique	Table	dynamic	property.

Unique	Table,	Unique	Schema,	Unique
Catalog

Unique	Table	—	specifies	the	name	of
the	base	table	upon	which	updates,
insertions,	and	deletions	are	allowed.

Unique	Schema	—	specifies	the
schema,	or	name	of	the	owner	of	the
table.

Unique	Catalog	—	specifies	the
catalog,	or	name	of	the	database
containing	the	table.

Update	Resync

Specifies	whether	the	UpdateBatch
method	is	followed	by	an	implicit
Resync	method	operation,	and	if	so,	the
scope	of	that	operation.

ADO	Dynamic	Property	Index

Data	providers,	service	providers,	and	service	components	can	add	dynamic
properties	to	the	Properties	collections	of	the	unopened	Connection	and
Recordset	objects.	A	given	provider	may	also	insert	additional	properties	when
these	objects	are	opened.	Some	of	these	properties	are	listed	in	the	ADO
Dynamic	Properties	section.	More	are	listed	under	the	specific	providers	in	the
Using	Providers	with	ADO	section.

The	table	below	is	a	cross-index	of	the	ADO	and	OLE	DB	names	for	each
standard	OLE	DB	provider	dynamic	property.	Your	providers	may	add	more
properties	than	listed	here.	For	the	specific	information	about	provider-specific
dynamic	properties,	see	your	provider	documentation.

The	OLE	DB	Programmer's	Reference	refers	to	an	ADO	property	name	by	the
term,	"Description."	You	can	find	more	information	about	these	standard
properties	in	the	OLE	DB	Programmer's	Reference.	Search	for	the	OLE	DB
property	name	in	the	Index	or	see	the	following	topics:

Appendix	C:	OLE	DB	Properties
Supported	Properties	of	the	Cursor	Service

Supported	Properties	of	the	Persistence	Provider

Supported	OLE	DB	Properties	of	the	Remoting	Provider

Remarks

Note	numbers	used	in	the	cross-index:

(1)	This	property	is	a	Boolean	flag	indicating	whether	the	named	interface

mk:@MSITStore:OLEDB.chm::/htm/oledbOverview_of_property_tables.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbprovSupported_Properties_of_the_Cursor_Service.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbprovSupported_Properties_of_the_Persistence_Provider.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbprovSupported_OLE_DB_Properties_of_the_Remoting_Provider.htm

should	be	used.	The	equivalent	OLE	DB	property	name	is	listed	if	it	exists.

(2)	The	"Bookmarkable"	ADO	property	is	generated	internally	for	backwards
compatibility,	and	is	mapped	to	the	OLE	DB	property,
DBPROP_IROWSETLOCATE.	This	is	the	same	property	that	corresponds	to
the	ADO	property,	IRowsetLocate.

(3)	The	ADO	property	name,	"Hidden	Columns",	is	named	differently	than	the
OLE	DB	property	name	Description,	"Hidden	Columns	Count."

(4)	Does	not	apply.

Connection	Dynamic	Properties

ADO	Property	Name OLE	DB	Property	Name
Active	Sessions DBPROP_ACTIVESESSIONS
Asynchable	Abort DBPROP_ASYNCTXNABORT
Asynchable	Commit DBPROP_ASYNCTNXCOMMIT
Autocommit	Isolation
Levels DBPROP_SESS_AUTOCOMMITISOLEVELS

Catalog	Location DBPROP_CATALOGLOCATION
Catalog	Term DBPROP_CATALOGTERM
Column	Definition DBPROP_COLUMNDEFINITION
Connect	Timeout DBPROP_INIT_TIMEOUT
Current	Catalog DBPROP_CURRENTCATALOG
Data	Source DBPROP_INIT_DATASOURCE
Data	Source	Name DBPROP_DATASOURCENAME
Data	Source	Object
Threading	Model DBPROP_DSOTHREADMODEL

DBMS	Name DBPROP_DBMSNAME
DBMS	Version DBPROP_DBMSVER
Extended	Properties DBPROP_INIT_PROVIDERSTRING
GROUP	BY	Support DBPROP_GROUPBY
Heterogeneous	Table
Support DBPROP_HETEROGENEOUSTABLES

Identifier	Case
Sensitivity

DBPROP_IDENTIFIERCASE

Initial	Catalog DBPROP_INIT_CATALOG
Isolation	Levels DBPROP_SUPPORTEDTXNISOLEVELS
Isolation	Retention DBPROP_SUPPORTEDTXNISORETAIN
Locale	Identifier DBPROP_INIT_LCID
Location DBPROP_INIT_LOCATION
Maximum	Index	Size DBPROP_MAXINDEXSIZE
Maximum	Row	Size DBPROP_MAXROWSIZE
Maximum	Row	Size
Includes	BLOB DBPROP_MAXROWSIZEINCLUDESBLOB

Maximum	Tables	in
SELECT DBPROP_MAXTABLESINSELECT

Mode DBPROP_INIT_MODE
Multiple	Parameter
Sets DBPROP_MULTIPLEPARAMSETS

Multiple	Results DBPROP_MULTIPLERESULTS
Multiple	Storage
Objects DBPROP_MULTIPLESTORAGEOBJECTS

Multi-Table	Update DBPROP_MULTITABLEUPDATE
NULL	Collation	Order DBPROP_NULLCOLLATION
NULL	Concatenation
Behavior DBPROP_CONCATNULLBEHAVIOR

OLE	DB	Services DBPROP_INIT_OLEDBSERVICES
OLE	DB	Version DBPROP_PROVIDEROLEDBVER
OLE	Object	Support DBPROP_OLEOBJECTS
Open	Rowset	Support DBPROP_OPENROWSETSUPPORT
ORDER	BY	Columns
in	Select	List DBPROP_ORDERBYCOLUMNSINSELECT

Output	Parameter
Availability DBPROP_OUTPUTPARAMETERAVAILABILITY

Pass	By	Ref	Accessors DBPROP_BYREFACCESSORS
Password DBPROP_AUTH_PASSWORD
Persist	Security	Info DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO
Persistent	ID	Type DBPROP_PERSISTENTIDTYPE
Prepare	Abort
Behavior DBPROP_PREPAREABORTBEHAVIOR

Prepare	Commit
Behavior

DBPROP_PREPARECOMMITBEHAVIOR

Procedure	Term DBPROP_PROCEDURETERM
Prompt DBPROP_INIT_PROMPT
Provider	Friendly
Name DBPROP_PROVIDERFRIENDLYNAME

Provider	Name DBPROP_PROVIDERFILENAME
Provider	Version DBPROP_PROVIDERVER
Read-Only	Data
Source DBPROP_DATASOURCEREADONLY

Rowset	Conversions
on	Command DBPROP_ROWSETCONVERSIONSONCOMMAND

Schema	Term DBPROP_SCHEMATERM
Schema	Usage DBPROP_SCHEMAUSAGE
SQL	Support DBPROP_SQLSUPPORT
Structured	Storage DBPROP_STRUCTUREDSTORAGE
Subquery	Support DBPROP_SUBQUERIES
Table	Term DBPROP_TABLETERM
Transaction	DDL DBPROP_SUPPORTEDTXNDDL
User	ID DBPROP_AUTH_USERID
User	Name DBPROP_USERNAME
Window	Handle DBPROP_INIT_HWND

Recordset	Dynamic	Properties

ADO	Property	Name OLE	DB	Property	Name
IAccessor DBPROP_IACCESSOR	(1)
IChapteredRowset (1)
IColumnsInfo DBPROP_ICOLUMNSINFO	(1)
IColumnsRowset DBPROP_ICOLUMNSROWSET	(1)
IConnectionPointContainerDBPROP_ICONNECTIONPOINTCONTAINER	(1)
IConvertType (1)
ILockBytes DBPROP_ILOCKBYTES	(1)
IRowset DBPROP_IROWSET	(1)

IDBAsynchStatus DBPROP_IDBASYNCHSTATUS	(1)
IParentRowset (1)
IRowsetChange DBPROP_IROWSETCHANGE	(1)
IRowsetExactScroll (1)
IRowsetFind DBPROP_IROWSETFIND	(1)
IRowsetIdentity DBPROP_IROWSETIDENTITY	(1)
IRowsetInfo DBPROP_IROWSETINFO	(1)
IRowsetLocate DBPROP_IROWSETLOCATE	(1)
IRowsetRefresh DBPROP_IROWSETREFRESH	(1)
IRowsetResynch (1)
IRowsetScroll DBPROP_IROWSETSCROLL	(1)
IRowsetUpdate DBPROP_IROWSETUPDATE	(1)
IRowsetView DBPROP_IROWSETVIEW	(1)
IRowsetIndex DBPROP_IROWSETINDEX	(1)
ISequentialStream DBPROP_ISEQUENTIALSTREAM	(1)
IStorage DBPROP_ISTORAGE	(1)
IStream DBPROP_ISTREAM	(1)
ISupportErrorInfo DBPROP_ISUPPORTERRORINFO	(1)
Access	Order DBPROP_ACCESSORDER
Append-Only	Rowset DBPROP_APPENDONLY
Asynchronous	Rowset
Processing DBPROP_ROWSET_ASYNCH

Auto	Recalc DBPROP_ADC_AUTORECALC
Background	Fetch	Size DBPROP_ASYNCHFETCHSIZE
Background	Thread
Priority DBPROP_ASYNCHTHREADPRIORITY

Batch	Size DBPROP_ADC_BATCHSIZE
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE	(2)
Bookmarks	Ordered DBPROP_ORDEREDBOOKMARKS
Cache	Child	Rows DBPROP_ADC_CACHECHILDROWS
Cache	Deferred	Columns DBPROP_CACHEDEFERRED
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS

Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Column	Writable DBPROP_MAYWRITECOLUMN
Command	Time	Out DBPROP_COMMANDTIMEOUT
Cursor	Engine	Version DBPROP_ADC_CEVER
Defer	Column DBPROP_DEFERRED
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Filter	Operations DBPROP_FILTERCOMPAREOPS
Find	Operations DBPROP_FINDCOMPAREOPS
Hidden	Columns	(Count) DBPROP_HIDDENCOLUMNS	(3)
Hold	Rows DBPROP_CANHOLDROWS
Immobile	Rows DBPROP_IMMOBILEROWS
Initial	Fetch	Size DBPROP_ASYNCHPREFETCHSIZE
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Maintain	Change	Status DBPROP_ADC_MAINTAINCHANGESTATUS
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Memory	Usage DBPROP_MEMORYUSAGE
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Others'	Changes	Visible DBPROP_OTHERUPDATEDELETE
Others'	Inserts	Visible DBPROP_OTHERINSERT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Private1 (4)
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS

Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Reshape	Name DBPROP_ADC_RESHAPENAME
Resync	Command DBPROP_ADC_CUSTOMRESYNCH
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Server	Cursor DBPROP_SERVERCURSOR
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIPPED
Strong	Row	Identity DBPROP_STRONGIDENTITY
Unique	Catalog DBPROP_ADC_UNIQUECATALOG
Unique	Rows DBPROP_UNIQUEROWS
Unique	Schema DBPROP_ADC_UNIQUESCHEMA
Unique	Table DBPROP_ADC_UNIQUETABLE
Updatability DBPROP_UPDATABILITY
Update	Criteria DBPROP_ADC_UPDATECRITERIA
Update	Resync DBPROP_ADC_UPDATERESYNC

Use	Bookmarks DBPROP_BOOKMARKS

Optimize	Property—Dynamic	(ADO)

				 				

Specifies	whether	an	index	should	be	created	on	a	field.

Settings	and	Return	Values

Sets	or	returns	a	Boolean	value	that	indicates	whether	an	index	should	be
created.

Remarks

An	index	can	improve	the	performance	of	operations	that	find	or	sort	values	in	a
Recordset.	The	index	is	internal	to	ADO—you	cannot	explicitly	access	or	use	it
in	your	application.

To	create	an	index	on	a	field,	set	the	Optimize	property	to	True.	To	delete	the
index,	set	this	property	to	False.

Optimize	is	a	dynamic	property	appended	to	the	Field	object	Properties
collection	when	the	CursorLocation	property	is	set	to	adUseClient.

Usage

Dim	rs	As	New	Recordset

Dim	fld	As	Field

rs.CursorLocation	=	adUseClient						'Enable	index	creation

rs.Fields.Append	"Field1",	adChar,	35,	adFldIsNullable

rs.Open

Set	fld	=	rs.Fields(0)

fld.Properties("Optimize")	=	True				'Create	an	index

fld.Properties("Optimize")	=	False			'Delete	an	index

Prompt	Property—Dynamic	(ADO)

				 				

Specifies	whether	the	OLE	DB	provider	should	prompt	the	user	for	initialization
information.

Settings	and	Return	Values

Sets	and	returns	a	ConnectPromptEnum	value.

Remarks

Prompt	is	a	dynamic	property,	which	may	be	appended	to	the	Connection
object's	Properties	collection	by	the	OLE	DB	provider.	To	prompt	for
initialization	information,	OLE	DB	providers	will	typically	display	a	dialog	box
to	the	user.

Dynamic	properties	of	a	Connection	object	are	lost	when	the	Connection	is
closed.	The	Prompt	property	must	be	reset	before	re-opening	the	Connection	to
use	a	value	other	than	the	default.

Note			Do	not	specify	that	the	provider	should	prompt	the	user	in	scenarios	in
which	the	user	will	not	be	able	to	respond	to	the	dialog	box.	For	example,	the
user	will	not	be	able	to	respond	if	the	application	is	running	on	a	server	system
instead	of	on	the	user's	client,	or	if	the	application	is	running	on	a	system	with	no

user	logged	on.	In	these	cases,	the	application	will	wait	indefinitely	for	a
response	and	seem	to	lock	up.

Usage

Set	cn	=	New	Connection

cn.Provider	=	"SQLOLEDB"

cn.Properties("Prompt")	=	adPromptNever				'	do	not	prompt	the	user

Reshape	Name	Property—Dynamic	(ADO)

				 				

Specifies	a	name	for	the	Recordset	object.

Return	Values

Returns	a	String	value	that	is	the	name	of	the	Recordset.

Remarks

Names	persist	for	the	duration	of	the	connection	or	until	the	Recordset	is	closed.

The	Reshape	Name	property	is	primarily	intended	for	use	with	the	re-shaping
feature	of	the	Microsoft	Data	Shaping	Service	for	OLE	DB	service	provider.
Names	must	be	unique	in	order	to	participate	in	re-shaping.

This	property	is	read-only,	but	can	be	set	indirectly	when	a	Recordset	is	created.
For	example,	if	a	clause	of	a	SHAPE	command	creates	a	Recordset	and	gives	it
an	alias	name	with	the	"AS"	keyword,	then	the	alias	is	assigned	to	the	Reshape
Name	property.	If	no	alias	is	declared,	or	the	alias	conflicts	with	an	existing
name,	then	the	Reshape	Name	property	is	assigned	a	name	generated	by	the
Data	Shaping	Service.

Use	the	Reshape	Name	property	when	you	want	to	refer	to	a	Recordset	in	a

SHAPE	command,	or	when	you	don't	know	its	name	because	it	was	generated
by	Data	Shaping	Service.	In	that	case,	you	could	generate	a	SHAPE	command
by	concatenating	the	command	around	the	string	returned	by	the	Reshape	Name
property.

Reshape	Name	is	a	dynamic	property	appended	to	the	Recordset	object's
Properties	collection	when	the	CursorLocation	property	is	set	to	adUseClient.

Resync	Command	Property—Dynamic	(ADO)

				 				

Specifies	a	user-supplied	command	string	that	the	Resync	method	issues	to
refresh	the	data	in	the	table	named	in	the	Unique	Table	dynamic	property.

Settings	and	Return	Values

Sets	or	returns	a	String	value	which	is	a	command	string.

Remarks

The	Recordset	object	is	the	result	of	a	JOIN	operation	executed	on	multiple	base
tables.	The	rows	affected	depend	on	the	AffectRecords	parameter	of	the	Resync
method.	The	standard	Resync	method	is	executed	if	the	Unique	Table	and
Resync	Command	properties	are	not	set.

The	command	string	of	the	Resync	Command	property	is	a	parameterized
command	or	stored	procedure	that	uniquely	identifies	the	row	being	refreshed,
and	returns	a	single	row	containing	the	same	number	and	order	of	columns	as	the
row	to	be	refreshed.	The	command	string	contains	a	parameter	for	each	primary
key	column	in	the	Unique	Table;	otherwise,	a	run-time	error	is	returned.	The
parameters	are	automatically	filled	in	with	primary	key	values	from	the	row	to
be	refreshed.

Here	are	two	examples	based	on	SQL:

1)	The	Recordset	is	defined	by	a	command:

SELECT	*	FROM	Customers	JOIN	Orders	ON	

				Customers.CustomerID	=	Orders.CustomerID

				WHERE	city	=	‘Seattle’

				ORDER	BY	CustomerID

The	Resync	Command	property	is	set	to:

"SELECT	*	FROM	

				(SELECT	*	FROM	Customers	JOIN	Orders	

				ON	Customers.CustomerID	=	Orders.CustomerID

				city	=	‘Seattle’	ORDER	BY	CustomerID)

WHERE	Orders.OrderID	=	?"

The	Unique	Table	is	Orders	and	its	primary	key,	OrderID,	is	parameterized.	The
sub-select	provides	a	simple	way	to	programmatically	ensure	that	the	same
number	and	order	of	columns	are	returned	as	by	the	original	command.

2)	The	Recordset	is	defined	by	a	stored	procedure:

CREATE	PROC	Custorders	@CustomerID	char(5)	AS	

SELECT	*	FROM	Customers	JOIN	Orders	ON	

Customers.CustomerID	=	Orders.CustomerID	

WHERE	Customers.CustomerID	=	@CustomerID

The	Resync	method	should	execute	the	following	stored	procedure:

CREATE	PROC	CustordersResync	@ordid	int	AS	

SELECT	*	FROM	Customers	JOIN	Orders	ON	

Customers.CustomerID	=	Orders.CustomerID

WHERE	Orders.ordid		=	@ordid

The	Resync	Command	property	is	set	to:

"{call	CustordersResync	(?)}"

Once	again,	the	Unique	Table	is	Orders	and	its	primary	key,	OrderID,	is
parameterized.

Resync	Command	is	a	dynamic	property	appended	to	the	Recordset	object

Properties	collection	when	the	CursorLocation	property	is	set	to	adUseClient.

Unique	Table,	Unique	Schema,	Unique	Catalog
Properties—Dynamic	(ADO)

				 				

Enables	you	to	closely	control	modifications	to	a	particular	base	table	in	a
Recordset	that	was	formed	by	a	JOIN	operation	on	multiple	base	tables.

Unique	Table	specifies	the	name	of	the	base	table	upon	which	updates,
insertions,	and	deletions	are	allowed.

Unique	Schema	specifies	the	schema,	or	name	of	the	owner	of	the	table.

Unique	Catalog	specifies	the	catalog,	or	name	of	the	database	containing
the	table.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	is	the	name	of	a	table,	schema,	or	catalog.

Remarks

The	desired	base	table	is	uniquely	identified	by	its	catalog,	schema,	and	table
names.	When	the	Unique	Table	property	is	set,	the	values	of	the	Unique
Schema	or	Unique	Catalog	properties	are	used	to	find	the	base	table.	It	is

intended,	but	not	required,	that	either	or	both	the	Unique	Schema	and	Unique
Catalog	properties	be	set	before	the	Unique	Table	property	is	set.

The	primary	key	of	the	Unique	Table	is	treated	as	the	primary	key	of	the	entire
Recordset.	This	is	the	key	that	is	used	for	any	method	requiring	a	primary	key.

While	Unique	Table	is	set,	the	Delete	method	affects	only	the	named	table.	The
AddNew,	Resync,	Update,	and	UpdateBatch	methods	affect	any	appropriate
underlying	base	tables	of	the	Recordset.

Unique	Table	must	be	specified	before	doing	any	custom	resynchronizations.	If
Unique	Table	has	not	been	specified,	the	Resync	Command	property	will	have
no	effect.

A	run-time	error	results	if	a	unique	base	table	cannot	be	found.

These	dynamic	properties	are	all	appended	to	the	Recordset	object	Properties
collection	when	the	CursorLocation	property	is	set	to	adUseClient.

Update	Resync	Property—Dynamic	(ADO)

				 				

Specifies	whether	the	UpdateBatch	method	is	followed	by	an	implicit	Resync
method	operation,	and	if	so,	the	scope	of	that	operation.

Settings	and	Return	Values

Sets	or	returns	one	or	more	of	the	ADCPROP_UPDATERESYNC_ENUM
values.

Remarks

This	property	is	only	applicable	if	the	Unique	Table	dynamic	property	is	set.

The	following	combinations	of	ADCPROP_UPDATERESYNC_ENUM
values	can	be	used	simultaneously:

adResyncAutoIncrement	and	adResyncConflicts

adResyncAutoIncrement	and	adResyncInserts

adResyncAll,	adResyncUpdates,	adResyncInserts,	and
adResyncConflicts

The	constant	adResyncConflicts	stores	the	resync	values	as	underlying	values,
but	does	not	override	pending	changes.

Update	Resync	is	a	dynamic	property	appended	to	the	Recordset	object
Properties	collection	when	the	CursorLocation	property	is	set	to	adUseClient.

ADO	Methods

ADO	Method	Summary

Method Description

AddNew Creates	a	new	record	for	an	updatable	Recordset
object.

Append
Appends	an	object	to	a	collection.	If	the	collection	is
Fields,	a	new	Field	object	may	be	created	before	it	is
appended	to	the	collection.

AppendChunk Appends	data	to	a	large	text	or	binary	data	Field,	or	to	a
Parameter	object.

BeginTrans,
CommitTrans,	and
RollbackTrans

Manages	transaction	processing	within	a	Connection
object	as	follows:

BeginTrans	—	Begins	a	new	transaction.
CommitTrans	—	Saves	any	changes	and	ends	the
current	transaction.	It	may	also	start	a	new	transaction.
RollbackTrans	—	Cancels	any	changes	and	ends	the
current	transaction.	It	may	also	start	a	new	transaction.

Cancel	(ADO) Cancels	execution	of	a	pending,	asynchronous	method
call.

Cancel	(RDS) Cancels	execution	of	a	pending,	asynchronous	method
call.

CancelBatch Cancels	a	pending	batch	update.

CancelUpdate	(ADO)
Cancels	any	changes	made	to	the	current	or	new	row	of
a	Recordset	object,	or	the	Fields	collection	of	a

Record	object,	before	calling	the	Update	method.

CancelUpdate	(RDS) Cancels	any	changes	made	to	the	current	or	new	row	of
a	Recordset	object.

Clear Removes	all	the	Error	objects	from	the	Errors
collection.

Clone
Creates	a	duplicate	Recordset	object	from	an	existing
Recordset	object.	Optionally,	specifies	that	the	clone	be
read-only.

Close Closes	an	open	object	and	any	dependent	objects.

CompareBookmarks Compares	two	bookmarks	and	returns	an	indication	of
their	relative	values.

ConvertToString	(RDS) Converts	a	Recordset	to	a	MIME	string	that	represents
the	recordset	data.

CopyRecord Copies	a	file	or	directory,	and	its	contents,	to	another
location.

CopyTo
Copies	the	specified	number	of	characters	or	bytes
(depending	on	Type)	in	the	Stream	to	another	Stream
object.

CreateObject	(RDS) Creates	the	proxy	for	the	target	business	object	and
returns	a	pointer	to	it.

CreateParameter Creates	a	new	Parameter	object	with	the	specified
properties.

CreateRecordset	(RDS) Creates	an	empty,	disconnected	Recordset.
Delete	(ADO
Parameters	Collection) Deletes	an	object	from	the	Parameters	collection.

Delete	(ADO	Fields
Collection) Deletes	an	object	from	the	Fields	collection.

Delete	(ADO
Recordset) Deletes	the	current	record	or	a	group	of	records.

DeleteRecord Deletes	a	file	or	directory,	and	all	its	subdirectories.
Execute	(ADO
Command)

Executes	the	query,	SQL	statement,	or	stored	procedure
specified	in	the	CommandText	property.

Execute	(ADO
Connection)

Executes	the	specified	query,	SQL	statement,	stored
procedure,	or	provider-specific	text.

Find Searches	a	Recordset	for	the	row	that	satisfies	the
specified	criteria.

Flush Forces	the	contents	of	the	Stream	remaining	in	the
ADO	buffer	to	the	underlying	object	with	which	the
Stream	is	associated.

GetChildren
Returns	a	Recordset	whose	rows	represent	the	files	and
subdirectories	in	the	directory	represented	by	this
Record.

GetChunk Returns	all,	or	a	portion	of,	the	contents	of	a	large	text
or	binary	data	Field	object.

GetRows Retrieves	multiple	records	of	a	Recordset	object	into	an
array.

GetString Returns	the	Recordset	as	a	string.
LoadFromFile Loads	the	contents	of	an	existing	file	into	a	Stream.

Move Moves	the	position	of	the	current	record	in	a	Recordset
object.

MoveFirst,	MoveLast,
MoveNext,	and
MovePrevious	(ADO)

Moves	to	the	first,	last,	next,	or	previous	record	in	a
specified	Recordset	object	and	makes	that	record	the
current	record.

MoveFirst,	MoveLast,
MoveNext,
MovePrevious	(RDS)

Moves	to	the	first,	last,	next,	or	previous	record	in	a
specified	Recordset	object.

MoveRecord Moves	a	file,	or	a	directory	and	its	contents,	to	another
location.

NextRecordset Clears	the	current	Recordset	object	and	returns	the	next
Recordset	by	advancing	through	a	series	of	commands.

Open	(ADO
Connection) Opens	a	connection	to	a	data	source.

Open	(ADO	Record) Opens	an	existing	Record	object,	or	creates	a	new	file
or	directory.

Open	(ADO	Recordset) Opens	a	cursor.

Open	(ADO	Stream) Opens	a	Stream	object	to	manipulate	streams	of	binary
or	text	data.

OpenSchema Obtains	database	schema	information	from	the	provider.
Query	(RDS) Uses	a	valid	SQL	query	string	to	return	a	Recordset.
Read Reads	a	specified	number	of	bytes	from	a	Stream

object.

ReadText Reads	a	specified	number	of	characters	from	a	text

Stream	object.

Refresh	(ADO) Updates	the	objects	in	a	collection	to	reflect	objects
available	from,	and	specific	to,	the	provider.

Refresh	(RDS) Requeries	the	data	source	specified	in	the	Connect
property	and	updates	the	query	results.

Requery Updates	the	data	in	a	Recordset	object	by	re-executing
the	query	on	which	the	object	is	based.

Reset	(RDS) Executes	the	sort	or	filter	on	a	client-side	Recordset,
based	on	the	specified	sort	and	filter	properties.

Resync
Refreshes	the	data	in	the	current	Recordset	object,	or
Fields	collection	of	a	Record	object,	from	the
underlying	database.

Save Saves	the	Recordset	in	a	file	or	Stream	object.
SaveToFile Saves	the	binary	contents	of	a	Stream	to	a	file.

Seek
Searches	the	index	of	a	Recordset	to	quickly	locate	the
row	that	matches	the	specified	values,	and	changes	the
current	row	position	to	that	row.

SetEOS Sets	the	position	that	is	the	end	of	the	stream.
SkipLine Skips	one	entire	line	when	reading	a	text	stream.

SubmitChanges	(RDS)
Submits	pending	changes	of	the	locally	cached	and
updatable	Recordset	to	the	data	source	specified	in	the
Connect	property.

Supports Determines	whether	a	specified	Recordset	object
supports	a	particular	type	of	functionality.

Update
Saves	any	changes	you	make	to	the	current	row	of	a
Recordset	object,	or	the	Fields	collection	of	a	Record
object.

UpdateBatch Writes	all	pending	batch	updates	to	disk.
Write Writes	binary	data	to	a	Stream	object.
WriteText Writes	a	specified	text	string	to	a	Stream	object.

AddNew	Method

				 				

Creates	a	new	record	for	an	updatable	Recordset	object.

Syntax

recordset.AddNew	FieldList,	Values

Parameters

recordset			A	Recordset	object.

FieldList			Optional.	A	single	name,	or	an	array	of	names	or	ordinal	positions	of
the	fields	in	the	new	record.

Values			Optional.	A	single	value,	or	an	array	of	values	for	the	fields	in	the	new
record.	If	Fieldlist	is	an	array,	Values	must	also	be	an	array	with	the	same
number	of	members;	otherwise,	an	error	occurs.	The	order	of	field	names	must
match	the	order	of	field	values	in	each	array.

Remarks

Use	the	AddNew	method	to	create	and	initialize	a	new	record.	Use	the	Supports
method	with	adAddNew	(a	CursorOptionEnum	value)	to	verify	whether	you	can

add	records	to	the	current	Recordset	object.

After	you	call	the	AddNew	method,	the	new	record	becomes	the	current	record
and	remains	current	after	you	call	the	Update	method.	If	the	Recordset	object
does	not	support	bookmarks,	you	may	not	be	able	to	access	the	new	record	once
you	move	to	another	record.	Depending	on	your	cursor	type,	you	may	need	to
call	the	Requery	method	to	make	the	new	record	accessible.

If	you	call	AddNew	while	editing	the	current	record	or	while	adding	a	new
record,	ADO	calls	the	Update	method	to	save	any	changes	and	then	creates	the
new	record.

The	behavior	of	the	AddNew	method	depends	on	the	updating	mode	of	the
Recordset	object	and	whether	you	pass	the	Fieldlist	and	Values	arguments.

In	immediate	update	mode	(in	which	the	provider	writes	changes	to	the
underlying	data	source	once	you	call	the	Update	method),	calling	the	AddNew
method	without	arguments	sets	the	EditMode	property	to	adEditAdd	(an
EditModeEnum	value).	The	provider	caches	any	field	value	changes	locally.
Calling	the	Update	method	posts	the	new	record	to	the	database	and	resets	the
EditMode	property	to	adEditNone	(an	EditModeEnum	value).	If	you	pass	the
Fieldlist	and	Values	arguments,	ADO	immediately	posts	the	new	record	to	the
database	(no	Update	call	is	necessary);	the	EditMode	property	value	does	not
change	(adEditNone).

In	batch	update	mode	(in	which	the	provider	caches	multiple	changes	and	writes
them	to	the	underlying	data	source	only	when	you	call	the	UpdateBatch
method),	calling	the	AddNew	method	without	arguments	sets	the	EditMode
property	to	adEditAdd.	The	provider	caches	any	field	value	changes	locally.
Calling	the	Update	method	adds	the	new	record	to	the	current	Recordset	and
resets	the	EditMode	property	to	adEditNone,	but	the	provider	does	not	post	the
changes	to	the	underlying	database	until	you	call	the	UpdateBatch	method.	If
you	pass	the	Fieldlist	and	Values	arguments,	ADO	sends	the	new	record	to	the
provider	for	storage	in	a	cache;	you	need	to	call	the	UpdateBatch	method	to
post	the	new	record	to	the	underlying	database.

If	the	Unique	Table	dynamic	property	is	set,	and	the	Recordset	is	the	result	of
executing	a	JOIN	operation	on	multiple	tables,	then	the	AddNew	method	can
insert	fields	only	into	the	table	named	in	the	Unique	Table	property.

Append	Method

				 				

Appends	an	object	to	a	collection.	If	the	collection	is	Fields,	a	new	Field	object
may	be	created	before	it	is	appended	to	the	collection.

Syntax

collection.Append	object

fields.Append	Name,	Type,	DefinedSize,	Attrib,	FieldValue

Parameters

collection			A	collection	object.

fields			A	Fields	collection.

object			An	object	variable	that	represents	the	object	to	be	appended.

Name			A	String	value	that	contains	the	name	of	the	new	Field	object,	and	must
not	be	the	same	name	as	any	other	object	in	fields.

Type			A	DataTypeEnum	value,	whose	default	value	is	adEmpty,	that	specifies
the	data	type	of	the	new	field.	The	following	data	types	are	not	supported	by
ADO,	and	should	not	be	used	when	appending	new	fields	to	a	Recordset:

adIDispatch,	adIUnknown,	adVariant.

DefinedSize			Optional.	A	Long	value	that	represents	the	defined	size,	in
characters	or	bytes,	of	the	new	field.	The	default	value	for	this	parameter	is
derived	from	Type.	Fields	with	a	DefinedSize	greater	than	255	bytes,	and	treated
as	variable	length	columns.	(The	default	DefinedSize	is	unspecified.)

Attrib			Optional.	A	FieldAttributeEnum	value,	whose	default	value	is
adFldDefault,	that	specifies	attributes	for	the	new	field.	If	this	value	is	not
specified,	the	field	will	contain	attributes	derived	from	Type.

FieldValue			Optional.	A	Variant	that	represents	the	value	for	the	new	field.	If
not	specified,	then	the	field	is	appended	with	a	null	value.

Remarks

Parameters	Collection

You	must	set	the	Type	property	of	a	Parameter	object	before	appending	it	to	the
Parameters	collection.	If	you	select	a	variable-length	data	type,	you	must	also
set	the	Size	property	to	a	value	greater	than	zero.

Describing	parameters	yourself	minimizes	calls	to	the	provider	and	consequently
improves	performance	when	using	stored	procedures	or	parameterized	queries.
However,	you	must	know	the	properties	of	the	parameters	associated	with	the
stored	procedure	or	parameterized	query	that	you	want	to	call.

Use	the	CreateParameter	method	to	create	Parameter	objects	with	the
appropriate	property	settings	and	use	the	Append	method	to	add	them	to	the
Parameters	collection.	This	lets	you	set	and	return	parameter	values	without
having	to	call	the	provider	for	the	parameter	information.	If	you	are	writing	to	a
provider	that	does	not	supply	parameter	information,	you	must	use	this	method
to	manually	populate	the	Parameters	collection	in	order	to	use	parameters	at	all.

Fields	Collection

The	FieldValue	parameter	is	only	valid	when	adding	a	Field	object	to	a	Record
object,	not	to	a	Recordset	object.	With	a	Record	object,	you	may	append	fields
and	provide	values	at	the	same	time.	With	a	Recordset	object,	you	must	create
fields	while	the	Recordset	is	closed,	then	open	the	Recordset	and	assign	values

to	the	fields.

Notes			For	new	Field	objects	that	have	been	appended	to	the	Fields	collection
of	a	Record	object,	the	Value	property	must	be	set	before	any	other	Field
properties	can	be	specified.	First,	a	specific	value	for	the	Value	property	must
have	been	assigned	and	Update	on	the	Fields	collection	called.	Then,	other
properties	such	as	Type	or	Attributes	can	be	accessed.

Field	objects	of	the	following	data	types	(DataTypeEnum)	cannot	be	appended
to	the	Fields	collection	and	will	cause	an	error	to	occur:	adArray,	adChapter,
adEmpty,	adPropVariant,	and	adUserDefined.	Also,	the	following	data	types
are	not	supported	by	ADO:	adIDispatch,	adIUnknown,	and	adIVariant.	For
these	types,	no	error	will	occur	when	appended,	but	usage	can	produce
unpredicatable	results	including	memory	leaks.

Recordset

If	you	do	not	set	the	CursorLocation	property	before	calling	the	Append
method,	CursorLocation	will	be	set	to	adUseClient	(a	CursorLocationEnum
value)	automatically	when	the	Recordset	object's	Open	method	is	called.

A	run-time	error	will	occur	if	the	Append	method	is	called	on	the	Fields
collection	of	an	open	Recordset,	or	on	a	Recordset	where	the	ActiveConnection
property	has	been	set.	You	can	only	append	fields	to	a	Recordset	that	is	not	open
and	has	not	yet	been	connected	to	a	data	source.	This	is	typically	the	case	when	a
Recordset	object	is	fabricated	with	the	CreateRecordset	method	or	assigned	to
an	object	variable.

Record

A	run-time	error	will	not	occur	if	the	Append	method	is	called	on	the	Fields
collection	of	an	open	Record.	The	new	field	will	be	added	to	the	Record
object's	Fields	collection.	If	the	Record	was	derived	from	a	Recordset,	then	the
new	field	will	not	appear	in	the	Recordset	object's	Fields	collection.

A	non-existent	field	can	be	created	and	appended	to	the	Fields	collection	by
assigning	a	value	to	the	field	object	as	if	it	already	existed	in	the	collection.	The
assignment	will	trigger	the	automatic	creation	and	appending	of	the	Field	object,
then	the	assignment	will	be	completed.

After	appending	a	Field	to	a	Record	object's	Fields	collection,	call	the	Update
method	of	the	Fields	collection	to	save	the	change.

AppendChunk	Method

				 				

Appends	data	to	a	large	text	or	binary	data	Field,	or	to	a	Parameter	object.

Syntax

object.AppendChunk	Data

Parameters

object			A	Field	or	Parameter	object.

Data			A	Variant	that	contains	the	data	to	append	to	the	object.

Remarks

Use	the	AppendChunk	method	on	a	Field	or	Parameter	object	to	fill	it	with
long	binary	or	character	data.	In	situations	where	system	memory	is	limited,	you
can	use	the	AppendChunk	method	to	manipulate	long	values	in	portions	rather
than	in	their	entirety.

Field

If	the	adFldLong	bit	in	the	Attributes	property	of	a	Field	object	is	set	to	true,

you	can	use	the	AppendChunk	method	for	that	field.

The	first	AppendChunk	call	on	a	Field	object	writes	data	to	the	field,
overwriting	any	existing	data.	Subsequent	AppendChunk	calls	add	to	existing
data.	If	you	are	appending	data	to	one	field	and	then	you	set	or	read	the	value	of
another	field	in	the	current	record,	ADO	assumes	that	you	are	finished
appending	data	to	the	first	field.	If	you	call	the	AppendChunk	method	on	the
first	field	again,	ADO	interprets	the	call	as	a	new	AppendChunk	operation	and
overwrites	the	existing	data.	Accessing	fields	in	other	Recordset	objects	that	are
not	clones	of	the	first	Recordset	object	will	not	disrupt	AppendChunk
operations.

If	there	is	no	current	record	when	you	call	AppendChunk	on	a	Field	object,	an
error	occurs.

Note			The	AppendChunk	method	does	not	operate	on	Field	objects	of	a
Record	object.	It	does	not	perform	any	operation	and	will	produce	a	run-time
error.

Parameter

If	the	adFldLong	bit	in	the	Attributes	property	of	a	Parameter	object	is	set	to
true,	you	can	use	the	AppendChunk	method	for	that	parameter.

The	first	AppendChunk	call	on	a	Parameter	object	writes	data	to	the
parameter,	overwriting	any	existing	data.	Subsequent	AppendChunk	calls	on	a
Parameter	object	add	to	existing	parameter	data.	An	AppendChunk	call	that
passes	a	null	value	discards	all	of	the	parameter	data.

BeginTrans,	CommitTrans,	and	RollbackTrans
Methods

				 				

These	transaction	methods	manage	transaction	processing	within	a	Connection
object	as	follows:

BeginTrans	—	Begins	a	new	transaction.

CommitTrans	—	Saves	any	changes	and	ends	the	current	transaction.	It
may	also	start	a	new	transaction.

RollbackTrans	—	Cancels	any	changes	made	during	the	current
transaction	and	ends	the	transaction.	It	may	also	start	a	new	transaction.

Syntax

level	=	object.BeginTrans()

object.BeginTrans

object.CommitTrans

object.RollbackTrans

Return	Value

BeginTrans	can	be	called	as	a	function	that	returns	a	Long	variable	indicating
the	nesting	level	of	the	transaction.

Parameters

object			A	Connection	object.

Connection

Use	these	methods	with	a	Connection	object	when	you	want	to	save	or	cancel	a
series	of	changes	made	to	the	source	data	as	a	single	unit.	For	example,	to
transfer	money	between	accounts,	you	subtract	an	amount	from	one	and	add	the
same	amount	to	the	other.	If	either	update	fails,	the	accounts	no	longer	balance.
Making	these	changes	within	an	open	transaction	ensures	that	either	all	or	none
of	the	changes	go	through.

Note			Not	all	providers	support	transactions.	Verify	that	the	provider-defined
property	"Transaction	DDL"	appears	in	the	Connection	object's	Properties
collection,	indicating	that	the	provider	supports	transactions.	If	the	provider	does
not	support	transactions,	calling	one	of	these	methods	will	return	an	error.

After	you	call	the	BeginTrans	method,	the	provider	will	no	longer
instantaneously	commit	changes	you	make	until	you	call	CommitTrans	or
RollbackTrans	to	end	the	transaction.

For	providers	that	support	nested	transactions,	calling	the	BeginTrans	method
within	an	open	transaction	starts	a	new,	nested	transaction.	The	return	value
indicates	the	level	of	nesting:	a	return	value	of	"1"	indicates	you	have	opened	a
top-level	transaction	(that	is,	the	transaction	is	not	nested	within	another
transaction),	"2"	indicates	that	you	have	opened	a	second-level	transaction	(a
transaction	nested	within	a	top-level	transaction),	and	so	forth.	Calling
CommitTrans	or	RollbackTrans	affects	only	the	most	recently	opened
transaction;	you	must	close	or	roll	back	the	current	transaction	before	you	can
resolve	any	higher-level	transactions.

Calling	the	CommitTrans	method	saves	changes	made	within	an	open
transaction	on	the	connection	and	ends	the	transaction.	Calling	the
RollbackTrans	method	reverses	any	changes	made	within	an	open	transaction

and	ends	the	transaction.	Calling	either	method	when	there	is	no	open
transaction	generates	an	error.

Depending	on	the	Connection	object's	Attributes	property,	calling	either	the
CommitTrans	or	RollbackTrans	methods	may	automatically	start	a	new
transaction.	If	the	Attributes	property	is	set	to	adXactCommitRetaining,	the
provider	automatically	starts	a	new	transaction	after	a	CommitTrans	call.	If	the
Attributes	property	is	set	to	adXactAbortRetaining,	the	provider	automatically
starts	a	new	transaction	after	a	RollbackTrans	call.

Remote	Data	Service

The	BeginTrans,	CommitTrans,	and	RollbackTrans	methods	are	not	available
on	a	client-side	Connection	object.

Cancel	Method

				 				

Cancels	execution	of	a	pending,	asynchronous	method	call.

Syntax

object.Cancel

Remarks

Use	the	Cancel	method	to	terminate	execution	of	an	asynchronous	method	call
(that	is,	a	method	invoked	with	the	adAsyncConnect,	adAsyncExecute,	or
adAsyncFetch	option).

The	following	table	shows	what	task	is	terminated	when	you	use	the	Cancel
method	on	a	particular	type	of	object.

If	object	is	a The	last	asynchronous	call	to	this
method	is	terminated

Command Execute
Connection Execute	or	Open

Record CopyRecord,	DeleteRecord,
MoveRecord,	or	Open

Recordset Open
Stream Open

Cancel	Method	(RDS)

				 				

Cancels	execution	of	a	pending,	asynchronous	method	call.

Syntax

RDS.DataControl.Cancel

Remarks

When	you	call	Cancel,	ReadyState	is	automatically	set	to
adcReadyStateLoaded,	and	the	Recordset	will	be	empty.

CancelBatch	Method

				 				

Cancels	a	pending	batch	update.

Syntax

recordset.CancelBatch	AffectRecords

Parameters

AffectRecords			Optional.	An	AffectEnum	value	that	indicates	how	many	records
the	CancelBatch	method	will	affect.

Remarks

Use	the	CancelBatch	method	to	cancel	any	pending	updates	in	a	Recordset	in
batch	update	mode.	If	the	Recordset	is	in	immediate	update	mode,	calling
CancelBatch	without	adAffectCurrent	generates	an	error.

If	you	are	editing	the	current	record	or	are	adding	a	new	record	when	you	call
CancelBatch,	ADO	first	calls	the	CancelUpdate	method	to	cancel	any	cached
changes.	After	that,	all	pending	changes	in	the	Recordset	are	canceled.

It's	possible	that	the	current	record	will	be	indeterminable	after	a	CancelBatch

call,	especially	if	you	were	in	the	process	of	adding	a	new	record.	For	this
reason,	it	is	prudent	to	set	the	current	record	position	to	a	known	location	in	the
Recordset	after	the	CancelBatch	call.	For	example,	call	the	MoveFirst	method.

If	the	attempt	to	cancel	the	pending	updates	fails	because	of	a	conflict	with	the
underlying	data	(for	example,	a	record	has	been	deleted	by	another	user),	the
provider	returns	warnings	to	the	Errors	collection	but	does	not	halt	program
execution.	A	run-time	error	occurs	only	if	there	are	conflicts	on	all	the	requested
records.	Use	the	Filter	property	(adFilterAffectedRecords)	and	the	Status
property	to	locate	records	with	conflicts.

CancelUpdate	Method

				 				

Cancels	any	changes	made	to	the	current	or	new	row	of	a	Recordset	object,	or
the	Fields	collection	of	a	Record	object,	before	calling	the	Update	method.

Syntax

recordset.CancelUpdate

record.Fields.CancelUpdate

Remarks

Recordset

Use	the	CancelUpdate	method	to	cancel	any	changes	made	to	the	current	row	or
to	discard	a	newly	added	row.	You	cannot	cancel	changes	to	the	current	row	or	a
new	row	after	you	call	the	Update	method,	unless	the	changes	are	either	part	of
a	transaction	that	you	can	roll	back	with	the	RollbackTrans	method,	or	part	of	a
batch	update.	In	the	case	of	a	batch	update,	you	can	cancel	the	Update	with	the
CancelUpdate	or	CancelBatch	method.

If	you	are	adding	a	new	row	when	you	call	the	CancelUpdate	method,	the
current	row	becomes	the	row	that	was	current	before	the	AddNew	call.

If	you	have	not	changed	the	current	row	or	added	a	new	row,	calling	the
CancelUpdate	method	generates	an	error.

Record

The	CancelUpdate	method	cancels	any	pending	insertions	or	deletions	of	Field
objects,	and	cancels	pending	updates	of	existing	fields	and	restores	them	to	their
original	values.	The	Status	property	of	all	fields	in	the	Fields	collection	is	set	to
adFieldOK.

CancelUpdate	Method	(RDS)

				 				

Cancels	any	changes	made	to	the	current	or	new	row	of	a	Recordset	object.

Syntax

DataControl.CancelUpdate

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Remarks

The	Cursor	Service	for	OLE	DB	keeps	both	a	copy	of	the	original	values	and	a
cache	of	changes.	When	you	call	CancelUpdate,	the	cache	of	changes	is	reset	to
empty,	and	any	bound	controls	are	refreshed	with	the	original	data.

Clear	Method

				 				

Removes	all	the	Error	objects	from	the	Errors	collection.

Syntax

Errors.Clear

Remarks

Use	the	Clear	method	on	the	Errors	collection	to	remove	all	existing	Error
objects	from	the	collection.	When	an	error	occurs,	ADO	automatically	clears	the
Errors	collection	and	fills	it	with	Error	objects	based	on	the	new	error.

Some	properties	and	methods	return	warnings	that	appear	as	Error	objects	in	the
Errors	collection	but	do	not	halt	a	program's	execution.	Before	you	call	the
Resync,	UpdateBatch,	or	CancelBatch	methods	on	a	Recordset	object;	the	Open
method	on	a	Connection	object;	or	set	the	Filter	property	on	a	Recordset	object,
call	the	Clear	method	on	the	Errors	collection.	That	way,	you	can	read	the
Count	property	of	the	Errors	collection	to	test	for	returned	warnings.

Clone	Method

				 				

Creates	a	duplicate	Recordset	object	from	an	existing	Recordset	object.
Optionally,	specifies	that	the	clone	be	read-only.

Syntax

Set	rstDuplicate	=	rstOriginal.Clone	(LockType)

Return	Value

Returns	a	Recordset	object	reference.

Parameters

rstDuplicate			An	object	variable	that	identifies	the	duplicate	Recordset	object	to
be	created.

rstOriginal			An	object	variable	that	identifies	the	Recordset	object	to	be
duplicated.

LockType			Optional.	A	LockTypeEnum	value	that	specifies	either	the	lock	type
of	the	original	Recordset,	or	a	read-only	Recordset.	Valid	values	are
adLockUnspecified	or	adLockReadOnly.

Remarks

Use	the	Clone	method	to	create	multiple,	duplicate	Recordset	objects,
particularly	if	you	want	to	maintain	more	than	one	current	record	in	a	given	set
of	records.	Using	the	Clone	method	is	more	efficient	than	creating	and	opening	a
new	Recordset	object	with	the	same	definition	as	the	original.

The	current	record	of	a	newly	created	clone	is	set	to	the	first	record.

Changes	you	make	to	one	Recordset	object	are	visible	in	all	of	its	clones
regardless	of	cursor	type.	However,	after	you	execute	Requery	on	the	original
Recordset,	the	clones	will	no	longer	be	synchronized	to	the	original.

Closing	the	original	Recordset	does	not	close	its	copies,	nor	does	closing	a	copy
close	the	original	or	any	of	the	other	copies.

You	can	only	clone	a	Recordset	object	that	supports	bookmarks.	Bookmark
values	are	interchangeable;	that	is,	a	bookmark	reference	from	one	Recordset
object	refers	to	the	same	record	in	any	of	its	clones.

Close	Method

				 				

Closes	an	open	object	and	any	dependent	objects.

Syntax

object.Close

Remarks

Use	the	Close	method	to	close	a	Connection,	a	Record,	a	Recordset,	or	a	Stream
object	to	free	any	associated	system	resources.	Closing	an	object	does	not
remove	it	from	memory;	you	can	change	its	property	settings	and	open	it	again
later.	To	completely	eliminate	an	object	from	memory,	set	the	object	variable	to
Nothing	(in	Visual	Basic)	after	closing	the	object.

Connection

Using	the	Close	method	to	close	a	Connection	object	also	closes	any	active
Recordset	objects	associated	with	the	connection.	A	Command	object	associated
with	the	Connection	object	you	are	closing	will	persist,	but	it	will	no	longer	be
associated	with	a	Connection	object;	that	is,	its	ActiveConnection	property	will
be	set	to	Nothing.	Also,	the	Command	object's	Parameters	collection	will	be
cleared	of	any	provider-defined	parameters.

You	can	later	call	the	Open	method	to	re-establish	the	connection	to	the	same,	or
another,	data	source.	While	the	Connection	object	is	closed,	calling	any	methods
that	require	an	open	connection	to	the	data	source	generates	an	error.

Closing	a	Connection	object	while	there	are	open	Recordset	objects	on	the
connection	rolls	back	any	pending	changes	in	all	of	the	Recordset	objects.
Explicitly	closing	a	Connection	object	(calling	the	Close	method)	while	a
transaction	is	in	progress	generates	an	error.	If	a	Connection	object	falls	out	of
scope	while	a	transaction	is	in	progress,	ADO	automatically	rolls	back	the
transaction.

Recordset,	Record,	Stream

Using	the	Close	method	to	close	a	Recordset,	Record,	or	Stream	object
releases	the	associated	data	and	any	exclusive	access	you	may	have	had	to	the
data	through	this	particular	object.	You	can	later	call	the	Open	method	to	reopen
the	object	with	the	same,	or	modified,	attributes.

While	a	Recordset	object	is	closed,	calling	any	methods	that	require	a	live
cursor	generates	an	error.

If	an	edit	is	in	progress	while	in	immediate	update	mode,	calling	the	Close
method	generates	an	error;	instead,	call	the	Update	or	CancelUpdate	method
first.	If	you	close	the	Recordset	object	while	in	batch	update	mode,	all	changes
since	the	last	UpdateBatch	call	are	lost.

If	you	use	the	Clone	method	to	create	copies	of	an	open	Recordset	object,
closing	the	original	or	a	clone	does	not	affect	any	of	the	other	copies.

CompareBookmarks	Method

				 				

Compares	two	bookmarks	and	returns	an	indication	of	their	relative	values.

Syntax

result	=	recordset.CompareBookmarks(Bookmark1,	Bookmark2)

Return	Value

Returns	a	CompareEnum	value	that	indicates	the	relative	row	position	of	two
records	represented	by	their	bookmarks.

Parameters

Bookmark1			The	bookmark	of	the	first	row.

Bookmark2			The	bookmark	of	the	second	row.

Remarks

The	bookmarks	must	apply	to	the	same	Recordset	object,	or	a	Recordset	object
and	its	clone.	You	cannot	reliably	compare	bookmarks	from	different	Recordset
objects,	even	if	they	were	created	from	the	same	source	or	command.	Nor	can

you	compare	bookmarks	for	a	Recordset	object	whose	underlying	provider	does
not	support	comparisons.

A	bookmark	uniquely	identifies	a	row	in	a	Recordset	object.	Use	the	current
row's	Bookmark	property	to	obtain	its	bookmark.

A	bookmark	that	is	not	valid	or	incorrectly	formed	will	cause	an	error.

ConvertToString	Method	(RDS)

				 				

Converts	a	Recordset	to	a	MIME	string	that	represents	the	recordset	data.

Syntax

DataFactory.ConvertToString(Recordset)

Parameters

DataFactory			An	object	variable	that	represents	an	RDSServer.DataFactory
object.

Recordset			An	object	variable	that	represents	a	Recordset	object.

Remarks

With	.asp	files,	use	ConvertToString	to	embed	the	Recordset	in	an	HTML	page
generated	on	the	server	to	transport	it	to	a	client	computer.

ConvertToString	first	loads	the	Recordset	into	the	Cursor	Service	tables,	and
then	generates	a	stream	in	MIME	format.

On	the	client,	Remote	Data	Service	can	convert	the	MIME	string	back	into	a

fully	functioning	Recordset.	It	works	well	for	handling	fewer	than	400	rows	of
data	with	no	more	than	1024	bytes	width	per	row.	You	shouldn't	use	it	for
streaming	BLOB	data	and	large	result	sets	over	HTTP.	No	wire	compression	is
performed	on	the	string,	so	very	large	data	sets	will	take	considerable	time	to
transport	over	HTTP	when	compared	to	the	wire-optimized	tablegram	format
defined	and	deployed	by	Remote	Data	Service	as	its	native	transport	protocol
format.

Note			If	you	are	using	Active	Server	Pages	to	embed	the	resulting	MIME	string
in	a	client	HTML	page,	be	aware	that	versions	of	VBScript	earlier	than	version
2.0	limit	the	string's	size	to	32K.	If	this	limit	is	exceeded,	an	error	is	returned.
Keep	the	query	scope	relatively	small	when	using	MIME	embedding	via	.asp
files.	To	fix	this,	download	the	latest	version	of	VBScript	from	the	Microsoft
Windows	Script	Technologies	Web	site.

http://msdn.microsoft.com/scripting/default.htm

CopyRecord	Method

				 				

Copies	a	file	or	directory,	and	its	contents,	to	another	location.

Syntax

CopyRecord	(Source,	Destination,	UserName,	Password,	Options,

Async)

Parameters

Source			Optional.	A	String	value	that	contains	a	URL	specifying	the	file	or
directory	to	be	copied.	If	Source	is	omitted	or	specifies	an	empty	string,	the	file
or	directory	represented	by	this	Record	will	be	copied.

Destination			Optional.	A	String	value	that	contains	a	URL	specifying	the
location	where	Source	will	be	copied.

UserName			Optional.	A	String	value	that	contains	the	user	ID	that,	if	needed,
authorizes	access	to	Destination.

Password			Optional.	A	String	value	that	contains	the	password	that,	if	needed,
verifies	UserName.

Options			Optional.	A	CopyRecordOptionsEnum	value	that	has	a	default	value	of
adCopyUnspecified.	Specifies	the	behavior	of	this	method.

Async			Optional.	A	Boolean	value	that,	when	True,	specifies	that	this	operation
should	be	asynchronous.

Return	Value

A	String	value	that	typically	returns	the	value	of	Destination.	However,	the
exact	value	returned	is	provider-dependent.

Remarks

The	values	of	Source	and	Destination	must	not	be	identical;	otherwise,	a	run-
time	error	occurs.	At	least	one	of	the	server,	path,	or	resource	names	must	differ.

All	subdirectories	of	Source	are	copied	recursively,	unless
adCopyNonRecursive	is	specified.	In	a	recursive	operation,	Destination	must
not	be	a	subdirectory	of	Source;	otherwise,	the	operation	will	not	complete.

This	method	fails	if	Destination	identifies	an	existing	file	or	directory,	unless
adCopyOverWrite	is	specified.

Important			Use	the	adCopyOverWrite	option	judiciously.	For	example,
specifying	this	option	when	copying	a	file	to	a	directory	will	delete	the	directory
and	replace	it	with	the	file.

CopyTo	Method

				 				

Copies	the	specified	number	of	characters	or	bytes	(depending	on	Type)	in	the
Stream	to	another	Stream	object.

Syntax

Stream.CopyTo	DestStream,	NumChars

Parameters

DestStream			An	object	variable	value	that	contains	a	reference	to	an	open
Stream	object.	The	current	Stream	is	copied	to	the	destination	Stream	specified
by	DestStream.	The	destination	Stream	must	already	be	open.	If	not,	a	run-time
error	occurs.

Note			The	DestStream	parameter	may	not	be	a	proxy	of	Stream	object	because
this	requires	access	to	a	private	interface	on	the	Stream	object	that	cannot	be
remoted	to	the	client.

NumChars			Optional.	An	Integer	value	that	specifies	the	number	of	bytes	or
characters	to	be	copied	from	the	current	position	in	the	source	Stream	to	the
destination	Stream.	The	default	value	is	–1,	which	specifies	that	all	characters	or
bytes	are	copied	from	the	current	position	to	EOS.

Remarks

This	method	copies	the	specified	number	of	characters	or	bytes,	starting	from	the
current	position	specified	by	the	Position	property.	If	the	specified	number	is
more	than	the	available	number	of	bytes	until	EOS,	then	only	characters	or	bytes
from	the	current	position	to	EOS	are	copied.	If	the	value	of	NumChars	is	–1,	or
omitted,	all	characters	or	bytes	starting	from	the	current	position	are	copied.

If	there	are	existing	characters	or	bytes	in	the	destination	stream,	all	contents
beyond	the	point	where	the	copy	ends	remain,	and	are	not	truncated.	Position
becomes	the	byte	immediately	following	the	last	byte	copied.	If	you	want	to
truncate	these	bytes,	call	SetEOS.

CopyTo	should	be	used	to	copy	data	to	a	destination	Stream	of	the	same	type	as
the	source	Stream	(their	Type	property	settings	are	both	adTypeText	or	both
adTypeBinary).	For	text	Stream	objects,	you	can	change	the	Charset	property
setting	of	the	destination	Stream	to	translate	from	one	character	set	to	another.
Also,	text	Stream	objects	can	be	successfully	copied	into	binary	Stream	objects,
but	binary	Stream	objects	cannot	be	copied	into	text	Stream	objects.

CreateObject	Method	(RDS)

				 				

Creates	the	proxy	for	the	target	business	object	and	returns	a	pointer	to	it.	The
proxy	packages	and	marshals	data	to	the	server-side	stub	for	communications
with	the	business	object	to	send	requests	and	data	over	the	Internet.	For	in-
process	component	objects,	no	proxies	are	used,	just	a	pointer	to	the	object	is
provided.

Syntax

Remote	Data	Service	supports	the	following	protocols:	HTTP,	HTTPS	(HTTP
over	Secure	Socket	Layer),	DCOM,	and	in-process.

Protocol Syntax

HTTP
Set	object	=

DataSpace.CreateObject("ProgId",

"http://awebsrvr")

HTTPS
Set	object	=

DataSpace.CreateObject("ProgId",

"https://awebsrvr")

DCOM
Set	object	=

DataSpace.CreateObject("ProgId",

"computername")

In-process Set	object	=

DataSpace.CreateObject("ProgId",	"")

Parameters

Object			An	object	variable	that	evaluates	to	an	object	that	is	the	type	specified	in
ProgID.

DataSpace			An	object	variable	that	represents	an	RDS.DataSpace	object	used	to
create	an	instance	of	the	new	object.

ProgID			A	String	value	that	contains	the	programmatic	identifier	specifying	a
server-side	business	object	that	implements	your	application's	business	rules.

awebsrvr	or	computername			A	String	value	that	represents	a	URL	identifying
the	Internet	Information	Services	(IIS)	Web	server	where	an	instance	of	the
server	business	object	is	created.

Remarks

The	HTTP	protocol	is	the	standard	Web	protocol;	HTTPS	is	a	secure	Web
protocol.	Use	the	DCOM	protocol	when	running	a	local-area	network	without
HTTP.	The	in-process	protocol	is	a	local	dynamic-link	library	(DLL);	it	does	not
use	a	network.

CreateParameter	Method

				 				

Creates	a	new	Parameter	object	with	the	specified	properties.

Syntax

Set	parameter	=	command.CreateParameter	(Name,	Type,	Direction,

Size,	Value)

Return	Value

Returns	a	Parameter	object.

Parameters

Name			Optional.	A	String	value	that	contains	the	name	of	the	Parameter
object.

Type			Optional.	A	DataTypeEnum	value	that	specifies	the	data	type	of	the
Parameter	object.

Direction			Optional.	A	ParameterDirectionEnum	value	that	specifies	the	type	of
Parameter	object.

Size			Optional.	A	Long	value	that	specifies	the	maximum	length	for	the

parameter	value	in	characters	or	bytes.

Value			Optional.	A	Variant	that	specifies	the	value	for	the	Parameter	object.

Remarks

Use	the	CreateParameter	method	to	create	a	new	Parameter	object	with	a
specified	name,	type,	direction,	size,	and	value.	Any	values	you	pass	in	the
arguments	are	written	to	the	corresponding	Parameter	properties.

This	method	does	not	automatically	append	the	Parameter	object	to	the
Parameters	collection	of	a	Command	object.	This	lets	you	set	additional
properties	whose	values	ADO	will	validate	when	you	append	the	Parameter
object	to	the	collection.

If	you	specify	a	variable-length	data	type	in	the	Type	argument,	you	must	either
pass	a	Size	argument	or	set	the	Size	property	of	the	Parameter	object	before
appending	it	to	the	Parameters	collection;	otherwise,	an	error	occurs.

If	you	specify	a	numeric	data	type	(adNumeric	or	adDecimal)	in	the	Type
argument,	then	you	must	also	set	the	NumericScale	and	Precision	properties.

CreateRecordset	Method	(RDS)

				 				

Creates	an	empty,	disconnected	Recordset.

Syntax

object.CreateRecordset(ColumnInfos)

Parameters

Object			An	object	variable	that	represents	an	RDSServer.DataFactory	or
RDS.DataControl	object.

ColumnsInfos			A	Variant	array	of	attributes	that	defines	each	column	in	the
Recordset	created.	Each	column	definition	contains	an	array	of	four	required
attributes.

Attribute Description
Name Name	of	the	column	header.
Type Integer	of	the	data	type.

Size Integer	of	the	width	in	characters,	regardless	of
data	type.

Nullability Boolean	value.

The	set	of	column	arrays	is	then	grouped	into	an	array,	which	defines	the
Recordset.

Remarks

The	server-side	business	object	can	populate	the	resulting	Recordset	with	data
from	a	non-OLE	DB	data	provider,	such	as	an	operating	system	file	containing
stock	quotes.

The	following	table	lists	the	DataTypeEnum	values	supported	by	the
CreateRecordset	method.	The	number	listed	is	the	reference	number	used	to
define	fields.

Each	of	the	data	types	is	either	fixed	length	or	variable	length.	Fixed-length
types	should	be	defined	with	a	size	of	–1,	because	the	size	is	predetermined	and
a	size	definition	is	still	required.	Variable-length	data	types	allow	a	size	from	1
to	32767.

For	some	of	the	variable	data	types,	the	type	may	be	coerced	to	the	type	noted	in
the	Substitution	column.	You	won't	see	the	substitutions	until	after	the
Recordset	is	created	and	filled.	Then	you	can	check	for	the	actual	data	type,	if
necessary.

Length Constant Number Substitution
Fixed adTinyInt 16 	
Fixed adSmallInt 2 	
Fixed adInteger 3 	
Fixed adBigInt 20 	
Fixed adUnsignedTinyInt 17 	
Fixed adUnsignedSmallInt 18 	
Fixed adUnsignedInt 19 	
Fixed adUnsignedBigInt 21 	
Fixed adSingle 4 	
Fixed adDouble 5 	
Fixed adCurrency 6 	
Fixed adDecimal 14 	
Fixed adNumeric 131 	
Fixed adBoolean 11 	

Fixed adError 10 	
Fixed adGuid 72 	
Fixed adDate 7 	
Fixed adDBDate 133 	
Fixed adDBTime 134 	
Fixed adDBTimestamp 135 7
Variable adBSTR 8 130
Variable adChar 129 200
Variable adVarChar 200 	
Variable adLongVarChar 201 200
Variable adWChar 130 	
Variable adVarWChar 202 130
Variable adLongVarWChar 203 130
Variable adBinary 128 	
Variable adVarBinary 204 	
Variable adLongVarBinary 205 204

Delete	Method	(ADO	Parameters	Collection)

				 				

Deletes	an	object	from	the	Parameters	collection.

Syntax

Parameters.Delete	Index

Parameters

Index			A	String	value	that	contains	the	name	of	the	object	you	want	to	delete,	or
the	object’s	ordinal	position	(index)	in	the	collection.

Remarks

Using	the	Delete	method	on	a	collection	lets	you	remove	one	of	the	objects	in
the	collection.	This	method	is	available	only	on	the	Parameters	collection	of	a
Command	object.	You	must	use	the	Parameter	object's	Name	property	or	its
collection	index	when	calling	the	Delete	method—an	object	variable	is	not	a
valid	argument.

Delete	Method	(ADO	Fields	Collection)

				 				

Deletes	an	object	from	the	Fields	collection.

Syntax

Fields.Delete	Field

Parameters

Field			A	Variant	that	designates	the	Field	object	to	delete.	This	parameter	can
be	the	name	of	the	Field	object	or	the	ordinal	position	of	the	Field	object	itself.

Remarks

Calling	the	Fields.Delete	method	on	an	open	Recordset	causes	a	run-time	error.

Delete	Method	(ADO	Recordset)

				 				

Deletes	the	current	record	or	a	group	of	records.

Syntax

recordset.Delete	AffectRecords

Parameters

AffectRecords			An	AffectEnum	value	that	determines	how	many	records	the
Delete	method	will	affect.	The	default	value	is	adAffectCurrent.

Note			adAffectAll	and	adAffectAllChapters	are	not	valid	arguments	to	Delete.

Remarks

Using	the	Delete	method	marks	the	current	record	or	a	group	of	records	in	a
Recordset	object	for	deletion.	If	the	Recordset	object	doesn't	allow	record
deletion,	an	error	occurs.	If	you	are	in	immediate	update	mode,	deletions	occur
in	the	database	immediately.	Otherwise,	the	records	are	marked	for	deletion	from
the	cache	and	the	actual	deletion	happens	when	you	call	the	UpdateBatch
method.	(Use	the	Filter	property	to	view	the	deleted	records.)

Retrieving	field	values	from	the	deleted	record	generates	an	error.	After	deleting
the	current	record,	the	deleted	record	remains	current	until	you	move	to	a
different	record.	Once	you	move	away	from	the	deleted	record,	it	is	no	longer
accessible.

If	you	nest	deletions	in	a	transaction,	you	can	recover	deleted	records	with	the
RollbackTrans	method.	If	you	are	in	batch	update	mode,	you	can	cancel	a
pending	deletion	or	group	of	pending	deletions	with	the	CancelBatch	method.

If	the	attempt	to	delete	records	fails	because	of	a	conflict	with	the	underlying
data	(for	example,	a	record	has	already	been	deleted	by	another	user),	the
provider	returns	warnings	to	the	Errors	collection	but	does	not	halt	program
execution.	A	run-time	error	occurs	only	if	there	are	conflicts	on	all	the	requested
records.

If	the	Unique	Table	dynamic	property	is	set,	and	the	Recordset	is	the	result	of
executing	a	JOIN	operation	on	multiple	tables,	then	the	Delete	method	will	only
delete	rows	from	the	table	named	in	the	Unique	Table	property.

DeleteRecord	Method

				 				

Deletes	a	file	or	directory,	and	all	its	subdirectories.

Syntax

DeleteRecord	Source,	Async

Parameters

Source			Optional.	A	String	value	that	contains	a	URL	identifying	the	file	or
directory	to	be	deleted.	If	Source	is	omitted	or	specifies	an	empty	string,	the	file
or	directory	represented	by	this	Record	is	deleted.

Async			Optional.	A	Boolean	value	that,	when	True,	specifies	that	the	delete
operation	is	asychronous.

Remarks

Operations	on	the	file	or	directory	represented	by	this	Record	may	fail	after	this
method	completes.	After	calling	DeleteRecord,	the	Record	should	be	closed
because	the	behavior	of	the	Record	may	become	unpredictable	depending	upon
when	the	Provider	updates	the	Record	with	the	data	source.

If	this	Record	was	obtained	from	a	Recordset,	then	the	results	of	this	operation
will	not	be	reflected	immediately	in	the	Recordset.	Refresh	the	Recordset	by
closing	and	re-opening	it,	or	by	executing	the	Recordset	Requery,	or	Update	and
Resync	methods.

Execute	Method	(ADO	Command)

				 				

Executes	the	query,	SQL	statement,	or	stored	procedure	specified	in	the
CommandText	property.

Syntax

For	a	row-returning	Command:

Set	recordset	=	command.Execute(RecordsAffected,	Parameters,

Options)

For	a	non–row-returning	Command:

command.Execute	RecordsAffected,	Parameters,	Options

Return	Value

Returns	a	Recordset	object	reference.

Parameters

RecordsAffected			Optional.	A	Long	variable	to	which	the	provider	returns	the
number	of	records	that	the	operation	affected.	The	RecordsAffected	parameter
applies	only	for	action	queries	or	stored	procedures.	RecordsAffected	does	not

return	the	number	of	records	returned	by	a	result-returning	query	or	stored
procedure.	To	return	this	information,	use	the	RecordCount	property.

Parameters			Optional.	A	Variant	array	of	parameter	values	passed	with	an	SQL
statement.	(Output	parameters	will	not	return	correct	values	when	passed	in	this
argument.)

Options			Optional.	A	Long	value	that	indicates	how	the	provider	should
evaluate	the	CommandText	property	of	the	Command	object.	Can	be	one	or
more	CommandTypeEnum	or	ExecuteOptionEnum	values.

Remarks

Using	the	Execute	method	on	a	Command	object	executes	the	query	specified
in	the	CommandText	property	of	the	object.	If	the	CommandText	property
specifies	a	row-returning	query,	any	results	that	the	execution	generates	are
stored	in	a	new	Recordset	object.	If	the	command	is	not	a	row-returning	query,
the	provider	returns	a	closed	Recordset	object.	Some	application	languages
allow	you	to	ignore	this	return	value	if	no	Recordset	is	desired.

If	the	query	has	parameters,	the	current	values	for	the	Command	object's
parameters	are	used	unless	you	override	these	with	parameter	values	passed	with
the	Execute	call.	You	can	override	a	subset	of	the	parameters	by	omitting	new
values	for	some	of	the	parameters	when	calling	the	Execute	method.	The	order
in	which	you	specify	the	parameters	is	the	same	order	in	which	the	method
passes	them.	For	example,	if	there	were	four	(or	more)	parameters	and	you
wanted	to	pass	new	values	for	only	the	first	and	fourth	parameters,	you	would
pass	Array(var1,,,var4)	as	the	Parameters	argument.

Note			Output	parameters	will	not	return	correct	values	when	passed	in	the
Parameters	argument.

An	ExecuteComplete	event	will	be	issued	when	this	operation	concludes.

Execute	Method	(ADO	Connection)

				 				

Executes	the	specified	query,	SQL	statement,	stored	procedure,	or	provider-
specific	text.

Syntax

For	a	non–row-returning	command	string:

connection.Execute	CommandText,	RecordsAffected,	Options

For	a	row-returning	command	string:

Set	recordset	=	connection.Execute	(CommandText,	RecordsAffected,

Options)

Return	Value

Returns	a	Recordset	object	reference.

Parameters

CommandText			A	String	value	that	contains	the	SQL	statement,	table	name,
stored	procedure,	a	URL,	or	provider-specific	text	to	execute.

RecordsAffected			Optional.	A	Long	variable	to	which	the	provider	returns	the
number	of	records	that	the	operation	affected.

Options			Optional.	A	Long	value	that	indicates	how	the	provider	should
evaluate	the	CommandText	argument.	Can	be	one	or	more	CommandTypeEnum
or	ExecuteOptionEnum	values.

Remarks

Using	the	Execute	method	on	a	Connection	object	executes	whatever	query	you
pass	to	the	method	in	the	CommandText	argument	on	the	specified	connection.	If
the	CommandText	argument	specifies	a	row-returning	query,	any	results	that	the
execution	generates	are	stored	in	a	new	Recordset	object.	If	the	command	is	not
a	row-returning	query,	the	provider	returns	a	closed	Recordset	object.

The	returned	Recordset	object	is	always	a	read-only,	forward-only	cursor.	If	you
need	a	Recordset	object	with	more	functionality,	first	create	a	Recordset	object
with	the	desired	property	settings,	then	use	the	Recordset	object's	Open	method
to	execute	the	query	and	return	the	desired	cursor	type.

The	contents	of	the	CommandText	argument	are	specific	to	the	provider	and	can
be	standard	SQL	syntax	or	any	special	command	format	that	the	provider
supports.

An	ExecuteComplete	event	will	be	issued	when	this	operation	concludes.

Find	Method

				 				

Searches	a	Recordset	for	the	row	that	satisfies	the	specified	criteria.	Optionally,
the	direction	of	the	search,	starting	row,	and	offset	from	the	starting	row	may	be
specified.	If	the	criteria	is	met,	the	current	row	position	is	set	on	the	found
record;	otherwise,	the	position	is	set	to	the	end	(or	start)	of	the	Recordset.

Syntax

Find	(Criteria,	SkipRows,	SearchDirection,	Start)

Parameters

Criteria			A	String	value	that	contains	a	statement	specifying	the	column	name,
comparison	operator,	and	value	to	use	in	the	search.

SkipRows			Optional.	A	Long	value,	whose	default	value	is	zero,	that	specifies
the	row	offset	from	the	current	row	or	Start	bookmark	to	begin	the	search.	By
default,	the	search	will	start	on	the	current	row.

SearchDirection			Optional.	A	SearchDirectionEnum	value	that	specifies	whether
the	search	should	begin	on	the	current	row	or	the	next	available	row	in	the
direction	of	the	search.	An	unsuccessful	search	stops	at	the	end	of	the	Recordset
if	the	value	is	adSearchForward.	An	unsuccessful	search	stops	at	the	start	of

the	Recordset	if	the	value	is	adSearchBackward.

Start			Optional.	A	Variant	bookmark	that	functions	as	the	starting	position	for
the	search.

Remarks

Only	a	single-column	name	may	be	specified	in	criteria.	This	method	does	not
support	multi-column	searches.

The	comparison	operator	in	Criteria	may	be	">"	(greater	than),	"<"	(less	than),
"="	(equal),	">="	(greater	than	or	equal),	"<="	(less	than	or	equal),	"<>"	(not
equal),	or	"like"	(pattern	matching).

The	value	in	Criteria	may	be	a	string,	floating-point	number,	or	date.	String
values	are	delimited	with	single	quotes	or	"#"	(number	sign)	marks	(for	example,
"state	=	'WA'"	or	"state	=	#WA#").	Date	values	are	delimited	with	"#"	(number
sign)	marks	(for	example,	"start_date	>	#7/22/97#").

If	the	comparison	operator	is	"like",	the	string	value	may	contain	an	asterisk	(*)
to	find	one	or	more	occurrences	of	any	character	or	substring.	For	example,
"state	like	'M*'"	matches	Maine	and	Massachusetts.	You	can	also	use	leading
and	trailing	asterisks	to	find	a	substring	contained	within	the	values.	For
example,	"state	like	'*as*'"	matches	Alaska,	Arkansas,	and	Massachusetts.

Asterisks	can	be	used	only	at	the	end	of	a	criteria	string,	or	together	at	both	the
beginning	and	end	of	a	criteria	string,	as	shown	above.	You	cannot	use	the
asterisk	as	a	leading	wildcard	('*str'),	or	embedded	wildcard	('s*r').	This	will
cause	an	error.

Note			An	error	will	occur	if	a	current	row	position	is	not	set	before	calling	Find.
Any	method	that	sets	row	position,	such	as	MoveFirst,	should	be	called	before
calling	Find.

Flush	Method

				 				

Forces	the	contents	of	the	Stream	remaining	in	the	ADO	buffer	to	the	underlying
object	with	which	the	Stream	is	associated.

Syntax

Stream.Flush

Remarks

This	method	may	be	used	to	send	the	contents	of	the	stream	buffer	to	the
underlying	object	represented	by	the	URL	that	is	the	source	of	the	Stream
object.	This	method	should	be	called	when	you	want	to	ensure	that	all	changes
made	to	the	contents	of	a	Stream	have	been	written.	However,	with	ADO	it	is
not	usually	necessary	to	call	Flush,	as	ADO	continuously	flushes	its	buffer	as
much	as	possible	in	the	background.	Changes	to	the	content	of	a	Stream	are
made	automatically,	not	cached	until	Flush	is	called.

Closing	a	Stream	with	the	Close	method	flushes	the	contents	of	a	Stream
automatically;	there	is	no	need	to	explicitly	call	Flush	immediately	before
Close.

GetChildren	Method

				 				

Returns	a	Recordset	whose	rows	represent	the	files	and	subdirectories	in	the
directory	represented	by	this	Record.

Syntax

Set	recordset	=	record.GetChildren

Return	Value

A	Recordset	object	for	which	each	row	represents	a	file	or	directory.

Remarks

The	provider	determines	what	columns	exist	in	the	returned	Recordset.	For
example,	a	document	source	provider	always	returns	a	resource	Recordset.

GetChunk	Method

				 				

Returns	all,	or	a	portion,	of	the	contents	of	a	large	text	or	binary	data	Field
object.

Syntax

variable	=	field.GetChunk(Size)

Return	Value

Returns	a	Variant.

Parameters

Size			A	Long	expression	that	is	equal	to	the	number	of	bytes	or	characters	that
you	want	to	retrieve.

Remarks

Use	the	GetChunk	method	on	a	Field	object	to	retrieve	part	or	all	of	its	long
binary	or	character	data.	In	situations	where	system	memory	is	limited,	you	can
use	the	GetChunk	method	to	manipulate	long	values	in	portions,	rather	than	in
their	entirety.

The	data	that	a	GetChunk	call	returns	is	assigned	to	variable.	If	Size	is	greater
than	the	remaining	data,	the	GetChunk	method	returns	only	the	remaining	data
without	padding	variable	with	empty	spaces.	If	the	field	is	empty,	the
GetChunk	method	returns	a	null	value.

Each	subsequent	GetChunk	call	retrieves	data	starting	from	where	the	previous
GetChunk	call	left	off.	However,	if	you	are	retrieving	data	from	one	field	and
then	you	set	or	read	the	value	of	another	field	in	the	current	record,	ADO
assumes	you	have	finished	retrieving	data	from	the	first	field.	If	you	call	the
GetChunk	method	on	the	first	field	again,	ADO	interprets	the	call	as	a	new
GetChunk	operation	and	starts	reading	from	the	beginning	of	the	data.
Accessing	fields	in	other	Recordset	objects	that	are	not	clones	of	the	first
Recordset	object	will	not	disrupt	GetChunk	operations.

If	the	adFldLong	bit	in	the	Attributes	property	of	a	Field	object	is	set	to	True,
you	can	use	the	GetChunk	method	for	that	field.

If	there	is	no	current	record	when	you	use	the	GetChunk	method	on	a	Field
object,	error	3021	(no	current	record)	occurs.

Note			The	GetChunk	method	does	not	operate	on	Field	objects	of	a	Record
object.	It	does	not	perform	any	operation	and	will	produce	a	run-time	error.

GetRows	Method

				 				

Retrieves	multiple	records	of	a	Recordset	object	into	an	array.

Syntax

array	=	recordset.GetRows(Rows,	Start,	Fields)

Return	Value

Returns	a	Variant	whose	value	is	a	two-dimensional	array.

Parameters

Rows			Optional.	A	GetRowsOptionEnum	value	that	indicates	the	number	of
records	to	retrieve.	The	default	is	adGetRowsRest.

Start			Optional.	A	String	value	or	Variant	that	evaluates	to	the	bookmark	for
the	record	from	which	the	GetRows	operation	should	begin.	You	can	also	use	a
BookmarkEnum	value.

Fields			Optional.	A	Variant	that	represents	a	single	field	name	or	ordinal
position,	or	an	array	of	field	names	or	ordinal	position	numbers.	ADO	returns
only	the	data	in	these	fields.

Remarks

Use	the	GetRows	method	to	copy	records	from	a	Recordset	into	a	two-
dimensional	array.	The	first	subscript	identifies	the	field	and	the	second
identifies	the	record	number.	The	array	variable	is	automatically	dimensioned	to
the	correct	size	when	the	GetRows	method	returns	the	data.

If	you	do	not	specify	a	value	for	the	Rows	argument,	the	GetRows	method
automatically	retrieves	all	the	records	in	the	Recordset	object.	If	you	request
more	records	than	are	available,	GetRows	returns	only	the	number	of	available
records.

If	the	Recordset	object	supports	bookmarks,	you	can	specify	at	which	record	the
GetRows	method	should	begin	retrieving	data	by	passing	the	value	of	that
record's	Bookmark	property	in	the	Start	argument.

If	you	want	to	restrict	the	fields	that	the	GetRows	call	returns,	you	can	pass
either	a	single	field	name/number	or	an	array	of	field	names/numbers	in	the
Fields	argument.

After	you	call	GetRows,	the	next	unread	record	becomes	the	current	record,	or
the	EOF	property	is	set	to	True	if	there	are	no	more	records.

GetString	Method

				 				

Returns	the	Recordset	as	a	string.

Syntax

Set	Variant	=	recordset.GetString(StringFormat,	NumRows,

ColumnDelimiter,	RowDelimiter,	NullExpr)

Return	Value

Returns	the	Recordset	as	a	string-valued	Variant	(BSTR).

Parameters

StringFormat			A	StringFormatEnum	value	that	specifies	how	the	Recordset
should	be	converted	to	a	string.	The	RowDelimiter,	ColumnDelimiter,	and
NullExpr	parameters	are	used	only	with	a	StringFormat	of	adClipString.

NumRows			Optional.	The	number	of	rows	to	be	converted	in	the	Recordset.	If
NumRows	is	not	specified,	or	if	it	is	greater	than	the	total	number	of	rows	in	the
Recordset,	then	all	the	rows	in	the	Recordset	are	converted.

ColumnDelimiter			Optional.	A	delimiter	used	between	columns,	if	specified,

otherwise	the	TAB	character.

RowDelimiter			Optional.	A	delimiter	used	between	rows,	if	specified,	otherwise
the	CARRIAGE	RETURN	character.

NullExpr			Optional.	An	expression	used	in	place	of	a	null	value,	if	specified,
otherwise	the	empty	string.

Remarks

Row	data,	but	no	schema	data,	is	saved	to	the	string.	Therefore,	a	Recordset
cannot	be	reopened	using	this	string.

This	method	is	equivalent	to	the	RDO	GetClipString	method.

LoadFromFile	Method

				 				

Loads	the	contents	of	an	existing	file	into	a	Stream.

Syntax

Stream.LoadFromFile	FileName

Parameter

FileName			A	String	value	that	contains	the	name	of	a	file	to	be	loaded	into	the
Stream.	FileName	can	contain	any	valid	path	and	name	in	UNC	format.	If	the
specified	file	does	not	exist,	a	run-time	error	occurs.

Remarks

This	method	may	be	used	to	load	the	contents	of	a	local	file	into	a	Stream
object.	This	may	be	used	to	upload	the	contents	of	a	local	file	to	a	server.

The	Stream	object	must	be	already	open	before	calling	LoadFromFile.	This
method	does	not	change	the	binding	of	the	Stream	object;	it	will	still	be	bound
to	the	object	specified	by	the	URL	with	which	the	Stream	was	originally
opened.	LoadFromFile	overwrites	the	current	contents	of	the	Stream	object
with	data	read	from	the	file.

Any	existing	bytes	in	the	Stream	are	overwritten	by	the	contents	of	the	file.	Any
previously	existing	and	remaining	bytes	following	the	EOS	created	by
LoadFromFile,	are	truncated.

After	a	call	to	LoadFromFile,	the	current	position	is	set	to	the	beginning	of	the
Stream	(Position	is	0).

Move	Method

				 				

Moves	the	position	of	the	current	record	in	a	Recordset	object.

Syntax

recordset.Move	NumRecords,	Start

Parameters

NumRecords			A	signed	Long	expression	that	specifies	the	number	of	records
that	the	current	record	position	moves.

Start			Optional.	A	String	value	or	Variant	that	evaluates	to	a	bookmark.	You
can	also	use	a	BookmarkEnum	value.

Remarks

The	Move	method	is	supported	on	all	Recordset	objects.

If	the	NumRecords	argument	is	greater	than	zero,	the	current	record	position
moves	forward	(toward	the	end	of	the	Recordset).	If	NumRecords	is	less	than
zero,	the	current	record	position	moves	backward	(toward	the	beginning	of	the
Recordset).

If	the	Move	call	would	move	the	current	record	position	to	a	point	before	the
first	record,	ADO	sets	the	current	record	to	the	position	before	the	first	record	in
the	recordset	(BOF	is	True).	An	attempt	to	move	backward	when	the	BOF
property	is	already	True	generates	an	error.

If	the	Move	call	would	move	the	current	record	position	to	a	point	after	the	last
record,	ADO	sets	the	current	record	to	the	position	after	the	last	record	in	the
recordset	(EOF	is	True).	An	attempt	to	move	forward	when	the	EOF	property	is
already	True	generates	an	error.

Calling	the	Move	method	from	an	empty	Recordset	object	generates	an	error.

If	you	pass	the	Start	argument,	the	move	is	relative	to	the	record	with	this
bookmark,	assuming	the	Recordset	object	supports	bookmarks.	If	not	specified,
the	move	is	relative	to	the	current	record.

If	you	are	using	the	CacheSize	property	to	locally	cache	records	from	the
provider,	passing	a	NumRecords	argument	that	moves	the	current	record	position
outside	the	current	group	of	cached	records	forces	ADO	to	retrieve	a	new	group
of	records,	starting	from	the	destination	record.	The	CacheSize	property
determines	the	size	of	the	newly	retrieved	group,	and	the	destination	record	is
the	first	record	retrieved.

If	the	Recordset	object	is	forward	only,	a	user	can	still	pass	a	NumRecords
argument	less	than	zero,	provided	the	destination	is	within	the	current	set	of
cached	records.	If	the	Move	call	would	move	the	current	record	position	to	a
record	before	the	first	cached	record,	an	error	will	occur.	Thus,	you	can	use	a
record	cache	that	supports	full	scrolling	over	a	provider	that	supports	only
forward	scrolling.	Because	cached	records	are	loaded	into	memory,	you	should
avoid	caching	more	records	than	is	necessary.	Even	if	a	forward-only	Recordset
object	supports	backward	moves	in	this	way,	calling	the	MovePrevious	method
on	any	forward-only	Recordset	object	will	still	generate	an	error.

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
Methods

				 				

Moves	to	the	first,	last,	next,	or	previous	record	in	a	specified	Recordset	object
and	makes	that	record	the	current	record.

Syntax

recordset.{MoveFirst	|	MoveLast	|	MoveNext	|	MovePrevious}

Remarks

Use	the	MoveFirst	method	to	move	the	current	record	position	to	the	first	record
in	the	Recordset.

Use	the	MoveLast	method	to	move	the	current	record	position	to	the	last	record
in	the	Recordset.	The	Recordset	object	must	support	bookmarks	or	backward
cursor	movement;	otherwise,	the	method	call	will	generate	an	error.

Use	the	MoveNext	method	to	move	the	current	record	position	one	record
forward	(toward	the	bottom	of	the	Recordset).	If	the	last	record	is	the	current
record	and	you	call	the	MoveNext	method,	ADO	sets	the	current	record	to	the
position	after	the	last	record	in	the	Recordset	(EOF	is	True).	An	attempt	to
move	forward	when	the	EOF	property	is	already	True	generates	an	error.

In	cases	where	the	Recordset	has	been	filtered	or	sorted	and	the	current	record's
data	is	changed,	the	position	may	also	change.	In	such	cases	the	MoveNext
method	works	normally,	but	you	should	be	aware	that	the	position	is	moved	one
record	forward	from	the	new	position,	not	the	old	position.	For	example,
changing	the	data	in	the	current	record,	such	that	the	record	is	moved	to	the	end
of	the	sorted	Recordset,	would	mean	that	calling	MoveNext	results	in	ADO
setting	the	current	record	to	the	position	after	the	last	record	in	the	Recordset
(EOF	=	True).

Use	the	MovePrevious	method	to	move	the	current	record	position	one	record
backward	(toward	the	top	of	the	Recordset).	The	Recordset	object	must	support
bookmarks	or	backward	cursor	movement;	otherwise,	the	method	call	will
generate	an	error.	If	the	first	record	is	the	current	record	and	you	call	the
MovePrevious	method,	ADO	sets	the	current	record	to	the	position	before	the
first	record	in	the	Recordset	(BOF	is	True).	An	attempt	to	move	backward
when	the	BOF	property	is	already	True	generates	an	error.	If	the	Recordset
object	does	not	support	either	bookmarks	or	backward	cursor	movement,	the
MovePrevious	method	will	generate	an	error.

If	the	Recordset	is	forward	only	and	you	want	to	support	both	forward	and
backward	scrolling,	you	can	use	the	CacheSize	property	to	create	a	record	cache
that	will	support	backward	cursor	movement	through	the	Move	method.	Because
cached	records	are	loaded	into	memory,	you	should	avoid	caching	more	records
than	is	necessary.	You	can	call	the	MoveFirst	method	in	a	forward-only
Recordset	object;	doing	so	may	cause	the	provider	to	re-execute	the	command
that	generated	the	Recordset	object.

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
Methods	(RDS)

				 				

Moves	to	the	first,	last,	next,	or	previous	record	in	a	specified	Recordset	object.

Syntax

DataControl.Recordset.{MoveFirst	|	MoveLast	|	MoveNext	|

MovePrevious}

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Remarks

You	can	use	the	Move	methods	with	the	RDS.DataControl	object	to	navigate
through	the	data	records	in	the	data-bound	controls	on	a	Web	page.	For	example,
suppose	you	display	a	Recordset	in	a	grid	by	binding	to	an	RDS.DataControl
object.	You	can	then	include	First,	Last,	Next,	and	Previous	buttons	that	users
can	click	to	move	to	the	first,	last,	next,	or	previous	record	in	the	displayed
Recordset.	You	do	this	by	calling	the	MoveFirst,	MoveLast,	MoveNext,	and
MovePrevious	methods	of	the	RDS.DataControl	object	in	the	onClick
procedures	for	the	First,	Last,	Next,	and	Previous	buttons,	respectively.	The

Address	Book	example	shows	how	to	do	this.

MoveRecord	Method

				 				

Moves	a	file,	or	a	directory	and	its	contents,	to	another	location.

Syntax

MoveRecord	(Source,	Destination,	UserName,	Password,	Options,

Async)

Parameters

Source			Optional.	A	String	value	that	contains	a	URL	identifying	the	Record	to
be	moved.	If	Source	is	omitted	or	specifies	an	empty	string,	the	file	or	directory
represented	by	this	Record	is	moved.

Destination			Optional.	A	String	value	that	contains	a	URL	specifying	the
location	where	Source	will	be	moved.

UserName			Optional.	A	String	value	that	contains	the	user	ID	that,	if	needed,
authorizes	access	to	Destination.

Password			Optional.	A	String	that	contains	the	password	that,	if	needed,	verifies
UserName.

Options			Optional.	A	MoveRecordOptionsEnum	value	whose	default	value	is
adMoveUnspecified.	Specifies	the	behavior	of	this	method.

Async			Optional.	A	Boolean	value	that,	when	True,	specifies	this	operation
should	be	asynchronous.

Return	Value

A	String	value.	Typically,	the	value	of	Destination	is	returned.	However,	the
exact	value	returned	is	provider-dependent.

Remarks

The	values	of	Source	and	Destination	must	not	be	identical;	otherwise,	a	run-
time	error	occurs.	At	least	the	server,	path,	and	resource	names	must	differ.

This	method	updates	all	hypertext	links	in	files	being	moved	unless	otherwise
specified	by	Options.	This	method	fails	if	Destination	identifies	an	existing	file
or	directory,	unless	adMoveOverWrite	is	specified.

Note			Use	the	adMoveOverWrite	option	judiciously.	For	example,	specifying
this	option	when	moving	a	file	to	a	directory	will	delete	the	directory	and	replace
it	with	the	file.

Certain	attributes	of	the	Record	object,	such	as	the	ParentURL	property,	will	not
be	updated	after	this	operation	completes.	Refresh	the	Record	object's	properties
by	closing	the	Record,	then	re-opening	it	with	the	URL	of	the	location	where	the
file	or	directory	was	moved.

If	this	Record	was	obtained	from	a	Recordset,	the	new	location	of	the	moved
file	or	directory	will	not	be	reflected	immediately	in	the	Recordset.	Refresh	the
Recordset	by	closing	and	re-opening	it.

NextRecordset	Method

				 				

Clears	the	current	Recordset	object	and	returns	the	next	Recordset	by	advancing
through	a	series	of	commands.

Syntax

Set	recordset2	=	recordset1.NextRecordset(RecordsAffected)

Return	Value

Returns	a	Recordset	object.	In	the	syntax	model,	recordset1	and	recordset2	can
be	the	same	Recordset	object,	or	you	can	use	separate	objects.	When	using
separate	Recordset	objects,	resetting	the	ActiveConnection	property	on	the
original	Recordset	(recordset1)	after	NextRecordset	has	been	called	will
generate	an	error.

Parameters

RecordsAffected			Optional.	A	Long	variable	to	which	the	provider	returns	the
number	of	records	that	the	current	operation	affected.

Note			This	parameter	only	returns	the	number	of	records	affected	by	an
operation;	it	does	not	return	a	count	of	records	from	a	select	statement	used	to

generate	the	Recordset.

Remarks

Use	the	NextRecordset	method	to	return	the	results	of	the	next	command	in	a
compound	command	statement	or	of	a	stored	procedure	that	returns	multiple
results.	If	you	open	a	Recordset	object	based	on	a	compound	command
statement	(for	example,	"SELECT	*	FROM	table1;SELECT	*	FROM	table2")
using	the	Execute	method	on	a	Command	or	the	Open	method	on	a	Recordset,
ADO	executes	only	the	first	command	and	returns	the	results	to	recordset.	To
access	the	results	of	subsequent	commands	in	the	statement,	call	the
NextRecordset	method.

As	long	as	there	are	additional	results	and	the	Recordset	containing	the
compound	statements	is	not	marshaled	across	process	boundaries,	the
NextRecordset	method	will	continue	to	return	Recordset	objects.	If	a	row-
returning	command	returns	no	records,	the	returned	Recordset	object	will	be
empty.	Test	for	this	case	by	verifying	that	the	BOF	and	EOF	properties	are	both
True.	If	a	non–row-returning	command	executes	successfully,	the	returned
Recordset	object	will	be	closed,	which	you	can	verify	by	testing	the	State
property	on	the	Recordset.	When	there	are	no	more	results,	recordset	will	be	set
to	Nothing.

Remote	Data	Service	Usage			The	NextRecordset	method	is	not	available	on	a
client-side	Recordset	object.

If	an	edit	is	in	progress	while	in	immediate	update	mode,	calling	the
NextRecordset	method	generates	an	error;	call	the	Update	or	CancelUpdate
method	first.

To	pass	parameters	for	more	than	one	command	in	the	compound	statement	by
filling	the	Parameters	collection,	or	by	passing	an	array	with	the	original	Open
or	Execute	call,	the	parameters	must	be	in	the	same	order	in	the	collection	or
array	as	their	respective	commands	in	the	command	series.	You	must	finish
reading	all	the	results	before	reading	output	parameter	values.

When	you	call	the	NextRecordset	method,	ADO	executes	only	the	next
command	in	the	statement.	If	you	explicitly	close	the	Recordset	object	before
stepping	through	the	entire	command	statement,	ADO	never	executes	the
remaining	commands.

Open	Method	(ADO	Connection)

				 				

Opens	a	connection	to	a	data	source.

Syntax

connection.Open	ConnectionString,	UserID,	Password,	Options

Parameters

ConnectionString			Optional.	A	String	value	that	contains	connection
information.	See	the	ConnectionString	property	for	details	on	valid	settings.

UserID			Optional.	A	String	value	that	contains	a	user	name	to	use	when
establishing	the	connection.

Password			Optional.	A	String	value	that	contains	a	password	to	use	when
establishing	the	connection.

Options			Optional.	A	ConnectOptionEnum	value	that	determines	whether	this
method	should	return	after	(synchronously)	or	before	(asynchronously)	the
connection	is	established.

Remarks

Using	the	Open	method	on	a	Connection	object	establishes	the	physical
connection	to	a	data	source.	After	this	method	successfully	completes,	the
connection	is	live	and	you	can	issue	commands	against	it	and	process	the	results.

Use	the	optional	ConnectionString	argument	to	specify	either	a	connection	string
containing	a	series	of	argument	=	value	statements	separated	by	semicolons,	or	a
file	or	directory	resource	identified	with	a	URL.	The	ConnectionString	property
automatically	inherits	the	value	used	for	the	ConnectionString	argument.
Therefore,	you	can	either	set	the	ConnectionString	property	of	the	Connection
object	before	opening	it,	or	use	the	ConnectionString	argument	to	set	or	override
the	current	connection	parameters	during	the	Open	method	call.

If	you	pass	user	and	password	information	both	in	the	ConnectionString
argument	and	in	the	optional	UserID	and	Password	arguments,	the	UserID	and
Password	arguments	will	override	the	values	specified	in	ConnectionString.

When	you	have	concluded	your	operations	over	an	open	Connection,	use	the
Close	method	to	free	any	associated	system	resources.	Closing	an	object	does
not	remove	it	from	memory;	you	can	change	its	property	settings	and	use	the
Open	method	to	open	it	again	later.	To	completely	eliminate	an	object	from
memory,	set	the	object	variable	to	Nothing.

Remote	Data	Service	Usage			When	used	on	a	client-side	Connection	object,
the	Open	method	doesn't	actually	establish	a	connection	to	the	server	until	a
Recordset	is	opened	on	the	Connection	object.

Open	Method	(ADO	Record)

				 				

Opens	an	existing	Record	object,	or	creates	a	new	file	or	directory.

Syntax

Open	Source,	ActiveConnection,	Mode,	CreateOptions,	Options,

UserName,	Password

Parameters

Source			Optional.	A	Variant	that	represents	the	URL	of	the	entity	to	be
represented	by	this	Record	object,	or	a	row	of	an	open	Recordset	object.

ActiveConnection			Optional.	A	Variant	that	represents	the	connect	string	or
open	Connection	object	that	specifies	the	file	or	directories	(that	is,	the	context)
over	which	subsequent	Record	operations	apply.

Mode			Optional.	A	ConnectModeEnum	value,	whose	default	value	is
adModeUnknown,	that	specifies	the	access	mode	for	the	resultant	Record
object.

CreateOptions			Optional.	A	RecordCreateOptionsEnum	value,	whose	default
value	is	adFailIfNotExists,	that	specifies	whether	an	existing	file	or	directory

should	be	opened,	or	a	new	file	or	directory	should	be	created.	If	set	to	the
default	value,	the	access	mode	is	obtained	from	the	Mode	property.

Options			Optional.	A	RecordOpenOptionsEnum	value,	whose	default	value	is
adOpenRecordUnspecified,	that	specifies	options	for	opening	the	Record.
These	values	may	be	combined.

UserName			Optional.	A	String	value	that	contains	the	user	ID	that,	if	needed,
authorizes	access	to	Source.

Password			Optional.	A	String	value	that	contains	the	password	that,	if	needed,
verifies	UserName.

Remarks

Source	may	be:

An	absolute	URL.	Source	points	to	an	existing	file	or	directory.	If
ActiveConnection	is	not	specified,	Source	is	used	to	implicitly	create	a
Connection	object.

A	relative	URL.	In	this	case,	ActiveConnection	sets	the	context	in	which	the
relative	URL	is	defined	and	must	contain	a	valid	Connection	object,
absolute	URL,	or	a	Record	object	that	represents	a	directory.

An	open	Recordset	object.	The	opened	Record	object	represents	the	current
row	in	the	Recordset.	You	cannot	open	a	local	Record	using	a	proxy	of	a
Recordset	such	as	that	provided	by	a	custom	business	object	in	the	middle
tier.

The	user	must	position	the	Recordset	to	the	desired	row	before	opening	the
Record	object.

The	Record	object	inherits	the	Recordset	object's	immediate	or	batch
update	mode.	When	in	batch	mode,	the	changes	made	to	the	Record	object
are	submitted	to	the	data	source	when	the	UpdateBatch	method	is	called	on
the	Recordset.

The	Recordset	object's	Fields	collection	may	be	used	to	access	the
OriginalValue	and	UnderlyingValue	properties	of	fields	common	to	the

Record	and	Recordset	objects.	However,	there	is	no	way	to	view	these
properties	for	fields	that	exist	solely	on	the	Record	object.

CreateOptions	cannot	be	used	if	the	source	is	a	Recordset	object	because	it
is	not	possible	to	create	new	rows	directly	in	a	Recordset.

The	open	Recordset	may	not	reflect	the	new	Record	until	the	Recordset	is
closed	and	re-opened.

A	run-time	error	occurs	if	the	Recordset	is	positioned	at	BOF	or	EOF,	does
not	contain	rows,	the	underlying	provider	does	not	support	Record	objects,
or	CreateOptions	is	specified.

If	the	Record	object	represents	an	entity	that	cannot	be	accessed	with	a	URL	(for
example,	a	row	of	a	Recordset	derived	from	a	database),	then	the	values	of	both
the	ParentURL	property	and	the	field	accessed	with	the	adRecordURL	constant
are	null.

Usage

The	following	valid	Open	statements	use	the	Web	site,	sample.microsoft.com,
merely	as	an	example	of	a	URL.

In	the	first	statement,	the	source	is	the	URL	of	a	folder.	A	Connection	will	be
created	implicitly	from	the	URL.

Dim	Record	As	ADODB.Record

Set	Record	=	New	ADODB.Record

Record.Open	"http://sample.microsoft.com/myfolder/"

In	the	second	statement,	the	source	is	a	URL	in	the	context	of	the	given
connection	string.	The	"URL="	keyword	specifies	that	the	connection	string	is	a
URL.

Dim	Record	As	ADODB.Record

Set	Record	=	New	ADODB.Record

Record.Open	"mysubfolder",	"URL=http://sample.microsoft.com/myfolder/"

In	the	third	statement,	the	source	is	a	relative	URL	in	the	context	of	the	given,
open	Connection	object.

Dim	Connection	As	ADODB.Connection

Dim	Record	As	ADODB.Record

Set	Connection	=	New	ADODB.Connection

Set	Record	=	New	ADODB.Record

Connection.Open	"URL=http://sample.microsoft.com/myfolder/"

Record.Open	"mydoc.doc",	Connection

In	the	fourth	statement,	the	source	is	a	relative	URL	in	the	context	of	an	open
Record	object	that	represents	a	directory.

Dim	Record	As	ADODB.Record

Dim	anotherRecord	As	ADODB.Record

Set	Record	=	New	ADODB.Record

Set	anotherRecord	=	New	ADODB.Record

anotherRecord.Open	"http://sample.microsoft.com/myfolder/"

Record.Open	"mydoc.doc",	anotherRecord

In	the	fifth	statement,	the	source	is	the	current	row	of	an	open	Recordset.	When
the	URL	keyword	is	used	in	the	Connection	parameter	of	the	Recordset	Open
method,	you	should	specify	adCmdTableDirect	in	the	Options	parameter.

Dim	Recordset	As	ADODB.Recordset

Set	Recordset	=	New	ADODB.Recordset

Recordset.Open	"mydoc.doc",	_

			"URL=http://sample.microsoft.com/myfolder/",,,adCmdTableDirect

Recordset.MoveLast()	

Record.Open	Recordset

Open	Method	(ADO	Recordset)

				 				

Opens	a	cursor.

Syntax

recordset.Open	Source,	ActiveConnection,	CursorType,	LockType,

Options

Parameters

Source			Optional.	A	Variant	that	evaluates	to	a	valid	Command	object,	an	SQL
statement,	a	table	name,	a	stored	procedure	call,	a	URL,	or	the	name	of	a	file	or
Stream	object	containing	a	persistently	stored	Recordset.

ActiveConnection			Optional.	Either	a	Variant	that	evaluates	to	a	valid
Connection	object	variable	name,	or	a	String	that	contains	ConnectionString
parameters.

CursorType			Optional.	A	CursorTypeEnum	value	that	determines	the	type	of
cursor	that	the	provider	should	use	when	opening	the	Recordset.	The	default
value	is	adOpenForwardOnly.

LockType			Optional.	A	LockTypeEnum	value	that	determines	what	type	of

locking	(concurrency)	the	provider	should	use	when	opening	the	Recordset.	The
default	value	is	adLockReadOnly.

Options			Optional.	A	Long	value	that	indicates	how	the	provider	should
evaluate	the	Source	argument	if	it	represents	something	other	than	a	Command
object,	or	that	the	Recordset	should	be	restored	from	a	file	where	it	was
previously	saved.	Can	be	one	or	more	CommandTypeEnum	or
ExecuteOptionEnum	values.

Note			If	you	open	a	Recordset	from	a	Stream	containing	a	persisted
Recordset,	using	an	ExecuteOptionEnum	value	of
adAsyncFetchNonBlocking	will	not	have	an	effect;	the	fetch	will	be
synchronous	and	blocking.

Remarks

Using	the	Open	method	on	a	Recordset	object	opens	a	cursor	that	represents
records	from	a	base	table,	the	results	of	a	query,	or	a	previously	saved
Recordset.

Use	the	optional	Source	argument	to	specify	a	data	source	using	one	of	the
following:	a	Command	object	variable,	an	SQL	statement,	a	stored	procedure,	a
table	name,	a	URL,	or	a	complete	file	path	name.	If	Source	is	a	file	path	name,	it
can	be	a	full	path	("c:\dir\file.rst"),	a	relative	path	("..\file.rst"),	or	a	URL
("http://files/file.rst").

The	ActiveConnection	argument	corresponds	to	the	ActiveConnection	property
and	specifies	in	which	connection	to	open	the	Recordset	object.	If	you	pass	a
connection	definition	for	this	argument,	ADO	opens	a	new	connection	using	the
specified	parameters.	You	can	change	the	value	of	this	property	after	opening	the
Recordset	to	send	updates	to	another	provider.	Or,	you	can	set	this	property	to
Nothing	(in	Microsoft	Visual	Basic)	to	disconnect	the	Recordset	from	any
provider.

For	the	other	arguments	that	correspond	directly	to	properties	of	a	Recordset
object	(Source,	CursorType,	and	LockType),	the	relationship	of	the	arguments	to
the	properties	is	as	follows:

The	property	is	read/write	before	the	Recordset	object	is	opened.

The	property	settings	are	used	unless	you	pass	the	corresponding	arguments
when	executing	the	Open	method.	If	you	pass	an	argument,	it	overrides	the
corresponding	property	setting,	and	the	property	setting	is	updated	with	the
argument	value.

After	you	open	the	Recordset	object,	these	properties	become	read-only.

Note			The	ActiveConnection	property	is	read	only	for	Recordset	objects
whose	Source	property	is	set	to	a	valid	Command	object,	even	if	the
Recordset	object	isn't	open.

If	you	pass	a	Command	object	in	the	Source	argument	and	also	pass	an
ActiveConnection	argument,	an	error	occurs.	The	ActiveConnection	property	of
the	Command	object	must	already	be	set	to	a	valid	Connection	object	or
connection	string.

If	you	pass	something	other	than	a	Command	object	in	the	Source	argument,
you	can	use	the	Options	argument	to	optimize	evaluation	of	the	Source
argument.	If	the	Options	argument	is	not	defined,	you	may	experience
diminished	performance	because	ADO	must	make	calls	to	the	provider	to
determine	if	the	argument	is	an	SQL	statement,	a	stored	procedure,	a	URL,	or	a
table	name.	If	you	know	what	Source	type	you're	using,	setting	the	Options
argument	instructs	ADO	to	jump	directly	to	the	relevant	code.	If	the	Options
argument	does	not	match	the	Source	type,	an	error	occurs.

If	you	pass	a	Stream	object	in	the	Source	argument,	you	should	not	pass
information	into	the	other	arguments.	Doing	so	will	generate	an	error.	The
ActiveConnection	information	is	not	retained	when	a	Recordset	is	opened	from
a	Stream.

The	default	for	the	Options	argument	is	adCmdFile	if	no	connection	is
associated	with	the	Recordset.	This	will	typically	be	the	case	for	persistently
stored	Recordset	objects.

If	the	data	source	returns	no	records,	the	provider	sets	both	the	BOF	and	EOF
properties	to	True,	and	the	current	record	position	is	undefined.	You	can	still	add
new	data	to	this	empty	Recordset	object	if	the	cursor	type	allows	it.

When	you	have	concluded	your	operations	over	an	open	Recordset	object,	use
the	Close	method	to	free	any	associated	system	resources.	Closing	an	object

does	not	remove	it	from	memory;	you	can	change	its	property	settings	and	use
the	Open	method	to	open	it	again	later.	To	completely	eliminate	an	object	from
memory,	set	the	object	variable	to	Nothing.

Before	the	ActiveConnection	property	is	set,	call	Open	with	no	operands	to
create	an	instance	of	a	Recordset	created	by	appending	fields	to	the	Recordset
Fields	collection.

If	you	have	set	the	CursorLocation	property	to	adUseClient,	you	can	retrieve
rows	asynchronously	in	one	of	two	ways.	The	recommended	method	is	to	set
Options	to	adAsyncFetch.	Alternatively,	you	can	use	the	"Asynchronous
Rowset	Processing"	dynamic	property	in	the	Properties	collection,	but	related
retrieved	events	can	be	lost	if	you	do	not	set	the	Options	parameter	to
adAsyncFetch.

Note			Background	fetching	in	the	MS	Remote	provider	is	supported	only
through	the	Open	method's	Options	parameter.

Open	Method	(ADO	Stream)

				 				

Opens	a	Stream	object	to	manipulate	streams	of	binary	or	text	data.

Syntax

Stream.Open	Source,	Mode,	OpenOptions,	UserName,	Password

Parameters

Source			Optional.	A	Variant	value	that	specifies	the	source	of	data	for	the
Stream.	Source	may	contain	an	absolute	URL	string	that	points	to	an	existing
node	in	a	well-known	tree	structure,	like	an	e-mail	or	file	system.	A	URL	should
be	specified	using	the	URL	keyword	("URL=http://server/folder").	Alternately,
Source	may	contain	a	reference	to	an	already	open	Record	object,	which	opens
the	default	stream	associated	with	the	Record.	If	Source	is	not	specified,	a
Stream	is	instantiated	and	opened,	associated	with	no	underlying	source	by
default.

Mode			Optional.	A	ConnectModeEnum	value	that	specifies	the	access	mode	for
the	resultant	Stream	(for	example,	read/write	or	read-only).	Default	value	is
adModeUnknown.	See	the	Mode	property	for	more	information	about	access
modes.	If	Mode	is	not	specified,	it	is	inherited	by	the	source	object.	For	example,
if	the	source	Record	is	opened	in	read-only	mode,	the	Stream	will	also	be

opened	in	read-only	mode	by	default.

OpenOptions			Optional.	A	StreamOpenOptionsEnum	value.	Default	value	is
adOpenStreamUnspecified.

UserName			Optional.	A	String	value	that	contains	the	user	identification	that,	if
needed,	accesses	the	Stream	object.

Password			Optional.	A	String	value	that	contains	the	password	that,	if	needed,
accesses	the	Stream	object.

Remarks

When	a	Record	object	is	passed	in	as	the	source	parameter,	the	UserID	and
Password	parameters	are	not	used	because	access	to	the	Record	object	is	already
available.	Similarly,	the	Mode	of	the	Record	object	is	transferred	to	the	Stream
object.

When	Source	is	not	specified,	the	Stream	opened	contains	no	data	and	has	a
Size	of	zero	(0).	To	avoid	losing	any	data	that	is	written	to	this	Stream	when	the
Stream	is	closed,	save	the	Stream	with	the	CopyTo	or	SaveToFile	methods,	or
save	it	to	another	memory	location.

While	the	Stream	is	not	open,	it	is	possible	to	read	all	the	read-only	properties
of	the	Stream.	If	a	Stream	is	opened	asynchronously,	all	subsequent	operations
(other	than	checking	the	State	and	other	read-only	properties)	are	blocked	until
the	Open	operation	is	completed.

OpenSchema	Method

				 				

Obtains	database	schema	information	from	the	provider.

Syntax

Set	recordset	=	connection.OpenSchema	(QueryType,	Criteria,

SchemaID)

Return	Values

Returns	a	Recordset	object	that	contains	schema	information.	The	Recordset
will	be	opened	as	a	read-only,	static	cursor.	The	QueryType	determines	what
columns	appear	in	the	Recordset.

Parameters

QueryType			Any	SchemaEnum	value	that	represents	the	type	of	schema	query	to
run.

Criteria			Optional.	An	array	of	query	constraints	for	each	QueryType	option,	as
listed	in	SchemaEnum.

SchemaID			The	GUID	for	a	provider-schema	query	not	defined	by	the	OLE	DB

specification.	This	parameter	is	required	if	QueryType	is	set	to
adSchemaProviderSpecific;	otherwise,	it	is	not	used.

Remarks

The	OpenSchema	method	returns	self-descriptive	information	about	the	data
source,	such	as	what	tables	are	in	the	data	source,	the	columns	in	the	tables,	and
the	data	types	supported.

The	QueryType	argument	is	a	GUID	that	indicates	the	columns	(schemas)
returned.	The	OLE	DB	specification	has	a	full	list	of	schemas.

The	Criteria	argument	limits	the	results	of	a	schema	query.	Criteria	specifies	an
array	of	values	that	must	occur	in	a	corresponding	subset	of	columns,	called
constraint	columns,	in	the	resulting	Recordset.

The	constant	adSchemaProviderSpecific	is	used	for	the	QueryType	argument	if
the	provider	defines	its	own	nonstandard	schema	queries	outside	those	listed
above.	When	this	constant	is	used,	the	SchemaID	argument	is	required	to	pass
the	GUID	of	the	schema	query	to	execute.	If	QueryType	is	set	to
adSchemaProviderSpecific	but	SchemaID	is	not	provided,	an	error	will	result.

Providers	are	not	required	to	support	all	of	the	OLE	DB	standard	schema
queries.	Specifically,	only	adSchemaTables,	adSchemaColumns,	and
adSchemaProviderTypes	are	required	by	the	OLE	DB	specification.	However,
the	provider	is	not	required	to	support	the	Criteria	constraints	listed	above	for
those	schema	queries.

Remote	Data	Service	Usage			The	OpenSchema	method	is	not	available	on	a
client-side	Connection	object.

Note			In	Visual	Basic,	columns	that	have	a	four-byte	unsigned	integer
(DBTYPE	UI4)	in	the	Recordset	returned	from	the	OpenSchema	method	on
the	Connection	object	cannot	be	compared	to	other	variables.	For	more
information	about	OLE	DB	data	types,	see	Chapter	13	and	Appendix	A	of	the
Microsoft	OLE	DB	Programmer's	Reference.

mk:@MSITStore:OLEDB.chm::/htm/oledbData_Types_in_OLE_DB.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbData_Types.htm

Query	Method	(RDS)

				 				

Uses	a	valid	SQL	query	string	to	return	a	Recordset.

Syntax

Set	Recordset	=	DataFactory.Query(Connection,	Query)

Parameters

Recordset			An	object	variable	that	represents	a	Recordset	object.

DataFactory			An	object	variable	that	represents	an	RDSServer.DataFactory
object.

Connection			A	String	value	that	contains	the	server	connection	information.
This	is	similar	to	the	Connect	property.

Query			A	String	that	contains	the	SQL	query.

Remarks

The	query	should	use	the	SQL	dialect	of	the	database	server.	A	result	status	is
returned	if	there	is	an	error	with	the	query	that	was	executed.	The	Query	method

doesn't	perform	any	syntax	checking	on	the	Query	string.

Read	Method

				 				

Reads	a	specified	number	of	bytes	from	a	binary	Stream	object.

Syntax

Variant	=	Stream.Read	(NumBytes)

Parameters

NumBytes			Optional.	A	Long	value	that	specifies	the	number	of	bytes	to	read
from	the	file	or	the	StreamReadEnum	value	adReadAll,	which	is	the	default.

Return	Value

The	Read	method	reads	a	specified	number	of	bytes	or	the	entire	stream	from	a
Stream	object	and	returns	the	resulting	data	as	a	Variant.

Remarks

If	NumBytes	is	more	than	the	number	of	bytes	left	in	the	Stream,	only	the	bytes
remaining	are	returned.	The	data	read	is	not	padded	to	match	the	length	specified
by	NumBytes.	If	there	are	no	bytes	left	to	read,	a	variant	with	a	null	value	is
returned.	Read	cannot	be	used	to	read	backwards.

Note			NumBytes	always	measures	bytes.	For	text	Stream	objects,	use	ReadText.

ReadText	Method

				 				

Reads	specified	number	of	characters	from	a	text	Stream	object.

Syntax

String	=	Stream.ReadText	(NumChars)

Parameters

NumChars			Optional.	A	Long	value	that	specifies	the	number	of	characters	to
read	from	the	file,	or	a	StreamReadEnum	value.	The	default	value	is	adReadAll.

Return	Value

The	ReadText	method	reads	a	specified	number	of	characters,	an	entire	line,	or
the	entire	stream	from	a	Stream	object	and	returns	the	resulting	string.

Remarks

If	NumChar	is	more	than	the	number	of	characters	left	in	the	stream,	only	the
characters	remaining	are	returned.	The	string	read	is	not	padded	to	match	the
length	specified	by	NumChar.	If	there	are	no	characters	left	to	read,	a	variant
whose	value	is	null	is	returned.	ReadText	cannot	be	used	to	read	backwards.

The	ReadText	method	is	used	with	text	streams	(Type	is	adTypeText).	For
binary	streams,	use	Read.

Refresh	Method

				 				

Updates	the	objects	in	a	collection	to	reflect	objects	available	from,	and	specific
to,	the	provider.

Syntax

collection.Refresh

Remarks

The	Refresh	method	accomplishes	different	tasks	depending	on	the	collection
from	which	you	call	it.

Parameters

Using	the	Refresh	method	on	a	Command	object's	Parameters	collection
retrieves	provider-side	parameter	information	for	the	stored	procedure	or
parameterized	query	specified	in	the	Command	object.	The	collection	will	be
empty	for	providers	that	do	not	support	stored	procedure	calls	or	parameterized
queries.

You	should	set	the	ActiveConnection	property	of	the	Command	object	to	a	valid
Connection	object,	the	CommandText	property	to	a	valid	command,	and	the

CommandType	property	to	adCmdStoredProc	before	calling	the	Refresh
method.

If	you	access	the	Parameters	collection	before	calling	the	Refresh	method,
ADO	will	automatically	call	the	method	and	populate	the	collection	for	you.

Note			If	you	use	the	Refresh	method	to	obtain	parameter	information	from	the
provider	and	it	returns	one	or	more	variable-length	data	type	Parameter	objects,
ADO	may	allocate	memory	for	the	parameters	based	on	their	maximum
potential	size,	which	will	cause	an	error	during	execution.	You	should	explicitly
set	the	Size	property	for	these	parameters	before	calling	the	Execute	method	to
prevent	errors.

Fields

Using	the	Refresh	method	on	the	Fields	collection	has	no	visible	effect.	To
retrieve	changes	from	the	underlying	database	structure,	you	must	use	either	the
Requery	method	or,	if	the	Recordset	object	does	not	support	bookmarks,	the
MoveFirst	method.

Properties

Using	the	Refresh	method	on	a	Properties	collection	of	some	objects	populates
the	collection	with	the	dynamic	properties	that	the	provider	exposes.	These
properties	provide	information	about	functionality	specific	to	the	provider,
beyond	the	built-in	properties	ADO	supports.

Refresh	Method	(RDS)

				 				

Requeries	the	data	source	specified	in	the	Connect	property	and	updates	the
query	results.

Syntax

DataControl.Refresh

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

Remarks

You	must	set	the	Connect,	Server,	and	SQL	properties	before	you	use	the
Refresh	method.	All	data-bound	controls	on	the	form	associated	with	an
RDS.DataControl	object	will	reflect	the	new	set	of	records.	Any	pre-existing
Recordset	object	is	released,	and	any	unsaved	changes	are	discarded.	The
Refresh	method	automatically	makes	the	first	record	the	current	record.

It's	a	good	idea	to	call	the	Refresh	method	periodically	when	you	work	with
data.	If	you	retrieve	data,	and	then	leave	it	on	your	client	machine	for	a	while,	it
is	likely	to	become	out	of	date.	It's	possible	that	any	changes	you	make	will	fail,

because	someone	else	might	have	changed	the	record	and	submitted	changes
before	you.

Requery	Method

				 				

Updates	the	data	in	a	Recordset	object	by	re-executing	the	query	on	which	the
object	is	based.

Syntax

recordset.Requery	Options

Parameter

Options			Optional.	A	bitmask	that	contains	an	ExecuteOptionEnum	value
affecting	this	operation.	If	this	parameter	is	set	to	adAsyncExecute,	this
operation	will	execute	asynchronously	and	a	RecordsetChangeComplete	event
will	be	issued	when	it	concludes.

Remarks

Use	the	Requery	method	to	refresh	the	entire	contents	of	a	Recordset	object
from	the	data	source	by	reissuing	the	original	command	and	retrieving	the	data	a
second	time.	Calling	this	method	is	equivalent	to	calling	the	Close	and	Open
methods	in	succession.	If	you	are	editing	the	current	record	or	adding	a	new
record,	an	error	occurs.

While	the	Recordset	object	is	open,	the	properties	that	define	the	nature	of	the
cursor	(CursorType,	LockType,	MaxRecords,	and	so	forth)	are	read-only.	Thus,
the	Requery	method	can	only	refresh	the	current	cursor.	To	change	any	of	the
cursor	properties	and	view	the	results,	you	must	use	the	Close	method	so	that	the
properties	become	read/write	again.	You	can	then	change	the	property	settings
and	call	the	Open	method	to	reopen	the	cursor.

Reset	Method	(RDS)

				 				

Executes	the	sort	or	filter	on	a	client-side	Recordset	based	on	the	specified	sort
and	filter	properties.

Syntax

DataControl.Reset(value)

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

value			Optional.	A	Boolean	value	that	is	True	(default)	if	you	want	to	filter	on
the	current	"filtered"	rowset.	False	indicates	that	you	filter	on	the	original
rowset,	removing	any	previous	filter	options.

Remarks

The	SortColumn,	SortDirection,	FilterValue,	FilterCriterion,	and	FilterColumn
properties	provide	sorting	and	filtering	functionality	on	the	client-side	cache.
The	sorting	functionality	orders	records	by	values	from	one	column.	The
filtering	functionality	displays	a	subset	of	records	based	on	a	find	criteria,	while
the	full	Recordset	is	maintained	in	the	cache.	The	Reset	method	will	execute	the

criteria	and	replace	the	current	Recordset	with	an	updatable	Recordset.

If	there	are	changes	to	the	original	data	that	haven't	yet	been	submitted,	the
Reset	method	will	fail.	First,	use	the	SubmitChanges	method	to	save	any
changes	in	a	read/write	Recordset,	and	then	use	the	Reset	method	to	sort	or
filter	the	records.

If	you	want	to	perform	more	than	one	filter	on	your	rowset,	you	can	use	the
optional	Boolean	argument	with	the	Reset	method.	The	following	example
shows	how	to	do	this:

ADC.SQL	=	"Select	au_lname	from	authors"

ADC.Refresh				'	Get	the	new	rowset.

ADC.FilterColumn	=	"au_lname"

ADC.FilterCriterion	=	"<"

ADC.FilterValue	=	"'M'"

ADC.Reset									'	Rowset	now	has	all	Last	Names	<	"M".

ADC.FilterCriterion	=	">"

ADC.FilterValue	=	"'F'"

'	Passing	True	is	not	necessary,	because	it	is	the	

'	default	filter	on	the	current	"filtered"	rowset.

ADC.Reset(TRUE)					'	Rowset	now	has	all	Last	

																				'	Names	<	"M"	and	>	"F".

ADC.FilterCriterion	=	">"

ADC.FilterValue	=	"'T'"

'	Filter	on	the	original	rowset,	throwing	out	the

'	previous	filter	options.

ADC.Reset(FALSE)			'	Rowset	now	has	all	Last	Names	>	"T".

Resync	Method

				 				

Refreshes	the	data	in	the	current	Recordset	object,	or	Fields	collection	of	a
Record	object,	from	the	underlying	database.

Syntax

Recordset.Resync	AffectRecords,	ResyncValues

Record.Fields.Resync	ResyncValues

Parameters

AffectRecords			Optional.	An	AffectEnum	value	that	determines	how	many
records	the	Resync	method	will	affect.	The	default	value	is	adAffectAll.	This
value	is	not	available	with	the	Resync	method	of	the	Fields	collection	of	a
Record	object.

ResyncValues			Optional.	A	ResyncEnum	value	that	specifies	whether	underlying
values	are	overwritten.	The	default	value	is	adResyncAllValues.

Remarks

Recordset

Use	the	Resync	method	to	resynchronize	records	in	the	current	Recordset	with
the	underlying	database.	This	is	useful	if	you	are	using	either	a	static	or	forward-
only	cursor,	but	you	want	to	see	any	changes	in	the	underlying	database.

If	you	set	the	CursorLocation	property	to	adUseClient,	Resync	is	only	available
for	non-read-only	Recordset	objects.

Unlike	the	Requery	method,	the	Resync	method	does	not	re-execute	the
Recordset	object's	underlying	command.	New	records	in	the	underlying
database	will	not	be	visible.

If	the	attempt	to	resynchronize	fails	because	of	a	conflict	with	the	underlying
data	(for	example,	a	record	has	been	deleted	by	another	user),	the	provider
returns	warnings	to	the	Errors	collection	and	a	run-time	error	occurs.	Use	the
Filter	property	(adFilterConflictingRecords)	and	the	Status	property	to	locate
records	with	conflicts.

If	the	Unique	Table	and	Resync	Command	dynamic	properties	are	set,	and	the
Recordset	is	the	result	of	executing	a	JOIN	operation	on	multiple	tables,	then
the	Resync	method	will	execute	the	command	given	in	the	Resync	Command
property	only	on	the	table	named	in	the	Unique	Table	property.

Fields

Use	the	Resync	method	to	resynchronize	the	values	of	the	Fields	collection	of	a
Record	object	with	the	underlying	data	source.	The	Count	property	is	not
affected	by	this	method.

If	ResyncValues	is	set	to	adResyncAllValues	(the	default	value),	then	the
UnderlyingValue,	Value,	and	OriginalValue	properties	of	Field	objects	in	the
collection	are	synchronized.	If	ResyncValues	is	set	to
adResyncUnderlyingValues,	only	the	UnderlyingValue	property	is
synchronized.

The	value	of	the	Status	property	for	each	Field	object	at	the	time	of	the	call	also
affects	the	behavior	of	Resync.	For	Field	objects	with	Status	values	of
adFieldPendingUnknown	or	adFieldPendingInsert,	Resync	has	no	effect.	For
Status	values	of	adFieldPendingChange	or	adFieldPendingDelete,	Resync
synchronizes	data	values	for	fields	that	still	exist	at	the	data	source.

Resync	will	not	modify	Status	values	of	Field	objects	unless	an	error	occurs
when	Resync	is	called.	For	example,	if	the	field	no	longer	exists,	the	provider
will	return	an	appropriate	Status	value	for	the	Field	object,	such	as
adFieldDoesNotExist.	Returned	Status	values	may	be	logically	combined
within	the	value	of	the	Status	property.

Save	Method

				 				

Saves	the	Recordset	in	a	file	or	Stream	object.

Syntax

recordset.Save	Destination,	PersistFormat

Parameters

Destination			Optional.	A	Variant	that	represents	the	complete	path	name	of	the
file	where	the	Recordset	is	to	be	saved,	or	a	reference	to	a	Stream	object.

PersistFormat			Optional.	A	PersistFormatEnum	value	that	specifies	the	format
in	which	the	Recordset	is	to	be	saved	(XML	or	ADTG).	The	default	value	is
adPersistADTG.

Remarks

The	Save	method	can	only	be	invoked	on	an	open	Recordset.	Use	the	Open
method	to	later	restore	the	Recordset	from	Destination.

If	the	Filter	property	is	in	effect	for	the	Recordset,	then	only	the	rows	accessible
under	the	filter	are	saved.	If	the	Recordset	is	hierarchical,	then	the	current	child

Recordset	and	its	children	are	saved,	including	the	parent	Recordset.	If	the
Save	method	of	a	child	Recordset	is	called,	the	child	and	all	its	children	are
saved,	but	the	parent	is	not.

The	first	time	you	save	the	Recordset,	it	is	optional	to	specify	Destination.	If
you	omit	Destination,	a	new	file	will	be	created	with	a	name	set	to	the	value	of
the	Source	property	of	the	Recordset.

Omit	Destination	when	you	subsequently	call	Save	after	the	first	save,	or	a	run-
time	error	will	occur.	If	you	subsequently	call	Save	with	a	new	Destination,	the
Recordset	is	saved	to	the	new	destination.	However,	the	new	destination	and	the
original	destination	will	both	be	open.

Save	does	not	close	the	Recordset	or	Destination,	so	you	can	continue	to	work
with	the	Recordset	and	save	your	most	recent	changes.	Destination	remains
open	until	the	Recordset	is	closed,	during	which	time	other	applications	can
read	but	not	write	to	Destination.

For	reasons	of	security,	the	Save	method	permits	only	the	use	of	low	and	custom
security	settings	from	a	script	executed	by	Microsoft	Internet	Explorer.	For	a
more	detailed	explanation	of	security	issues,	see	"ADO	and	RDS	Security	Issues
in	Microsoft	Internet	Explorer"	under	ActiveX	Data	Objects	(ADO)	Technical
Articles	in	Microsoft	Data	Access	Technical	Articles.

If	the	Save	method	is	called	while	an	asynchronous	Recordset	fetch,	execute,	or
update	operation	is	in	progress,	then	Save	waits	until	the	asynchronous	operation
is	complete.

Records	are	saved	beginning	with	the	first	row	of	the	Recordset.	When	the	Save
method	is	finished,	the	current	row	position	is	moved	to	the	first	row	of	the
Recordset.

For	best	results,	set	the	CursorLocation	property	to	adUseClient	with	Save.	If
your	provider	does	not	support	all	of	the	functionality	necessary	to	save
Recordset	objects,	the	Cursor	Service	will	provide	that	functionality.

When	a	Recordset	is	persisted	with	the	CursorLocation	property	set	to
adUseServer,	the	update	capability	for	the	Recordset	is	limited.	Typically,	only
single-table	updates,	insertions,	and	deletions	are	allowed	(dependant	upon
provider	functionality).	The	Resync	method	is	also	unavailable	in	this

mk:@MSITStore:WP210.chm::/htm/mdmscSecurityWithADO.htm

configuration.

Note			Saving	a	Recordset	with	Fields	of	type	adVariant,	adIDispatch,	or
adIUnknown	is	not	supported	by	ADO	and	can	cause	unpredictable	results.

Because	the	Destination	parameter	can	accept	any	object	that	supports	the	OLE
DB	IStream	interface,	you	can	save	a	Recordset	directly	to	the	ASP	Response
object.	For	more	details,	please	see	the	XML	Recordset	Persistence	Scenario.

You	can	also	save	a	Recordset	in	XML	format	to	an	instance	of	an	MSXML
DOM	object,	as	is	shown	in	the	following	Visual	Basic	code:

Dim	xDOM	As	New	MSXML.DOMDocument

Dim	rsXML	As	New	ADODB.Recordset

Dim	sSQL	As	String,	sConn	As	String

				

sSQL	=	"SELECT	customerid,	companyname,	contactname	FROM	customers"

sConn="Provider=Microsoft.Jet.OLEDB.4.0;Data	Source=D:\Program	Files"	&	_

								"\Common	Files\System\msadc\samples\NWind.mdb"

rsXML.Open	sSQL,	sConn

rsXML.Save	xDOM,	adPersistXML			'Save	Recordset	directly	into	a	DOM	tree.

...

Note			Two	limitations	apply	when	saving	hierarchical	Recordsets	(data	shapes)
in	XML	format.	You	cannot	save	into	XML	if	the	hierarchical	Recordset
contains	pending	updates,	and	you	cannot	save	a	parameterized	hierarchical
Recordset.

SaveToFile	Method

				 				

Saves	the	binary	contents	of	a	Stream	to	a	file.

Syntax

Stream.SaveToFile	FileName,	SaveOptions

Parameters

FileName			A	String	value	that	contains	the	fully-qualified	name	of	the	file	to
which	the	contents	of	the	Stream	will	be	saved.	You	can	save	to	any	valid	local
location,	or	any	location	you	have	access	to	via	a	UNC	value.

SaveOptions			A	SaveOptionsEnum	value	that	specifies	whether	a	new	file
should	be	created	by	SaveToFile,	if	it	does	not	already	exist.	Default	value	is
adSaveCreateNotExists.	With	these	options	you	can	specify	that	an	error
occurs	if	the	specified	file	does	not	exist.	You	can	also	specify	that	SaveToFile
overwrites	the	current	contents	of	an	existing	file.

Note			If	you	overwrite	an	existing	file	(when	adSaveCreateOverwrite	is	set),
SaveToFile	truncates	any	bytes	from	the	original	existing	file	that	follow	the
new	EOS.

Remarks

SaveToFile	may	be	used	to	copy	the	contents	of	a	Stream	object	to	a	local	file.
There	is	no	change	in	the	contents	or	properties	of	the	Stream	object.	The
Stream	object	must	be	open	before	calling	SaveToFile.

This	method	does	not	change	the	association	of	the	Stream	object	to	its
underlying	source.	The	Stream	object	will	still	be	associated	with	the	original
URL	that	was	its	source	when	opened.

After	a	SaveToFile	operation,	the	current	position	(Position)	in	the	stream	is	set
to	the	beginning	of	the	stream	(0).

Seek	Method

				 				

Searches	the	index	of	a	Recordset	to	quickly	locate	the	row	that	matches	the
specified	values,	and	changes	the	current	row	position	to	that	row.

Syntax

recordset.Seek	KeyValues,	SeekOption

Parameters

KeyValues			An	array	of	Variant	values.	An	index	consists	of	one	or	more
columns	and	the	array	contains	a	value	to	compare	against	each	corresponding
column.

SeekOption			A	SeekEnum	value	that	specifies	the	type	of	comparison	to	be
made	between	the	columns	of	the	index	and	the	corresponding	KeyValues.

Remarks

Use	the	Seek	method	in	conjunction	with	the	Index	property	if	the	underlying
provider	supports	indexes	on	the	Recordset	object.	Use	the	Supports(adSeek)
method	to	determine	whether	the	underlying	provider	supports	Seek,	and	the
Supports(adIndex)	method	to	determine	whether	the	provider	supports	indexes.

(For	example,	the	OLE	DB	Provider	for	Microsoft	Jet	supports	Seek	and	Index.)

If	Seek	does	not	find	the	desired	row,	no	error	occurs,	and	the	row	is	positioned
at	the	end	of	the	Recordset.	Set	the	Index	property	to	the	desired	index	before
executing	this	method.

This	method	is	supported	only	with	server-side	cursors.	Seek	is	not	supported
when	the	Recordset	object's	CursorLocation	property	value	is	adUseClient.

This	method	can	only	be	used	when	the	Recordset	object	has	been	opened	with
a	CommandTypeEnum	value	of	adCmdTableDirect.

SetEOS	Method

				 				

Sets	the	position	that	is	the	end	of	the	stream.

Syntax

Stream.SetEOS

Remarks

SetEOS	updates	the	value	of	the	EOS	property,	by	making	the	current	Position
the	end	of	the	stream.	Any	bytes	or	characters	following	the	current	position	are
truncated.

Since	Write,	WriteText,	and	CopyTo	do	not	truncate	any	extra	values	in	existing
Stream	objects,	you	can	truncate	these	bytes	or	characters	by	setting	the	new
end-of-stream	position	with	SetEOS.

Caution			If	you	set	EOS	to	a	position	before	the	actual	end	of	the	stream,	you
will	lose	all	data	after	the	new	EOS	position.

SkipLine	Method

				 				

Skips	one	entire	line	when	reading	a	text	stream.

Syntax

Stream.SkipLine

Remarks

All	characters	up	to,	and	including	the	next	line	separator,	are	skipped.	By
default,	the	LineSeparator	is	adCRLF.	If	you	attempt	to	skip	past	EOS,	the
current	position	will	simply	remain	at	EOS.

The	SkipLine	method	is	used	with	text	streams	(Type	is	adTypeText).

SubmitChanges	Method	(RDS)

				 				

Submits	pending	changes	of	the	locally	cached	and	updatable	Recordset	to	the
data	source	specified	in	the	Connect	property	or	the	URL	property.

Syntax

DataControl.SubmitChanges

DataFactory.SubmitChanges	Connection,	Recordset

Parameters

DataControl			An	object	variable	that	represents	an	RDS.DataControl	object.

DataFactory			An	object	variable	that	represents	an	RDSServer.DataFactory
object.

Connection			A	String	value	that	represents	the	connection	created	with	the
RDS.DataControl	object's	Connect	property.

Recordset			An	object	variable	that	represents	a	Recordset	object.

Remarks

The	Connect,	Server,	and	SQL	properties	must	be	set	before	you	can	use	the
SubmitChanges	method	with	the	RDS.DataControl	object.

If	you	call	the	CancelUpdate	method	after	you	have	called	SubmitChanges	for
the	same	Recordset	object,	the	CancelUpdate	call	fails	because	the	changes
have	already	been	committed.

Only	the	changed	records	are	sent	for	modification,	and	either	all	of	the	changes
succeed	or	all	of	them	fail	together.

You	can	use	SubmitChanges	only	with	the	default	RDSServer.DataFactory
object.	Custom	business	objects	can't	use	this	method.

If	the	URL	property	has	been	set,	SubmitChanges	will	submit	changes	to	the
location	specified	by	the	URL.

Supports	Method

				 				

Determines	whether	a	specified	Recordset	object	supports	a	particular	type	of
functionality.

Syntax

boolean	=	recordset.Supports(CursorOptions)

Return	Value

Returns	a	Boolean	value	that	indicates	whether	all	of	the	features	identified	by
the	CursorOptions	argument	are	supported	by	the	provider.

Parameters

CursorOptions			A	Long	expression	that	consists	of	one	or	more
CursorOptionEnum	values.

Remarks

Use	the	Supports	method	to	determine	what	types	of	functionality	a	Recordset
object	supports.	If	the	Recordset	object	supports	the	features	whose
corresponding	constants	are	in	CursorOptions,	the	Supports	method	returns

True.	Otherwise,	it	returns	False.

Note			Although	the	Supports	method	may	return	True	for	a	given	functionality,
it	does	not	guarantee	that	the	provider	can	make	the	feature	available	under	all
circumstances.	The	Supports	method	simply	returns	whether	the	provider	can
support	the	specified	functionality,	assuming	certain	conditions	are	met.	For
example,	the	Supports	method	may	indicate	that	a	Recordset	object	supports
updates	even	though	the	cursor	is	based	on	a	multiple	table	join,	some	columns
of	which	are	not	updatable.

Update	Method

				 				

Saves	any	changes	you	make	to	the	current	row	of	a	Recordset	object,	or	the
Fields	collection	of	a	Record	object.

Syntax

recordset.Update	Fields,	Values

record.Fields.Update

Parameters

Fields			Optional.	A	Variant	that	represents	a	single	name,	or	a	Variant	array
that	represents	names	or	ordinal	positions	of	the	field	or	fields	you	wish	to
modify.

Values			Optional.	A	Variant	that	represents	a	single	value,	or	a	Variant	array
that	represents	values	for	the	field	or	fields	in	the	new	record.

Remarks

Recordset

Use	the	Update	method	to	save	any	changes	you	make	to	the	current	record	of	a

Recordset	object	since	calling	the	AddNew	method	or	since	changing	any	field
values	in	an	existing	record.	The	Recordset	object	must	support	updates.

To	set	field	values,	do	one	of	the	following:

Assign	values	to	a	Field	object's	Value	property	and	call	the	Update
method.

Pass	a	field	name	and	a	value	as	arguments	with	the	Update	call.

Pass	an	array	of	field	names	and	an	array	of	values	with	the	Update	call.

When	you	use	arrays	of	fields	and	values,	there	must	be	an	equal	number	of
elements	in	both	arrays.	Also,	the	order	of	field	names	must	match	the	order	of
field	values.	If	the	number	and	order	of	fields	and	values	do	not	match,	an	error
occurs.

If	the	Recordset	object	supports	batch	updating,	you	can	cache	multiple	changes
to	one	or	more	records	locally	until	you	call	the	UpdateBatch	method.	If	you	are
editing	the	current	record	or	adding	a	new	record	when	you	call	the
UpdateBatch	method,	ADO	will	automatically	call	the	Update	method	to	save
any	pending	changes	to	the	current	record	before	transmitting	the	batched
changes	to	the	provider.

If	you	move	from	the	record	you	are	adding	or	editing	before	calling	the	Update
method,	ADO	will	automatically	call	Update	to	save	the	changes.	You	must	call
the	CancelUpdate	method	if	you	want	to	cancel	any	changes	made	to	the	current
record	or	discard	a	newly	added	record.

The	current	record	remains	current	after	you	call	the	Update	method.

If	the	Unique	Table	dynamic	property	is	set,	and	the	Recordset	is	the	result	of
executing	a	JOIN	operation	on	multiple	tables,	then	the	Update	method	cannot
update	any	primary	key	of	the	multiple	tables.	Furthermore,	the	Update	method
can	update	fields	only	in	the	table	specified	in	the	Unique	Table	property.

Record

The	Update	method	finalizes	additions,	deletions,	and	updates	to	fields	in	the
Fields	collection	of	a	Record	object.

For	example,	fields	deleted	with	the	Delete	method	are	marked	for	deletion
immediately	but	remain	in	the	collection.	The	Update	method	must	be	called	to
actually	delete	these	fields	from	the	provider's	collection.

UpdateBatch	Method

				 				

Writes	all	pending	batch	updates	to	disk.

Syntax

recordset.UpdateBatch	AffectRecords

Parameters

AffectRecords			Optional.	An	AffectEnum	value	that	indicates	how	many	records
the	UpdateBatch	method	will	affect.

Remarks

Use	the	UpdateBatch	method	when	modifying	a	Recordset	object	in	batch
update	mode	to	transmit	all	changes	made	in	a	Recordset	object	to	the
underlying	database.

If	the	Recordset	object	supports	batch	updating,	you	can	cache	multiple	changes
to	one	or	more	records	locally	until	you	call	the	UpdateBatch	method.	If	you
are	editing	the	current	record	or	adding	a	new	record	when	you	call	the
UpdateBatch	method,	ADO	will	automatically	call	the	Update	method	to	save
any	pending	changes	to	the	current	record	before	transmitting	the	batched

changes	to	the	provider.	You	should	use	batch	updating	with	either	a	keyset	or
static	cursor	only.

Note			Specifying	adAffectGroup	as	the	value	for	this	parameter	will	result	in
an	error	when	there	are	no	visible	records	in	the	current	Recordset	(such	as	a
filter	for	which	no	records	match).

If	the	attempt	to	transmit	changes	fails	for	any	or	all	records	because	of	a
conflict	with	the	underlying	data	(for	example,	a	record	has	already	been	deleted
by	another	user),	the	provider	returns	warnings	to	the	Errors	collection	and	a
run-time	error	occurs.	Use	the	Filter	property	(adFilterAffectedRecords)	and
the	Status	property	to	locate	records	with	conflicts.

To	cancel	all	pending	batch	updates,	use	the	CancelBatch	method.

If	the	Unique	Table	and	Update	Resync	dynamic	properties	are	set,	and	the
Recordset	is	the	result	of	executing	a	JOIN	operation	on	multiple	tables,	then
the	execution	of	the	UpdateBatch	method	is	implicitly	followed	by	the	Resync
method	depending	on	the	settings	of	the	Update	Resync	property.

The	order	in	which	the	individual	updates	of	a	batch	are	performed	on	the	data
source	is	not	necessarily	the	same	as	the	order	in	which	they	were	performed	on
the	local	Recordset.	Update	order	is	dependent	upon	the	provider.	Take	this	into
account	when	coding	updates	that	are	related	to	one	another,	such	as	foreign	key
constraints	on	an	insert	or	update.

Write	Method

				 				

Writes	binary	data	to	a	Stream	object.

Syntax

Stream.Write	Buffer

Parameters

Buffer			A	Variant	that	contains	an	array	of	bytes	to	be	written.

Remarks

Specified	bytes	are	written	to	the	Stream	object	without	any	intervening	spaces
between	each	byte.

The	current	Position	is	set	to	the	byte	following	the	written	data.	The	Write
method	does	not	truncate	the	rest	of	the	data	in	a	stream.	If	you	want	to	truncate
these	bytes,	call	SetEOS.

If	you	write	past	the	current	EOS	position,	the	Size	of	the	Stream	will	be
increased	to	contain	any	new	bytes,	and	EOS	will	move	to	the	new	last	byte	in
the	Stream.

WriteText	Method

				 				

Writes	a	specified	text	string	to	a	Stream	object.

Syntax

Stream.WriteText	Data,	Options

Parameters

Data			A	String	value	that	contains	the	text	in	characters	to	be	written.

Options			Optional.	A	StreamWriteEnum	value	that	specifies	whether	a	line
separator	character	must	be	written	at	the	end	of	the	specified	string.

Remarks

Specified	strings	are	written	to	the	Stream	object	without	any	intervening	spaces
or	characters	between	each	string.

The	current	Position	is	set	to	the	character	following	the	written	data.	The
WriteText	method	does	not	truncate	the	rest	of	the	data	in	a	stream.	If	you	want
to	truncate	these	characters,	call	SetEOS.

If	you	write	past	the	current	EOS	position,	the	Size	of	the	Stream	will	be
increased	to	contain	any	new	characters,	and	EOS	will	move	to	the	new	last	byte
in	the	Stream.

ADO	Events

ADO	Event	Summary

Event Description
BeginTransComplete Called	after	the	BeginTrans	operation.
CommitTransComplete Called	after	the	CommitTrans	operation.
ConnectComplete Called	after	a	connection	starts.
Disconnect Called	after	a	connection	ends.

EndOfRecordset Called	when	there	is	an	attempt	to	move	to	a	row
past	the	end	of	the	Recordset.

ExecuteComplete Called	after	a	command	has	finished	executing.

FetchComplete
Called	after	all	the	records	in	a	lengthy
asynchronous	operation	have	been	retrieved	into	the
Recordset.

FetchProgress
Called	periodically	during	a	lengthy	asynchronous
operation	to	report	how	many	rows	have	currently
been	retrieved	into	the	Recordset.

FieldChangeComplete Called	after	the	value	of	one	or	more	Field	objects
has	changed.

InfoMessage Called	whenever	a	warning	occurs	during	a
ConnectionEvent	operation.

MoveComplete Called	after	the	current	position	in	the	Recordset
changes.

onError	(RDS) Called	whenever	an	error	occurs	during	an
operation.

onReadyStateChange Called	whenever	the	value	of	the	ReadyState

(RDS) property	changes.
RecordChangeComplete Called	after	one	or	more	records	change.
RecordsetChangeComplete Called	after	the	Recordset	has	changed.
RollbackTransComplete Called	after	the	RollbackTrans	operation.

WillChangeField Called	before	a	pending	operation	changes	the	value
of	one	or	more	Field	objects	in	the	Recordset.

WillChangeRecord Called	before	one	or	more	records	(rows)	in	the
Recordset	change.

WillChangeRecordset Called	before	a	pending	operation	changes	the
Recordset.

WillConnect Called	before	a	connection	starts.

WillExecute

Called	just	before	a	pending	command	executes	on
this	connection	and	affords	the	user	an	opportunity
to	examine	and	modify	the	pending	execution
parameters.

WillMove
The	WillMove	event	is	called	before	a	pending
operation	changes	the	current	position	in	the
Recordset.

BeginTransComplete,	CommitTransComplete,	and
RollbackTransComplete	Events

				 				

These	events	will	be	called	after	the	associated	operation	on	the	Connection
object	finishes	executing.

BeginTransComplete	is	called	after	the	BeginTrans	operation.

CommitTransComplete	is	called	after	the	CommitTrans	operation.

RollbackTransComplete	is	called	after	the	RollbackTrans	operation.

Syntax

BeginTransComplete	TransactionLevel,	pError,	adStatus,	pConnection

CommitTransComplete	pError,	adStatus,	pConnection

RollbackTransComplete	pError,	adStatus,	pConnection

Parameters

TransactionLevel			A	Long	value	that	contains	the	new	transaction	level	of	the
BeginTrans	that	caused	this	event.

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
EventStatusEnum	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.	When	any	of	these	events	is	called,
this	parameter	is	set	to	adStatusOK	if	the	operation	that	caused	the	event	was
successful,	or	to	adStatusErrorsOccurred	if	the	operation	failed.

These	events	can	prevent	subsequent	notifications	by	setting	this	parameter	to
adStatusUnwantedEvent	before	the	event	returns.

pConnection			The	Connection	object	for	which	this	event	occurred.

Remarks

In	Visual	C++,	multiple	Connections	can	share	the	same	event	handling	method.
The	method	uses	the	returned	Connection	object	to	determine	which	object
caused	the	event.

If	the	Attributes	property	is	set	to	adXactCommitRetaining	or
adXactAbortRetaining,	a	new	transaction	starts	after	committing	or	rolling
back	a	transaction.	Use	the	BeginTransComplete	event	to	ignore	all	but	the	first
transaction	start	event.

ConnectComplete	and	Disconnect	Events

				 				

The	ConnectComplete	event	is	called	after	a	connection	starts.	The	Disconnect
event	is	called	after	a	connection	ends.

Syntax

ConnectComplete	pError,	adStatus,	pConnection

Disconnect	adStatus,	pConnection

Parameters

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	value	that	always	returns	adStatusOK.

When	ConnectComplete	is	called,	this	parameter	is	set	to	adStatusCancel	if	a
WillConnect	event	has	requested	cancellation	of	the	pending	connection.

Before	either	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications.	However,	closing	and	reopening	the
Connection	causes	these	events	to	occur	again.

pConnection			The	Connection	object	for	which	this	event	applies.

EndOfRecordset	Event

				 				

The	EndOfRecordset	event	is	called	when	there	is	an	attempt	to	move	to	a	row
past	the	end	of	the	Recordset.

Syntax

EndOfRecordset	fMoreData,	adStatus,	pRecordset

Parameters

fMoreData			A	VARIANT_BOOL	value	that,	if	set	to	VARIANT_TRUE,
indicates	more	rows	have	been	added	to	the	Recordset.

adStatus			An	EventStatusEnum	status	value.

When	EndOfRecordset	is	called,	this	parameter	is	set	to	adStatusOK	if	the
operation	that	caused	the	event	was	successful.	It	is	set	to	adStatusCantDeny	if
this	event	cannot	request	cancellation	of	the	operation	that	caused	this	event.

Before	EndOfRecordset	returns,	set	this	parameter	to
adStatusUnwantedEvent	to	prevent	subsequent	notifications.

pRecordset			A	Recordset	object.	The	Recordset	for	which	this	event	occurred.

Remarks

An	EndOfRecordset	event	may	occur	if	the	MoveNext	operation	fails.

This	event	handler	is	called	when	an	attempt	is	made	to	move	past	the	end	of	the
Recordset	object,	perhaps	as	a	result	of	calling	MoveNext.	However,	while	in
this	event,	you	could	retrieve	more	records	from	a	database	and	append	them	to
the	end	of	the	Recordset.	In	that	case,	set	fMoreData	to	VARIANT_TRUE,	and
return	from	EndOfRecordset.	Then	call	MoveNext	again	to	access	the	newly
retrieved	records.

ExecuteComplete	Event

				 				

The	ExecuteComplete	event	is	called	after	a	command	has	finished	executing.

Syntax

ExecuteComplete	RecordsAffected,	pError,	adStatus,	pCommand,

pRecordset,	pConnection

Parameters

RecordsAffected			A	Long	value	indicating	the	number	of	records	affected	by	the
command.

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.	When	this	event	is	called,	this
parameter	is	set	to	adStatusOK	if	the	operation	that	caused	the	event	was
successful,	or	to	adStatusErrorsOccurred	if	the	operation	failed.

Before	this	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications.

pCommand			The	Command	object	that	was	executed.	Contains	a	Command
object	even	when	calling	Connection.Execute	or	Recordset.Open	without
explicitly	creating	a	Command,	in	which	cases	the	Command	object	is	created
internally	by	ADO.

pRecordset			A	Recordset	object	that	is	the	result	of	the	executed	command.	This
Recordset	may	be	empty.

pConnection			A	Connection	object.	The	connection	over	which	the	operation
was	executed.

Remarks

An	ExecuteComplete	event	may	occur	due	to	the	Connection.Execute,
Command.Execute,	Recordset.Open,	Recordset.Requery,	or
Recordset.NextRecordset	methods.

FetchComplete	Event

				 				

The	FetchComplete	event	is	called	after	all	the	records	in	a	lengthy
asynchronous	operation	have	been	retrieved	into	the	Recordset.

Syntax

FetchComplete	pError,	adStatus,	pRecordset

Parameters

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.	When	this	event	is	called,	this
parameter	is	set	to	adStatusOK	if	the	operation	that	caused	the	event	was
successful,	or	to	adStatusErrorsOccurred	if	the	operation	failed.

Before	this	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications.

pRecordset			A	Recordset	object.	The	object	for	which	the	records	were
retrieved.

Remarks

To	use	FetchComplete	with	Microsoft	Visual	Basic,	Visual	Basic	6.0	or	later	is
required.

FetchProgress	Event

				 				

The	FetchProgress	event	is	called	periodically	during	a	lengthy	asynchronous
operation	to	report	how	many	more	rows	have	currently	been	retrieved	into	the
Recordset.

Syntax

FetchProgress	Progress,	MaxProgress,	adStatus,	pRecordset

Parameters

Progress			A	Long	value	indicating	the	number	of	records	that	have	currently
been	retrieved	by	the	fetch	operation.

MaxProgress			A	Long	value	indicating	the	maximum	number	of	records
expected	to	be	retrieved.

adStatus			An	EventStatusEnum	status	value.

pRecordset			A	Recordset	object	that	is	the	object	for	which	the	records	are
being	retrieved.

Remarks

When	using	FetchProgress	with	a	child	Recordset,	be	aware	that	the	Progress
and	MaxProgress	parameter	values	are	derived	from	the	underlying	Cursor
Service	rowset.	The	values	returned	represent	the	total	number	of	records	in	the
underlying	rowset,	not	just	the	number	of	records	in	the	current	chapter.

Note			To	use	FetchProgress	with	Microsoft	Visual	Basic,	Visual	Basic	6.0	or
later	is	required.

InfoMessage	Event

				 				

The	InfoMessage	event	is	called	whenever	a	warning	occurs	during	a
ConnectionEvent	operation.

Syntax

InfoMessage	pError,	adStatus,	pConnection

Parameters

pError			An	Error	object.	This	parameter	contains	any	errors	that	are	returned.	If
multiple	errors	are	returned,	enumerate	the	Errors	collection	to	find	them.

adStatus			An	EventStatusEnum	status	value.	If	a	warning	occurs,	adStatus	is	set
to	adStatusOK	and	the	pError	contains	the	warning.

Before	this	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications.

pConnection			A	Connection	object.	The	connection	for	which	the	warning
occurred.	For	example,	warnings	can	occur	when	opening	a	Connection	object
or	executing	a	Command	on	a	Connection.

onError	Event	(RDS)

				 				

The	onError	event	is	called	whenever	an	error	occurs	during	an	operation.

Syntax

onError	SCode,	Description,	Source,	CancelDisplay

Parameters

SCode			An	integer	that	indicates	the	status	code	of	the	error.

Description			A	String	that	indicates	a	description	of	the	error.

Source			A	String	that	indicates	the	query	or	command	that	caused	the	error.

CancelDisplay			A	Boolean	value,	which	if	set	to	True,	that	prevents	the	error
from	being	displayed	in	a	dialog	box.

onReadyStateChange	Event	(RDS)

				 				

The	onReadyStateChange	event	is	called	whenever	the	value	of	the	ReadyState
property	changes.

Syntax

onReadyStateChange

Parameters

None

Remarks

The	ReadyState	property	reflects	the	progress	of	an	RDS.DataControl	object	as
it	asynchronously	retrieves	data	into	its	Recordset	object.	Use	the
onReadyStateChange	event	to	monitor	changes	in	the	ReadyState	property
whenever	they	occur.	This	is	more	efficient	than	periodically	checking	the
property's	value.

WillChangeField	and	FieldChangeComplete	Events

				 				

The	WillChangeField	event	is	called	before	a	pending	operation	changes	the
value	of	one	or	more	Field	objects	in	the	Recordset.	The	FieldChangeComplete
event	is	called	after	the	value	of	one	or	more	Field	objects	has	changed.

Syntax

WillChangeField	cFields,	Fields,	adStatus,	pRecordset

FieldChangeComplete	cFields,	Fields,	pError,	adStatus,	pRecordset

Parameters

cFields			A	Long	that	indicates	the	number	of	Field	objects	in	Fields.

Fields			An	array	of	Variants	that	contains	Field	objects	with	pending	changes.

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.

When	WillChangeField	is	called,	this	parameter	is	set	to	adStatusOK	if	the
operation	that	caused	the	event	was	successful.	It	is	set	to	adStatusCantDeny	if

this	event	cannot	request	cancellation	of	the	pending	operation.

When	FieldChangeComplete	is	called,	this	parameter	is	set	to	adStatusOK	if
the	operation	that	caused	the	event	was	successful,	or	to
adStatusErrorsOccurred	if	the	operation	failed.

Before	WillChangeField	returns,	set	this	parameter	to	adStatusCancel	to
request	cancellation	of	the	pending	operation.

Before	FieldChangeComplete	returns,	set	this	parameter	to
adStatusUnwantedEvent	to	prevent	subsequent	notifications.

pRecordset			A	Recordset	object.	The	Recordset	for	which	this	event	occurred.

Remarks

A	WillChangeField	or	FieldChangeComplete	event	may	occur	when	setting
the	Value	property	and	calling	the	Update	method	with	field	and	value	array
parameters.

WillChangeRecord	and	RecordChangeComplete
Events

				 				

The	WillChangeRecord	event	is	called	before	one	or	more	records	(rows)	in	the
Recordset	change.	The	RecordChangeComplete	event	is	called	after	one	or
more	records	change.

Syntax

WillChangeRecord	adReason,	cRecords,	adStatus,	pRecordset

RecordChangeComplete	adReason,	cRecords,	pError,	adStatus,

pRecordset

Parameters

adReason			An	EventReasonEnum	value	that	specifies	the	reason	for	this	event.
Its	value	can	be	adRsnAddNew,	adRsnDelete,	adRsnUpdate,
adRsnUndoUpdate,	adRsnUndoAddNew,	adRsnUndoDelete,	or
adRsnFirstChange.

cRecords			A	Long	value	that	indicates	the	number	of	records	changing
(affected).

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.

When	WillChangeRecord	is	called,	this	parameter	is	set	to	adStatusOK	if	the
operation	that	caused	the	event	was	successful.	It	is	set	to	adStatusCantDeny	if
this	event	cannot	request	cancellation	of	the	pending	operation.

When	RecordChangeComplete	is	called,	this	parameter	is	set	to	adStatusOK
if	the	operation	that	caused	the	event	was	successful,	or	to
adStatusErrorsOccurred	if	the	operation	failed.

Before	WillChangeRecord	returns,	set	this	parameter	to	adStatusCancel	to
request	cancellation	of	the	operation	that	caused	this	event.

Before	RecordChangeComplete	returns,	set	this	parameter	to
adStatusUnwantedEvent	to	prevent	subsequent	notifications.

pRecordset			A	Recordset	object.	The	Recordset	for	which	this	event	occurred.

Remarks

A	WillChangeRecord	or	RecordChangeComplete	event	may	occur	for	the
first	changed	field	in	a	row	due	to	the	following	Recordset	operations:	Update,
Delete,	CancelUpdate,	AddNew,	UpdateBatch,	and	CancelBatch.	The	value	of
the	Recordset	CursorType	determines	which	operations	cause	the	events	to
occur.

During	the	WillChangeRecord	event,	the	Recordset	Filter	property	is	set	to
adFilterAffectedRecords.	You	cannot	change	this	property	while	processing	the
event.

WillChangeRecordset	and	RecordsetChangeComplete
Events

				 				

The	WillChangeRecordset	event	is	called	before	a	pending	operation	changes
the	Recordset.	The	RecordsetChangeComplete	event	is	called	after	the
Recordset	has	changed.

Syntax

WillChangeRecordset			adReason,	adStatus,	pRecordset

RecordsetChangeComplete			adReason,	pError,	adStatus,	pRecordset

Parameters

adReason			An	EventReasonEnum	value	that	specifies	the	reason	for	this	event.
Its	value	can	be	adRsnRequery,	adRsnResynch,	adRsnClose,	adRsnOpen.

adStatus			An	EventStatusEnum	status	value.

When	WillChangeRecordset	is	called,	this	parameter	is	set	to	adStatusOK	if
the	operation	that	caused	the	event	was	successful.	It	is	set	to
adStatusCantDeny	if	this	event	cannot	request	cancellation	of	the	pending
operation.

When	RecordsetChangeComplete	is	called,	this	parameter	is	set	to
adStatusOK	if	the	operation	that	caused	the	event	was	successful,
adStatusErrorsOccurred	if	the	operation	failed,	or	adStatusCancel	if	the
operation	associated	with	the	previously	accepted	WillChangeRecordset	event
has	been	canceled.

Before	WillChangeRecordset	returns,	set	this	parameter	to	adStatusCancel	to
request	cancellation	of	the	pending	operation.

Before	WillChangeRecordset	or	RecordsetChangeComplete	returns,	set	this
parameter	to	adStatusUnwantedEvent	to	prevent	subsequent	notifications.

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

pRecordset			A	Recordset	object.	The	Recordset	for	which	this	event	occurred.

Remarks

A	WillChangeRecordset	or	RecordsetChangeComplete	event	may	occur	due
to	the	Recordset	Requery	or	Open	methods.

If	the	provider	does	not	support	bookmarks,	a	RecordsetChange	event
notification	occurs	each	time	new	rows	are	retrieved	from	the	provider.	The
frequency	of	this	event	depends	on	the	RecordsetCacheSize	property.

WillConnect	Event

				 				

The	WillConnect	event	is	called	before	a	connection	starts.

Syntax

WillConnect	ConnectionString,	UserID,	Password,	Options,	adStatus,

pConnection

Parameters

ConnectionString			A	String	that	contains	connection	information	for	the
pending	connection.

UserID			A	String	that	contains	a	user	name	for	the	pending	connection.

Password			A	String	that	contains	a	password	for	the	pending	connection.

Options			A	Long	value	that	indicates	how	the	provider	should	evaluate	the
ConnectionString.	Your	only	option	is	adAsyncOpen.

adStatus			An	EventStatusEnum	status	value.

When	this	event	is	called,	this	parameter	is	set	to	adStatusOK	by	default.	It	is
set	to	adStatusCantDeny	if	the	event	cannot	request	cancellation	of	the	pending

operation.

Before	this	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications.	Set	this	parameter	to	adStatusCancel	to
request	the	connection	operation	that	caused	cancellation	of	this	notification.

pConnection			The	Connection	object	for	which	this	event	notification	applies.
Changes	to	the	parameters	of	the	Connection	by	the	WillConnect	event	handler
will	have	no	effect	on	the	Connection.

Remarks

When	WillConnect	is	called,	the	ConnectionString,	UserID,	Password,	and
Options	parameters	are	set	to	the	values	established	by	the	operation	that	caused
this	event	(the	pending	connection),	and	can	be	changed	before	the	event	returns.
WillConnect	may	return	a	request	that	the	pending	connection	be	canceled.

When	this	event	is	canceled,	ConnectComplete	will	be	called	with	its	adStatus
parameter	set	to	adStatusErrorsOccurred.

WillExecute	Event

				 				

The	WillExecute	event	is	called	just	before	a	pending	command	executes	on	a
connection.

Syntax

WillExecute	Source,	CursorType,	LockType,	Options,	adStatus,

pCommand,	pRecordset,	pConnection

Parameters

Source			A	String	that	contains	an	SQL	command	or	a	stored	procedure	name.

CursorType			A	CursorTypeEnum	that	contains	the	type	of	cursor	for	the
Recordset	that	will	be	opened.	With	this	parameter,	you	can	change	the	cursor	to
any	type	during	a	Recordset	Open	operation.	CursorType	will	be	ignored	for
any	other	operation.

LockType			A	LockTypeEnum	that	contains	the	lock	type	for	the	Recordset	that
will	be	opened.	With	this	parameter,	you	can	change	the	lock	to	any	type	during
a	Recordset	Open	operation.	LockType	will	be	ignored	for	any	other	operation.

Options			A	Long	value	that	indicates	options	that	can	be	used	to	execute	the

command	or	open	the	Recordset.

adStatus			An	EventStatusEnum	status	value	that	may	be	adStatusCantDeny	or
adStatusOK	when	this	event	is	called.	If	it	is	adStatusCantDeny,	this	event
may	not	request	cancellation	of	the	pending	operation.

Before	this	event	returns,	set	this	parameter	to	adStatusUnwantedEvent	to
prevent	subsequent	notifications,	or	adStatusCancel	to	request	cancellation	of
the	operation	that	caused	this	event.

pCommand			The	Command	object	for	which	this	event	notification	applies.

pRecordset			The	Recordset	object	for	which	this	event	notification	applies.

pConnection			The	Connection	object	for	which	this	event	notification	applies.

Remarks

A	WillExecute	event	may	occur	due	to	a	Connection.Execute,
Command.Execute,	or	Recordset.Open	method	The	pConnection	parameter
should	always	contain	a	valid	reference	to	a	Connection	object.	If	the	event	is
due	to	Connection.Execute,	the	pRecordset	and	pCommand	parameters	are	set
to	Nothing.	If	the	event	is	due	to	Recordset.Open,	the	pRecordset	parameter
will	reference	the	Recordset	object	and	the	pCommand	parameter	is	set	to
Nothing.	If	the	event	is	due	to	Command.Execute,	the	pCommand	parameter
will	reference	the	Command	object	and	the	pRecordset	parameter	is	set	to
Nothing.

WillExecute	allows	you	to	examine	and	modify	the	pending	execution
parameters.	This	event	may	return	a	request	that	the	pending	command	be
canceled.

WillMove	and	MoveComplete	Events

				 				

The	WillMove	event	is	called	before	a	pending	operation	changes	the	current
position	in	the	Recordset.	The	MoveComplete	event	is	called	after	the	current
position	in	the	Recordset	changes.

Syntax

WillMove	adReason,	adStatus,	pRecordset

MoveComplete	adReason,	pError,	adStatus,	pRecordset

Parameters

adReason			An	EventReasonEnum	value	that	specifies	the	reason	for	this	event.
Its	value	can	be	adRsnMoveFirst,	adRsnMoveLast,	adRsnMoveNext,
adRsnMovePrevious,	adRsnMove,	or	adRsnRequery.

pError			An	Error	object.	It	describes	the	error	that	occurred	if	the	value	of
adStatus	is	adStatusErrorsOccurred;	otherwise	it	is	not	set.

adStatus			An	EventStatusEnum	status	value.

When	WillMove	is	called,	this	parameter	is	set	to	adStatusOK	if	the	operation

that	caused	the	event	was	successful.	It	is	set	to	adStatusCantDeny	if	this	event
cannot	request	cancellation	of	the	pending	operation.

When	MoveComplete	is	called,	this	parameter	is	set	to	adStatusOK	if	the
operation	that	caused	the	event	was	successful,	or	to	adStatusErrorsOccurred
if	the	operation	failed.

Before	WillMove	returns,	set	this	parameter	to	adStatusCancel	to	request
cancellation	of	the	pending	operation.	Before	MoveComplete	returns,	set	this
parameter	to	adStatusUnwantedEvent	to	prevent	subsequent	notifications.

pRecordset			A	Recordset	object.	The	Recordset	for	which	this	event	occurred.

Remarks

A	WillMove	or	MoveComplete	event	may	occur	due	to	the	following
Recordset	operations:	Open,	Move,	MoveFirst,	MoveLast,	MoveNext,
MovePrevious,	AddNew,	and	Requery.	These	events	may	occur	because	of	the
following	properties:	Filter,	Index,	Bookmark,	AbsolutePage,	and
AbsolutePosition.	These	events	also	occur	if	a	child	Recordset	has	Recordset
events	connected	and	the	parent	Recordset	is	moved.

ADO	Enumerated	Constants

To	assist	in	debugging,	the	ADO	enumerations	list	a	value	for	each	constant.
However,	this	value	is	purely	advisory,	and	may	change	from	one	release	of
ADO	to	another.	Your	code	should	only	depend	on	the	name,	not	the	actual
value,	of	each	enumerated	constant.

ADO	Enumerated	Constant	Summary

Enumeration Description

ADCPROP_ASYNCTHREADPRIORITY_ENUM

For	an	RDS	Recordset
object,	specifies	the
execution	priority	of	the
asynchronous	thread	that
retrieves	data.

ADCPROP_AUTORECALC_ENUM

Specifies	when	the
MSDataShape	provider	re-
calculates	aggregate	and
calculated	columns	in	a
hierarchical	Recordset.

ADCPROP_UPDATECRITERIA_ENUM

Specifies	which	fields	can
be	used	to	detect	conflicts
during	an	optimistic	update
of	a	row	of	the	data	source
with	a	Recordset	object.

ADCPROP_UPDATERESYNC_ENUM

Specifies	whether	the
UpdateBatch	method	is
followed	by	an	implicit

Resync	method	operation
and	if	so,	the	scope	of	that
operation.

AffectEnum Specifies	which	records	are
affected	by	an	operation.

BookmarkEnum
Specifies	a	bookmark
indicating	where	the
operation	should	begin.

CommandTypeEnum
Specifies	how	a	command
argument	should	be
interpreted.

CompareEnum

Specifies	the	relative
position	of	two	records
represented	by	their
bookmarks.

ConnectModeEnum

Specifies	the	available
permissions	for	modifying
data	in	a	Connection,
opening	a	Record,	or
specifying	values	for	the
Mode	property	of	the
Record	and	Stream	objects.

ConnectOptionEnum

Specifies	whether	the	Open
method	of	a	Connection
object	should	return	after
(synchronously)	or	before
(asynchronously)	the
connection	is	established.

ConnectPromptEnum

Specifies	whether	a	dialog
box	should	be	displayed	to
prompt	for	missing
parameters	when	opening	a
connection	to	an	ODBC	data
source.

CopyRecordOptionsEnum Specifies	the	behavior	of	the
CopyRecord	method.

CursorLocationEnum Specifies	the	location	of	the

cursor	engine.

CursorOptionEnum
Specifies	what	functionality
the	Supports	method	should
test	for.

CursorTypeEnum Specifies	the	type	of	cursor
used	in	a	Recordset	object.

DataTypeEnum
Specifies	the	data	type	of	a
Field,	Parameter,	or
Property.

EditModeEnum Specifies	the	editing	status
of	a	record.

ErrorValueEnum Specifies	the	type	of	ADO
run-time	error.

EventReasonEnum Specifies	the	reason	that
caused	an	event	to	occur.

EventStatusEnum Specifies	the	current	status
of	the	execution	of	an	event.

ExecuteOptionEnum Specifies	how	a	provider
should	execute	a	command.

FieldEnum
Specifies	the	special	fields
referenced	in	a	Record
object's	Fields	collection.

FieldAttributeEnum Specifies	one	or	more
attributes	of	a	Field	object.

FilterGroupEnum
Specifies	the	group	of
records	to	be	filtered	from	a
Recordset.

GetRowsOptionEnum
Specifies	how	many	records
to	retrieve	from	a
Recordset.

IsolationLevelEnum
Specifies	the	level	of
transaction	isolation	for	a
Connection	object.

LineSeparatorsEnum
Specifies	the	character	used
as	a	line	separator	in	text
Stream	objects.

LockTypeEnum Specifies	the	type	of	lock
placed	on	records	during
editing.

MarshalOptionsEnum
Specifies	which	records
should	be	returned	to	the
server.

MoveRecordOptionsEnum
Specifies	the	behavior	of	the
Record	object	MoveRecord
method.

ObjectStateEnum

Specifies	whether	an	object
is	open	or	closed,
connecting	to	a	data	source,
executing	a	command,	or
fetching	data.

ParameterAttributesEnum Specifies	the	attributes	of	a
Parameter	object.

ParameterDirectionEnum

Specifies	whether	the
Parameter	represents	an
input	parameter,	an	output
parameter,	or	both,	or	if	the
parameter	is	the	return	value
from	a	stored	procedure.

PersistFormatEnum Specifies	the	format	in
which	to	save	a	Recordset.

PositionEnum
Specifies	the	current
position	of	the	record
pointer	within	a	Recordset.

PropertyAttributesEnum Specifies	the	attributes	of	a
Property	object.

RecordCreateOptionsEnum

Specifies	for	the	Record
object	Open	method
whether	an	existing	Record
should	be	opened,	or	a	new
Record	should	be	created.

RecordOpenOptionsEnum

Specifies	options	for
opening	a	Record.	These
values	may	be	combined	by

using	an	OR	operator.

RecordStatusEnum

Specifies	the	status	of	a
record	with	regard	to	batch
updates	and	other	bulk
operations.

RecordTypeEnum Specifies	the	type	of	Record
object.

ResyncEnum

Specifies	whether
underlying	values	are
overwritten	by	a	call	to
Resync.

SaveOptionsEnum

Specifies	whether	a	file
should	be	created	or
overwritten	when	saving
from	a	Stream	object.	The
values	can	be	combined
with	an	AND	operator.

SchemaEnum

Specifies	the	type	of	schema
Recordset	that	the
OpenSchema	method
retrieves.

SearchDirectionEnum
Specifies	the	direction	of	a
record	search	within	a
Recordset.

SeekEnum Specifies	the	type	of	Seek	to
execute.

StreamOpenOptionsEnum

Specifies	options	for
opening	a	Stream	object.
The	values	can	be	combined
with	an	AND	operator.

StreamReadEnum

Specifies	whether	the	whole
stream	or	the	next	line
should	be	read	from	a
Stream	object.

StreamTypeEnum Specifies	the	type	of	data
stored	in	a	Stream	object.
Specifies	whether	a	line

StreamWriteEnum separator	is	appended	to	the
string	written	to	a	Stream
object.

StringFormatEnum
Specifies	the	format	when
retrieving	a	Recordset	as	a
string.

XactAttributeEnum
Specifies	the	transaction
attributes	of	a	Connection
object.

ADCPROP_ASYNCTHREADPRIORITY_ENUM

				

For	an	RDS	Recordset	object,	specifies	the	execution	priority	of	the
asynchronous	thread	that	retrieves	data.

Use	these	constants	with	the	Recordset	"Background	Thread	Priority"
dynamic	property,	which	is	referenced	in	the	ADO-to-OLE	DB	Dynamic
Property	index	and	documented	in	the	Microsoft	Cursor	Service	for	OLE	DB
documentation.

Constant Value Description
adPriorityAboveNormal 4 Sets	priority	between	normal	and	highest.
adPriorityBelowNormal 2 Sets	priority	between	lowest	and	normal.
adPriorityHighest 5 Sets	priority	to	the	highest	possible.
AdPriorityLowest 1 Sets	priority	to	the	lowest	possible.
adPriorityNormal 3 Sets	priority	to	normal.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.AdcPropAsyncThreadPriority.ABOVENORMAL
AdoEnums.AdcPropAsyncThreadPriority.BELOWNORMAL
AdoEnums.AdcPropAsyncThreadPriority.HIGHEST
AdoEnums.AdcPropAsyncThreadPriority.LOWEST
AdoEnums.AdcPropAsyncThreadPriority.NORMAL

ADCPROP_AUTORECALC_ENUM

				

Specifies	when	the	MSDataShape	provider	re-calculates	aggregate	and
calculated	columns	in	a	hierarchical	Recordset.

These	constants	are	only	used	with	the	MSDataShape	provider	and	the
Recordset	"Auto	Recalc"	dynamic	property,	which	is	referenced	in	the	ADO
Dynamic	Property	Index	and	documented	in	the	Microsoft	Cursor	Service	for
OLE	DB	or	Microsoft	Data	Shaping	Service	for	OLE	DB	documentation.

Constant Value Description

adRecalcAlways 1

Default.	Recalculates	whenever	the
MSDataShape	provider	determines	values
that	the	calculated	columns	depend	upon	have
changed.

adRecalcUpFront 0 Calculates	only	when	initially	building	the
hierarchical	Recordset.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

ADCPROP_UPDATECRITERIA_ENUM

				

Specifies	which	fields	can	be	used	to	detect	conflicts	during	an	optimistic	update
of	a	row	of	the	data	source	with	a	Recordset	object.

Use	these	constants	with	the	Recordset	"Update	Criteria"	dynamic	property,
which	is	referenced	in	the	ADO	Dynamic	Property	Index	and	documented	in	the
Microsoft	Cursor	Service	for	OLE	DB	documentation.

Constant Value Description

adCriteriaAllCols 1 Detects	conflicts	if	any	column	of	the	data
source	row	has	been	changed.

adCriteriaKey 0
Detects	conflicts	if	the	key	column	of	the	data
source	row	has	been	changed,	which	means
that	the	row	has	been	deleted.

adCriteriaTimeStamp 3

Detects	conflicts	if	the	timestamp	of	the	data
source	row	has	been	changed,	which	means
the	row	has	been	accessed	after	the	Recordset
was	obtained.

adCriteriaUpdCols 2
Detects	conflicts	if	any	of	the	columns	of	the
data	source	row	that	correspond	to	updated
fields	of	the	Recordset	have	been	changed.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.AdcPropUpdateCriteria.ALLCOLS

AdoEnums.AdcPropUpdateCriteria.KEY
AdoEnums.AdcPropUpdateCriteria.TIMESTAMP
AdoEnums.AdcPropUpdateCriteria.UPDCOLS

ADCPROP_UPDATERESYNC_ENUM

				

Specifies	whether	the	UpdateBatch	method	is	followed	by	an	implicit	Resync
method	operation	and	if	so,	the	scope	of	that	operation.

Constant Value Description

adResyncAll 15 Invokes	Resync	for	each	row	with
pending	changes.

adResyncAutoIncrement 1

Default.	Attempts	to	retrieve	the	new
identity	value	for	columns	that	are
automatically	incremented	or	generated
by	the	data	source,	such	as	Microsoft
Jet	AutoNumber	fields	or	Microsoft
SQL	Server	Identity	columns.

adResyncConflicts 2
Invokes	Resync	for	all	rows	in	which
the	update	or	delete	operation	failed
because	of	a	concurrency	conflict.

adResyncInserts 8

Invokes	Resync	for	all	successfully
inserted	rows.	However,	primary	key
column	values	are	not	resynchronized.
Instead,	contents	of	newly	inserted
rows	are	resynchronized	based	on	the
existing	primary	key	value.	If	the
primary	key	value	has	changed,	Resync
won't	retrieve	the	contents	of	the
intended	row.	For	automatically
incrementing	primary	key	values,	first
call	UpdateBatch	with
adResyncAutoIncrement	to	retrieve

the	data	source-generated	primary	key
value.

adResyncNone 0 Does	not	invoke	Resync.

adResyncUpdates 4 Invokes	Resync	for	all	successfully
updated	rows.

AffectEnum

				

Specifies	which	records	are	affected	by	an	operation.

Constant Value Description

adAffectAll 3

If	there	is	not	a	Filter	applied	to	the
Recordset,	affects	all	records.

If	the	Filter	property	is	set	to	a	string	criteria
(such	as	"Author='Smith'"),	then	the	operation
affects	visible	records	in	the	current	chapter.

If	the	Filter	property	is	set	to	a	member	of	the
FilterGroupEnum	or	an	array	of	Bookmarks,
then	the	operation	will	affect	all	rows	of	the
Recordset.

Note			adAffectAll	is	hidden	in	the	Visual
Basic	Object	Browser.

adAffectAllChapters 4
Affects	all	records	in	all	sibling	chapters	of
the	Recordset,	including	those	not	visible	via
any	Filter	that	is	currently	applied.

adAffectCurrent 1 Affects	only	the	current	record.

adAffectGroup 2

Affects	only	records	that	satisfy	the	current
Filter	property	setting.	You	must	set	the	Filter
property	to	a	FilterGroupEnum	value	or	an
array	of	Bookmarks	to	use	this	option.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Affect.ALL
AdoEnums.Affect.ALLCHAPTERS
AdoEnums.Affect.CURRENT
AdoEnums.Affect.GROUP

BookmarkEnum

				

Specifies	a	bookmark	indicating	where	the	operation	should	begin.

Constant Value Description
adBookmarkCurrent 0 Starts	at	the	current	record.
adBookmarkFirst 1 Starts	at	the	first	record.
adBookmarkLast 2 Starts	at	the	last	record.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Bookmark.CURRENT
AdoEnums.Bookmark.FIRST
AdoEnums.Bookmark.LAST

CommandTypeEnum

				

Specifies	how	a	command	argument	should	be	interpreted.

Constant Value Description

adCmdUnspecified -1 Does	not	specify	the	command	type
argument.

adCmdText 1
Evaluates	CommandText	as	a	textual
definition	of	a	command	or	stored	procedure
call.

adCmdTable 2
Evaluates	CommandText	as	a	table	name
whose	columns	are	all	returned	by	an
internally	generated	SQL	query.

adCmdStoredProc 4 Evaluates	CommandText	as	a	stored
procedure	name.

adCmdUnknown 8 Default.	Indicates	that	the	type	of	command
in	the	CommandText	property	is	not	known.

adCmdFile 256 Evaluates	CommandText	as	the	file	name	of
a	persistently	stored	Recordset.

adCmdTableDirect 512 Evaluates	CommandText	as	a	table	name
whose	columns	are	all	returned.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.CommandType.UNSPECIFIED
AdoEnums.CommandType.TEXT

AdoEnums.CommandType.TABLE
AdoEnums.CommandType.STOREDPROC
AdoEnums.CommandType.UNKNOWN
AdoEnums.CommandType.FILE
AdoEnums.CommandType.TABLEDIRECT

CompareEnum

				

Specifies	the	relative	position	of	two	records	represented	by	their	bookmarks.

Constant Value Description
adCompareEqual 1 Indicates	that	the	bookmarks	are	equal.

adCompareGreaterThan 2 Indicates	that	the	first	bookmark	is	after
the	second.

adCompareLessThan 0 Indicates	that	the	first	bookmark	is	before
the	second.

adCompareNotComparable 4 Indicates	that	the	bookmarks	cannot	be
compared.

adCompareNotEqual 3 Indicates	that	the	bookmarks	are	not	equal
and	not	ordered.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Compare.EQUAL
AdoEnums.Compare.GREATERTHAN
AdoEnums.Compare.LESSTHAN
AdoEnums.Compare.NOTCOMPARABLE
AdoEnums.Compare.NOTEQUAL

ConnectModeEnum

				

Specifies	the	available	permissions	for	modifying	data	in	a	Connection,	opening
a	Record,	or	specifying	values	for	the	Mode	property	of	the	Record	and	Stream
objects.

Constant Value Description
adModeRead 1 Indicates	read-only	permissions.
adModeReadWrite 3 Indicates	read/write	permissions.

adModeRecursive 0x400000

Used	in	conjunction	with	the	other
ShareDeny	values
(adModeShareDenyNone,
adModeShareDenyWrite,	or
adModeShareDenyRead)	to
propagate	sharing	restrictions	to	all
sub-records	of	the	current	Record.	It
has	no	affect	if	the	Record	does	not
have	any	children.	A	run-time	error	is
generated	if	it	is	used	with
adModeShareDenyNone	only.
However,	it	can	be	used	with
adModeShareDenyNone	when
combined	with	other	values.	For
example,	you	can	use	"adModeRead
Or	adModeShareDenyNone	Or
adModeRecursive".

adModeShareDenyNone 16

Allows	others	to	open	a	connection
with	any	permissions.	Neither	read
nor	write	access	can	be	denied	to

others.

adModeShareDenyRead 4 Prevents	others	from	opening	a
connection	with	read	permissions.

adModeShareDenyWrite 8 Prevents	others	from	opening	a
connection	with	write	permissions.

adModeShareExclusive 12 Prevents	others	from	opening	a
connection.

adModeUnknown 0
Default.	Indicates	that	the	permissions
have	not	yet	been	set	or	cannot	be
determined.

adModeWrite 2 Indicates	write-only	permissions.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ConnectMode.READ
AdoEnums.ConnectMode.READWRITE
(There	is	no	equivalent	of	AdoEnums.ConnectMode.RECURSIVE)
AdoEnums.ConnectMode.SHAREDENYNONE
AdoEnums.ConnectMode.SHAREDENYREAD
AdoEnums.ConnectMode.SHAREDENYWRITE
AdoEnums.ConnectMode.SHAREEXCLUSIVE
AdoEnums.ConnectMode.UNKNOWN
AdoEnums.ConnectMode.WRITE

ConnectOptionEnum

				

Specifies	whether	the	Open	method	of	a	Connection	object	should	return	after
(synchronously)	or	before	(asynchronously)	the	connection	is	established.

Constant Value Description

adAsyncConnect 16
Opens	the	connection	asynchronously.	The
ConnectComplete	event	may	be	used	to
determine	when	the	connection	is	available.

adConnectUnspecified -1 Default.	Opens	the	connection	synchronously.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ConnectOption.ASYNCCONNECT
AdoEnums.ConnectOption.CONNECTUNSPECIFIED

ConnectPromptEnum

				

Specifies	whether	a	dialog	box	should	be	displayed	to	prompt	for	missing
parameters	when	opening	a	connection	to	a	data	source.

Constant Value Description
adPromptAlways 1 Prompts	always.
adPromptComplete 2 Prompts	if	more	information	is	required.

adPromptCompleteRequired 3 Prompts	if	more	information	is	required
but	optional	parameters	are	not	allowed.

adPromptNever 4 Never	prompts.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ConnectPrompt.ALWAYS
AdoEnums.ConnectPrompt.COMPLETE
AdoEnums.ConnectPrompt.COMPLETEREQUIRED
AdoEnums.ConnectPrompt.NEVER

CopyRecordOptionsEnum

				

Specifies	the	behavior	of	the	CopyRecord	method.

Constant Value Description

adCopyAllowEmulation 4

Indicates	that	the	Source	provider	attempts	to
simulate	the	copy	using	download	and	upload
operations	if	this	method	fails	due	to
Destination	being	on	a	different	server	or	is
serviced	by	a	different	provider	than	Source.
Note	that	differing	provider	capabilities	may
hamper	performance	or	lose	data.

adCopyNonRecursive 2
Copies	the	current	directory,	but	none	of	its
subdirectories,	to	the	destination.	The	copy
operation	is	not	recursive.

adCopyOverWrite 1
Overwrites	the	file	or	directory	if	the
Destination	points	to	an	existing	file	or
directory.

adCopyUnspecified -1

Default.	Performs	the	default	copy	operation:
The	operation	fails	if	the	destination	file	or
directory	already	exists,	and	the	operation
copies	recursively.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

CursorLocationEnum

				

Specifies	the	location	of	the	cursor	service.

Constant Value Description

adUseClient 3

Uses	client-side	cursors	supplied	by	a	local	cursor
library.	Local	cursor	services	often	will	allow	many
features	that	driver-supplied	cursors	may	not,	so	using
this	setting	may	provide	an	advantage	with	respect	to
features	that	will	be	enabled.	For	backward
compatibility,	the	synonym	adUseClientBatch	is	also
supported.

adUseNone 1
Does	not	use	cursor	services.	(This	constant	is	obsolete
and	appears	solely	for	the	sake	of	backward
compatibility.)

adUseServer 2

Default.	Uses	data-provider	or	driver-supplied	cursors.
These	cursors	are	sometimes	very	flexible	and	allow	for
additional	sensitivity	to	changes	others	make	to	the	data
source.	However,	some	features	of	the	Microsoft	Cursor
Service	for	OLE	DB	(such	as	disassociated	Recordset
objects)	cannot	be	simulated	with	server-side	cursors
and	these	features	will	be	unavailable	with	this	setting.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.CursorLocation.CLIENT

AdoEnums.CursorLocation.NONE
AdoEnums.CursorLocation.SERVER

CursorOptionEnum

				

Specifies	what	functionality	the	Supports	method	should	test	for.

Constant Value Description

adAddNew 0x1000400 Supports	the	AddNew	method	to
add	new	records.

adApproxPosition 0x4000 Supports	the	AbsolutePosition
and	AbsolutePage	properties.

adBookmark 0x2000 Supports	the	Bookmark	property
to	gain	access	to	specific	records.

adDelete 0x1000800 Supports	the	Delete	method	to
delete	records.

adFind 0x80000 Supports	the	Find	method	to
locate	a	row	in	a	Recordset.

adHoldRecords 0x100
Retrieves	more	records	or
changes	the	next	position	without
committing	all	pending	changes.

adIndex 0x100000 Supports	the	Index	property	to
name	an	index.

adMovePrevious 0x200

Supports	the	MoveFirst	and
MovePrevious	methods,	and
Move	or	GetRows	methods	to
move	the	current	record	position
backward	without	requiring
bookmarks.
Indicates	that	the	underlying	data
provider	supports	notifications

adNotify 0x40000 (which	determines	whether
Recordset	events	are	supported).

adResync 0x20000

Supports	the	Resync	method	to
update	the	cursor	with	the	data
that	is	visible	in	the	underlying
database.

adSeek 0x200000 Supports	the	Seek	method	to
locate	a	row	in	a	Recordset.

adUpdate 0x1008000 Supports	the	Update	method	to
modify	existing	data.

adUpdateBatch 0x10000

Supports	batch	updating
(UpdateBatch	and	CancelBatch
methods)	to	transmit	groups	of
changes	to	the	provider.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.CursorOption.ADDNEW
AdoEnums.CursorOption.APPROXPOSITION
AdoEnums.CursorOption.BOOKMARK
AdoEnums.CursorOption.DELETE
AdoEnums.CursorOption.FIND
AdoEnums.CursorOption.HOLDRECORDS
AdoEnums.CursorOption.INDEX
AdoEnums.CursorOption.MOVEPREVIOUS
AdoEnums.CursorOption.NOTIFY
AdoEnums.CursorOption.RESYNC
AdoEnums.CursorOption.SEEK
AdoEnums.CursorOption.UPDATE
AdoEnums.CursorOption.UPDATEBATCH

CursorTypeEnum

				

Specifies	the	type	of	cursor	used	in	a	Recordset	object.

Constant Value Description

adOpenDynamic 2

Uses	a	dynamic	cursor.	Additions,	changes,
and	deletions	by	other	users	are	visible,	and
all	types	of	movement	through	the	Recordset
are	allowed,	except	for	bookmarks,	if	the
provider	doesn't	support	them.

adOpenForwardOnly 0

Default.	Uses	a	forward-only	cursor.	Identical
to	a	static	cursor,	except	that	you	can	only
scroll	forward	through	records.	This	improves
performance	when	you	need	to	make	only	one
pass	through	a	Recordset.

adOpenKeyset 1

Uses	a	keyset	cursor.	Like	a	dynamic	cursor,
except	that	you	can't	see	records	that	other
users	add,	although	records	that	other	users
delete	are	inaccessible	from	your	Recordset.
Data	changes	by	other	users	are	still	visible.

adOpenStatic 3

Uses	a	static	cursor.	A	static	copy	of	a	set	of
records	that	you	can	use	to	find	data	or
generate	reports.	Additions,	changes,	or
deletions	by	other	users	are	not	visible.

adOpenUnspecified -1 Does	not	specify	the	type	of	cursor.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.CursorType.DYNAMIC
AdoEnums.CursorType.FORWARDONLY
AdoEnums.CursorType.KEYSET
AdoEnums.CursorType.STATIC
AdoEnums.CursorType.UNSPECIFIED

DataTypeEnum

				

Specifies	the	data	type	of	a	Field,	Parameter,	or	Property.	The	corresponding
OLE	DB	type	indicator	is	shown	in	parentheses	in	the	description	column	of	the
following	table.	For	more	information	about	OLE	DB	data	types,	see	Chapter	13
and	Appendix	A	of	the	OLE	DB	Programmer's	Reference.

Constant Value Description
AdArray
(Does	not	apply	to
ADOX.)

0x2000
A	flag	value,	always	combined	with	another
data	type	constant,	that	indicates	an	array	of
that	other	data	type.

adBigInt 20 Indicates	an	eight-byte	signed	integer
(DBTYPE_I8).

adBinary 128 Indicates	a	binary	value
(DBTYPE_BYTES).

adBoolean 11 Indicates	a	boolean	value
(DBTYPE_BOOL).

adBSTR 8 Indicates	a	null-terminated	character	string
(Unicode)	(DBTYPE_BSTR).

adChapter 136
Indicates	a	four-byte	chapter	value	that
identifies	rows	in	a	child	rowset
(DBTYPE_HCHAPTER).

adChar 129 Indicates	a	string	value	(DBTYPE_STR).

adCurrency 6

Indicates	a	currency	value	(DBTYPE_CY).
Currency	is	a	fixed-point	number	with	four
digits	to	the	right	of	the	decimal	point.	It	is
stored	in	an	eight-byte	signed	integer	scaled
by	10,000.

mk:@MSITStore:OLEDB.chm::/htm/oledbData_Types_in_OLE_DB.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbData_Types.htm

adDate 7

Indicates	a	date	value	(DBTYPE_DATE).
A	date	is	stored	as	a	double,	the	whole	part
of	which	is	the	number	of	days	since
December	30,	1899,	and	the	fractional	part
of	which	is	the	fraction	of	a	day.

adDBDate 133 Indicates	a	date	value	(yyyymmdd)
(DBTYPE_DBDATE).

adDBTime 134 Indicates	a	time	value	(hhmmss)
(DBTYPE_DBTIME).

adDBTimeStamp 135
Indicates	a	date/time	stamp
(yyyymmddhhmmss	plus	a	fraction	in
billionths)	(DBTYPE_DBTIMESTAMP).

adDecimal 14
Indicates	an	exact	numeric	value	with	a
fixed	precision	and	scale
(DBTYPE_DECIMAL).

adDouble 5 Indicates	a	double-precision	floating-point
value	(DBTYPE_R8).

adEmpty 0 Specifies	no	value	(DBTYPE_EMPTY).

adError 10 Indicates	a	32-bit	error	code
(DBTYPE_ERROR).

adFileTime 64
Indicates	a	64-bit	value	representing	the
number	of	100-nanosecond	intervals	since
January	1,	1601	(DBTYPE_FILETIME).

adGUID 72 Indicates	a	globally	unique	identifier
(GUID)	(DBTYPE_GUID).

adIDispatch 9

Indicates	a	pointer	to	an	IDispatch
interface	on	a	COM	object
(DBTYPE_IDISPATCH).

Note			This	data	type	is	currently	not
supported	by	ADO.	Usage	may	cause
unpredictable	results.

adInteger 3 Indicates	a	four-byte	signed	integer
(DBTYPE_I4).
Indicates	a	pointer	to	an	IUnknown
interface	on	a	COM	object

adIUnknown 13 (DBTYPE_IUNKNOWN).

Note			This	data	type	is	currently	not
supported	by	ADO.	Usage	may	cause
unpredictable	results.

adLongVarBinary 205 Indicates	a	long	binary	value	(Parameter
object	only).

adLongVarChar 201 Indicates	a	long	string	value	(Parameter
object	only).

adLongVarWChar 203 Indicates	a	long	null-terminated	Unicode
string	value	(Parameter	object	only).

adNumeric 131
Indicates	an	exact	numeric	value	with	a
fixed	precision	and	scale
(DBTYPE_NUMERIC).

adPropVariant 138 Indicates	an	Automation	PROPVARIANT
(DBTYPE_PROP_VARIANT).

adSingle 4 Indicates	a	single-precision	floating-point
value	(DBTYPE_R4).

adSmallInt 2 Indicates	a	two-byte	signed	integer
(DBTYPE_I2).

adTinyInt 16 Indicates	a	one-byte	signed	integer
(DBTYPE_I1).

adUnsignedBigInt 21 Indicates	an	eight-byte	unsigned	integer
(DBTYPE_UI8).

adUnsignedInt 19 Indicates	a	four-byte	unsigned	integer
(DBTYPE_UI4).

adUnsignedSmallInt 18 Indicates	a	two-byte	unsigned	integer
(DBTYPE_UI2).

adUnsignedTinyInt 17 Indicates	a	one-byte	unsigned	integer
(DBTYPE_UI1).

adUserDefined 132 Indicates	a	user-defined	variable
(DBTYPE_UDT).

adVarBinary 204 Indicates	a	binary	value	(Parameter	object
only).

adVarChar 200 Indicates	a	string	value	(Parameter	object
only).

adVariant 12

Indicates	an	Automation	Variant
(DBTYPE_VARIANT).

Note			This	data	type	is	currently	not
supported	by	ADO.	Usage	may	cause
unpredictable	results.

adVarNumeric 139 Indicates	a	numeric	value	(Parameter
object	only).

adVarWChar 202 Indicates	a	null-terminated	Unicode
character	string	(Parameter	object	only).

adWChar 130 Indicates	a	null-terminated	Unicode
character	string	(DBTYPE_WSTR).

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.DataType.ARRAY
AdoEnums.DataType.BIGINT
AdoEnums.DataType.BINARY
AdoEnums.DataType.BOOLEAN
AdoEnums.DataType.BSTR
AdoEnums.DataType.CHAPTER
AdoEnums.DataType.CHAR
AdoEnums.DataType.CURRENCY
AdoEnums.DataType.DATE
AdoEnums.DataType.DBDATE
AdoEnums.DataType.DBTIME
AdoEnums.DataType.DBTIMESTAMP
AdoEnums.DataType.DECIMAL
AdoEnums.DataType.DOUBLE
AdoEnums.DataType.EMPTY
AdoEnums.DataType.ERROR
AdoEnums.DataType.FILETIME

AdoEnums.DataType.GUID
AdoEnums.DataType.IDISPATCH
AdoEnums.DataType.INTEGER
AdoEnums.DataType.IUNKNOWN
AdoEnums.DataType.LONGVARBINARY
AdoEnums.DataType.LONGVARCHAR
AdoEnums.DataType.LONGVARWCHAR
AdoEnums.DataType.NUMERIC
AdoEnums.DataType.PROPVARIANT
AdoEnums.DataType.SINGLE
AdoEnums.DataType.SMALLINT
AdoEnums.DataType.TINYINT
AdoEnums.DataType.UNSIGNEDBIGINT
AdoEnums.DataType.UNSIGNEDINT
AdoEnums.DataType.UNSIGNEDSMALLINT
AdoEnums.DataType.UNSIGNEDTINYINT
AdoEnums.DataType.USERDEFINED
AdoEnums.DataType.VARBINARY
AdoEnums.DataType.VARCHAR
AdoEnums.DataType.VARIANT
AdoEnums.DataType.VARNUMERIC
AdoEnums.DataType.VARWCHAR
AdoEnums.DataType.WCHAR

EditModeEnum

				

Specifies	the	editing	status	of	a	record.

Constant Value Description

adEditNone 0 Indicates	that	no	editing	operation	is	in
progress.

adEditInProgress 1 Indicates	that	data	in	the	current	record	has
been	modified	but	not	saved.

adEditAdd 2

Indicates	that	the	AddNew	method	has	been
called,	and	the	current	record	in	the	copy
buffer	is	a	new	record	that	has	not	been	saved
in	the	database.

adEditDelete 4 Indicates	that	the	current	record	has	been
deleted.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.EditMode.NONE
AdoEnums.EditMode.INPROGRESS
AdoEnums.EditMode.ADD
AdoEnums.EditMode.DELETE

ErrorValueEnum

				

Specifies	the	type	of	ADO	run-time	error.

Three	forms	of	the	error	number	are	listed:

Positive	decimal—the	low	two	bytes	of	the	full	number	in	decimal	format.
This	number	is	displayed	in	the	default	Visual	Basic	error	message	dialog
box.	For	example,	Run-time	error	'3707'.

Negative	decimal—The	decimal	translation	of	the	full	error	number.

Hexadecimal—The	hexadecimal	representation	of	the	full	error	number.
The	Windows	facility	code	is	in	the	fourth	digit.	The	facility	code	for	ADO
error	numbers	is	A.	For	example:	0x800A0E7B.

Note			OLE	DB	errors	may	be	passed	to	your	ADO	application.	Typically,	these
can	be	identified	by	a	Windows	facility	code	of	4.	For	example,	0x8004....	For
more	information	about	these	numbers,	see	Chapter	16	of	the	OLE	DB
Programmer's	Reference.

Constant Value Description

adErrBoundToCommand
3707
-2146824581
0x800A0E7B

Cannot	change	the
ActiveConnection
property	of	a	Recordset
object	which	has	a
Command	object	as	its
source.

adErrCannotComplete
3732
-2146824556

Server	cannot	complete

mk:@MSITStore:OLEDB.chm::/htm/oledbErrors.htm

0x800A0E94 the	operation.

adErrCantChangeConnection
3748
-2146824540
0x800A0EA4

Connection	was	denied.
New	connection	you
requested	has	different
characteristics	than	the
one	already	in	use.

adErrCantChangeProvider
3220
-2146825068
0X800A0C94

Supplied	provider	is
different	from	the	one
already	in	use.

adErrCantConvertvalue
3724
-2146824564
0x800A0E8C

Data	value	cannot	be
converted	for	reasons
other	than	sign	mismatch
or	data	overflow.	For
example,	conversion
would	have	truncated
data.

adErrCantCreate
3725
-2146824563
0x800A0E8D

Data	value	cannot	be	set
or	retrieved	because	the
field	data	type	was
unknown,	or	the	provider
had	insufficient	resources
to	perform	the	operation.

adErrCatalogNotSet
3747
-2146824541
0x800A0EA3

Operation	requires	a	valid
ParentCatalog.

adErrColumnNotOnThisRow
3726
-2146824562
0x800A0E8E

Record	does	not	contain
this	field.

adErrDataConversion
3421
-2146824867
0x800A0D5D

Application	uses	a	value
of	the	wrong	type	for	the
current	operation.

adErrDataOverflow
3721
-2146824567
0x800A0E89

Data	value	is	too	large	to
be	represented	by	the
field	data	type.

adErrDelResOutOfScope
3738
-2146824550
0x800A0E9A

URL	of	the	object	to	be
deleted	is	outside	the
scope	of	the	current

record.

adErrDenyNotSupported
3750
-2146824538
0x800A0EA6

Provider	does	not	support
sharing	restrictions.

adErrDenyTypeNotSupported
3751
-2146824537
0x800A0EA7

Provider	does	not	support
the	requested	kind	of
sharing	restriction.

adErrFeatureNotAvailable
3251
-2146825037
0x800A0CB3

Object	or	provider	is	not
capable	of	performing
requested	operation.

adErrFieldsUpdateFailed
3749
-2146824539
0x800A0EA5

Fields	update	failed.	For
further	information,
examine	the	Status
property	of	individual
field	objects.

adErrIllegalOperation
3219
-2146825069
0x800A0C93

Operation	is	not	allowed
in	this	context.

adErrIntegrityViolation
3719
-2146824569
0x800A0E87

Data	value	conflicts	with
the	integrity	constraints	of
the	field.

adErrInTransaction
3246
-2146825042
0x800A0CAE

Connection	object	cannot
be	explicitly	closed	while
in	a	transaction.

adErrInvalidArgument
3001
-2146825287
0x800A0BB9

Arguments	are	of	the
wrong	type,	are	out	of
acceptable	range,	or	are	in
conflict	with	one	another.

adErrInvalidConnection
3709
-2146824579
0x800A0E7D

Operation	is	not	allowed
on	an	object	referencing	a
closed	or	invalid
connection.

adErrInvalidParamInfo
3708
-2146824580
0x800A0E7C

Parameter	object	is
improperly	defined.
Inconsistent	or
incomplete	information
was	provided.

adErrInvalidTransaction
3714
-2146824574
0x800A0E82

Coordinating	transaction
is	invalid	or	has	not
started.

adErrInvalidURL
3729
-2146824559
0x800A0E91

URL	contains	invalid
characters.	Make	sure	the
URL	is	typed	correctly.

adErrItemNotFound
3265
-2146825023
0x800A0CC1

Item	cannot	be	found	in
the	collection
corresponding	to	the
requested	name	or
ordinal.

adErrNoCurrentRecord
3021
-2146825267
0x800A0BCD

Either	BOF	or	EOF	is
True,	or	the	current	record
has	been	deleted.
Requested	operation
requires	a	current	record.

adErrNotExecuting
3715
-2146824573
0x800A0E83

Operation	cannot	be
performed	while	not
executing.

adErrNotReentrant
3710
-2146824578
0x800A0E7E

Operation	cannot	be
performed	while
processing	event.

adErrObjectClosed
3704
-2146824584
0x800A0E78

Operation	is	not	allowed
when	the	object	is	closed.

adErrObjectInCollection
3367
-2146824921
0x800A0D27

Object	is	already	in
collection.	Cannot
append.

adErrObjectNotSet
3420
-2146824868
0x800A0D5C

Object	is	no	longer	valid.

adErrObjectOpen
3705
-2146824583
0x800A0E79

Operation	is	not	allowed
when	the	object	is	open.

adErrOpeningFile
3002
-2146825286 File	could	not	be	opened.

0x800A0BBA

adErrOperationCancelled
3712
-2146824576
0x800A0E80

Operation	has	been
cancelled	by	the	user.

adErrOutOfSpace
3734
-2146824554
0x800A0E96

Operation	cannot	be
performed.	Provider
cannot	obtain	enough
storage	space.

adErrPermissionDenied
3720
-2146824568
0x800A0E88

Insufficent	permission
prevents	writing	to	the
field.

adErrPropConflicting
3742
-2146824546
0x800A0E9E

Property	value	conflicts
with	a	related	property.

adErrPropInvalidColumn
3739
-2146824549
0x800A0E9B

Property	cannot	apply	to
the	specified	field.

adErrPropInvalidOption
3740
-2146824548
0x800A0E9C

Property	attribute	is
invalid.

adErrPropInvalidValue
3741
-2146824547
0x800A0E9D

Property	value	is	invalid.
Make	sure	the	value	is
typed	correctly.

adErrPropNotAllSettable
3743
-2146824545
0x800A0E9F

Property	is	read-only	or
cannot	be	set.

adErrPropNotSet
3744
-2146824544
0x800A0EA0

Optional	property	value
was	not	set.

adErrPropNotSettable
3745
-2146824543
0x800A0EA1

Read-only	property	value
was	not	set.

adErrPropNotSupported
3746
-2146824542
0x800A0EA2

Provider	does	not	support
the	property.

adErrProviderFailed
3000
-2146825288 Provider	failed	to	perform

the	requested	operation.

0x800A0BB8

adErrProviderNotFound
3706
-2146824582
0x800A0E7A

Provider	cannot	be	found.
It	may	not	be	properly
installed.

adErrReadFile
3003
-2146825285
0x800A0BBB

File	could	not	be	read.

adErrResourceExists
3731
-2146824557
0x800A0E93

Copy	operation	cannot	be
performed.	Object	named
by	destination	URL
already	exists.	Specify
adCopyOverwrite	to
replace	the	object.

adErrResourceLocked
3730
-2146824558
0x800A0E92

Object	represented	by	the
specified	URL	is	locked
by	one	or	more	other
processes.	Wait	until	the
process	has	finished	and
attempt	the	operation
again.

adErrResourceOutOfScope
3735
-2146824553
0x800A0E97

Source	or	destination
URL	is	outside	the	scope
of	the	current	record.

adErrSchemaViolation
3722
-2146824566
0x800A0E8A

Data	value	conflicts	with
the	data	type	or
constraints	of	the	field.

adErrSignMismatch
3723
-2146824565
0x800A0E8B

Conversion	failed	because
the	data	value	was	signed
and	the	field	data	type
used	by	the	provider	was
unsigned.

adErrStillConnecting

3713
-2146824575
0x800A0E81

Operation	cannot	be
performed	while
connecting
aynchronously.

adErrStillExecuting
3711
-2146824577

Operation	cannot	be
performed	while

0x800A0E7F executing	asynchronously.

adErrTreePermissionDenied
3728
-2146824560
0x800A0E90

Permissions	are
insufficient	to	access	tree
or	subtree.

adErrUnavailable
3736
-2146824552
0x800A0E98

Operation	failed	to
complete	and	the	status	is
unavailable.	The	field
may	be	unavailable	or	the
operation	was	not
attempted.

adErrUnsafeOperation
3716
-2146824572
0x800A0E84

Safety	settings	on	this
computer	prohibit
accessing	a	data	source	on
another	domain.

adErrURLDoesNotExist
3727
-2146824561
0x800A0E8F

Either	the	source	URL	or
the	parent	of	the
destination	URL	does	not
exist.

adErrURLNamedRowDoesNotExist
3737
-2146824551
0x800A0E99

Record	named	by	this
URL	does	not	exist.

adErrVolumeNotFound
3733
-2146824555
0x800A0E95

Provider	cannot	locate	the
storage	device	indicated
by	the	URL.	Make	sure
the	URL	is	typed
correctly.

adErrWriteFile
3004
-2146825284
0x800A0BBC

Write	to	file	failed.

adWrnSecurityDialog
3717
-2146824571
0x800A0E85

For	internal	use	only.
Don't	use.

adWrnSecurityDialogHeader
3718
-2146824570
0x800A0E86

For	internal	use	only.
Don't	use.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Only	the	following	subsets	of	ADO/WFC	equivalents	are	defined.

Constant
AdoEnums.ErrorValue.BOUNDTOCOMMAND
AdoEnums.ErrorValue.DATACONVERSION
AdoEnums.ErrorValue.FEATURENOTAVAILABLE
AdoEnums.ErrorValue.ILLEGALOPERATION
AdoEnums.ErrorValue.INTRANSACTION
AdoEnums.ErrorValue.INVALIDARGUMENT
AdoEnums.ErrorValue.INVALIDCONNECTION
AdoEnums.ErrorValue.INVALIDPARAMINFO
AdoEnums.ErrorValue.ITEMNOTFOUND
AdoEnums.ErrorValue.NOCURRENTRECORD
AdoEnums.ErrorValue.NOTEXECUTING
AdoEnums.ErrorValue.NOTREENTRANT
AdoEnums.ErrorValue.OBJECTCLOSED
AdoEnums.ErrorValue.OBJECTINCOLLECTION
AdoEnums.ErrorValue.OBJECTNOTSET
AdoEnums.ErrorValue.OBJECTOPEN
AdoEnums.ErrorValue.OPERATIONCANCELLED
AdoEnums.ErrorValue.PROVIDERNOTFOUND
AdoEnums.ErrorValue.STILLCONNECTING
AdoEnums.ErrorValue.STILLEXECUTING
AdoEnums.ErrorValue.UNSAFEOPERATION

EventReasonEnum

				

Specifies	the	reason	that	caused	an	event	to	occur.

Constant Value Description
adRsnAddNew 1 An	operation	added	a	new	record.
adRsnClose 9 An	operation	closed	the	Recordset.
adRsnDelete 2 An	operation	deleted	a	record.

adRsnFirstChange 11 An	operation	made	the	first	change	to	a
record.

adRsnMove 10 An	operation	moved	the	record	pointer	within
the	Recordset.

adRsnMoveFirst 12 An	operation	moved	the	record	pointer	to	the
first	record	in	the	Recordset.

adRsnMoveLast 15 An	operation	moved	the	record	pointer	to	the
last	record	in	the	Recordset.

adRsnMoveNext 13 An	operation	moved	the	record	pointer	to	the
next	record	in	the	Recordset.

adRsnMovePrevious 14 An	operation	moved	the	record	pointer	to	the
previous	record	in	the	Recordset.

adRsnRequery 7 An	operation	requeried	the	Recordset.

adRsnResynch 8 An	operation	resynchronized	the	Recordset
with	the	database.

adRsnUndoAddNew 5 An	operation	reversed	the	addition	of	a	new
record.

adRsnUndoDelete 6 An	operation	reversed	the	deletion	of	a
record.

adRsnUndoUpdate 4 An	operation	reversed	the	update	of	a	record.

adRsnUpdate 3 An	operation	updated	an	existing	record.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.EventReason.ADDNEW
AdoEnums.EventReason.CLOSE
AdoEnums.EventReason.DELETE
AdoEnums.EventReason.FIRSTCHANGE
AdoEnums.EventReason.MOVE
AdoEnums.EventReason.MOVEFIRST
AdoEnums.EventReason.MOVELAST
AdoEnums.EventReason.MOVENEXT
AdoEnums.EventReason.MOVEPREVIOUS
AdoEnums.EventReason.REQUERY
AdoEnums.EventReason.RESYNCH
AdoEnums.EventReason.UNDOADDNEW
AdoEnums.EventReason.UNDODELETE
AdoEnums.EventReason.UNDOUPDATE
AdoEnums.EventReason.UPDATE

EventStatusEnum

				

Specifies	the	current	status	of	the	execution	of	an	event.

Constant Value Description

adStatusCancel 4 Requests	cancellation	of	the	operation	that
caused	the	event	to	occur.

adStatusCantDeny 3 Indicates	that	the	operation	cannot	request
cancellation	of	the	pending	operation.

adStatusErrorsOccurred 2 Indicates	that	the	operation	that	caused	the
event	failed	due	to	an	error	or	errors.

adStatusOK 1 Indicates	that	the	operation	that	caused	the
event	was	successful.

adStatusUnwantedEvent 5 Prevents	subsequent	notifications	before	the
event	method	has	finished	executing.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.EventStatus.CANCEL
AdoEnums.EventStatus.CANTDENY
AdoEnums.EventStatus.ERRORSOCCURRED
AdoEnums.EventStatus.OK
AdoEnums.EventStatus.UNWANTEDEVENT

ExecuteOptionEnum

				

Specifies	how	a	provider	should	execute	a	command.

Constant Value Description

adAsyncExecute 0x10 Indicates	that	the	command	should
execute	asynchronously.

adAsyncFetch 0x20

Indicates	that	the	remaining	rows	after	the
initial	quantity	specified	in	the	CacheSize
property	should	be	retrieved
asynchronously.

adAsyncFetchNonBlocking 0x40

Indicates	that	the	main	thread	never
blocks	while	retrieving.	If	the	requested
row	has	not	been	retrieved,	the	current
row	automatically	moves	to	the	end	of	the
file.

If	you	open	a	Recordset	from	a	Stream
containing	a	persistently	stored
Recordset,	adAsyncFetchNonBlocking
will	not	have	an	effect;	the	operation	will
be	synchronous	and	blocking.

adAsynchFetchNonBlocking	has	no
effect	when	the	adCmdTableDirect	option
is	used	to	open	the	Recordset.

Indicates	that	the	command	text	is	a
command	or	stored	procedure	that	does

adExecuteNoRecords 0x80

not	return	rows	(for	example,	a	command
that	only	inserts	data).	If	any	rows	are
retrieved,	they	are	discarded	and	not
returned.	Always	combined	with
CommandTypeEnum	values	adCmdText
or	adCmdStoredProc.

adExecuteNoRecords	can	only	be	passed
as	an	optional	parameter	to	the
Command	or	Connection	Execute
method.	Using	it	as	an	argument	to	the
Command	object	CommandType
property	will	generate	an	error.

adOptionUnspecified -1 Indicates	that	the	command	is
unspecified.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ExecuteOption.ASYNCEXECUTE
AdoEnums.ExecuteOption.ASYNCFETCH
AdoEnums.ExecuteOption.ASYNCFETCHNONBLOCKING
AdoEnums.ExecuteOption.NORECORDS
AdoEnums.ExecuteOption.UNSPECIFIED

FieldEnum

				

Specifies	the	special	fields	referenced	in	a	Record	object's	Fields	collection.

Remarks

These	constants	provide	a	"shortcut"	to	accessing	special	fields	associated	with	a
Record.	Retrieve	the	Field	object	from	the	Fields	collection,	and	then	obtain	its
contents	with	the	Field	object's	Value	property.

Constant Value Description

adDefaultStream -1 References	the	field	containing	the	default
Stream	object	associated	with	a	Record.

adRecordURL -2 References	the	field	containing	the	absolute
URL	string	for	the	current	Record.

FieldAttributeEnum

				

Specifies	one	or	more	attributes	of	a	Field	object.

Constant Value Description

adFldCacheDeferred 0x1000
Indicates	that	the	provider	caches	field
values	and	that	subsequent	reads	are
done	from	the	cache.

adFldFixed 0x10 Indicates	that	the	field	contains	fixed-
length	data.

adFldIsChapter 0x2000

Indicates	that	the	field	contains	a
chapter	value,	which	specifies	a
specific	child	recordset	related	to	this
parent	field.	Typically	chapter	fields
are	used	with	data	shaping	or	filters.

adFldIsCollection 0x40000

Indicates	that	the	field	specifies	that	the
resource	represented	by	the	record	is	a
collection	of	other	resources,	such	as	a
folder,	rather	than	a	simple	resource,
such	as	a	text	file.

adFldIsDefaultStream 0x20000

Indicates	that	the	field	contains	the
default	stream	for	the	resource
represented	by	the	record.	For	example,
the	default	stream	can	be	the	HTML
content	of	a	root	folder	on	a	Web	site,
which	is	automatically	served	when	the
root	URL	is	specified.

adFldIsNullable 0x20 Indicates	that	the	field	accepts	null
values.

adFldIsRowURL 0x10000
Indicates	that	the	field	contains	the
URL	that	names	the	resource	from	the
data	store	represented	by	the	record.

adFldKeyColumn 0x8000

Indicates	that	the	field	is	the	primary
key	of	the	underlying	rowset.	Also	can
indicate	that	the	field	is	part	of	a
compound	primary	key.

adFldLong 0x80

Indicates	that	the	field	is	a	long	binary
field.	Also	indicates	that	you	can	use
the	AppendChunk	and	GetChunk
methods.

adFldMayBeNull 0x40 Indicates	that	you	can	read	null	values
from	the	field.

adFldMayDefer 0x2

Indicates	that	the	field	is	deferred—that
is,	the	field	values	are	not	retrieved
from	the	data	source	with	the	whole
record,	but	only	when	you	explicitly
access	them.

adFldNegativeScale 0x4000

Indicates	that	the	field	represents	a
numeric	value	from	a	column	that
supports	negative	scale	values.	The
scale	is	specified	by	the	NumericScale
property.

adFldRowID 0x100

Indicates	that	the	field	contains	a
persistent	row	identifier	that	cannot	be
written	to	and	has	no	meaningful	value
except	to	identify	the	row	(such	as	a
record	number,	unique	identifier,	and
so	forth).

adFldRowVersion 0x200
Indicates	that	the	field	contains	some
kind	of	time	or	date	stamp	used	to	track
updates.

adFldUnknownUpdatable 0x8 Indicates	that	the	provider	cannot
determine	if	you	can	write	to	the	field.

adFldUnspecified -1 Indicates	that	the	provider	does	not
specify	the	field	attributes.

adFldUpdatable 0x4 Indicates	that	you	can	write	to	the	field.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.FieldAttribute.CACHEDEFERRED
AdoEnums.FieldAttribute.FIXED
AdoEnums.FieldAttribute.ISNULLABLE
AdoEnums.FieldAttribute.KEYCOLUMN
AdoEnums.FieldAttribute.LONG
AdoEnums.FieldAttribute.MAYBENULL
AdoEnums.FieldAttribute.MAYDEFER
AdoEnums.FieldAttribute.NEGATIVESCALE
AdoEnums.FieldAttribute.ROWID
AdoEnums.FieldAttribute.ROWVERSION
AdoEnums.FieldAttribute.UNKNOWNUPDATABLE
AdoEnums.FieldAttribute.UNSPECIFIED
AdoEnums.FieldAttribute.UPDATABLE

FieldStatusEnum

				

Specifies	the	status	of	a	Field	object.

The	adFieldPending*	values	indicate	the	operation	that	caused	the	status	to	be
set,	and	may	be	combined	with	other	status	values.

Constant Value Description

adFieldAlreadyExists 26 Indicates	that	the	specified
field	already	exists.

adFieldBadStatus 12

Indicates	that	an	invalid	status
value	was	sent	from	ADO	to
the	OLE	DB	provider.	Possible
causes	include	an	OLE	DB	1.0
or	1.1	provider,	or	an	improper
combination	of	Value	and
Status.

adFieldCannotComplete 20

Indicates	that	the	server	of	the
URL	specified	by	Source
could	not	complete	the
operation.

adFieldCannotDeleteSource 23

Indicates	that	during	a	move
operation,	a	tree	or	subtree	was
moved	to	a	new	location,	but
the	source	could	not	be
deleted.

adFieldCantConvertValue 2
Indicates	that	the	field	cannot
be	retrieved	or	stored	without
loss	of	data.

adFieldCantCreate 7

Indicates	that	the	field	could
not	be	added	because	the
provider	exceeded	a	limitation
(such	as	the	number	of	fields
allowed).

adFieldDataOverflow 6
Indicates	that	the	data	returned
from	the	provider	overflowed
the	data	type	of	the	field.

adFieldDefault 13
Indicates	that	the	default	value
for	the	field	was	used	when
setting	data.

adFieldDoesNotExist 16 Indicates	that	the	field
specified	does	not	exist.

adFieldIgnore 15

Indicates	that	this	field	was
skipped	when	setting	data
values	in	the	source.	No	value
was	set	by	the	provider.

adFieldIntegrityViolation 10
Indicates	that	the	field	cannot
be	modified	because	it	is	a
calculated	or	derived	entity.

adFieldInvalidURL 17
Indicates	that	the	data	source
URL	contains	invalid
characters.

adFieldIsNull 3 Indicates	that	the	provider
returned	a	null	value.

adFieldOK 0
Default.	Indicates	that	the	field
was	successfully	added	or
deleted.

adFieldOutOfSpace 22

Indicates	that	the	provider	is
unable	to	obtain	enough
storage	space	to	complete	a
move	or	copy	operation.

adFieldPendingChange 0x40000

Indicates	either	that	the	field
has	been	deleted	and	then	re-
added,	perhaps	with	a	different
data	type,	or	that	the	value	of
the	field	which	previously	had

a	status	of	adFieldOK	has
changed.	The	final	form	of	the
field	will	modify	the	Fields
collection	after	the	Update
method	is	called.

adFieldPendingDelete 0x20000

Indicates	that	the	Delete
operation	caused	the	status	to
be	set.	The	field	has	been
marked	for	deletion	from	the
Fields	collection	after	the
Update	method	is	called.

adFieldPendingInsert 0x10000

Indicates	that	the	Append
operation	caused	the	status	to
be	set.	The	Field	has	been
marked	to	be	added	to	the
Fields	collection	after	the
Update	method	is	called.

adFieldPendingUnknown 0x80000

Indicates	that	the	provider
cannot	determine	what
operation	caused	field	status	to
be	set.

adFieldPendingUnknownDelete 0x100000

Indicates	that	the	provider
cannot	determine	what
operation	caused	field	status	to
be	set,	and	that	the	field	will
be	deleted	from	the	Fields
collection	after	the	Update
method	is	called.

adFieldPermissionDenied 9
Indicates	that	the	field	cannot
be	modified	because	it	is
defined	as	read-only.

adFieldReadOnly 24
Indicates	that	the	field	in	the
data	source	is	defined	as	read-
only.

adFieldResourceExists 19

Indicates	that	the	provider	was
unable	to	perform	the
operation	because	an	object
already	exists	at	the

destination	URL	and	it	is	not
able	to	overwrite	the	object.

adFieldResourceLocked 18

Indicates	that	the	provider	was
unable	to	perform	the
operation	because	the	data
source	is	locked	by	one	or
more	other	application	or
process.

adFieldResourceOutOfScope 25
Indicates	that	a	source	or
destination	URL	is	outside	the
scope	of	the	current	record.

adFieldSchemaViolation 11
Indicates	that	the	value
violated	the	data	source
schema	constraint	for	the	field.

adFieldSignMismatch 5

Indicates	that	data	value
returned	by	the	provider	was
signed	but	the	data	type	of	the
ADO	field	value	was
unsigned.

adFieldTruncated 4
Indicates	that	variable-length
data	was	truncated	when
reading	from	the	data	source.

adFieldUnavailable 8

Indicates	that	the	provider
could	not	determine	the	value
when	reading	from	the	data
source.	For	example,	the	row
was	just	created,	the	default
value	for	the	column	was	not
available,	and	a	new	value	had
not	yet	been	specified.

adFieldVolumeNotFound 21
Indicates	that	the	provider	is
unable	to	locate	the	storage
volume	indicated	by	the	URL.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

FilterGroupEnum

				

Specifies	the	group	of	records	to	be	filtered	from	a	Recordset.

Constant Value Description

adFilterAffectedRecords 2
Filters	for	viewing	only	records	affected
by	the	last	Delete,	Resync,	UpdateBatch,
or	CancelBatch	call.

adFilterConflictingRecords 5 Filters	for	viewing	the	records	that	failed
the	last	batch	update.

adFilterFetchedRecords 3

Filters	for	viewing	the	records	in	the
current	cache—that	is,	the	results	of	the
last	call	to	retrieve	records	from	the
database.

adFilterNone 0 Removes	the	current	filter	and	restores	all
records	for	viewing.

adFilterPendingRecords 1

Filters	for	viewing	only	records	that	have
changed	but	have	not	yet	been	sent	to	the
server.	Applicable	only	for	batch	update
mode.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.FilterGroup.AFFECTEDRECORDS
AdoEnums.FilterGroup.CONFLICTINGRECORDS
AdoEnums.FilterGroup.FETCHEDRECORDS

AdoEnums.FilterGroup.NONE
AdoEnums.FilterGroup.PENDINGRECORDS

GetRowsOptionEnum

				

Specifies	how	many	records	to	retrieve	from	a	Recordset.

Constant Value Description

adGetRowsRest -1

Retrieves	the	rest	of	the	records	in	the
Recordset,	from	either	the	current	position	or
a	bookmark	specified	by	the	Start	parameter
of	the	GetRows	method.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.GetRowsOption.REST

IsolationLevelEnum

				

Specifies	the	level	of	transaction	isolation	for	a	Connection	object.

Constant Value Description

adXactUnspecified -1
Indicates	that	the	provider	is	using	a
different	isolation	level	than	specified,
but	that	the	level	cannot	be	determined.

adXactChaos 16
Indicates	that	pending	changes	from
more	highly	isolated	transactions	cannot
be	overwritten.

adXactBrowse 256
Indicates	that	from	one	transaction	you
can	view	uncommitted	changes	in	other
transactions.

adXactReadUncommitted 256 Same	as	adXactBrowse.

adXactCursorStability 4096
Indicates	that	from	one	transaction	you
can	view	changes	in	other	transactions
only	after	they	have	been	committed.

adXactReadCommitted 4096 Same	as	adXactCursorStability.

adXactRepeatableRead 65536

Indicates	that	from	one	transaction	you
cannot	see	changes	made	in	other
transactions,	but	that	requerying	can
retrieve	new	Recordset	objects.

adXactIsolated 1048576 Indicates	that	transactions	are	conducted
in	isolation	of	other	transactions.

adXactSerializable 1048576 Same	as	adXactIsolated.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.IsolationLevel.UNSPECIFIED
AdoEnums.IsolationLevel.CHAOS
AdoEnums.IsolationLevel.BROWSE
AdoEnums.IsolationLevel.READUNCOMMITTED
AdoEnums.IsolationLevel.CURSORSTABILITY
AdoEnums.IsolationLevel.READCOMMITTED
AdoEnums.IsolationLevel.REPEATABLEREAD
AdoEnums.IsolationLevel.ISOLATED
AdoEnums.IsolationLevel.SERIALIZABLE

LineSeparatorsEnum

				

Specifies	the	character	used	as	a	line	separator	in	text	Stream	objects.

Constant Value Description
adCR 13 Indicates	carriage	return.

adCRLF -1 Default.	Indicates	carriage	return	line
feed.

adLF 10 Indicates	line	feed.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

LockTypeEnum

				

Specifies	the	type	of	lock	placed	on	records	during	editing.

Constant Value Description

adLockBatchOptimistic 4 Indicates	optimistic	batch	updates.	Required
for	batch	update	mode.

adLockOptimistic 3

Indicates	optimistic	locking,	record	by	record.
The	provider	uses	optimistic	locking,	locking
records	only	when	you	call	the	Update
method.

adLockPessimistic 2

Indicates	pessimistic	locking,	record	by
record.	The	provider	does	what	is	necessary	to
ensure	successful	editing	of	the	records,
usually	by	locking	records	at	the	data	source
immediately	after	editing.

adLockReadOnly 1 Indicates	read-only	records.	You	cannot	alter
the	data.

adLockUnspecified -1
Does	not	specify	a	type	of	lock.	For	clones,
the	clone	is	created	with	the	same	lock	type	as
the	original.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.LockType.BATCHOPTIMISTIC
AdoEnums.LockType.OPTIMISTIC

AdoEnums.LockType.PESSIMISTIC
AdoEnums.LockType.READONLY
AdoEnums.LockType.UNSPECIFIED

MarshalOptionsEnum

				

Specifies	which	records	should	be	returned	to	the	server.

Constant Value Description
adMarshalAll 0 Default.	Returns	all	rows	to	the	server.
adMarshalModifiedOnly 1 Returns	only	modified	rows	to	the	server.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.MarshalOptions.ALL
AdoEnums.MarshalOptions.MODIFIEDONLY

MoveRecordOptionsEnum

				

Specifies	the	behavior	of	the	Record	object	MoveRecord	method.

Constant Value Description

adMoveUnspecified -1

Default.	Performs	the	default	move
operation:	The	operation	fails	if	the
destination	file	or	directory	already	exists,
and	the	operation	updates	hypertext	links.

adMoveOverWrite 1 Overwrites	the	destination	file	or	directory,
even	if	it	already	exists.

adMoveDontUpdateLinks 2

Modifies	the	default	behavior	of
MoveRecord	method	by	not	updating	the
hypertext	links	of	the	source	Record.	The
default	behavior	depends	on	the
capabilities	of	the	provider.	Move
operation	updates	links	if	the	provider	is
capable.	If	the	provider	cannot	fix	links	or
if	this	value	is	not	specified,	then	the	move
succeeds	even	when	links	have	not	been
fixed.

adMoveAllowEmulation 4

Requests	that	the	provider	attempt	to
simulate	the	move	(using	download,
upload,	and	delete	operations).	If	the
attempt	to	move	the	Record	fails	because
the	destination	URL	is	on	a	different	server
or	serviced	by	a	different	provider	than	the
source,	this	may	cause	increased	latency	or
data	loss,	due	to	different	provider

capabilities	when	moving	resources
between	providers.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

ObjectStateEnum

				

Specifies	whether	an	object	is	open	or	closed,	connecting	to	a	data	source,
executing	a	command,	or	retrieving	data.

Constant Value Description
adStateClosed 0 Indicates	that	the	object	is	closed.
adStateOpen 1 Indicates	that	the	object	is	open.
adStateConnecting 2 Indicates	that	the	object	is	connecting.

adStateExecuting 4 Indicates	that	the	object	is	executing	a
command.

adStateFetching 8 Indicates	that	the	rows	of	the	object	are	being
retrieved.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ObjectState.CLOSED
AdoEnums.ObjectState.OPEN
AdoEnums.ObjectState.CONNECTING
AdoEnums.ObjectState.EXECUTING
AdoEnums.ObjectState.FETCHING

ParameterAttributesEnum

				

Specifies	the	attributes	of	a	Parameter	object.

Constant Value Description

adParamSigned 16 Indicates	that	the	parameter	accepts	signed
values.

adParamNullable 64 Indicates	that	the	parameter	accepts	null
values.

adParamLong 128 Indicates	that	the	parameter	accepts	long
binary	data.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ParameterAttributes.SIGNED
AdoEnums.ParameterAttributes.NULLABLE
AdoEnums.ParameterAttributes.LONG

ParameterDirectionEnum

				

Specifies	whether	the	Parameter	represents	an	input	parameter,	an	output
parameter,	both	an	input	and	an	output	parameter,	or	the	return	value	from	a
stored	procedure.

Constant Value Description

adParamInput 1 Default.	Indicates	that	the	parameter
represents	an	input	parameter.

adParamInputOutput 3 Indicates	that	the	parameter	represents	both	an
input	and	output	parameter.

adParamOutput 2 Indicates	that	the	parameter	represents	an
output	parameter.

adParamReturnValue 4 Indicates	that	the	parameter	represents	a
return	value.

adParamUnknown 0 Indicates	that	the	parameter	direction	is
unknown.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.ParameterDirection.INPUT
AdoEnums.ParameterDirection.INPUTOUTPUT
AdoEnums.ParameterDirection.OUTPUT
AdoEnums.ParameterDirection.RETURNVALUE
AdoEnums.ParameterDirection.UNKNOWN

PersistFormatEnum

				

Specifies	the	format	in	which	to	save	a	Recordset.

Constant Value Description

adPersistADTG 0 Indicates	Microsoft	Advanced	Data
TableGram	(ADTG)	format.

adPersistXML 1 Indicates	Extensible	Markup	Language
(XML)	format.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.PersistFormat.ADTG
AdoEnums.PersistFormat.XML

PositionEnum

				

Specifies	the	current	position	of	the	record	pointer	within	a	Recordset.

Constant Value Description

adPosBOF -2 Indicates	that	the	current	record	pointer	is	at
BOF	(that	is,	the	BOF	property	is	True).

adPosEOF -3 Indicates	that	the	current	record	pointer	is	at
EOF	(that	is,	the	EOF	property	is	True).

adPosUnknown -1

Indicates	that	the	Recordset	is	empty,	the
current	position	is	unknown,	or	the	provider
does	not	support	the	AbsolutePage	or
AbsolutePosition	property.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Position.BOF
AdoEnums.Position.EOF
AdoEnums.Position.UNKNOWN

PropertyAttributesEnum

				

Specifies	the	attributes	of	a	Property	object.

Constant Value Description

adPropNotSupported 0 Indicates	that	the	property	is	not	supported	by
the	provider.

adPropRequired 1
Indicates	that	the	user	must	specify	a	value	for
this	property	before	the	data	source	is
initialized.

adPropOptional 2
Indicates	that	the	user	does	not	need	to
specify	a	value	for	this	property	before	the
data	source	is	initialized.

adPropRead 512 Indicates	that	the	user	can	read	the	property.
adPropWrite 1024 Indicates	that	the	user	can	set	the	property.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.PropertyAttributes.NOTSUPPORTED
AdoEnums.PropertyAttributes.REQUIRED
AdoEnums.PropertyAttributes.OPTIONAL
AdoEnums.PropertyAttributes.READ
AdoEnums.PropertyAttributes.WRITE

RecordCreateOptionsEnum

				

Specifies	whether	an	existing	Record	should	be	opened	or	a	new	Record
created	for	the	Record	object	Open	method.	The	values	can	be	combined	with	an
AND	operator.

Constant Value Description

adCreateCollection 0x2000

Creates	a	new	Record	at	the	node
specified	by	Source	parameter,	instead
of	opening	an	existing	Record.	If	the
source	points	to	an	existing	node,	then	a
run-time	error	occurs,	unless
adCreateCollection	is	combined	with
adOpenIfExists	or
adCreateOverwrite.

adCreateNonCollection 0 Creates	a	new	Record	of	type
adSimpleRecord.

adCreateOverwrite 0x4000000

Modifies	the	creation	flags
adCreateCollection,
adCreateNonCollection,	and
adCreateStructDoc.	When	OR	is	used
with	this	value	and	one	of	the	creation
flag	values,	if	the	source	URL	points	to
an	existing	node	or	Record,	then	the
existing	Record	is	overwritten	and	a
new	one	is	created	in	its	place.	This
value	cannot	be	used	together	with
adOpenIfExists.
Creates	a	new	Record	of	type

adCreateStructDoc 0x80000000 adStructDoc,	instead	of	opening	an
existing	Record.

adFailIfNotExists -1 Default.	Results	in	a	run-time	error	if
Source	points	to	a	non-existent	node.

adOpenIfExists 0x2000000

Modifies	the	creation	flags
adCreateCollection,
adCreateNonCollection,	and
adCreateStructDoc.	When	OR	is	used
with	this	value	and	one	of	the	creation
flag	values,	if	the	source	URL	points	to
an	existing	node	or	Record	object,	then
the	provider	must	open	the	existing
Record	instead	of	creating	a	new	one.
This	value	cannot	be	used	together	with
adCreateOverwrite.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

RecordOpenOptionsEnum

				

Specifies	options	for	opening	a	Record.	These	values	may	be	combined	by	using
OR.

Constant Value Description

adDelayFetchFields 0x8000

Indicates	to	the	provider	that	the	fields
associated	with	the	Record	need	not	be
retrieved	initially,	but	can	be	retrieved
at	the	first	attempt	to	access	the	field.
The	default	behavior,	indicated	by	the
absence	of	this	flag,	is	to	retrieve	all	the
Record	object	fields.

adDelayFetchStream 0x4000

Indicates	to	the	provider	that	the	default
stream	associated	with	the	Record	need
not	be	retrieved	initially.	The	default
behavior,	indicated	by	the	absence	of
this	flag,	is	to	retrieve	the	default
stream	associated	with	the	Record
object.

adOpenAsync 0x1000 Indicates	that	the	Record	object	is
opened	in	asynchronous	mode.

adOpenRecordUnspecified -1 Default.	Indicates	no	options	are
specified.

adOpenSource 0x800000

Indicates	that	if	the	source	points	to	a
node	that	contains	an	executable	script
(such	as	an	.ASP	page),	then	a	Record
containing	the	source	is	opened	rather
than	the	executed	contents.	This	value

is	only	valid	with	non-collection
records.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

RecordStatusEnum

				

Specifies	the	status	of	a	record	with	regard	to	batch	updates	and	other	bulk
operations.

Constant Value Description

adRecCanceled 0x100 Indicates	that	the	record	was	not	saved
because	the	operation	was	canceled.

adRecCantRelease 0x400
Indicates	that	the	new	record	was	not
saved	because	the	existing	record	was
locked.

adRecConcurrencyViolation 0x800
Indicates	that	the	record	was	not	saved
because	optimistic	concurrency	was	in
use.

adRecDBDeleted 0x40000 Indicates	that	the	record	has	already
been	deleted	from	the	data	source.

adRecDeleted 0x4 Indicates	that	the	record	was	deleted.

adRecIntegrityViolation 0x1000
Indicates	that	the	record	was	not	saved
because	the	user	violated	integrity
constraints.

adRecInvalid 0x10 Indicates	that	the	record	was	not	saved
because	its	bookmark	is	invalid.

adRecMaxChangesExceeded 0x2000
Indicates	that	the	record	was	not	saved
because	there	were	too	many	pending
changes.

adRecModified 0x2 Indicates	that	the	record	was	modified.

adRecMultipleChanges 0x40
Indicates	that	the	record	was	not	saved
because	it	would	have	affected

multiple	records.
adRecNew 0x1 Indicates	that	the	record	is	new.

adRecObjectOpen 0x4000
Indicates	that	the	record	was	not	saved
because	of	a	conflict	with	an	open
storage	object.

adRecOK 0 Indicates	that	the	record	was
successfully	updated.

adRecOutOfMemory 0x8000
Indicates	that	the	record	was	not	saved
because	the	computer	has	run	out	of
memory.

adRecPendingChanges 0x80 Indicates	that	the	record	was	not	saved
because	it	refers	to	a	pending	insert.

adRecPermissionDenied 0x10000
Indicates	that	the	record	was	not	saved
because	the	user	has	insufficient
permissions.

adRecSchemaViolation 0x20000
Indicates	that	the	record	was	not	saved
because	it	violates	the	structure	of	the
underlying	database.

adRecUnmodified 0x8 Indicates	that	the	record	was	not
modified.

ADO/WFC	Equivalent

AdoEnums.RecordStatus.

Package:	com.ms.wfc.data

Constant
AdoEnums.RecordStatus.CANCELED
AdoEnums.RecordStatus.CANTRELEASE
AdoEnums.RecordStatus.CONCURRENCYVIOLATION
AdoEnums.RecordStatus.DBDELETED
AdoEnums.RecordStatus.DELETED
AdoEnums.RecordStatus.INTEGRITYVIOLATION
AdoEnums.RecordStatus.INVALID
AdoEnums.RecordStatus.MAXCHANGESEXCEEDED
AdoEnums.RecordStatus.MODIFIED

AdoEnums.RecordStatus.MULTIPLECHANGES
AdoEnums.RecordStatus.NEW
AdoEnums.RecordStatus.OBJECTOPEN
AdoEnums.RecordStatus.OK
AdoEnums.RecordStatus.OUTOFMEMORY
AdoEnums.RecordStatus.PENDINGCHANGES
AdoEnums.RecordStatus.PERMISSIONDENIED
AdoEnums.RecordStatus.SCHEMAVIOLATION
AdoEnums.RecordStatus.UNMODIFIED

RecordTypeEnum

				

Specifies	the	type	of	Record	object.

Constant Value Description

adSimpleRecord 0 Indicates	a	simple	record	(does	not	contain
child	nodes).

adCollectionRecord 1 Indicates	a	collection	record	(contains	child
nodes).

adStructDoc 2 Indicates	a	special	kind	of	collection	record
that	represents	COM	structured	documents.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

ResyncEnum

				

Specifies	whether	underlying	values	are	overwritten	by	a	call	to	Resync.

Constant Value Description

adResyncAllValues 2 Default.	Overwrites	data,	and	pending
updates	are	canceled.

adResyncUnderlyingValues 1 Does	not	overwrite	data,	and	pending
updates	are	not	canceled.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Resync.ALLVALUES
AdoEnums.Resync.UNDERLYINGVALUES

SaveOptionsEnum

				

Specifies	whether	a	file	should	be	created	or	overwritten	when	saving	from	a
Stream	object.	The	values	can	be	combined	with	an	AND	operator.

Constant Value Description

adSaveCreateNotExist 1
Default.	Creates	a	new	file	if	the	file	specified
by	the	FileName	parameter	does	not	already
exist.

adSaveCreateOverwrite 4

Overwrites	the	file	with	the	data	from	the
currently	open	Stream	object,	if	the	file
specified	by	the	Filename	parameter	already
exists.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

SchemaEnum

				

Specifies	the	type	of	schema	Recordset	that	the	OpenSchema	method	retrieves.

Remarks

Additional	information	about	the	function	and	columns	returned	for	each	ADO
constant	can	be	found	in	topics	of	Appendix	B	of	the	OLE	DB	Programmer’s
Reference.	The	name	of	each	topic	is	listed	in	parentheses	in	the	Description
section	of	the	table	below.

Additional	information	about	the	function	and	columns	returned	for	each	ADO
MD	constant	can	be	found	in	topics	of	Chapter	22	of	the	OLE	DB	for	OLAP.
The	name	of	each	topic	is	listed	in	parentheses	and	marked	with	an	asterisk	(*)
in	the	Description	column	of	the	table	below.

Translate	the	data	types	of	columns	in	the	OLE	DB	documentation	to	ADO	data
types	by	referring	to	the	Description	column	of	the	ADO	DataTypeEnum	topic.
For	example,	an	OLE	DB	data	type	of	DBTYPE_WSTR	is	equivalent	to	an
ADO	data	type	of	adWChar.

ADO	generates	schema-like	results	for	the	constants,
adSchemaDBInfoKeywords	and	adSchemaDBInfoLiterals.	ADO	creates	a
Recordset,	then	fills	each	row	with	the	values	returned	respectively	by	the
IDBInfo::GetKeywords	and	IDBInfo::GetLiteralInfo	methods.	Additional
information	about	these	methods	can	be	found	in	the	IDBInfo	section	of	the	OLE
DB	Programmer's	Reference.

Constant Value Description
Returns	the	assertions	defined	in	the

mk:@MSITStore:OLEDB.chm::/htm/oledbSchema_Rowsets.htm
mk:@MSITStore:OLEDB.chm::/htm/olapOLE_DB_for_OLAP_Objects_and_Schema_Rowsets.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbIDBInfo.htm

adSchemaAsserts 0
catalog	that	are	owned	by	a	given
user.

(ASSERTIONS	Rowset)

adSchemaCatalogs 1

Returns	the	physical	attributes
associated	with	catalogs	accessible
from	the	DBMS.

(CATALOGS	Rowset)

adSchemaCharacterSets 2

Returns	the	character	sets	defined	in
the	catalog	that	are	accessible	to	a
given	user.

(CHARACTER_SETS	Rowset)

adSchemaCheckConstraints 5

Returns	the	check	constraints	defined
in	the	catalog	that	are	owned	by	a
given	user.

(CHECK_CONSTRAINTS	Rowset)

adSchemaCollations 3

Returns	the	character	collations
defined	in	the	catalog	that	are
accessible	to	a	given	user.

(COLLATIONS	Rowset)

adSchemaColumnPrivileges 13

Returns	the	privileges	on	columns	of
tables	defined	in	the	catalog	that	are
available	to,	or	granted	by,	a	given
user.

(COLUMN_PRIVILEGES	Rowset)

adSchemaColumns 4

Returns	the	columns	of	tables
(including	views)	defined	in	the
catalog	that	are	accessible	to	a	given

mk:@MSITStore:OLEDB.chm::/htm/oledbASSERTIONS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCATALOGS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCHARACTER_SETS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCHECK_CONSTRAINTS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCOLLATIONS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCOLUMN_PRIVILEGES_Rowset.htm

user.

(COLUMNS	Rowset)

adSchemaColumnsDomainUsage 11

Returns	the	columns	defined	in	the
catalog	that	are	dependent	on	a
domain	defined	in	the	catalog	and
owned	by	a	given	user.

(COLUMN_DOMAIN_USAGE
Rowset)

adSchemaConstraintColumnUsage 6

Returns	the	columns	used	by
referential	constraints,	unique
constraints,	check	constraints,	and
assertions,	defined	in	the	catalog	and
owned	by	a	given	user.

(CONSTRAINT_COLUMN_USAGE
Rowset)

adSchemaConstraintTableUsage 7

Returns	the	tables	that	are	used	by
referential	constraints,	unique
constraints,	check	constraints,	and
assertions	defined	in	the	catalog	and
owned	by	a	given	user.

(CONSTRAINT_TABLE_USAGE
Rowset)

adSchemaCubes 32

Returns	information	about	the
available	cubes	in	a	schema	(or	the
catalog,	if	the	provider	does	not
support	schemas).

(CUBES	Rowset*)

Returns	a	list	of	provider-specific
keywords.

mk:@MSITStore:OLEDB.chm::/htm/oledbCOLUMNS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCOLUMN_DOMAIN_USAGE_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCONSTRAINT_COLUMN_USAGE_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbCONSTRAINT_TABLE_USAGE_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/olapCUBES_Rowset.htm

adSchemaDBInfoKeywords 30 (IDBInfo::GetKeywords	*)

adSchemaDBInfoLiterals 31

Returns	a	list	of	provider-specific
literals	used	in	text	commands.

(IDBInfo::GetLiteralInfo	*)

adSchemaDimensions 33

Returns	information	about	the
dimensions	in	a	given	cube.	It	has	one
row	for	each	dimension.

(DIMENSIONS	Rowset	*)

adSchemaForeignKeys 27

Returns	the	foreign	key	columns
defined	in	the	catalog	by	a	given	user.

(FOREIGN_KEYS	Rowset)

adSchemaHierarchies 34

Returns	information	about	the
hierarchies	available	in	a	dimension.

(HIERARCHIES	Rowset	*)

adSchemaIndexes 12

Returns	the	indexes	defined	in	the
catalog	that	are	owned	by	a	given
user.

(INDEXES	Rowset)

adSchemaKeyColumnUsage 8

Returns	the	columns	defined	in	the
catalog	that	are	constrained	as	keys
by	a	given	user.

(KEY_COLUMN_USAGE	Rowset)

mk:@MSITStore:OLEDB.chm::/htm/oledbIDBInfo__GetKeywords.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbIDBInfo__GetLiteralInfo.htm
mk:@MSITStore:OLEDB.chm::/htm/olapDIMENSIONS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbFOREIGN_KEYS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/olapHIERARCHIES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbINDEXES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbKEY_COLUMN_USAGE_Rowset.htm

adSchemaLevels 35

Returns	information	about	the	levels
available	in	a	dimension.

(LEVELS	Rowset*)

adSchemaMeasures 36

Returns	information	about	the
available	measures.

(MEASURES	Rowset	*)

adSchemaMembers 38

Returns	information	about	the
available	members.

(MEMBERS	Rowset	*)

adSchemaPrimaryKeys 28

Returns	the	primary	key	columns
defined	in	the	catalog	by	a	given	user.

(PRIMARY_KEYS	Rowset)

adSchemaProcedureColumns 29

Returns	information	about	the
columns	of	rowsets	returned	by
procedures.

(PROCEDURE_COLUMNS	Rowset

Returns	information	about	the
parameters	and	return	codes	of

mk:@MSITStore:OLEDB.chm::/htm/olapLEVELS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/olapMEASURES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/olapMEMBERS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbPRIMARY_KEYS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbPROCEDURE_COLUMNS_Rowset.htm

adSchemaProcedureParameters 26
procedures.

(PROCEDURE_PARAMETERS
Rowset)

adSchemaProcedures 16

Returns	the	procedures	defined	in	the
catalog	that	are	owned	by	a	given
user.

(PROCEDURES	Rowset)

adSchemaProperties 37

Returns	information	about	the
available	properties	for	each	level	of
the	dimension.

(PROPERTIES	Rowset	*)

adSchemaProviderSpecific -1 Used	if	the	provider	defines	its	own
nonstandard	schema	queries.

adSchemaProviderTypes 22

Returns	the	(base)	data	types
supported	by	the	data	provider.

(PROVIDER_TYPES	Rowset)

adSchemaReferentialConstraints 9

Returns	the	referential	constraints
defined	in	the	catalog	that	are	owned
by	a	given	user.

(REFERENTIAL_CONSTRAINTS
Rowset)

adSchemaSchemata 17

Returns	the	schemas	(database
objects)	that	are	owned	by	a	given
user.

mk:@MSITStore:OLEDB.chm::/htm/Oledbpart3_ole_db_for_olap.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbPROCEDURE_PARAMETERS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbPROCEDURES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/olapPROPERTIES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbPROVIDER_TYPES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbREFERENTIAL_CONSTRAINTS_Rowset.htm

(SCHEMATA	Rowset)

adSchemaSQLLanguages 18

Returns	the	conformance	levels,
options,	and	dialects	supported	by	the
SQL-implementation	processing	data
defined	in	the	catalog.

(SQL_LANGUAGES	Rowset)

adSchemaStatistics 19

Returns	the	statistics	defined	in	the
catalog	that	are	owned	by	a	given
user.

(STATISTICS	Rowset)

adSchemaTableConstraints 10

Returns	the	table	constraints	defined
in	the	catalog	that	are	owned	by	a
given	user.

(TABLE_CONSTRAINTS	Rowset)

adSchemaTablePrivileges 14

Returns	the	privileges	on	tables
defined	in	the	catalog	that	are
available	to,	or	granted	by,	a	given
user.

(TABLE_PRIVILEGES	Rowset)

adSchemaTables 20

Returns	the	tables	(including	views)
defined	in	the	catalog	that	are
accessible	to	a	given	user.

(TABLES	Rowset)

adSchemaTranslations 21

Returns	the	character	translations
defined	in	the	catalog	that	are
accessible	to	a	given	user.

mk:@MSITStore:OLEDB.chm::/htm/oledbSCHEMATA_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbSQL_LANGUAGES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbSTATISTICSRowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbTABLE_CONSTRAINTS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbTABLE_PRIVILEGES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbTABLES_Rowset.htm

(TRANSLATIONS	Rowset)

adSchemaTrustees 39 Reserved	for	future	use.

adSchemaUsagePrivileges 15

Returns	the	USAGE	privileges	on
objects	defined	in	the	catalog	that	are
available	to,	or	granted	by,	a	given
user.

(USAGE_PRIVILEGES	Rowset)

adSchemaViewColumnUsage 24

Returns	the	columns	on	which	viewed
tables,	defined	in	the	catalog	and
owned	by	a	given	user,	are	dependent.

(VIEW_COLUMN_USAGE	Rowset

adSchemaViews 23

Returns	the	views	defined	in	the
catalog	that	are	accessible	to	a	given
user.

(VIEWS	Rowset)

adSchemaViewTableUsage 25

Returns	the	tables	on	which	viewed
tables,	defined	in	the	catalog	and
owned	by	a	given	user,	are	dependent.

(VIEW_TABLE_USAGE	Rowset)

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Schema.ASSERTS
AdoEnums.Schema.CATALOGS
AdoEnums.Schema.CHARACTERSETS
AdoEnums.Schema.CHECKCONSTRAINTS

mk:@MSITStore:OLEDB.chm::/htm/oledbTRANSLATIONS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbUSAGE_PRIVILEGES_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbVIEW_COLUMN_USAGE_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbVIEWS_Rowset.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbVIEW_TABLE_USAGE_Rowset.htm

AdoEnums.Schema.COLLATIONS
AdoEnums.Schema.COLUMNPRIVILEGES
AdoEnums.Schema.COLUMNS
AdoEnums.Schema.COLUMNSDOMAINUSAGE
AdoEnums.Schema.CONSTRAINTCOLUMNUSAGE
AdoEnums.Schema.CONSTRAINTTABLEUSAGE
AdoEnums.Schema.CUBES
AdoEnums.Schema.DBINFOKEYWORDS
AdoEnums.Schema.DBINFOLITERALS
AdoEnums.Schema.DIMENSIONS
AdoEnums.Schema.FOREIGNKEYS
AdoEnums.Schema.HIERARCHIES
AdoEnums.Schema.INDEXES
AdoEnums.Schema.KEYCOLUMNUSAGE
AdoEnums.Schema.LEVELS
AdoEnums.Schema.MEASURES
AdoEnums.Schema.MEMBERS
AdoEnums.Schema.PRIMARYKEYS
AdoEnums.Schema.PROCEDURECOLUMNS
AdoEnums.Schema.PROCEDUREPARAMETERS
AdoEnums.Schema.PROCEDURES
AdoEnums.Schema.PROPERTIES
AdoEnums.Schema.PROVIDERSPECIFIC
AdoEnums.Schema.PROVIDERTYPES
AdoEnums.Schema.REFERENTIALCONTRAINTS
AdoEnums.Schema.SCHEMATA
AdoEnums.Schema.SQLLANGUAGES
AdoEnums.Schema.STATISTICS
AdoEnums.Schema.TABLECONSTRAINTS
AdoEnums.Schema.TABLEPRIVILEGES
AdoEnums.Schema.TABLES
AdoEnums.Schema.TRANSLATIONS
AdoEnums.Schema.TRUSTEES
AdoEnums.Schema.USAGEPRIVILEGES

AdoEnums.Schema.VIEWCOLUMNUSAGE
AdoEnums.Schema.VIEWS
AdoEnums.Schema.VIEWTABLEUSAGE

SearchDirectionEnum

				

Specifies	the	direction	of	a	record	search	within	a	Recordset.

Constant Value Description

adSearchBackward -1
Searches	backward,	stopping	at	the	beginning
of	the	Recordset.	If	a	match	is	not	found,	the
record	pointer	is	positioned	at	BOF.

adSearchForward 1
Searches	forward,	stopping	at	the	end	of	the
Recordset.	If	a	match	is	not	found,	the	record
pointer	is	positioned	at	EOF.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.SearchDirection.BACKWARD
AdoEnums.SearchDirection.FORWARD

SeekEnum

				

Specifies	the	type	of	Seek	to	execute.

Constant Value Description
adSeekFirstEQ 1 Seeks	the	first	key	equal	to	KeyValues.
adSeekLastEQ 2 Seeks	the	last	key	equal	to	KeyValues.

adSeekAfterEQ 4 Seeks	either	a	key	equal	to	KeyValues	or	just
after	where	that	match	would	have	occurred.

adSeekAfter 8 Seeks	a	key	just	after	where	a	match	with
KeyValues	would	have	occurred.

adSeekBeforeEQ 16 Seeks	either	a	key	equal	to	KeyValues	or	just
before	where	that	match	would	have	occurred.

adSeekBefore 32 Seeks	a	key	just	before	where	a	match	with
KeyValues	would	have	occurred.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.Seek.FIRSTEQ
AdoEnums.Seek.LASTEQ
AdoEnums.Seek.AFTEREQ
AdoEnums.Seek.AFTER
AdoEnums.Seek.BEFOREEQ
AdoEnums.Seek.BEFORE

StreamOpenOptionsEnum

				

Specifies	options	for	opening	a	Stream	object.	The	values	can	be	combined	with
an	OR	operation.

Constant Value Description

adOpenStreamAsync 1 Opens	the	Stream	object	in	asynchronous
mode.

adOpenStreamFromRecord 4

Identifies	the	contents	of	the	Source
parameter	to	be	an	already	open	Record
object.	The	default	behavior	is	to	treat
Source	as	a	URL	that	points	directly	to	a
node	in	a	tree	structure.	The	default	stream
associated	with	that	node	is	opened.

adOpenStreamUnspecified -1 Default.	Specifies	opening	the	Stream
object	with	default	options.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

StreamReadEnum

				

Specifies	whether	the	whole	stream	or	the	next	line	should	be	read	from	a
Stream	object.

Constant Value Description

adReadAll -1

Default.	Reads	all	bytes	from	the	stream,	from
the	current	position	onwards	to	the	EOS	marker.
This	is	the	only	valid	StreamReadEnum	value
with	binary	streams	(Type	is	adTypeBinary).

adReadLine -2 Reads	the	next	line	from	the	stream	(designated
by	the	LineSeparator	property).

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

StreamTypeEnum

				

Specifies	the	type	of	data	stored	in	a	Stream	object.

Constant Value Description
adTypeBinary 1 Indicates	binary	data.

adTypeText 2 Default.	Indicates	text	data,	which	is	in	the
character	set	specified	by	Charset.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

StreamWriteEnum

				

Specifies	whether	a	line	separator	is	appended	to	the	string	written	to	a	Stream
object.

Constant Value Description

adWriteChar 0
Default.	Writes	the	specified	text	string
(specified	by	the	Data	parameter)	to	the
Stream	object.

adWriteLine 1

Writes	a	text	string	and	a	line	separator
character	to	a	Stream	object.	If	the
LineSeparator	property	is	not	defined,	then
this	returns	a	run-time	error.

ADO/WFC	Equivalent

These	constants	do	not	have	ADO/WFC	equivalents.

StringFormatEnum

				

Specifies	the	format	when	retrieving	a	Recordset	as	a	string.

Constant Value Description

adClipString 2

Delimits	rows	by	RowDelimiter,	columns	by
ColumnDelimiter,	and	null	values	by
NullExpr.	These	three	parameters	of	the
GetString	method	are	valid	only	with	a
StringFormat	of	adClipString.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.StringFormat.CLIPSTRING

XactAttributeEnum

				

Specifies	the	transaction	attributes	of	a	Connection	object.

Constant Value Description

adXactAbortRetaining 262144
Performs	retaining	aborts—that	is,	calling
RollbackTrans	automatically	starts	a	new
transaction.	Not	all	providers	support	this.

adXactCommitRetaining 131072

Performs	retaining	commits—that	is,
calling	CommitTrans	automatically	starts	a
new	transaction.	Not	all	providers	support
this.

ADO/WFC	Equivalent

Package:	com.ms.wfc.data

Constant
AdoEnums.XactAttribute.ABORTRETAINING
AdoEnums.XactAttribute.COMMITRETAINING

ADO	Errors

See	the	following	topics	for	more	information	about	particular	error	messages:

ADO	Error	Codes
RDS.DataControl	Error	Codes

Internet	Explorer	Error	Codes

Internet	Information	Services	Error	Codes

ADO	Error	Codes

In	addition	to	the	provider	errors	returned	in	the	Error	objects	of	the	Errors
collection,	ADO	itself	can	return	errors	to	the	exception-handling	mechanism	of
your	run-time	environment.	Use	the	error	trapping	mechanism	your
programming	language,	such	as	the	On	Error	statement	in	Visual	Basic,	or	the
try-catch	block	in	Visual	C++	or	Visual	J++,	to	capture	ADO	errors.

For	the	list	of	ADO	error	codes,	see	ErrorValueEnum.

DataControl	Error	Codes

The	following	table	lists	the	RDS.DataControl	object	error	codes.	The	positive
decimal	translation	of	the	low	two	bytes,	the	negative	decimal	translation	of	the
full	error	code,	and	the	hexadecimal	values	are	shown.

RDS.DataControl	error	codes Number Description

IDS_AsyncPending
4107
-2146824175
0x800A1011

Operation	cannot	be
performed	while	async
operation	is	pending.

IDS_BadInlineTablegram
4105
-2146824183
0x800A1009

Bad	inline	tablegram.

IDS_CantConnect
4099
-2146824189
0x800A1003

Cannot	connect	to	server.

IDS_CantCreateObject
4100
-2146824188
0x800A1004

Business	object	cannot	be
created.

IDS_CantFindDataspace
4102
-2146824186
0x800A1006

Dataspace	property	is	not
valid.

IDS_CantInvokeMethod
4101
-2146824187
0x800A1005

Method	cannot	be	invoked	on
business	object.

4112

This	page	accesses	data	on
another	domain.	Do	you	want
to	allow	this?	To	avoid	this
message	in	Internet	Explorer,

IDS_CrossDomainWarning -2146824170
0x800A1016

you	can	add	a	secure	Web	site
to	your	Trusted	Sites	zone	on
the	Security	tab	of	the
Internet	Options	dialog	box.

IDS_InvalidADCClientVersion
4106
-2146824176
0x800A1010

Invalid	RDS	Client	Version	—
Client	is	newer	than	server.

IDS_INVALIDARG
5376
-2147019520
0x80071500

One	or	more	arguments	are
invalid.

IDS_InvalidBindings
4097
-2146824191
0x800A1001

Error	in	bindings	property.

IDS_InvalidParam
4110
-2146824172
0x800A1014

One	or	more	arguments	are
invalid.

IDS_NOINTERFACE
5377
-2147019519
0x80071501

No	such	interface	is	supported.

IDS_NotReentrant
4111
-2146824171
0x800A1015

Request	cannot	be	executed
while	the	event	handler	is	still
processing.

IDS_ObjectNotSafe
4103
-2146824185
0x800A1007

Safety	settings	on	this
computer	prohibit	creation	of
business	object.

IDS_RecordsetNotOpen
4109
-2146824173
0x800A1013

Recordset	is	not	open.

IDS_ResetInvalidField
4108
-2146824174
0x800A1012

Column	specified	in
SortColumn	or	FilterColumn
does	not	exist.

IDS_RowsetNotUpdateable
4104
-2146824184
0x800A1008

Rowset	not	updateable.

IDS_UnexpectedError
4351
-2146823937
0x800A10FF

Unexpected	error.

IDS_UpdatesFailed
4098
-2146824190
0x800A1002

Unable	to	update	database.

IDS_URLMONNotFound
4119
-2146824169
0x800A1017

DataControl	URL	property
requires	the	system	file
Urlmon.dll,	which	cannot	be
found.

Internet	Explorer	Error	Codes

The	following	table	lists	Internet	Explorer	error	codes	related	to	Remote	Data
Service	usage.	The	positive	decimal	translation	of	the	low	two	bytes,	the
negative	decimal	translation	of	the	full	error	code,	and	the	hexadecimal	values
are	shown.

Internet	Explorer	(Wininet)
errors Number Description

IDS_WinInet_CantConnect
8195
-2146820093
0x800A2003

Internet	Client	Error:	Cannot
Connect	to	Server.

IDS_WinInet_
ConnectionReset

12031
-2146816257
0x800A2EFF

Internet	Client	Error:
Connection	Reset.

IDS_WinInet_Error
8193
-2146820095
0x800A2001

Internet	Client	Error.

IDS_WinInet_
InvalidServerResponse

8430
-2146819858
0x800A20EE

Internet	Client	Error:	Invalid
Server	Response.

IDS_WinInet_
SSLPostLimitation

8196
-2146820092
0x800A2004

Internet	Client	Error:	SSL	Error
(possibly	32K	data	upload
limitation).

IDS_WinInet_Timeout
8194
-2146820094
0x800A2002

Internet	Client	Error:	Request
Timeout.

Internet	Information	Services	Error	Codes

The	following	table	lists	Internet	Information	Services	error	codes	related	to
Remote	Data	Service	usage.	The	positive	decimal	translation	of	the	low	two
bytes,	the	negative	decimal	translation	of	the	full	error	code,	and	the
hexadecimal	values	are	shown.

Internet	Information	Services
errors Number Description

IDS_IIS_AccessDenied
8208
-2146820080
0x800A2010

Internet	Server	Error:	Access
Denied.

IDS_IIS_ObjectNotFound
8209
-2146820079
0x800A2011

Internet	Server	Error:
Object/module	not	found.

IDS_IIS_RequestForbidden
8210
-2146820078
0x800A2012

Internet	Server	Error:	Request
Forbidden.

IDS_IIS_UnexpectedError
8447
-2146819841
0x800A20FF

Internet	Server	Error.

Programming	with	ADO

ADO	is	a	COM	automation	interface	component	that	can	be	used	with	many
programming	languages,	including	Microsoft	Visual	Basic,	VBScript,	JScript,
Visual	C++,	and	Visual	J++.	A	version	of	ADO	is	installed	with	each	of	these
tools	and	other	applications,	such	as	Microsoft®	Office®	and	Microsoft	SQL
Server.	The	most	recent	version	of	ADO	is	available	separately	with	the
Microsoft	Data	Access	Components.	See	the	Microsoft	Data	Access	Web	site	for
more	information.

The	library	for	ADO	is	msado15.dll	and	the	program	ID	(ProgID)	prefix	is
"ADODB."	For	example,	to	explicitly	refer	to	an	ADO	Recordset,	use
ADODB.Recordset.

For	more	information	about	programming	with	ADO	in	various	development
environments,	see	the	following	topics:

Using	ADO	with	Microsoft	Visual	Basic
Using	ADO	with	Scripting	Languages

Using	ADO	with	Microsoft	Visual	C++

Using	ADO	with	Microsoft	Visual	J++

http://www.microsoft.com/data/

Using	ADO	with	Microsoft	Visual
Basic

Setting	up	an	ADO	project	and	writing	ADO	code	is	similar	whether	you	use
Visual	Basic	or	Visual	Basic	for	Applications.	This	topic	addresses	using	ADO
with	both	Visual	Basic	and	Visual	Basic	for	Applications	and	notes	any
differences.

Creating	an	ADO	Project

The	ADO	library	must	be	referenced	by	your	project.

To	reference	ADO	from	Microsoft	Visual	Basic:

1.	 In	Visual	Basic,	from	the	Project	menu,	select	References....

2.	 Select	Microsoft	ActiveX	Data	Objects	x.x	Library	from	the	list.	Verify
that	at	least	the	following	libraries	are	also	selected:

Visual	Basic	for	Applications

Visual	Basic	runtime	objects	and	procedures

Visual	Basic	objects	and	procedures

OLE	Automation
3.	 Click	OK.

You	can	use	ADO	just	as	easily	with	Visual	Basic	for	Applications,	using
Microsoft	Access	for	example.

To	reference	ADO	from	Microsoft	Access:

1.	 In	Microsoft	Access,	select	or	create	a	module	from	the	Modules	tab	in	the
Database	window.

2.	 From	the	Tools	menu,	select	References....

3.	 Select	Microsoft	ActiveX	Data	Objects	x.x	Library	from	the	list.	Verify
that	at	least	the	following	libraries	are	also	selected:

Visual	Basic	for	Applications

Microsoft	Access	8.0	Object	Library	(or	later)

Microsoft	DAO	3.5	Object	Library	(or	later)
4.	 Click	OK.

Creating	ADO	Objects	in	Visual	Basic

To	create	an	automation	variable	and	an	instance	of	an	object	for	that	variable,
you	can	use	two	methods:	Dim	or	CreateObject.

Dim

You	can	use	the	New	keyword	with	Dim	to	declare	and	instantiate	ADO	objects
in	one	step:

Dim	conn	As	New	ADODB.Connection

Alternately,	the	Dim	statement	declaration	and	object	instantiation	can	also	be
two	steps:

Dim	conn	As	ADODB.Connection

Set	conn	=	New	ADODB.Connection

Note			It	is	not	required	to	explicitly	use	the	ADODB	progid	with	the	Dim
statement,	assuming	you	have	properly	referenced	the	ADO	library	in	your
project.	However,	using	it	ensures	that	you	won't	have	naming	conflicts	with
other	libraries.

For	example,	if	you	include	references	to	both	ADO	and	DAO	in	the	same
project,	you	should	include	a	qualifier	to	specify	which	object	model	to	use
when	instantiating	Recordset	objects,	as	in	the	following	code:

Dim	adoRS	As	ADODB.Recordset

Dim	daoRS	As	DAO.Recordset

CreateObject

With	the	CreateObject	method,	the	declaration	and	object	instantiation	must	be
two	discrete	steps:

Dim	conn1

Set	conn1	=	CreateObject("ADODB.Connection")	As	Object

Objects	instantiated	with	CreateObject	are	late-bound,	which	means	that	they

are	not	strongly	typed	and	command-line	completion	is	disabled.	However,	it
does	allow	you	to	skip	referencing	the	ADO	library	from	your	project,	and
enables	you	to	instantiate	specific	versions	of	objects.	For	example:

Set	conn1	=	CreateObject("ADODB.Connection.2.0")	As	Object

You	could	also	accomplish	this	by	specifically	creating	a	reference	to	the	ADO
version	2.0	type	library	and	creating	the	object.

Instantiating	objects	with	the	CreateObject	method	is	typically	slower	than
using	the	Dim	statement.

Visual	Basic	Examples

Many	Visual	Basic	examples	are	included	with	the	ADO	documentation.	For
more	information,	see	ADO	Code	Examples	in	Microsoft	Visual	Basic.

Using	ADO	with	Scripting	Languages

Within	a	scripting	environment,	ADO	allows	you	to	expose	data	by	way	of
server-side	scripting.	In	this	scenario,	ADO,	the	underlying	OLE	DB	provider
that	it	utilizes,	and	any	other	components	needed	to	reference	a	given	data	store
are	installed	on	a	server	running	Internet	Information	Services	(IIS).	Using
Active	Server	Pages	(ASP),	ADO	is	a	component	referenced	in	a	script	that	can
generate	HTML,	for	example.	This	HTML	content	can	be	passed	via	HTTP	to	a
client	Web	browser.	Through	the	use	of	scripting,	the	Web	page	can	send	actions
back	to	the	server-side	script,	allowing	you	to	update,	traverse,	or	view	specific
data.

One	notable	difference	between	scripting	and	non-scripting	ADO	code	is	the
ODBC	Data	Source,	if	used.	For	non-scripting	applications,	you	can	create	a
User	DSN	in	the	ODBC	Data	Source	Administrator.	For	scripts	that	are	running
under	IIS,	you	must	create	a	System	DSN;	otherwise	your	scripts	won't
recognize	the	data	source	you	created.	This	applies	to	any	ADO	scripting
application	using	the	Microsoft	OLE	DB	Provider	for	ODBC	through	Microsoft
IIS.

The	following	topics	contain	more	specific	information	about	using	ADO	with
scripting	languages:

ADO	in	VBScript
ADO	in	JScript

ADO	in	VBScript

Creating	an	ADO	Project

VBScript	does	not	support	type	libraries,	so	you	do	not	need	to	reference	ADO
in	your	project.	Consequently,	no	associated	features	such	as	command	line
completion	are	supported.	Also,	by	default,	ADO	enumerated	constants	are	not
defined	in	VBScript.

However,	ADO	provides	you	with	two	include	files	containing	the	following
definitions	to	be	used	with	VBScript:

For	server-side	scripting	use	Adovbs.inc,	which	is	installed	in	the
c:\Program	Files\Common	Files\System\ado\	folder	by	default.

For	client-side	scripting	use	Adcvbs.inc,	which	is	installed	in	the
c:\Program	Files\Common	Files\System\msdac\	folder	by	default.

You	can	either	copy	and	paste	constant	definitions	from	these	files	into	your	ASP
pages,	or,	if	you	are	doing	server-side	scripting,	copy	Adovbs.inc	file	to	a	folder
on	your	Web	site	and	referencing	it	from	your	ASP	page	like	this:

<!--#include	File="adovbs.inc"-->

Creating	ADO	Objects	in	VBScript

You	cannot	use	the	Dim	statement	to	assign	objects	to	a	specific	type	in
VBScript.	Also,	VBScript	does	not	support	the	New	syntax	used	with	the	Dim
statement	in	Visual	Basic	for	Applications.	You	must	instead	use	the
CreateObject	function	call:

Dim	Rs1

Set	Rs1	=	Server.CreateObject("ADODB.Recordset")

VBScript	Examples

The	following	code	is	a	generic	example	of	VBScript	server-side	programming
in	an	Active	Server	Page	(ASP)	file:

<%		@LANGUAGE="VBSCRIPT"	%>

<%		Option	Explicit	%>

<!--#include	File="adovbs.inc"-->

<HTML>

				<BODY	BGCOLOR="White"	topmargin="10"	leftmargin="10">

				<!--	Your	ASP	Code	goes	here	-->

<%

Dim	Source

Dim	Connect

Dim	Rs1

				

Source	=	"SELECT	*	FROM	Authors"

Connect	=	"Provider=sqloledb;Data	Source=srv;"	&	_

				"Initial	Catalog=Pubs;User	Id=sa;Password=;"

Set	Rs1	=	Server.CreateObject("ADODB.Recordset")

Rs1.Open	Source,	Connect,	adOpenForwardOnly

Response.Write("Success!")

%>

				</BODY>

</HTML>

More	specific	VBScript	examples	are	included	with	the	ADO	documentation.
For	more	information,	see	ADO	Code	Examples	in	Microsoft	Visual	Basic
Scripting	Edition.

Differences	Between	VBScript	and	Visual	Basic

Using	ADO	with	VBScript	is	similar	to	using	ADO	with	Visual	Basic	in	many
ways,	including	how	syntax	is	used.	However,	some	significant	differences	exist:

VBScript	supports	only	the	Variant	data	type,	which	can	hold	different
types	of	data.	You	can	store	the	data	you	need	in	a	Variant	data	type,	and	the
data	will	function	appropriately	due	to	casting	performed	by	VBScript.	It

recognizes	the	type	required	by	ADO,	and	converts	the	value	in	the	Variant
accordingly.

You	cannot	use	on	error	goto	<label>	within	VBScript.

VBScript	supports	some	of	the	built-in	Visual	Basic	functions	such	as
Msgbox,	Date,	and	IsNumeric.	However,	because	VBScript	is	a	subset	of
Visual	Basic,	not	all	built-in	functions	are	supported.	For	example,
VBScript	does	not	support	the	Format	function	and	the	file	I/O	functions.

ADO	in	JScript

Creating	an	ADO	Project

JScript	does	not	support	type	libraries,	so	you	do	not	need	to	reference	ADO	in
your	project.	Consequently,	no	associated	features	such	as	command	line
completion	are	supported.	Also,	by	default,	ADO	enumerated	constants	are	not
defined	in	JScript.

However,	ADO	provides	you	with	two	include	files	containing	the	following
definitions	to	be	used	with	JScript:

For	server-side	scripting	use	Adojavas.inc,	which	is	installed	in	the
c:\Program	Files\Common	Files\System\ado\	folder	by	default.

For	client-side	scripting	use	Adcjavas.inc,	which	is	installed	in	the
c:\Program	Files\Common	Files\System\msdac\	folder	by	default.

You	can	either	copy	and	paste	constant	definitions	from	these	files	into	your	ASP
pages,	or,	if	you	are	doing	server-side	scripting,	copy	Adojavas.inc	file	to	a
folder	on	your	Web	site	and	references	it	from	your	ASP	page	like	this:

<!--#include	File="adojavas.inc"-->

Creating	ADO	Objects	in	JScript

You	must	instead	use	the	CreateObject	function	call:

var	Rs1;

Rs1	=	Server.CreateObject("ADODB.Recordset");

JScript	Example

The	following	code	is	a	generic	example	of	JScript	server-side	programming	in
an	Active	Server	Page	(ASP)	file	that	opens	a	Recordset	object:

<%		@LANGUAGE="JScript"	%>

<!--#include	File="adojavas.inc"-->

<HTML>

<BODY	BGCOLOR="White"	topmargin="10"	leftmargin="10">

<%

var	Source	=	"SELECT	*	FROM	Authors";

var	Connect	=		"Provider=sqloledb;Data	Source=srv;"	+

				"Initial	Catalog=Pubs;User	Id=sa;Password=;"

var	Rs1	=	Server.CreateObject("ADODB.Recordset.2.5");

Rs1.Open(Source,Connect,adOpenForwardOnly);

Response.Write("Success!");

%>

</BODY>

</HTML>

Using	ADO	with	Microsoft	Visual
C++

For	information	about	using	ADO	with	Visual	C++,	see	the	following	sections.

How	Visual	C++	Users	Should	Read	the	ADO	Documentation
Visual	C++	Extensions	for	ADO

ADO	for	Visual	C++	Syntax	Index	for	COM

ADO	for	Visual	C++	Syntax	Index	with	#import

How	Visual	C++	Users	Should	Read	the	ADO
Documentation

The	ADO	API	Reference	describes	the	functionality	of	the	ADO	application
programming	interface	(API)	using	a	syntax	similar	to	Microsoft	Visual	Basic.
Though	the	intended	audience	is	all	users,	ADO	programmers	employ	diverse
languages	such	as	Visual	Basic,	Visual	C++	(with	and	without	the	#import
directive),	and	Visual	J++	(with	the	ADO/WFC	class	package).

To	accommodate	this	diversity,	the	ADO	for	Visual	C++	Syntax	Indexes	provide
Visual	C++	language-specific	syntax	with	links	to	common	descriptions	of
functionality,	parameters,	exceptional	behaviors,	and	so	on,	in	the	API
Reference.

ADO	is	implemented	with	COM	(Component	Object	Model)	interfaces.
However,	it	is	easier	for	programmers	to	work	with	COM	in	certain
programming	languages	than	others.	For	example,	nearly	all	the	details	of	using
COM	are	handled	implicitly	for	Visual	Basic	programmers,	whereas	Visual	C++
programmers	must	attend	to	those	details	themselves.

The	following	sections	summarize	details	for	C	and	C++	programmers	using
ADO	and	the	#import	directive.	It	focuses	on	data	types	specific	to	COM
(Variant,	BSTR,	and	SafeArray),	and	error	handling	(_com_error).

Using	the	#import	Compiler	Directive

The	#import	Visual	C++	compiler	directive	simplifies	working	with	the	ADO
methods	and	properties.	The	directive	takes	the	name	of	a	file	containing	a	type
library,	such	as	the	ADO	.dll	(Msado15.dll),	and	generates	header	files
containing	typedef	declarations,	smart	pointers	for	interfaces,	and	enumerated

constants.	Each	interface	is	encapsulated,	or	wrapped,	in	a	class.

For	each	operation	within	a	class	(that	is,	a	method	or	property	call),	there	is	a
declaration	to	call	the	operation	directly	(that	is,	the	"raw"	form	of	the
operation),	and	a	declaration	to	call	the	raw	operation	and	throw	a	COM	error	if
the	operation	fails	to	execute	successfully.	If	the	operation	is	a	property,	there	is
usually	a	compiler	directive	that	creates	an	alternative	syntax	for	the	operation
that	has	syntax	like	Visual	Basic.

Operations	that	retrieve	the	value	of	a	property	have	names	of	the	form,
GetProperty.	Operations	that	set	the	value	of	a	property	have	names	of	the	form,
PutProperty.	Operations	that	set	the	value	of	a	property	with	a	pointer	to	an
ADO	object	have	names	of	the	form,	PutRefProperty.

You	can	get	or	set	a	property	with	calls	of	these	forms:

variable	=	objectPtr->GetProperty();	//	get	property	value	

objectPtr->PutProperty(value);							//	set	property	value

objectPtr->PutRefProperty(&value);			//	set	property	with	object	pointer

Using	Property	Directives

The	__declspec(property...)	compiler	directive	is	a	Microsoft-specific	C
language	extension	that	declares	a	function	used	as	a	property	to	have	an
alternative	syntax.	As	a	result,	you	can	set	or	get	values	of	a	property	in	a	way
similar	to	Visual	Basic.	For	example,	you	can	set	and	get	a	property	this	way:

objectPtr->property	=	value;								//	set	property	value

variable	=	objectPtr->property;					//	get	property	value

Notice	you	do	not	have	to	code:

objectPtr->PutProperty(value);						//	set	property	value

variable	=	objectPtr->GetProperty;		//	get	property	value

The	compiler	will	generate	the	appropriate	Get-,	Put-,	or	PutRefProperty	call
based	on	what	alternative	syntax	is	declared	and	whether	the	property	is	being
read	or	written.

The	__declspec(property...)	compiler	directive	can	only	declare	get,	put,	or	get
and	put	alternative	syntax	for	a	function.	Read-only	operations	only	have	a	get

declaration;	write-only	operations	only	have	a	put	declaration;	operations	that
are	both	read	and	write	have	both	get	and	put	declarations.

Only	two	declarations	are	possible	with	this	directive;	however,	each	property
may	have	three	property	functions:	GetProperty,	PutProperty,	and
PutRefProperty.	In	that	case,	only	two	forms	of	the	property	have	the	alternative
syntax.

For	example,	the	Command	object	ActiveConnection	property	is	declared	with
an	alternative	syntax	for	GetActiveConnection	and	PutRefActiveConnection.
The	PutRef-	syntax	is	a	good	choice	because	in	practice,	you	will	typically	want
to	put	an	open	Connection	object	(that	is,	a	Connection	object	pointer)	in	this
property.	On	the	other	hand,	the	Recordset	object	has	Get-,	Put-,	and
PutRefActiveConnection	operations,	but	no	alternative	syntax.

Collections,	the	GetItem	Method,	and	the	Item	Property

ADO	defines	several	collections,	including	Fields,	Parameters,	Properties,	and
Errors.	In	Visual	C++,	the	GetItem(index)	method	returns	a	member	of	the
collection.	Index	is	a	Variant,	the	value	of	which	is	either	a	numerical	index	of
the	member	in	the	collection,	or	a	string	containing	the	name	of	the	member.

The	__declspec(property...)	compiler	directive	declares	the	Item	property	as	an
alternative	syntax	to	each	collection's	fundamental	GetItem()	method.	The
alternative	syntax	uses	square	brackets	and	looks	similar	to	an	array	reference.	In
general,	the	two	forms	look	like	the	following:

collectionPtr->GetItem(index);

collectionPtr->Item[index];

For	example,	assign	a	value	to	a	field	of	a	Recordset	object,	named	rs,	derived
from	the	authors	table	of	the	pubs	database.	Use	the	Item()	property	to	access
the	third	Field	of	the	Recordset	object	Fields	collection	(collections	are	indexed
from	zero;	assume	the	third	field	is	named	au_fname).	Then	call	the	Value()
method	on	the	Field	object	to	assign	a	string	value.

This	can	be	expressed	in	Visual	Basic	in	the	following	four	ways	(the	last	two
forms	are	unique	to	Visual	Basic;	other	languages	do	not	have	equivalents):

rs.Fields.Item(2).Value	=	"value"

rs.Fields.Item("au_fname").Value	=	"value"

rs(2)	=	"value"

rs!au_fname	=	"value"

The	equivalent	in	Visual	C++	to	the	first	two	forms	above	is:

rs->Fields->GetItem(2)->PutValue("value");	

rs->Fields->GetItem("au_fname")->PutValue("value");

-or-	(the	alternative	syntax	for	the	Value	property	is	also	shown)

rs->Fields->Item[2]->Value	=	"value";

rs->Fields->Item["au_fname"]->Value	=	"value";

COM-Specific	Data	Types

In	general,	any	Visual	Basic	data	type	you	find	in	the	ADO	API	Reference	has	a
Visual	C++	equivalent.	These	include	standard	data	types	such	as	unsigned	char
for	a	Visual	Basic	Byte,	short	for	Integer,	and	long	for	Long.	Look	in	the
Syntax	Indexes	to	see	exactly	what	is	required	for	the	operands	of	a	given
method	or	property.

The	exceptions	to	this	rule	are	the	data	types	specific	to	COM:	Variant,	BSTR,
and	SafeArray.

Variant

A	Variant	is	a	structured	data	type	that	contains	a	value	member	and	a	data	type
member.	A	Variant	may	contain	a	wide	range	of	other	data	types	including
another	Variant,	BSTR,	Boolean,	IDispatch	or	IUnknown	pointer,	currency,	date,
and	so	on.	COM	also	provides	methods	that	make	it	easy	to	convert	one	data
type	to	another.

The	_variant_t	class	encapsulates	and	manages	the	Variant	data	type.

When	the	ADO	API	Reference	says	a	method	or	property	operand	takes	a	value,
it	usually	means	the	value	is	passed	in	a	_variant_t.

This	rule	is	explicitly	true	when	the	Parameters	section	in	the	topics	of	the
ADO	API	Reference	says	an	operand	is	a	Variant.	One	exception	is	when	the
documentation	explicitly	says	the	operand	takes	a	standard	data	type,	such	as

Long	or	Byte,	or	an	enumeration.	Another	exception	is	when	the	operand	takes	a
String.

BSTR

A	BSTR	(Basic	STRing)	is	a	structured	data	type	that	contains	a	character	string
and	the	string's	length.	COM	provides	methods	to	allocate,	manipulate,	and	free
a	BSTR.

The	_bstr_t	class	encapsulates	and	manages	the	BSTR	data	type.

When	the	ADO	API	Reference	says	a	method	or	property	takes	a	String	value,	it
means	the	value	is	in	the	form	of	a	_bstr_t.

Casting	_variant_t	and	_bstr_t	Classes

Often	it	is	not	necessary	to	explicitly	code	a	_variant_t	or	_bstr_t	in	an
argument	to	an	operation.	If	the	_variant_t	or	_bstr_t	class	has	a	constructor
that	matches	the	data	type	of	the	argument,	then	the	compiler	will	generate	the
appropriate	_variant_t	or	_bstr_t.

However,	if	the	argument	is	ambiguous,	that	is,	the	argument's	data	type	matches
more	than	one	constructor,	you	must	cast	the	argument	with	the	appropriate	data
type	to	invoke	the	correct	constructor.

For	example,	the	declaration	for	the	Recordset::Open	method	is:

				HRESULT	Open	(

								const	_variant_t	&	Source,

								const	_variant_t	&	ActiveConnection,

								enum	CursorTypeEnum	CursorType,

								enum	LockTypeEnum	LockType,

								long	Options);

The	ActiveConnection	argument	takes	a	reference	to	a	_variant_t,	which	you
may	code	as	a	connection	string	or	a	pointer	to	an	open	Connection	object.

The	correct	_variant_t	will	be	constructed	implicitly	if	you	pass	a	string	such	as
"DSN=pubs;uid=sa;pwd=;",	or	a	pointer	such	as	"(IDispatch	*)	pConn".

Or	you	may	explicitly	code	a	_variant_t	containing	a	pointer	such	as

"_variant_t((IDispatch	*)	pConn,	true)".	The	cast,	(IDispatch	*),
resolves	the	ambiguity	with	another	constructor	that	takes	a	pointer	to	an
IUnknown	interface.

It	is	a	crucial,	though	seldom	mentioned	fact,	that	ADO	is	an	IDispatch	interface.
Whenever	a	pointer	to	an	ADO	object	must	be	passed	as	a	Variant,	that	pointer
must	be	cast	as	a	pointer	to	an	IDispatch	interface.

The	last	case	explicitly	codes	the	second	boolean	argument	of	the	constructor
with	its	optional,	default	value	of	true.	This	argument	causes	the	Variant
constructor	to	call	its	AddRef()	method,	which	compensates	for	ADO
automatically	calling	the	_variant_t::Release()	method	when	the	ADO	method
or	property	call	completes.

SafeArray

A	SafeArray	is	a	structured	data	type	that	contains	an	array	of	other	data	types.
A	SafeArray	is	called	safe	because	it	contains	information	about	the	bounds	of
each	array	dimension,	and	limits	access	to	array	elements	within	those	bounds.

When	the	ADO	API	Reference	says	a	method	or	property	takes	or	returns	an
array,	it	means	the	method	or	property	takes	or	returns	a	SafeArray,	not	a	native
C/C++	array.

For	example,	the	second	parameter	of	the	Connection	object	OpenSchema
method	requires	an	array	of	Variant	values.	Those	Variant	values	must	be
passed	as	elements	of	a	SafeArray,	and	that	SafeArray	must	be	set	as	the	value
of	another	Variant.	It	is	that	other	Variant	that	is	passed	as	the	second	argument
of	OpenSchema.

As	further	examples,	the	first	argument	of	the	Find	method	is	a	Variant	whose
value	is	a	one-dimensional	SafeArray;	each	of	the	optional	first	and	second
arguments	of	AddNew	is	a	one-dimensional	SafeArray;	and	the	return	value	of
the	GetRows	method	is	a	Variant	whose	value	is	a	two-dimensional	SafeArray.

Missing	and	Default	Parameters

Visual	Basic	allows	missing	parameters	in	methods.	For	example,	the	Recordset
object	Open	method	has	five	parameters,	but	you	can	skip	intermediate

parameters	and	leave	off	trailing	parameters.	A	default	BSTR	or	Variant	will	be
substituted	depending	on	the	data	type	of	the	missing	operand.

In	C/C++,	all	operands	must	be	specified.	If	you	want	to	specify	a	missing
parameter	whose	data	type	is	a	string,	specify	a	_bstr_t	containing	a	null	string.
If	you	want	to	specify	a	missing	parameter	whose	data	type	is	a	Variant,	specify
a	_variant_t	with	a	value	of	DISP_E_PARAMNOTFOUND	and	a	type	of
VT_ERROR.	Alternatively,	specify	the	equivalent	_variant_t	constant,
vtMissing,	which	is	supplied	by	the	#import	directive.

Three	methods	are	exceptions	to	the	typical	use	of	vtMissing.	These	are	the
Execute	methods	of	the	Connection	and	Command	objects,	and	the
NextRecordset	method	of	the	Recordset	object.	The	following	are	their
signatures:

_RecordsetPtr	Execute(_bstr_t	CommandText,	VARIANT	*	RecordsAffected

								long	Options);		//	Connection

_RecordsetPtr	Execute(VARIANT	*	RecordsAffected,	VARIANT	*	Parameters

								long	Options);		//	Command

_RecordsetPtr	NextRecordset(VARIANT	*	RecordsAffected);		//	Recordset

The	parameters,	RecordsAffected	and	Parameters,	are	pointers	to	a	Variant.
Parameters	is	an	input	parameter	which	specifies	the	address	of	a	Variant
containing	a	single	parameter,	or	array	of	parameters,	that	will	modify	the
command	being	executed.	RecordsAffected	is	an	output	parameter	that
specifies	the	address	of	a	Variant,	where	the	number	of	rows	affected	by	the
method	is	returned.

In	the	Command	object	Execute	method,	indicate	that	no	parameters	are
specified	by	setting	Parameters	to	either	&vtMissing	(which	is	recommended)
or	to	the	null	pointer	(that	is,	NULL	or	zero	(0)).	If	Parameters	is	set	to	the	null
pointer,	the	method	internally	substitutes	the	equivalent	of	vtMissing,	and	then
completes	the	operation.

In	all	the	methods,	indicate	that	the	number	of	records	affected	should	not	be
returned	by	setting	RecordsAffected	to	the	null	pointer.	In	this	case,	the	null
pointer	is	not	so	much	a	missing	parameter	as	an	indication	that	the	method
should	discard	the	number	of	records	affected.

Thus,	for	these	three	methods,	it	is	valid	to	code	something	such	as:

pConnection->Execute("commandText",	NULL,	adCmdText);	

pCommand->Execute(NULL,	NULL,	adCmdText);

pRecordset->NextRecordset(NULL);

Error	Handling

In	COM,	most	operations	return	an	HRESULT	return	code	that	indicates	whether
a	function	completed	successfully.	The	#import	directive	generates	wrapper
code	around	each	"raw"	method	or	property	and	checks	the	returned	HRESULT.
If	the	HRESULT	indicates	failure,	the	wrapper	code	throws	a	COM	error	by
calling	_com_issue_errorex()	with	the	HRESULT	return	code	as	an	argument.
COM	error	objects	can	be	caught	in	a	try-catch	block.	(For	efficiency's	sake,
catch	a	reference	to	a	_com_error	object.)

Remember,	these	are	ADO	errors:	they	result	from	the	ADO	operation	failing.
Errors	returned	by	the	underlying	provider	appear	as	Error	objects	in	the
Connection	object	Errors	collection.

The	#import	directive	creates	only	error	handling	routines	for	methods	and
properties	declared	in	the	ADO	.dll.	However,	you	can	take	advantage	of	this
same	error	handling	mechanism	by	writing	your	own	error	checking	macro	or
inline	function.	See	the	topic,	Visual	C++	Extensions,	or	the	code	in	the
following	sections	for	examples.

Visual	C++	Equivalents	of	Visual	Basic	Conventions

The	following	is	a	summary	of	several	conventions	in	the	ADO	documentation,
coded	in	Visual	Basic,	as	well	as	their	equivalents	in	Visual	C++.

Declaring	an	ADO	Object

In	Visual	Basic,	an	ADO	object	variable	(in	this	case	for	a	Recordset	object)	is
declared	as	follows:

Dim	rst	As	ADODB.Recordset

The	clause,	"ADODB.Recordset",	is	the	ProgID	of	the	Recordset	object	as
defined	in	the	Registry.	A	new	instance	of	a	Record	object	is	declared	as
follows:

Dim	rst	As	New	ADODB.Recordset

-or-

Dim	rst	As	ADODB.Recordset

Set	rst	=	New	ADODB.Recordset

In	Visual	C++,	the	#import	directive	generates	smart	pointer-type	declarations
for	all	the	ADO	objects.	For	example,	a	variable	that	points	to	a	_Recordset
object	is	of	type	_RecordsetPtr,	and	is	declared	as	follows:

_RecordsetPtr		rs;

A	variable	that	points	to	a	new	instance	of	a	_Recordset	object	is	declared	as
follows:

_RecordsetPtr		rs("ADODB.Recordset");

-or-

_RecordsetPtr		rs;

rs.CreateInstance("ADODB.Recordset");

-or-

_RecordsetPtr		rs;

rs.CreateInstance(__uuidof(_Recordset));

After	the	CreateInstance	method	is	called,	the	variable	can	be	used	as	follows:

rs->Open(...);

Notice	that	in	one	case,	the	"."	operator	is	used	as	if	the	variable	were	an
instance	of	a	class	(rs.CreateInstance),	and	in	another	case,	the	"->"	operator
is	used	as	if	the	variable	were	a	pointer	to	an	interface	(rs->Open).

One	variable	can	be	used	in	two	ways	because	the	"->"	operator	is	overloaded	to
allow	an	instance	of	a	class	to	behave	like	a	pointer	to	an	interface.	A	private
class	member	of	the	instance	variable	contains	a	pointer	to	the	_Recordset
interface;	the	"->"	operator	returns	that	pointer;	and	the	returned	pointer	accesses
the	members	of	the	_Recordset	object.

Coding	a	Missing	Parameter	—	String

When	you	need	to	code	a	missing	String	operand	in	Visual	Basic,	you	merely
omit	the	operand.	You	must	specify	the	operand	in	Visual	C++.	Code	a	_bstr_t
that	has	an	empty	string	as	a	value.

_bstr_t	strMissing(L"");

Coding	a	Missing	Parameter	—	Variant

When	you	need	to	code	a	missing	Variant	operand	in	Visual	Basic,	you	merely
omit	the	operand.	You	must	specify	all	operands	in	Visual	C++.	Code	a	missing
Variant	parameter	with	a	_variant_t	set	to	the	special	value,
DISP_E_PARAMNOTFOUND,	and	type,	VT_ERROR.	Alternatively,	specify
vtMissing,	which	is	an	equivalent	pre-defined	constant	supplied	by	the	#import
directive.

_variant_t		vtMissingYours(DISP_E_PARAMNOTFOUND,	VT_ERROR);	

-or	use	-

...vtMissing...;

Declaring	a	Variant

In	Visual	Basic,	a	Variant	is	declared	with	the	Dim	statement	as	follows:

Dim	VariableName	As	Variant

In	Visual	C++,	declare	a	variable	as	type	_variant_t.	A	few	schematic
_variant_t	declarations	are	shown	below.

Note			These	declarations	merely	give	a	rough	idea	of	what	you	would	code	in
your	own	program.	For	more	information,	see	the	examples	below,	and	the
Visual	C++	documentation.

_variant_t		VariableName(value);

_variant_t		VariableName((data	type	cast)	value);

_variant_t		VariableName(value,	VT_DATATYPE);

_variant_t		VariableName(interface	*	value,	bool	fAddRef	=	true);

Using	Arrays	of	Variants

In	Visual	Basic,	arrays	of	Variants	can	be	coded	with	the	Dim	statement,	or	you
may	use	the	Array	function,	as	demonstrated	in	the	following	example	code:

Public	Sub	ArrayOfVariants

Dim	cn	As	ADODB.Connection

Dim	rs	As	ADODB.Recordset

Dim	fld	As	ADODB.Field

cn.Open	"DSN=pubs",	"sa",	""

rs	=	cn.OpenSchema(adSchemaColumns,	_

																					Array(Empty,	Empty,	"authors",	Empty))

For	Each	fld	in	rs.Fields

			Debug.Print	"Name	=	";	fld.Name

Next	fld

rs.Close

cn.Close

End	Sub

The	following	Visual	C++	example	demonstrates	using	a	SafeArray	used	with	a
_variant_t.

Notes			The	following	notes	correspond	to	commented	sections	in	the	code
example.

1.	 Once	again,	the	TESTHR()	inline	function	is	defined	to	take	advantage	of
the	existing	error-handling	mechanism.

2.	 You	only	need	a	one-dimensional	array,	so	you	can	use
SafeArrayCreateVector,	instead	of	the	general	purpose
SAFEARRAYBOUND	declaration	and	SafeArrayCreate	function.	The
following	is	what	that	code	would	look	like	using	SafeArrayCreate:

			SAFEARRAYBOUND			sabound[1];

			sabound[0].lLbound	=	0;

			sabound[0].cElements	=	4;

			pSa	=	SafeArrayCreate(VT_VARIANT,	1,	sabound);

3.	 The	schema	identified	by	the	enumerated	constant,	adSchemaColumns,	is
associated	with	four	constraint	columns:	TABLE_CATALOG,
TABLE_SCHEMA,	TABLE_NAME,	and	COLUMN_NAME.	Therefore,
an	array	of	Variant	values	with	four	elements	is	created.	Then	a	constraint
value	that	corresponds	to	the	third	column,	TABLE_NAME,	is	specified.

The	Recordset	that	is	returned	consists	of	several	columns,	a	subset	of
which	is	the	constraint	columns.	The	values	of	the	constraint	columns	for
each	returned	row	must	be	the	same	as	the	corresponding	constraint	values.

4.	 Those	familiar	with	SafeArrays	may	be	surprised	that	SafeArrayDestroy()
is	not	called	before	the	exit.	In	fact,	calling	SafeArrayDestroy()	in	this
case	will	cause	a	run-time	exception.	The	reason	is	that	the	destructor	for
vtCriteria	will	call	VariantClear()	when	the	_variant_t	goes	out	of
scope,	which	will	free	the	SafeArray.	Calling	SafeArrayDestroy,	without
manually	clearing	the	_variant_t,	would	cause	the	destructor	to	try	to	clear
an	invalid	SafeArray	pointer.

If	SafeArrayDestroy	were	called,	the	code	would	look	like	this:

			TESTHR(SafeArrayDestroy(pSa));

			vtCriteria.vt	=	VT_EMPTY;

			vtCriteria.parray	=	NULL;

However,	it	is	much	simpler	to	let	the	_variant_t	manage	the	SafeArray.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

//	Note	1

inline	void	TESTHR(HRESULT	_hr)	

			{	if	FAILED(_hr)	_com_issue_error(_hr);	}

void	main(void)

{

			CoInitialize(NULL);

			try	

			{

			_RecordsetPtr			pRs("ADODB.Recordset");

			_ConnectionPtr		pCn("ADODB.Connection");

			_variant_t						vtTableName("authors"),

																			vtCriteria;

			long												ix[1];

			SAFEARRAY							*pSa	=	NULL;

			pCn->Open("DSN=pubs;User	ID=sa;pwd=;Provider=MSDASQL;",	"",	"",	

															adConnectUnspecified);

//	Note	2,	Note	3

			pSa	=	SafeArrayCreateVector(VT_VARIANT,	1,	4);

			if	(!pSa)	_com_issue_error(E_OUTOFMEMORY);

//	Specify	TABLE_NAME	in	the	third	array	element	(index	of	2).	

			ix[0]	=	2;						

			TESTHR(SafeArrayPutElement(pSa,	ix,	&vtTableName));

//			There	is	no	Variant	constructor	for	a	SafeArray,	so	manually	set	the	

//			type	(SafeArray	of	Variant)	and	value	(pointer	to	a	SafeArray).

			vtCriteria.vt	=	VT_ARRAY	|	VT_VARIANT;

			vtCriteria.parray	=	pSa;

			pRs	=	pCn->OpenSchema(adSchemaColumns,	vtCriteria,	vtMissing);

			long	limit	=	pRs->GetFields()->Count;

			for	(long	x	=	0;	x	<	limit;	x++)

						printf("%d:	%s\n",	x+1,	

									((char*)	pRs->GetFields()->Item[x]->Name));

//	Note	4

			pRs->Close();

			pCn->Close();

			}

			catch	(_com_error	&e)

			{

			printf("Error:\n");

			printf("Code	=	%08lx\n",	e.Error());

			printf("Code	meaning	=	%s\n",	(char*)	e.ErrorMessage());

			printf("Source	=	%s\n",	(char*)	e.Source());

			printf("Description	=	%s\n",	(char*)	e.Description());

			}

			CoUninitialize();

}

Using	Property	Get/Put/PutRef

In	Visual	Basic,	the	name	of	a	property	is	not	qualified	by	whether	it	is	retrieved,
assigned,	or	assigned	a	reference.

Public	Sub	GetPutPutRef

Dim	rs	As	New	ADODB.Recordset

Dim	cn	As	New	ADODB.Connection

Dim	sz	as	Integer

cn.Open	"Provider=sqloledb;Data	Source=yourserver;"	&	_

									"Initial	Catalog=pubs;User	Id=sa;Password=;"

rs.PageSize	=	10

sz	=	rs.PageSize

rs.ActiveConnection	=	cn

rs.Open	"authors",,adOpenStatic

'	...

rs.Close

cn.Close

End	Sub

This	Visual	C++	example	demonstrates	the	Get/Put/PutRefProperty.

Notes			The	following	notes	correspond	to	commented	sections	in	the	code
example.

1.	 This	example	uses	two	forms	of	a	missing	string	argument:	an	explicit
constant,	strMissing,	and	a	string	that	the	compiler	will	use	to	create	a
temporary	_bstr_t	that	will	exist	for	the	scope	of	the	Open	method.

2.	 It	isn't	necessary	to	cast	the	operand	of	rs->PutRefActiveConnection(cn)
to	(IDispatch	*)	because	the	type	of	the	operand	is	already	(IDispatch
*).

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

void	main(void)

{

			CoInitialize(NULL);

			try	

			{

						_ConnectionPtr		cn("ADODB.Connection");

						_RecordsetPtr			rs("ADODB.Recordset");

						_bstr_t									strMissing(L"");

						long												oldPgSz	=	0,	

																						newPgSz	=	5;

//	Note	1

						cn->Open("Provider=sqloledb;Data	Source=a-tima10;"

									"Initial	Catalog=pubs;User	Id=sa;Password=;",	

									strMissing,	"",

									adConnectUnspecified);

			

						oldPgSz	=	rs->GetPageSize();

			//	-or-

						oldPgSz	=	rs->PageSize;

						rs->PutPageSize(newPgSz);

			//	-or-

						rs->PageSize	=	newPgSz;

//	Note	2

						rs->PutRefActiveConnection(cn);

						rs->Open("authors",	vtMissing,	adOpenStatic,	adLockReadOnly,

															adCmdTable);

						printf("Original	pagesize	=	%d,	new	pagesize	=	%d\n",	oldPgSz,	

															rs->GetPageSize());

						rs->Close();

						cn->Close();

			}

			catch	(_com_error	&e)

			{

						printf("Description	=	%s\n",	(char*)	e.Description());

			}

			::CoUninitialize();

}

Using	GetItem(x)	and	Item[x]

This	Visual	Basic	example	demonstrates	the	standard	and	alternative	syntax	for
Item().

Public	Sub	GetItemItem

Dim	rs	As	New	ADODB.Recordset

Dim	name	as	String

rs	=	rs.Open	"authors",	"DSN=pubs;",	adOpenDynamic,	_

									adLockBatchOptimistic,	adTable

name	=	rs(0)

'	-or-

name	=	rs.Fields.Item(0)

rs(0)	=	"Test"

rs.UpdateBatch

'	Restore	name

rs(0)	=	name

rs.UpdateBatch

rs.Close

End	Sub

This	Visual	C++	example	demonstrates	Item.

Note			The	following	note	corresponds	to	commented	sections	in	the	code

example.

1.	 When	the	collection	is	accessed	with	Item,	the	index,	2,	must	be	cast	to
long	so	an	appropriate	constructor	will	be	invoked.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

void	main(void)

{

			CoInitialize(NULL);

			try	{

						_RecordsetPtr			rs("ADODB.Recordset");

						_variant_t						vtFirstName;

						rs->Open("authors",

															"Provider=sqloledb;Data	Source=a-tima10;"

															"Initial	Catalog=pubs;User	Id=sa;Password=;",

															adOpenStatic,	adLockOptimistic,	adCmdTable);

						rs->MoveFirst();

//	Note	1.	Get	a	field.

						vtFirstName	=	rs->Fields->GetItem((long)2)->GetValue();

			//	-or-

						vtFirstName	=	rs->Fields->Item[(long)2]->Value;

						printf("First	name	=	'%s'\n",	(char*)	((_bstr_t)	vtFirstName));

						rs->Fields->GetItem((long)2)->Value	=	L"TEST";

						rs->Update(vtMissing,	vtMissing);

			//	Restore	name

						rs->Fields->GetItem((long)2)->PutValue(vtFirstName);

						//	-or-

						rs->Fields->GetItem((long)2)->Value	=	vtFirstName;

						rs->Update(vtMissing,	vtMissing);

						rs->Close();

			}

			catch	(_com_error	&e)

			{

						printf("Description	=	'%s'\n",	(char*)	e.Description());

			}

			::CoUninitialize();

}

Casting	ADO	object	pointers	with	(IDispatch	*)

The	following	Visual	C++	example	demonstrates	using	(IDispatch	*)	to	cast
ADO	object	pointers.

Notes			The	following	notes	correspond	to	commented	sections	in	the	code
example.

1.	 Specify	an	open	Connection	object	in	an	explicitly	coded	Variant.	Cast	it
with	(IDispatch	*)	so	the	correct	constructor	will	be	invoked.	Also,
explicitly	set	the	second	_variant_t	parameter	to	the	default	value	of	true,
so	the	object	reference	count	will	be	correct	when	the	Recordset::Open
operation	ends.

2.	 The	expression,	(_bstr_t),	is	not	a	cast,	but	a	_variant_t	operator	that
extracts	a	_bstr_t	string	from	the	Variant	returned	by	Value.

The	expression,	(char*),	is	not	a	cast,	but	a	_bstr_t	operator	that	extracts	a
pointer	to	the	encapsulated	string	in	a	_bstr_t	object.

This	section	of	code	demonstrates	some	of	the	useful	behaviors	of
_variant_t	and	_bstr_t	operators.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

void	main(void)

{

			CoInitialize(NULL);

			try	

			{

						_ConnectionPtr	pConn("ADODB.Connection");

						_RecordsetPtr		pRst("ADODB.Recordset");

						pConn->Open("Provider=sqloledb;Data	Source=a-tima10;"

									"Initial	Catalog=pubs;User	Id=sa;Password=;",	

									"",	"",	adConnectUnspecified);

//	Note	1

						pRst->Open(

									"authors",

									_variant_t((IDispatch	*)	pConn,	true),

									adOpenStatic,

									adLockReadOnly,

									adCmdTable);

						pRst->MoveLast();

//	Note	2

						printf("Last	name	is	'%s	%s'\n",	

												(char*)	((_bstr_t)	pRst->GetFields()->GetItem("au_fname")->GetValue()),

												(char*)	((_bstr_t)	pRst->Fields->Item["au_lname"]->Value));

						pRst->Close();

						pConn->Close();

			}

			catch	(_com_error	&e)

			{

						printf("Description	=	'%s'\n",	(char*)	e.Description());

			}			

::CoUninitialize();

}

Visual	C++	Extensions	for	ADO

One	of	the	most	tedious	jobs	Visual	C++	programmers	face	when	retrieving	data
with	ADO	is	converting	data	returned	as	a	VARIANT	data	type	into	a	C++	data
type,	and	then	storing	the	converted	data	in	a	class	or	structure.	In	addition	to
being	cumbersome,	retrieving	C++	data	through	a	VARIANT	data	type
diminishes	performance.

ADO	provides	an	interface	that	supports	retrieving	data	into	native	C/C++	data
types	without	going	through	a	VARIANT,	and	also	provides	preprocessor
macros	that	simplify	using	the	interface.	The	result	is	a	flexible	tool	that	is	easier
to	use	and	has	great	performance.

A	common	C/C++	client	scenario	is	to	bind	a	record	in	a	Recordset	to	a	C/C++
struct	or	class	containing	native	C/C++	types.	When	going	through	VARIANTs,
this	involves	writing	conversion	code	from	VARIANT	to	C/C++	native	types.
The	Visual	C++	Extensions	for	ADO	are	targeted	at	making	this	scenario	much
easier	for	the	Visual	C++	programmer.

See	the	following	topics	to	learn	more	about	the	Visual	C++	Extensions	for
ADO.

Using	Visual	C++	Extensions	for	ADO
Visual	C++	Extensions	Header	in	Detail

ADO	with	Visual	C++	Extensions	Example

Using	Visual	C++	Extensions	for	ADO

The	IADORecordBinding	Interface

The	Microsoft	Visual	C++	Extensions	for	ADO	associate,	or	bind,	fields	of	a
Recordset	object	to	C/C++	variables.	Whenever	the	current	row	of	the	bound
Recordset	changes,	all	the	bound	fields	in	the	Recordset	are	copied	to	the
C/C++	variables.	If	necessary,	the	copied	data	is	converted	to	the	declared	data
type	of	the	C/C++	variable.

The	BindToRecordset	method	of	the	IADORecordBinding	interface	binds
fields	to	C/C++	variables.	The	AddNew	method	adds	a	new	row	to	the	bound
Recordset.	The	Update	method	populates	fields	in	new	rows	of	the	Recordset,
or	updates	fields	in	existing	rows,	with	the	value	of	the	C/C++	variables.

The	IADORecordBinding	interface	is	implemented	by	the	Recordset	object.
You	do	not	code	the	implementation	yourself.

Binding	Entries

The	Visual	C++	Extensions	for	ADO	map	fields	of	a	Recordset	object	to	C/C++
variables.	The	definition	of	a	mapping	between	a	field	and	a	variable	is	called	a
binding	entry.	Macros	provide	binding	entries	for	numeric,	fixed-length,	and
variable-length	data.	The	binding	entries	and	C/C++	variables	are	declared	in	a
class	derived	from	the	Visual	C++	Extensions	class,	CADORecordBinding.
The	CADORecordBinding	class	is	defined	internally	by	the	binding	entry
macros.

ADO	internally	maps	the	parameters	in	these	macros	to	an	OLE	DB
DBBINDING	structure	and	creates	an	OLE	DB	Accessor	object	to	manage	the

movement	and	conversion	of	data	between	fields	and	variables.	OLE	DB	defines
data	as	consisting	of	three	parts:	A	buffer	where	the	data	is	stored;	a	status	that
indicates	whether	a	field	was	successfully	stored	in	the	buffer,	or	how	the
variable	should	be	restored	to	the	field;	and	the	length	of	the	data.	(See	the	OLE
DB	Programmer's	Reference,	Chapter	6:	Getting	and	Setting	Data	for	more
information.)

Header	File

Include	the	following	file	in	your	application	in	order	to	use	the	Visual	C++
Extensions	for	ADO:

#include	<icrsint.h>

Binding	Recordset	Fields

To	Bind	Recordset	Fields	to	C/C++	Variables:

1.	 Create	a	class	derived	from	the	CADORecordsetBinding	class.

2.	 Specify	binding	entries	and	corresponding	C/C++	variables	in	the	derived
class.	Bracket	the	binding	entries	between	BEGIN_ADO_BINDING	and
END_ADO_BINDING	macros.	Do	not	terminate	the	macros	with	commas
or	semicolons.	Appropriate	delimiters	are	specified	automatically	by	each
macro.

Specify	one	binding	entry	for	each	field	to	be	mapped	to	a	C/C++	variable.
Use	an	appropriate	member	from	the	ADO_FIXED_LENGTH_ENTRY,
ADO_NUMERIC_ENTRY,	or	ADO_VARIABLE_LENGTH_ENTRY
family	of	macros.

3.	 In	your	application,	create	an	instance	of	the	class	derived	from
CADORecordsetBinding.	Get	the	IADORecordBinding	interface	from
the	Recordset.	Then	call	the	BindToRecordset	method	to	bind	the
Recordset	fields	to	the	C/C++	variables.

See	the	Visual	C++	Extensions	Example	for	more	information.

Interface	Methods

mk:@MSITStore:OLEDB.chm::/htm/oledbgetting_and_setting_data.htm

The	IADORecordBinding	interface	has	three	methods:	BindToRecordset,
AddNew,	and	Update.	The	sole	argument	to	each	method	is	a	pointer	to	an
instance	of	the	class	derived	from	CADORecordBinding.	Therefore,	the
AddNew	and	Update	methods	cannot	specify	any	of	the	parameters	of	their
ADO	method	namesakes.

Syntax

The	BindToRecordset	method	associates	the	Recordset	fields	with	C/C++
variables.

BindToRecordset(CADORecordBinding	*binding)

The	AddNew	method	invokes	its	namesake,	the	ADO	AddNew	method,	to	add	a
new	row	to	the	Recordset.

AddNew(CADORecordBinding	*binding)

The	Update	method	invokes	its	namesake,	the	ADO	Update	method,	to	update
the	Recordset.

Update(CADORecordBinding	*binding)

Binding	Entry	Macros

Binding	entry	macros	define	the	association	of	a	Recordset	field	and	a	variable.
A	beginning	and	ending	macro	delimits	the	set	of	binding	entries.

Families	of	macros	are	provided	for	fixed-length	data,	such	as	adDate	or
adBoolean;	numeric	data,	such	as	adTinyInt,	adInteger,	or	adDouble;	and
variable-length	data,	such	as	adChar,	adVarChar	or	adVarBinary.	All	numeric
types,	except	for	adVarNumeric,	are	also	fixed-length	types.	Each	family	has
differing	sets	of	parameters	so	that	you	can	exclude	binding	information	that	is
of	no	interest.

See	the	OLE	DB	Programmer's	Reference,	Appendix	A:	Data	Types	for
additional	information.

Begin	Binding	Entries

mk:@MSITStore:OLEDB.chm::/htm/oledbdata_types.htm

BEGIN_ADO_BINDING(Class)

Fixed-Length	Data

ADO_FIXED_LENGTH_ENTRY(Ordinal,	DataType,	Buffer,	Status,	Modify)
ADO_FIXED_LENGTH_ENTRY2(Ordinal,	DataType,	Buffer,	Modify)

Numeric	Data

ADO_NUMERIC_ENTRY(Ordinal,	DataType,	Buffer,	Precision,	Scale,	Status,
																																			Modify)
ADO_NUMERIC_ENTRY2(Ordinal,	DataType,	Buffer,	Precision,	Scale,
Modify)

Variable-Length	Data

ADO_VARIABLE_LENGTH_ENTRY(Ordinal,	DataType,	Buffer,	Size,
Status,
																																																							Length,	Modify)
ADO_VARIABLE_LENGTH_ENTRY2(Ordinal,	DataType,	Buffer,	Size,
Status,
																																																							Modify)
ADO_VARIABLE_LENGTH_ENTRY3(Ordinal,	DataType,	Buffer,	Size,
Length,	
																																																							Modify)
ADO_VARIABLE_LENGTH_ENTRY4(Ordinal,	DataType,	Buffer,	Size,
Modify)

End	Binding	Entries

END_ADO_BINDING()

Parameter Description

Class Class	in	which	the	binding	entries	and	C/C++	variables	are
defined.

Ordinal Ordinal	number,	counting	from	one,	of	the	Recordset	field
corresponding	to	your	C/C++	variable.
Equivalent	ADO	data	type	of	the	C/C++	variable	(see
DataTypeEnum	for	a	list	of	valid	data	types).	The	value	of

DataType the	Recordset	field	will	be	converted	to	this	data	type	if
necessary.

Buffer Name	of	the	C/C++	variable	where	the	Recordset	field	will
be	stored.

Size Maximum	size	in	bytes	of	Buffer.	If	Buffer	will	contain	a
variable-length	string,	allow	room	for	a	terminating	zero.

Status

Name	of	a	variable	that	will	indicate	whether	the	contents	of
Buffer	are	valid,	and	whether	the	conversion	of	the	field	to
DataType	was	successful.

The	two	most	important	values	for	this	variable	are
adFldOK,	which	means	the	conversion	was	successful;	and
adFldNull,	which	means	the	value	of	the	field	was	null,	not
merely	empty.

Possible	values	for	Status	are	listed	in	the	next	table,	"Status
Values."

Modify

Boolean	flag;	if	TRUE,	indicates	ADO	is	allowed	to	update
the	corresponding	Recordset	field	with	the	value	contained
in	Buffer.

Set	the	Boolean	modify	parameter	to	TRUE	to	enable	ADO	to
update	the	bound	field,	and	FALSE	if	you	want	to	examine
the	field	but	not	change	it.

Precision Number	of	digits	that	can	be	represented	in	a	numeric
variable.

Scale Number	of	decimal	places	in	a	numeric	variable.

Length Name	of	a	four-byte	variable	that	will	contain	the	actual
length	of	the	data	in	Buffer.

Status	Values

The	value	of	the	Status	variable	indicates	whether	a	field	was	successfully
copied	to	a	variable.

When	setting	data,	Status	may	be	set	to	adFldNull	to	indicate	the	Recordset
field	should	be	set	to	null.

Constant Value Description
adFldOK 0 A	non-null	field	value	was	returned.
adFldBadAccessor 1 Binding	was	invalid.

adFldCantConvertValue 2
Value	couldn't	be	converted	for	reasons
other	than	sign	mismatch	or	data
overflow.

adFldNull 3

When	getting	a	field,	indicates	a	null
value	was	returned.

When	setting	a	field,	indicates	the	field
should	be	set	to	NULL	when	the	field
cannot	encode	NULL	itself	(for
example,	a	character	array	or	an
integer).

adFldTruncated 4 Variable-length	data	or	numeric	digits
were	truncated.

adFldSignMismatch 5 Value	is	signed	and	variable	data	type	is
unsigned.

adFldDataOverFlow 6 Value	is	larger	than	could	be	stored	in
the	variable	data	type.

adFldCantCreate 7 Unknown	column	type	and	field	already
open.

adFldUnavailable 8
Field	value	could	not	be	determined—
for	example,	on	a	new,	unassigned	field
with	no	default	value.

adFldPermissionDenied 9 When	updating,	no	permission	to	write
data.

adFldIntegrityViolation 10 When	updating,	field	value	would
violate	column	integrity.

adFldSchemaViolation 11 When	updating,	field	value	would
violate	column	schema.

adFldBadStatus 12 When	updating,	invalid	status
parameter.

adFldDefault 13 When	updating,	a	default	value	was
used.

Visual	C++	Extensions	Header	in	Detail

The	following	header,	icrsint.h,	details	the	interface	that	allow	clients	to	retrieve
fields	from	a	Recordset	into	variables	defined	in	a	class	derived	from
CADORecordBinding.	You	must	specify	an	ADO	binding	macro	for	each	field
you	intend	to	access.

#ifndef	_ICRSINT_H_

#define	_ICRSINT_H_

#include	<olectl.h>

#include	<stddef.h>

//	forwards

class	CADORecordBinding;

#define	classoffset(base,	derived)	((DWORD)(static_cast<base*>((derived*)8))-8)

enum	ADOFieldStatusEnum

{				

				adFldOK	=	0,

				adFldBadAccessor	=	1,

				adFldCantConvertValue	=	2,

				adFldNull	=	3,

				adFldTruncated	=	4,

				adFldSignMismatch	=	5,

				adFldDataOverFlow	=	6,

				adFldCantCreate	=	7,

				adFldUnavailable	=	8,

				adFldPermissionDenied	=	9,

				adFldIntegrityViolation	=	10,

				adFldSchemaViolation	=	11,

				adFldBadStatus	=	12,

				adFldDefault	=	13

};

typedef	struct	stADO_BINDING_ENTRY

{

				ULONG						ulOrdinal;

				WORD							wDataType;

				BYTE							bPrecision;

				BYTE							bScale;

				ULONG						ulSize;

				ULONG						ulBufferOffset;

				ULONG						ulStatusOffset;

				ULONG						ulLengthOffset;

				ULONG						ulADORecordBindingOffSet;

				BOOL							fModify;

}	ADO_BINDING_ENTRY;

#define	BEGIN_ADO_BINDING(cls)	public:	\

				typedef	cls	ADORowClass;	\

				const	ADO_BINDING_ENTRY*	STDMETHODCALLTYPE	GetADOBindingEntries()	{	\

				static	const	ADO_BINDING_ENTRY	rgADOBindingEntries[]	=	{	

//

//	Fixed	length	non-numeric	data

//

#define	ADO_FIXED_LENGTH_ENTRY(Ordinal,	DataType,	Buffer,	Status,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				0,	\

				offsetof(ADORowClass,	Buffer),	\

				offsetof(ADORowClass,	Status),	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	ADO_FIXED_LENGTH_ENTRY2(Ordinal,	DataType,	Buffer,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				0,	\

				offsetof(ADORowClass,	Buffer),	\

				0,	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

//

//	Numeric	data

//	

#define	ADO_NUMERIC_ENTRY(Ordinal,	DataType,	Buffer,	Precision,	Scale,	Status,	Modify)\

				{Ordinal,	\

				DataType,	\

				Precision,	\

				Scale,	\

				0,	\

				offsetof(ADORowClass,	Buffer),	\

				offsetof(ADORowClass,	Status),	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	ADO_NUMERIC_ENTRY2(Ordinal,	DataType,	Buffer,	Precision,	Scale,	Modify)\

				{Ordinal,	\

				DataType,	\

				Precision,	\

				Scale,	\

				0,	\

				offsetof(ADORowClass,	Buffer),	\

				0,	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

//

//	Variable	length	data

//

#define	ADO_VARIABLE_LENGTH_ENTRY(Ordinal,	DataType,	Buffer,	Size,	Status,	Length,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				Size,	\

				offsetof(ADORowClass,	Buffer),	\

				offsetof(ADORowClass,	Status),	\

				offsetof(ADORowClass,	Length),	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	ADO_VARIABLE_LENGTH_ENTRY2(Ordinal,	DataType,	Buffer,	Size,	Status,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				Size,	\

				offsetof(ADORowClass,	Buffer),	\

				offsetof(ADORowClass,	Status),	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	ADO_VARIABLE_LENGTH_ENTRY3(Ordinal,	DataType,	Buffer,	Size,	Length,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				Size,	\

				offsetof(ADORowClass,	Buffer),	\

				0,	\

				offsetof(ADORowClass,	Length),	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	ADO_VARIABLE_LENGTH_ENTRY4(Ordinal,	DataType,	Buffer,	Size,	Modify)\

				{Ordinal,	\

				DataType,	\

				0,	\

				0,	\

				Size,	\

				offsetof(ADORowClass,	Buffer),	\

				0,	\

				0,	\

				classoffset(CADORecordBinding,	ADORowClass),	\

				Modify},

#define	END_ADO_BINDING()			{0,	adEmpty,	0,	0,	0,	0,	0,	0,	0,	FALSE}};\

				return	rgADOBindingEntries;}

//

//	Interface	that	the	client	'record'	class	needs	to	support.	The	ADO	Binding	entries

//	provide	the	implementation	for	this	interface.

//

class	CADORecordBinding

{

public:

				STDMETHOD_(const	ADO_BINDING_ENTRY*,	GetADOBindingEntries)	(VOID)	PURE;

};

//

//	Interface	that	allows	a	client	to	fetch	a	record	of	data	into	class	data	members.

//

struct	__declspec(uuid("00000544-0000-0010-8000-00aa006d2ea4"))	IADORecordBinding;

DECLARE_INTERFACE_(IADORecordBinding,	IUnknown)

{

public:

				STDMETHOD(BindToRecordset)	(CADORecordBinding	*pAdoRecordBinding)	PURE;

				STDMETHOD(AddNew)	(CADORecordBinding	*pAdoRecordBinding)	PURE;

				STDMETHOD(Update)	(CADORecordBinding	*pAdoRecordBinding)	PURE;

};

#endif	//	!_ICRSINT_H_

ADO	with	Visual	C++	Extensions	Example

This	program	shows	how	values	are	retrieved	from	fields	and	converted	to
C/C++	variables.

This	example	also	takes	advantage	of	"smart	pointers,"	which	automatically
handle	the	COM-specific	details	of	calling	QueryInterface	and	reference
counting	for	the	IADORecordBinding	interface.

Without	smart	pointers,	you	would	code:

IADORecordBinding			*picRs	=	NULL;

...

TESTHR(pRs->QueryInterface(

										__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

...

if	(picRs)	picRs->Release();

With	smart	pointers,	you	derive	the	IADORecordBindingPtr	type	from	the
IADORecordBinding	interface	with	this	statement:

_COM_SMARTPTR_TYPEDEF(IADORecordBinding,	__uuidof(IADORecordBinding));

And	instantiate	the	pointer	like	this:

IADORecordBindingPtr	picRs(pRs);

Because	the	Visual	C++	Extensions	are	implemented	by	the	Recordset	object,
the	constructor	for	the	smart	pointer,	picRs,	takes	the	_RecordsetPtr	pointer,
pRs.	The	constructor	calls	QueryInterface	using	pRs	to	find	the
IADORecordBinding	interface.

//	Visual	C++	Extensions	Example

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<icrsint.h>

_COM_SMARTPTR_TYPEDEF(IADORecordBinding,	__uuidof(IADORecordBinding));

inline	void	TESTHR(HRESULT	_hr)	{	if	FAILED(_hr)	_com_issue_error(_hr);	}

class	CCustomRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CCustomRs)

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_ch_fname,	

																								sizeof(m_ch_fname),	m_ul_fnameStatus,	false)

			ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_ch_lname,	

																								sizeof(m_ch_lname),	m_ul_lnameStatus,	false)

END_ADO_BINDING()

public:

			CHAR				m_ch_fname[22];

			CHAR				m_ch_lname[32];

			ULONG			m_ul_fnameStatus;

			ULONG			m_ul_lnameStatus;

};

void	main(void)

{

			::CoInitialize(NULL);

			try	

						{

						_RecordsetPtr	pRs("ADODB.Recordset");

						CCustomRs	rs;

						IADORecordBindingPtr	picRs(pRs);

						

						pRs->Open("SELECT	*	FROM	Employee	ORDER	BY	lname",	

									"dsn=pubs;uid=sa;pwd=;",	

									adOpenStatic,	adLockOptimistic,	adCmdText);

						

						TESTHR(picRs->BindToRecordset(&rs));

						while	(!pRs->EndOfFile)

									{

						//	Process	data	in	the	CCustomRs	C++	instance	variables.

									printf("Name	=	%s	%s\n",

												(rs.m_ul_fnameStatus	==	adFldOK	?	rs.m_ch_fname:	"<Error>"),	

												(rs.m_ul_lnameStatus	==	adFldOK	?	rs.m_ch_lname:	"<Error>"));

						//	Move	to	the	next	row	of	the	Recordset.	

						//	Fields	in	the	new	row	will	automatically	be	

						//	placed	in	the	CCustomRs	C++	instance	variables.

			

									pRs->MoveNext();

									}

						}

			catch	(_com_error	&e)

						{

						printf("Error:\n");

						printf("Code	=	%08lx\n",	e.Error());

						printf("Meaning	=	%s\n",	e.ErrorMessage());

						printf("Source	=	%s\n",	(LPCSTR)	e.Source());

						printf("Description	=	%s\n",	(LPCSTR)	e.Description());

						}

			::CoUninitialize();

}

ADO	for	Visual	C++	Syntax	Index	for	COM

The	ADO	Language	Reference	uses	the	Microsoft	Visual	Basic	programming
language	to	illustrate	ADO	method	and	property	syntax.	This	index	is	a	cross-
reference	to	the	ADO	Language	Reference	based	on	Microsoft	Visual	C++.

If	you	use	the	#import	directive	in	your	application,	a	header	file	will	be
generated	that	will	enable	you	to	use	syntax	similar	to	Microsoft	Visual	Basic.
Property	names	of	the	form	get_PropertyName	and	put_PropertyName	can	be
treated	as	if	they	were	declared	simply	as	PropertyName.	A	property	can	then	be
treated	like	a	data	member	instead	of	a	function.

All	of	the	methods,	properties,	and	events	are	functions	that	return	an
HRESULT,	which	you	can	test	to	determine	if	the	function	executed
successfully.

Method	and	property	syntax	in	Visual	C++	is	listed	for	the	following	elements:

ADO	Collections
Command	object

Connection	object

Error	object

Field	object

Parameter	object

Record	object

Recordset	object

Stream	object

Collections	(ADO	for	Visual	C++	Syntax)

Parameters

Methods

Append(IDispatch	*Object)

Delete(VARIANT	Index)

Refresh(void)

Properties

get_Count(long	*c)

get_Item(VARIANT	Index,	_ADOParameter	**ppvObject)

Fields

Methods

Append(BSTR	bstrName,	DataTypeEnum	Type,	long	DefinedSize,	

												FieldAttributeEnum	Attrib)

Delete(VARIANT	Index)

Refresh(void)

Properties

get_Count(long	*c)

get_Item(VARIANT	Index,	ADOField	**ppvObject)

Errors

Methods

Clear(void)

Refresh(void)

Properties

get_Count(long	*c)

get_Item(VARIANT	Index,	ADOError	**ppvObject)

Properties

Methods

Refresh(void)

Properties

get_Count(long	*c)

get_Item(VARIANT	Index,	ADOProperty	**ppvObject)

Command	(ADO	for	Visual	C++	Syntax)

Methods

Cancel(void)

CreateParameter(BSTR	Name,	DataTypeEnum	Type,	

																								ParameterDirectionEnum	Direction,	long	Size,

																								_ADOParameter	**ppiprm)

Execute(VARIANT	*RecordsAffected,	VARIANT	*Parameters,	long	Options,

												_ADORecordset	**ppirs)

Properties

get_ActiveConnection(_ADOConnection	**ppvObject)

put_ActiveConnection(VARIANT	vConn)

putref_ActiveConnection(_ADOConnection	*pCon)

get_CommandText(BSTR	*pbstr)

put_CommandText(BSTR	bstr)

get_CommandTimeout(LONG	*pl)

put_CommandTimeout(LONG	Timeout)

get_CommandType(CommandTypeEnum	*plCmdType)

put_CommandType(CommandTypeEnum	lCmdType)

get_Name(BSTR	*pbstrName)

put_Name(BSTR	bstrName)

get_Prepared(VARIANT_BOOL	*pfPrepared)

put_Prepared(VARIANT_BOOL	fPrepared)

get_State(LONG	*plObjState)

get_Parameters(ADOParameters	**ppvObject)

Connection	(ADO	for	Visual	C++	Syntax)

Methods

BeginTrans(long	*TransactionLevel)

CommitTrans(void)

RollbackTrans(void)

Cancel(void)

Close(void)

Execute(BSTR	CommandText,	VARIANT	*RecordsAffected,	long	Options,	

												_ADORecordset	**ppiRset)

Open(BSTR	ConnectionString,	BSTR	UserID,	BSTR	Password,	long	Options

OpenSchema(SchemaEnum	Schema,	VARIANT	Restrictions,	VARIANT	SchemaID,

													_ADORecordset	**pprset)

Properties

get_Attributes(long	*plAttr)

put_Attributes(long	lAttr)

get_CommandTimeout(LONG	*plTimeout)

put_CommandTimeout(LONG	lTimeout)

get_ConnectionString(BSTR	*pbstr)

put_ConnectionString(BSTR	bstr)

get_ConnectionTimeout(LONG	*plTimeout)

put_ConnectionTimeout(LONG	lTimeout)

get_CursorLocation(CursorLocationEnum	*plCursorLoc)

put_CursorLocation(CursorLocationEnum	lCursorLoc)

get_DefaultDatabase(BSTR	*pbstr)

put_DefaultDatabase(BSTR	bstr)

get_IsolationLevel(IsolationLevelEnum	*Level)

put_IsolationLevel(IsolationLevelEnum	Level)

get_Mode(ConnectModeEnum	*plMode)

put_Mode(ConnectModeEnum	lMode)

get_Provider(BSTR	*pbstr)

put_Provider(BSTR	Provider)

get_State(LONG	*plObjState)

get_Version(BSTR	*pbstr)

get_Errors(ADOErrors	**ppvObject)

Events

BeginTransComplete(LONG	TransactionLevel,	ADOError	*pError,	

																								EventStatusEnum	*adStatus,	_ADOConnection	*pConnection

CommitTransComplete(ADOError	*pError,	EventStatusEnum	*adStatus,	

																								_ADOConnection	*pConnection)

ConnectComplete(ADOError	*pError,	EventStatusEnum	*adStatus,	

																				_ADOConnection	*pConnection)

Disconnect(EventStatusEnum	*adStatus,	_ADOConnection	*pConnection)

ExecuteComplete(LONG	RecordsAffected,	ADOError	*pError,	

																				EventStatusEnum	*adStatus,	_ADOCommand	*pCommand,

																				_ADORecordset	*pRecordset,	_ADOConnection	*pConnection

InfoMessage(ADOError	*pError,	EventStatusEnum	*adStatus,	

																_ADOConnection	*pConnection)

RollbackTransComplete(ADOError	*pError,	EventStatusEnum	*adStatus,	

																												_ADOConnection	*pConnection)

WillConnect(BSTR	*ConnectionString,	BSTR	*UserID,	BSTR	*Password,	

																				long	*Options,	EventStatusEnum	*adStatus,	

																				_ADOConnection	*pConnection)

WillExecute(BSTR	*Source,	CursorTypeEnum	*CursorType,	

																				LockTypeEnum	*LockType,	long	*Options,	

																				EventStatusEnum	*adStatus,	_ADOCommand	*pCommand,

																				_ADORecordset	*pRecordset,	_ADOConnection	*pConnection

Error	(ADO	for	Visual	C++	Syntax)

Properties

get_Description(BSTR	*pbstr)

get_NativeError(long	*pl)

get_Number(long	*pl)

get_Source(BSTR	*pbstr)

get_SQLState(BSTR	*pbstr)

Field	(ADO	for	Visual	C++	Syntax)

Methods

AppendChunk(VARIANT	Data)

GetChunk(long	Length,	VARIANT	*pvar)

Properties

get_ActualSize(long	*pl)

get_Attributes(long	*pl)

put_Attributes(long	lAttributes)

get_DataFormat(IUnknown	**ppiDF)

put_DataFormat(IUnknown	*piDF)

get_DefinedSize(long	*pl)

put_DefinedSize(long	lSize)

get_Name(BSTR	*pbstr)

get_NumericScale(BYTE	*pbNumericScale)

put_NumericScale(BYTE	bScale)

get_OriginalValue(VARIANT	*pvar)

get_Precision(BYTE	*pbPrecision)

put_Precision(BYTE	bPrecision)

get_Type(DataTypeEnum	*pDataType)

put_Type(DataTypeEnum	DataType)

get_UnderlyingValue(VARIANT	*pvar)

get_Value(VARIANT	*pvar)

put_Value(VARIANT	Val)

Parameter	(ADO	for	Visual	C++	Syntax)

Methods

AppendChunk(VARIANT	Val)

Properties

get_Attributes(LONG	*plParmAttribs)

put_Attributes(LONG	lParmAttribs)

get_Direction(ParameterDirectionEnum	*plParmDirection)

put_Direction(ParameterDirectionEnum	lParmDirection)

get_Name(BSTR	*pbstr)

put_Name(BSTR	bstr)

get_NumericScale(BYTE	*pbScale)

put_NumericScale(BYTE	bScale)

get_Precision(BYTE	*pbPrecision)

put_Precision(BYTE	bPrecision)

get_Size(long	*pl)

put_Size(long	l)

get_Type(DataTypeEnum	*psDataType)

put_Type(DataTypeEnum	sDataType)

get_Value(VARIANT	*pvar)

put_Value(VARIANT	val)

Record	(ADO	for	Visual	C++	Syntax)

Methods

Cancel(void)

Close(void)

CopyRecord(BSTR	Source,	BSTR	Destination,	BSTR	UserName,	BSTR	Password,

																CopyRecordOptionsEnum	Options,	VARIANT_BOOL	Async,	BSTR	

																*pbstrNewURL)

DeleteRecord(BSTR	Source,	VARIANT_BOOL	Async)

GetChildren(_ADORecordset	**ppRSet)

MoveRecord(BSTR	Source,	BSTR	Destination,	BSTR	UserName,	BSTR	Password,

																MoveRecordOptionsEnum	Options,	VARIANT_BOOL	Async,	BSTR	

																*pbstrNewURL)

Open(VARIANT	Source,	VARIANT	ActiveConnection,	ConnectModeEnum	Mode,

												RecordCreateOptionsEnum	CreateOptions,	RecordOpenOptionsEnum

												Options,	BSTR	UserName,	BSTR	Password)

Properties

get_ActiveConnection(VARIANT	*pvar)

put_ActiveConnection(BSTR	bstrConn)

putref_ActiveConnection(_ADOConnection	*Con)

get_Fields(ADOFields	**ppFlds)

get_Mode(ConnectModeEnum	*pMode)

put_Mode(ConnectModeEnum	Mode)

get_ParentURL(BSTR	*pbstrParentURL)

get_RecordType(RecordTypeEnum	*pType)

get_Source(VARIANT	*pvar)

put_Source(BSTR	Source)

putref_Source(IDispatch	*Source)

get_State(ObjectStateEnum	*pState)

Recordset	(ADO	for	Visual	C++	Syntax)

Methods

AddNew(VARIANT	FieldList,	VARIANT	Values)

Cancel(void)

CancelBatch(AffectEnum	AffectRecords)

CancelUpdate(void)

Clone(LockTypeEnum	LockType,	_ADORecordset	**ppvObject)

Close(void)

CompareBookmarks(VARIANT	Bookmark1,	VARIANT	Bookmark2,	

																												CompareEnum	*pCompare)

Delete(AffectEnum	AffectRecords)

Find(BSTR	Criteria,	LONG	SkipRecords,	SearchDirectionEnum	SearchDirection,

								VARIANT	Start)

GetRows(long	Rows,	VARIANT	Start,	VARIANT	Fields,	VARIANT	*pvar)

GetString(StringFormatEnum	StringFormat,	long	NumRows,	BSTR	ColumnDelimeter,

																BSTR	RowDelimeter,	BSTR	NullExpr,	BSTR	*pRetString)

Move(long	NumRecords,	VARIANT	Start)

MoveFirst(void)

MoveLast(void)

MoveNext(void)

MovePrevious(void)

NextRecordset(VARIANT	*RecordsAffected,	_ADORecordset	**ppiRs)

Open(VARIANT	Source,	VARIANT	ActiveConnection,	CursorTypeEnum	CursorType,

												LockTypeEnum	LockType,	LONG	Options)

Requery(LONG	Options)

Resync(AffectEnum	AffectRecords,	ResyncEnum	ResyncValues)

Save(BSTR	FileName,	PersistFormatEnum	PersistFormat)

Supports(CursorOptionEnum	CursorOptions,	VARIANT_BOOL	*pb)

Update(VARIANT	Fields,	VARIANT	Values)

UpdateBatch(AffectEnum	AffectRecords)

Properties

get_AbsolutePage(PositionEnum	*pl)

put_AbsolutePage(PositionEnum	Page)

get_AbsolutePosition(PositionEnum	*pl)

put_AbsolutePosition(PositionEnum	Position)

get_ActiveCommand(IDispatch	**ppCmd)

get_ActiveConnection(VARIANT	*pvar)

put_ActiveConnection(VARIANT	vConn)

putref_ActiveConnection(IDispatch	*pconn)

get_BOF(VARIANT_BOOL	*pb)

get_Bookmark(VARIANT	*pvBookmark)

put_Bookmark(VARIANT	vBookmark)

get_CacheSize(long	*pl)

put_CacheSize(long	CacheSize)

get_CursorLocation(CursorLocationEnum	*plCursorLoc)

put_CursorLocation(CursorLocationEnum	lCursorLoc)

get_CursorType(CursorTypeEnum	*plCursorType)

put_CursorType(CursorTypeEnum	lCursorType)

get_DataMember(BSTR	*pbstrDataMember)

put_DataMember(BSTR	bstrDataMember)

get_DataSource(IUnknown	**ppunkDataSource)

putref_DataSource(IUnknown	*punkDataSource)

get_EditMode(EditModeEnum	*pl)

get_EOF(VARIANT_BOOL	*pb)

get_Filter(VARIANT	*Criteria)

put_Filter(VARIANT	Criteria)

get_LockType(LockTypeEnum	*plLockType)

put_LockType(LockTypeEnum	lLockType)

get_MarshalOptions(MarshalOptionsEnum	*peMarshal)

put_MarshalOptions(MarshalOptionsEnum	eMarshal)

get_MaxRecords(long	*plMaxRecords)

put_MaxRecords(long	lMaxRecords)

get_PageCount(long	*pl)

get_PageSize(long	*pl)

put_PageSize(long	PageSize)

get_RecordCount(long	*pl)

get_Sort(BSTR	*Criteria)

put_Sort(BSTR	Criteria)

get_Source(VARIANT	*pvSource)

put_Source(BSTR	bstrConn)

putref_Source(IDispatch	*pcmd)

get_State(LONG	*plObjState)

get_Status(long	*pl)

get_StayInSync(VARIANT_BOOL	*pbStayInSync)

put_StayInSync(VARIANT_BOOL	bStayInSync)

get_Fields(ADOFields	**ppvObject)

Events

EndOfRecordset(VARIANT_BOOL	*fMoreData,	EventStatusEnum	*adStatus,	

																								_ADORecordset	*pRecordset)

FetchComplete(ADOError	*pError,	EventStatusEnum	*adStatus,	

																								_ADORecordset	*pRecordset)

FetchProgress(long	Progress,	long	MaxProgress,	EventStatusEnum	*adStatus,

																								_ADORecordset	*pRecordset)

FieldChangeComplete(LONG	cFields,	VARIANT	Fields,	ADOError	*pError,	

																								EventStatusEnum	*adStatus,	_ADORecordset	*pRecordset

MoveComplete(EventReasonEnum	adReason,	ADOError	*pError,	

																								EventStatusEnum	*adStatus,	_ADORecordset	*pRecordset

RecordChangeComplete(EventReasonEnum	adReason,	LONG	cRecords,	

																								ADOError	*pError,	EventStatusEnum	*adStatus,

																								_ADORecordset	*pRecordset)

RecordsetChangeComplete(EventReasonEnum	adReason,	ADOError	*pError,	

																								EventStatusEnum	*adStatus,	_ADORecordset	*pRecordset

WillChangeField(LONG	cFields,	VARIANT	Fields,	EventStatusEnum	*adStatus,

																								_ADORecordset	*pRecordset)

WillChangeRecord(EventReasonEnum	adReason,	LONG	cRecords,	

																								EventStatusEnum	*adStatus,	_ADORecordset	*pRecordset

WillChangeRecordset(EventReasonEnum	adReason,	EventStatusEnum	*adStatus,

																								_ADORecordset	*pRecordset)

WillMove(EventReasonEnum	adReason,	EventStatusEnum	*adStatus,	

																								_ADORecordset	*pRecordset)

Stream	(ADO	for	Visual	C++	Syntax)

Methods

Cancel(void)

Close(void)

CopyTo(_ADOStream	*DestStream,	LONG	CharNumber	=	-1)

Flush(void)

LoadFromFile(BSTR	FileName)

Open(VARIANT	Source,	ConnectModeEnum	Mode,	StreamOpenOptionsEnum	Options,

												BSTR	UserName,	BSTR	Password)

Read(long	NumBytes,	VARIANT	*pVal)

ReadText(long	NumChars,	BSTR	*pbstr)

SaveToFile(BSTR	FileName,	SaveOptionsEnum	Options	=	adSaveCreateNotExist)

SetEOS(void)

SkipLine(void)

Write(VARIANT	Buffer)

WriteText(BSTR	Data,	StreamWriteEnum	Options	=	adWriteChar)

Properties

get_Charset(BSTR	*pbstrCharset)

put_Charset(BSTR	Charset)

get_EOS(VARIANT_BOOL	*pEOS)

get_LineSeparator(LineSeparatorEnum	*pLS)

put_LineSeparator(LineSeparatorEnum	LineSeparator)

get_Mode(ConnectModeEnum	*pMode)

put_Mode(ConnectModeEnum	Mode)

get_Position(LONG	*pPos)

put_Position(LONG	Position)

get_Size(LONG	*pSize)

get_State(ObjectStateEnum	*pState)

get_Type(StreamTypeEnum	*pType)

put_Type(StreamTypeEnum	Type)

ADO	for	Visual	C++	Syntax	Index	with	#import

The	ADO	Language	Reference	uses	the	Microsoft	Visual	Basic	programming
language	to	illustrate	ADO	methods	and	property	syntax.	This	index	is	a	cross-
reference	to	the	ADO	Language	Reference	based	on	Microsoft	Visual	C++	and
the	#import	directive.

This	particular	index	was	derived	by	compiling	a	program	with	the	#import
directive	against	the	ADO	.dll,	then	reformatting	the	*.tlh	file	that	was
generated.	Only	information	about	methods,	properties,	and	events	was
preserved.	The	alternative	syntax	declared	for	each	property	is	listed	by	the
corresponding	"__declspec(property...)"	directive.

You	are	strongly	encouraged	to	read	How	Visual	C++	Users	Should	Read	the
ADO	Documentation	for	more	information.

Method	and	property	syntax	in	Visual	C++	with	the	#import	directive	is	listed
for	the	following	elements:

ADO	Collections
Command	Object

Connection	Object

Error	Object

Field	Object

Parameter	Object

Property	object

Record	Object

Recordset	Object

Stream	Object

Connection	Events

Recordset	Events

Collections	(Visual	C++	Syntax	Index	with	#import)

It	is	useful	to	know	that	collections	inherit	certain	common	methods	and
properties.

All	collections	inherit	the	Count	property	and	Refresh	method,	and	all
collections	add	the	Item	property.	The	Errors	collection	adds	the	Clear	method.
The	Parameters	collection	inherits	the	Append	and	Delete	methods,	while	the
Fields	collection	adds	the	Append,	Delete,	and	Update	methods.

Properties	Collection

Methods

HRESULT	Refresh();

Properties

long	GetCount();	

__declspec(property(get=GetCount))	long	Count;

PropertyPtr	GetItem(const	_variant_t	&	Index);

__declspec(property(get=GetItem))	PropertyPtr	Item[];

Errors	Collection

Methods

HRESULT	Clear();

HRESULT	Refresh();

Properties

long	GetCount();	

__declspec(property(get=GetCount))	long	Count;

PropertyPtr	GetItem(const	_variant_t	&	Index);

__declspec(property(get=GetItem))	PropertyPtr	Item[];

Parameters	Collection

Methods

HRESULT	Append(IDispatch	*	Object);

HRESULT	Delete(const	_variant_t	&	Index);

HRESULT	Refresh();

Properties

long	GetCount();	

__declspec(property(get=GetCount))	long	Count;

PropertyPtr	GetItem(const	_variant_t	&	Index);

__declspec(property(get=GetItem))	PropertyPtr	Item[];

Fields	Collection

Methods

HRESULT	Append(_bstr_t	Name,	enum	DataTypeEnum	Type,	long	DefinedSize

				enum	FieldAttributeEnum	Attrib,	const	_variant_t	&	FieldValue	=	

				vtMissing);

HRESULT	Delete(const	_variant_t	&	Index);

HRESULT	Refresh();

HRESULT	Update();

Properties

long	GetCount();	

__declspec(property(get=GetCount))	long	Count;

PropertyPtr	GetItem(const	_variant_t	&	Index);

__declspec(property(get=GetItem))	PropertyPtr	Item[];

Command	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	Cancel();

_RecordsetPtr	Execute(VARIANT	*	RecordsAffected,	VARIANT

				*	Parameters,	long	Options);

_ParameterPtr	CreateParameter(_bstr_t	Name,	enum	

				DataTypeEnum	Type,	enum	ParameterDirectionEnum	Direction,	long	Size

				const	_variant_t	&	Value	=	vtMissing);

Properties

_ConnectionPtr	GetActiveConnection();

void	PutRefActiveConnection(struct	_Connection	*	ppvObject);

void	PutActiveConnection(const	_variant_t	&	ppvObject);

__declspec(property(get=GetActiveConnection,put=PutRefActiveConnection))

				_ConnectionPtr	ActiveConnection;

_bstr_t	GetCommandText();

void	PutCommandText(_bstr_t	pbstr);

__declspec(property(get=GetCommandText,put=PutCommandText))	_bstr_t

				CommandText;

long	GetCommandTimeout();

void	PutCommandTimeout(long	pl);

__declspec(property(get=GetCommandTimeout,put=PutCommandTimeout))	long

				CommandTimeout;

void	PutCommandType(enum	CommandTypeEnum	plCmdType);

enum	CommandTypeEnum	GetCommandType();

__declspec(property(get=GetCommandType,put=PutCommandType))	enum

				CommandTypeEnum	CommandType;

VARIANT_BOOL	GetPrepared();

void	PutPrepared(VARIANT_BOOL	pfPrepared);

__declspec(property(get=GetPrepared,put=PutPrepared))	VARIANT_BOOL

				Prepared;

ParametersPtr	GetParameters();

__declspec(property(get=GetParameters))	ParametersPtr

				Parameters;

_bstr_t	GetName();

void	PutName(_bstr_t	pbstrName);

__declspec(property(get=GetName,put=PutName))	_bstr_t	Name;

long	GetState();

__declspec(property(get=GetState))	long	State;

Connection	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	Cancel();

HRESULT	Close();

_RecordsetPtr	Execute(_bstr_t	CommandText,	VARIANT	*

				RecordsAffected,					long	Options);

long	BeginTrans();

HRESULT	CommitTrans();

HRESULT	RollbackTrans();

HRESULT	Open(_bstr_t	ConnectionString,	_bstr_t	UserID,

				_bstr_t	Password,					long	Options);

_RecordsetPtr	OpenSchema(enum	SchemaEnum	Schema,	const

				_variant_t	&					Restrictions	=	vtMissing,	const	_variant_t	&	

				SchemaID	=	vtMissing);	

Properties

_bstr_t	GetConnectionString();

void	PutConnectionString(_bstr_t	pbstr);

__declspec(property(get=GetConnectionString,put=PutConnectionString))

				_bstr_t	ConnectionString;

long	GetCommandTimeout();

void	PutCommandTimeout(long	plTimeout);

__declspec(property(get=GetCommandTimeout,put=PutCommandTimeout))	long

				CommandTimeout;

long	GetConnectionTimeout();

void	PutConnectionTimeout(long	plTimeout);

__declspec(property(get=GetConnectionTimeout,put=PutConnectionTimeout))

				long	ConnectionTimeout;

_bstr_t	GetVersion();

__declspec(property(get=GetVersion))	_bstr_t	Version;

ErrorsPtr	GetErrors();

__declspec(property(get=GetErrors))	ErrorsPtr	Errors;

_bstr_t	GetDefaultDatabase();

void	PutDefaultDatabase(_bstr_t	pbstr);

__declspec(property(get=GetDefaultDatabase,put=PutDefaultDatabase))

				_bstr_t	DefaultDatabase;

enum	IsolationLevelEnum	GetIsolationLevel();

void	PutIsolationLevel(enum	IsolationLevelEnum	Level);

__declspec(property(get=GetIsolationLevel,put=PutIsolationLevel))	enum

				IsolationLevelEnum	IsolationLevel;

long	GetAttributes();

void	PutAttributes(long	plAttr);

__declspec(property(get=GetAttributes,put=PutAttributes))	long

				Attributes;

enum	CursorLocationEnum	GetCursorLocation();

void	PutCursorLocation(enum	CursorLocationEnum	plCursorLoc);

__declspec(property(get=GetCursorLocation,put=PutCursorLocation))	enum

				CursorLocationEnum	CursorLocation;

enum	ConnectModeEnum	GetMode();

void	PutMode(enum	ConnectModeEnum	plMode);

__declspec(property(get=GetMode,put=PutMode))	enum	ConnectModeEnum

				Mode;

_bstr_t	GetProvider();

void	PutProvider(_bstr_t	pbstr);

__declspec(property(get=GetProvider,put=PutProvider))	_bstr_t

				Provider;

long	GetState();

__declspec(property(get=GetState))	long	State;

Error	(Visual	C++	Syntax	Index	with	#import)

Properties

_bstr_t	GetDescription();

__declspec(property(get=GetDescription))	_bstr_t	Description;

long	GetHelpContext();

__declspec(property(get=GetHelpContext))	long	HelpContext;

_bstr_t	GetHelpFile();

__declspec(property(get=GetHelpFile))	_bstr_t	HelpFile;

long	GetNativeError();

__declspec(property(get=GetNativeError))	long	NativeError;

long	GetNumber();

__declspec(property(get=GetNumber))	long	Number;

_bstr_t	GetSource();

__declspec(property(get=GetSource))	_bstr_t	Source;

_bstr_t	GetSQLState();

__declspec(property(get=GetSQLState))	_bstr_t	SQLState;

Field	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	AppendChunk(const	_variant_t	&	Data);

_variant_t	GetChunk(long	Length);

Properties

long	GetActualSize();

__declspec(property(get=GetActualSize))	long	ActualSize;

long	GetAttributes();

void	PutAttributes(long	pl);

__declspec(property(get=GetAttributes,put=PutAttributes))	long					Attributes

IUnknownPtr	GetDataFormat();

void	PutRefDataFormat(IUnknown	*	ppiDF);

__declspec(property(get=GetDataFormat,put=PutRefDataFormat))	IunknownPtr

				DataFormat;

long	GetDefinedSize();

void	PutDefinedSize(long	pl);

__declspec(property(get=GetDefinedSize,put=PutDefinedSize))	long

				DefinedSize;

_bstr_t	GetName();

__declspec(property(get=GetName))	_bstr_t	Name;

unsigned	char	GetNumericScale();

void	PutNumericScale(unsigned	char	pbNumericScale);

__declspec(property(get=GetNumericScale,put=PutNumericScale))	unsigned

				char	NumericScale;

_variant_t	GetOriginalValue();

__declspec(property(get=GetOriginalValue))	_variant_t	OriginalValue;

unsigned	char	GetPrecision();

void	PutPrecision(unsigned	char	pbPrecision);

__declspec(property(get=GetPrecision,put=PutPrecision))	unsigned	char

				Precision;

enum	DataTypeEnum	GetType();

void	PutType(enum	DataTypeEnum	pDataType);

__declspec(property(get=GetType,put=PutType))	enum	DataTypeEnum	Type

_variant_t	GetUnderlyingValue();

__declspec(property(get=GetUnderlyingValue))	_variant_t	UnderlyingValue

_variant_t	GetValue();

void	PutValue(const	_variant_t	&	pvar);

__declspec(property(get=GetValue,put=PutValue))	_variant_t	Value;

Parameter	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	AppendChunk(const	_variant_t	&	Val);

Properties

long	GetAttributes();

void	PutAttributes(long	plParmAttribs);

__declspec(property(get=GetAttributes,put=PutAttributes))	long

				Attributes;

enum	ParameterDirectionEnum	GetDirection();

void	PutDirection(enum	ParameterDirectionEnum	plParmDirection);

__declspec(property(get=GetDirection,put=PutDirection))	enum

				ParameterDirectionEnum	Direction;

_bstr_t	GetName();

void	PutName(_bstr_t	pbstr);

__declspec(property(get=GetName,put=PutName))	_bstr_t	Name;

unsigned	char	GetNumericScale();

void	PutNumericScale(unsigned	char	pbScale);

__declspec(property(get=GetNumericScale,put=PutNumericScale))	unsigned

				char	NumericScale;

unsigned	char	GetPrecision();

void	PutPrecision(unsigned	char	pbPrecision);

__declspec(property(get=GetPrecision,put=PutPrecision))	unsigned	char

				Precision;

long	GetSize();

void	PutSize(long	pl);

__declspec(property(get=GetSize,put=PutSize))	long	Size;

enum	DataTypeEnum	GetType();

void	PutType(enum	DataTypeEnum	psDataType);

__declspec(property(get=GetType,put=PutType))	enum	DataTypeEnum	Type

_variant_t	GetValue();

void	PutValue(const	_variant_t	&	pvar);

__declspec(property(get=GetValue,put=PutValue))	_variant_t	Value;

Property	(Visual	C++	Syntax	Index	with	#import)

Properties

long	GetAttributes();

void	PutAttributes(long	plAttributes);

__declspec(property(get=GetAttributes,put=PutAttributes))	long

				Attributes;

_bstr_t	GetName();

__declspec(property(get=GetName))	_bstr_t	Name;

enum	DataTypeEnum	GetType();

__declspec(property(get=GetType))	enum	DataTypeEnum	Type;

_variant_t	GetValue();

void	PutValue(const	_variant_t	&	pval);

__declspec(property(get=GetValue,put=PutValue))	_variant_t	Value;

Record	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	Cancel();

HRESULT	Close();

_bstr_t	CopyRecord(_bstr_t	Source,	_bstr_t	Destination,

				_bstr_t					UserName,	_bstr_t	Password,	enum	CopyRecordOptionsEnum

				Options,					VARIANT_BOOL	Async);

HRESULT	DeleteRecord(_bstr_t	Source,	VARIANT_BOOL	Async);

_RecordsetPtr	GetChildren();

_bstr_t	MoveRecord(_bstr_t	Source,	_bstr_t	Destination,

				_bstr_t					UserName,	_bstr_t	Password,	enum	MoveRecordOptionsEnum

				Options,					VARIANT_BOOL	Async);

HRESULT	Open(const	_variant_t	&	Source,	const	_variant_t

&					ActiveConnection,	enum	ConnectModeEnum	Mode,	enum

				RecordCreateOptionsEnum	CreateOptions,	enum	RecordOpenOptionsEnum

				Options,	_bstr_t	UserName,	_bstr_t	Password);

Properties

_variant_t	GetActiveConnection();

void	PutActiveConnection(_bstr_t	pvar);

void	PutRefActiveConnection(struct	_Connection	*	pvar);

FieldsPtr	GetFields();

__declspec(property(get=GetFields))	FieldsPtr	Fields;

enum	ConnectModeEnum	GetMode();

void	PutMode(enum	ConnectModeEnum	pMode);

__declspec(property(get=GetMode,put=PutMode))	enum	ConnectModeEnum	Mode

_bstr_t	GetParentURL();

__declspec(property(get=GetParentURL))	_bstr_t	ParentURL;

enum	RecordTypeEnum	GetRecordType();

__declspec(property(get=GetRecordType))	enum	RecordTypeEnum

				RecordType;

_variant_t	GetSource();

void	PutSource(_bstr_t	pvar);

void	PutRefSource(IDispatch	*	pvar);

enum	ObjectStateEnum	GetState();

__declspec(property(get=GetState))	enum	ObjectStateEnum	State;

Recordset	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	AddNew(const	_variant_t	&	FieldList	=	vtMissing,

				const					_variant_t	&	Values	=	vtMissing);

HRESULT	Cancel();

HRESULT	CancelBatch(enum	AffectEnum	AffectRecords);

HRESULT	CancelUpdate();

_RecordsetPtr	Clone(enum	LockTypeEnum	LockType);

HRESULT	Close();

enum	CompareEnum	CompareBookmarks(const	_variant_t

				&	Bookmark1,	const					_variant_t	&	Bookmark2);

HRESULT	Delete(enum	AffectEnum	AffectRecords);

HRESULT	Find(_bstr_t	Criteria,	long	SkipRecords,	enum

				SearchDirectionEnum	SearchDirection,	const	_variant_t	&	Start	=

				vtMissing);

_variant_t	GetRows(long	Rows,	const	_variant_t	&	Start	=

				vtMissing,	const	_variant_t	&	Fields	=	vtMissing);

_bstr_t	GetString(enum

				StringFormatEnum	StringFormat,	long	NumRows,					_bstr_t	

				ColumnDelimeter,	_bstr_t	RowDelimeter,	_bstr_t	NullExpr);

HRESULT	Move(long	NumRecords,	const	_variant_t	&	Start	=	

				vtMissing);

HRESULT	MoveFirst();

HRESULT	MoveLast();

HRESULT	MoveNext();

HRESULT	MovePrevious();

_RecordsetPtr	NextRecordset(VARIANT	*	RecordsAffected);

HRESULT	Open(const	_variant_t	&	Source,	const	_variant_t	&

				ActiveConnection,	enum	CursorTypeEnum	CursorType,	enum	LockTypeEnum

				LockType,	long	Options);

HRESULT	Requery(long	Options);

HRESULT	Update(const	_variant_t	&	Fields	=	vtMissing,	const

				_variant_t	&					Values	=	vtMissing);

HRESULT	UpdateBatch(enum	AffectEnum	AffectRecords);

HRESULT	Resync(enum	AffectEnum	AffectRecords,	enum

				ResyncEnum					ResyncValues);

HRESULT	Save(const	_variant_t	&	Destination,	enum

				PersistFormatEnum					PersistFormat);

HRESULT	Seek(const	_variant_t	&	KeyValues,	enum	SeekEnum

				SeekOption);

VARIANT_BOOL	Supports(enum	CursorOptionEnum	CursorOptions);

Properties

enum	PositionEnum	GetAbsolutePage();

void	PutAbsolutePage(enum	PositionEnum	pl);

__declspec(property(get=GetAbsolutePage,put=PutAbsolutePage))	enum

				PositionEnum	AbsolutePage;

enum	PositionEnum	GetAbsolutePosition();

void	PutAbsolutePosition(enum	PositionEnum	pl);

__declspec(property(get=GetAbsolutePosition,put=PutAbsolutePosition))

				enum	PositionEnum	AbsolutePosition;

IDispatchPtr	GetActiveCommand();

__declspec(property(get=GetActiveCommand))	IDispatchPtr	ActiveCommand

void	PutRefActiveConnection(IDispatch	*	pvar);

void	PutActiveConnection(const	_variant_t	&	pvar);

_variant_t	GetActiveConnection();

enum	CursorLocationEnum	GetCursorLocation();

void	PutCursorLocation(enum	CursorLocationEnum	plCursorLoc);

__declspec(property(get=GetCursorLocation,put=PutCursorLocation))	enum

				CursorLocationEnum	CursorLocation;

VARIANT_BOOL	GetBOF();

__declspec(property(get=GetBOF))	VARIANT_BOOL	BOF;

VARIANT_BOOL	GetEndOfFile();	//	Actually,	GetEOF.	Renamed	in	#import.

__declspec(property(get=GetEndOfFile))	VARIANT_BOOL	EndOfFile;

_variant_t	GetBookmark();

void	PutBookmark(const	_variant_t	&	pvBookmark);

__declspec(property(get=GetBookmark,put=PutBookmark))	_variant_t

				Bookmark;

long	GetCacheSize();

void	PutCacheSize(long	pl);

__declspec(property(get=GetCacheSize,put=PutCacheSize))	long

				CacheSize;

enum	CursorTypeEnum	GetCursorType();

void	PutCursorType(enum	CursorTypeEnum	plCursorType);

__declspec(property(get=GetCursorType,put=PutCursorType))	enum

				CursorTypeEnum	CursorType;

_bstr_t	GetDataMember();

void	PutDataMember(_bstr_t	pbstrDataMember);

__declspec(property(get=GetDataMember,put=PutDataMember))	_bstr_t

				DataMember;

IUnknownPtr	GetDataSource();

void	PutRefDataSource(IUnknown	*	ppunkDataSource);

__declspec(property(get=GetDataSource,put=PutRefDataSource))	IUnknownPtr

				DataSource;

enum	EditModeEnum	GetEditMode();

__declspec(property(get=GetEditMode))	enum	EditModeEnum	EditMode;

FieldsPtr	GetFields();

__declspec(property(get=GetFields))	FieldsPtr	Fields;

_variant_t	GetFilter();

void	PutFilter(const	_variant_t	&	Criteria);

__declspec(property(get=GetFilter,put=PutFilter))	_variant_t	Filter;

_bstr_t	GetIndex();

void	PutIndex(_bstr_t	pbstrIndex);

__declspec(property(get=GetIndex,put=PutIndex))	_bstr_t	Index;

enum	LockTypeEnum	GetLockType();

void	PutLockType(enum	LockTypeEnum	plLockType);

__declspec(property(get=GetLockType,put=PutLockType))	enum	LockTypeEnum

				LockType;

enum	MarshalOptionsEnum	GetMarshalOptions();

void	PutMarshalOptions(enum	MarshalOptionsEnum	peMarshal);

__declspec(property(get=GetMarshalOptions,put=PutMarshalOptions))	enum

				MarshalOptionsEnum	MarshalOptions;

long	GetMaxRecords();

void	PutMaxRecords(long	plMaxRecords);

__declspec(property(get=GetMaxRecords,put=PutMaxRecords))	long

				MaxRecords;

long	GetPageCount();

__declspec(property(get=GetPageCount))	long	PageCount;

long	GetPageSize();

void	PutPageSize(long	pl);

__declspec(property(get=GetPageSize,put=PutPageSize))	long	PageSize;

long	GetRecordCount();

__declspec(property(get=GetRecordCount))	long	RecordCount;

_bstr_t	GetSort();

void	PutSort(_bstr_t	Criteria);

__declspec(property(get=GetSort,put=PutSort))	_bstr_t	Sort;

void	PutRefSource(IDispatch	*	pvSource);

void	PutSource(_bstr_t	pvSource);

_variant_t	GetSource();

long	GetState();

__declspec(property(get=GetState))	long	State;

long	GetStatus();

__declspec(property(get=GetStatus))	long	Status;

VARIANT_BOOL	GetStayInSync();

void	PutStayInSync(VARIANT_BOOL	pbStayInSync);

__declspec(property(get=GetStayInSync,put=PutStayInSync))	VARIANT_BOOL

				StayInSync;

Stream	(Visual	C++	Syntax	Index	with	#import)

Methods

HRESULT	Cancel();

HRESULT	Close();

HRESULT	CopyTo(struct	_Stream	*	DestStream,	int	CharNumber);

HRESULT	Flush();

HRESULT	LoadFromFile(_bstr_t	FileName);

HRESULT	Open(const	_variant_t	&	Source,	enum

				ConnectModeEnum	Mode,	enum					StreamOpenOptionsEnum	Options,	_bstr_t

				UserName,	_bstr_t	Password);

_variant_t	Read(long	NumBytes);

_bstr_t	ReadText(long	NumChars);

HRESULT	SaveToFile(_bstr_t	FileName,	enum	SaveOptionsEnum

				Options);

HRESULT	SetEOS();

HRESULT	SkipLine();

HRESULT	Write(const	_variant_t	&	Buffer);

HRESULT	WriteText(_bstr_t	Data,	enum	StreamWriteEnum

				Options);

Properties

_bstr_t	GetCharset();

void	PutCharset(_bstr_t	pbstrCharset);

__declspec(property(get=GetCharset,put=PutCharset))	_bstr_t	Charset;

VARIANT_BOOL	GetEOS();

__declspec(property(get=GetEOS))	VARIANT_BOOL	EOS;

enum	LineSeparatorEnum	GetLineSeparator();

void	PutLineSeparator(enum	LineSeparatorEnum	pLS);

__declspec(property(get=GetLineSeparator,put=PutLineSeparator))	enum

				LineSeparatorEnum	LineSeparator;

enum	ConnectModeEnum	GetMode();

void	PutMode(enum	ConnectModeEnum	pMode);

__declspec(property(get=GetMode,put=PutMode))	enum	ConnectModeEnum	Mode

long	GetPosition();

void	PutPosition(long	pPos);

__declspec(property(get=GetPosition,put=PutPosition))	long	Position;

long	GetSize();

__declspec(property(get=GetSize))	long	Size;

enum	ObjectStateEnum	GetState();

__declspec(property(get=GetState))	enum	ObjectStateEnum	State;

enum	StreamTypeEnum	GetType();

void	PutType(enum	StreamTypeEnum	ptype);

__declspec(property(get=GetType,put=PutType))	enum	StreamTypeEnum	Type

ConnectionEvents	(Visual	C++	Syntax	Index	with	#import)

Events

HRESULT	InfoMessage(struct	Error	*	pError,	enum

				EventStatusEnum	*					adStatus,	struct	_Connection	*	pConnection	

HRESULT	BeginTransComplete(long	TransactionLevel,

				struct	Error	*	pError,	enum	EventStatusEnum	*	adStatus,	struct

				_Connection	*	pConnection);

HRESULT	CommitTransComplete(struct	Error	*

				pError,	enum	EventStatusEnum					*	adStatus,	struct	_Connection	*

				pConnection);

HRESULT	RollbackTransComplete(struct	Error	*

				pError,	enum					EventStatusEnum	*	adStatus,	struct	_Connection	*

				pConnection);

HRESULT	WillExecute(BSTR	*	Source,	enum

				CursorTypeEnum	*	CursorType,

				enum	LockTypeEnum	*	LockType,	long	*	Options,	enum	EventStatusEnum	*

				adStatus,	struct	_Command	*	pCommand,	struct	_Recordset	*	pRecordset

				struct	_Connection	*	pConnection);

HRESULT	ExecuteComplete(long	RecordsAffected,	struct

				Error	*	pError,					enum	EventStatusEnum	*	adStatus,	struct	_Command

				*	pCommand,	struct					_Recordset	*	pRecordset,	struct	_Connection	*

				pConnection);

HRESULT	WillConnect(BSTR	*	ConnectionString,	BSTR	*

				UserID,	BSTR	*					Password,	long	*	Options,	enum	EventStatusEnum	*

				adStatus,	struct					_Connection	*	pConnection);

HRESULT	ConnectComplete(struct	Error	*

				pError,	enum	EventStatusEnum	*					adStatus,	struct	_Connection	*

				pConnection);

HRESULT	Disconnect(enum	EventStatusEnum	*

				adStatus,	struct	_Connection	*					pConnection);

RecordsetEvents	(Visual	C++	Syntax	Index	with	#import)

Events

HRESULT	WillChangeField(long	cFields,	const

				_variant_t	&	Fields,	enum					EventStatusEnum	*	adStatus,	struct

				_Recordset	*	pRecordset);

HRESULT	FieldChangeComplete(long	cFields,	const

				_variant_t	&	Fields,					struct	Error	*	pError,	enum	EventStatusEnum

				*	adStatus,	struct					_Recordset	*	pRecordset);

HRESULT	WillChangeRecord(enum	EventReasonEnum

				adReason,	long	cRecords,					enum	EventStatusEnum	*	adStatus,	struct

				_Recordset	*	pRecordset);

HRESULT	RecordChangeComplete(enum	EventReasonEnum

				adReason,	long					cRecords,	struct	Error	*	pError,	enum

				EventStatusEnum	*	adStatus,					struct	_Recordset	*	pRecordset);

HRESULT	WillChangeRecordset(enum	EventReasonEnum

				adReason,	enum					EventStatusEnum	*	adStatus,	struct	_Recordset	*

				pRecordset);

HRESULT	RecordsetChangeComplete(enum

				EventReasonEnum	adReason,	struct					Error	*	pError,	enum

				EventStatusEnum	*	adStatus,	struct	_Recordset	*					pRecordset);

HRESULT	WillMove(enum	EventReasonEnum	adReason,	enum

				EventStatusEnum	*					adStatus,	struct	_Recordset	*	pRecordset);

HRESULT	MoveComplete(enum	EventReasonEnum	adReason,	struct

				Error	*					pError,	enum	EventStatusEnum	*	adStatus,	struct

				_Recordset	*	pRecordset);

HRESULT	EndOfRecordset(VARIANT_BOOL	*	fMoreData,	enum

				EventStatusEnum	*					adStatus,	struct	_Recordset	*	pRecordset);

HRESULT	FetchProgress(long	Progress,	long	MaxProgress,

				enum					EventStatusEnum	*	adStatus,	struct	_Recordset	*	pRecordset	

HRESULT	FetchComplete(struct	Error	*	pError,	enum

				EventStatusEnum	*					adStatus,	struct	_Recordset	*	pRecordset);

Using	ADO	with	Microsoft	Visual
J++

You	can	implement	ADO	using	Microsoft	Visual	J++	in	the	following	ways:

With	Visual	J++	6.0	(or	later),	use	ADO	for	Windows	Foundation	Classes.

With	Visual	J++	1.x,	use	the	Java	Type	Library	Wizard.

Use	the	Microsoft	SDK	for	Java	utilities.

For	further	information	about	using	ADO	with	Visual	J++,	see	the	following
topics:

ADO	Java	Class	Wrappers

ADO/WFC	Syntax	Index

ADO	for	Windows	Foundation	Classes

For	Microsoft	Visual	J++	6.0,	ADO	has	been	extended	to	work	with	Windows
Foundation	Classes	(WFC)	in	the	following	ways.	First,	a	set	of	Java	classes	has
been	implemented	that	extends	the	ADO	interfaces	and	creates	notifications
interesting	to	the	Java	programmer;	the	Java	classes	also	expose	functions	that
return	Java	types	to	the	user.	To	improve	performance,	the	Java	class	directly
accesses	the	native	data	types	in	the	OLE	DB	rowset	object,	and	returns	them	to
the	Java	programmer	as	Java	types	without	first	converting	them	to	and	from	a
variant.	ADO	has	also	been	extended	to	work	with	event	notifications	in	the
WFC	framework.

ADO	for	Windows	Foundation	Classes	(ADO/WFC)	supports	all	the	standard
ADO	methods,	properties,	objects,	and	events.	However,	operations	that	require
a	variant	as	a	parameter	and	show	excellent	performance	in	a	language	such	as
Microsoft	Visual	Basic,	display	lesser	performance	in	a	language	such	as	Visual
J++.	For	that	reason,	ADO/WFC	also	provides	accessor	functions	on	the	Field
object	that	take	native	Java	data	types	instead	of	the	variant	data	type.

For	more	detailed	information	within	the	ADO	documentation	about	ADO/WFC
packages,	see	the	ADO/WFC	Syntax	Index.

For	related	information	within	the	Visual	J++	documentation,	see	Converting
Visual	Basic	ADO	Examples	to	Visual	J++.

http://msdn.microsoft.com/library/devprods/vs6/visualj/vjcore/vjhowconvertingvisualbasicadoexamplestovisualj.htm

Using	ADO	with	the	Java	Type	Library	Wizard

The	Java	Type	Library	Wizard	is	a	feature	of	Visual	J++	1.x,	integrated	into	the
Tools	menu	of	the	development	environment.	Its	purpose	is	to	search	a	type
library	and	create	a	Java	interface	that	allows	access	to	COM	objects.	For	Visual
J++	6.0,	the	Java	Type	Library	Wizard	has	been	replaced	with	ADO	for
Windows	Foundation	Classes.

The	Java	Type	Library	Wizard	produces	similar	results	as	the	command-line
tools	included	with	the	Microsoft	SDK	for	Java.	However,	you	cannot	step	into
the	class	wrappers	that	the	Wizard	generates,	unlike	the	class	wrappers	generated
by	the	Microsoft	SDK	for	Java.

The	Java	Type	Library	Wizard	generates	the	classes	in	the	following	location:	\
<windows	directory>\Java\trustlib\msado15.	The	Summary.txt	file,	located	in
the	directory	where	the	classes	were	generated,	shows	the	class	definitions	it
generated.

The	Java	Type	Library	Wizard	converts	enumerated	types,	found	in	any	given
type	library,	to	type	INT	(integer).	It	also	defines	an	interface	that	corresponds	to
each	enumerated	type	in	the	type	library.	You	can	reference	the	values	of	an
ADO	enumerated	type	with	the	following	syntax:

msado15.<Enum	Name>.<constant	Name>

An	example	of	this	is	shown	in	the	following	code	fragment	for	setting	the
CommandType	property	of	a	Command	object:

Cmd1.putCommandType(msado15.CommandTypeEnum.adCmdStoredProc);

Alternately,	you	could	inherit	from	the	enumerated	type	wrapper	generated	by

the	Java	Type	Library	Wizard.	If	so,	you	could	remove	"msado15."	from	the
syntax.	However,	your	class	would	need	to	inherit	from	each	Java	object	and
enumerated	type	interface	that	it	references	to	completely	eliminate	the	need	to
reference	msado15.*	in	front	of	all	ADO	objects	and	enumerated	values.

For	more	sample	code,	see	ADO	Java	Class	Wrappers.

To	run	the	Java	Type	Libary	Wizard	from	Visual	J++	version	1.x:

1.	 From	the	Tools	menu,	select	Java	Type	Library	Wizard.

2.	 Select	"Microsoft	ActiveX	Data	Objects	Library"	and	click	OK.	This	now
(re)generates	files	in	the	\trustlib	directory	for	ADO	(by	default	at
c:\winnt\java\trustlib\msado15).	If	you	used	the	Microsoft	SDK	for	Java	to
already	generate	classes	for	ADO,	they	will	be	replaced	with	those	from	the
Java	Type	Library	Wizard.

3.	 To	use	these	files,	open	your	project	in	Visual	J++.	From	the	Project	menu,
choose	Add	To	Project.	Select	Files,	and	add	all	of	the	.JAVA	files
generated	in	the	\trustlib	directory	(by	default	at
c:\winnt\java\trustlib\msado15)	to	your	project.

Using	ADO	with	the	Microsoft	SDK	for	Java

The	Microsoft	SDK	for	Java	is	the	developer	kit	for	the	Microsoft	Internet
Explorer	environment.	Tools,	information,	and	samples	are	provided	to	help	you
develop	Java	programs	and	applets	based	on	JDK	1.1	and	the	Microsoft	Win32®
virtual	machine	(Microsoft	VM).	The	Microsoft	SDK	for	Java	is	not	tied	to
Microsoft	Visual	J++	and	can	be	downloaded	from
http://www.microsoft.com/Java.

The	Jactivex.exe	utility	generates	classes	from	a	type	library	but	can	only	be
invoked	on	the	command	line.	This	feature	is	not	integrated	with	the	Visual	J++
development	environment.	Unlike	the	classes	generated	by	the	Java	Type
Library	Wizard,	you	can	step	into	the	class	wrappers	created	by	the	SDK.	This	is
useful	for	debugging	how	your	code	uses	the	ADO	wrapper	classes.

This	mechanism	reads	the	ADO	type	library	and	generates	classes	that	you	can
instantiate	within	your	application.	It	generates	those	classes	in	the	following
location:	\<windows	directory>\Java\trustlib\msado15.

Creating	an	ADO	application	in	Java	using	the	Microsoft	SDK	for	Java	is
fundamentally	identical,	from	the	perspective	of	source	code,	to	using	the	Java
Type	Library	Wizard.	For	sample	code,	see	ADO	Java	Class	Wrappers.	The	only
real	difference	is	in	how	you	generate	the	wrapper	classes	in	the	first	place,	as
demonstrated	in	the	steps	below.

To	create	an	ADO	project	with	the	Microsoft	SDK	for	Java:

1.	 Run	the	following	from	a	command	prompt.	You	need	to	set	the	path	to
include	the	Microsoft	SDK	for	Java	Bin	directory,	or	run	the	command
from	that	location.	Typically,	the	Microsoft	SDK	for	Java	is	installed	in	the

http://www.microsoft.com/java/download/dl_sdk32.htm

same	location	as	Visual	Studio.	This	is	a	single	command	statement.

\<path	to	DevStudio>\<path	to	Java	SDK>\bin\JactiveX.exe	/javatlb	"C:\program	files\common	files\system\ado\msado15.dll"

2.	 Run	the	following	command	to	compile	the	generated	classes.	The	/g:t
switch	turns	on	generation	of	debug	symbols	so	that	you	can	trace	into	the
.Java	symbols.	Remove	it	for	release	builds.

jvc	/g:t	c:\<windows>\Java\trustlib\msado15*.Java

3.	 To	use	these	files,	open	your	project	in	Visual	J++.	From	the	Project	menu,
choose	Add	To	Project.	Select	Files,	and	add	all	of	the	.JAVA	files
generated	in	the	trustlib\msado15	directory	to	your	project.

ADO	Java	Class	Wrappers

This	code	declares	an	instance	of	the	ADO	Recordset	class	wrapper	and
initializes	it,	all	on	the	same	line	of	code.	Further,	it	declares	variables	for	each
of	the	arguments	in	the	Open	method,	especially	for	LockType	and	CursorType
(because	Java	doesn't	support	enumerated	types).	It	opens	and	closes	the
Recordset	object.	Setting	Rs1	to	NULL	merely	schedules	that	variable	to	be
released	when	Java	performs	its	systematic	and	intermittent	release	of	unused
objects.

public	static	void	main(String	args[])

{

				msado15._Recordset			Rs1	=	new	msado15.Recordset();

				Variant	Source					=	new	Variant("SELECT	*	FROM	Authors");

				Variant	Connect				=	new	Variant("DSN=AdoDemo;UID=admin;PWD=;");

				int					LockType			=	msado15.CursorTypeEnum.adOpenForwardOnly;

				int					CursorType	=	msado15.LockTypeEnum.adLockReadOnly;

				int					Options				=	-1;

				Rs1.Open(Source,	Connect,	LockType,		CursorType,	Options);

				Rs1.Close();

				Rs1	=	null;

				System.out.println("Success!\n");

}

ADO/WFC	Syntax	Index

The	ADO	Language	Reference	uses	the	Microsoft	Visual	Basic	programming
language	to	illustrate	ADO	method	and	property	syntax.	This	index	is	a	cross-
reference	to	the	ADO	Language	Reference	topics,	based	on	Microsoft	Visual
J++	and	ADO	for	Windows	Foundation	Classes	(ADO/WFC).	When	differences
in	syntax	arise,	use	the	function	signatures	in	this	index,	as	opposed	to	the	syntax
listings	in	the	language	reference	topic.

Method	and	property	syntax	are	listed	for	the	following	elements:

ActiveX	Data	Objects

ADO	Collections
Command	object

Connection	object

Error	object

Field	object

Parameter	object

Recordset	object

Remote	Data	Service

DataSpace

ObjectProxy

Collections	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Parameters

Methods

public	void	append(com.ms.wfc.data.Parameter	param)

public	void	delete(int	n)

public	void	delete(String	s)

public	void	refresh()

public	Parameter	getItem(int	n)

public	Parameter	getItem(String	s)

Properties

public	int	getCount()

Fields

Methods

public	void	append(String	name,	int	type)

public	void	append(String	name,	int	type,	int	definedSize)

public	void	append(String	name,	int	type,	int	definedSize,	int	attrib

public	void	delete(int	n)

public	void	delete(String	s)

public	void	refresh()

public	com.ms.wfc.data.Field	getItem(int	n)

public	com.ms.wfc.data.Field	getItem(String	s)

Properties

public	int	getCount()

Errors

Methods

public	void	clear()

public	void	refresh()

public	com.ms.wfc.data.Error	getItem(int	n)

public	com.ms.wfc.data.Error	getItem(String	s)

Properties

public	int	getCount()

Command	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Constructor

public	Command()

public	Command(String	commandtext)

Methods

public	void	cancel()

public	com.ms.wfc.data.Parameter	createParameter(String

				Name,	int	Type,	int	Direction,	int	Size,	Object	Value)

public	Recordset	execute()

public	Recordset	execute(Object[]	parameters)

public	Recordset	execute(Object[]	parameters,	int	options)

public	int	executeUpdate(Object[]	parameters)

public	int	executeUpdate(Object[]	parameters,	int	options)

public	int	executeUpdate()

The	executeUpdate	method	is	a	special	case	method	that	calls	the	underlying
ADO	execute	method	with	certain	parameters.	The	executeUpdate	method	does
not	support	the	return	of	a	Recordset	object,	so	the	execute	method's	options
parameter	is	modified	with	AdoEnums.ExecuteOptions.NORECORDS.	After
the	execute	method	completes,	its	updated	RecordsAffected	parameter	is	passed
back	to	the	executeUpdate	method,	which	is	finally	returned	as	an	int.

Properties

public	com.ms.wfc.data.Connection	getActiveConnection()

public	void	setActiveConnection(com.ms.wfc.data.Connection	con)

public	void	setActiveConnection(String	conString)

public	String	getCommandText()

public	void	setCommandText(String	command)

public	int	getCommandTimeout()

public	void	setCommandTimeout(int	timeout)

public	int	getCommandType()

public	void	setCommandType(int	type)

public	String	getName()

public	void	setName(String	name)

public	boolean	getPrepared()

public	void	setPrepared(boolean	prepared)

public	int	getState()

public	com.ms.wfc.data.Parameter	getParameter(int	n)

public	com.ms.wfc.data.Parameter	getParameter(String	n)

public	com.ms.wfc.data.Parameters	getParameters()

public	AdoProperties	getProperties()

Connection	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Constructor

public	Connection()

public	Connection(String	connectionstring)

Methods

public	int	beginTrans()

public	void	commitTrans()

public	void	rollbackTrans()

public	void	cancel()

public	void	close()

public	com.ms.wfc.data.Recordset	execute(String	commandText)

public	com.ms.wfc.data.Recordset	execute(String	commandText,	int	options

public	int	executeUpdate(String	commandText)

public	int	executeUpdate(String	commandText,	int	options)

The	executeUpdate	method	is	a	special	case	method	that	calls	the	underlying
ADO	execute	method	with	certain	parameters.	The	executeUpdate	method	does
not	support	the	return	of	a	Recordset	object,	so	the	execute	method's	options
parameter	is	modified	with	AdoEnums.ExecuteOptions.NORECORDS.	After
the	execute	method	completes,	its	updated	RecordsAffected	parameter	is	passed
back	to	the	executeUpdate	method,	which	is	finally	returned	as	an	int.

public	void	open()	

public	void	open(String	connectionString)

public	void	open(String	connectionString,	String	userID)

public	void	open(String	connectionString,	String	userID,	String	password

public	void	open(String	connectionString,	String	userID,	String	password

public	Recordset	openSchema(int	schema,	Object[]

				restrictions,	String	schemaID)

public	Recordset	openSchema(int	schema)

public	Recordset	openSchema(int	schema,	Object[]	restrictions)

Properties

public	int	getAttributes()

public	void	setAttributes(int	attr)

public	int	getCommandTimeout()

public	void	setCommandTimeout(int	timeout)

public	String	getConnectionString()

public	void	setConnectionString(String	con)

public	int	getConnectionTimeout()

public	void	setConnectionTimeout(int	timeout)

public	int	getCursorLocation()

public	void	setCursorLocation(int	cursorLoc)

public	String	getDefaultDatabase()

public	void	setDefaultDatabase(String	db)

public	int	getIsolationLevel()

public	void	setIsolationLevel(int	level)

public	int	getMode()

public	void	setMode(int	mode)

public	String	getProvider()

public	void	setProvider(String	provider)

public	int	getState()

public	String	getVersion()

public	AdoProperties	getProperties()

public	com.ms.wfc.data.Errors	getErrors()

Events

For	more	information	about	ADO/WFC	events,	see	ADO	Events	in	ADO/WFC.

public	void	addOnBeginTransComplete(ConnectionEventHandler	handler)

public	void	removeOnBeginTransComplete(ConnectionEventHandler	handler

public	void	addOnCommitTransComplete(ConnectionEventHandler	handler)

public	void	removeOnCommitTransComplete(ConnectionEventHandler	handler

public	void	addOnConnectComplete(ConnectionEventHandler	handler)

public	void	removeOnConnectComplete(ConnectionEventHandler	handler)

public	void	addOnDisconnect(ConnectionEventHandler	handler)

public	void	removeOnDisconnect(ConnectionEventHandler	handler)

public	void	addOnExecuteComplete(ConnectionEventHandler	handler)

public	void	removeOnExecuteComplete(ConnectionEventHandler	handler)

public	void	addOnInfoMessage(ConnectionEventHandler	handler)

public	void	removeOnInfoMessage(ConnectionEventHandler	handler)

public	void	addOnRollbackTransComplete(ConnectionEventHandler	handler

public	void	removeOnRollbackTransComplete(ConnectionEventHandler	handler

public	void	addOnWillConnect(ConnectionEventHandler	handler)

public	void	removeOnWillConnect(ConnectionEventHandler	handler)

public	void	addOnWillExecute(ConnectionEventHandler	handler)

public	void	removeOnWillExecute(ConnectionEventHandler	handler)

DataSpace	(ADO/WFC	Syntax)

The	createObject	method	of	the	DataSpace	class	specifies	both	a	business
object	to	process	client	application	requests	(progid)	and	the	communications
protocol	and	server	(connection).	createObject	returns	an	ObjectProxy	object
that	represents	the	server.

package	com.ms.wfc.data

Constructor

public	DataSpace()

Methods

public	static	ObjectProxy	DataSpace.createObject(String

				progid,	String	connection)

Properties

public	static	int	getInternetTimeout()

public	static	void	setInternetTimeout(int	plInetTimeout)

Error	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Properties

public	String	getDescription()

public	int	getNativeError()

public	int	getNumber()

public	String	getSource()

public	String	getSQLState()

Field	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Methods

public	void	appendChunk(byte[]	bytes)

public	void	appendChunk(char[]	chars)

public	void	appendChunk(String	chars)

public	byte[]	getByteChunk(int	len)

public	char[]	getCharChunk(int	len)

public	String	getStringChunk(int	len)

Properties

public	int	getActualSize()

public	int	getAttributes()

public	void	setAttributes(int	pl)

public	com.ms.com.IUnknown	getDataFormat()

public	void	setDataFormat(com.ms.com.IUnknown	format)

(For	more	information,	see	the	Microsoft	Visual	J++	WFC	Reference
documentation	for	the	com.ms.wfc.data.IDataFormat	interface.)

public	int	getDefinedSize()

public	void	setDefinedSize(int	pl)

public	String	getName()

public	int	getNumericScale()

public	void	setNumericScale(byte	pbNumericScale)

public	Variant	getOriginalValue()

public	int	getPrecision()

public	void	setPrecision(byte	pbPrecision)

public	int	getType()

public	void	setType(int	pDataType)

public	Variant	getUnderlyingValue()

public	Variant	getValue()

public	void	setValue(Variant	value)

public	AdoProperties	getProperties()

Field	Accessor	Methods

The	Value	property	of	a	Field	object	gets	or	sets	the	content	of	that	object.	The
content	is	represented	as	a	VARIANT,	a	type	of	object	that	can	be	assigned	a
value	and	any	of	several	data	types.

ADO/WFC	implements	the	Value	property	with	the	getValue	method,	which
returns	a	VARIANT	object;	and	the	setValue	method,	which	takes	a	VARIANT
as	an	argument.	VARIANTs	are	highly	efficient	in	certain	languages,	such	as
Microsoft	Visual	Basic.	However,	you	can	attain	better	performance	in	Microsoft
Visual	J++	by	using	native	Java	data	types.

In	addition	to	the	Value	property,	ADO/WFC	provides	accessor	methods	that
use	Java	data	types	to	get	and	set	the	content	of	Field	objects.	Most	of	these
methods	have	names	of	the	form	getDataType	or	setDataType.

There	are	two	noteworthy	exceptions:	One	of	the	getObject	methods	returns	an
object	coerced	into	a	specified	class.	There	is	no	getNull	property;	instead,	there
is	an	isNull	property	that	returns	a	Boolean	value	indicating	whether	the	field	is
null.

public	native	boolean	getBoolean();

public	void	setBoolean(boolean	v)

public	native	byte	getByte();

public	void	setByte(byte	v)

public	native	byte[]	getBytes();

public	void	setBytes(byte[]	v)

public	native	double	getDouble();

public	void	setDouble(double	v)

public	native	float	getFloat();

public	void	setFloat(float	v)

public	native	int	getInt();

public	void	setInt(int	v)

public	native	long	getLong();

public	void	setLong(long	v)

public	native	short	getShort();

public	void	setShort(short	v)

public	native	String	getString();

public	void	setString(String	v)

public	native	boolean	isNull();

public	void	setNull()

public	Object	getObject()

public	Object	getObject(Class	c)

public	void	setObject(Object	value)

ObjectProxy	(ADO/WFC	Syntax)

An	ObjectProxy	object	represents	a	server,	and	is	returned	by	the	createObject
method	of	the	DataSpace	object.	The	ObjectProxy	class	has	one	method,	call,
which	can	invoke	a	method	on	the	server	and	return	an	object	resulting	from	that
invocation.

package	com.ms.wfc.data

Methods

Call	Method	(ADO/WFC	Syntax)

Invokes	a	method	on	the	server	represented	by	the	ObjectProxy.	Optionally,
method	arguments	may	be	passed	as	an	array	of	objects.

Syntax

public	Object	ObjectProxy.call(String	method)

public	Object	ObjectProxy.call(String	method,	Object[]	args)

Returns

Object			An	object	resulting	from	invoking	the	method.

Parameters

ObjectProxy			An	ObjectProxy	object	that	represents	the	server.

method			A	String,	containing	the	name	of	the	method	to	invoke	on	the	server.

args			Optional.	An	array	of	objects	that	are	arguments	to	the	method	on	the
server.	Java	data	types	are	automatically	converted	to	data	types	suitable	for	use
on	the	server.

Parameter	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Constructor

public	Parameter()

public	Parameter(String	name)

public	Parameter(String	name,	int	type)

public	Parameter(String	name,	int	type,	int	dir)

public	Parameter(String	name,	int	type,	int	dir,	int	size)

public	Parameter(String	name,	int	type,	int	dir,	int	size,	Object	value

Methods

public	void	appendChunk(byte[]	bytes)

public	void	appendChunk(char[]	chars)

public	void	appendChunk(String	chars)

Properties

public	int	getAttributes()

public	void	setAttributes(int	attr)

public	int	getDirection()

public	void	setDirection(int	dir)

public	String	getName()

public	void	setName(String	name)

public	int	getNumericScale()

public	void	setNumericScale(int	scale)

public	int	getPrecision()

public	void	setPrecision(int	prec)

public	int	getSize()

public	void	setSize(int	size)

public	int	getType()

public	void	setType(int	type)

public	com.ms.com.Variant	getValue()

public	void	setValue(Object	v)

public	AdoProperties	getProperties()

Parameter	Accessor	Methods

The	Value	property	of	a	Parameter	object	gets	or	sets	the	content	of	that	object.
The	content	is	represented	as	a	VARIANT,	a	type	of	object	that	can	be	assigned	a
value	and	any	of	several	data	types.

ADO/WFC	implements	the	Value	property	with	the	getValue	method,	which
returns	a	VARIANT	object;	and	the	setValue	method,	which	takes	a	VARIANT
as	an	argument.	VARIANTs	are	highly	efficient	in	certain	languages,	such	as
Microsoft	Visual	Basic.	However,	you	can	attain	better	performance	in	Microsoft
Visual	J++	by	using	native	Java	data	types.

In	addition	to	the	Value	property,	ADO/WFC	provides	accessor	methods	that
use	Java	data	types	to	get	and	set	the	content	of	Parameter	objects.	Most	of
these	methods	have	names	of	the	form	getDataType	or	setDataType.

There	is	one	noteworthy	exception:	There	is	no	getNull	property;	instead,	there
is	an	isNull	property	that	returns	a	Boolean	value	indicating	whether	the	field	is
null.

public	boolean	getBoolean()

public	void	setBoolean(boolean	v)

public	byte	getByte()

public	void	setByte(byte	v)

public	double	getDouble()

public	void	setDouble(double	v)

public	float	getFloat()

public	void	setFloat(float	v)

public	int	getInt()

public	void	setInt(int	v)

public	long	getLong()

public	void	setLong(long	v)

public	short	getShort()

public	void	setShort(short	v)

public	String	getString()

public	void	setString(String	v)

public	boolean	isNull()

public	void	setNull()

Recordset	(ADO/WFC	Syntax)

package	com.ms.wfc.data

Constructors

public	Recordset()

public	Recordset(Object	r)

Methods

public	void	addNew(Object[]	fieldList,	Object[]	valueList)

public	void	addNew(Object[]	valueList)

public	void	addNew()

public	void	cancel()

public	void	cancelBatch(int	affectRecords)

public	void	cancelBatch()

public	void	cancelUpdate()

public	Object	clone()

public	Object	clone(int	lockType)

public	void	close()	

public	int	compareBookmarks(Object	bookmark1,	Object	bookmark2)

public	void	delete(int	affectRecords)

public	void	delete()

public	void	find(String	criteria)

public	void	find(String	criteria,	int	SkipRecords)

public	void	find(String	criteria,	int	SkipRecords,	int	searchDirection

public	void	find(String	criteria,	int	SkipRecords,	int	searchDirection

public	Object[][]	getRows(int	Rows,	Object	bmkStart,	Object[]	fieldList

public	void	move(int	numRecords)

public	void	move(int	numRecords,	Object	bmkStart)

public	void	moveFirst()

public	void	moveLast()

public	void	moveNext()

public	void	movePrevious()

public	Recordset	nextRecordset()

public	Recordset	nextRecordset(int[]	recordsAffected)

public	void	open()

public	void	open(Object	source)

public	void	open(Object	source,	Object	activeConnection)

public	void	open(Object	source,	Object	activeConnection,	int	cursorType

public	void	open(Object	source,	Object	activeConnection,	int	cursorType

																								int	lockType)

public	void	open(Object	source,	Object	activeConnection,	int	cursorType

																								int	lockType,	int	options)

public	void	requery()

public	void	requery(int	options)

public	void	resync()

public	void	resync(int	affectRecords,	int	resyncValues)

public	void	save(String	fileName)

public	void	save(String	fileName,	int	persistFormat)

public	boolean	supports(int	cursorOptions)

public	void	update()

public	void	update(Object[]	valueList)

public	void	update(Object[]	fieldList,	Object[]	valueList)

public	void	updateBatch()

public	void	updateBatch(int	affectRecords)

Properties

public	int	getAbsolutePage()

public	void	setAbsolutePage(int	page)

public	int	getAbsolutePosition()

public	void	setAbsolutePosition(int	pos)

public	Command	getActiveCommand()

public	Connection	getActiveConnection()

public	void	setActiveConnection(String	conn)

public	void	setActiveConnection(com.ms.wfc.data.Connection	c)

public	boolean	getBOF()

public	boolean	getEOF()

public	Object	getBookmark()

public	void	setBookmark(Object	bmk)

public	int	getCacheSize()

public	void	setCacheSize(int	size)

public	int	getCursorLocation()

public	void	setCursorLocation(int	cursorLoc)

public	int	getCursorType()

public	void	setCursorType(int	cursorType)

public	String	getDataMember()

public	void	setDataMember(String	pbstrDataMember)

public	Iunknown	getDataSource()

public	void	setDataSource(IUnknown	dataSource)

public	int	getEditMode()

public	Object	getFilter()

public	void	setFilter(Object	filter)

public	int	getLockType()

public	void	setLockType(int	lockType)

public	int	getMarshalOptions()

public	void	setMarshalOptions(int	options)

public	int	getMaxRecords()

public	void	setMaxRecords(int	maxRecords)

public	int	getPageCount()

public	int	getPageSize()

public	void	setPageSize(int	pageSize)

public	int	getRecordCount()

public	String	getSort()

public	void	setSort(String	criteria)

public	String	getSource()

public	void	setSource(String	query)

public	void	setSource(com.ms.wfc.data.Command	command)

public	int	getState()

public	int	getStatus()

public	boolean	getStayInSync()

public	void	setStayInSync(boolean	pbStayInSync)

public	com.ms.wfc.data.Field	getField(int	n)

public	com.ms.wfc.data.Field	getField(String	n)

public	com.ms.wfc.data.Fields	getFields()

public	AdoProperties	getProperties()

Events

For	more	information	about	ADO/WFC	events,	see	ADO	Events	in	ADO/WFC.

public	void	addOnEndOfRecordset(RecordsetEventHandler	handler)

public	void	removeOnEndOfRecordset(RecordsetEventHandler	handler)

public	void	addOnFetchComplete(RecordsetEventHandler	handler)

public	void	removeOnFetchComplete(RecordsetEventHandler	handler)

public	void	addOnFetchProgress(RecordsetEventHandler	handler)

public	void	removeOnFetchProgress(RecordsetEventHandler	handler)

public	void	addOnFieldChangeComplete(RecordsetEventHandler	handler)

public	void	removeOnFieldChangeComplete(RecordsetEventHandler	handler

public	void	addOnMoveComplete(RecordsetEventHandler	handler)

public	void	removeOnMoveComplete(RecordsetEventHandler	handler)

public	void	addOnRecordChangeComplete(RecordsetEventHandler	handler)

public	void	removeOnRecordChangeComplete(RecordsetEventHandler	handler

public	void	addOnRecordsetChangeComplete(RecordsetEventHandler	handler

public	void	removeOnRecordsetChangeComplete(RecordsetEventHandler	handler

public	void	addOnWillChangeField(RecordsetEventHandler	handler)

public	void	removeOnWillChangeField(RecordsetEventHandler	handler)

public	void	addOnWillChangeRecord(RecordsetEventHandler	handler)

public	void	removeOnWillChangeRecord(RecordsetEventHandler	handler)

public	void	addOnWillChangeRecordset(RecordsetEventHandler	handler)

public	void	removeOnWillChangeRecordset(RecordsetEventHandler	handler

public	void	addOnWillMove(RecordsetEventHandler	handler)

public	void	removeOnWillMove(RecordsetEventHandler	handler)

ADO	Samples

The	MDAC	SDK	contains	several	sample	applications	that	demonstrate	usage	of
ADO	and	RDS	code.	For	more	information	about	these	samples,	see	ADO
Sample	Applications.

The	ADO	documentation	also	contains	code	examples	in	multiple	languages,
which	are	included	as	topics	within	this	online	help.	For	more	information	about
these	examples,	see	ADO	Code	Examples.

Many	other	sample	code	resources	are	available.	Visual	Studio	documentation
and	the	MSDN	Library	contain	a	variety	of	sample	applications	and
documentation	that	can	help	you	learn	about	ADO	and	RDS.

Visual	Studio	Samples

Visual	Studio	Solutions	Center	Web	site
Island	Hopper	News	Sample

Visual	Basic	Samples

Visual	C++	Samples

Visual	Interdev	Samples

Visual	J++	Samples

Visual	Studio	Documentation

Visual	Studio:	Data	Access	and	Security	Strategies

http://msdn.microsoft.com/vstudio/downloads/solutions.asp
http://msdn.microsoft.com/library/devprods/vs6/vstudio/vssample/veovrislandhoppernewssample.htm
http://msdn.microsoft.com/library/devprods/vs6/vbasic/VBRef98/vbsamppage.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/samplehm.htm
http://msdn.microsoft.com/library/devprods/vs6/vinterdev/vidref/visamppage.htm
http://msdn.microsoft.com/library/devprods/vs6/visualj/vj98help/vjhowsamples.htm
http://msdn.microsoft.com/library/devprods/vs6/vstudio/vsentpro/veovrdataaccessstrategies.htm

Visual	Basic:	Data	Access	Guide

Visual	Interdev:	Integrating	Databases

Visual	J++:	Accessing	Data

http://msdn.microsoft.com/library/devprods/vs6/vbasic/vbcon98/vbconDataAccessGuide.htm
http://msdn.microsoft.com/library/devprods/vs6/vinterdev/vidref/viovrintegratingdatabases.htm
http://msdn.microsoft.com/library/devprods/vs6/visualj/vjcore/vjhowaccessingdata.htm

Sample	Applications

The	following	sections	describe	the	sample	applications	included	with	MDAC
for	ADO	and	RDS.	These	samples	are	intended	to	help	customers	learn	how	to
use	ADO	and	RDS,	but	are	not	intended	to	be	deployed	on	production	servers.

Note			Companies,	names,	and	data	used	in	samples	are	fictitious	unless
otherwise	noted.

ADO	includes	the	following	sample	applications.	From	the	Microsoft	Platform
SDK,	they	are	installed	to	c:\Platform	SDK\Samples\DataAccess\ado.

Sample	application Description

ADOASP Demonstrates	how	to	use	ADO	in	Microsoft	Active
Server	Pages.

ADOISAPI
Demonstrates	how	to	use	ADO	from	C/C++	ISAPI
extensions	with	Microsoft	Internet	Information
Services.

ADOJAVA Demonstrates	how	to	use	ADO	from	Java	and	Java
integrated	with	COM.

ADOVBS

Demonstrates	how	to	use	ADO	from	Visual	Basic,
Scripting	Edition	(VBScript)	and	HTML.	Also
demonstrates	how	ADO,	VBScript,	and	HTML	on
the	client	can	be	used	to	build	a	two-	or	three-tier
Web	application	for	an	intranet.

MSDAIPP
Demonstrates	how	to	use	ADO	Record	and	Stream
objects	with	semi-structured	data	using	the	Microsoft
OLE	DB	Provider	for	Internet	Publishing.

XML Demonstrates	how	to	save	a	Recordset	in	XML
format	to	the	IIS	Response	object	to	transfer	data	in
an	XML	stream	to	an	Internet	client.

RDS	includes	the	following	sample	applications	that	demonstrate	how	to	use
RDS	to	build	intranet	and	Internet	applications.	They	are	installed	to	c:\Platform
SDK\Samples\DataAccess\rds.	Before	running	the	applications,	you	should	set
up	an	Internet	Information	Services	virtual	root,	with	script	and	execute
permissions	called	RDS,	that	points	to	the	RDS	samples	installation	directory.

Sample	application Description
RDSTest Demonstrates	a	simple	use	of	RDS.

Address	Book Demonstrates	a	practical	use	of	RDS	in	a	simple
company	directory	application.

Handler Demonstrates	custom	DataFactory	handlers	in	Visual
Basic	and	Visual	C++.

Note			When	installing	the	RDS	sample	applications,	a	SQL	Server	account,
adcdemo,	is	created	with	a	password	of	adcdemo.	A	"login	failed"	message	may
appear	when	running	the	sample	applications;	if	this	occurs,	just	reset	the
username	and	password	to	the	test	account	information.

ADO	ASP	Sample

ADOASP	demonstrates	how	to	use	ADO	in	Microsoft	Active	Server	Pages.	It	is
installed	to	c:\Platform	SDK\Samples\DataAccess\ado\ASP.

In	this	sample,	information	about	books,	such	as	titles	and	pricing,	is	obtained
from	the	Pubs	sample	database.	ADOASP	allows	Web	clients	to	browse	through
the	titles	and	calculate	the	total	price	of	their	selections.

The	sample	also	requires	that	the	Pubs	sample	database	be	installed	on
Microsoft	SQL	Server.

To	run	ADOASP

1.	 Copy	the	.asp,	.jpg,	and	.gif	files	of	this	sample	to	some	directory	on	your
Web	server	computer	with	read	and	execute	access.

2.	 Open	cmpsales.asp	in	your	Web	browser	with	the	address:	http://computer
name/virtual	directory/cmpsales.asp,	where	computer	name	and	virtual
directory	are	your	computer	name	and	the	virtual	directory	pointing	to	the
location	of	the	sample	files	copied	in	Step	1.

ADO	ISAPI	Sample

ADOISAPI	demonstrates	how	to	use	ADO	from	C/C++	ISAPI	extensions	with
Microsoft	Internet	Information	Services.	It	is	installed	to	c:\Platform
SDK\Samples\DataAccess\ado\isapi.

This	sample	establishes	a	connection	to	a	database,	retrieves	data,	formats	the
data	as	an	HTML	table,	and	returns	the	data	back	to	the	client's	browser.	The
connection	to	the	database	in	this	sample	is	cached	for	better	performance.

To	run	ADOISAPI

1.	 Copy	isapi.dll	to	some	directory	on	the	Web	server	computer	with	execute
access.

2.	 Copy	adoisapi.htm	to	the	same	directory	on	the	Web	server	computer	with
read	access.

3.	 Set	up	an	ODBC	system	DSN	on	the	Web	server	computer	called
OLE_DB_NWind_Jet.	Click	Start,	point	to	Programs,	and	point	to
Administrative	Tools.	Choose	Data	Sources	(ODBC).

4.	 On	the	System	DSN	tab,	click	Add.	Select	"Microsoft	Access	Driver
(.mdb)"	from	the	list	of	available	drivers.	Click	Finish.

5.	 In	the	ODBC	Microsoft	Access	Setup	dialog	box,	enter
"OLE_DB_NWind_Jet"	in	the	Data	Source	Name	box.	In	the	Description
box,	enter	"MDAC	SDK	Sample	Data."

6.	 Under	Database,	click	Select	and	locate	<drive>:\Platform

SDK\Samples\DataAccess\ado\xml.	Select	Nwind.mdb.	Click	OK.

7.	 In	the	ODBC	Microsoft	Access	Setup	dialog	box,	click	OK.	Click	OK
again	in	the	ODBC	Data	Source	Administrator	dialog	box.

8.	 An	installation	to	the	C:	drive	is	assumed	in	the	import	path	for	msado15.dll
on	line	14.	If	necessary,	modify	this	with	the	device	to	which	ADO	is
installed	(for	example,	"D:\...").

Note			When	linking	this	sample	with	Visual	C++	6.0,	you	may	receive
linker	warning	LNK4089.	This	is	simply	because	ADOISAPI	defaults	to
"Maximize	Speed"	optimizations	under	Visual	C++	6.0.	These	warnings
can	be	ignored.

ADO	Java	Sample

ADOJAVA	demonstrates	how	to	use	ADO	from	Java	and	Java/COM	integration.
It	is	installed	to	c:\Platform	SDK\Samples\DataAccess\ado\Java.

This	sample	can	be	executed	as	an	applet	in	a	browser	or	as	a	stand-alone
application.	It	opens	an	ADO	Recordset,	displays	the	current	record,	and	allows
the	user	to	click	buttons	to	move	through	the	data.	It	also	shows	the	usage	of
command	line	parameters.

To	run	ADOJAVA

1.	 This	sample	uses	an	ODBC	DSN	called	OLE_DB_Nwind_Jet	with	a	user
id	of	Admin	and	a	blank	password.	Set	up	an	ODBC	system	DSN	on	the
Web	Server	computer	called	OLE_DB_NWind_Jet.	Click	Start,	point	to
Programs,	and	point	to	Administrative	Tools.	Choose	Data	Sources
(ODBC).

2.	 On	the	System	DSN	tab,	click	Add.	Select	"Microsoft	Access	Driver
(.mdb)"	from	the	list	of	available	drivers.	Click	Finish.

3.	 In	the	ODBC	Microsoft	Access	Setup	dialog	box,	enter
"OLE_DB_NWind_Jet"	in	the	Data	Source	Name	box.	In	the	Description
box,	enter	"MDAC	SDK	Sample	Data."

4.	 Under	Database,	click	Select	and	locate	<drive>:\Platform
SDK\Samples\DataAccess\ado\xml.	Select	Nwind.mdb.	Click	OK.

5.	 In	the	ODBC	Microsoft	Access	Setup	dialog	box,	click	OK.	Click	OK
again	in	the	ODBC	Data	Source	Administrator	dialog	box.

6.	 Open	the	project	file,	Simpleado.vjp,	in	Microsoft	Visual	J++	6.0	or	later.

7.	 From	the	Debug	menu,	choose	Start.

8.	 If	you	want	to	run	in	a	different	mode,	from	the	Project	menu,	choose
simpleado	Properties.

9.	 On	the	Launch	tab,	click	the	box	When	project	runs,	load	and	select	one
of	the	three	modes.

10.	 Click	OK	and	run	as	in	Step	3	above.

ADO	VBScript	Sample

ADOVBS	demonstrates	how	to	use	ADO	from	Visual	Basic,	Scripting	Edition
and	HTML.	Additionally,	it	demonstrates	how	ADO,	VBScript,	and	HTML	on
the	client	can	be	used	to	build	a	two	or	three-tier	Web	application	for	an	intranet.
Lastly,	it	demonstrates	how	to	create	a	three-tier	connection	using	ADO	and	the
Microsoft	OLE	DB	Remoting	Provider.	It	is	installed	to	c:\Program
Files\Platform	SDK\Samples\DataAccess\ado\VBS.

In	this	sample,	some	of	the	VBScript	and	HTML	code	is	generated	at	run-time	in
order	to	generate	fields	based	on	the	schema	information	in	the	Recordset.

There	are	two	variations	of	this	sample	in	this	directory.	The	first,
ADOVBS.HTM,	uses	only	client-side	scripting	and	requires	that	your	client
have	ADO	installed	as	well	as	a	System	DSN	called	"OLE_DB_NWind_Jet",
which	points	to	the	MDAC	SDK	Sample	.mdb	(Access	database).	You	can	find
this	database	in	c:\Platform	SDK\Samples\DataAccess\ado\XML\Nwind.mdb.
This	sample	shows	direct	connection	to	the	data	source	from	the	Web	client.

Note			This	sample	requires	Microsoft	Internet	Explorer	4.01	Service	Pack	1	or
later,	and	you	will	also	need	to	set	your	security	settings	to	low	for	the	Web
server	you're	connecting	to.

The	second	variation	of	this	sample,	Adovbs.asp,	uses	both	IIS	scripting	and
client-side	scripting.	It	assumes	that	you're	running	the	sample	from	a	client	with
Internet	Explorer	4.0	or	later.

To	run	ADOVBS

1.	 Copy	the	files	in	c:\Platform	SDK\Samples\DataAccess\ado\vbs	into	a
virtual	directory	on	your	Web	server	computer	that	has	script	and	execute

permissions.

2.	 Open	the	Adovbs.asp	page	in	Internet	Explorer	using	the	address,	http://
computer	name/virtual	directory/ADOVBS.ASP	where	computer	name	and
virtual	directory	are	your	computer	name	and	the	virtual	directory	that
points	to	the	location	of	the	sample	files	copied	in	Step	1.

ADO	Internet	Publishing	Sample

MSDAIPP	demonstrates	how	to	use	ADO	Record	and	Stream	objects	with	semi-
structured	data	using	the	Microsoft	OLE	DB	Provider	for	Internet	Publishing.	It
is	installed	to	c:\Platform	SDK\Samples\DataAccess\ado\MSDAIPP.

To	run	MSDAIPP

1.	 Open	the	project	Msdaipp.vbp	in	Microsoft	Visual	Basic.

2.	 Modify	the	line	in	the	Form_Load	sub-procedure	of	form1.frm	that	refers	to
your	server.	Replace	the	value	of	the	string	"http://MyServer/DAVfs/"
with	the	name	of	your	Web	server	and	the	path	to	a	file	store.	Your	Web
server	must	support	either	the	FrontPage	Web	Extender	Client	(WEC)	or
Web	Distributed	Authoring	and	Versioning	(WebDAV)	protocol	extensions.

3.	 From	the	Run	menu,	choose	Start	with	Full	Compile.

ADO	XML	Sample

The	XML	sample	demonstrates	how	to	save	a	Recordset	in	XML	format	to	the
IIS	Response	object	to	transfer	data	in	an	XML	stream	to	an	Internet	client.	It	is
installed	to	c:\Platform	SDK\Samples\DataAccess\ado\XML.	In	order	to	write
the	XML	stream	directly	to	the	ASP	Response	object,	the	sample	requires	that
Microsoft	Internet	Information	Services	5.0	(IIS)	or	later	be	installed.

To	run	the	XML	sample

1.	 Using	Internet	Services	Manager,	create	a	virtual	directory	on	IIS	that
points	to	the	XML	directory	containing	the	sample	files.	Give	the	virtual
directory	script	permissions.

2.	 Open	the	address	http://servername/XML/default.htm	in	Internet	Explorer,
where	servername	is	the	name	of	your	Web	server	computer.

RDS	Test	Sample

RDSTEST	is	a	simple	.asp	file	that	demonstrates	RDS.	It	is	installed	to
c:\Platform	SDK\Samples\DataAccess\rds\RDSTest.

Note			This	sample	requires	Microsoft	Internet	Explorer	4.01	Service	Pack	1	or
later,	and	you	will	also	need	to	set	your	security	settings	to	low	for	the	Web
server	you're	connecting	to.

RDSTEST	is	provided	in	.asp	format	(your	host	server	name	is	supplied
automatically),	but	you	can	easily	modify	it	to	run	as	an	.htm	page.

To	modify	this	sample	to	run	in	.htm	format

1.	 Open	the	.asp	file	in	a	text	editor	such	as	Notepad.

2.	 Replace	the	string	<%=Request.ServerVariables("SERVER_NAME")%>	with
the	name	of	your	Web	server	computer	name.

RDS	Address	Book	Sample

The	Address	Book	sample	is	a	simple	company	directory	application.	It	is
installed	to	c:\Platform	SDK\Samples\DataAccess\rds\AddrBook.

For	detailed	information	about	this	application,	see	the	Address	Book	Sample
Application.

Note			This	sample	requires	Microsoft	Internet	Explorer	4.01	Service	Pack	1	or
later,	and	you	will	also	need	to	set	your	security	settings	to	low	for	the	Web
server	you're	connecting	to.

This	sample	is	provided	in	.asp	format	(your	host	server	name	is	supplied
automatically),	but	you	can	easily	modify	it	to	run	as	an	.htm	page.

To	modify	this	sample	to	run	in	.htm	format

1.	 Open	the	.asp	file	in	a	text	editor	such	as	Notepad.

2.	 Replace	the	string	<%=Request.ServerVariables("SERVER_NAME")%>	with
the	name	of	your	Web	server	computer	name.

RDS	Handler	Sample

Handler	includes	Visual	Basic	and	Visual	C++	custom	DataFactory	handlers
you	can	modify	for	specific	applications.	It	is	installed	to	c:\Platform
SDK\Samples\DataAccess\rds\Handler.

Be	sure	to	read	the	DataFactory	Customization	topic	for	a	better	understanding
of	the	code	provided	in	the	Handler	sample.

ADO	Code	Examples

Use	the	following	code	examples	to	learn	how	to	use	the	ADO	objects,	methods,
properties,	and	events.

Note			Paste	the	entire	code	example	into	your	code	editor.	The	example	may	not
run	correctly	if	partial	examples	are	used	or	if	paragraph	formatting	is	lost.

ADO	Code	Examples	in	Microsoft	Visual	Basic
ADO	Code	Examples	in	Microsoft	Visual	Basic	Scripting	Edition

ADO	Code	Examples	in	Microsoft	Visual	C++

ADO	Code	Examples	in	Microsoft	Visual	J++

ADO	Code	Examples	in	Microsoft	Visual	Basic

Use	the	following	code	examples	to	learn	how	to	use	the	ADO	methods,
properties,	and	events	when	writing	in	Visual	Basic.

Note			Paste	the	entire	code	example,	from	Sub	to	End	Sub,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Methods

AddNew	Method	Example
Append	and	CreateParameter	Methods	Example

AppendChunk	and	GetChunk	Methods	Example

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example

Cancel	Method	Example

Clone	Method	Example

CompareBookmarks	Method	Example

ConvertToString	Method	Example

CopyRecord,	CopyTo,	and	SaveToFile	Methods	Example

CreateRecordset	Method	Example

Delete	Method	Example

DeleteRecord	and	MoveRecord	Methods	Example

Execute,	Requery,	and	Clear	Methods	Example

Find	Method	Example

GetRows	Method	Example

GetString	Method	Example

SkipLine	Method,	EOS,	and	LineSeparator	Properties	Example

Move	Method	Example

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods	Example

NextRecordset	Method	Example

Open	and	Close	Methods	Example

OpenSchema	Method	Example

Read,	ReadText,	Write,	and	WriteText	Methods	Example

Refresh	Method	Example

Resync	Method	Example

Save	and	Open	Methods	Example

Seek	Method	and	Index	Property	Example

Supports	Method	Example

Update	and	CancelUpdate	Methods	Example

UpdateBatch	and	CancelBatch	Methods	Example

Properties

AbsolutePage,	PageCount,	and	PageSize	Properties	Example

AbsolutePosition	and	CursorLocation	Properties	Example

ActiveCommand	Property	Example

ActiveConnection,	CommandText,	CommandTimeout,	CommandType,
Size,	and	Direction	Properties	Example

ActualSize	and	DefinedSize	Properties	Example

Attributes	and	Name	Properties	Example

BOF,	EOF,	and	Bookmark	Properties	Example

CacheSize	Property	Example

ConnectionString,	ConnectionTimeout,	and	State	Properties	Example

Count	Property	Example

CursorType,	LockType,	and	EditMode	Properties	Example

Description,	NativeError,	Number,	Source,	and	SQLState	Properties
Example

EOS	and	LineSeparator	Properties,	SkipLine	Method	Example

Filter	and	RecordCount	Properties	Example

Handler	Property	Example

InternetTimeout	Property	Example

IsolationLevel	and	Mode	Properties	Example

Item	Property	Example

MarshalOptions	Property	Example

MaxRecords	Property	Example

NumericScale	and	Precision	Properties	Example

Optimize	Property	Example

OriginalValue	and	UnderlyingValue	Properties	Example

Prepared	Property	Example

Provider	and	DefaultDatabase	Properties	Example

Sort	Property	Example

Source	Property	Example

State	Property	Example

Status	Property	Example

StayInSync	Property	Example

Type	Property	Example	(Field)

Type	Property	Example	(Property)

Value	Property	Example

Version	Property	Example

AbsolutePage,	PageCount,	and	PageSize	Properties	Example	(VB)

Public	Sub	AbsolutePageX()

				

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				Dim	intPage	As	Integer

				Dim	intPageCount	As	Integer

				Dim	intRecord	As	Integer

				'	Open	a	recordset	using	a	client	cursor

				'	for	the	employee	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				'	Use	client	cursor	to	enable	AbsolutePosition	property.

				rstEmployees.CursorLocation	=	adUseClient

				rstEmployees.Open	"employee",	strCnn,	,	,	adCmdTable

				

				'	Display	names	and	hire	dates,	five	records

				'	at	a	time.

				rstEmployees.PageSize	=	5

				intPageCount	=	rstEmployees.PageCount

				For	intPage	=	1	To	intPageCount

								rstEmployees.AbsolutePage	=	intPage

								strMessage	=	""

								For	intRecord	=	1	To	rstEmployees.PageSize

												strMessage	=	strMessage	&	_

																rstEmployees!fname	&	"	"	&	_	

																rstEmployees!lname	&	"	"	&	_	

																rstEmployees!hire_date	&	vbCr

												rstEmployees.MoveNext

												If	rstEmployees.EOF	Then	Exit	For

								Next	intRecord

								MsgBox	strMessage

				Next	intPage

				rstEmployees.Close

End	Sub

AbsolutePosition	and	CursorLocation	Properties	Example	(VB)

This	example	demonstrates	how	the	AbsolutePosition	property	can	track	the
progress	of	a	loop	that	enumerates	all	the	records	of	a	Recordset.	It	uses	the
CursorLocation	property	to	enable	the	AbsolutePosition	property	by	setting	the
cursor	to	a	client	cursor.

Public	Sub	AbsolutePositionX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				'	Open	a	recordset	for	the	Employee	table

				'	using	a	client	cursor.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				'	Use	client	cursor	to	enable	AbsolutePosition	property.

				rstEmployees.CursorLocation	=	adUseClient

				rstEmployees.Open	"employee",	strCnn,	,	,	adCmdTable

				

				'	Enumerate	Recordset.

				Do	While	Not	rstEmployees.EOF

								'	Display	current	record	information.

								strMessage	=	"Employee:	"	&	rstEmployees!lName	&	vbCr	&	_

												"(record	"	&	rstEmployees.AbsolutePosition	&	_

												"	of	"	&	rstEmployees.RecordCount	&	")"

								If	MsgBox(strMessage,	vbOKCancel)	=	vbCancel	_

												Then	Exit	Do

								rstEmployees.MoveNext

				Loop

				rstEmployees.Close

End	Sub

ActiveCommand	Property	Example	(VB)

This	example	demonstrates	the	ActiveCommand	property.

A	subroutine	is	given	a	Recordset	object	whose	ActiveCommand	property	is
used	to	display	the	command	text	and	parameter	that	created	the	Recordset.

Public	Sub	Main()

				ActiveCommandX

End	Sub

Public	Sub	ActiveCommandX()

Dim	cnn	As	New	ADODB.Connection

Dim	cmd	As	New	ADODB.Command

Dim	rst	As	New	ADODB.Recordset

Dim	strPrompt	As	String,	strName	As	String

strPrompt	=	"Enter	an	author's	name	(e.g.,	Ringer):	"

strName	=	Trim(InputBox(strPrompt,	"ActiveCommandX	Example"))

cmd.CommandText	=	"SELECT	*	FROM	Authors	WHERE	au_lname	=	?"

cmd.Parameters.Append	_

				cmd.CreateParameter("LastName",	adChar,	adParamInput,	20,	strName)

cnn.Open	"DSN=Pubs;Provider=MSDASQL;	uid=sa;	pwd=;"

cmd.ActiveConnection	=	cnn

Set	rst	=	cmd.Execute(,	,	adCmdText)

ActiveCommandXprint	rst

rst.Close

cnn.Close

End	Sub

The	ActiveCommandXprint	routine	is	given	only	a	Recordset	object,	yet	it
must	print	the	command	text	and	parameter	that	created	the	Recordset.	This	can
be	done	because	the	Recordset	object's	ActiveCommand	property	yields	the

associated	Command	object.

The	Command	object's	CommandText	property	yields	the	parameterized
command	that	created	the	Recordset.	The	Command	object's	Parameters
collection	yields	the	value	that	was	substituted	for	the	command's	parameter
placeholder	("?").

Finally,	an	error	message	or	the	author's	name	and	ID	are	printed.

Public	Sub	ActiveCommandXprint(rstp	As	ADODB.Recordset)

Dim	strName	As	String

strName	=	rstp.ActiveCommand.Parameters.Item("LastName").Value

Debug.Print	"Command	text	=	'";	rstp.ActiveCommand.CommandText;	"'"

Debug.Print	"Parameter	=	'";	strName;	"'"

If	rstp.BOF	=	True	Then

				Debug.Print	"Name	=	'";	strName;	"',	not	found."

Else

				Debug.Print	"Name	=	'";	rstp!au_fname;	"	";	rstp!au_lname;	_

												"',	author	ID	=	'";	rstp!au_id;	"'"

End	If

End	Sub

ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	Properties	Example	(VB)

This	example	uses	the	ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	properties	to	execute	a	stored	procedure.

Public	Sub	ActiveConnectionX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cmdByRoyalty	As	ADODB.Command

				Dim	prmByRoyalty	As	ADODB.Parameter

				Dim	rstByRoyalty	As	ADODB.Recordset

				Dim	rstAuthors	As	ADODB.Recordset

				Dim	intRoyalty	As	Integer

				Dim	strAuthorID	As	String

				Dim	strCnn	As	String

				'	Define	a	command	object	for	a	stored	procedure.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				Set	cmdByRoyalty	=	New	ADODB.Command

				Set	cmdByRoyalty.ActiveConnection	=	cnn1

				cmdByRoyalty.CommandText	=	"byroyalty"

				cmdByRoyalty.CommandType	=	adCmdStoredProc

				cmdByRoyalty.CommandTimeout	=	15

								

				'	Define	the	stored	procedure's	input	parameter.

				intRoyalty	=	Trim(InputBox(_

								"Enter	royalty:"))

				Set	prmByRoyalty	=	New	ADODB.Parameter

				prmByRoyalty.Type	=	adInteger

				prmByRoyalty.Size	=	3

				prmByRoyalty.Direction	=	adParamInput

				prmByRoyalty.Value	=	intRoyalty

				cmdByRoyalty.Parameters.Append	prmByRoyalty

		

				'	Create	a	recordset	by	executing	the	command.

				Set	rstByRoyalty	=	cmdByRoyalty.Execute()

								

				'	Open	the	Authors	table	to	get	author	names	for	display.

				Set	rstAuthors	=	New	ADODB.Recordset

				rstAuthors.Open	"Authors",	strCnn,	,	,	adCmdTable

				

				'	Print	current	data	in	the	recordset,	adding

				'	author	names	from	Authors	table.

				Debug.Print	"Authors	with	"	&	intRoyalty	&	_

								"	percent	royalty"

				Do	While	Not	rstByRoyalty.EOF

								strAuthorID	=	rstByRoyalty!au_id

								Debug.Print	,	rstByRoyalty!au_id	&	",	";

								rstAuthors.Filter	=	"au_id	=	'"	&	strAuthorID	&	"'"

								Debug.Print	rstAuthors!au_fname	&	"	"	&	_

												rstAuthors!au_lname

								rstByRoyalty.MoveNext

				Loop

				rstByRoyalty.Close

				rstAuthors.Close

				cnn1.Close

				

End	Sub

ActualSize	and	DefinedSize	Properties	Example	(VB)

This	example	uses	the	ActualSize	and	DefinedSize	properties	to	display	the
defined	size	and	actual	size	of	a	field.

Public	Sub	ActualSizeX()

				Dim	rstStores	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Open	a	recordset	for	the	Stores	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstStores	=	New	ADODB.Recordset

				rstStores.Open	"stores",	strCnn,	,	,	adCmdTable

				

				'	Loop	through	the	recordset	displaying	the	contents

				'	of	the	stor_name	field,	the	field's	defined	size,

				'	and	its	actual	size.

				rstStores.MoveFirst

				Do	Until	rstStores.EOF

								MsgBox	"Store	name:	"	&	rstStores!stor_name	&	_

								vbCr	&	"Defined	size:	"	&	_

								rstStores!stor_name.DefinedSize	&	_

								vbCr	&	"Actual	size:	"	&	_

								rstStores!stor_name.ActualSize	&	vbCr

								rstStores.MoveNext

				Loop

				rstStores.Close

End	Sub

AddNew	Method	Example	(VB)

This	example	uses	the	AddNew	method	to	create	a	new	record	with	the	specified
name.

Public	Sub	AddNewX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strID	As	String

				Dim	strFirstName	As	String

				Dim	strLastName	As	String

				Dim	booRecordAdded	As	Boolean

				'	Open	a	connection.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;"

				cnn1.Open	strCnn

								

				'	Open	Employee	table.

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.CursorType	=	adOpenKeyset

				rstEmployees.LockType	=	adLockOptimistic

				rstEmployees.Open	"employee",	cnn1,	,	,	adCmdTable

				'	Get	data	from	the	user.	The	employee	ID	must	be	formatted	as	

				'	first,	middle,	and	last	initial,	five	numbers,	then	M	or	F	to	

				'	signify	the	gender.	For	example,	the	employee	id	for	Bill	Sornsin

				'	would	be	"B-S55555M".

				strID	=	Trim(InputBox("Enter	employee	ID:"))

				strFirstName	=	Trim(InputBox("Enter	first	name:"))

				strLastName	=	Trim(InputBox("Enter	last	name:"))

				'	Proceed	only	if	the	user	actually	entered	something

				'	for	both	the	first	and	last	names.

				If	(strID	<>	"")	And	(strFirstName	<>	"")	_

								And	(strLastName	<>	"")	Then

								rstEmployees.AddNew

								rstEmployees!emp_id	=	strID

								rstEmployees!fname	=	strFirstName

								rstEmployees!lname	=	strLastName

								rstEmployees.Update

								booRecordAdded	=	True

								'	Show	the	newly	added	data.

								MsgBox	"New	record:	"	&	rstEmployees!emp_id	&	"	"	&	_

												rstEmployees!fname	&	"	"	&	rstEmployees!lname

				Else

								MsgBox	"Please	enter	an	employee	ID,	"	&	_

												"first	name,	and	last	name."

				End	If

								

				'	Delete	the	new	record	because	this	is	a	demonstration.

				cnn1.Execute	"DELETE	FROM	employee	WHERE	emp_id	=	'"	&	strID	&	"'"

								

				rstEmployees.Close

				cnn1.Close

End	Sub

Append	and	CreateParameter	Methods	Example	(VB)

This	example	uses	the	Append	and	CreateParameter	methods	to	execute	a	stored
procedure	with	an	input	parameter.

Public	Sub	AppendX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cmdByRoyalty	As	ADODB.Command

				Dim	prmByRoyalty	As	ADODB.Parameter

				Dim	rstByRoyalty	As	ADODB.Recordset

				Dim	rstAuthors	As	ADODB.Recordset

				Dim	intRoyalty	As	Integer

				Dim	strAuthorID	As	String

				Dim	strCnn	As	String

				'	Open	connection.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				cnn1.CursorLocation	=	adUseClient

								

				'	Open	command	object	with	one	parameter.

				Set	cmdByRoyalty	=	New	ADODB.Command

				cmdByRoyalty.CommandText	=	"byroyalty"

				cmdByRoyalty.CommandType	=	adCmdStoredProc

				

				'	Get	parameter	value	and	append	parameter.

				intRoyalty	=	Trim(InputBox("Enter	royalty:"))

				Set	prmByRoyalty	=	cmdByRoyalty.CreateParameter("percentage",	_

								adInteger,	adParamInput)

				cmdByRoyalty.Parameters.Append	prmByRoyalty

				prmByRoyalty.Value	=	intRoyalty

				'	Create	recordset	by	executing	the	command.

				Set	cmdByRoyalty.ActiveConnection	=	cnn1

				Set	rstByRoyalty	=	cmdByRoyalty.Execute

				

				'	Open	the	Authors	table	to	get	author	names	for	display.

				Set	rstAuthors	=	New	ADODB.Recordset

				rstAuthors.Open	"Authors",	cnn1,	,	,	adCmdTable

				

				'	Print	current	data	in	the	recordset,	adding

				'	author	names	from	Authors	table.

				Debug.Print	"Authors	with	"	&	intRoyalty	&	"	percent	royalty"

				Do	While	Not	rstByRoyalty.EOF

								strAuthorID	=	rstByRoyalty!au_id

								Debug.Print	"				"	&	rstByRoyalty!au_id	&	",	";

								rstAuthors.Filter	=	"au_id	=	'"	&	strAuthorID	&	"'"

								Debug.Print	rstAuthors!au_fname	&	"	"	&	rstAuthors!au_lname

								rstByRoyalty.MoveNext

				Loop

				rstByRoyalty.Close

				rstAuthors.Close

				cnn1.Close

End	Sub

AppendChunk	and	GetChunk	Methods	Example	(VB)

This	example	uses	the	AppendChunk	and	GetChunk	methods	to	fill	an	image
field	with	data	from	another	record.

Public	Sub	AppendChunkX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstPubInfo	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strPubID	As	String

				Dim	strPRInfo	As	String

				Dim	lngOffset	As	Long

				Dim	lngLogoSize	As	Long

				Dim	varLogo	As	Variant

				Dim	varChunk	As	Variant

				

				Const	conChunkSize	=	100

				'	Open	a	connection.

				Set	cnn1	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				

				'	Open	the	pub_info	table.

				Set	rstPubInfo	=	New	ADODB.Recordset

				rstPubInfo.CursorType	=	adOpenKeyset

				rstPubInfo.LockType	=	adLockOptimistic

				rstPubInfo.Open	"pub_info",	cnn1,	,	,	adCmdTable

				

				'	Prompt	for	a	logo	to	copy.

				strMsg	=	"Available	logos	are	:	"	&	vbCr	&	vbCr

				Do	While	Not	rstPubInfo.EOF

								strMsg	=	strMsg	&	rstPubInfo!pub_id	&	vbCr	&	_

												Left(rstPubInfo!pr_info,	InStr(rstPubInfo!pr_info,	",")	-	1)	&	_

												vbCr	&	vbCr

								rstPubInfo.MoveNext

				Loop

				strMsg	=	strMsg	&	"Enter	the	ID	of	a	logo	to	copy:"

				strPubID	=	InputBox(strMsg)

				

				'	Copy	the	logo	to	a	variable	in	chunks.

				rstPubInfo.Filter	=	"pub_id	=	'"	&	strPubID	&	"'"

				lngLogoSize	=	rstPubInfo!logo.ActualSize

				Do	While	lngOffset	<	lngLogoSize

								varChunk	=	rstPubInfo!logo.GetChunk(conChunkSize)

								varLogo	=	varLogo	&	varChunk

								lngOffset	=	lngOffset	+	conChunkSize

				Loop

				

				'	Get	data	from	the	user.

				strPubID	=	Trim(InputBox("Enter	a	new	pub	ID"	&	_

																												"	[must	be	>	9899	&	<	9999]:"))

				strPRInfo	=	Trim(InputBox("Enter	descriptive	text:"))

			'	Add	the	new	publisher	to	the	publishers	table	to	avoid

			'	getting	an	error	due	to	foreign	key	constraint.

			cnn1.Execute	"INSERT	publishers(pub_id,	pub_name)	VALUES('"	&	_

																		strPubID	&	"','Your	Test	Publisher')"

				

				'	Add	a	new	record,	copying	the	logo	in	chunks.

				rstPubInfo.AddNew

				rstPubInfo!pub_id	=	strPubID

				rstPubInfo!pr_info	=	strPRInfo

				lngOffset	=	0	'	Reset	offset.

				Do	While	lngOffset	<	lngLogoSize

								varChunk	=	LeftB(RightB(varLogo,	lngLogoSize	-	lngOffset),	_

												conChunkSize)

								rstPubInfo!logo.AppendChunk	varChunk

								lngOffset	=	lngOffset	+	conChunkSize

				Loop

				rstPubInfo.Update

				

					'	Show	the	newly	added	data.

				MsgBox	"New	record:	"	&	rstPubInfo!pub_id	&	vbCr	&	_

								"Description:	"	&	rstPubInfo!pr_info	&	vbCr	&	_

								"Logo	size:	"	&	rstPubInfo!logo.ActualSize

				'	Delete	new	records	because	this	is	a	demonstration.

				rstPubInfo.Requery

				cnn1.Execute	"DELETE	FROM	pub_info	"	&	_

								"WHERE	pub_id	=	'"	&	strPubID	&	"'"

			cnn1.Execute	"DELETE	FROM	publishers	"	&	_

						"WHERE	pub_id	=	'"	&	strPubID	&	"'"

				rstPubInfo.Close

				cnn1.Close				

End	Sub

Attributes	and	Name	Properties	Example	(VB)

This	example	displays	the	value	of	the	Attributes	property	for	Connection,	Field,
and	Property	objects.	It	uses	the	Name	property	to	display	the	name	of	each
Field	and	Property	object.

Public	Sub	AttributesX

				Dim	cnn1	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	fldLoop	As	ADODB.Field

				Dim	proLoop	As	ADODB.Property

				Dim	strCnn	As	String

				

				'	Open	connection	and	recordset.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	strCnn

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"employee",	cnn1,	,	,	adCmdTable

				

				'	Display	the	attributes	of	the	connection.

				Debug.Print	"Connection	attributes	=	"	&	_

								cnn1.Attributes

				'	Display	the	attributes	of	the	Employee	table's

				'	fields.

				Debug.Print	"Field	attributes:"

				For	Each	fldLoop	In	rstEmployees.Fields

								Debug.Print	"				"	&	fldLoop.Name	&	"	=	"	&	_

												fldLoop.Attributes

				Next	fldLoop

				'	Display	Fields	of	the	Employee	table	which	are	NULLABLE.

				Debug.Print	"NULLABLE	Fields:"

				For	Each	fldLoop	In	rstEmployees.Fields

								If	CBool(fldLoop.Attributes	And	adFldIsNullable)	Then

												Debug.Print	"			"	&	fldLoop.Name

								End	If

				Next	fldLoop

				'	Display	the	attributes	of	the	Employee	table's

				'	properties.

				Debug.Print	"Property	attributes:"

				For	Each	proLoop	In	rstEmployees.Properties

								Debug.Print	"				"	&	proLoop.Name	&	"	=	"	&	_

												proLoop.Attributes

				Next	proLoop

				rstEmployees.Close

				cnn1.Close

End	Sub

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example
(VB)

This	example	changes	the	book	type	of	all	psychology	books	in	the	Titles	table
of	the	database.	After	the	BeginTrans	method	starts	a	transaction	that	isolates	all
the	changes	made	to	the	Titles	table,	the	CommitTrans	method	saves	the
changes.	You	can	use	the	RollbackTrans	method	to	undo	changes	that	you	saved
using	the	Update	method.

Public	Sub	BeginTransX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstTitles	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strTitle	As	String

				Dim	strMessage	As	String

				'	Open	connection.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	strCnn

				'	Open	Titles	table.

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.CursorType	=	adOpenDynamic

				rstTitles.LockType	=	adLockPessimistic

				rstTitles.Open	"titles",	cnn1,	,	,	adCmdTable

				

				rstTitles.MoveFirst

				cnn1.BeginTrans

				'	Loop	through	recordset	and	ask	user	if	she	wants	

				'	to	change	the	type	for	a	specified	title.

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"psychology"	Then

												strTitle	=	rstTitles!Title

												strMessage	=	"Title:	"	&	strTitle	&	vbCr	&	_

												"Change	type	to	self	help?"

												'	Change	the	title	for	the	specified

												'	employee.

												If	MsgBox(strMessage,	vbYesNo)	=	vbYes	Then

																rstTitles!Type	=	"self_help"

																rstTitles.Update

												End	If

								End	If

												rstTitles.MoveNext

				Loop

				'	Ask	if	the	user	wants	to	commit	to	all	the	

				'	changes	made	above.

				If	MsgBox("Save	all	changes?",	vbYesNo)	=	vbYes	Then

								cnn1.CommitTrans

				Else

								cnn1.RollbackTrans

				End	If

				'	Print	current	data	in	recordset.

				rstTitles.Requery

				rstTitles.MoveFirst

				Do	While	Not	rstTitles.EOF

								Debug.Print	rstTitles!Title	&	"	-	"	&	rstTitles!Type

								rstTitles.MoveNext

				Loop

				'	Restore	original	data	because	this

				'	is	a	demonstration.

				rstTitles.MoveFirst

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"self_help"	Then

												rstTitles!Type	=	"psychology"

												rstTitles.Update

								End	If

								rstTitles.MoveNext

				Loop

				rstTitles.Close

				cnn1.Close

End	Sub

BOF,	EOF,	and	Bookmark	Properties	Example	(VB)

This	example	uses	the	BOF	and	EOF	properties	to	display	a	message	if	a	user
tries	to	move	past	the	first	or	last	record	of	a	Recordset.	It	uses	the	Bookmark
property	to	let	the	user	flag	a	record	in	a	Recordset	and	return	to	it	later.

Public	Sub	BOFX()

				Dim	rstPublishers	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				Dim	intCommand	As	Integer

				Dim	varBookmark	As	Variant

				'	Open	recordset	with	data	from	Publishers	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstPublishers	=	New	ADODB.Recordset

				rstPublishers.CursorType	=	adOpenStatic

				'	Use	client	cursor	to	enable	AbsolutePosition	property.

				rstPublishers.CursorLocation	=	adUseClient

				rstPublishers.Open	"SELECT	pub_id,	pub_name	FROM	publishers	"	&	_

								"ORDER	BY	pub_name",	strCnn,	,	,	adCmdText

				rstPublishers.MoveFirst

				Do	While	True

								'	Display	information	about	current	record

								'	and	get	user	input.

								strMessage	=	"Publisher:	"	&	rstPublishers!pub_name	&	_

												vbCr	&	"(record	"	&	rstPublishers.AbsolutePosition	&	_

												"	of	"	&	rstPublishers.RecordCount	&	")"	&	vbCr	&	vbCr	&	_

												"Enter	command:"	&	vbCr	&	_

												"[1	-	next	/	2	-	previous	/"	&	vbCr	&	_

												"3	-	set	bookmark	/	4	-	go	to	bookmark]"

								intCommand	=	Val(InputBox(strMessage))

								Select	Case	intCommand

												'	Move	forward	or	backward,	trapping	for	BOF

												'	or	EOF.

												Case	1

																rstPublishers.MoveNext

																If	rstPublishers.EOF	Then

																				MsgBox	"Moving	past	the	last	record."	&	_

																								vbCr	&	"Try	again."

																				rstPublishers.MoveLast

																End	If

												Case	2

																rstPublishers.MovePrevious

																If	rstPublishers.BOF	Then

																				MsgBox	"Moving	past	the	first	record."	&	_

																								vbCr	&	"Try	again."

																				rstPublishers.MoveFirst

																End	If

												'	Store	the	bookmark	of	the	current	record.

												Case	3

																varBookmark	=	rstPublishers.Bookmark

												'	Go	to	the	record	indicated	by	the	stored

												'	bookmark.

												Case	4

																If	IsEmpty(varBookmark)	Then

																				MsgBox	"No	Bookmark	set!"

																Else

																				rstPublishers.Bookmark	=	varBookmark

																End	If

												Case	Else

																Exit	Do

								End	Select

				Loop

				rstPublishers.Close

End	Sub

This	example	uses	the	Bookmark	and	Filter	properties	to	create	a	limited	view
of	the	Recordset.	Only	records	referenced	by	the	array	of	bookmarks	are
accessible.

Public	Sub	BOFX2()

Dim	rs	As	New	ADODB.Recordset

Dim	bmk(10)

rs.CursorLocation	=	adUseClient

rs.ActiveConnection	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;"	

rs.Open	"select	*	from	Authors",	,	adOpenStatic,	adLockBatchOptimistic

Debug.Print	"Number	of	records	before	filtering:	",	rs.RecordCount

ii	=	0

While	rs.EOF	<>	True	And	ii	<	11

				bmk(ii)	=	rs.Bookmark

				ii	=	ii	+	1

				rs.Move	2

Wend

rs.Filter	=	bmk

Debug.Print	"Number	of	records	after	filtering:	",	rs.RecordCount

rs.MoveFirst

While	rs.EOF	<>	True

				Debug.Print	rs.AbsolutePosition,	rs("au_lname")

				rs.MoveNext

Wend

				

End	Sub

CacheSize	Property	Example	(VB)

This	example	uses	the	CacheSize	property	to	show	the	difference	in	performance
for	an	operation	performed	with	and	without	a	30-record	cache.

Public	Sub	CacheSizeX()

				Dim	rstRoySched	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				Dim	sngNoCache	As	Single

				Dim	sngCache	As	Single

				Dim	intLoop	As	Integer

				Dim	strTemp	As	String

				'	Open	the	RoySched	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstRoySched	=	New	ADODB.Recordset

				rstRoySched.Open	"roysched",	strCnn,	,	,	adCmdTable

				'	Enumerate	the	Recordset	object	twice	and	record

				'	the	elapsed	time.

				sngStart	=	Timer

				For	intLoop	=	1	To	2

								rstRoySched.MoveFirst

								Do	While	Not	rstRoySched.EOF

												'	Execute	a	simple	operation	for	the

												'	performance	test.

												strTemp	=	rstRoySched!title_id

												rstRoySched.MoveNext

								Loop

				Next	intLoop

				sngEnd	=	Timer

				sngNoCache	=	sngEnd	-	sngStart

				'	Cache	records	in	groups	of	30	records.

				rstRoySched.MoveFirst

				rstRoySched.CacheSize	=	30

				sngStart	=	Timer

				'	Enumerate	the	Recordset	object	twice	and	record

				'	the	elapsed	time.

				For	intLoop	=	1	To	2

								rstRoySched.MoveFirst

								Do	While	Not	rstRoySched.EOF

												'	Execute	a	simple	operation	for	the

												'	performance	test.

												strTemp	=	rstRoySched!title_id

												rstRoySched.MoveNext

								Loop

				Next	intLoop

				sngEnd	=	Timer

				sngCache	=	sngEnd	-	sngStart

				'	Display	performance	results.

				MsgBox	"Caching	Performance	Results:"	&	vbCr	&	_

								"				No	cache:	"	&	Format(sngNoCache,	_

								"##0.000")	&	"	seconds"	&	vbCr	&	_

								"				30-record	cache:	"	&	Format(sngCache,	_

								"##0.000")	&	"	seconds"

				rstRoySched.Close

End	Sub

Cancel	Method	Example	(VB)

This	example	uses	the	Cancel	method	to	cancel	a	command	executing	on	a
Connection	object	if	the	connection	is	busy.

Public	Sub	CancelX()

				Dim	cnn1	As	ADODB.Connection

				Dim	strCnn	As	String

				Dim	strCmdChange	As	String

				Dim	strCmdRestore	As	String

				Dim	booChanged	As	Boolean

				

				'	Open	a	connection.

				Set	cnn1	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				

				'	Define	command	strings.

				strCmdChange	=	"UPDATE	titles	SET	type	=	'self_help'	"	&	_

								"WHERE	type	=	'psychology'"

				strCmdRestore	=	"UPDATE	titles	SET	type	=	'psychology'	"	&	_

								"WHERE	type	=	'self_help'"

				

				'	Begin	a	transaction,	then	execute	a	command	asynchronously.

				cnn1.BeginTrans

				cnn1.Execute	strCmdChange,	,	adAsyncExecute

				

				'	do	something	else	for	a	little	while	–	this	could	be	changed

								For	i	=	1	To	10

												i	=	i	+	i

												Debug.Print	i

								Next	i

				'	If	the	command	has	NOT	completed,	cancel	the	execute

				'	and	roll	back	the	transaction.	Otherwise,	commit	the

				'	transaction.

				If	CBool(cnn1.State	And	adStateExecuting)	Then

								cnn1.Cancel

								cnn1.RollbackTrans

								booChanged	=	False

								MsgBox	"Update	canceled."

				Else

								cnn1.CommitTrans

								booChanged	=	True

								MsgBox	"Update	complete."

				End	If

				

				'	If	the	change	was	made,	restore	the	data

				'	because	this	is	a	demonstration.

				If	booChanged	Then

								cnn1.Execute	strCmdRestore

								MsgBox	"Data	restored."

				End	If

								

				cnn1.Close

				

End	Sub

Clone	Method	Example	(VB)

This	example	uses	the	Clone	method	to	create	copies	of	a	Recordset	and	then
lets	the	user	position	the	record	pointer	of	each	copy	independently.

Public	Sub	CloneX()

				Dim	arstStores(1	To	3)	As	ADODB.Recordset

				Dim	intLoop	As	Integer

				Dim	strSQL	As	String

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				Dim	strFind	As	String

				'	Assign	SQL	statement	and	connection	string	to	variables.

				strSQL	=	"SELECT	stor_name	FROM	Stores	"	&	_

								"ORDER	BY	stor_name"

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				'	Open	recordset	as	a	static	cursor	type	recordset.

				Set	arstStores(1)	=	New	ADODB.Recordset

				arstStores(1).CursorType	=	adOpenStatic

				arstStores(1).LockType	=	adLockBatchOptimistic

				arstStores(1).Open	strSQL,	strCnn,	,	,	adCmdText

				'	Create	two	clones	of	the	original	Recordset.

				Set	arstStores(2)	=	arstStores(1).Clone

				Set	arstStores(3)	=	arstStores(1).Clone

				Do	While	True

								'	Loop	through	the	array	so	that	on	each	pass,	

								'	the	user	is	searching	a	different	copy	of	the	

								'	same	Recordset.

								For	intLoop	=	1	To	3

												'	Ask	for	search	string	while	showing	where	

												'	the	current	record	pointer	is	for	each	Recordset.

												strMessage	=	_

																"Recordsets	from	stores	table:"	&	vbCr	&	_

																"		1	-	Original	-	Record	pointer	at	"	&	_

																arstStores(1)!stor_name	&	vbCr	&	_

																"		2	-	Clone	-	Record	pointer	at	"	&	_

																arstStores(2)!stor_name	&	vbCr	&	_

																"		3	-	Clone	-	Record	pointer	at	"	&	_

																arstStores(3)!stor_name	&	vbCr	&	_

																"Enter	search	string	for	#"	&	intLoop	&	":"

												strFind	=	Trim(InputBox(strMessage))

												If	strFind	=	""	Then	Exit	Do

												'	Find	the	search	string;	if	there's	no	

												'	match,	jump	to	the	last	record.

												arstStores(intLoop).Filter	=	"stor_name	>=	'"	&	strFind	&	"'"

												If	arstStores(intLoop).EOF	Then

																arstStores(intLoop).Filter	=	adFilterNone

																arstStores(intLoop).MoveLast

												End	If

								Next	intLoop

				Loop

				arstStores(1).Close

				arstStores(2).Close

				arstStores(3).Close

End	Sub

CompareBookmarks	Method	Example	(VB)

This	example	demonstrates	the	CompareBookmarks	method.	The	relative	value
of	bookmarks	is	seldom	needed	unless	a	particular	bookmark	is	somehow
special.

Designate	a	random	row	of	a	Recordset	derived	from	the	Authors	table	as	the
target	of	a	search.	Then	display	the	position	of	each	row	relative	to	that	target.

Public	Sub	Main()

				CompareBookmarksX

End	Sub

Public	Sub	CompareBookmarksX()

Dim	rst	As	ADODB.Recordset

Dim	count	As	Integer

Dim	target	As	Variant

Dim	result	As	Long

Dim	strAns	As	String

Dim	strTitle	As	String

strTitle	=	"CompareBookmarks	Example"

Set	rst	=	New	ADODB.Recordset

rst.Open	"SELECT	*	FROM	Authors",	_

												"DSN=Pubs;Provider=MSDASQL;	uid=sa;pwd=;",	_

												adOpenStatic,	adLockReadOnly,	adCmdText

count	=	rst.RecordCount

Debug.Print	"Rows	in	the	Recordset	=	";	count

If	count	=	0	Then	Exit	Sub			'Exit	if	an	empty	recordset

Randomize

count	=	(Int(count	*	Rnd))			'Get	position	between	0	and	count-1

Debug.Print	"Randomly	chosen	row	position	=	";	count

rst.Move	count,	adBookmarkFirst	'Move	row	to	random	position

target	=	rst.Bookmark								'Remember	the	mystery	row.

count	=	0

rst.MoveFirst

Do	While	Not	rst.EOF									'Loop	through	recordset

				result	=	rst.CompareBookmarks(rst.Bookmark,	target)

				If	result	=	adCompareNotEqual	Then

								Debug.Print	"Row	";	count;	":	Bookmarks	are	not	equal."

				ElseIf	result	=	adCompareNotComparable	Then

								Debug.Print	"Row	";	count;	":	Bookmarks	are	not	comparable."

				Else

								Select	Case	result

												Case	adCompareLessThan

												strAns	=	"less	than"

												Case	adCompareEqual

																strAns	=	"equal	to"

												Case	adCompareGreaterThan

																strAns	=	"greater	than"

												Case	Else

																strAns	=	"in	error	comparing	to"

								End	Select

								Debug.Print	"Row	position	"	&	count	&	"	is	"	&	strAns	&	_

																								"	the	target."

				End	If

				count	=	count	+	1

				rst.MoveNext

Loop

rst.Close

End	Sub

ConnectionString,	ConnectionTimeout,	and	State	Properties
Example	(VB)

This	example	demonstrates	different	ways	of	using	the	ConnectionString
property	to	open	a	Connection	object.	It	also	uses	the	ConnectionTimeout
property	to	set	a	connection	timeout	period,	and	the	State	property	to	check	the
state	of	the	connections.	The	GetState	function	is	required	for	this	procedure	to
run.

Public	Sub	ConnectionStringX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cnn2	As	ADODB.Connection

				Dim	cnn3	As	ADODB.Connection

				Dim	cnn4	As	ADODB.Connection

				'	Open	a	connection	without	using	a	Data	Source	Name	(DSN).

				Set	cnn1	=	New	ADODB.Connection

				cnn1.ConnectionString	=	"driver={SQL	Server};"	&	_

								"server=srv;uid=sa;pwd=pwd;database=Pubs"

				cnn1.ConnectionTimeout	=	30

				cnn1.Open

				

				'	Open	a	connection	using	a	DSN	and	ODBC	tags.

				Set	cnn2	=	New	ADODB.Connection

				cnn2.ConnectionString	=	"DSN=Pubs;UID=sa;PWD=pwd;"

				cnn2.Open

				

				'	Open	a	connection	using	a	DSN	and	OLE	DB	tags.

				Set	cnn3	=	New	ADODB.Connection

				cnn3.ConnectionString	=	"Data	Source=Pubs;User	ID=sa;Password=pwd;"

				cnn3.Open

				

				'	Open	a	connection	using	a	DSN	and	individual	

				'	arguments	instead	of	a	connection	string.

				Set	cnn4	=	New	ADODB.Connection

				cnn4.Open	"Pubs",	"sa",	"pwd"

	

				'	Display	the	state	of	the	connections.

				MsgBox	"cnn1	state:	"	&	GetState(cnn1.State)	&	vbCr	&	_

								"cnn2	state:	"	&	GetState(cnn2.State)	&	vbCr	&	_

								"cnn3	state:	"	&	GetState(cnn3.State)	&	vbCr	&	_

								"cnn4	state:	"	&	GetState(cnn4.State)

				cnn4.Close

				cnn3.Close

				cnn2.Close

				cnn1.Close

End	Sub

Public	Function	GetState(intState	As	Integer)	As	String

				Select	Case	intState

								Case	adStateClosed

												GetState	=	"adStateClosed"

								Case	adStateOpen

												GetState	=	"adStateOpen"

				End	Select

End	Function

ConvertToString	Method	Example	(VB)

Public	Sub	ConvertToStringX()

				Dim	oRDF	As	RDSServer.DataFactory

				Dim	oRDC	As	RDS.DataControl

				Dim	oRs	As	ADODB.Recordset

				Dim	vString	As	Variant

				Dim	sConnString	As	String

				Dim	sSQL	As	String

				'	Create	a	DataFactory	object

				Set	oRDF	=	New	RDSServer.DataFactory

				'	Get	all	of	the	Author	records

				sConnString	=	"Provider=sqloledb;"	&	_

																								"Data	Source=(local);"	&	_

																								"Initial	Catalog=pubs;"	&	_

																								"Network	Library=DBMSSOCN;"	&	_

																								"Trusted_Connection=Yes;"

				sSQL	=	"Select	*	From	authors"

				Set	oRs	=	oRDF.Query(sConnString,	sSQL)

				Debug.Print	oRs.RecordCount

				'	Convert	the	recordset	into	a	MIME	formatted	string

				vString	=	oRDF.ConvertToString(oRs)

				'	Convert	string	value	back	into	an	ADO	Recordset

				Set	oRDC	=	New	RDS.DataControl

				oRDC.SQL	=	vString

				oRDC.ExecuteOptions	=	adcExecSync

				oRDC.FetchOptions	=	adcFetchUpFront

				oRDC.Refresh

				Debug.Print	oRDC.Recordset.RecordCount

End	Sub

CopyRecord,	CopyTo,	and	SaveToFile	Methods	Example	(VB)

This	example	demonstrates	how	to	create	copies	of	a	file	using	Stream	or	Record
objects.	One	copy	is	made	to	a	Web	folder	for	Internet	publishing.	Other
properties	and	methods	shown	include	Stream	Type,	Open,	LoadFromFile,	and
Record	Open.

Public	Sub	CopyRecordX()

				'	Declare	variables

				Dim	strPicturePath,	strStreamPath,	strStream2Path,	_

								strRecordPath,	strStreamURL,	strRecordURL	As	String

				Dim	objStream,	objStream2	As	Stream

				Dim	objRecord	As	Record

				Dim	objField	As	Field

				

				'	Instantiate	objects

				Set	objStream	=	New	Stream

				Set	objStream2	=	New	Stream

				Set	objRecord	=	New	Record

				

				'	Initialize	path	and	URL	strings

				strPicturePath	=	_

				"C:\Program	Files\Microsoft	Office\Clipart\Popular\Checkmrk.wmf"

				strStreamPath	=	"\\websrv\folder\mywmf.wmf"

				strStreamURL	=	"URL=http://websrv/folder/mywmf.wmf"

				strStream2Path	=	"D:\samples\check2.wmf"

				strRecordPath	=	"\\websrv\folder\mywmf.wmf"

				strRecordURL	=	"http://websrv/folder/mywmf.wmf"

				

				'	Load	the	file	into	the	stream

				objStream.Open

				objStream.Type	=	adTypeBinary

				objStream.LoadFromFile	(strPicturePath)

				

				'	Save	the	stream	to	a	new	path	and	filename

				objStream.SaveToFile	strStreamPath,	adSaveCreateOverWrite

							

				'	Copy	the	contents	of	the	first	stream	to	a	second	stream

				objStream2.Open

				objStream2.Type	=	adTypeBinary

				objStream.CopyTo	objStream2

				

				'	Save	the	second	stream	to	a	different	path

				objStream2.SaveToFile	strStream2Path,	adSaveCreateOverWrite

				

				'	Because	strStreamPath	is	a	Web	Folder,	open	a	Record	on	the	URL

				objRecord.Open	"",	strStreamURL

				

				'	Display	the	Fields	of	the	record

				For	Each	objField	In	objRecord.Fields

								Debug.Print	objField.Name	&	":	"	&	objField.Value

				Next

				

				'	Copy	the	record	to	a	new	URL

				objRecord.CopyRecord	"",	strRecordURL,	,	,	adCopyOverWrite

				

				'	Load	each	copy	of	the	graphic	into	Image	controls	for	viewing

				Image1.Picture	=	LoadPicture(strPicturePath)

				Image2.Picture	=	LoadPicture(strStreamPath)

				Image3.Picture	=	LoadPicture(strStream2Path)

				Image4.Picture	=	LoadPicture(strRecordPath)

				

				'	Clean	up

				objStream.Close

				objStream2.Close

				objRecord.Close

End	Sub

Count	Property	Example	(VB)

This	example	demonstrates	the	Count	property	with	two	collections	in	the
Employee	database.	The	property	obtains	the	number	of	objects	in	each
collection,	and	sets	the	upper	limit	for	loops	that	enumerate	these	collections.
Another	way	to	enumerate	these	collections	without	using	the	Count	property
would	be	to	use	For	Each...Next	statements.

Public	Sub	CountX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	intloop	As	Integer

				'	Open	recordset	with	data	from	Employee	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"employee",	strCnn,	,	,	adCmdTable

				'	Print	information	about	Fields	collection.

				Debug.Print	rstEmployees.Fields.Count	&	_

								"	Fields	in	Employee"

				For	intloop	=	0	To	rstEmployees.Fields.Count	-	1

								Debug.Print	"				"	&	rstEmployees.Fields(intloop).Name

				Next	intloop

				'	Print	information	about	Properties	collection.

				Debug.Print	rstEmployees.Properties.Count	&	_

								"	Properties	in	Employee"

				For	intloop	=	0	To	rstEmployees.Properties.Count	-	1

								Debug.Print	"				"	&	rstEmployees.Properties(intloop).Name

				Next	intloop

				rstEmployees.Close

End	Sub

CreateRecordset	Method	Example	(VB)

You	can	create	a	Recordset	object	and	specify	the	column	information.	You	can
then	insert	data	into	the	Recordset	object;	the	underlying	rowset	buffers	the
inserts.

The	following	code	example	shows	how	to	define	a	Recordset	by	using	the
RDSServer.DataFactory	object.	You	can	also	do	this	with	the	RDS.DataControl
object.

Sub	RsDefineShape()

				

				Dim	vntRecordShape(3)

				Dim	vntField1Shape(3)

				Dim	vntField2Shape(3)

				Dim	vntField3Shape(3)

				Dim	vntField4Shape(3)

				'	For	each	field,	specify	the	name,

				'	type,	size,	and	nullability.

				vntField1Shape(0)	=	"Name"				'	Column	name.

				vntField1Shape(1)	=	CInt(129)				'	Column	type.

				vntField1Shape(2)	=	CInt(40)				'	Column	size.

				vntField1Shape(3)	=	False								'	Nullable?

				vntField2Shape(0)	=	"Age"

				vntField2Shape	(1)	=	CInt(3)

				vntField2Shape	(2)	=	CInt(-1)

				vntField2Shape	(3)	=	True

				vntField3Shape	(0)	=	"DateOfBirth"

				vntField3Shape	(1)	=	CInt(7)

				vntField3Shape	(2)	=	CInt(-1)

				vntField3Shape	(3)	=	True

				vntField4Shape	(0)	=	"Balance"

				vntField4Shape	(1)	=	CInt(6)

				vntField4Shape	(2)	=	CInt(-1)

				vntField4Shape	(3)	=	True

				'	Put	all	fields	into	an	array	of	arrays.

				vntRecordShape(0)	=	vntField1Shape

				vntRecordShape(1)	=	vntField2Shape

				vntRecordShape(2)	=	vntField3Shape

				vntRecordShape(3)	=	vntField4Shape

				'	Use	the	RDSServer.DataFactory	to	create	an	empty

				'	recordset.	It	takes	an	array	of	variants	where

				'	every	element	is	itself	another	array	of

				'	variants,	one	for	every	column	required	in	the

				'	recordset.

				'	The	elements	of	the	inner	array	are	the	column's

				'	name,	type,	size,	and	nullability.

				Dim	NewRs	

				'	You	could	just	use	the	RDS.DataControl	object

				'	instead	of	the	RDSServer.DataFactory	object.	In

				'	that	case,	the	following	code	would	be	Set	NewRS

				'	=	ADC1.CreateRecordset(vntRecordShape)

				Set	NewRS	=	ADF.CreateRecordset(vntRecordShape)

				Dim	fields(3)

				fields(0)	=	vntField1Shape(0)

				fields(1)	=	vntField2Shape	(0)

				fields(2)	=	vntField3Shape	(0)

				fields(3)	=	vntField4Shape	(0)

				'	Populate	the	new	recordset	with	data	values.

				Dim	fieldVals(3)

				'	Use	AddNew	to	add	the	records.

				fieldVals(0)	=	"Joe"

				fieldVals(1)	=	5

				fieldVals(2)	=	CDate(#1/5/96#)

				fieldVals(3)	=	123.456

				NewRS.AddNew	fields,	fieldVals

				fieldVals(0)	=	"Mary"

				fieldVals(1)	=	6

				fieldVals(2)	=	CDate(#6/5/96#)

				fieldVals(3)	=	31

				NewRS.AddNew	fields,	fieldVals

				fieldVals(0)	=	"Alex"

				fieldVals(1)	=	13

				fieldVals(2)	=	CDate(#1/6/96#)

				fieldVals(3)	=	34.0001

				NewRS.AddNew	fields,	fieldVals

				fieldVals(0)	=	"Susan"

				fieldVals(1)	=	13

				fieldVals(2)	=	CDate(#8/6/96#)

				fieldVals(3)	=	0.0

				NewRS.AddNew	fields,	fieldVals

				

				NewRS.MoveFirst

				'	Set	the	newly	created	and	populated	Recordset	to

				'	the	SourceRecordset	property	of	the

				'	RDS.DataControl	to	bind	to	visual	controls

				Set	ADC1.SourceRecordset	=	NewRS

End	Sub

CursorType,	LockType,	and	EditMode	Properties	Example	(VB)

This	example	demonstrates	setting	the	CursorType	and	LockType	properties
before	opening	a	Recordset.	It	also	shows	the	value	of	the	EditMode	property
under	various	conditions.	The	EditModeOutput	function	is	required	for	this
procedure	to	run.

Public	Sub	EditModeX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Open	recordset	with	data	from	Employee	table.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

								

				Set	rstEmployees	=	New	ADODB.Recordset

				Set	rstEmployees.ActiveConnection	=	cnn1

				rstEmployees.CursorLocation	=	adUseClient

				rstEmployees.CursorType	=	adOpenStatic

				rstEmployees.LockType	=	adLockBatchOptimistic

				rstEmployees.Open	"employee",	,	,	,	adCmdTable

				'	Show	the	EditMode	property	under	different	editing

				'	states.

				rstEmployees.AddNew

				rstEmployees!emp_id	=	"T-T55555M"

				rstEmployees!fname	=	"temp_fname"

				rstEmployees!lname	=	"temp_lname"

				EditModeOutput	"After	AddNew:",	rstEmployees.EditMode

				rstEmployees.UpdateBatch

				EditModeOutput	"After	UpdateBatch:",	rstEmployees.EditMode

				rstEmployees!fname	=	"test"

				EditModeOutput	"After	Edit:",	rstEmployees.EditMode

				rstEmployees.Close

				

				'	Delete	new	record	because	this	is	a	demonstration.

				cnn1.Execute	"DELETE	FROM	employee	WHERE	emp_id	=	'T-T55555M'"

End	Sub

Public	Function	EditModeOutput(strTemp	As	String,	_

				intEditMode	As	Integer)

				'	Print	report	based	on	the	value	of	the	EditMode	

				'	property.

				Debug.Print	strTemp

				Debug.Print	"		EditMode	=	";

				Select	Case	intEditMode

								Case	adEditNone

												Debug.Print	"adEditNone"

								Case	adEditInProgress

												Debug.Print	"adEditInProgress"

								Case	adEditAdd

												Debug.Print	"adEditAdd"

				End	Select

End	Function

Delete	Method	Example	(VB)

This	example	uses	the	Delete	method	to	remove	a	specified	record	from	a
Recordset.

Public	Sub	DeleteX()

				Dim	rstRoySched	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMsg	As	String

				Dim	strTitleID	As	String

				Dim	intLoRange	As	Integer

				Dim	intHiRange	As	Integer

				Dim	intRoyalty	As	Integer

				'	Open	RoySched	table.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstRoySched	=	New	ADODB.Recordset

				rstRoySched.CursorLocation	=	adUseClient

				rstRoySched.CursorType	=	adOpenStatic

				rstRoySched.LockType	=	adLockBatchOptimistic

				rstRoySched.Open	"SELECT	*	FROM	roysched	"	&	_

								"WHERE	royalty	=	20",	strCnn,	,	,	adCmdText

				'	Prompt	for	a	record	to	delete.

				strMsg	=	"Before	delete	there	are	"	&	_

								rstRoySched.RecordCount	&	_

								"	titles	with	20	percent	royalty:"	&	vbCr	&	vbCr

				Do	While	Not	rstRoySched.EOF

								strMsg	=	strMsg	&	rstRoySched!title_id	&	vbCr

								rstRoySched.MoveNext

				Loop

				strMsg	=	strMsg	&	vbCr	&	vbCr	&	_

								"Enter	the	ID	of	a	record	to	delete:"

				strTitleID	=	UCase(InputBox(strMsg))

				'	Move	to	the	record	and	save	data	so	it	can	be	restored.

				rstRoySched.Filter	=	"title_id	=	'"	&	strTitleID	&	"'"

				intLoRange	=	rstRoySched!lorange

				intHiRange	=	rstRoySched!hirange

				intRoyalty	=	rstRoySched!royalty

				'	Delete	the	record.

				rstRoySched.Delete

				rstRoySched.UpdateBatch

				'	Show	the	results.

				rstRoySched.Filter	=	adFilterNone

				rstRoySched.Requery

				strMsg	=	""

				strMsg	=	"After	delete	there	are	"	&	_

								rstRoySched.RecordCount	&	_

								"	titles	with	20	percent	royalty:"	&	vbCr	&	vbCr

				Do	While	Not	rstRoySched.EOF

								strMsg	=	strMsg	&	rstRoySched!title_id	&	vbCr

								rstRoySched.MoveNext

				Loop

				MsgBox	strMsg

				'	Restore	the	data	because	this	is	a	demonstration.

				rstRoySched.AddNew

				rstRoySched!title_id	=	strTitleID

				rstRoySched!lorange	=	intLoRange

				rstRoySched!hirange	=	intHiRange

				rstRoySched!royalty	=	intRoyalty

				rstRoySched.UpdateBatch

				rstRoySched.Close

End	Sub

DeleteRecord	and	MoveRecord	Methods	Example	(VB)

This	example	demonstrates	how	to	copy,	move,	edit,	and	delete	the	contents	of	a
text	file	published	to	a	Web	folder.	Other	properties	and	methods	used	include
GetChildren,	ParentURL,	Source,	and	Flush.

Public	Sub	DeleteRecordX()

				'Declare	and	instantiate	object	variables

				Dim	objFileR	As	Record

				Dim	objDestFolderR	As	Record

				Dim	objDestFileR	As	Record

				Dim	objDestFolderRS	As	Recordset

				Dim	objStream	As	Stream

				

				Set	objFileR	=	New	Record

				Set	objDestFolderR	=	New	Record

				Set	objDestFileR	=	New	Record

				Set	objDestFolderRS	=	New	Recordset

				Set	objStream	=	New	Stream

				

				'Open	a	Record	on	a	text	file

				objFileR.Open	"",	"URL=http://websrv/folder/file.txt",	_

								adModeReadWrite,	adOpenIfExists	Or	adCreateNonCollection

								

				'Edit	the	contents	of	the	text	file

				MsgBox	"Edit"

				

				objStream.Open	objFileR,	,	adOpenStreamFromRecord

				Debug.Print	"Source:	"	+	objFileR.Source

				Debug.Print	"Original	text:	"	+	objStream.ReadText

				objStream.Position	=	0

				objStream.WriteText	"New	Text"

				objStream.Position	=	0

				Debug.Print	"New	text:	"	+	objStream.ReadText

				objStream.Flush

				objStream.Close

				objFileR.Close

				

				'Reopen	Record	to	see	new	contents	of	text	file

				objFileR.Open	"file.txt",	"URL=http://websrv/folder/",	_

								adModeReadWrite,	adOpenIfExists	Or	adCreateNonCollection

				objStream.Open	objFileR,	adModeReadWrite,	adOpenStreamFromRecord

				Debug.Print	"Source:	"	+	objFileR.Source

				Debug.Print	"Edited	text:	"	+	objStream.ReadText

				

				'Copy	the	file	to	a	subfolder

				MsgBox	"Copy"

				

				objFileR.CopyRecord	,	_

								"URL=http://websrv/folder/subfolder/file.txt",	,	,	_

								adCopyOverWrite

				

				'Delete	the	original	file

				MsgBox	"Delete"

				

				objFileR.DeleteRecord

				

				'Move	the	file	from	the	subfolder	back	to	original	location

				MsgBox	"Move	Back"

				

				objDestFolderR.Open	"",	"URL=http://websrv/folder/subfolder/",	,	_

								adOpenIfExists	Or	adCreateCollection

								

				Set	objDestFolderRS	=	objDestFolderR.GetChildren

				

				objDestFolderRS.MoveFirst

				

				'Position	current	record	at	on	the	correct	file

				Do	While	Not	_

								(objDestFolderRS.EOF	Or	(objDestFolderRS(0)	=	"file.txt"))

								objDestFolderRS.MoveNext

				Loop

				

				'Open	a	Record	on	the	currect	row	of	the	Recordset

				objDestFileR.Open	objDestFolderRS

				

				'Do	the	move

				objDestFileR.MoveRecord	,	objDestFolderR.ParentURL	+	"/file.txt"	_

								,	,	,	adMoveOverWrite	'objDestFolderR.ParentURL

				

				MsgBox	"All	done"

End	Sub

Description,	NativeError,	Number,	Source,	and	SQLState
Properties	Example	(VB)

This	example	triggers	an	error,	traps	it,	and	displays	the	Description,
HelpContext,	HelpFile,	NativeError,	Number,	Source,	and	SQLState	properties
of	the	resulting	Error	object.

Public	Sub	DescriptionX()

				Dim	cnn1	As	ADODB.Connection

				Dim	errLoop	As	ADODB.Error

				Dim	strError	As	String

				On	Error	GoTo	ErrorHandler

				

				'	Intentionally	trigger	an	error.

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	"nothing"

				

				Exit	Sub

ErrorHandler:

				'	Enumerate	Errors	collection	and	display	

				'	properties	of	each	Error	object.

				For	Each	errLoop	In	cnn1.Errors

								strError	=	"Error	#"	&	errLoop.Number	&	vbCr	&	_

												"				"	&	errLoop.Description	&	vbCr	&	_

												"				(Source:	"	&	errLoop.Source	&	")"	&	vbCr	&	_

												"				(SQL	State:	"	&	errLoop.SQLState	&	")"	&	vbCr	&	_

												"				(NativeError:	"	&	errLoop.NativeError	&	")"	&	vbCr

								If	errLoop.HelpFile	=	""	Then

												strError	=	strError	&	_

																"				No	Help	file	available"	&	_

																vbCr	&	vbCr

								Else

												strError	=	strError	&	_

																"				(HelpFile:	"	&	errLoop.HelpFile	&	")"	&	vbCr	&	_

																"				(HelpContext:	"	&	errLoop.HelpContext	&	")"	&	_

																vbCr	&	vbCr

								End	If

												

				Debug.Print	strError

				Next

				Resume	Next

End	Sub

EOS	and	LineSeparator	Properties	and	SkipLine	Method
Example	(VB)

This	example	demonstrates	how	to	manipulate	text	streams	one	line	at	a	time.
The	effect	of	changing	the	line	separator	from	the	default	carriage	return/linefeed
(adCRLF)	to	simply	linefeed	(adLF)	or	carriage	return	(adCR)	is	shown.

Public	Sub	SkipLineX()

				'Declare	variables

				Dim	i	As	Integer

				Dim	objStream	As	Stream

				Dim	strLine,	strChar	As	String

				

				'Instantiate	and	open	stream

				Set	objStream	=	New	Stream

				objStream.Open

				

				'Set	line	separator	to	line	feed

				objStream.LineSeparator	=	adLF

							

				'Load	text	content	of	list	box	into	stream

				'One	line	at	a	time

				For	i	=	0	To	(List1.ListCount	-	1)

								objStream.WriteText	List1.List(i),	adWriteLine

				Next

				

				'Display	the	entire	stream

				Debug.Print	"Whole	Stream:"

				objStream.Position	=	0

				Debug.Print	objStream.ReadText

								

				'Display	the	first	line

				Debug.Print	"First	Line:"

				objStream.Position	=	0

				strLine	=	objStream.ReadText(adReadLine)

				Debug.Print	strLine

				Debug.Print	"Line	length:	"	+	str(Len(strLine))

				

				'Skip	a	line,	then	display	another	line

				Debug.Print	"Third	Line:"

				objStream.SkipLine

				strLine	=	objStream.ReadText(adReadLine)

				Debug.Print	strLine

				Debug.Print	"Line	length:	"	+	str(Len(strLine))

				

				'Switch	line	separator	to	carriage	return

				'All	items	from	list	will	be	considered	one	line

				'Assuming	no	CRs	have	been	loaded	into	stream

				Debug.Print	"Whole	Stream/First	Line:"

				objStream.Position	=	0

				objStream.LineSeparator	=	adCR

				strLine	=	objStream.ReadText(adReadLine)

				Debug.Print	strLine

				Debug.Print	"Line	length:	"	+	str(Len(strLine))

				Debug.Print	"Stream	size:	"	+	str(objStream.Size)

				

				'Use	EOS	to	Determine	End	of	Stream

				Debug.Print	"Character	by	character:"

				objStream.Position	=	0

				Do	Until	objStream.EOS

								strChar	=	objStream.ReadText(1)

								Debug.Print	strChar

				Loop

End	Sub

Execute,	Requery,	and	Clear	Methods	Example	(VB)

This	example	demonstrates	the	Execute	method	when	run	from	both	a
Command	object	and	a	Connection	object.	It	also	uses	the	Requery	method	to
retrieve	current	data	in	a	Recordset,	and	the	Clear	method	to	clear	the	contents	of
the	Errors	collection.	(The	Errors	collection	is	accessed	via	the	Connection
object	of	the	ActiveConnection	property	of	the	Recordset.)	The
ExecuteCommand	and	PrintOutput	procedures	are	required	for	this	procedure	to
run.

Public	Sub	ExecuteX()

				Dim	strSQLChange	As	String

				Dim	strSQLRestore	As	String

				Dim	strCnn	As	String

				Dim	cnn1	As	ADODB.Connection

				Dim	cmdChange	As	ADODB.Command

				Dim	rstTitles	As	ADODB.Recordset

				Dim	errLoop	As	ADODB.Error

				'	Define	two	SQL	statements	to	execute	as	command	text.

				strSQLChange	=	"UPDATE	Titles	SET	Type	=	"	&	_

								"'self_help'	WHERE	Type	=	'psychology'"

				strSQLRestore	=	"UPDATE	Titles	SET	Type	=	"	&	_

								"'psychology'	WHERE	Type	=	'self_help'"

				'	Open	connection.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	strCnn

				'	Create	command	object.

				Set	cmdChange	=	New	ADODB.Command

				Set	cmdChange.ActiveConnection	=	cnn1

				cmdChange.CommandText	=	strSQLChange

				

				'	Open	titles	table.

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.Open	"titles",	cnn1,	,	,	adCmdTable

				'	Print	report	of	original	data.

				Debug.Print	_

								"Data	in	Titles	table	before	executing	the	query"

				PrintOutput	rstTitles

				'	Clear	extraneous	errors	from	the	Errors	collection.

				cnn1.Errors.Clear

				'	Call	the	ExecuteCommand	subroutine	to	execute	cmdChange	command.

				ExecuteCommand	cmdChange,	rstTitles

				

				'	Print	report	of	new	data.

				Debug.Print	_

								"Data	in	Titles	table	after	executing	the	query"

				PrintOutput	rstTitles

				'	Use	the	Connection	object's	execute	method	to	

				'	execute	SQL	statement	to	restore	data.	Trap	for	

				'	errors,	checking	the	Errors	collection	if	necessary.

				On	Error	GoTo	Err_Execute

				cnn1.Execute	strSQLRestore,	,	adExecuteNoRecords

				On	Error	GoTo	0

				'	Retrieve	the	current	data	by	requerying	the	recordset.

				rstTitles.Requery

				'	Print	report	of	restored	data.

				Debug.Print	"Data	after	executing	the	query	"	&	_

								"to	restore	the	original	information"

				PrintOutput	rstTitles

				rstTitles.Close

				cnn1.Close

				

				Exit	Sub

				

Err_Execute:

				'	Notify	user	of	any	errors	that	result	from

				'	executing	the	query.

				If	rstTitles.ActiveConnection.Errors.Count	>=	0	Then

								For	Each	errLoop	In	rstTitles.ActiveConnection.Errors

												MsgBox	"Error	number:	"	&	errLoop.Number	&	vbCr	&	_

																errLoop.Description

								Next	errLoop

				End	If

				Resume	Next

End	Sub

Public	Sub	ExecuteCommand(cmdTemp	As	ADODB.Command,	_

				rstTemp	As	ADODB.Recordset)

				Dim	errLoop	As	Error

				

				'	Run	the	specified	Command	object.	Trap	for	

				'	errors,	checking	the	Errors	collection	if	necessary.

				On	Error	GoTo	Err_Execute

				cmdTemp.Execute

				On	Error	GoTo	0

				'	Retrieve	the	current	data	by	requerying	the	recordset.

				rstTemp.Requery

				

				Exit	Sub

Err_Execute:

				'	Notify	user	of	any	errors	that	result	from

				'	executing	the	query.

				If	rstTemp.ActiveConnection.Errors.Count	>	0	Then

								For	Each	errLoop	In	Errors

												MsgBox	"Error	number:	"	&	errLoop.Number	&	vbCr	&	_

																errLoop.Description

								Next	errLoop

				End	If

				

				Resume	Next

End	Sub

Public	Sub	PrintOutput(rstTemp	As	ADODB.Recordset)

				'	Enumerate	Recordset.

				Do	While	Not	rstTemp.EOF

								Debug.Print	"		"	&	rstTemp!Title	&	_

												",	"	&	rstTemp!Type

								rstTemp.MoveNext

				Loop

End	Sub

Filter	and	RecordCount	Properties	Example	(VB)

This	example	uses	the	Filter	property	to	open	a	new	Recordset	based	on	a
specified	condition	applied	to	an	existing	Recordset.	It	uses	the	RecordCount
property	to	show	the	number	of	records	in	the	two	Recordsets.	The	FilterField
function	is	required	for	this	procedure	to	run.

Public	Sub	FilterX()

				Dim	rstPublishers	As	ADODB.Recordset

				Dim	rstPublishersCountry	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	intPublisherCount	As	Integer

				Dim	strCountry	As	String

				Dim	strMessage	As	String

				'	Open	recordset	with	data	from	Publishers	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstPublishers	=	New	ADODB.Recordset

				rstPublishers.CursorType	=	adOpenStatic

				rstPublishers.Open	"publishers",	strCnn,	,	,	adCmdTable

				'	Populate	the	Recordset.

				intPublisherCount	=	rstPublishers.RecordCount

				'	Get	user	input.

				strCountry	=	Trim(InputBox(_

								"Enter	a	country	to	filter	on:"))

				If	strCountry	<>	""	Then

								'	Open	a	filtered	Recordset	object.

								Set	rstPublishersCountry	=	_

												FilterField(rstPublishers,	"Country",	strCountry)

								If	rstPublishersCountry.RecordCount	=	0	Then

												MsgBox	"No	publishers	from	that	country."

								Else

												'	Print	number	of	records	for	the	original

												'	Recordset	object	and	the	filtered	Recordset

												'	object.

												strMessage	=	"Orders	in	original	recordset:	"	&	_

																vbCr	&	intPublisherCount	&	vbCr	&	_

																"Orders	in	filtered	recordset	(Country	=	'"	&	_

																strCountry	&	"'):	"	&	vbCr	&	_

																rstPublishersCountry.RecordCount

												MsgBox	strMessage

								End	If

								rstPublishersCountry.Close

				End	If

End	Sub

Public	Function	FilterField(rstTemp	As	ADODB.Recordset,	_

				strField	As	String,	strFilter	As	String)	As	ADODB.Recordset

				'	Set	a	filter	on	the	specified	Recordset	object	and	then

				'	open	a	new	Recordset	object.

				rstTemp.Filter	=	strField	&	"	=	'"	&	strFilter	&	"'"

				Set	FilterField	=	rstTemp

End	Function

Note			When	you	know	the	data	you	want	to	select,	it's	usually	more	efficient	to
open	a	Recordset	with	an	SQL	statement.	This	example	shows	how	you	can
create	just	one	Recordset	and	obtain	records	from	a	particular	country.

Public	Sub	FilterX2()

				Dim	rstPublishers	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Open	recordset	with	data	from	Publishers	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstPublishers	=	New	ADODB.Recordset

				rstPublishers.CursorType	=	adOpenStatic

				rstPublishers.Open	"SELECT	*	FROM	publishers	"	&	_

								"WHERE	Country	=	'USA'",	strCnn,	,	,	adCmdText

								

				'	Print	current	data	in	recordset.

				rstPublishers.MoveFirst

				Do	While	Not	rstPublishers.EOF

								Debug.Print	rstPublishers!pub_name	&	",	"	&	_

												rstPublishers!country

								rstPublishers.MoveNext

				Loop

				rstPublishers.Close

End	Sub

Find	Method	Example	(VB)

This	example	uses	the	Recordset	object's	Find	method	to	locate	and	count	the
number	of	business	titles	in	the	Pubs	database.	The	example	assumes	the
underlying	provider	does	not	support	similar	functionality.

Public	Sub	Main()

				FindX

End	Sub

Public	Sub	FindX()

Dim	cnn	As	New	ADODB.Connection

Dim	rst	As	New	ADODB.Recordset

Dim	mark	As	Variant

Dim	count	As	Integer

count	=	0

cnn.Open	"DSN=Pubs;	Provider=MSDASQL;	uid=sa;	pwd=;"

rst.Open	"SELECT	title_id	FROM	titles",	cnn,	_

												adOpenStatic,	adLockReadOnly,	adCmdText

'	The	default	parameters	are	sufficient	to	search	forward

'	through	a	Recordset.

rst.Find	"title_id	LIKE	'BU%'"

'	Skip	the	current	record	to	avoid	finding	the	same	row	repeatedly.

'	The	bookmark	is	redundant	because	Find	searches	from	the	current

'	position.

Do	While	rst.EOF	<>	True				'Continue	if	last	find	succeeded.

				Debug.Print	"Title	ID:	";	rst!title_id

				count	=	count	+	1								'Count	the	last	title	found.

				mark	=	rst.Bookmark						'Note	current	position.

				rst.Find	"title_id	LIKE	'BU%'",	1,	adSearchForward,	mark

Loop

rst.Close

cnn.Close

Debug.Print	"The	number	of	business	titles	is	"	&	count

End	Sub

GetRows	Method	Example	(VB)

This	example	uses	the	GetRows	method	to	retrieve	a	specified	number	of	rows
from	a	Recordset	and	to	fill	an	array	with	the	resulting	data.	The	GetRows
method	will	return	fewer	than	the	desired	number	of	rows	in	two	cases:	either	if
EOF	has	been	reached,	or	if	GetRows	tried	to	retrieve	a	record	that	was	deleted
by	another	user.	The	function	returns	False	only	if	the	second	case	occurs.	The
GetRowsOK	function	is	required	for	this	procedure	to	run.

Public	Sub	GetRowsX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				Dim	intRows	As	Integer

				Dim	avarRecords	As	Variant

				Dim	intRecord	As	Integer

				'	Open	recordset	with	names	and	hire	dates	from	employee	table.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"SELECT	fName,	lName,	hire_date	"	&	_

								"FROM	Employee	ORDER	BY	lName",	strCnn,	,	,	adCmdText

				Do	While	True

								'	Get	user	input	for	number	of	rows.

								strMessage	=	"Enter	number	of	rows	to	retrieve."

								intRows	=	Val(InputBox(strMessage))

								If	intRows	<=	0	Then	Exit	Do

								'	If	GetRowsOK	is	successful,	print	the	results,

								'	noting	if	the	end	of	the	file	was	reached.

								If	GetRowsOK(rstEmployees,	intRows,	_

																avarRecords)	Then

												If	intRows	>	UBound(avarRecords,	2)	+	1	Then

																Debug.Print	"(Not	enough	records	in	"	&	_

																				"Recordset	to	retrieve	"	&	intRows	&	_

																				"	rows.)"

												End	If

												Debug.Print	UBound(avarRecords,	2)	+	1	&	_

																"	records	found."

												'	Print	the	retrieved	data.

												For	intRecord	=	0	To	UBound(avarRecords,	2)

																Debug.Print	"		"	&	_

																				avarRecords(0,	intRecord)	&	"	"	&	_

																				avarRecords(1,	intRecord)	&	",	"	&	_

																				avarRecords(2,	intRecord)

												Next	intRecord

								Else

												'	Assuming	the	GetRows	error	was	due	to	data	

												'	changes	by	another	user,	use	Requery	to

												'	refresh	the	Recordset	and	start	over.

												If	MsgBox("GetRows	failed--retry?",	_

																				vbYesNo)	=	vbYes	Then

																rstEmployees.Requery

												Else

																Debug.Print	"GetRows	failed!"

																Exit	Do

												End	If

								End	If

								'	Because	using	GetRows	leaves	the	current	

								'	record	pointer	at	the	last	record	accessed,	

								'	move	the	pointer	back	to	the	beginning	of	the	

								'	Recordset	before	looping	back	for	another	search.

								rstEmployees.MoveFirst

				Loop

				rstEmployees.Close

End	Sub

Public	Function	GetRowsOK(rstTemp	As	ADODB.Recordset,	_

				intNumber	As	Integer,	avarData	As	Variant)	As	Boolean

				'	Store	results	of	GetRows	method	in	array.

				avarData	=	rstTemp.GetRows(intNumber)

				'	Return	False	only	if	fewer	than	the	desired	

				'	number	of	rows	were	returned,	but	not	because	the	

				'	end	of	the	Recordset	was	reached.

				If	intNumber	>	UBound(avarData,	2)	+	1	And	_

												Not	rstTemp.EOF	Then

								GetRowsOK	=	False

				Else

								GetRowsOK	=	True

				End	If

End	Function

GetString	Method	Example	(VB)

This	example	demonstrates	the	GetString	method.

Assume	you	are	debugging	a	data	access	problem	and	want	a	quick,	simple	way
of	printing	the	current	contents	of	a	small	Recordset.

Public	Sub	Main()

				GetStringX

End	Sub

Public	Sub	GetStringX()

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	varOutput	As	Variant

Dim	strQuery	As	String

Dim	strPrompt	As	String

Set	cnn	=	New	ADODB.Connection

Set	rst	=	New	ADODB.Recordset

strPrompt	=	"Enter	a	state	(CA,	IN,	KS,	MD,	MI,	OR,	TN,	UT):	"

strState	=	Trim(InputBox(strPrompt,	"GetString	Example"))

strQuery	=	"SELECT	au_fname,	au_lname,	address,	city	FROM	Authors	"	&	_

																"WHERE	state	=	'"	&	strState	&	"'"

cnn.Open	"DSN=Pubs;Provider=MSDASQL;	uid=sa;pwd=;"

rst.Open	strQuery,	cnn,	adOpenStatic,	adLockReadOnly,	adCmdText

If	rst.RecordCount	>	0	Then

'Use	all	defaults:	get	all	rows,	TAB	column	delimiter,	CARRIAGE	RETURN

'row	delimiter,	empty-string	null	delimiter

				varOutput	=	rst.GetString(adClipString)

				Debug.Print	"State	=	'"	&	strState	&	"'"

				Debug.Print	"Name													Address													City"	&	vbCr

				Debug.Print	varOutput

Else

				Debug.Print	"No	rows	found	for	state	=	'"	&	strState	&	"'"	&	vbCr

End	If

rst.Close

cnn.Close

End	Sub

Handler	Property	Example	(VB)

This	example	demonstrates	the	RDS	DataControl	object	Handler	property.	(See
DataFactory	Customization	for	more	details.)

Assume	that	the	following	sections	in	the	parameter	file,	MSDFMAP.INI,	are
located	on	the	server:

[connect	AuthorDataBase]

Access=ReadWrite

Connect="DSN=Pubs"

[sql	AuthorById]

SQL="SELECT	*	FROM	Authors	WHERE	au_id	=	?"

Your	code	looks	like	the	following.	The	command	assigned	to	the	SQL	property
will	match	the	AuthorById	identifier,	and	retrieve	a	row	for	author,	Michael
O'Leary.	Although	the	Connect	property	in	your	code	specifies	the	Northwind
data	source,	that	data	source	will	be	overwritten	by	the	MSDFMAP.INI	connect
section.	The	DataControl	object	Recordset	property	is	assigned	to	a
disconnected	Recordset	object	purely	as	a	coding	convenience.

Public	Sub	Main()

				HandlerX

End	Sub

Public	Sub	HandlerX()

Dim	dc	As	New	DataControl

Dim	rst	As	ADODB.Recordset

dc.Handler	=	"MSDFMAP.Handler"

dc.Server	=	"http://YourServer"

dc.Connect	=	"Data	Source=Northwind"

dc.SQL	=	"AuthorById(267-41-2394)"

dc.Refresh																		'Retrieve	the	record

Set	rst	=	dc.Recordset						'Use	another	Recordset	as	a	convenience

Debug.Print	"Author	is	'"	&	rst!au_fname	&	"	"	&	rst!au_lname	&	"'"

End	Sub

InternetTimeout	Property	Example	(VB)

This	example	demonstrates	the	InternetTimeout	property,	which	exists	on	the
DataControl	and	DataSpace	objects.	In	this	case,	we'll	just	use	the	DataControl
object	and	set	the	timeout	to	20	seconds.

Sub	Main()

				InternetTimeoutX

End	Sub

Public	Sub	InternetTimeoutX()

Dim	dc	As	New	DataControl

Dim	rst	As	ADODB.Recordset

dc.Server	=	"http://yourServer"

dc.Connect	=	"DSN=Pubs"

dc.SQL	=	"SELECT	*	FROM	Authors"

dc.InternetTimeout	=	20000		'Wait	at	least	20	seconds.

dc.Refresh

Set	rst	=	dc.Recordset						'Use	another	Recordset	as	a	convenience

While	Not	rst.EOF

				Debug.Print	rst!au_fname	&	"	"	&	rst!au_lname

				rst.MoveNext

Wend

rst.Close

End	Sub

IsolationLevel	and	Mode	Properties	Example	(VB)

This	example	uses	the	Mode	property	to	open	an	exclusive	connection,	and	the
IsolationLevel	property	to	open	a	transaction	that	is	conducted	in	isolation	of
other	transactions.

Public	Sub	IsolationLevelX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstTitles	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Assign	connection	string	to	variable.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				'	Open	connection	and	Titles	table.

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Mode	=	adModeShareExclusive

				cnn1.IsolationLevel	=	adXactIsolated

				cnn1.Open	strCnn

				

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.CursorType	=	adOpenDynamic

				rstTitles.LockType	=	adLockPessimistic

				rstTitles.Open	"Titles",	cnn1,	,	,	adCmdTable

				

				cnn1.BeginTrans

				'	Display	connection	mode.

				If	cnn1.Mode	=	adModeShareExclusive	Then

								MsgBox	"Connection	mode	is	exclusive."

				Else

								MsgBox	"Connection	mode	is	not	exclusive."

				End	If

				'	Display	isolation	level.

				If	cnn1.IsolationLevel	=	adXactIsolated	Then

								MsgBox	"Transaction	is	isolated."

				Else

								MsgBox	"Transaction	is	not	isolated."

				End	If

				'	Change	the	type	of	psychology	titles.

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"psychology"	Then

												rstTitles!Type	=	"self_help"

												rstTitles.Update

								End	If

								rstTitles.MoveNext

				Loop

				'	Print	current	data	in	recordset.

				rstTitles.Requery

				Do	While	Not	rstTitles.EOF

								Debug.Print	rstTitles!Title	&	"	-	"	&	rstTitles!Type

								rstTitles.MoveNext

				Loop

				'	Restore	original	data.

				cnn1.RollbackTrans

				rstTitles.Close

				

				cnn1.Close

End	Sub

Item	Property	Example	(VB)

This	example	demonstrates	how	the	Item	property	accesses	members	of	a
collection.	The	example	opens	the	Authors	table	of	the	Pubs	database	with	a
parameterized	command.

The	parameter	in	the	command	issued	against	the	database	is	accessed	from	the
Command	object's	Parameters	collection	by	index	and	name.	The	fields	of	the
returned	Recordset	are	then	accessed	from	that	object's	Fields	collection	by
index	and	name.

Public	Sub	Main()

				ItemX

End	Sub

Public	Sub	ItemX()

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	cmd	As	ADODB.Command

Dim	prm	As	ADODB.Parameter

Dim	fld	As	ADODB.Field

Dim	ix	As	Integer

Dim	limit	As	Long

Dim	Column(0	To	8)	As	Variant

Set	cnn	=	New	ADODB.Connection

Set	rst	=	New	ADODB.Recordset

Set	cmd	=	New	ADODB.Command

'Set	the	array	with	the	Authors	table	field	(column)	names

Column(0)	=	"au_id"

Column(1)	=	"au_lname"

Column(2)	=	"au_fname"

Column(3)	=	"phone"

Column(4)	=	"address"

Column(5)	=	"city"

Column(6)	=	"state"

Column(7)	=	"zip"

Column(8)	=	"contract"

cmd.CommandText	=	"SELECT	*	FROM	Authors	WHERE	state	=	?"

Set	prm	=	cmd.CreateParameter("ItemXparm",	adChar,	adParamInput,	2,	"CA")

cmd.Parameters.Append	prm

cnn.Open	"DSN=Pubs;Provider=MSDASQL;	uid=sa;pwd=;"

cmd.ActiveConnection	=	cnn

'Connection	and	CommandType	are	omitted	because	a	Command	object	is

'provided.

rst.Open	cmd,	,	adOpenStatic,	adLockReadOnly

Debug.Print	"The	Parameters	collection	accessed	by	index..."

Set	prm	=	cmd.Parameters.Item(0)

Debug.Print	"Parameter	name	=	'";	prm.name;	"',	value	=	'";	prm.Value;	_

																"'"

Debug.Print

Debug.Print	"The	Parameters	collection	accessed	by	name..."

Set	prm	=	cmd.Parameters.Item("ItemXparm")

Debug.Print	"Parameter	name	=	'";	prm.name;	"',	value	=	'";	prm.Value;	_

																"'"

Debug.Print

Debug.Print	"The	Fields	collection	accessed	by	index..."

rst.MoveFirst

limit	=	rst.Fields.Count	-	1

For	ix	=	0	To	limit

				Set	fld	=	rst.Fields.Item(ix)

				Debug.Print	"Field	";	ix;	":	Name	=	'";	fld.name;	_

																				"',	Value	=	'";	fld.Value;	"'"

Next	ix

Debug.Print

Debug.Print	"The	Fields	collection	accessed	by	name..."

rst.MoveFirst

For	ix	=	0	To	8

				Set	fld	=	rst.Fields.Item(Column(ix))

				Debug.Print	"Field	name	=	'";	fld.name;	"',	Value	=	'";	fld.Value;	"'"

Next	ix

rst.Close

cnn.Close

End	Sub

MarshalOptions	Property	Example	(VB)

This	example	uses	the	MarshalOptions	property	to	specify	what	rows	are	sent
back	to	the	server—All	Rows	or	only	Modified	Rows.

Public	Sub	MarshalOptionsX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strOldFirst	As	String

				Dim	strOldLast	As	String

				Dim	strMessage	As	String

				Dim	strMarshalAll	As	String

				Dim	strMarshalModified	As	String

				

				'	Open	recordset	with	names	from	Employees	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.CursorType	=	adOpenKeyset

				rstEmployees.LockType	=	adLockOptimistic

				rstEmployees.CursorLocation	=	adUseClient

				rstEmployees.Open	"SELECT	fname,	lname	"	&	_

								"FROM	Employees	ORDER	BY	lname",	strCnn,	,	,	adCmdText

				'	Store	original	data.

				strOldFirst	=	rstEmployees!fname

				strOldLast	=	rstEmployees!lname

				

				'	Change	data	in	edit	buffer.

				rstEmployees!fname	=	"Linda"

				rstEmployees!lname	=	"Kobara"

				'	Show	contents	of	buffer	and	get	user	input.

				strMessage	=	"Edit	in	progress:"	&	vbCr	&	_

								"	Original	data	=	"	&	strOldFirst	&	"	"	&	_

								strOldLast	&	vbCr	&	"	Data	in	buffer	=	"	&	_

								rstEmployees!fname	&	"	"	&	rstEmployees!lname	&	vbCr	&	vbCr	&	_

								"Use	Update	to	replace	the	original	data	with	"	&	_

								"the	buffered	data	in	the	Recordset?"

				strMarshalAll	=	"Would	you	like	to	send	all	the	rows	"	&	_

																				"in	the	recordset	back	to	the	server?"

				strMarshalModified	=	"Would	you	like	to	send	only	"	&	_

																				"modified	rows	back	to	the	server?"

	

				If	MsgBox(strMessage,	vbYesNo)	=	vbYes	Then

								If	MsgBox(strMarshalAll,	vbYesNo)	=	vbYes	Then

												rstEmployees.MarshalOptions	=	adMarshalAll

												rstEmployees.Update

								ElseIf	MsgBox(strMarshalModified,	vbYesNo)	=	vbYes	Then

												rstEmployees.MarshalOptions	=	adMarshalModifiedOnly

												rstEmployees.Update

								End	If

				End	If

				

				'	Show	the	resulting	data.

				MsgBox	"Data	in	recordset	=	"	&	rstEmployees!fname	&	"	"	&	_

								rstEmployees!lname

				'	Restore	original	data	because	this	is	a	demonstration.

				If	Not	(strOldFirst	=	rstEmployees!fname	And	_

												strOldLast	=	rstEmployees!lname)	Then

								rstEmployees!fname	=	strOldFirst

								rstEmployees!lname	=	strOldLast

								rstEmployees.Update

				End	If

				rstEmployees.Close

End	Sub

MaxRecords	Property	Example	(VB)

This	example	uses	the	MaxRecords	property	to	open	a	Recordset	containing	the
10	most	expensive	titles	in	the	Titles	table.

Public	Sub	MaxRecordsX()

				Dim	rstTemp	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Open	recordset	containing	the	10	most	expensive

				'	titles	in	the	Titles	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstTemp	=	New	ADODB.Recordset

				rstTemp.MaxRecords	=	10

				rstTemp.Open	"SELECT	Title,	Price	FROM	Titles	"	&	_

								"ORDER	BY	Price	DESC",	strCnn,	,	,	adCmdText

				'	Display	the	contents	of	the	recordset.

				Debug.Print	"Top	Ten	Titles	by	Price:"

				Do	While	Not	rstTemp.EOF

								Debug.Print	"		"	&	rstTemp!Title	&	"	-	"	&	rstTemp!Price

								rstTemp.MoveNext

				Loop

				rstTemp.Close

End	Sub

Move	Method	Example	(VB)

This	example	uses	the	Move	method	to	position	the	record	pointer	based	on	user
input.

Public	Sub	MoveX()

				Dim	rstAuthors	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	varBookmark	As	Variant

				Dim	strCommand	As	String

				Dim	lngMove	As	Long

				'	Open	recordset	from	Authors	table.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstAuthors	=	New	ADODB.Recordset

				rstAuthors.CursorType	=	adOpenStatic

				'	Use	client	cursor	to	allow	use	of	

				'	AbsolutePosition	property.

				rstAuthors.CursorLocation	=	adUseClient

				rstAuthors.Open	"SELECT	au_id,	au_fname,	au_lname,	city,	state	"	&	_

								"FROM	Authors	ORDER	BY	au_lname",	strCnn,	,	,	adCmdText

								

				rstAuthors.MoveFirst

				Do	While	True

								'	Display	information	about	current	record	and

								'	ask	how	many	records	to	move.

								strCommand	=	InputBox(_

												"Record	"	&	rstAuthors.AbsolutePosition	&	_

												"	of	"	&	rstAuthors.RecordCount	&	vbCr	&	_

												"Author:	"	&	rstAuthors!au_fname	&	_

												"	"	&	rstAuthors!au_lname	&	vbCr	&	_

												"Location:	"	&	rstAuthors!City	&	_

												",	"	&	rstAuthors!State	&	vbCr	&	vbCr	&	_

												"Enter	number	of	records	to	Move	"	&	_

												"(positive	or	negative).")

								If	strCommand	=	""	Then	Exit	Do

								'	Store	bookmark	in	case	the	Move	goes	too	far

								'	forward	or	backward.

								varBookmark	=	rstAuthors.Bookmark

								'	Move	method	requires	parameter	of	data	type	Long.

								lngMove	=	CLng(strCommand)

								rstAuthors.Move	lngMove

								'	Trap	for	BOF	or	EOF.

								If	rstAuthors.BOF	Then

												MsgBox	"Too	far	backward!	"	&	_

																"Returning	to	current	record."

												rstAuthors.Bookmark	=	varBookmark

								End	If

								If	rstAuthors.EOF	Then

												MsgBox	"Too	far	forward!	"	&	_

																"Returning	to	current	record."

												rstAuthors.Bookmark	=	varBookmark

								End	If

				Loop

				rstAuthors.Close

End	Sub

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods
Example	(VB)

This	example	uses	the	MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
methods	to	move	the	record	pointer	of	a	Recordset	based	on	the	supplied
command.	The	MoveAny	procedure	is	required	for	this	procedure	to	run.

Public	Sub	MoveFirstX()

				Dim	rstAuthors	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strMessage	As	String

				Dim	intCommand	As	Integer

				'	Open	recordset	from	Authors	table.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstAuthors	=	New	ADODB.Recordset

				rstAuthors.CursorType	=	adOpenStatic

				'	Use	client	cursor	to	enable	AbsolutePosition	property.

				rstAuthors.CursorLocation	=	adUseClient

				rstAuthors.Open	"Authors",	strCnn,	,	,	adCmdTable

				'	Show	current	record	information	and	get	user's	method	choice.

				Do	While	True

								strMessage	=	"Name:	"	&	rstAuthors!au_fName	&	"	"	&	_

												rstAuthors!au_lName	&	vbCr	&	"Record	"	&	_

												rstAuthors.AbsolutePosition	&	"	of	"	&	_

												rstAuthors.RecordCount	&	vbCr	&	vbCr	&	_

												"[1	-	MoveFirst,	2	-	MoveLast,	"	&	vbCr	&	_

												"3	-	MoveNext,	4	-	MovePrevious]"

								intCommand	=	Val(Left(InputBox(strMessage),	1))

								If	intCommand	<	1	Or	intCommand	>	4	Then	Exit	Do

								'	Call	method	based	on	user's	input.

								MoveAny	intCommand,	rstAuthors

				Loop

				rstAuthors.Close

End	Sub

Public	Sub	MoveAny(intChoice	As	Integer,	_

				rstTemp	As	Recordset)

				'	Use	specified	method,	trapping	for	BOF	and	EOF.

				Select	Case	intChoice

								Case	1

												rstTemp.MoveFirst

								Case	2

												rstTemp.MoveLast

								Case	3

												rstTemp.MoveNext

												If	rstTemp.EOF	Then

																MsgBox	"Already	at	end	of	recordset!"

																rstTemp.MoveLast

												End	If

								Case	4

												rstTemp.MovePrevious

												If	rstTemp.BOF	Then

																MsgBox	"Already	at	beginning	of	recordset!"

																rstTemp.MoveFirst

												End	If

				End	Select

End	Sub

NextRecordset	Method	Example	(VB)

This	example	uses	the	NextRecordset	method	to	view	the	data	in	a	recordset	that
uses	a	compound	command	statement	made	up	of	three	separate	SELECT
statements.

Public	Sub	NextRecordsetX()

				Dim	rstCompound	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	intCount	As	Integer

				'	Open	compound	recordset.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				

				Set	rstCompound	=	New	ADODB.Recordset

				rstCompound.Open	"SELECT	*	FROM	Authors;	"	&	_

								"SELECT	*	FROM	stores;	"	&	_

								"SELECT	*	FROM	jobs",	strCnn,	,	,	adCmdText

				'	Display	results	from	each	SELECT	statement.

				intCount	=	1

				Do	Until	rstCompound.State	=	adStateClosed

								Debug.Print	"Contents	of	recordset	#"	&	intCount

								Do	While	Not	rstCompound.EOF

												Debug.Print	,	rstCompound.Fields(0),	_

																rstCompound.Fields(1)

												rstCompound.MoveNext

								Loop

				

								Set	rstCompound	=	rstCompound.NextRecordset

								intCount	=	intCount	+	1

				Loop

				

End	Sub

NumericScale	and	Precision	Properties	Example	(VB)

This	example	uses	the	NumericScale	and	Precision	properties	to	display	the
numeric	scale	and	precision	of	fields	in	the	Discounts	table	of	the	Pubs
database.

Public	Sub	NumericScaleX()

				Dim	rstDiscounts	As	ADODB.Recordset

				Dim	fldTemp	As	ADODB.Field

				Dim	strCnn	As	String

				'	Open	recordset.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstDiscounts	=	New	ADODB.Recordset

				rstDiscounts.Open	"Discounts",	strCnn,	,	,	adCmdTable

				'	Display	numeric	scale	and	precision	of

				'	numeric	and	small	integer	fields.

				For	Each	fldTemp	In	rstDiscounts.Fields

								If	fldTemp.Type	=	adNumeric	_

												Or	fldTemp.Type	=	adSmallInt	Then

												MsgBox	"Field:	"	&	fldTemp.Name	&	vbCr	&	_

																"Numeric	scale:	"	&	_

																				fldTemp.NumericScale	&	vbCr	&	_

																"Precision:	"	&	fldTemp.Precision

								End	If

				Next	fldTemp

				rstDiscounts.Close

End	Sub

Open	and	Close	Methods	Example	(VB)

This	example	uses	the	Open	and	Close	methods	on	both	Recordset	and
Connection	objects	that	have	been	opened.

Public	Sub	OpenX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	varDate	As	Variant

				'	Open	connection.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	strCnn

				

				'	Open	employee	table.

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.CursorType	=	adOpenKeyset

				rstEmployees.LockType	=	adLockOptimistic

				rstEmployees.Open	"employee",	cnn1,	,	,	adCmdTable

				'	Assign	the	first	employee	record's	hire	date

				'	to	a	variable,	then	change	the	hire	date.

				varDate	=	rstEmployees!hire_date

				Debug.Print	"Original	data"

				Debug.Print	"		Name	-	Hire	Date"

				Debug.Print	"		"	&	rstEmployees!fName	&	"	"	&	_

								rstEmployees!lName	&	"	-	"	&	rstEmployees!hire_date

				rstEmployees!hire_date	=	#1/1/1900#

				rstEmployees.Update

				Debug.Print	"Changed	data"

				Debug.Print	"		Name	-	Hire	Date"

				Debug.Print	"		"	&	rstEmployees!fName	&	"	"	&	_

								rstEmployees!lName	&	"	-	"	&	rstEmployees!hire_date

				'	Requery	Recordset	and	reset	the	hire	date.

				rstEmployees.Requery

				rstEmployees!hire_date	=	varDate

				rstEmployees.Update

				Debug.Print	"Data	after	reset"

				Debug.Print	"		Name	-	Hire	Date"

				Debug.Print	"		"	&	rstEmployees!fName	&	"	"	&	_

								rstEmployees!lName	&	"	-	"	&	rstEmployees!hire_date

				rstEmployees.Close

				cnn1.Close

End	Sub

OpenSchema	Method	Example	(VB)

This	example	uses	the	OpenSchema	method	to	display	the	name	and	type	of
each	table	in	the	Pubs	database.

Public	Sub	OpenSchemaX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstSchema	As	ADODB.Recordset

				Dim	strCnn	As	String

								

				Set	cnn1	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

								

				Set	rstSchema	=	cnn1.OpenSchema(adSchemaTables)

				

				Do	Until	rstSchema.EOF

								Debug.Print	"Table	name:	"	&	_

												rstSchema!TABLE_NAME	&	vbCr	&	_

												"Table	type:	"	&	rstSchema!TABLE_TYPE	&	vbCr

								rstSchema.MoveNext

				Loop

				rstSchema.Close

				

				cnn1.Close

				

End	Sub

This	example	specifies	a	TABLE_TYPE	query	constraint	in	the	OpenSchema
method	Criteria	argument.	As	a	result,	only	schema	information	for	the	Views
specified	in	the	Pubs	database	are	returned.	The	example	then	displays	the
name(s)	and	type(s)	of	each	table(s).

Public	Sub	OpenSchemaX2()

				Dim	cnn2	As	ADODB.Connection

				Dim	rstSchema	As	ADODB.Recordset

				Dim	strCnn	As	String

								

				Set	cnn2	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn2.Open	strCnn

								

				Set	rstSchema	=	cnn2.OpenSchema(adSchemaTables,	Array(Empty,	Empty,	Empty,	"VIEW"))

								Do	Until	rstSchema.EOF

												Debug.Print	"Table	name:	"	&	_

																rstSchema!TABLE_NAME	&	vbCr	&	_

																"Table	type:	"	&	rstSchema!TABLE_TYPE	&	vbCr

												rstSchema.MoveNext

								Loop

				rstSchema.Close

				

				cnn2.Close

				

End	Sub

Optimize	Property	Example	(VB)

This	example	demonstrates	the	Field	object’s	dynamic	Optimize	property.	The
zip	field	of	the	Authors	table	in	the	Pubs	database	is	not	indexed.	Setting	the
Optimize	property	to	True	on	the	zip	field	authorizes	ADO	to	build	an	index	that
improves	the	performance	of	the	Find	method.

Sub	Main()

				OptimizeX

End	Sub

Public	Sub	OptimizeX()

Dim	rst	As	ADODB.Recordset

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseClient								'Enable	index	creation

rst.Open	"SELECT	*	FROM	Authors",	_

												"DSN=Pubs;Provider=MSDASQL;",	_

												adOpenStatic,	adLockReadOnly,	adCmdText

rst!zip.Properties("Optimize")	=	True			'Create	the	index

rst.Find	"zip	=	'94595'"																'Find	Akiko	Yokomoto

Debug.Print	rst!au_fname	&	"	"	&	rst!au_lname	&	"	"	&	_

												rst!address	&	"	"	&	rst!city	&	"	"	&	rst!State

rst!zip.Properties("Optimize")	=	False		'Delete	the	index

rst.Close

End	Sub

OriginalValue	and	UnderlyingValue	Properties	Example	(VB)

This	example	demonstrates	the	OriginalValue	and	UnderlyingValue	properties
by	displaying	a	message	if	a	record's	underlying	data	has	changed	during	a
Recordset	batch	update.

Public	Sub	OriginalValueX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstTitles	As	ADODB.Recordset

				Dim	fldType	As	ADODB.Field

				Dim	strCnn	As	String

				'	Open	connection.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				'	Open	recordset	for	batch	update.

				Set	rstTitles	=	New	ADODB.Recordset

				Set	rstTitles.ActiveConnection	=	cnn1

				rstTitles.CursorType	=	adOpenKeyset

				rstTitles.LockType	=	adLockBatchOptimistic

				rstTitles.Open	"Titles"

				'	Set	field	object	variable	for	Type	field.

				Set	fldType	=	rstTitles!Type

				'	Change	the	type	of	psychology	titles.

				Do	Until	rstTitles.EOF

								If	Trim(fldType)	=	"psychology"	Then

												fldType	=	"self_help"

								End	If

								rstTitles.MoveNext

				Loop

				'	Similate	a	change	by	another	user	by	updating	

				'	data	using	a	command	string.

				cnn1.Execute	"UPDATE	Titles	SET	type	=	'sociology'	"	&	_

								"WHERE	type	=	'psychology'"

				'Check	for	changes.

				rstTitles.MoveFirst

				Do	Until	rstTitles.EOF

								If	fldType.OriginalValue	<>	_	

												fldType.UnderlyingValue	Then

												MsgBox	"Data	has	changed!"	&	vbCr	&	vbCr	&	_

																"		Title	ID:	"	&	rstTitles!title_id	&	vbCr	&	_

																"		Current	value:	"	&	fldType	&	vbCr	&	_

																"		Original	value:	"	&	_

																fldType.OriginalValue	&	vbCr	&	_

																"		Underlying	value:	"	&	_

																fldType.UnderlyingValue	&	vbCr

								End	If

								rstTitles.MoveNext

				Loop

				'	Cancel	the	update	because	this	is	a	demonstration.

				rstTitles.CancelBatch

				rstTitles.Close

				'	Restore	original	values.

				cnn1.Execute	"UPDATE	Titles	SET	type	=	'psychology'	"	&	_

								"WHERE	type	=	'sociology'"

				

				cnn1.Close

				

End	Sub

Prepared	Property	Example	(VB)

This	example	demonstrates	the	Prepared	property	by	opening	two	Command
objects—one	prepared	and	one	not	prepared.

Public	Sub	PreparedX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cmd1	As	ADODB.Command

				Dim	cmd2	As	ADODB.Command

				Dim	strCnn	As	String

				Dim	strCmd	As	String

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				Dim	sngNotPrepared	As	Single

				Dim	sngPrepared	As	Single

				Dim	intLoop	As	Integer

				'	Open	a	connection.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	cnn1	=	New	ADODB.Connection

				cnn1.Open	strCnn

				'	Create	two	command	objects	for	the	same

				'	command	-	one	prepared	and	one	not	prepared.

				strCmd	=	"SELECT	title,	type	FROM	Titles	ORDER	BY	type"

				

				Set	cmd1	=	New	ADODB.Command

				Set	cmd1.ActiveConnection	=	cnn1

				cmd1.CommandText	=	strCmd

								

				Set	cmd2	=	New	ADODB.Command

				Set	cmd2.ActiveConnection	=	cnn1

				cmd2.CommandText	=	strCmd

				cmd2.Prepared	=	True

				

				'	Set	a	timer,	then	execute	the	unprepared

				'	command	20	times.

				sngStart	=	Timer

				For	intLoop	=	1	To	20

								cmd1.Execute

				Next	intLoop

				sngEnd	=	Timer

				sngNotPrepared	=	sngEnd	-	sngStart

				

				'	Reset	the	timer,	then	execute	the	prepared

				'	command	20	times.

				sngStart	=	Timer

				For	intLoop	=	1	To	20

								cmd2.Execute

				Next	intLoop

				sngEnd	=	Timer

				sngPrepared	=	sngEnd	-	sngStart

				'	Display	performance	results.

				MsgBox	"Performance	Results:"	&	vbCr	&	_

								"				Not	Prepared:	"	&	Format(sngNotPrepared,	_

								"##0.000")	&	"	seconds"	&	vbCr	&	_

								"				Prepared:	"	&	Format(sngPrepared,	_

								"##0.000")	&	"	seconds"

								

				cnn1.Close

End	Sub

Provider	and	DefaultDatabase	Properties	Example	(VB)

This	example	demonstrates	the	Provider	property	by	opening	three	Connection
objects	using	different	providers.	It	also	uses	the	DefaultDatabase	property	to	set
the	default	database	for	the	Microsoft	ODBC	Provider.

Public	Sub	ProviderX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cnn2	As	ADODB.Connection

				Dim	cnn3	As	ADODB.Connection

				'	Open	a	connection	using	the	Microsoft	ODBC	provider.

				Set	cnn1	=	New	ADODB.Connection

				cnn1.ConnectionString	=	"driver={SQL	Server};"	&	_

								"server=srv;uid=sa;pwd=pwd"

				cnn1.Open	strCnn

				cnn1.DefaultDatabase	=	"Pubs"

				

				'	Display	the	provider.

				MsgBox	"Cnn1	provider:	"	&	cnn1.Provider

				'	Open	a	connection	using	the	Microsoft	Jet	provider.

				Set	cnn2	=	New	ADODB.Connection

				cnn2.Provider	=	"Microsoft.Jet.OLEDB.3.51"

				cnn2.Open	"C:\Samples\northwind.mdb",	"admin",	""

				'	Display	the	provider.

				MsgBox	"Cnn2	provider:	"	&	cnn2.Provider

			'	Open	a	connection	using	the	Microsoft	SQL	Server	provider.

				Set	cnn3	=	New	ADODB.Connection

				cnn3.Provider	=	"sqloledb"

				cnn3.Open	"Data	Source=srv;Initial	Catalog=Pubs;",	"sa",	""

				'	Display	the	provider.

				MsgBox	"Cnn3	provider:	"	&	cnn3.Provider

				cnn1.Close

				cnn2.Close

				cnn3.Close

End	Sub

Read,	ReadText,	Write,	and	WriteText	Methods	Example	(VB)

This	example	demonstrates	how	to	read	the	contents	of	a	text	box	into	both	a
text	Stream	and	a	binary	Stream.	Other	properties	and	methods	shown	include
Position,	Size,	Charset,	and	SetEOS.

Public	Sub	ReadX()

				'Declare	variables

				Dim	objStream	As	Stream

				Dim	varA	As	Variant

				Dim	bytA()	As	Byte

				Dim	i	As	Integer

				Dim	strBytes	As	String

				

				'Instantiate	and	Open	Stream

				Set	objStream	=	New	Stream

				objStream.Open

				

				'Write	the	text	content	of	a	textbox	to	the	stream

				objStream.WriteText	Text1.Text

				

				'Display	the	text	contents	and	size	of	the	stream

				objStream.Position	=	0

				Debug.Print	"Default	text:"

				Debug.Print	objStream.ReadText

				Debug.Print	objStream.Size

				

				'Switch	character	set	and	display

				objStream.Position	=	0

				objStream.Charset	=	"Windows-1252"

				Debug.Print	"New	Charset	text:"

				Debug.Print	objStream.ReadText

				Debug.Print	objStream.Size

				

				'Switch	to	a	binary	stream	and	display

				objStream.Position	=	0

				objStream.Type	=	adTypeBinary

				Debug.Print	"Binary:"

				Debug.Print	objStream.Read

				Debug.Print	objStream.Size

				

				'Load	an	array	of	bytes	with	the	text	box	text

				ReDim	bytA(Len(Text1.Text))

				For	i	=	1	To	Len(Text1.Text)

								bytA(i	-	1)	=	CByte(Asc(Mid(Text1.Text,	i,	1)))

				Next

				

				'Write	the	buffer	to	the	binary	stream	and	display

				objStream.Position	=	0

				objStream.Write	bytA()

				objStream.SetEOS

				objStream.Position	=	0

				Debug.Print	"Binary	after	Write:"

				Debug.Print	objStream.Read

				Debug.Print	objStream.Size

				

				'Switch	back	to	a	text	stream	and	display

				Debug.Print	"Translated	back:"

				objStream.Position	=	0

				objStream.Type	=	adTypeText

				Debug.Print	objStream.ReadText

				Debug.Print	objStream.Size

End	Sub

Refresh	Method	Example	(VB)

This	example	demonstrates	using	the	Refresh	method	to	refresh	the	Parameters
collection	for	a	stored	procedure	Command	object.

Public	Sub	RefreshX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cmdByRoyalty	As	ADODB.Command

				Dim	rstByRoyalty	As	ADODB.Recordset

				Dim	rstAuthors	As	ADODB.Recordset

				Dim	intRoyalty	As	Integer

				Dim	strAuthorID	As	String

				Dim	strCnn	As	String

				'	Open	connection.

				Set	cnn1	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

								

				'	Open	a	command	object	for	a	stored	procedure

				'	with	one	parameter.

				Set	cmdByRoyalty	=	New	ADODB.Command

				Set	cmdByRoyalty.ActiveConnection	=	cnn1

				cmdByRoyalty.CommandText	=	"byroyalty"

				cmdByRoyalty.CommandType	=	adCmdStoredProc

				cmdByRoyalty.Parameters.Refresh

				

				'	Get	paramater	value	and	execute	the	command,	

				'	storing	the	results	in	a	recordset.

				intRoyalty	=	Trim(InputBox("Enter	royalty:"))

				cmdByRoyalty.Parameters(1)	=	intRoyalty

				Set	rstByRoyalty	=	cmdByRoyalty.Execute()

								

				'	Open	the	Authors	table	to	get	author	names	for	display.

				Set	rstAuthors	=	New	ADODB.Recordset

				rstAuthors.Open	"Authors",	cnn1,	,	,	adCmdTable

				

				'	Print	current	data	in	the	recordset,	adding

				'	author	names	from	Authors	table.

				Debug.Print	"Authors	with	"	&	intRoyalty	&	"	percent	royalty"

				Do	While	Not	rstByRoyalty.EOF

								strAuthorID	=	rstByRoyalty!au_id

								Debug.Print	"				"	&	rstByRoyalty!au_id	&	",	";

								rstAuthors.Filter	=	"au_id	=	'"	&	strAuthorID	&	"'"

								Debug.Print	rstAuthors!au_fname	&	"	"	&	_

												rstAuthors!au_lname

								rstByRoyalty.MoveNext

				Loop

				rstByRoyalty.Close

				rstAuthors.Close

				cnn1.Close

				

End	Sub

Resync	Method	Example	(VB)

This	example	demonstrates	using	the	Resync	method	to	refresh	data	in	a	static
recordset.

Public	Sub	ResyncX()

				Dim	strCnn	As	String

				Dim	rstTitles	As	ADODB.Recordset

				'	Open	connections.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				'	Open	recordset	for	Titles	table.

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.CursorType	=	adOpenStatic

				rstTitles.LockType	=	adLockBatchOptimistic

				rstTitles.Open	"Titles",	strCnn,	,	,	adCmdTable

				'	Change	the	type	of	the	first	title	in	the	recordset.

				rstTitles!Type	=	"database"

				'	Display	the	results	of	the	change.

				MsgBox	"Before	resync:	"	&	vbCr	&	vbCr	&	_

								"Title	-	"	&	rstTitles!Title	&	vbCr	&	_

								"Type	-	"	&	rstTitles!Type

				'	Resync	with	database	and	redisplay	results.

				rstTitles.Resync

				MsgBox	"After	resync:	"	&	vbCr	&	vbCr	&	_

								"Title	-	"	&	rstTitles!Title	&	vbCr	&	_

								"Type	-	"	&	rstTitles!Type

				rstTitles.CancelBatch

				rstTitles.Close

End	Sub

Save	and	Open	Methods	Example	(VB)

These	three	examples	demonstrate	how	the	Save	and	Open	methods	can	be	used
together.

Assume	you	are	going	on	a	business	trip	and	want	to	take	along	a	table	from	a
database.	Before	you	go,	you	access	the	data	as	a	Recordset	and	save	it	in	a
transportable	form.	When	you	arrive	at	your	destination,	you	access	the
Recordset	as	a	local,	disconnected	Recordset.	You	make	changes	to	the
Recordset,	then	save	it	again.	Finally,	when	you	return	home,	you	connect	to	the
database	again	and	update	it	with	the	changes	you	made	on	the	road.

Public	Sub	Main()

				SaveX1

				SaveX2

				SaveX3

End	Sub

First,	access	and	save	the	Authors	table.

Public	Sub	SaveX1()

Dim	rst	As	ADODB.Recordset

Set	rst	=	New	ADODB.Recordset

rst.Open	"SELECT	au_id,	au_lname,	au_fname,	phone	FROM	Authors",	_

									"Provider=SQLOLEDB;Data	Source=MySrvr;User	Id=uid;"	&	_

									"Password=pwd;Initial	Catalog=pubs;"	_

									adOpenDynamic,	adLockOptimistic,	adCmdText

'For	sake	of	illustration,	save	the	Recordset	to	a	diskette	in	XML

'format.

rst.Save	"a:\Pubs.xml",	adPersistXML

rst.Close

End	Sub

At	this	point,	you	have	arrived	at	your	destination.	You	will	access	the	Authors
table	as	a	local,	disconnected	Recordset.	Don't	forget	you	must	have	the
MSPersist	provider	on	the	machine	that	you	are	using	in	order	to	access	the
saved	file,	a:\Pubs.xml.

Public	Sub	SaveX2()

Dim	rst	As	ADODB.Recordset

Set	rst	=	New	ADODB.Recordset

'For	sake	of	illustration,	we	specify	all	parameters.

rst.Open	"a:\Pubs.xml",	"Provider=MSPersist;",	,	,	adCmdFile

'Now	you	have	a	local,	disconnected	Recordset.	Edit	it	as	you	desire.

'(In	this	example,	the	change	makes	no	difference).

rst.Find	"au_lname	=	'Carson'"

If	rst.EOF	Then

				Debug.Print	"Name	not	found."

				Exit	Sub

End	If

rst!city	=	"Berkeley"

rst.Update

'Save	changes	in	ADTG	format	this	time,	purely	for	sake	of	illustration.

'Note	that	the	previous	version	is	still	on	the	diskette,	as	a:\Pubs.xml.

rst.Save	"a:\Pubs.adtg",	adPersistADTG

rst.Close

End	Sub

Finally,	you	return	home.	Now	update	the	database	with	your	changes.

Public	Sub	SaveX3()

Dim	cnn	As	New	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Set	rst	=	New	ADODB.Recordset

'If	there	is	no	ActiveConnection,	you	can	open	with	defaults.

rst.Open	"a:\Pubs.adtg"

'Connect	to	the	database,	associate	the	Recordset	with	the	connection,	

'then	update	the	database	table	with	the	changed	Recordset.

cnn.Open	"Provider=SQLOLEDB;Data	Source=MySrvr;User	Id=uid;"	&	_

									"Password=pwd;Initial	Catalog=pubs;"

rst.ActiveConnection	=	cnn

rst.UpdateBatch

rst.Close

cnn.Close

End	Sub

Seek	Method	and	Index	Property	Example	(VB)

This	example	uses	the	Recordset	object's	Seek	method	and	Index	property	in
conjunction	with	a	given	Employee	ID,	to	locate	the	employee's	name	in	the
Employees	table	of	the	Nwind.mdb	database.

Public	Sub	Main()

				SeekX

End	Sub

Public	Sub	SeekX()

Dim	rst	As	ADODB.Recordset

Dim	strID	As	String

Dim	strPrompt	As	String

strPrompt	=	"Enter	an	EmployeeID	(e.g.,	1	to	9)"

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseServer

rst.Open	"employees",	_

																"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

																"Data	Source=c:\temp\northwind.mdb;"	&	_

																"user	id=admin;password=;",	_

																adOpenKeyset,	adLockReadOnly,	adCmdTableDirect

'	Does	this	provider	support	Seek	and	Index?

If	rst.Supports(adIndex)	And	rst.Supports(adSeek)	Then

rst.Index	=	"EmployeeId"

'	Display	all	the	employees.

								rst.MoveFirst

								Do	While	rst.EOF	=	False

												Debug.Print	rst!EmployeeID;	":	";	rst!firstname;	"	";	_

																												rst!LastName

												rst.MoveNext

								Loop

				

'	Prompt	the	user	for	an	EmployeeID	between	1	and	9.

								rst.MoveFirst

								Do

												strID	=	LCase(Trim(InputBox(strPrompt,	"Seek	Example")))

												'	Quit	if	strID	is	a	zero-length	string	(CANCEL,	null,	etc.)

												If	Len(strID)	=	0	Then	Exit	Do

												If	Len(strID)	=	1	And	strID	>=	"1"	And	strID	<=	"9"	Then

																rst.Seek	Array(strID),	adSeekAfterEQ

																If	rst.EOF	Then

																				Debug.Print	"Employee	not	found."

																Else

																				Debug.Print	strID;	":	Employee='";	rst!firstname;	"	";	_

																				rst!LastName;	"'"

																End	If

												End	If

								Loop

End	If

rst.Close

End	Sub

Sort	Property	Example	(VB)

This	example	uses	the	Recordset	object's	Sort	property	to	reorder	the	rows	of	a
Recordset	derived	from	the	Authors	table	of	the	Pubs	database.	A	secondary
utility	routine	prints	each	row.

Sub	Main()

				SortX

End	Sub

Public	Sub	SortX()

Dim	cnn	As	New	ADODB.Connection

Dim	rst	As	New	ADODB.Recordset

rst.CursorLocation	=	adUseClient

cnn.Open	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;"

rst.Open	"SELECT	*	FROM	Authors",	cnn,	_

												adOpenStatic,	adLockReadOnly,	adCmdText

SortXprint	"Initial	Order",	rst

rst.Sort	=	"au_lname	ASC,	au_fname	ASC"

SortXprint	"Last	Name	Ascending",	rst

rst.Sort	=	"au_lname	DESC,	au_fname	ASC"

SortXprint	"Last	Name	Descending",	rst

rst.Close

cnn.Close

End	Sub

This	is	the	secondary	utility	routine	that	prints	the	given	title,	and	the	contents	of
the	specified	Recordset.

Public	Sub	SortXprint	(title	As	String,	rstp	As	ADODB.Recordset)

Debug.Print	"---------------"	&	title	&	"---------------"	

Debug.Print	"First	Name		Last	Name"	&	vbCr	&	_

																"---"

rstp.MoveFirst

While	Not	rstp.EOF

				Debug.Print	rstp!au_fname	&	"	"	&	rstp!au_lname	

				rstp.MoveNext

Wend

Debug.Print	

End	Sub

Source	Property	Example	(VB)

This	example	demonstrates	the	Source	property	by	opening	three	Recordset
objects	based	on	different	data	sources.

Public	Sub	SourceX()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstTitles	As	ADODB.Recordset

				Dim	rstPublishers	As	ADODB.Recordset

				Dim	rstPublishersDirect	As	ADODB.Recordset

				Dim	rstTitlesPublishers	As	ADODB.Recordset

				Dim	cmdSQL	As	ADODB.Command

				Dim	strCnn	As	String

				Dim	strSQL	As	String

				'	Open	a	connection.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				

				'	Open	a	recordset	based	on	a	command	object.

				Set	cmdSQL	=	New	ADODB.Command

				Set	cmdSQL.ActiveConnection	=	cnn1

				cmdSQL.CommandText	=	"Select	title,	type,	pubdate	"	&	_

								"FROM	Titles	ORDER	BY	title"

				Set	rstTitles	=	cmdSQL.Execute()

				

				'	Open	a	recordset	based	on	a	table.

				Set	rstPublishers	=	New	ADODB.Recordset

				rstPublishers.Open	"publishers",	strCnn,	,	,	adCmdTable

				

				'	Open	a	recordset	based	on	a	table.

				Set	rstPublishersDirect	=	New	ADODB.Recordset

				rstPublishersDirect.Open	"publishers",	strCnn,	,	,	adCmdTableDirect

				

				'	Open	a	recordset	based	on	an	SQL	string.

				Set	rstTitlesPublishers	=	New	ADODB.Recordset

				strSQL	=	"SELECT	title_ID	AS	TitleID,	title	AS	Title,	"	&	_

								"publishers.pub_id	AS	PubID,	pub_name	AS	PubName	"	&	_

								"FROM	publishers	INNER	JOIN	Titles	"	&	_

								"ON	publishers.pub_id	=	Titles.pub_id	"	&	_

								"ORDER	BY	Title"

				rstTitlesPublishers.Open	strSQL,	strCnn,	,	,	adCmdText

				'	Use	the	Source	property	to	display	the	source	of	each	recordset.

				MsgBox	"rstTitles	source:	"	&	vbCr	&	_

								rstTitles.Source	&	vbCr	&	vbCr	&	_

								"rstPublishers	source:	"	&	vbCr	&	_

								rstPublishers.Source	&	vbCr	&	vbCr	&	_

								"rstPublishersDirect	source:	"	&	vbCr	&	_

								rstPublishersDirect.Source	&	vbCr	&	vbCr	&	_

								"rstTitlesPublishers	source:	"	&	vbCr	&	_

								rstTitlesPublishers.Source

				rstTitles.Close

				rstPublishers.Close

				rstTitlesPublishers.Close

				cnn1.Close

End	Sub

State	Property	Example	(VB)

This	example	uses	the	State	property	to	display	a	message	while	asynchronous
connections	are	opening	and	asynchronous	commands	are	executing.

Public	Sub	StateX()

				Dim	cnn1	As	ADODB.Connection

				Dim	cnn2	As	ADODB.Connection

				Dim	cmdChange	As	ADODB.Command

				Dim	cmdRestore	As	ADODB.Command

				Dim	strCnn	As	String

				

				'	Open	two	asynchronous	connections,	displaying

				'	a	message	while	connecting.

				Set	cnn1	=	New	ADODB.Connection

				Set	cnn2	=	New	ADODB.Connection

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

								

				cnn1.Open	strCnn,	,	,	adAsyncConnect

				While	(cnn1.State	=	adStateConnecting)

								Debug.Print	"Opening	first	connection...."

				Wend

				

				cnn2.Open	strCnn,	,	,	adAsyncConnect

				While	(cnn2.State	=	adStateConnecting)

								Debug.Print	"Opening	second	connection...."

				Wend

				

				'	Create	two	command	objects.

				Set	cmdChange	=	New	ADODB.Command

				cmdChange.ActiveConnection	=	cnn1

				cmdChange.CommandText	=	"UPDATE	Titles	SET	type	=	'self_help'	"	&	_

								"WHERE	type	=	'psychology'"

				

				Set	cmdRestore	=	New	ADODB.Command

				cmdRestore.ActiveConnection	=	cnn2

				cmdRestore.CommandText	=	"UPDATE	Titles	SET	type	=	'psychology'	"	&	_

								"WHERE	type	=	'self_help'"

				

				'	Executing	the	commands,	displaying	a	message

				'	while	they	are	executing.

				cmdChange.Execute	,	,	adAsyncExecute

				While	(cmdChange.State	=	adStateExecuting)

								Debug.Print	"Change	command	executing...."

				Wend

				

				cmdRestore.Execute	,	,	adAsyncExecute

				While	(cmdRestore.State	=	adStateExecuting)

								Debug.Print	"Restore	command	executing...."

				Wend

				

				cnn1.Close

				cnn2.Close

End	Sub

Status	Property	Example	(Field)	(VB)

The	following	example	opens	a	document	from	a	read/write	folder	using	the
Internet	Publishing	Provider.	The	Status	property	of	a	Field	object	of	the	Record
will	first	be	set	to	adFieldPendingInsert,	then	be	updated	to	adFieldOk.

sub	insert()

				Dim	rec	As	New	Record

				'	Open	a	read/write	document

				rec.Open	"http://websrv/folder/subfolder",	,	adModeReadWrite,	_

								adCreateCollection	Or	adOpenIfExists

				Debug.print	"Append	couple	of	fields"

				rec.Fields.Append	"chektest:fld1",	adWChar,	42,	adFldUpdatable,	"fld1"

				rec.Fields.Append	"chektest:fld2",	adWChar,	42,	adFldUpdatable,	"fld2"

				Debug.Print	"status	for	the	fields"

				Debug.Print	rec.Fields("chektest:fld1").Status	'adfldpendinginsert

				Debug.Print	rec.Fields("chektest:fld2").Status	'adfldpendinginsert

				rec.Fields.Update

				debug.print	"Update	succeeds"

				Debug.Print	rec.Fields("chektest:fld1").Status

								'	adFieldOK	if	the	update	succeeds

				Debug.Print	rec.Fields("chektest:fld2").Status

								'	adFieldOK	if	succeeds

End	sub

The	following	example	deletes	a	known	Field	from	a	Record	opened	from	a
document.	The	Status	property	will	first	be	set	to	adFieldOK,	then
adFieldPendingUnknown.

sub	delete()

				Dim	rec	As	New	Record

				Dim	fld	As	Field

				'	Open	a	read/write	document

				rec.Open	"http://websrv/folder/subfolder",	,	adModeReadWrite,	_

								adCreateCollection	Or	adOpenIfExists

				Debug.Print	rec.Fields("chektest:fld1").status	‘	should	be	adFldOK

				'	Delete	a	field	which	already	exists	in	the	collection

				rec.Fields.Delete	"chektest:fld1"	

				Set	fld	=	rec.Fields("chektest:fld1")

				Debug.Print	rec.Fields("chektest:fld1").Status				'	Pending	delete

				rec.Fields.Update

				Debug.Print	"Deleted"

				Debug.Print	fld.Status				'	Pending	unknown

End	sub

The	following	code	deletes	a	Field	from	a	Record	opened	on	a	read-only
document.	Status	will	be	set	to	adFieldPendingDelete.	At	Update,	the	delete
will	fail	and	Status	will	be	adFieldPendingDelete	plus
adFieldPermissionDenied.	CancelUpdate	clears	the	pending	Status	setting.

sub	delete2()

				Dim	rec	As	New	Record

				Dim	fld	As	Field

				'	Open	a	read/write	document

				rec.Open	"http://websrv/folder/subfolder",	,	adModeReadWrite,	_

								adCreateCollection	Or	adOpenIfExists

				Debug.Print	"Try	to	delete	something	without	permission"

				rec.Fields.Delete	("RESOURCE_PARSENAME")

				Set	fld	=	rec.Fields("RESOURCE_PARSENAME")

				Debug.Print	"Pending	delete"

				Debug.Print	fld.Status				'	Pending	delete

				Debug.Print	"Delete	should	fail	on	Update"

				rec.Fields.Update				'	Should	fail

				Debug.Print	fld.Status				'	Pending	delete	plus	error

				rec.Fields.CancelUpdate

				Debug.Print	fld.Status				'	Okay

End	sub

Status	Property	Example	(Recordset)	(VB)

This	example	uses	the	Status	property	to	display	which	records	have	been
modified	in	a	batch	operation	before	a	batch	update	has	occurred.

Public	Sub	StatusX()

				Dim	rstTitles	As	ADODB.Recordset

				Dim	strCnn	As	String

				'	Open	recordset	for	batch	update.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.CursorType	=	adOpenKeyset

				rstTitles.LockType	=	adLockBatchOptimistic

				rstTitles.Open	"Titles",	strCnn,	,	,	adCmdTable

				'	Change	the	type	of	psychology	titles.

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"psychology"	Then

												rstTitles!Type	=	"self_help"

								End	If

								rstTitles.MoveNext

				Loop

				'	Display	Title	ID	and	status.

				rstTitles.MoveFirst

				Do	Until	rstTitles.EOF

								If	rstTitles.Status	=	adRecModified	Then

												Debug.Print	rstTitles!title_id	&	"	-	Modified"

								Else

												Debug.Print	rstTitles!title_id

								End	If

								rstTitles.MoveNext

				Loop

				'	Cancel	the	update	because	this	is	a	demonstration.

				rstTitles.CancelBatch

				rstTitles.Close

End	Sub

StayInSync	Property	Example	(VB)

This	example	demonstrates	how	the	StayInSync	property	facilitates	accessing
rows	in	a	hierarchical	Recordset.

The	outer	loop	displays	each	author's	first	and	last	name,	state,	and
identification.	The	appended	Recordset	for	each	row	is	retrieved	from	the	Fields
collection	and	automatically	assigned	to	rstTitleAuthor	by	the	StayInSync
property	whenever	the	parent	Recordset	moves	to	a	new	row.	The	inner	loop
displays	four	fields	from	each	row	in	the	appended	recordset.

Public	Sub	Main()

				StayInSyncX

End	Sub

Public	Sub	StayInSyncX()

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	rstTitleAuthor	As	New	ADODB.Recordset

Set	cnn	=	New	ADODB.Connection

Set	rst	=	New	ADODB.Recordset

cnn.Open	"DSN=Pubs;Provider=MSDataShape;Data	Provider=MSDASQL;"

rst.StayInSync	=	True

rst.Open	"SHAPE		{select	*	from	Authors}	"	&	_

																				"APPEND	({select	*	from	titleauthor}"	&	_

																				"RELATE	au_id	TO	au_id)	AS	chapTitleAuthor",	_

																				cnn,	,	,	adCmdText

Set	rstTitleAuthor	=	rst("chapTitleAuthor").Value

While	Not	rst.EOF

				Debug.Print	rst!au_fname	&	"	"	&	rst!au_lname	&	"	"	&	_

																				rst!state	&	"	"	&	rst!au_id

				While	Not	rstTitleAuthor.EOF

								Debug.Print	rstTitleAuthor(0)	&	"	"	&	rstTitleAuthor(1)	&	"	"	&	_

																				rstTitleAuthor(2)	&	"	"	&	rstTitleAuthor(3)

								rstTitleAuthor.MoveNext

				Wend

				rst.MoveNext

Wend

End	Sub

Supports	Method	Example	(VB)

This	example	uses	the	Supports	method	to	display	the	options	supported	by	a
recordset	opened	with	different	cursor	types.	The	DisplaySupport	procedure	is
required	for	this	procedure	to	run.

Public	Sub	SupportsX()

				Dim	aintCursorType(4)	As	Integer

				Dim	rstTitles	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	intIndex	As	Integer

				'	Open	connections.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				'	Fill	array	with	CursorType	constants.

				aintCursorType(0)	=	adOpenForwardOnly

				aintCursorType(1)	=	adOpenKeyset

				aintCursorType(2)	=	adOpenDynamic

				aintCursorType(3)	=	adOpenStatic

				

				'	Open	recordset	using	each	CursorType	and	

				'	optimistic	locking.	Then	call	the	DisplaySupport	

				'	procedure	to	display	the	supported	options.

				For	intIndex	=	0	To	3

								Set	rstTitles	=	New	ADODB.Recordset

								rstTitles.CursorType	=	aintCursorType(intIndex)

								rstTitles.LockType	=	adLockOptimistic

								rstTitles.Open	"Titles",	strCnn,	,	,	adCmdTable

								

								Select	Case	aintCursorType(intIndex)

												Case	adOpenForwardOnly

																Debug.Print	"ForwardOnly	cursor	supports:"

												Case	adOpenKeyset

																Debug.Print	"Keyset	cursor	supports:"

												Case	adOpenDynamic

																Debug.Print	"Dynamic	cursor	supports:"

												Case	adOpenStatic

																Debug.Print	"Static	cursor	supports:"

								End	Select

								DisplaySupport	rstTitles

								rstTitles.Close

				Next	intIndex

End	Sub

Public	Sub	DisplaySupport(rstTemp	As	ADODB.Recordset)

				Dim	alngConstants(11)	As	Long

				Dim	booSupports	As	Boolean

				Dim	intIndex	As	Integer

				'	Fill	array	with	cursor	option	constants.

				alngConstants(0)	=	adAddNew

				alngConstants(1)	=	adApproxPosition

				alngConstants(2)	=	adBookmark

				alngConstants(3)	=	adDelete

				alngConstants(4)	=	adFind

				alngConstants(5)	=	adHoldRecords

				alngConstants(6)	=	adMovePrevious

				alngConstants(7)	=	adNotify

				alngConstants(8)	=	adResync

				alngConstants(9)	=	adUpdate

				alngConstants(10)	=	adUpdateBatch

				

				For	intIndex	=	0	To	10

								booSupports	=	_

												rstTemp.Supports(alngConstants(intIndex))

								If	booSupports	Then

												Select	Case	alngConstants(intIndex)

																Case	adAddNew

																				Debug.Print	"			AddNew"

																Case	adApproxPosition

																				Debug.Print	"			AbsolutePosition	and	AbsolutePage"

																Case	adBookmark

																				Debug.Print	"			Bookmark"

																Case	adDelete

																				Debug.Print	"			Delete"

																Case	adFind

																				Debug.Print	"			Find"

																Case	adHoldRecords

																				Debug.Print	"			Holding	Records"

																Case	adMovePrevious

																				Debug.Print	"			MovePrevious	and	Move"

																Case	adNotify

																				Debug.Print	"			Notifications"

																Case	adResync

																				Debug.Print	"			Resyncing	data"

																Case	adUpdate

																				Debug.Print	"			Update"

																Case	adUpdateBatch

																				Debug.Print	"			batch	updating"

												End	Select

								End	If

				Next	intIndex

End	Sub

Type	Property	Example	(Field)	(VB)

This	example	demonstrates	the	Type	property	by	displaying	the	name	of	the
constant	that	corresponds	to	the	value	of	the	Type	property	of	all	the	Field
objects	in	the	Employees	table.	The	FieldType	function	is	required	for	this
procedure	to	run.

Public	Sub	TypeX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	fldLoop	As	ADODB.Field

				Dim	strCnn	As	String

				'	Open	recordset	with	data	from	Employees	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"employee",	strCnn,	,	,	adCmdTable

				Debug.Print	"Fields	in	Employees	Table:"	&	vbCr

				'	Enumerate	Fields	collection	of	Employees	table.

				For	Each	fldLoop	In	rstEmployees.Fields

								Debug.Print	"		Name:	"	&	fldLoop.Name	&	vbCr	&	_

												"		Type:	"	&	FieldType(fldLoop.Type)	&	vbCr

				Next	fldLoop

End	Sub

Public	Function	FieldType(intType	As	Integer)	As	String

				Select	Case	intType

								Case	adChar

												FieldType	=	"adChar"

								Case	adVarChar

												FieldType	=	"adVarChar"

								Case	adSmallInt

												FieldType	=	"adSmallInt"

								Case	adUnsignedTinyInt

												FieldType	=	"adUnsignedTinyInt"

								Case	adDBTimeStamp

												FieldType	=	"adDBTimeStamp"

				End	Select

End	Function

Type	Property	Example	(Property)	(VB)

This	example	demonstrates	the	Type	property.	It	is	a	model	of	a	utility	for	listing
the	names	and	types	of	a	collection,	like	Properties,	Fields,	etc.

We	do	not	need	to	open	the	Recordset	to	access	its	Properties	collection;	they
come	into	existence	when	the	Recordset	object	is	instantiated.	However,	setting
the	CursorLocation	property	to	adUseClient	adds	several	dynamic	properties	to
the	Recordset	object's	Properties	collection,	making	the	example	a	little	more
interesting.	For	sake	of	illustration,	we	explicitly	use	the	Item	property	to	access
each	Property	object.

Public	Sub	Main()

				TypeX

End	Sub

Public	Sub	TypeX()

Dim	rst	As	ADODB.Recordset

Dim	prop	As	ADODB.Property

Dim	ix	As	Integer

Dim	strMsg	As	String

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseClient

For	ix	=	0	To	rst.Properties.Count	-	1

Set	prop	=	rst.Properties.Item(ix)

Select	Case	prop.Type

				Case	adBigInt

								strMsg	=	"adBigInt"

				Case	adBinary

								strMsg	=	"adBinary"

				Case	adBoolean

								strMsg	=	"adBoolean"

				Case	adBSTR

								strMsg	=	"adBSTR"

				Case	adChapter

								strMsg	=	"adChapter"

				Case	adChar

								strMsg	=	"adChar"

				Case	adCurrency

								strMsg	=	"adCurrency"

				Case	adDate

								strMsg	=	"adDate"

				Case	adDBDate

								strMsg	=	"adDBDate"

			Case	adDBTime

								strMsg	=	"adDBTime"

				Case	adDBTimeStamp

								strMsg	=	"adDBTimeStamp"

				Case	adDecimal

								strMsg	=	"adDecimal"

				Case	adDouble

								strMsg	=	"adDouble"

				Case	adEmpty

								strMsg	=	"adEmpty"

				Case	adError

								strMsg	=	"adError"

				Case	adFileTime

								strMsg	=	"adFileTime"

				Case	adGUID

								strMsg	=	"adGUID"

				Case	adIDispatch

								strMsg	=	"adIDispatch"

				Case	adInteger

								strMsg	=	"adInteger"

				Case	adIUnknown

								strMsg	=	"adIUnknown"

				Case	adLongVarBinary

								strMsg	=	"adLongVarBinary"

				Case	adLongVarChar

								strMsg	=	"adLongVarChar"

				Case	adLongVarWChar

								strMsg	=	"adLongVarWChar"

				Case	adNumeric

								strMsg	=	"adNumeric"

				Case	adPropVariant

								strMsg	=	"adPropVariant"

				Case	adSingle

								strMsg	=	"adSingle"

				Case	adSmallInt

								strMsg	=	"adSmallInt"

				Case	adTinyInt

								strMsg	=	"adTinyInt"

				Case	adUnsignedBigInt

								strMsg	=	"adUnsignedBigInt"

				Case	adUnsignedInt

								strMsg	=	"adUnsignedInt"

				Case	adUnsignedSmallInt

								strMsg	=	"adUnsignedSmallInt"

				Case	adUnsignedTinyInt

								strMsg	=	"adUnsignedTinyInt"

				Case	adUserDefined

								strMsg	=	"adUserDefined"

				Case	adVarBinary

								strMsg	=	"adVarBinary"

				Case	adVarChar

								strMsg	=	"adVarChar"

				Case	adVariant

								strMsg	=	"adVariant"

				Case	adVarNumeric

								strMsg	=	"adVarNumeric"

				Case	adVarWChar

								strMsg	=	"adVarWChar"

				Case	adWChar

								strMsg	=	"adWChar"

				Case	Else

								strMsg	=	"*UNKNOWN*"

End	Select

Debug.Print	"Property	"	&	ix	&	":	"	&	prop.Name	&	_

																",	Type	=	"	&	strMsg

Next	ix

End	Sub

Update	and	CancelUpdate	Methods	Example	(VB)

This	example	demonstrates	the	Update	method	in	conjunction	with	the
CancelUpdate	method.

Public	Sub	UpdateX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strOldFirst	As	String

				Dim	strOldLast	As	String

				Dim	strMessage	As	String

				'	Open	recordset	with	names	from	Employees	table.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.CursorType	=	adOpenKeyset

				rstEmployees.LockType	=	adLockOptimistic

				rstEmployees.Open	"SELECT	fname,	lname	"	&	_

								"FROM	Employees	ORDER	BY	lname",	strCnn,	,	,	adCmdText

				'	Store	original	data.

				strOldFirst	=	rstEmployees!fname

				strOldLast	=	rstEmployees!lname

				'	Change	data	in	edit	buffer.

				rstEmployees!fname	=	"Linda"

				rstEmployees!lname	=	"Kobara"

				'	Show	contents	of	buffer	and	get	user	input.

				strMessage	=	"Edit	in	progress:"	&	vbCr	&	_

								"		Original	data	=	"	&	strOldFirst	&	"	"	&	_

								strOldLast	&	vbCr	&	"		Data	in	buffer	=	"	&	_

								rstEmployees!fname	&	"	"	&	rstEmployees!lname	&	vbCr	&	vbCr	&	_

								"Use	Update	to	replace	the	original	data	with	"	&	_

								"the	buffered	data	in	the	Recordset?"

				If	MsgBox(strMessage,	vbYesNo)	=	vbYes	Then

								rstEmployees.Update

				Else

								rstEmployees.CancelUpdate

				End	If

				'	Show	the	resulting	data.

				MsgBox	"Data	in	recordset	=	"	&	rstEmployees!fname	&	"	"	&	_

								rstEmployees!lname

				'	Restore	original	data	because	this	is	a	demonstration.

				If	Not	(strOldFirst	=	rstEmployees!fname	And	_

												strOldLast	=	rstEmployees!lname)	Then

								rstEmployees!fname	=	strOldFirst

								rstEmployees!lname	=	strOldLast

								rstEmployees.Update

				End	If

				rstEmployees.Close

End	Sub

This	example	demonstrates	the	Update	method	in	conjunction	with	the	AddNew
method.

Public	Sub	UpdateX2()

				Dim	cnn1	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	strEmpID	As	String

				Dim	strOldFirst	As	String

				Dim	strOldLast	As	String

				Dim	strMessage	As	String

				'	Open	a	connection.

				Set	cnn1	=	New	ADODB.Connection

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				cnn1.Open	strCnn

				'	Open	recordset	with	data	from	Employees	table.

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.CursorType	=	adOpenKeyset

				rstEmployees.LockType	=	adLockOptimistic

				rstEmployees.Open	"employee",	cnn1,	,	,	adCmdTable

				rstEmployees.AddNew

				strEmpID	=	"B-S55555M"

				rstEmployees!emp_id	=	strEmpID

				rstEmployees!fname	=	"Bill"

				rstEmployees!lname	=	"Sornsin"

				'	Show	contents	of	buffer	and	get	user	input.

				strMessage	=	"AddNew	in	progress:"	&	vbCr	&	_

								"Data	in	buffer	=	"	&	rstEmployees!emp_id	&	",	"	&	_

								rstEmployees!fname	&	"	"	&	rstEmployees!lname	&	vbCr	&	vbCr	&	_

								"Use	Update	to	save	buffer	to	recordset?"

				If	MsgBox(strMessage,	vbYesNoCancel)	=	vbYes	Then

								rstEmployees.Update

								'	Go	to	the	new	record	and	show	the	resulting	data.

								MsgBox	"Data	in	recordset	=	"	&	rstEmployees!emp_id	&	",	"	&	_

													rstEmployees!fname	&	"	"	&	rstEmployees!lname

				Else

								rstEmployees.CancelUpdate

								MsgBox	"No	new	record	added."

				End	If

				'	Delete	new	data	because	this	is	a	demonstration.

				cnn1.Execute	"DELETE	FROM	employee	WHERE	emp_id	=	'"	&	strEmpID	&	"'"

				

				rstEmployees.Close

End	Sub

UpdateBatch	and	CancelBatch	Methods	Example	(VB)

This	example	demonstrates	the	UpdateBatch	method	in	conjunction	with	the
CancelBatch	method.

Public	Sub	UpdateBatchX()

				Dim	rstTitles	As	ADODB.Recordset

				Dim	strCnn	As	String

				Dim	strTitle	As	String

				Dim	strMessage	As	String

				'	Assign	connection	string	to	variable.

								strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstTitles	=	New	ADODB.Recordset

				rstTitles.CursorType	=	adOpenKeyset

				rstTitles.LockType	=	adLockBatchOptimistic

				rstTitles.Open	"Titles",	strCnn,	,	,	adCmdTable

				

				rstTitles.MoveFirst

				'	Loop	through	recordset	and	ask	user	if	she	wants	

				'	to	change	the	type	for	a	specified	title.

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"psychology"	Then

												strTitle	=	rstTitles!Title

												strMessage	=	"Title:	"	&	strTitle	&	vbCr	&	_

																"Change	type	to	self	help?"

												If	MsgBox(strMessage,	vbYesNo)	=	vbYes	Then

																rstTitles!Type	=	"self_help"

												End	If

								End	If

								rstTitles.MoveNext

				Loop

				'	Ask	the	user	if	she	wants	to	commit	to	all	the	

				'	changes	made	above.

				If	MsgBox("Save	all	changes?",	vbYesNo)	=	vbYes	Then

								rstTitles.UpdateBatch

				Else

								rstTitles.CancelBatch

				End	If

				'	Print	current	data	in	recordset.

				rstTitles.Requery

				rstTitles.MoveFirst

				Do	While	Not	rstTitles.EOF

								Debug.Print	rstTitles!Title	&	"	-	"	&	rstTitles!Type

								rstTitles.MoveNext

				Loop

				'	Restore	original	values	because	this	is	a	demonstration.

				rstTitles.MoveFirst

				Do	Until	rstTitles.EOF

								If	Trim(rstTitles!Type)	=	"self_help"	Then

												rstTitles!Type	=	"psychology"

								End	If

								rstTitles.MoveNext

				Loop

				rstTitles.UpdateBatch

				rstTitles.Close

End	Sub

Value	Property	Example	(VB)

This	example	demonstrates	the	Value	property	with	Field	and	Property	objects
by	displaying	field	and	property	values	for	the	Employees	table.

Public	Sub	ValueX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	fldLoop	As	ADODB.Field

				Dim	prpLoop	As	ADODB.Property

				Dim	strCnn	As	String

				'	Open	recordset	with	data	from	Employees	table.

				strCnn	=	"Provider=sqloledb;"	&	_

								"Data	Source=srv;Initial	Catalog=Pubs;User	Id=sa;Password=;	"

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"employee",	strCnn,	,	,	adCmdTable

				Debug.Print	"Field	values	in	rstEmployees"

				'	Enumerate	the	Fields	collection	of	the	Employees

				'	table.

				For	Each	fldLoop	In	rstEmployees.Fields

								'	Because	Value	is	the	default	property	of	a	

								'	Field	object,	the	use	of	the	actual	keyword

								'	here	is	optional.

								Debug.Print	"				"	&	fldLoop.Name	&	"	=	"	&	fldLoop.Value

				Next	fldLoop

				Debug.Print	"Property	values	in	rstEmployees"

				'	Enumerate	the	Properties	collection	of	the

				'	Recordset	object.

				For	Each	prpLoop	In	rstEmployees.Properties

								'	Because	Value	is	the	default	property	of	a	

								'	Property	object,	the	use	of	the	actual	keyword

								'	here	is	optional.

								Debug.Print	"				"	&	prpLoop.Name	&	"	=	"	&	prpLoop.Value

				Next	prpLoop

				rstEmployees.Close

End	Sub

Version	Property	Example	(VB)

This	example	uses	the	Version	property	of	a	Connection	object	to	display	the
current	ADO	version.	It	also	uses	several	dynamic	properties	to	show:

the	current	DBMS	name	and	version.

OLE	DB	version.

provider	name	and	version.

ODBC	version.

ODBC	driver	name	and	version.

Public	Sub	VersionX()

				Dim	cnn1	As	ADODB.Connection

				'	Open	connection.

				Set	cnn1	=	New	ADODB.Connection

				strCnn	=	"driver={SQL	Server};server=srv;"	&	_

								"user	id=sa;password=;database=Pubs;"

				cnn1.Open	strCnn

				

				strVersionInfo	=	"ADO	Version:	"	&	cnn1.Version	&	vbCr	&	_

				"DBMS	Name:	"	&	cnn1.Properties("DBMS	Name")	&	vbCr	&	_

				"DBMS	Version:	"	&	cnn1.Properties("DBMS	Version")	&	vbCr	&	_

				"OLE	DB	Version:	"	&	cnn1.Properties("OLE	DB	Version")	&	vbCr	&	_

				"Provider	Name:	"	&	cnn1.Properties("Provider	Name")	&	vbCr	&	_

				"Provider	Version:	"	&	cnn1.Properties("Provider	Version")	&	vbCr	&	_

				"Driver	Name:	"	&	cnn1.Properties("Driver	Name")	&	vbCr	&	_

				"Driver	Version:	"	&	cnn1.Properties("Driver	Version")	&	vbCr	&	_

				"Driver	ODBC	Version:	"	&	cnn1.Properties("Driver	ODBC	Version")

				MsgBox	strVersionInfo

				cnn1.Close

End	Sub

ADO	Code	Examples	in	Microsoft	Visual	Basic
Scripting	Edition

Use	the	following	code	examples	to	learn	about	how	to	use	the	ADO	objects,
methods,	and	properties	when	writing	in	Visual	Basic	Scripting	Edition
(VBScript).

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Objects

DataControl	Object	Example
DataSpace	Object

DataFactory	Object

Methods

AddNew	Method	Example

Cancel	Method	Example

CancelUpdate	Method	Example

Clone	Method	Example

ConvertToString	Method	Example

CreateObject	Method	and	DataSpace	Object	Example

CreateObject	and	Query	Methods	and	DataFactory	Object	Example

CreateRecordset	Method	Example

Delete	Method	Example

Execute,	Requery,	and	Clear	Methods	Example

Move	Method	Example

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods	Example

Open	and	Close	Methods	Example

Query	Method	Example

Refresh	Method	Example

SubmitChanges	Method	Example

Properties

Connect	Property	Example

ExecuteOptions	and	FetchOptions	Properties	Example

FilterColumn,	FilterCriterion,	FilterValue,	SortColumn,	and	SortDirection
Properties	and	Reset	Method	Example

Recordset	and	SourceRecordset	Properties	Example

ReadyState	Property	Example

Server	Property	Example

SQL	Property	Example

URL	Property	Example

AddNew	Method	Example	(VBScript)

This	example	uses	the	AddNew	method	to	create	a	new	record	with	the	specified
name.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	to	Notepad	or	another	text	editor,	and	save
it	as	AddNew.asp.	You	can	view	the	result	in	any	client	browser.

To	exercise	the	example,	add	a	new	fictional	record	in	the	HTML	form.	Click
Add	New.	See	the	Delete	Method	Example	to	remove	unwanted	records.

<%@Language	=	VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML>

<HEAD>

<TITLE>ADO	Open	Method</TITLE>

<STYLE>

<!--

TH	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	xx-small;

				color:	white;

				}

TD	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	xx-small;

					}

-->

</STYLE>

</HEAD>

<BODY>	

<Center><H3>ADO	AddNew	Method</H3>

<!--	ADO	Connection	Object	used	to	create	recordset-->

<%	

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")

OBJdbConn.Open		sConnStr

'Create	and	Open	Recordset	Object

Set	RsCustomerList	=	Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection	=	OBJdbConn

RsCustomerList.CursorType	=	adOpenKeyset

RsCustomerList.LockType	=	adLockOptimistic

RsCustomerList.Source	=	"Customers"

RsCustomerList.Open

%>

<!—

If	this	is	first	time	page	is	open,	Form	collection	will	be	empty	when	data	is	entered.	

run	AddNew	method

-->

<%	If	Not	IsEmpty(Request.Form)	Then

				If	Not	Request.Form("CompanyName")	=	""	Then

								RsCustomerList.AddNew

								RsCustomerList("CompanyName")	=	Request.Form("CompanyName")

								RsCustomerList("ContactLastName")	=	Request.Form("LastName")

								RsCustomerList("ContactFirstName")	=	Request.Form("FirstName")

								RsCustomerList("PhoneNumber")	=	Request.Form("PhoneNumber")

								RsCustomerList("City")	=	Request.Form("City")

								RsCustomerList("StateOrProvince")	=	Request.Form("State")

								RsCustomerList.Update

								RsCustomerList.MoveFirst

				End	If

End	If

%>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TR>

<TD>Company	Name</TD>

<TD>Contact	Name</TD>

<TD>Phone	Number</TD>

<TD>City</TD>

<TD>State/Province</TD>

</TR>

<!--Display	ADO	Data	from	Customer	Table	

one	row	on	each	pass	through	recordset-->

<%	Do	While	Not	RsCustomerList.EOF	%>

<TR>

		<TD>	<%=	RSCustomerList("CompanyName")%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")	&	",	"	%>	

							<%=	RScustomerList("ContactFirstName")	%>	</TD>

		<TD>	<%=	RScustomerList("PhoneNumber")%>	</TD>

		<TD>	<%=	RScustomerList("City")%>	</TD>

		<TD>	<%=	RScustomerList("StateOrProvince")%>	</TD>

</TR>	

<!--	Next	Row	=	Record	Loop	and	add	to	row	html	table-->

<%	

		RScustomerList.MoveNext	

Loop	

%>

</TABLE>	

<HR>

<!--	Form	to	enter	new	record	posts	variables	back	to	this	page	-->

<Form	Method=Post	Action="AddNew.asp"	Name=Form>

<TABLE>

<TR>

<TD>Company	Name:</TD>

<TD><Input	Type="Text"	Size="50"	Name="CompanyName"	Value	=	""></TD>

<TR>

<TD>Contact	First	Name:</TD>

<TD><Input	Type="Text"	Size="50"	Name="FirstName"	Value	=	""></TD>

<TR>

<TD>Contact	Last	Name:</TD>

<TD><Input	Type="Text"	Size="50"	Name="LastName"	Value	=	""></TD>

<TR>

<TD>Contact	Phone:</TD>

<TD><Input	Type="Text"	Size="50"	Name="PhoneNumber"	Value	=	""></TD>

<TR>

<TD>City:</TD>

<TD><Input	Type="Text"	Size="50"	Name="City"	Value	=	""></TD>

<TR>

<TD>State	/	Province:</TD>

<TD><Input	Type="Text"	Size="5"	Name="State"	Value	=	""></TD>

<TR>

<TD><Input	Type="Submit"	Value="Add	New">

				<Input	Type="Reset"	Value="Reset	Form">

</TABLE>

</Form>

<%'Show	location	of	data	source

Response.Write(OBJdbConn)

%>

<Script	Language	=	"VBScript">

Sub	Form_OnSubmit

				MsgBox	"Sending	New	Record	to	Server",,"ADO-ASP	_Example"

End	Sub

</Script>

</BODY>

</HTML>

Cancel	Method	Example	(VBScript)

The	following	example	shows	how	to	read	the	Cancel	method	at	run	time.

<Script	Language="VBScript">

<!--

Sub	cmdCancelAsync

		ADC.Cancel

			'	Terminates	currently	running	AsyncExecute,

			'	ReadyState	property	set	to	adcReadyStateLoaded,

			'	Recordset	set	to	Nothing

End	Sub

-->

</Script>

CancelUpdate	Method	Example	(VBScript)

To	test	this	example,	cut	and	paste	this	code	between	the	<Body></Body>	tags
in	a	normal	HTML	document	and	name	it	ADCapi6.asp.	ASP	script	will
identify	your	server.

<Center>

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Remote	Data	Service	SubmitChanges	and	CancelUpdate	Methods</H3>

<!--	RDS.DataControl	with	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	HEIGHT=1	WIDTH=1>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

</OBJECT>

<TABLE	DATASRC="#ADC">

<THEAD>

<TR	ID="ColHeaders">

				<TH>ID</TH>

				<TH>FName</TH>

				<TH>LName</TH>

				<TH>Name</TH>

				<TH>Title</TH>

				<TH>Type</TH>

				<TH>Email</TH>

				<TH>MgrEmail</TH>

				<TH>Bldg</TH>

				<TH>Rm</TH>

				<TH>Phone</TH>

</TR>

</THEAD>

<TBODY>

<TR>

				<TD>	<INPUT	DATAFLD="ID"	size=4>	</TD>

				<TD>	<INPUT	DATAFLD="FirstName"	size=10>	</TD>

				<TD>	<INPUT	DATAFLD="LastName"	size=10>	</TD>

				<TD>	<INPUT	DATAFLD="Name"	size=15>	</TD>

				<TD>	<INPUT	DATAFLD="Title"	size=20>	</TD>

				<TD>	<INPUT	DATAFLD="Type"	size=10>	</TD>

				<TD>	<INPUT	DATAFLD="Email"	size=10>	</TD>

				<TD>	<INPUT	DATAFLD="ManagerEmail"	size=10>	</TD>

				<TD>	<INPUT	DATAFLD="Building"	size=3>	</TD>

				<TD>	<INPUT	DATAFLD="Room"	size=5>	</TD>

				<TD>	<INPUT	DATAFLD="Phone"	size=8>	</TD>

</TR>

</TBODY>

</TABLE>

<HR>

<INPUT	TYPE=BUTTON	NAME="SubmitChange"	VALUE="Submit	Changes"><INPUT	TYPE=BUTTON	NAME="CancelChange"	VALUE="Cancel	Update">

<H4>Add	a	new	person	or	alter	a	current	entry	on	the	grid.	Move	off	that	Row.	

Submit	the	Changes	to	your	DBMS	or	cancel	the	updates.	</H4>

</Center>

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	SubmitChange_OnClick

				RDS.SubmitChanges				

				RDS.Refresh

End	Sub

Sub	CancelUpdate_OnClick

				RDS.CancelUpdate

End	Sub

-->

</Script>

Clone	Method	Example	(VBScript)

This	example	uses	the	Clone	method	to	create	copies	of	a	Recordset	and	then
lets	the	user	position	the	record	pointer	of	each	copy	independently.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	need	to	create	a	system	Data	Source	Name	(DSN)
called	AdvWorks	using	the	data	source	AdvWorks.mdb	installed	with	IIS	and
located	at	C:\InetPub\ASPSamp\AdvWorks.	This	is	a	Microsoft	Access	database
file.	Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan
to	use.	Cut	and	paste	the	following	code	to	Notepad	or	another	text	editor	and
save	it	as	Clone.asp.	You	can	view	the	result	in	any	client	browser.

To	exercise	the	example,	change	the	line	RsCustomerList.Source	=
"Customers"	to	RsCustomerList.Source	=	"Products"	to	count	a	larger	table.

<!--	#Include	file="ADOVBS.INC"	-->

<%	Language	=	VBScript	%>

<HTML>

<HEAD>

<TITLE>ADO	Clone	Method</TITLE>

</HEAD>

<BODY>

<H3>ADO	Clone	Method</H3>

<!---	ADO	Connection	Object	used	to	Create	recordset-->

<%	

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")	

OBJdbConn.Open		sConnStr

'Create	and	open	Recordset	object

Set	RsCustomerList	=	Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection	=	OBJdbConn

RsCustomerList.CursorType	=	adOpenKeyset

RsCustomerList.LockType	=	adLockOptimistic

RsCustomerList.Source	=	"Customers"

RsCustomerList.Open

%>

<!--	Loop	through	Customers	Table,	adding	1	to	the	Counter	variable	each	pass	-->

<%	

				Set	MyRecordset	=	RSCustomerList.Clone

				Counter	=	0

				Do	Until	MyRecordset.EOF

								Counter	=	Counter	+	1

								MyRecordset.MoveNext

				Loop

%>

<!--	Display	Results	-->

<H3>There	Are	<%=Counter	%>	Records	in	the	Customers	Table</H3>

<HR>

<H4>Location	of	DSN	Datbase</H4>

<%'	Show	location	of	DSN	data	source

Response.Write(OBJdbConn)

%>

</BODY>

</HTML>

Connect	Property	Example	(VBScript)

This	code	shows	how	to	set	the	Connect	property	at	design	time:

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="ADC1">

.

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Sales">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=sa;Password=;Initial	Catalog=Pubs">

				<PARAM	NAME="Server"	VALUE="http://MyWebServer">

.

</OBJECT>

The	following	example	shows	how	to	set	the	Connect	property	at	run	time	in
VBScript	code.

To	test	this	example,	cut	and	paste	this	code	between	the	<Body></Body>	tags
in	a	normal	HTML	document	and	name	it	adcapi3.asp.	ASP	script	will	identify
your	server.

<H2>RDS	API	Code	Examples	</H2>

<HR>

<H3>Set	Connect	Property	at	Run	Time</H3>

<!--	RDS.DataControl	with	no	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	HEIGHT=1	WIDTH=1>

</OBJECT>

<TABLE	DATASRC=#RDS>

<TBODY>

		<TR>

				<TD></TD>

				<TD></TD>

		</TR>

</TBODY>								

</TABLE>

SERVER:	<Input	Size=70	Name="txtServer"	Value="http://<%=Request.ServerVariables("SERVER_NAME")%>">

CONNECT:	<Input	Size=70	Name="txtConnect">

SQL:	<Input	Size=70	Name="txtSQL"	Value="Select	*	from	Employee">

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

To	Fill	Grid	enter	Connect	String	in	middle	text	box,	try
	

Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	Run_OnClick

				RDS.Server	=	txtServer.Value

				RDS.SQL	=	txtSQL.Value

				RDS.Connect	=	txtConnect.Value

				RDS.Refresh

End	Sub

-->

</Script>

ConvertToString	Method	Example	(VBScript)

The	following	example	shows	how	to	convert	a	Recordset	into	a	MIME
encoded	string	using	the	RDSServer.DataFactory	ConvertToString	method.	It
then	shows	how	the	string	can	be	converted	back	into	a	Recordset.

<HTML>

<HEAD><TITLE>ConverToString	Example</TITLE><HEAD>

<BODY>

<SCRIPT	LANGUAGE=VBSCRIPT>

Sub	ConvertToStringX()

				Dim	objRs,	objDF,	strServer,	vString

				Const	adcExecSync	=	1

				Const	adcFetchUpFront	=	1

				'	Replace	value	below	with	your	server	name	to	use	without	ASP.

				strServer	=	"http://<%=Request.ServerVariables("SERVER_NAME")%>"

				Set	objDF	=	RDS1.CreateObject("RDSServer.DataFactory",	strServer)

				Set	objRs	=	objDF.Query(txtConnect.Value,txtQueryRecordset.Value)

				'	convert	Recordset	to	MIME	encoded	string

				vString	=	objDF.ConvertToString(objRs)

				'	display	MIME	string	for	demo	purposes

				txtRS.value	=	vString

				'	convert	MIME	string	back	to	useable	ADO	Recordset	

				'	using	RDS.DataControl

				RDC1.SQL	=	vString

				RDC1.ExecuteOptions	=	adcExecSync

				RDC1.FetchOptions	=	adcFetchUpFront

				RDC1.Refresh

				MsgBox	"RecordCount	=	"	&	RDC1.Recordset.RecordCount

End	Sub	

</SCRIPT>

Connect	String:	

	<INPUT	TYPE=Text	NAME=txtConnect	SIZE=50	

				VALUE="Provider=sqloledb;Initial	Catalog=pubs;User	Id=sa;Password=;">	

	

Query:	

	<INPUT	TYPE=Text	NAME=txtQueryRecordset	SIZE=50	

				VALUE="select	*	from	jobs">	

	

	<INPUT	TYPE=Button	VALUE="ConvertToString"	OnClick="ConvertToStringX()">

	

MIME	Encoded	RS:	

	<TEXTAREA	NAME=txtRS	ROWS=15	COLS=50	WRAP=virtual></TEXTAREA>

<!--	RDS.DataSpace		ID	RDS1	-->

	<OBJECT	ID="RDS1"	WIDTH=1	HEIGHT=1

					CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">

	</OBJECT>

<!--	RDS.DataControl	ID	RDC1	-->

	<OBJECT	ID="RDC1"	WIDTH=1	HEIGHT=1	

					CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33">

	</OBJECT>

</BODY>

</HTML>

CreateRecordset	Method	Example	(VBScript)

This	code	example	creates	a	Recordset	on	the	server	side.	It	has	two	columns
with	four	rows	each.

Sub	CreateARecordSet

				Dim	ColInfo(1),	c0(3),	c1(3)

				c0(0)	=	"Name"												'	Column	name.	

				c0(1)	=	CInt(129)								'	Column	type	(129	=	adChar).

				c0(2)	=	CInt(40)								'	Column	size.

				c0(3)	=	False												'	Is	the	column	nullable?

				c1(0)	=	"Age"												'	Column	name.	

				c1(1)	=	CInt(3)								'	Column	type	(3	=	adInteger).

				c1(2)	=	CInt(-1)								'	Column	size.

				c1(3)	=	True												'	Is	the	column	nullable?

				'	Add	the	columns	to	the	recordset	definition.

				ColInfo(0)	=	c0

				ColInfo(1)	=	c1

				ADC1.SourceRecordset	=	ADF1.CreateRecordset(ColInfo)

End	Sub

DataControl	Object	Example	(VBScript)

The	following	code	shows	how	to	set	the	RDS.DataControl	parameters	at	design
time	and	bind	them	to	a	data-aware	control.	Cut	and	paste	this	code	between	the
<Body></Body>	tags	in	a	normal	HTML	document	and	name	it	ADCapi1.asp.
ASP	script	will	identify	your	server.

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Remote	Data	Service</H3>

<TABLE	DATASRC=#RDS>

<TBODY>

				<TR>

								<TD></TD>

								<TD></TD>

				</TR>

</TBODY>

</TABLE>

<!--	Remote	Data	Service	with	Parameters	set	at	Design	Time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee	for	browse">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

</OBJECT>

The	following	example	shows	how	to	set	the	necessary	parameters	of
RDS.DataControl	at	run	time.	To	test	this	example,	cut	and	paste	this	code
between	the	<Body></Body>	tags	in	a	normal	HTML	document	and	name	it
ADCapi2.asp.	ASP	script	will	identify	your	server.

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Remote	Data	Service	Run	Time</H3>

<TABLE	DATASRC=#RDS>

<TBODY>

		<TR>

				<TD></TD>

				<TD></TD>

		</TR>

</TBODY>

</TABLE>

<!--	RDS.DataControl	with	no	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	HEIGHT=1	WIDTH=1>

</OBJECT>

<HR>

<Input	Size=70	Name="txtServer"	Value="http://<%=Request.ServerVariables("SERVER_NAME")%>">

<Input	Size=70	Name="txtConnect"	Value="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

<Input	Size=70	Name="txtSQL"	Value="Select	*	from	Employee">

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<H4>Fill	Grid	with	these	values	or	change	them	to	see	data	from	another	ODBC	data	source	on	your	server</H4>

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	Run_OnClick

				RDS.Server	=	txtServer.Value

				RDS.SQL	=	txtSQL.Value

				RDS.Connect	=	txtConnect.Value

				RDS.Refresh

End	Sub

-->

</Script>

DataSpace	Object	and	CreateObject	Method	Example	(VBScript)

The	following	example	shows	how	to	use	the	CreateObject	method	of	the
RDS.DataSpace	with	the	default	business	object,	RDSServer.DataFactory.	To
test	this	example,	cut	and	paste	this	code	between	the	<Body></Body>	tags	in	a
normal	HTML	document	and	name	it	ADCapi8.asp.	ASP	script	will	identify
your	server.

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Using	Query	Method	of	RDSServer.DataFactory</H3>

<!--	RDS.DataSpace		ID	RDS1-->

<OBJECT	ID="RDS1"	WIDTH=1	HEIGHT=1

CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">

</OBJECT>

<!--	RDS.DataControl	with	parameters	set	at	run	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	WIDTH=1	HEIGHT=1>

</OBJECT>

<TABLE	DATASRC=#RDS>

<TBODY>

		<TR>

				<TD></TD>

				<TD></TD>

		</TR>

</TBODY>

</TABLE>

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<H4>Click	Run.	The	CreateObject	Method	of	the	RDS.DataSpace	Object	Creates	an	instance	of	the	RDSServer.DataFactory.

The	Query	Method	of	the	RDSServer.DataFactory	is	used	to	bring	back	a	Recordset.</H4>

<Script	Language="VBScript">

<!--

Dim	DF

Dim	strServer

Dim	strConnect

Dim	strSQL

strServer	=	"http://<%=Request.ServerVariables("SERVER_NAME")%>"

strConnect	=	"Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;"	&	_

																		"Initial	Catalog=AddrBookDB;Data	Source=MyServer;"

strSQL	=	"Select	*	from	Employee"

Sub	Run_OnClick()

				Dim	objADORs						'Create	Recordset	Object

				Set	DF	=	RDS1.CreateObject("RDSServer.DataFactory",	strServer)						'Get	Recordset		

				Set	objADORs	=	DF.Query(strConnect,	strSQL)			

				'	Use		RDS.DataControl	to	bind	Recordset	to	Data

				'	Aware	Grid	Control

				RDS.SourceRecordset	=	objADORs

End	Sub

-->

</Script>

The	following	example	shows	how	to	use	the	CreateObject	method	to	create	an
instance	of	a	custom	business	object,	VbBusObj.VbBusObjCls.	It	also	uses	the
Active	Server	Pages	scripting	to	identify	the	Web	server	name.	To	see	the
complete	example,	choose	"VBScript	in	Internet	Explorer"	in	the	Client	Tier
column	and	"Custom	Visual	Basic	Business	Object"	in	the	Middle	Tier	column
from	the	sample	applications	selector.

Sub	Window_OnLoad()

				strServer	=	"http://<%=Request.ServerVariables("SERVER_NAME")%>"

				Set	BO	=	ADS1.CreateObject("VbBusObj.VbBusObjCls",	strServer)

				txtConnect.Value	=	"dsn=Pubs;uid=sa;pwd=;"

				txtGetRecordset.Value	=	"Select	*	From	authors	for	Browse"

End	Sub

DataFactory	Object,	Query	Method,	and	CreateObject	Method
Example	(VBScript)

This	example	creates	an	RDSServer.DataFactory	object	using	the	CreateObject
method	of	the	RDS.DataSpace	object.	To	test	this	example,	cut	and	paste	this
code	between	the	<Body></Body>	tags	in	a	normal	HTML	document	and	name
it	ADCapi7.asp.	ASP	script	will	identify	your	server.

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Using	Query	Method	of	RDSServer.DataFactory</H3>

<!--	RDS.DataSpace		ID	RDS1-->

<OBJECT	ID="RDS1"	WIDTH=1	HEIGHT=1

CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">

</OBJECT>

<!--	RDS.DataControl	with	parameters	

set	at	run	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	WIDTH=1	HEIGHT=1>

</OBJECT>

<TABLE	DATASRC=#RDS>

<TBODY>

		<TR>

				<TD></TD>

				<TD></TD>

		</TR>

</TBODY>				

</TABLE>

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<H4>Click	Run.	The	CreateObject	Method	of	the

RDS.DataSpace	Object	Creates	an	instance	of	the

RDSServer.DataFactory.	

The	Query	Method	of	the	RDSServer.DataFactory	is	used

to	bring	back	a	Recordset.	</H4>

<Script	Language="VBScript">

<!--

Dim	DF

Dim	strServer

Dim	strConnect

Dim	strSQL

strServer	=	"http://<%=Request.ServerVariables("SERVER_NAME")%>"

strConnect	=	"Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB"

strSQL	=	"Select	*	from	Employee"

Sub	Run_OnClick()

'	Create	RDSServer.DataFactory	Object

				Dim	objADORs

'	Get	Recordset

				Set	DF	=	RDS1.CreateObject("RDSServer.DataFactory",	strServer)

				Set	objADORs	=	DF.Query(strConnect,	strSQL)

'	Set	parameters	of	RDS.DataControl	at	Run	Time

				RDS.Server	=	strServer

				RDS.SQL	=	strSQL

				RDS.Connect	=	strConnect

				RDS.Refresh

End	Sub

-->

</Script>

Delete	Method	Example	(VBScript)

This	example	uses	the	Delete	method	to	remove	a	specified	record	from	a
Recordset.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	into	Notepad	or	another	text	editor,	and
save	it	as	AddNew.asp.	You	can	view	the	result	in	any	client	browser.

To	exercise	the	example,	try	using	the	AddNew	example	first	to	add	some
records.	Then	you	can	try	to	delete	them.	View	the	result	in	any	client	browser.

<%@	Language=VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML>

<HEAD>

<TITLE>ADO	Delete	Method</TITLE>

</HEAD>

<STYLE>

<!--

TH	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	xx-small;

				color:	white;

				}

TD	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	xx-small;

					}

-->

</STYLE>

<BODY>	

<H3>ADO	Delete	Method</H3>

<!---	ADO	Connection	Object	used	to	Create	recordset-->

<%	

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")	

OBJdbConn.Open		sConnStr

'Create	and	Open	Recordset	Object

Set	RsCustomerList	=	Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection	=	OBJdbConn

RsCustomerList.CursorType	=	adOpenKeyset

RsCustomerList.LockType	=	adLockOptimistic

RsCustomerList.Source	=	"Customers"

RsCustomerList.Open

%>

<!--	Move	to	designated	record	and	delete	it	-->

<%	

If	Not	IsEmpty(Request.Form("WhichRecord"))	Then

				'Get	value	to	move	from	Form	Post	method

				Moves	=	Request.Form("WhichRecord")

				RsCustomerList.Move	CInt(Moves)

				If	Not	RsCustomerList.EOF	or	RsCustomerList.BOF	Then

								RsCustomerList.Delete	1

								RsCustomerList.MoveFirst

				Else

								Response.Write	"Not	a	Valid	Record	Number"

								RsCustomerList.MoveFirst

				End	If

End	If

%>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<TR>

				<TH>Rec.	#</TH>

				<TH>Company	Name</TH>

				<TH>Contact	Name</TH>

				<TH>Phone	Number</TH>

				<TH>City</TH>

				<TH>State/Province</TH>

</TR>

<!--Display	ADO	Data	from	Customer	Table	Loop	through	Recordset	adding

One	Row	to	HTML	Table	each	pass-->

<%	

iCount	=	0

Do	While	Not	RsCustomerList.EOF	%>

<TR>

		<TD>	<%=	CStr(iCount)	%>

		<TD>	<%=	RSCustomerList("CompanyName")%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")	&	",	"	%>	

							<%=	RScustomerList("ContactFirstName")	%>	

		</TD>

		<TD>	<%=	RScustomerList("PhoneNumber")%>	</TD>

		<TD>	<%=	RScustomerList("City")%>	</TD>

		<TD>	<%=	RScustomerList("StateOrProvince")%>	</TD>

</TR>

<!-Next	Row	=	Record	Loop	and	add	to	html	table-->

<%	

		iCount	=	iCount	+	1

		RScustomerList.MoveNext	

Loop	

%>

</TABLE>

<!--	Do	Client	side	Input	Data	Validation	Move	to	named	record	and	Delete	it	-->

<Center>

<H4>Clicking	Button	Will	Remove	Designated	Record</H4>

<H5>There	are	<%=RsCustomerList.RecordCount%>	Records	in	this	Set</H5>

<Form	Method=Post	Action="Delete.asp"	Name=Form>

<Input	Type=Text	Name="WhichRecord"	Size=3>

</Form>

<Input	Type=Button	Name=cmdDelete	Value="Delete	Record">

</BODY>

<Script	Language	=	"VBScript">

Sub	cmdDelete_OnClick

				If	IsNumeric(Document.Form.WhichRecord.Value)	Then

								Document.Form.WhichRecord.Value	=	CInt(Document.Form.WhichRecord.Value)

								Dim	Response

								Response	=	MsgBox("Are	You	Sure	About	Deleting	This	Record?",	vbYesNo,		"ADO-ASP	Example")

								If	Response	=	vbYes	Then

												Document.Form.Submit

								End	If

				Else

								MsgBox	"You	Must	Enter	a	Valid	Record	Number",,"ADO-ASP	Example"

				End	If

End	Sub

</Script>

</HTML>

Execute,	Requery,	and	Clear	Methods	Example	(VBScript)

This	example	demonstrates	the	Execute	method	when	run	from	both	a
Command	object	and	a	Connection	object.	It	also	uses	the	Requery	method	to
retrieve	current	data	in	a	recordset,	and	the	Clear	method	to	clear	the	contents	of
the	Errors	collection.	The	ExecuteCommand	and	PrintOutput	procedures	are
required	for	this	procedure	to	run.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	into	Notepad	or	another	text	editor,	and
save	it	as	Execute.asp.	You	can	view	the	result	in	any	client	browser.

<%@	Language=VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML>

<HEAD>

<TITLE>ADO	Execute	Method</TITLE>

<STYLE>

<!--

BODY	{

				font-family:	"MS	SANS	SERIF",sans-serif;

					}

.thead1	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.thead2	{

				background-color:	#800000;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.tbody	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

					}

-->

</STYLE>

</HEAD>

<BODY>	

<H3>ADO	Execute	Method</H3>

<HR>

<H4>Recordset	Retrieved	Using	Connection	Object</H4>

<!---	Recordsets	retrieved	using	Execute	method	of	Connection	and	Command	Objects-->

<%	

sDsrc="C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr="Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	sDsrc

Set	OBJdbConnection	=	Server.CreateObject("ADODB.Connection")	

OBJdbConnection.Open	sConnStr	

SQLQuery	=	"SELECT	*	FROM	Customers"	

'1st	Recordset	RSCustomerList	using	conn	execute	mthd

Set	RSCustomerList	=	OBJdbConnection.Execute(SQLQuery)	

Set	OBJdbCommand	=	Server.CreateObject("ADODB.Command")

OBJdbCommand.ActiveConnection	=	OBJdbConnection

SQLQuery2	=	"SELECT	*	From	Products"

OBJdbCommand.CommandText	=	SQLQuery2

'2nd	Recordset	RSProductList	using	conn	execute	mthd

Set	RSProductList	=	OBJdbCommand.Execute

%>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0	ALIGN=CENTER>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TR	CLASS=thead1>

		<TH>Company	Name</TH>

		<TH>Contact	Name</TH>

		<TH>E-mail	address</TH>

		<TH>City</TH>

		<TH>State/Province</TH>

</TR>

<!--Display	ADO	Data	from	Customer	Table-->

<%	

Do	While	Not	RScustomerList.EOF	%>

		<TR	CLASS=tbody>

		<TD>	

		<%=	RSCustomerList("CompanyName")%>	

		</TD>

		<TD>

		<%=	RScustomerList("ContactLastName")	&	",	"	%>	

		<%=	RScustomerList("ContactFirstName")	%>	

		</TD>

		<TD>

		<%=	RScustomerList("ContactLastName")%>	

		</TD>

		<TD>	

		<%=	RScustomerList("City")%>	

		</TD>

		<TD>	

		<%=	RScustomerList("StateOrProvince")%>	

		</TD>

		</TR>	

		<!-Next	Row	=	Record	Loop	and	add	to	html	table-->

		<%	

		RScustomerList.MoveNext	

Loop	

RScustomerList.Close

%>

</TABLE>

<HR>

<H4>Recordset	Retrieved	Using	Command	Object</H4>

<TABLE	CELLPADDING=5	BORDER=0	ALIGN=CENTER	WIDTH="80%">

<!--	BEGIN	column	header	row	for	Product	List	Table-->

<TR	CLASS=thead2>

		<TH>Product	Type</TH>

		<TH>Product	Name</TH>

		<TH>Product	Description</TH>

		<TH>Unit	Price</TH>

</TR>

<!--	Display	ADO	Data	Product	List-->

<%	Do	While	Not	RsProductList.EOF	%>

		<TR	CLASS=tbody>

		<TD>	

		<%=	RsProductList("ProductType")%>	

		</TD>

		<TD>

		<%=	RsProductList("ProductName")%>		

		</TD>

		<TD>

			<%=	RsProductList("ProductDescription")%>	

		</TD>

		<TD>	

		<%=	RsProductList("UnitPrice")%>	

		</TD>

		<!--		Next	Row	=	Record	-->

<%	

		RsProductList.MoveNext	

Loop	

'Remove	objects	from	memory	to	free	resources

RsProductList.Close

OBJdbConnection.Close

Set	ObJdbCommand	=	Nothing

Set	RsProductList	=	Nothing

Set	OBJdbConnection	=	Nothing

%>

</TABLE>

</BODY>

</HTML>

ExecuteOptions	and	FetchOptions	Properties	Example
(VBScript)

The	following	code	shows	how	to	set	the	ExecuteOptions	and	FetchOptions
properties	at	design	time.	If	left	unset,	ExecuteOptions	defaults	to
adcExecSync.	This	setting	indicates	that	when	the	ADC.Refresh	method	is
called,	it	will	be	executed	on	the	current	calling	thread—that	is,	synchronously.

<OBJECT	CLASSID="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID="ADC1">

.

<PARAM	NAME="SQL"	VALUE="Select	*	from	Sales">

<PARAM	NAME="Connect"	VALUE="DSN=Pubs;UID=sa;PWD=;">

<PARAM	NAME="Server"	VALUE="http://MyWebServer">

<PARAM	NAME="ExecuteOptions"	VALUE="1">

<PARAM	NAME="FetchOptions"	VALUE="3">

.

</OBJECT>

The	following	example	shows	how	to	set	the	ExecuteOptions	and
FetchOptions	properties	at	run	time	in	VBScript	code.	See	the	Refresh	method
for	a	working	example	of	these	properties.

<Script	Language="VBScript">

<!--

Const	adcExecSync	=	1

Const	adcFetchAsynch	=	3

Sub	ExecuteHow

		'	Execute	next	refresh	of	Recordset	asynchronously	

		'	to	the	calling	thread.

		RDS1.ExecuteOptions	=	adcExecSync

		RDS1.FetchOptions	=	adcFetchAsynch

		RDS.Refresh

End	Sub

-->

</Script>

FilterColumn,	FilterCriterion,	FilterValue,	SortColumn,	and
SortDirection	Properties	and	Reset	Method	Example	(VBScript)

The	following	code	shows	how	to	set	the	RDS.DataControl	Server	parameter	at
design	time	and	bind	it	to	a	data-aware	HTML	table	using	a	data	source.

<%@	Language=VBScript	%>

<HTML>

<HEAD>

<META	NAME="GENERATOR"	Content="Microsoft	Visual	Studio	6.0">

</HEAD>

<BODY>

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	HEIGHT=1	WIDTH=1>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

</OBJECT>

Sort	Column:	<SELECT	NAME="cboSortColumn">	

																		<OPTION	VALUE=""></OPTION>

																		<OPTION	VALUE=ID>ID</OPTION>

																		<OPTION	VALUE=FirstName>FirstName</OPTION>

																		<OPTION	VALUE=LastName>LastName</OPTION>

																		<OPTION	VALUE=Title>Title</OPTION>

																		<OPTION	VALUE=Type>Type</OPTION>

																		<OPTION	VALUE=Email>Email</OPTION>

																		<OPTION	VALUE=Building>Building</OPTION>

																		<OPTION	VALUE=Room>Room</OPTION>

																		<OPTION	VALUE=Phone>Phone</OPTION>

													</SELECT>

													

Sort	Direction:	<SELECT	NAME="cboSortDir">	

																		<OPTION	VALUE=""></OPTION>

																		<OPTION	VALUE=TRUE>TRUE</OPTION>

																		<OPTION	VALUE=FALSE>FALSE</OPTION>

																</SELECT>

<HR	WIDTH="25%">

Filter	Column:	<SELECT	NAME="cboFilterColumn">	

																		<OPTION	VALUE=""></OPTION>

																		<OPTION	VALUE=ID>ID</OPTION>

																		<OPTION	VALUE=FirstName>FirstName</OPTION>

																		<OPTION	VALUE=LastName>LastName</OPTION>

																		<OPTION	VALUE=Title>Title</OPTION>

																		<OPTION	VALUE=Type>Type</OPTION>

																		<OPTION	VALUE=Email>Email</OPTION>

																		<OPTION	VALUE=Building>Building</OPTION>

																		<OPTION	VALUE=Room>Room</OPTION>

																		<OPTION	VALUE=Phone>Phone</OPTION>

													</SELECT>

													

Filter	Criterion:	<SELECT	NAME="cboCriterion">	

																				<OPTION	VALUE=""></OPTION>

																				<OPTION	VALUE="=">=</OPTION>

																				<OPTION	VALUE=">">></OPTION>

																				<OPTION	VALUE="<"><</OPTION>

																				<OPTION	VALUE=">=">>=</OPTION>

																				<OPTION	VALUE="<="><=</OPTION>

																				<OPTION	VALUE="<>"><></OPTION>

																		</SELECT>	

														

Filter	Value:	<INPUT	NAME="txtFilterValue">

<HR	WIDTH="25%">

<INPUT	TYPE=BUTTON	NAME=Clear	VALUE="CLEAR	ALL">	

<INPUT	TYPE=BUTTON	NAME=SortFilter	VALUE="APPLY">

<HR>

<TABLE	DATASRC=#RDS	ID="DataTable">

<THEAD>

		<TR>

				<TH>ID</TH>

				<TH>FirstName</TH>

				<TH>LastName</TH>

				<TH>Title</TH>

				<TH>Type</TH>

				<TH>Email</TH>

				<TH>Building</TH>

				<TH>Room</TH>

				<TH>Phone</TH>

		</TR>

</THEAD>

<TBODY>

		<TR>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

				<TD></TD>

		</TR>

</TBODY>

</TABLE>

<Script	Language="VBScript">

<!--

Const	adFilterNone	=	0

Sub	SortFilter_OnClick

				Dim	vCriterion

				Dim	vSortDir

				Dim	vSortCol

				Dim	vFilterCol

				

				'	The	value	of	SortColumn	will	be	the	

				'	value	of	what	the	user	picks	in	the

				'	cboSortColumn	box.

				vSortCol	=	cboSortColumn.options(cboSortColumn.selectedIndex).value

				

				If(vSortCol	<>	"")	then

								RDS.SortColumn	=	vSortCol

				End	If

				'	The	value	of	SortDirection	will	be	the	

				'	value	of	what	the	user	specifies	in	the

				'	cboSortdirection	box.

				

				If	(vSortCol	<>	"")	then

								vSortDir	=	cboSortDir.options(cboSortDir.selectedIndex).value

								If	(vSortDir	=	"")	then

												MsgBox	"True	or	False	are	only	acceptable	Sort	Direction	values."

												Exit	Sub

								Else

												RDS.SortDirection	=	vSortDir

								End	If

				End	If

				'	The	value	of	FilterColumn	will	be	the	

				'	value	of	what	the	user	specifies	in	the

				'	cboFilterColumn	box.

				vFilterCol	=	cboFilterColumn.options(cboFilterColumn.selectedIndex).value

				

				If(vFilterCol	<>	"")	then

								RDS.FilterColumn	=	vFilterCol

				End	If

				'	The	value	of	FilterCriterion	will	be	the	

				'	text	value	of	what	the	user	specifies	in	the

				'	cboCriterion	box.

				vCriterion	=	cboCriterion.options(cboCriterion.selectedIndex).value

				If	(vCriterion	<>	"")	Then

								RDS.FilterCriterion	=	vCriterion

				End	If

				'	txtFilterValue	is	a	rich	text	box

				'	control.	The	value	of	FilterValue	will	be	the	

				'	text	value	of	what	the	user	specifies	in	the

				'	txtFilterValue	box.

				If	(txtFilterValue.value	<>	"")	Then

								RDS.FilterValue	=	txtFilterValue.value

				End	If

				'	Execute	the	sort	and	filter	on	a	client-side

				'	Recordset	based	on	the	specified	sort	and	filter

				'	properties.	Calling	Reset	refreshes	the	result	set

				'	that	is	displayed	in	the	data-bound	controls	to

				'	display	the	filtered,	sorted	recordset.

				RDS.Reset

End	Sub

Sub	Clear_onClick()

				'clear	the	HTML	input	controls

				cboSortColumn.selectedIndex	=	0

				cboSortDir.selectedIndex	=	0

				cboFilterColumn.selectedIndex	=	0

				cboCriterion.selectedIndex	=	0

				txtFilterValue.value	=	""

				

				'clear	the	filter

				RDS.FilterCriterion	=	""

				RDS.Reset(FALSE)

End	Sub

-->

</Script>

</BODY>

</HTML>

Move	Method	Example	(VBScript)

This	example	uses	the	Move	method	to	position	the	record	pointer,	based	on	user
input.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	to	Notepad	or	another	text	editor,	and	save
it	as	Move.asp.	You	can	view	the	result	in	any	browser.

Try	entering	a	letter	or	noninteger	to	see	the	error	handling	work.

<%@	Language=VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML>

<HEAD>

<TITLE>ADO	Move	Methods</TITLE>

<STYLE>

<!--

BODY	{

				font-family:	"MS	SANS	SERIF",sans-serif;

					}

.thead1	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.tbody	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

					}

-->

</STYLE>

</HEAD>

<BODY>	

<H3>ADO	Move	Methods</H3>

<%

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")	

OBJdbConn.Open		sConnStr

'Create	and	Open	Recordset	Object

Set	RsCustomerList	=	Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection	=	OBJdbConn

RsCustomerList.CursorType	=	adOpenKeyset

RsCustomerList.LockType	=	adLockOptimistic

RsCustomerList.Source	=	"Customers"

RsCustomerList.Open

'Check	number	of	user	moves	this	session.

'Increment	by	amount	in	Form.

Session("Clicks")	=	Session("Clicks")	+	Request.Form("MoveAmount")

Clicks	=	Session("Clicks")

'	Move	to	last	known	recordset	position	plus	amount	passed

'	by	Form	Post	method.

RsCustomerList.Move	CInt(Clicks)

'Error	Handling

				If	RsCustomerList.EOF	Then

												Session("Clicks")	=	RsCustomerList.RecordCount

												Response.Write	"This	is	the	Last	Record"

												RsCustomerList.MoveLast

								Else	If	RsCustomerList.BOF	Then

												Session("Clicks")	=	1

												RsCustomerList.MoveFirst

												Response.Write	"This	is	the	First	Record"

								End	If

				End	If

%>

<H3>Current	Record	Number	is	

<%	

If	Session("Clicks")	=	0	Then	

				Session("Clicks")	=	1

End	If

Response.Write(Session("Clicks"))%>	of	<%=RsCustomerList.RecordCount%></H3>

<HR>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TR	CLASS=thead1>

				<TD>Company	Name</TD>

				<TD>Contact	Name</TD>

				<TD>Phone	Number</TD>

				<TD>City</TD>

				<TD>State/Province</TD>

</TR>

<!--Display	ADO	Data	from	Customer	Table-->

<TR	CLASS=tbody>

		<TD>	<%=	RSCustomerList("CompanyName")%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")	&	",	"	%>	

							<%=	RScustomerList("ContactFirstName")	%>	</TD>

		<TD>	<%=	RScustomerList("PhoneNumber")%>	</TD>

		<TD>	<%=	RScustomerList("City")%>	</TD>

		<TD>	<%=	RScustomerList("StateOrProvince")%>	</TD>

</TR>	

</TABLE>

<HR>

<Input	Type=Button	Name=cmdDown		Value="<		">

<Input	Type=Button	Name=cmdUp	Value="	>">

<H5>Click	Direction	Arrows	for	Previous	or	Next	Record

	Click	Move	Amount	to	use	Move	Method

Enter	Number	of	Records	to	Move	+	or	-	</H5>

<TABLE>

<FORM	Method	=	Post	Action="Move.asp"	Name=Form>

<TR>

				<TD><Input	Type="Button"	Name=Move	Value="Move	Amount	"></TD>

				<TD></TD>

				<TD><Input	Type="Text"	Size="4"	Name="MoveAmount"	Value=0></TD>

<TR>

</FORM>

</TABLE>

</BODY>

<Script	Language	=	"VBScript">

Sub	Move_OnClick

				'	Make	sure	move	value	entered	is	an	integer.

				If	IsNumeric(Document.Form.MoveAmount.Value)Then

								Document.Form.MoveAmount.Value	=	CInt(Document.Form.MoveAmount.Value)

								Document.Form.Submit

				Else

								MsgBox	"You	Must	Enter	a	Number",	,"ADO-ASP	Example"

								Document.Form.MoveAmount.Value	=	0

				End	If

End	Sub

Sub	cmdDown_OnClick

				Document.Form.MoveAmount.Value	=	-1

				Document.Form.Submit

End	Sub

Sub	cmdUp_OnClick

				Document.Form.MoveAmount.Value	=	1

				Document.Form.Submit

End	Sub

</Script>

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods
Example	(VBScript)

This	example	uses	the	MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
methods	to	move	the	record	pointer	of	a	Recordset	based	on	the	supplied
command.	The	MoveAny	procedure	is	required	for	this	procedure	to	run.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	into	Notepad	or	another	text	editor,	and
save	it	as	MoveOne.asp.	You	can	view	the	result	in	any	browser.

Try	moving	beyond	the	upper	or	lower	limits	of	the	recordset	to	see	error
handling	work.

<%@	Language=VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML><HEAD>

<TITLE>ADO	MoveNext,	MovePrevious,	MoveLast,	MoveFirst	Methods</TITLE>

<STYLE>

<!--

BODY	{

				font-family:	"MS	SANS	SERIF",sans-serif;

					}

.thead	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.tbody	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

					}

.tmsg	{

				color:	red;

				text-align:	center;

				}

-->

</STYLE>

</HEAD>

<BODY>	

<H3>ADO	Methods
MoveNext,	MovePrevious,	MoveLast,	MoveFirst</H3>

<!--	Create	Connection	and	Recordset	Objects	on	Server	-->

<%

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")	

OBJdbConn.Open		sConnStr

'Create	and	Open	Recordset	Object

Set	RsCustomerList	=	Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection	=	OBJdbConn

RsCustomerList.CursorType	=	adOpenKeyset

RsCustomerList.CursorLocation	=	adUseClient

RsCustomerList.LockType	=	adLockOptimistic

RsCustomerList.Source	=	"Customers"

RsCustomerList.Open

RsCustomerList.MoveFirst

If	Not	IsEmpty(Request.Form("MoveAction"))	Then

				strAction	=	Request.Form("MoveAction")

				varPosition		=	Request.Form("Position")

				

				RsCustomerList.AbsolutePosition	=	varPosition

				

				Select	Case	strAction

				

						Case	"MoveNext"

						

								RsCustomerList.MoveNext

								If	RsCustomerList.EOF	Then

												RsCustomerList.MoveLast

												strMessage	=	"Can't	move	beyond	the	last	record."

								End	If

						

						Case	"MovePrev"

						

								RsCustomerList.MovePrevious

								If	RsCustomerList.BOF	Then

												RsCustomerList.MoveFirst

												strMessage	=	"Can't	move	beyond	the	first	record."

								End	If

						Case	"MoveLast"

				

								RsCustomerList.MoveLast

				

						Case	"MoveFirst"

				

								RsCustomerList.MoveFirst

				

				End	Select

End	If

				

%>

<H3>Current	Record	Number	is	

<!--	Display	Current	Record	Number	and	Recordset	Size	-->

<%=RsCustomerList.AbsolutePosition%>	of	<%=RsCustomerList.RecordCount%></H3>

<HR>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TR	CLASS=thead>

				<TD>Company	Name</TD>

				<TD>Contact	Name</TD>

				<TD>Phone	Number</TD>

				<TD>City</TD>

				<TD>State/Province</TD>

</TR>

<!--Display	ADO	Data	from	Customer	Table-->

<TR	CLASS=tbody>

		<TD>	<%=	RSCustomerList("CompanyName")%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")	&	",	"	%>	

							<%=	RScustomerList("ContactFirstName")	%>	</TD>

		<TD>	<%=	RScustomerList("PhoneNumber")%>	</TD>

		<TD>	<%=	RScustomerList("City")%>	</TD>

		<TD>	<%=	RScustomerList("StateOrProvince")%>	</TD>

</TR>	

<TR	CLASS=tmsg>

		<TD	COLSPAN=5><%=strMessage%></TD>

</TR>

</TABLE>

<HR>

<Input	Type=Button	Name=cmdDown		Value="<		">

<Input	Type=Button	Name=cmdUp	Value="		>">

<Input	Type=Button	Name=cmdFirst	Value="First	Record">

<Input	Type=Button	Name=cmdLast	Value="Last	Record">

<H5>Click	Direction	Arrows	to	Use	MovePrevious	or	MoveNext</H5>

<!--	Use	Hidden	Form	Fields	to	send	values	to	Server	-->

<Form	Method=Post	

						Action="<%=Request.ServerVariables("SCRIPT_NAME")%>"	

						Name=Form>

<Input	Type="Hidden"	Size="4"	Name="MoveAction"	Value="Move">

<Input	Type="Hidden"	Size="4"	Name="Position"	Value="<%=	RsCustomerList.AbsolutePosition	%>">

</Form>

<HR>

</BODY>

<Script	Language	=	"VBScript">

Sub	cmdDown_OnClick

				'Set	Values	in	Form	Input	Boxes	and	Submit	Form

				Document.form.MoveAction.Value	=	"MovePrev"

				Document.Form.Submit

End	Sub

Sub	cmdUp_OnClick

				Document.form.MoveAction.Value	=	"MoveNext"

				Document.Form.Submit

End	Sub

Sub	cmdFirst_OnClick

				Document.form.MoveAction.Value	=	"MoveFirst"

				Document.Form.Submit

End	Sub

Sub	cmdLast_OnClick

				Document.form.MoveAction.Value	=	"MoveLast"

				Document.Form.Submit

End	Sub

</Script>

Open	and	Close	Methods	Example	(VBScript)

This	example	uses	the	Open	and	Close	methods	on	both	Recordset	and
Connection	objects	that	have	been	opened.

Use	the	following	example	in	an	Active	Server	Page	(ASP).	To	view	this	fully
functional	example,	you	must	have	the	data	source	AdvWorks.mdb	(installed
with	the	SDK)	located	at	C:\mssdk\samples\dataaccess\rds.	This	is	a	Microsoft
Access	database	file.

Use	Find	to	locate	the	file	Adovbs.inc	and	place	it	in	the	directory	you	plan	to
use.	Cut	and	paste	the	following	code	into	Notepad	or	another	text	editor,	and
save	it	as	MoveOne.asp.	You	can	view	the	result	in	any	browser.

<%@	Language=VBScript	%>

<!--	#Include	file="ADOVBS.INC"	-->

<HTML>

<HEAD>

<TITLE>ADO	Open	Method</TITLE>

<STYLE>

<!--

BODY	{

				font-family:	"MS	SANS	SERIF",sans-serif;

					}

.thead	{

				background-color:	#008080;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.thead2	{

				background-color:	#800000;	

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

				color:	white;

				}

.tbody	{	

				text-align:	center;

				background-color:	#f7efde;

				font-family:	'Arial	Narrow','Arial',sans-serif;	

				font-size:	x-small;

					}

-->

</STYLE>

</HEAD>

<BODY>	

<H3>ADO	Open	Method</H3>

<TABLE	WIDTH=600	BORDER=0>

<TR>

<TD	VALIGN=TOP	COLSPAN=3>

<!---	ADO	Connection	used	to	create	2	recordsets-->

<%

src	=	"C:\mssdk\samples\dataaccess\rds\advworks.mdb"

sConnStr	=	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source="	&	src

'Create	and	Open	Connection	Object

Set	OBJdbConn	=	Server.CreateObject("ADODB.Connection")	

OBJdbConn.Open		sConnStr

SQLQuery	=	"SELECT	*	FROM	Customers"	

'First	Recordset	RsCustomerList

Set	RsCustomerList	=	OBJdbConn.Execute(SQLQuery)	

'Second	Recordset	RsProductist

Set	RsProductList	=	Server.CreateObject("ADODB.Recordset")

RsProductList.CursorType	=	adOpenDynamic

RsProductList.LockType	=	adLockOptimistic

RsProductList.Open	"Products",	OBJdbConn	

%>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<!--	BEGIN	column	header	row	for	Customer	Table-->

<TR	CLASS=thead>

				<TD>Company	Name</TD>

				<TD>Contact	Name</TD>

				<TD>E-mail	address</TD>

				<TD>City</TD>

				<TD>State/Province</TD>

</TR>

<!--Display	ADO	Data	from	Customer	Table-->

<%	Do	While	Not	RScustomerList.EOF	%>

<TR	CLASS=tbody>

		<TD>	<%=	RSCustomerList("CompanyName")%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")	&	",	"	%>	

							<%=	RScustomerList("ContactFirstName")	%>	</TD>

		<TD>	<%=	RScustomerList("ContactLastName")%>	</TD>

		<TD>	<%=	RScustomerList("City")%>	</TD>

		<TD>	<%=	RScustomerList("StateOrProvince")%>	</TD>

</TR>	

<!-Next	Row	=	Record	Loop	and	add	to	html	table-->

<%	

			RScustomerList.MoveNext	

Loop	

RScustomerList.Close

%>

</TABLE>

<HR>

<TABLE	COLSPAN=8	CELLPADDING=5	BORDER=0>

<!--	BEGIN	column	header	row	for	Product	List	Table-->

<TR	CLASS=thead2>

				<TD>Product	Type</TD>

				<TD>Product	Name</TD>

				<TD>Product	Description</TD>

				<TD>Unit	Price</TD>

</TR>

<!--	Display	ADO	Data	Product	List-->

<%	Do	While	Not	RsProductList.EOF	%>

		<TR	CLASS=tbody>		

		<TD>	<%=	RsProductList("ProductType")%>	</TD>

		<TD>	<%=	RsProductList("ProductName")%>	</TD>

		<TD>	<%=	RsProductList("ProductDescription")%>	</TD>

		<TD>	<%=	RsProductList("UnitPrice")%>	</TD>

		</TR>

		<!--		Next	Row	=	Record	-->

<%	

		RsProductList.MoveNext	

Loop	

OBJdbConn.Close

'Remove	Objects	from	Memory	Freeing		

Set	RsProductList	=	Nothing

Set	OBJdbConn	=	Nothing

%>

</TABLE>

</BODY>

</HTML>

ReadyState	Property	Example	(VBScript)

The	following	example	shows	how	to	read	the	ReadyState	property	of	the
RDS.DataControl	object	at	run	time	in	VBScript	code.	ReadyState	is	a	read-
only	property.

To	test	this	example,	cut	and	paste	this	code	between	the	<Body></Body>	tags
in	a	normal	HTML	document	and	name	it	RDSReadySt.asp.	ASP	script	will
identify	your	server.

<<%@	Language=VBScript	%>

<H2>RDS	API	Code	Examples	</H2>

<HR>

<H3>RDS.DataControl	ReadyState	Property</H3>

<!--	RDS.DataControl	with	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee	for	browse">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

				<PARAM	NAME="ExecuteOptions"	VALUE="adcExecAsync">	

				<PARAM	NAME="FetchOptions"	VALUE="adcFetchAsync">

</OBJECT>

<Script	Language="VBScript">

Sub	Window_OnLoad

				Select	Case	RDS.ReadyState

								case	2:	MsgBox	"Executing	Query"

								case	3:	MsgBox	"Fetching	records	in	background"

								case	4:	MsgBox	"All	records	fetched"

				End	Select

End	Sub

</Script>

Recordset	and	SourceRecordset	Properties	Example	(VBScript)

The	following	example	shows	how	to	set	the	necessary	parameters	of	the
RDSServer.DataFactory	default	business	object	at	run	time.

To	test	this	example,	cut	and	paste	this	code	between	the	<Body></Body>	tags
in	a	normal	HTML	document	and	name	it	SourceRS.asp.	ASP	script	will
identify	your	server.

<Center>

<H2>RDS	API	Code	Examples</H2>

<HR>

<H3>Using	SourceRecordset	and	Recordset	with	RDSServer.DataFactory</H3>

<!--	RDS.DataSpace	ID	RDS1	-->

<OBJECT	ID="RDS1"	WIDTH=1	HEIGHT=1	

CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">

</OBJECT>

<!--	RDS.DataControl	with	parameters	set	at	Run	Time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDC	WIDTH=1	HEIGHT=1>

</OBJECT>

<TABLE	DATASRC=#RDC>

				<TR>

								<TD>	<INPUT	DATAFLD="FirstName"	SIZE=15>	</TD>

								<TD>	<INPUT	DATAFLD="LastName"	SIZE=15	id=text1	name=text1>	</TD>

								<TD>	<INPUT	DATAFLD="Title"	SIZE=15	id=text2	name=text2>	</TD>

								<TD>	<INPUT	DATAFLD="Type"	SIZE=15	id=text3	name=text3>	</TD>

								<TD>	<INPUT	DATAFLD="Email"	SIZE=15	id=text4	name=text4>	</TD>

				</TR>

</TABLE>

<HR>

<Input	Size=70	Name="txtServer"	Value="http://<%=Request.ServerVariables("SERVER_NAME")%>">

<Input	Size=70	Name="txtConnect"	Value="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

<Input	Size=70	Name="txtSQL"	Value="Select	*	from	Employee">

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

</Center>

<Script	Language="VBScript">

<!--

Dim	ADF

Dim	strServer

strServer	=	"http://<%=Request.ServerVariables("SERVER_NAME")%>"

Sub	Run_OnClick()

				Dim	objADORs												

				'	Create	RDSServer.DataFactory	Object

				Set	RDF	=	RDS1.CreateObject("RDSServer.DataFactory",	strServer)																		

				'	Get	Recordset

				Set	objADORs	=	RDF.Query(txtConnect.Value,txtSQL.Value)

				'	Set	parameters	of	RDS.DataControl	at	run	time.

				RDC.Server	=	txtServer.Value

				RDC.SQL	=	txtSQL.Value

				RDC.Connect	=	txtConnect.Value

				RDC.Refresh

End	Sub

-->

</Script>

Refresh	Method	Example	(VBScript)

The	following	example	shows	how	to	set	the	necessary	parameters	of
RDS.DataControl	at	run	time.	The	manner	in	which	a	Recordset	is	retrieved
using	the	Refresh	method	is	determined	by	the	settings	of	the	ExecuteOptions
and	FetchOptions	properties.	To	test	this	example,	cut	and	paste	this	code	into	a
normal	ASP	document	and	name	it	Refresh.asp.	ASP	script	will	identify	your
server.

<%@	Language=VBScript	%>

<HTML>

<HEAD>

<META	NAME="GENERATOR"	Content="Microsoft	Visual	Studio	6.0">

<TITLE></TITLE>

</HEAD>

<BODY>

<H2>RDS	API	Code	Examples	</H2>

<HR>

<TABLE	DATASRC=#RDC>

				<TR>

								<TD>	<INPUT	DATAFLD="FirstName"	SIZE=15	id=text5	name=text5>	</TD>

								<TD>	<INPUT	DATAFLD="LastName"	SIZE=15	id=text1	name=text1>	</TD>

								<TD>	<INPUT	DATAFLD="Title"	SIZE=15	id=text2	name=text2>	</TD>

								<TD>	<INPUT	DATAFLD="Type"	SIZE=15	id=text3	name=text3>	</TD>

								<TD>	<INPUT	DATAFLD="Email"	SIZE=15	id=text4	name=text4>	</TD>

				</TR>

</TABLE>

<!--	RDS.DataControl	with	no	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDC	HEIGHT=1	WIDTH=1>

</OBJECT>

<HR>

Server:	<Input	Size=70	Name="txtServer"	Value="http://<%=Request.ServerVariables("SERVER_NAME")%>">

Connect:	<Input	Size=70	Name="txtConnect"	Value="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

SQL:	<Input	Size=70	Name="txtSQL"	Value="Select	*	from	Employee">

<HR>

<TABLE	BORDER=1	WIDTH="60%">

<TR>

				<TD	COLSPAN=3	BGCOLOR=silver>

				Choose	if	you	want	the	Recordset	brought	back	Synchronously	on	the	

				current	calling	thread	or	Asynchronously	on	another	thread.	

				</TD>

</TR>

<TR>

				<TD>Synchronously:	

								<Input	Type="Radio"	Name="optExecuteOptions"	Checked	OnClick="SetExO('adcExecSync')">

				</TD>

				<TD>Asynchronously:	

								<Input	Type="Radio"	Name="optExecuteOptions"		OnClick="SetExO('adcExecAsync')">

				</TD>

				<TD> </TD>

</TR>

<TR>

				<TD	COLSPAN=3	BGCOLOR=silver>

				Fetch	Up	Front,	Background	Fetch	with	Blocking	or	Background	Fetch	

				without	Blocking	

				</TD>

<TR>

				<TD>Up	Front:

								<Input	Type="Radio"	Name="optFetchOptions"		OnClick="SetFO('adcFetchUpFront')">

				</TD>

				<TD>Background	w/	Blocking:

								<Input	Type="Radio"	Name="optFetchOptions"	Checked	OnClick="SetFO('adcFetchBackground')">

				</TD>

				<TD>Background	w/o	Blocking:

								<Input	Type="Radio"	Name="optFetchOptions"		OnClick="SetFO('adcFetchAsync')">

				</TD>

</TR>

</TABLE>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<Script	Language="VBScript">

<!--

Dim	EO									'ExecuteOptions

Dim	FO									'FetchOptions

EO	=	"adcExecSync"				'Default	value

FO	=	"adcFetchBackground"			'Default	value

Sub	SetExO(NewEO)

				EO	=	NewEO

End	Sub

Sub	SetFO(NewFO)

				FO	=	NewFO

End	Sub

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	Run_OnClick

				RDC.Server	=	txtServer.Value

				RDC.SQL	=	txtSQL.Value

				RDC.Connect	=	txtConnect.Value

				If	EO	=	"adcExecSync"	Then			'Determine	which	ExecuteOption	chosen

								RDC.ExecuteOptions	=	adcExecSync

								MsgBox	"Recordset	brought	in	on	current	calling	thread	Syncronously"

				Else

								RDC.ExecuteOptions	=	adcExecAsync

								MsgBox	"Recordset	brought	in	on	another	thread	Asyncronously"

				End	If

				If	FO	=	"adcFetchBackground"	Then						'Determine																		‘which	FetchOption	chosen

								RDC.FetchOptions	=	adcFetchBackground

								MsgBox	"Control	goes	back	to	user	after	first	batch	of	records	returned"

				ElseIf	FO	=	"	adcFetchUpFront"	Then

								RDC.FetchOptions	=	adcFetchUpFront

								MsgBox	"All	records	returned	before	control	goes	back	to	user"

				Else

								RDC.FetchOptions	=	adcFetchAsync

								MsgBox	"Control	goes	back	to	user	immediately"

				End	If

				RDC.Refresh

End	Sub

-->

</Script>

</BODY>

</HTML>

Server	Property	Example	(VBScript)

The	following	code	shows	how	to	set	the	RDS.DataControl	parameter	at	design
time	and	bind	it	to	a	data-aware	control	using	the	SQLOLEDB	provider.	Cut	and
paste	this	code	into	a	normal	ASP	document	and	name	it	ServerProp.asp.	ASP
script	will	identify	your	server.

<%@	Language=VBScript	%>

<HTML>

<HEAD>

<TITLE>Server	Property	Example</TITLE>

</HEAD>

<BODY>

<H2>RDS	API	Code	Examples	</H2>

<HR>

<H3>Remote	Data	Service</H3>

<TABLE	DATASRC=#RDS>

				<TR>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

				</TR>

</TABLE>

<!--	Remote	Data	Service	with	Parameters	set	at	Design	Time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDS	HEIGHT=1	WIDTH=1>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee	for	browse">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

</OBJECT>

</BODY>

</HTML>

The	following	example	shows	how	to	set	the	necessary	parameters	of
RDS.DataControl	at	run	time.	To	test	this	example,	cut	and	paste	this	code	into
a	normal	ASP	document	and	name	it	ServerProp2.asp.	ASP	script	will	identify
your	server.

<%@	Language=VBScript	%>

<HTML>

<HEAD>

<TITLE>Remote	Data	Service	Server	Property	Set	at	Run	Time</TITLE>

</HEAD>

<BODY>

<H2>RDS	API	Code	Examples</H2>

<H3>Remote	Data	Service	Server	Property	Set	at	Run	Time</H3>

<!--	RDS.DataControl	with	no	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDC	HEIGHT=1	WIDTH=1>

</OBJECT>

<TABLE	DATASRC=#RDC>

				<TR>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

				</TR>

</TABLE>

<HR>

<Input	Size=70	Name="txtServer"	Value="HTTP://<%=	Request.ServerVariables("SERVER_NAME")%>">

<Input	Size=70	Name="txtConnect"	Value="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB">

<Input	Size=70	Name="txtSQL"	Value="Select	*	from	Employee">

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	Run_OnClick

				RDC.Server	=	txtServer.Value

				RDC.SQL	=	txtSQL.Value

				RDC.Connect	=	txtConnect.Value

				RDC.Refresh

End	Sub

-->

</Script>

</BODY>

</HTML>

SQL	Property	Example	(VBScript)

The	following	code	shows	how	to	set	the	RDS.DataControl	SQL	parameter	at
design	time	and	bind	it	to	a	data-aware	control	using	the	database	called	Pubs,
that	ships	with	SQL	Server.	To	test	the	example,	copy	the	following	code	into	a
normal	ASP	document	named	SQL.asp	on	your	web	server.

<%@	Language=VBScript	%>

<HTML>

<HEAD>

</HEAD>

<BODY>

<!--	RDS.DataControl	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"	ID=RDC	HEIGHT=1	WIDTH=1>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Authors">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="dsn=Pubs;UID=sa;PWD=;">

</OBJECT>

<!--	Data	Table	-->

<TABLE	DATASRC=#RDC	BORDER=1>

				<TR>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

				</TR>

</TABLE>

</BODY>

</HTML>

The	following	example	shows	how	to	set	the	necessary	parameters	of

RDS.DataControl	at	run	time.	To	test	this	example,	cut	and	paste	this	code	into
a	normal	ASP	document	and	name	it	SQL2.asp.	ASP	script	will	identify	your
server.

<%@	Language=VBScript	%>

<HTML>

<BODY>

<H2>RDS	API	Code	Examples	</H2>

<H3>Remote	Data	Service	SQL	Property	Set	at	Run	Time</H3>

<!--	RDS.DataControl	with	no	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDC	HEIGHT=1	WIDTH=1>

</OBJECT>

<TABLE	DATASRC=#RDC>

				<TR>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

								<TD>		</TD>

				</TR>

</TABLE>

<HR>

<Input	Size=70	Name="txtServer"	Value=	"http://<%=Request.ServerVariables("SERVER_NAME")%>">

<Input	Size=70	Name="txtConnect"	Value="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB;">

<Input	Size=70	Name="txtSQL"	VALUE="Select	*	from	Employee">

<HR>

<INPUT	TYPE=BUTTON	NAME="Run"	VALUE="Run">

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time.

Sub	Run_OnClick

				RDC.Server	=	txtServer.Value

				RDC.SQL	=	txtSQL.Value

				RDC.Connect	=	txtConnect.Value

				RDC.Refresh

End	Sub

-->

</Script>

</BODY>

</HTML>

SubmitChanges	Method	Example	(VBScript)

The	following	code	fragment	shows	how	to	use	the	SubmitChanges	method	with
an	RDS.DataControl	object.

To	test	this	example,	cut	and	paste	this	code	into	a	normal	ASP	document	and
name	it	SubmitChanges.asp.	ASP	script	will	identify	your	server.

<%@	Language=VBScript	%>

<HTML>

<BODY>

<H2>RDS	API	Code	Examples</H2>

<H3>Remote	Data	Service	SubmitChanges	and	CancelUpdate	Methods</H3>

<!--	RDS.DataControl	with	parameters	set	at	design	time	-->

<OBJECT	classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"

				ID=RDC	HEIGHT=1	WIDTH=1>

				<PARAM	NAME="SQL"	VALUE="Select	*	from	Employee	for	browse">

				<PARAM	NAME="SERVER"	VALUE="http://<%=Request.ServerVariables("SERVER_NAME")%>">

				<PARAM	NAME="CONNECT"	VALUE="Provider=SQLOLEDB;User	Id=rdsdemo;Password=rdsdemo;Initial	Catalog=AddrBookDB;">	

</OBJECT>

<TABLE	DATASRC="#RDC">

<THEAD>

<TR	ID="ColHeaders">

			<TH>ID</TH>

			<TH>FName</TH>

			<TH>LName</TH>

			<TH>Name</TH>

			<TH>Title</TH>

			<TH>Type</TH>

			<TH>Email</TH>

			<TH>MgrEmail</TH>

			<TH>Bldg</TH>

			<TH>Rm</TH>

			<TH>Phone</TH>

</TR>

</THEAD>

<TBODY>

<TR>

			<TD>	<INPUT	DATAFLD="ID"	size=4>	</TD>

			<TD>	<INPUT	DATAFLD="FirstName"	size=10>	</TD>

			<TD>	<INPUT	DATAFLD="LastName"	size=10>	</TD>

			<TD>	<INPUT	DATAFLD="Name"	size=15>	</TD>

			<TD>	<INPUT	DATAFLD="Title"	size=20>	</TD>

			<TD>	<INPUT	DATAFLD="Type"	size=10>	</TD>

			<TD>	<INPUT	DATAFLD="Email"	size=10>	</TD>

			<TD>	<INPUT	DATAFLD="ManagerEmail"	size=10>	</TD>

			<TD>	<INPUT	DATAFLD="Building"	size=3>	</TD>

			<TD>	<INPUT	DATAFLD="Room"	size=5>	</TD>

			<TD>	<INPUT	DATAFLD="Phone"	size=8>	</TD>

</TR>

</TBODY>

</TABLE>

<HR>

<INPUT	TYPE=BUTTON	NAME="SubmitChange"	VALUE="Submit-Changes">

<INPUT	TYPE=BUTTON	NAME="CancelChange"	VALUE="Cancel-Update">

<H4>Alter	a	current	entry	in	the	table.	Move	off	that	Row.	

Submit	the	Changes	to	your	DBMS	or	cancel	the	updates.	</H4>

</Center>

<Script	Language="VBScript">

<!--

'	Set	parameters	of	RDS.DataControl	at	Run	Time

Sub	SubmitChange_OnClick

				RDC.SubmitChanges				

				RDC.Refresh

End	Sub

Sub	CancelUpdate_OnClick

				RDC.CancelUpdate

				RDC.Refresh

End	Sub

-->

</Script>

</BODY>

</HTML>

The	following	code	fragment	shows	how	to	use	the	SubmitChanges	method	with
an	RDSServer.DataFactory	object.	You	may	want	to	submit	changes	to	the

RDSServer.DataFactory	if	you	are	working	on	a	Visual	Basic	project	where	the
RDS.DataControl	isn't	used.	To	create	this	project,	open	a	Visual	Basic	form	and
place	on	it	a	list	box	(List1),	two	text	boxes	(txtConnect	and
txtGetRecordset),	and	two	command	buttons	(cmdGetRecordset	and
cmdSubmitChanges).

Dim	ads	As	Object				'	RDS.DataSpace	object

Dim	adf	As	Object				'	RDSServer.DataFactory	object

Private	Sub	UserDocument_Initialize()

				Call	Form_Load

End	Sub

Private	Sub	Form_Load()

				txtConnect.Text	=	"Dsn=Pubs;Uid=sa;Pwd=;"

				txtGetRecordset.Text	=	"Select	au_lname	from	authors"

End	Sub

Private	Sub	cmdGetRecordset_Click()

				Dim	Server	As	String

				Server	=	txtServer.Text

				'	Create	RDS.DataSpace	using	CreateObject	Method	of	RDS.DataSpace.

				Set	ads	=	CreateObject("RDS.DataSpace")

				Set	adf	=	ads.CreateObject("RDSServer.DataFactory",	Server)

				'	Populate	ListBox	with	Recordset.

				MousePointer	=	vbHourglass

				Dim	objADORs	As	Object

				Set	objADORs	=	adf.Query(CStr(txtConnect.Text),	CStr(txtGetRecordset.Text))

				List1.Clear

				While	Not	objADORs.EOF

								List1.AddItem	objADORs(0).Value

								objADORs.MoveNext

				Wend

				MousePointer	=	vbNormal

End	Sub

Sub	cmdSubmitChanges_OnClick

				adf.SubmitChanges	"	Dsn=Pubs;Uid=sa;Pwd=;",_

				objADORs

End	Sub

URL	Property	Example	(VBScript)

The	following	code	demonstrates	how	to	set	the	URL	property	on	the	client	side
to	specify	an	.ASP	file	that	in	turn	handles	the	submission	of	changes	to	the	data
source.

…

Sub	Update_OnClick

				If	ADC.ReadyState	<>	adcReadyStateLoaded	then

								ADC.URL	=	"RDSSubmit.asp"

								ADC.SubmitChanges

								ADC.Refresh

				Else

								MsgBox	"Query	results	still	arriving,	Please	wait"

				End	if

End	Sub

…

The	server-side	code	that	exists	in	RDSSubmit.asp	submits	the	updated	recordset
to	the	datasource:

<%

Option	Explicit

Dim	strSQL,	strConnection,	rstCustomers

strConnection	=	_

				"Provider=SQLOLEDB;Server=Srv;Database=Pubs;User	Id=sa;Password=;"

Set	rstCustomers	=	Server.CreateObject("ADODB.Recordset")

On	Error	Resume	Next

rstCustomers.Open	Request

rstCustomers.ActiveConnection	=	strConnection

rstCustomers.UpdateBatch

If	Err.Number	<>	0	Then

				Request.Status	=	"500	"	+	Err.Source	+	":	"	+	Err.Description

End	If

%>

ADO	Code	Examples	in	Microsoft	Visual	C++

Use	the	following	code	examples	to	learn	how	to	use	the	ADO	methods,
properties,	and	events	when	writing	in	Microsoft	Visual	C++.

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Methods

AddNew	Method	Example
Append	and	CreateParameter	Methods	Example

AppendChunk	and	GetChunk	Methods	Example

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example

Cancel	Method	Example

Clone	Method	Example

CompareBookmarks	Method	Example

Delete	Method	Example

Execute,	Requery,	and	Clear	Methods	Example

Find	Method	Example

GetRows	Method	Example

GetString	Method	Example

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods	Example

NextRecordset	Method	Example

Open	and	Close	Methods	Example

OpenSchema	Method	Example

Refresh	Method	Example

Resync	Method	Example

Save	and	Open	Methods	Example

Seek	Method	and	Index	Property	Example

Supports	Method	Example

Update	and	CancelUpdate	Methods	Example

UpdateBatch	and	CancelBatch	Methods	Example

Properties

AbsolutePage,	PageCount,	and	PageSize	Properties	Example

AbsolutePosition	and	CursorLocation	Properties	Example

ActiveCommand	Property	Example

ActiveConnection,	CommandText,	CommandTimeout,	CommandType,
Size,	and	Direction	Properties	Example

ActualSize	and	DefinedSize	Properties	Example

Attributes	and	Name	Properties	Example

BOF,	EOF,	and	Bookmark	Properties	Example

CacheSize	Property	Example

ConnectionString,	ConnectionTimeout,	and	State	Properties	Example

Count	Property	Example

CursorType,	LockType,	and	EditMode	Properties	Example

Description,	NativeError,	Number,	Source,	and	SQLState	Properties
Example

Filter	and	RecordCount	Properties	Example

Handler	Property	Example

Index	Property	and	Seek	Method	Example

IsolationLevel	and	Mode	Properties	Example

Item	Property	Example

MarshalOptions	Property	Example

MaxRecords	Property	Example

NumericScale	and	Precision	Properties	Example

Optimize	Property	Example

OriginalValue	and	UnderlyingValue	Properties	Example

Prepared	Property	Example

Provider	and	DefaultDatabase	Properties	Example

Sort	Property	Example

Source	Property	Example

State	Property	Example

Status	Property	Example

StayInSync	Property	Example

Type	Property	Example	(Fields)

Type	Property	Example	(Property)

Value	Property	Example

Version	Property	Example

Other

ADO	Events	Model	Example

ADO	Events	Model	Example	(VC++)

				 				

The	Visual	C++	section	of	ADO	Event	Instantiation	by	Language	gives	a	general
description	of	how	to	instantiate	the	ADO	event	model.	The	following	is	a
specific	example	of	instantiating	the	event	model	within	the	environment	created
by	the	#import	directive.

The	general	description	uses	adoint.h	as	a	reference	for	method	signatures.
However,	a	few	details	in	the	general	description	change	slightly	as	a	result	of
using	the	#import	directive:

The	#import	directive	resolves	typedef's,	and	method	signature	data	types
and	modifiers	to	their	fundamental	forms.

The	pure	virtual	methods	that	must	be	overwritten	are	all	prefixed	by
"raw_".

Some	of	the	code	simply	reflects	coding	style.

The	pointer	to	IUnknown	used	by	the	Advise	method	is	obtained	explicitly
with	a	call	to	QueryInterface.

You	don't	need	to	explicitly	code	a	destructor	in	the	class	definitions.

You	may	want	to	code	more	robust	implementations	of	QueryInterface,
AddRef,	and	Release.

The	__uuidof()	directive	is	used	extensively	to	obtain	interface	IDs.

Finally,	the	example	contains	some	working	code.

The	example	is	written	as	a	console	application.

You	should	insert	your	own	code	under	the	comment,	"//	Do	some	work".

All	the	event	handlers	default	to	doing	nothing,	and	canceling	further
notifications.	You	should	insert	the	appropriate	code	for	your	application,
and	allow	notifications	if	required.

//	eventmodel.cpp	:	Defines	the	entry	point	for	the	console	application.

//

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

			no_namespace	rename("EOF",	"EndOfFile")

#include	<comdef.h>

#include	<stdio.h>

//----The	Connection	events--

class	CConnEvent	:	public	ConnectionEventsVt

{

private:

								ULONG			m_cRef;

				public:

								CConnEvent()	{	m_cRef	=	0;	};

								~CConnEvent()	{};

								STDMETHODIMP	QueryInterface(REFIID	riid,	void	**	ppv);

								STDMETHODIMP_(ULONG)	AddRef(void);

								STDMETHODIMP_(ULONG)	Release(void);

								STDMETHODIMP	raw_InfoMessage(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_BeginTransComplete(

												LONG	TransactionLevel,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

						

				STDMETHODIMP	raw_CommitTransComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_RollbackTransComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_WillExecute(

												BSTR	*Source,

												CursorTypeEnum	*CursorType,

												LockTypeEnum	*LockType,

												long	*Options,

												EventStatusEnum	*adStatus,

												struct	_Command	*pCommand,

												struct	_Recordset	*pRecordset,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_ExecuteComplete(

												LONG	RecordsAffected,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Command	*pCommand,

												struct	_Recordset	*pRecordset,

												struct	_Connection	*pConnection);

								

				STDMETHODIMP	raw_WillConnect(

												BSTR	*ConnectionString,

												BSTR	*UserID,

												BSTR	*Password,

												long	*Options,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_ConnectComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

								

								STDMETHODIMP	raw_Disconnect(

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection);

};

//-----The	Recordset	events--

class	CRstEvent	:	public	RecordsetEventsVt

				{

				private:

								ULONG	m_cRef;			

				public:

								CRstEvent()	{	m_cRef	=	0;	};

								~CRstEvent()	{};

												STDMETHODIMP	QueryInterface(REFIID	riid,	void	**	ppv);

												STDMETHODIMP_(ULONG)	AddRef(void);

												STDMETHODIMP_(ULONG)	Release(void);

												STDMETHODIMP	raw_WillChangeField(

												LONG	cFields,

												VARIANT	Fields,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_FieldChangeComplete(

												LONG	cFields,

												VARIANT	Fields,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_WillChangeRecord(

												EventReasonEnum	adReason,

												LONG	cRecords,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_RecordChangeComplete(

												EventReasonEnum	adReason,

												LONG	cRecords,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_WillChangeRecordset(

												EventReasonEnum	adReason,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_RecordsetChangeComplete(

												EventReasonEnum	adReason,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_WillMove(

												EventReasonEnum	adReason,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_MoveComplete(

												EventReasonEnum	adReason,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_EndOfRecordset(

												VARIANT_BOOL	*fMoreData,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_FetchProgress(

												long	Progress,

												long	MaxProgress,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

								

								STDMETHODIMP	raw_FetchComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset);

};

//-----Implement	each	connection	method----------------------------------

								STDMETHODIMP	CConnEvent::raw_InfoMessage(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_BeginTransComplete(

												LONG	TransactionLevel,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_CommitTransComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_RollbackTransComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

				STDMETHODIMP	CConnEvent::raw_WillExecute(

												BSTR	*Source,

												CursorTypeEnum	*CursorType,

												LockTypeEnum	*LockType,

												long	*Options,

												EventStatusEnum	*adStatus,

												struct	_Command	*pCommand,

												struct	_Recordset	*pRecordset,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_ExecuteComplete(

												LONG	RecordsAffected,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Command	*pCommand,

												struct	_Recordset	*pRecordset,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_WillConnect(

												BSTR	*ConnectionString,

												BSTR	*UserID,

												BSTR	*Password,

												long	*Options,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_ConnectComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CConnEvent::raw_Disconnect(

												EventStatusEnum	*adStatus,

												struct	_Connection	*pConnection)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

//-----Implement	each	recordset	method-----------------------------------

								STDMETHODIMP	CRstEvent::raw_WillChangeField(

												LONG	cFields,

												VARIANT	Fields,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_FieldChangeComplete(

												LONG	cFields,

												VARIANT	Fields,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_WillChangeRecord(

												EventReasonEnum	adReason,

												LONG	cRecords,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_RecordChangeComplete(

												EventReasonEnum	adReason,

												LONG	cRecords,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_WillChangeRecordset(

												EventReasonEnum	adReason,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_RecordsetChangeComplete(

												EventReasonEnum	adReason,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_WillMove(

												EventReasonEnum	adReason,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_MoveComplete(

												EventReasonEnum	adReason,

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_EndOfRecordset(

												VARIANT_BOOL	*fMoreData,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_FetchProgress(

												long	Progress,

												long	MaxProgress,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

								

								STDMETHODIMP	CRstEvent::raw_FetchComplete(

												struct	Error	*pError,

												EventStatusEnum	*adStatus,

												struct	_Recordset	*pRecordset)

												{

												*adStatus	=	adStatusUnwantedEvent;

												return	S_OK;

												};

//-----Implement	QueryInterface,	AddRef,	and	Release---------------------

				STDMETHODIMP	CRstEvent::QueryInterface(REFIID	riid,	void	**	ppv)	

				{

								*ppv	=	NULL;

								if	(riid	==	__uuidof(IUnknown)	||	

																	riid	==	__uuidof(RecordsetEventsVt))	*ppv	=	this;

								if	(*ppv	==	NULL)

												return	ResultFromScode(E_NOINTERFACE);

								AddRef();

								return	NOERROR;

				}

				STDMETHODIMP_(ULONG)	CRstEvent::AddRef(void)	{	return	++m_cRef;	};

				STDMETHODIMP_(ULONG)	CRstEvent::Release()			

																																								{	

																																								if	(0	!=	--m_cRef)	return	m_cRef;

																																								delete	this;

																																								return	0;

																																								}

				STDMETHODIMP	CConnEvent::QueryInterface(REFIID	riid,	void	**	ppv)	

								

				{

								*ppv	=	NULL;

								if	(riid	==	__uuidof(IUnknown)	||	

													riid	==	__uuidof(ConnectionEventsVt))	*ppv	=	this;

								if	(*ppv	==	NULL)

												return	ResultFromScode(E_NOINTERFACE);

								AddRef();

								return	NOERROR;

				}

				STDMETHODIMP_(ULONG)	CConnEvent::AddRef()	{	return	++m_cRef;	};

				STDMETHODIMP_(ULONG)	CConnEvent::Release()				

																																								{	

																																								if	(0	!=	--m_cRef)	return	m_cRef;

																																								delete	this;

																																								return	0;

																																								}

//-----Write	your	main	block	of	code-------------------------------------

int	main(int	argc,	char*	argv[])

{

				HRESULT	hr;

				DWORD			dwConnEvt;

				DWORD			dwRstEvt;

				IConnectionPointContainer			*pCPC	=	NULL;

				IConnectionPoint									*pCP	=	NULL;

				IUnknown															*pUnk	=	NULL;

				CRstEvent															*pRstEvent	=	NULL;

				CConnEvent															*pConnEvent=	NULL;

				int																					rc	=	0;

				_RecordsetPtr												pRst;	

				_ConnectionPtr												pConn;

				::CoInitialize(NULL);

				

				hr	=	pConn.CreateInstance(__uuidof(Connection));

				if	(FAILED(hr))	return	rc;

				

				hr	=	pRst.CreateInstance(__uuidof(Recordset));

				if	(FAILED(hr))	return	rc;

				//	Start	using	the	Connection	events

				hr	=	pConn->QueryInterface(__uuidof(IConnectionPointContainer),	

								(void	**)&pCPC);

				if	(FAILED(hr))	return	rc;

				hr	=	pCPC->FindConnectionPoint(__uuidof(ConnectionEvents),	&pCP);

				pCPC->Release();

				if	(FAILED(hr))	return	rc;

				pConnEvent	=	new	CConnEvent();

				hr	=	pConnEvent->QueryInterface(__uuidof(IUnknown),	(void	**)	&pUnk);

				if	(FAILED(hr))	return	rc;

				hr	=	pCP->Advise(pUnk,	&dwConnEvt);

				pCP->Release();

				if	(FAILED(hr))	return	rc;

				//	Start	using	the	Recordset	events

				hr	=	pRst->QueryInterface(__uuidof(IConnectionPointContainer),	

								(void	**)&pCPC);

				if	(FAILED(hr))	return	rc;

				hr	=	pCPC->FindConnectionPoint(__uuidof(RecordsetEvents),	&pCP);

				pCPC->Release();

				if	(FAILED(hr))	return	rc;

				pRstEvent	=	new	CRstEvent();

				hr	=	pRstEvent->QueryInterface(__uuidof(IUnknown),	(void	**)	&pUnk);

				if	(FAILED(hr))	return	rc;

				hr	=	pCP->Advise(pUnk,	&dwRstEvt);

				pCP->Release();

				if	(FAILED(hr))	return	rc;

				//	Do	some	work

				pConn->Open("dsn=Pubs;",	"sa",	"",	adConnectUnspecified);

				pRst->Open("SELECT	*	FROM	authors",	(IDispatch	*)	pConn,	

												adOpenStatic,	adLockReadOnly,	adCmdText);

				pRst->MoveFirst();

				while	(pRst->EndOfFile	==	FALSE)

				{

								wprintf(L"Name	=	'%s'\n",	(wchar_t*)	

												((_bstr_t)	pRst->Fields->GetItem("au_lname")->Value));

								pRst->MoveNext();

				}

				pRst->Close();

				pConn->Close();

				//	Stop	using	the	Connection	events

				hr	=	pConn->QueryInterface(__uuidof(IConnectionPointContainer),	

								(void	**)	&pCPC);

				if	(FAILED(hr))	return	rc;

				hr	=	pCPC->FindConnectionPoint(__uuidof(ConnectionEvents),	&pCP);

				pCPC->Release();

				if	(FAILED(hr))	return	rc;

				hr	=	pCP->Unadvise(dwConnEvt);

				pCP->Release();

				if	(FAILED(hr))	return	rc;

				//	Stop	using	the	Recordset	events

				hr	=	pRst->QueryInterface(__uuidof(IConnectionPointContainer),	

								(void	**)	&pCPC);

				if	(FAILED(hr))	return	rc;

				hr	=	pCPC->FindConnectionPoint(__uuidof(RecordsetEvents),	&pCP);

				pCPC->Release();

				if	(FAILED(hr))	return	rc;

				hr	=	pCP->Unadvise(dwRstEvt);

				pCP->Release();

				if	(FAILED(hr))	return	rc;

				CoUninitialize();

				return	1;

}

AbsolutePage,	PageCount,	and	PageSize	Properties	Example
(VC++)

This	example	uses	the	AbsolutePage,	PageCount,	and	PageSize	properties	to
display	names	and	hire	dates	from	the	Employee	table,	five	records	at	a	time.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	"conio.h"

#include	"AbsolutepageX.h"

//Function	Declarations.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AbsolutePageX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);	

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				AbsolutePageX();

				

				::CoUninitialize();

}

///

//																																																									//

//						AbsolutePageX	Function																													//

//																																																									//

///

void	AbsolutePageX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr			pRstEmployees			=	NULL;

				//Define	Other	Variables

				//Interface	Pointer	declared.(VC++	Extensions)	

				IADORecordBinding			*picRs	=	NULL;

				CEmployeeRs	emprs;										//C++	class	object	

				HRESULT	hr	=	S_OK;		

				_bstr_t	strMessage;	

				//Open	a	recordset	using	a	Client	Cursor

				//For	the	Employee	Table

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	a	recordset.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								//	Use	client	cursor	to	enable	Absoluteposition	property.

								pRstEmployees->CursorLocation	=	adUseClient;

								//	You	have	to	explicitly	pass	the	default	Cursor	type	

								//	and	LockType	to	the	Recordset	here	

								TESTHR(hr	=				pRstEmployees->Open("employee",	

												strCnn,adOpenForwardOnly,adLockReadOnly,adCmdTable));

								//Open	an	IADORecordBinding	interface	pointer	which	we'll	use	for	

								//Binding	Recordset	to	a	class				

								TESTHR(pRstEmployees->QueryInterface

												(__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&emprs));

								//Display	Names	and	hire	dates,	five	records	at	a	time

								pRstEmployees->PageSize	=	5;

								int	intPageCount	=	pRstEmployees->PageCount;

								

								for(int	intPage=1;intPage<=intPageCount;intPage++)

								{

												pRstEmployees->put_AbsolutePage((enum	PositionEnum)intPage);

												strMessage	=	"";

												for(int	intRecord=1;

																intRecord<=pRstEmployees->PageSize;intRecord++)

												{

																printf("\t%s	%s	%.10s\n",	

																				emprs.lau_fnameStatus	==	adFldOK	?	

																				emprs.m_szau_fname	:	"<NULL>",

																				emprs.lau_lnameStatus	==	adFldOK	?	

																				emprs.m_szau_lname	:	"<NULL>",

																				emprs.lau_hiredateStatus	==	adFldOK	?	

																				emprs.m_szau_hiredate	:	"<NULL>");

																pRstEmployees->MoveNext();

																if(pRstEmployees->EndOfFile)

																				break;

																}

												printf("\n	Press	any	key	to	continue...");getch();

												//Clear	the	Screen	for	the	next	Display		

												system("cls");

								}

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								//Release	the	IADORecordset	Interface	here

								if	(picRs)	

												picRs->Release();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																printf("Error:\n");

																printf("Code	=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source	=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								printf("Error:\n");

								for(long	iError	=	0;	iError	<	nCount;	iError++)

								{

												pErr	=	pConnection->Errors->GetItem(iError);

												printf("\t	Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

AbsolutePageX.h:

#include	"icrsint.h"

//This	Class	extracts	only	fname,lastname	and	hire_date		

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				//Column	fname	is	the	2nd	field	in	the	table			

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szau_fname,	

								sizeof(m_szau_fname),	lau_fnameStatus,	FALSE)

				ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_szau_lname,	

								sizeof(m_szau_lname),	lau_lnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(8,	adVarChar,	m_szau_hiredate,	

								sizeof(m_szau_hiredate),	lau_hiredateStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR			m_szau_lname[41];

				ULONG		lau_lnameStatus;

				CHAR			m_szau_fname[41];

				ULONG		lau_fnameStatus;

				CHAR			m_szau_hiredate[40];

				ULONG		lau_hiredateStatus;

};

AbsolutePosition	and	CursorLocation	Properties	Example
(VC++)

This	example	demonstrates	how	the	AbsolutePosition	property	can	track	the
progress	of	a	loop	that	enumerates	all	the	records	of	a	Recordset.	It	uses	the
CursorLocation	property	to	enable	the	AbsolutePosition	property	by	setting	the
cursor	to	a	client	cursor.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	"conio.h"	

#include	"AbsolutePositionX.h"

//Function	Declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AbsolutePositionX(void);

void	AbsolutePosition2X(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				AbsolutePositionX();

				//Clear	the	screen	for	the	next	display			

				printf("Press	any	key	to	continue...");

				getch();

				system("cls");	

				AbsolutePosition2X();

				::CoUninitialize();

}

///

//																																																							//

//						AbsolutePositionX	Function																							//

//																																																							//

///

void	AbsolutePositionX(void)

{

				HRESULT	hr	=	S_OK;		

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstEmployees		=	NULL;

				//Define	Other	Variables

				//Interface	Pointer	declared.(VC++	Extensions)

				IADORecordBinding	*picRs	=	NULL;

				CEmployeeRs	emprs;																		//C++	class	object

				_bstr_t	strMessage;

				char	chKey;

				//Open	a	recordset	using	a	Client	Cursor

				//For	the	Employee	Table

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//Open	a	recordset.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								//Use	client	cursor	to	enable	AbsolutePosition	property.

								pRstEmployees->CursorLocation	=	adUseClient;

								//You	have	to	explicitly	pass	the	default	Cursor	type	

								//and	LockType	to	the	Recordset.

								TESTHR(pRstEmployees->Open("employee",	

								strCnn,adOpenForwardOnly,adLockReadOnly,adCmdTable));

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//	for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&emprs));

								strMessage=	"";

								//Enumerate	recordset

								do

								{

												//Display	Current	Record	Information

												printf("Employee	:	%s	\n	record	%ld	of	%d",	

																emprs.lau_lnameStatus	==	adFldOK	?	

																emprs.m_szau_lname	:	"<NULL>",

																pRstEmployees->AbsolutePosition,	

																				pRstEmployees->RecordCount);

												printf("\nContinue?(y/n)		:");

												do

												{

																chKey	=	getch();

												}while(chKey	!=	'y'	&&	chKey	!='n');

												//Clear	the	Screen	for	the	next	output			

												system("cls");

												if(chKey	==	'n')

																break;

												strMessage	=	"";				

												pRstEmployees->MoveNext();			

								}while(!(pRstEmployees->EndOfFile));

				

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								//Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								PrintProviderError(pRstEmployees->GetActiveConnection());

								printf("Source	:	%s	\n		Description	:	%s	\n",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

}

///

//																																																							//

//						AbsolutePosition2X	Function																						//

//																																																							//

///

void	AbsolutePosition2X(void)

{

				HRESULT	hr	=	S_OK;		

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstEmployees		=	NULL;

				//Define	Other	Variables

				//Interface	Pointer	declared.(VC++	Extensions)

				IADORecordBinding	*picRs	=	NULL;

				CEmployeeRs	emprs;																		//C++	class	object

				_bstr_t	strMessage;

				char	chKey;

				//Open	a	recordset	using	a	Client	Cursor

				//For	the	Employee	Table

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=dhale1;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//Open	a	recordset.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								//Use	client	cursor	to	enable	AbsolutePosition	property.

								pRstEmployees->CursorLocation	=	adUseClient;

								//You	have	to	explicitly	pass	the	default	Cursor	type	

								//and	LockType	to	the	Recordset.

								TESTHR(pRstEmployees->Open("employee",	

										strCnn,adOpenStatic,adLockReadOnly,adCmdTable));

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//	for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&emprs));

								long	lGoToPos	=	21;

								pRstEmployees->AbsolutePosition	=	(PositionEnum)lGoToPos;

								//Display	Current	Record	Information

								printf("Employee	:	%s	\n	record	%ld	of	%d",	

												emprs.lau_lnameStatus	==	adFldOK	?	emprs.m_szau_lname	:

												"<NULL>",	pRstEmployees->AbsolutePosition,	

												pRstEmployees->RecordCount);

								printf("\nPress	any	key	to	continue:");

								getch();

				

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								//Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																printf("Error:\n");

																printf("Code	=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source	=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				long						nCount		=	0;				

				long						i					=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	

																pErr->Number,(LPCSTR)	pErr->Description);

								}

				}

}

AbsolutePositionX.h:

#include	<ole2.h>

#include	<stdio.h>

#include	"icrsint.h"

//This	Class	extracts	lastname.		

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				

			//Column	lname	is	the	4th	field	in	the	recordset

			ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_szau_lname,

									sizeof(m_szau_lname),	lau_lnameStatus,	TRUE)

			

END_ADO_BINDING()

public:

			CHAR			m_szau_lname[41];

			ULONG		lau_lnameStatus;

};

ActiveCommand	Property	Example	(VC++)

This	example	demonstrates	the	ActiveCommand	property.

A	subroutine	is	given	a	Recordset	object	whose	ActiveCommand	property	is
used	to	display	the	command	text	and	parameter	that	created	the	Recordset.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"ActiveCommandX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ActiveCommandX(void);

void	ActiveCommandXprint(_RecordsetPtr				pRst);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ActiveCommandX();

				::CoUninitialize();

}

//

//																																																						//

//												ActiveCommandX	Function																			//

//																																																						//

//

void	ActiveCommandX(void)	

{

				HRESULT				hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection						=	NULL;

				_CommandPtr				pCmd						=	NULL;

				_RecordsetPtr		pRstAuthors				=	NULL;

				//Definitions	of	other	variables

				_bstr_t		strCnn("Provider=SQLOLEDB;Data	Source=srv;”

																	“Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t		strName;

				CHAR	strcharName[50];

				try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								TESTHR(pCmd.CreateInstance(__uuidof(Command)));

								printf("ActiveCommandX	Example\n\n");

								printf("Enter	an	author's	name	(e.g.,	Ringer):	");

								gets(strcharName);

								char	*tempStr	=	strtok(strcharName,	"	\t");

								strName	=	tempStr;

								pCmd->CommandText	=	"SELECT	*	FROM	authors	WHERE	au_lname	=	?";

								pCmd->Parameters->Append(pCmd->CreateParameter("LastName",	

												adChar,	adParamInput,	20,	strName));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								pCmd->PutActiveConnection(_variant_t((IDispatch*)pConnection));

								pRstAuthors	=	pCmd->Execute(NULL,NULL,adCmdText);

								ActiveCommandXprint(pRstAuthors);

								//	Clean	up	objects	before	exit.

								pRstAuthors->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

//

//																																																						//

//														ActiveCommandXprint	Function												//

//																																																						//

//

void	ActiveCommandXprint(_RecordsetPtr				pRst	=	NULL)

{

				//	Varible	declaraion	&	initialization

				IADORecordBinding			*picRs		=	NULL;		//Interface	Pointer	declared.	

				CAuthorsRs	autrs;																				//C++	class	object

				HRESULT	hr;

				bstr_t	strName;

				

				//Open	an	IADORecordBinding	interface	pointer	which	

				//we'll	use	for	Binding	Recordset	to	a	class.

				TESTHR(pRst->QueryInterface(

								__uuidof(IADORecordBinding),(LPVOID*)&picRs));

				//Bind	the	Recordset	to	a	C++	Class	here.

				TESTHR(picRs->BindToRecordset(&autrs));

				strName	=	((_CommandPtr)pRst->GetActiveCommand())->

																		GetParameters()->GetItem("LastName")->Value;

				printf("Command	text	=	'%s'\n",	

								(LPCSTR)((_CommandPtr)pRst->GetActiveCommand())->CommandText);

				printf("Parameter	=	'%s'\n",	(LPCSTR)strName);

				if	(pRst->BOF)

								printf("Name	=	'%s'not	found.",	(LPCSTR)strName);

				else

				{

								printf	("Name	=	'%s		%s'	author	ID	=	'%s'",

										autrs.lau_fnameStatus	==	adFldOK	?	autrs.m_au_fname	:	"<NULL>",

										autrs.lau_lnameStatus	==	adFldOK	?	autrs.m_au_lname	:	"<NULL>",

										autrs.lau_idStatus	==	adFldOK	?	autrs.m_au_id	:	"<NULL>");

				}

				//Release	IADORecordset	Interface

				if	(picRs)

								picRs->Release();

}

//

//																																																						//

//								PrintProviderError	Function																			//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				long						nCount		=	0;

				long						i					=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	

																pErr->Number,	(LPCSTR)pErr->Description);

								}

				}

}

//

//																																																						//

//							PrintComError	Function																									//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("\nError\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

ActiveCommandX.h

#include	"icrsint.h"

//	This	Class	extracts	id,	fname,	lname	from	authors	table.

class	CAuthorsRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CAuthorsRs)

				//	Column	au_id	is	the	1st	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_au_id,	

									sizeof(m_au_id),	lau_idStatus,	TRUE)

				//	Column	au_fname	is	the	2nd	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_au_fname,	

									sizeof(m_au_fname),	lau_fnameStatus,	TRUE)

				//	Column	au_lname	is	the	3rd	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_au_lname,	

									sizeof(m_au_lname),	lau_lnameStatus,	TRUE)

END_ADO_BINDING()

public:

				char					m_au_id[21];

				ULONG				lau_idStatus;

				char					m_au_fname[41];

				ULONG				lau_fnameStatus;

				char					m_au_lname[41];

				ULONG				lau_lnameStatus;

};

ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	Properties	Example	(VC++)

This	example	uses	the	ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	properties	to	execute	a	stored	procedure.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	"conio.h"

#include	"ActiveConnectionX.h"

//Function	declaration

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ActiveConnectionX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ActiveConnectionX();

				::CoUninitialize();

}

///

//																																																							//

//						ActiveConnectionX	Function																							//

//																																																							//

///

void	ActiveConnectionX(void)

{

				HRESULT	hr	=	S_OK;		

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection				=	NULL;

				_CommandPtr					pCmdByRoyalty		=	NULL;

				_RecordsetPtr			pRstByRoyalty		=	NULL;

				_RecordsetPtr			pRstAuthors				=	NULL;

				_ParameterPtr			pPrmByRoyalty		=	NULL;

				//	Define	other	variables

				IADORecordBinding			*picRs	=	NULL;	//	Declare	interface	pointer.

				CEmployeeRs	emprs;																	//	C++	class	object

				int	intRoyalty;

				VARIANT	vtroyal;

				_bstr_t	strAuthorId;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

try

				{

				//Define	a	command	object	for	a	stored	procedure.	

				TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

				hr	=	pConnection->Open(strCnn,"","",NULL);

				TESTHR(pCmdByRoyalty.CreateInstance(__uuidof(Command)));

				pCmdByRoyalty->ActiveConnection	=	pConnection;

				pCmdByRoyalty->CommandText	=	"byRoyalty";

				pCmdByRoyalty->CommandType	=	adCmdStoredProc;

				pCmdByRoyalty->CommandTimeout	=	15;

				//Define	stored	procedure's	input	parameter.	

				printf("Enter	Royalty	:		");

				scanf("%d",&intRoyalty);

				//Assign	Integer	value	

				vtroyal.vt	=	VT_I2;

				vtroyal.iVal		=	intRoyalty;

				TESTHR(pPrmByRoyalty.CreateInstance(__uuidof(Parameter)));

				pPrmByRoyalty->Type	=	adInteger;

				pPrmByRoyalty->Size	=	3;

				pPrmByRoyalty->Direction	=	adParamInput;

				pPrmByRoyalty->Value	=	vtroyal;

				pCmdByRoyalty->Parameters->Append(pPrmByRoyalty);

				//Create	a	recordset	by	executing	a	command.	

				pRstByRoyalty	=	pCmdByRoyalty->Execute(NULL,NULL,adCmdStoredProc);	

				//Open	the	authors	table	to	get	author	names	for	display.

				TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

				hr	=	pRstAuthors->Open("authors",

								strCnn,adOpenForwardOnly,adLockReadOnly,adCmdTable);

				//Open	an	IADORecordBinding	interface	pointer	which	we'll	

				//use	for	Binding	Recordset	to	a	class				

				TESTHR(pRstAuthors->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

				//Bind	the	Recordset	to	a	C++	Class	here				

				TESTHR(picRs->BindToRecordset(&emprs));

				//Print	current	data	in	the	recordset	,adding	author	names	

				//from	author	table.	

				printf("Authors	With	%d	Percent	Royalty",intRoyalty);

				while(!(pRstByRoyalty->EndOfFile))

				{

								strAuthorId	=	pRstByRoyalty->Fields->Item["au_id"]->Value;

								pRstAuthors->Filter	=	"au_id	=	'"+strAuthorId+"'";

								printf("\n\t%s,	%s	%s",

											emprs.lau_idStatus	==	adFldOK	?	emprs.m_szau_id	:	"<NULL>",

											emprs.lau_fnameStatus	==	adFldOK	?	emprs.m_szau_fname	:	

											"<NULL>",

											emprs.lau_lnameStatus	==	adFldOK	?	emprs.m_szau_lname	:	

											"<NULL>");

								pRstByRoyalty->MoveNext();

				}

				//	Clean	up	objects	before	exit

				pRstByRoyalty->Close();

				pRstAuthors->Close();

				//Release	the	IADORecordset	Interface	here

				if	(picRs)

								picRs->Release();

								pConnection->Close();	

				}

catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								PrintProviderError(pConnection);

								printf("Source	:	%s	\n	Description	:	%s	

												\n",(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				long						nCount		=	0;

				long						i					=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)pErr->Description);

								}

				}

}

ActiveConnectionX.h:

#include	"icrsint.h"

//This	Class	extracts	fname,lastname	

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				//Column	au_id	is	the	1st	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szau_id,

									sizeof(m_szau_id),	lau_idStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szau_lname,

									sizeof(m_szau_lname),	lau_lnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szau_fname,	

									sizeof(m_szau_fname),	lau_fnameStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szau_id[20];

				ULONG	lau_idStatus;

				CHAR	m_szau_fname[40];

				ULONG	lau_fnameStatus;

				CHAR			m_szau_lname[40];

				ULONG		lau_lnameStatus;

};

ActualSize	and	DefinedSize	Properties	Example	(VC++)

This	example	uses	the	ActualSize	and	DefinedSize	properties	to	display	the
defined	size	and	actual	size	of	a	field.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	"conio.h"	

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ActualSizeX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ActualSizeX();

				::CoUninitialize();

}

///

//																																																							//

//						ActualSizeX	Function																													//

//																																																							//

///

void				ActualSizeX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstStores	=	NULL;

				//Define	Other	variables

				_bstr_t	strMessage;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//Open	a	recordset	for	the	stores	table.

								TESTHR(pRstStores.CreateInstance(__uuidof(Recordset)));

								//You	have	to	explicitly	pass	the	Cursor	type	and	LockType	

								//to	the	Recordset	here.

								hr	=	pRstStores->Open("stores",

																strCnn,adOpenForwardOnly,adLockReadOnly,adCmdTable);

								//Loop	through	the	recordset	displaying	the	contents

								//of	the	stor_name	field,	the	field's	defined	size,

								//and	its	actual	size.

								pRstStores->MoveFirst();

								while(!(pRstStores->EndOfFile))

								{

												strMessage	=	"Store	Name:	";

												strMessage	+=	(_bstr_t)pRstStores->Fields->

																													Item["stor_name"]->Value	+	"\n";

												strMessage	+=	"Defined	Size:	";	

												strMessage	+=	(_bstr_t)pRstStores->Fields->

																													Item["stor_name"]->DefinedSize	+	"\n";

												strMessage	+=	"Actual	Size:	";

												strMessage	+=	(_bstr_t)	pRstStores->Fields->

																													Item["stor_name"]->ActualSize	+	"\n";	

												printf("%s\n",(LPCSTR)strMessage);

												printf("Press	any	key	to	continue...");

												getch();

												//Clear	the	screen	for	the	next	display

												system("cls");	

												pRstStores->MoveNext();

								}

				//	Clean	up	objects	before	exit.

				pRstStores->Close();	

				}

				catch(_com_error	&e)

				{

								_variant_t	vtConnect	=	pRstStores->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

								case	VT_BSTR:

																printf("Error:\n");

																printf("Code	=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source	=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

								case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

								default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				long						nCount				=	0;				

				long						i					=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,(LPCSTR)	pErr->Description);

								}

				}

}

AddNew	Method	Example	(VC++)

This	example	uses	the	AddNew	method	to	create	a	new	record	with	the	specified
name.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	"conio.h"

#include	"AddNewX.h"

//Function	declaration

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AddNewX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))	

								return;	

				AddNewX();

				::CoUninitialize();

}

///

//																																																							//

//						AddNewX	Function																																	//

//																																																							//

///

void		AddNewX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				_RecordsetPtr		pRstEmployees	=	NULL;

				_ConnectionPtr	pConnection			=	NULL;

				//Define	Other	variables

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared.

				CEmployeeRs	emprs;																		//C++	class	object			

				HRESULT	hr	=	S_OK;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;”

																“Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	strId;

				_bstr_t	strMessage;

				try

				{

								//Open	a	connection

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								hr	=	pConnection->Open(strCnn,"","",NULL);

								//Open	employee	table.	

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								//You	have	to	explicitly	pass	the	Cursor	type	and	LockType	

								//to	the	Recordset	here.

								pRstEmployees->Open("employee",

												_variant_t((IDispatch	*)	pConnection,true),

												adOpenKeyset,adLockOptimistic,adCmdTable);

								//Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

																__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here

								TESTHR(picRs->BindToRecordset(&emprs));	

								//	Get	data	from	the	user.The	employee	id	must	be	formatted	as

								//	first,middle	and	last	initial,five	numbers,then	M	or	F	to

								//	signify	the	gender.For	example,the	employee	id	for	

								//	Bill	A.	Sorensen	would	be	"BAS55555M".	

								printf("Enter	Employee	Id:	");scanf("%s",emprs.m_sz_empid);

								strId	=	emprs.m_sz_empid;

								printf("Enter	First	Name:	");scanf("%s",emprs.m_sz_fname);

								printf("Enter	Last	Name:");scanf("%s",emprs.m_sz_lname);

								//Proceed	if	the	user	actually	entered	something		

								//for	the	id,	the	first	and	the	last	name.	

								if(strcmp(emprs.m_sz_empid,"")	&&	

											strcmp(emprs.m_sz_fname,"")	&&	

											strcmp(emprs.m_sz_lname,""))

								{

												//This	adds	a	new	record	to	the	table

												//if	(FAILED(hr	=	picRs->AddNew(&emprs)))

												//_com_issue_error(hr);

												TESTHR(picRs->AddNew(&emprs));

												//Show	the	newly	added	data

												printf("New	Record:	%s		%s		%s	\n",

																emprs.lemp_empidStatus	==	adFldOK	?	

																emprs.m_sz_empid	:	"<NULL>",

																emprs.lemp_fnameStatus	==	adFldOK	?	

																emprs.m_sz_fname	:	"<NULL>",

																emprs.lemp_lnameStatus	==	adFldOK	?	

																emprs.m_sz_lname	:	"<NULL>");

								}

								else

												printf("Please	enter	an	employee	id,	first	name	“

																“and	last	name.\n");

								//Delete	the	new	record	because	this	is	a	demonstration.	

								pConnection->Execute("DELETE	FROM	EMPLOYEE	WHERE	emp_id	="

												"'"	+	strId	+	"'",NULL,adCmdText);

								//Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																printf("Error:\n");

																printf("Code	=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source	=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr	=	NULL;

				long						nCount	=	0;				

				long						i	=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\n\t	Error	number:	%x\t%s",	

																pErr->Number,	(LPCSTR)pErr->Description);

								}

				}

}

AddNewX.h:

#include	"icrsint.h"

//This	Class	extracts	empid,	fname	and	lastname		

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				//Column	empid	is	the	1st	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_sz_empid,	

									sizeof(m_sz_empid),	lemp_empidStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sz_fname,	

									sizeof(m_sz_fname),	lemp_fnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_sz_lname,	

									sizeof(m_sz_lname),	lemp_lnameStatus,	TRUE)

			

END_ADO_BINDING()

public:

			CHAR		m_sz_empid[10];

			ULONG	lemp_empidStatus;

			CHAR			m_sz_fname[40];

			ULONG		lemp_fnameStatus;

			CHAR			m_sz_lname[41];

			ULONG		lemp_lnameStatus;

};

Append	and	CreateParameter	Methods	Example	(VC++)

This	example	uses	the	Append	and	CreateParameter	methods	to	execute	a	stored
procedure	with	an	input	parameter.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	"conio.h"

#include	"AppendX.h"

//Function	declaration

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AppendX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				AppendX();

				::CoUninitialize();	

}

///

//																																																							//

//						AppendX	Function																																	//

//																																																							//

///

void		AppendX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstByRoyalty	=	NULL;

				_RecordsetPtr	pRstAuthors	=	NULL;		

				_CommandPtr			pcmdByRoyalty	=	NULL;

				_ParameterPtr	pprmByRoyalty	=	NULL;

				_ConnectionPtr	pConnection	=	NULL;

				//Define	Other	variables

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared.

				CEmployeeRs	emprs;																	//C++	class	object

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	strMessage,	strAuthorID;

				int	intRoyalty;

				VARIANT	vtRoyalty;

				try

				{

								//Open	a	Connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								hr	=	pConnection->Open(strCnn,"","",NULL);

								pConnection->CursorLocation	=	adUseClient;

								//Open	Command	Object	with	one	Parameter

								TESTHR(pcmdByRoyalty.CreateInstance(__uuidof(Command)));

								pcmdByRoyalty->CommandText	=	"byroyalty";

								pcmdByRoyalty->CommandType	=	adCmdStoredProc;

								//Get	parameter	value	and	append	parameter

								printf("Enter	Royalty:	");

								scanf("%d",&intRoyalty);

								//Define	Integer/variant.

								vtRoyalty.vt	=	VT_I2;

								vtRoyalty.iVal	=	intRoyalty;

								pprmByRoyalty	=	pcmdByRoyalty->CreateParameter(

												"percentage",adInteger,adParamInput,sizeof(int),vtRoyalty);

								pcmdByRoyalty->Parameters->Append(pprmByRoyalty);

								pprmByRoyalty->Value		=	vtRoyalty;

								//Create	Recordset	by	executing	the	command

								pcmdByRoyalty->ActiveConnection	=	pConnection;

								pRstByRoyalty	=	pcmdByRoyalty->Execute(

												NULL,NULL,adCmdStoredProc);

								//Open	the	authors	table	to	get	author	names	for	display

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								//You	have	to	explicitly	pass	the	default	Cursor	type	and	

								//LockType	to	the	Recordset	here.

								hr	=	pRstAuthors->Open(

												"authors",_variant_t((IDispatch*)pConnection,true),

												adOpenForwardOnly,adLockReadOnly,adCmdTable);

								//Open	an	IADORecordBinding	interface	pointer	which	we'll	

								//use	for	Binding	Recordset	to	a	class.

								TESTHR(pRstAuthors->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&emprs));

								//Print	current	data	in	the	recordset,	adding

								//author	names	from	author	table.

								printf("Authors	with	%d	percent	royalty	",intRoyalty);

								while(!(pRstByRoyalty->EndOfFile))

								{

												strAuthorID	=	pRstByRoyalty->Fields->Item["au_id"]->Value;

												pRstAuthors->Filter	=	"au_id	=	'"+strAuthorID+"'";

												printf("\n"		"%s,	%s		%s",

																emprs.lau_idStatus	==	adFldOK	?	

																emprs.m_szau_id	:	"<NULL>",

																emprs.lau_fnameStatus	==	adFldOK	?	

																emprs.m_szau_fname	:	"<NULL>",

																emprs.lau_lnameStatus	==	adFldOK	?	

																emprs.m_szau_lname	:	"<NULL>");

												pRstByRoyalty->MoveNext();	

								}

								//Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

								pRstByRoyalty->Close();

								pRstAuthors->Close();

								pConnection->Close();	

				}

				catch(_com_error	&e)

				{

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								PrintProviderError(pConnection);

								printf("\n	Source	:	%s	\n	Description	:	%s	\n",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				long						nCount		=	0;				

				long						i					=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\n	Error	Description:	%s\n",	

																pErr->Number,(LPCSTR)	pErr->Description);

								}

				}

}

AppendX.h:

#include	"icrsint.h"

//This	Class	extracts	only	author	id,fname,lastname				

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				//Column	au_id	is	the	1st	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szau_id,	

									sizeof(m_szau_id),	lau_idStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szau_lname,	

									sizeof(m_szau_lname),	lau_lnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szau_fname,	

									sizeof(m_szau_fname),	lau_fnameStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szau_id[20];

				ULONG	lau_idStatus;

				CHAR	m_szau_fname[40];

				ULONG	lau_fnameStatus;

				CHAR			m_szau_lname[40];

				ULONG		lau_lnameStatus;

};

AppendChunk	and	GetChunk	Methods	Example	(VC++)

This	example	uses	the	AppendChunk	and	GetChunk	methods	to	fill	an	image
field	with	data	from	another	record.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#define	ChunkSize				100

#include	<ole2.h>

#include	<stdio.h>

#include	"conio.h"

#include	"malloc.h"

#include	"AppendChunkX.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AppendChunkX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				AppendChunkX();

				::CoUninitialize();

}

///

//																																																							//

//						AppendChunkX	Function																												//

//																																																							//

///

void		AppendChunkX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstPubInfo	=	NULL;

				_ConnectionPtr	pConnection	=	NULL;

				//Define	other	variables

				//Interface	Pointer	declared.(VC++	Extensions)			

				IADORecordBinding			*picRs	=	NULL;		

				CPubInfoRs	pubrs;										//C++	class	object			

				HRESULT	hr	=	S_OK;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	strMessage,strPubID,strPRInfo;

				_variant_t	varChunk;

				long	lngOffSet,lngLogoSize;

				char	pubId[50];

				lngOffSet	=	0;				

				UCHAR	chData;

				CHAR	ch;

				SAFEARRAY	FAR	*psa;

				SAFEARRAYBOUND	rgsabound[1];

				rgsabound[0].lLbound	=	0;

				rgsabound[0].cElements	=	ChunkSize;

				try

				{

								//Open	a	Connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pConnection->Open(strCnn,"","",NULL));

								TESTHR(hr=	pRstPubInfo.CreateInstance(__uuidof(Recordset)));		

								pRstPubInfo->CursorType	=	adOpenKeyset;

								pRstPubInfo->LockType	=	adLockOptimistic;

								TESTHR(pRstPubInfo->Open("pub_info",

												_variant_t((IDispatch*)pConnection,true),

												adOpenKeyset,adLockOptimistic,adCmdTable));

								//Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//for	Binding	Recordset	to	a	class				

								TESTHR(pRstPubInfo->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&pubrs));

								//Display	the	available	logos	here

								strMessage	=	"Available	logos	are:	"	+	(_bstr_t)"\n\n";

								printf(strMessage);

								int	Counter	=	0;

								while(!(pRstPubInfo->EndOfFile))

								{	

												printf("\n%s",pubrs.m_sz_pubid);

												printf("\n%s",strtok(pubrs.m_sz_prinfo,","));

												//Display	5	records	at	a	time	and	wait	for	user	to	continue.

												if	(++Counter	>=	5)

												{

																Counter	=	0;

																printf("\nPress	any	key	to	continue...");

																getch();

												}

												pRstPubInfo->MoveNext();	

								}

								//Prompt	For	a	Logo	to	Copy

								printf("\nEnter	the	ID	of	a	logo	to	copy:	");

								scanf("%s",pubId);

								strPubID	=	pubId;

								//Copy	the	logo	to	a	variable	in	chunks

								pRstPubInfo->Filter	=	"pub_id	=	'"		+	strPubID	+	"'";

								lngLogoSize	=	pRstPubInfo->Fields->Item["logo"]->ActualSize;

								//Create	a	safe	array	to	store	the	array	of	BYTES		

								rgsabound[0].cElements	=	lngLogoSize;

								psa	=	SafeArrayCreate(VT_UI1,1,rgsabound);

								long	index1	=	0;

								while(lngOffSet	<	lngLogoSize)

								{

												varChunk	=	pRstPubInfo->Fields->

																								Item["logo"]->GetChunk(ChunkSize);

												//Copy	the	data	only	up	to	the	Actual	Size	of	Field.		

												for(long	index=0;index<=(ChunkSize-1);index++)

												{

																hr=	SafeArrayGetElement(varChunk.parray,&index,&chData);

																if(SUCCEEDED(hr))

																{

																				//Take	BYTE	by	BYTE	and	advance	Memory	Location

																				TESTHR(SafeArrayPutElement(psa,&index1,&chData));

																				index1++;

																}

																else

																				break;

												}

												lngOffSet	=	lngOffSet	+	ChunkSize;

								}

								lngOffSet	=	0;

								printf("Enter	a	new	Pub	Id:	");

								scanf("%s",pubrs.m_sz_pubid);

								strPubID	=	pubrs.m_sz_pubid;

								printf("Enter	descriptive	text:	");

								scanf("%c",&ch);

								gets(pubrs.m_sz_prinfo);

								//	Temporarily	add	new	publisher	to	table	to	avoid	error	due		

								//	to	foreign	key	constraint.

								pConnection->Execute("INSERT	publishers(pub_id)	VALUES('"	+	

												strPubID	+	"')",NULL,adCmdText);

								

								pRstPubInfo->AddNew();

								pRstPubInfo->Fields->GetItem("pub_id")->PutValue(strPubID);

								pRstPubInfo->Fields->GetItem("pr_info")->

												PutValue(pubrs.m_sz_prinfo);

								//Assign	the	Safe	array		to	a	variant.	

								varChunk.vt	=	VT_ARRAY|VT_UI1;

								varChunk.parray	=	psa;

								hr	=	pRstPubInfo->Fields->GetItem("logo")->

																AppendChunk(varChunk);	

								//Update	the	table	

								pRstPubInfo->Update();

								lngLogoSize	=	pRstPubInfo->Fields->Item["logo"]->ActualSize;

								//Show	the	newly	added	record.

								printf("New	Record	:	%s\nDescription	:	%s\nLogo	Size	:	%s\n",

												pubrs.m_sz_pubid,

												pubrs.m_sz_prinfo,(LPCSTR)(_bstr_t)pRstPubInfo->Fields->

												Item["logo"]->ActualSize);

								//Delete	new	records	because	this	is	demonstration.

								pConnection->Execute("DELETE	FROM	PUB_INFO	WHERE	pub_id	=	'"

																								+	strPubID	+"'",NULL,adCmdText);

								pConnection->Execute("DELETE	FROM	publishers	WHERE	pub_id	=	'"

																								+	strPubID	+"'",NULL,adCmdText);

								pRstPubInfo->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								PrintProviderError(pConnection);

								printf("Source	:	%s	\n	Description	:	%s\n",

																(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr			=	NULL;

				long						nCount	=	0;				

				long						i						=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

AppendChunkX.h:

#include	"icrsint.h"

//This	Class	extracts	pubid,prinfo.

class	CPubInfoRs	:	public	CADORecordBinding

{

				BEGIN_ADO_BINDING(CPubInfoRs)

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_sz_pubid,	

									sizeof(m_sz_pubid),	l_pubid,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_sz_prinfo,	

									sizeof(m_sz_prinfo),	l_prinfo,	TRUE)

				END_ADO_BINDING()

public:

				CHAR			m_sz_pubid[10];

				ULONG		l_pubid;

				CHAR			m_sz_prinfo[200];

				ULONG	l_prinfo;				

};

Attributes	and	Name	Properties	Example	(VC++)

This	example	displays	the	value	of	the	Attributes	property	for	Connection,	Field,
and	Property	objects.	It	uses	the	Name	property	to	display	the	name	of	each
Field	and	Property	object.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AttributesX();

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))	

								return;

				AttributesX();

				::CoUninitialize();

}

///

//																																																							//

//						AttributesX	Function																													//

//																																																							//

///

void	AttributesX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr				pRstEmployee		=	NULL;

				_ConnectionPtr	pConnection	=	NULL;

				FieldsPtr		fldLoop	=	NULL;				

				PropertiesPtr	proLoop	=	NULL;

				//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				_variant_t	Index;

				Index.vt	=	VT_I2;

				int	j=0;						

				//Open	a	recordset	using	a	Client	Cursor

				//For	the	Employee	Table

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	open	connection	and	record	set

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open(strCnn,"","",NULL);

								

								TESTHR(pRstEmployee.CreateInstance(__uuidof(Recordset)));

								pRstEmployee->Open("Employee",	

												_variant_t((IDispatch	*)pConnection,true),	adOpenForwardOnly,

												adLockReadOnly,	adCmdTable);

								//	Display	the	attributes	of	the	Connection.

								printf("Connection	attributes:	%d	\n",	pConnection->Attributes);

								//	Display	the	attributes	of	the	employee	table's	fields

								printf("\nFields	attributes:\n");

								fldLoop	=	pRstEmployee->GetFields();

								for	(int	i	=	0;	i	<	(int)fldLoop->GetCount();	i++)

								{

												Index.iVal=i;

												printf	("			%s	=	%d	\n",

																(LPSTR)fldLoop->GetItem(Index)->GetName(),

																(int)fldLoop->GetItem(Index)->GetAttributes());

								}

								//	Display	Fields	of	the	Employee	table	which	are	NULLBALE

								printf("\nNULLABLE	Fields	:");

								

								for	(int	i1	=	0;	i1	<	(int)fldLoop->GetCount();	i1++)

								{

												Index.iVal	=	i1;

												

												if	(fldLoop->GetItem(Index)->GetAttributes()	&	

																				adFldIsNullable)

																{

																				printf	("%s		\n",LPSTR)fldLoop->GetItem(Index)->

																																GetName());

																}

								}

								//	Display	the	attributes	of	the	Employee	tables's	

								//	properties

								printf("\nProperty	attributes:\n");

								proLoop	=	pRstEmployee->GetProperties();

						

								for	(int	i2	=	0;	i2	<	(int)proLoop->GetCount();	i2++)

								{

												j=	j+1;

												Index.iVal=i2;

												printf	("	%s	=	%d	\n",	

																(LPSTR)(_bstr_t)proLoop->GetItem(Index)->GetName(),

																(int)proLoop->GetItem(Index)->GetAttributes());

												if	(((j	%	23)	==	0)	||	(i2==6))

												{

																printf("\nPress	any	key	to	continue...");

																getch();

																//Clear	the	screen	for	the	next	display			

																system("cls");	

																j=0;

												}

								}

								//	Clean	up	objects	before	exit.

								pRstEmployee->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				long						nCount		=	0;

				long						i				=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)				

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	(LPCSTR)	pErr->Number,	

																				(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("\nError\n");

				printf("Code	=	%08lx\n",	e.Error());

				printf("Code	meaning	=	%s\n",	e.ErrorMessage());

				printf("Source	=	%s\n",	(LPCSTR)	bstrSource);

				printf("Description	=	%s\n",	(LPCSTR)	bstrDescription);		

}

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example
(VC++)

This	example	changes	the	book	type	of	all	psychology	books	in	the	Titles	table
of	the	database.	After	the	BeginTrans	method	starts	a	transaction	that	isolates	all
the	changes	made	to	the	Titles	table,	the	CommitTrans	method	saves	the
changes.	You	can	use	the	Rollback	method	to	undo	changes	that	you	saved	using
the	Update	method.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	<assert.h>

#include	<malloc.h>

#include	"BeginTransX.h"

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	BeginTransX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				BeginTransX();

				::CoUninitialize();

}

///

//																																																							//

//						BeginTransX	Function																													//

//																																																							//

///

void	BeginTransX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	rstTitles	=	NULL;

				_ConnectionPtr	pConnection	=	NULL;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;		

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared...

				CTitlesRs	titlrs;

				_bstr_t	strTitle;	

				_bstr_t	strMessage;

				LPSTR	p_TempStr	=	NULL;

				char	chKey;

				int	i	=	0;

				try	

				{

								//	open	connection.

								_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pConnection->Open(strCnn,"","",NULL));

								rstTitles.CreateInstance(__uuidof(Recordset));		

								rstTitles->CursorType	=	adOpenDynamic;

								rstTitles->LockType	=	adLockPessimistic;

								//	open	Titles	table

								TESTHR(rstTitles->Open("Titles",

												_variant_t((IDispatch*)pConnection,true),

												adOpenDynamic,	adLockPessimistic,adCmdTable));

								rstTitles->MoveFirst();

								pConnection->BeginTrans();

								//Open	an	IADORecordBinding	interface	pointer	which	

								//we'll	use	for	Binding	Recordset	to	a	class

								TESTHR(rstTitles->QueryInterface(

												__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&titlrs));

								//	Loop	through	recordset	and	ask	user	if	he	wants

								//	to	change	the	type	for	a	specified	title.

										//	Allocate	memory	to	p_TempStr	string	pointer.

								p_TempStr	=	(LPSTR)	malloc(sizeof(titlrs.m_szT_type));

								//	Check	for	null	string.

								assert(p_TempStr	!=	NULL);

								while	(VARIANT_FALSE	==	rstTitles->EndOfFile)

								{

												//	Remove	blank	string	

												strcpy(p_TempStr,strtok(titlrs.m_szT_type,"	"));

												//	Compare	type	with	psychology

												if	(!strcmp(p_TempStr,"psychology"))	

												{	

																strTitle	=	titlrs.m_szT_title;

																strMessage	=	"Title:	"	+	strTitle	+	

																								"\n	Change	type	to	Self	help?(y/n)";

																//	Change	the	title	for	specified	Employee

																printf("%s\n",(LPCSTR)strMessage);

																do

																{

																				chKey	=	getch();

																}while(chKey	!=	'y'	&&	chKey	!='n');

																if(chKey	==	'y')

																{

																				//	Copy	"self_help"	title	field

																				strcpy(titlrs.m_szT_type,"self_help");

																				picRs->Update(&titlrs);

																}

												}

												rstTitles->MoveNext();

								}

								//	Ask	if	the	User	wants	to	commit	to	all	the	

								//Changes	made	above

								printf("\n\n	Save	all	changes(y/n)?");

								do

								{

												chKey	=	getch();

								}while(chKey	!=	'y'	&&	chKey	!='n');

								if(chKey	==	'y')

												

												//	Save	the	changes	to	the	title	table

												pConnection->CommitTrans();

								else

												//	Unsave	the	changes	to	the	title	table

												pConnection->RollbackTrans();

								//	Print	current	data	in	recordset.

								rstTitles->Requery(0);

								//	Move	to	the	first	record	of	the	title	table

								rstTitles->MoveFirst();

								printf("\n\nPress	any	key	to	continue...");

								getch();

								//	Clear	the	screen	for	the	next	display

								system("cls");	

								//	Open	IADORecordBinding	interface	pointer	again	

								//	for	binding	Recordset	to	a	class.

								TESTHR(rstTitles->QueryInterface(

												__uuidof(IADORecordBinding),

												(LPVOID*)&picRs));

								//	Rebind	the	Recordset	to	a	C++	Class.

								TESTHR(picRs->BindToRecordset(&titlrs));

								while	(!rstTitles->EndOfFile)

								{

												i=	i+1;

												if	(i	%	23	==	0)

												{

																printf("\nPress	any	key	to	continue...");

																getch();

																//Clear	the	screen	for	the	next	display

																system("cls");	

												}

												printf("%s	-		%s\n",titlrs.m_szT_title,titlrs.m_szT_type);

												rstTitles->MoveNext();

								}

								//	Restore	original	data	because	this	is	a	demonstration.

								rstTitles->MoveFirst();

								while	(VARIANT_FALSE	==	rstTitles->EndOfFile)

								{

												strcpy(p_TempStr,titlrs.m_szT_type);

												p_TempStr	=	strtok(p_TempStr,"	");

												if	(!strcmp(p_TempStr,"self_help"))	

												{

																strcpy(titlrs.m_szT_type,"psychology");

																picRs->Update(&titlrs);											

												}

												rstTitles->MoveNext();		

								}

								//	Deallocate	the	memory

												free(p_TempStr);

								//	Clean	up	objects	before	exit.

								rstTitles->Close();

								pConnection->Close();

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								PrintProviderError(pConnection);

								printf("Source	:	%s\n",(LPCSTR)bstrSource);

								printf("Description	:	%s\n",(LPCSTR)bstrDescription);

				}

};

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr				=	NULL;

				long						nCount		=	0;

				long						i							=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,(LPCSTR)	pErr->Description);

								}

				}

}

BeginTransX.h:

#include	"icrsint.h"

//This	Class	extracts	only	title	and	type	

class	CTitlesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CTitlesRs)

				//Column	title	is	the	2nd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szT_title,	

									sizeof(m_szT_title),	lT_titleStatus,	FALSE)

				//Column	type	is	the	3rd	field	in	the	recordset.

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szT_type,	

									sizeof(m_szT_type),	lT_typeStatus,	TRUE)

END_ADO_BINDING()

public:

			CHAR			m_szT_title[150];

			ULONG		lT_titleStatus;

			CHAR			m_szT_type[40];

			ULONG		lT_typeStatus;

};

BOF,	EOF,	and	Bookmark	Properties	Example	(VC++)

The	first	function	in	this	example	uses	the	BOF	and	EOF	properties	to	display	a
message	if	a	user	tries	to	move	past	the	first	or	last	record	of	a	Recordset.	It	uses
the	Bookmark	property	to	let	the	user	flag	a	record	in	a	Recordset	and	return	to
it	later.

The	second	function	uses	the	Bookmark	property	to	place	the	Bookmark	of
every	other	record	from	a	Recordset	into	an	array,	and	then	filters	the	Recordset
using	the	array.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"BofEofBookmark.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	BOFX(void);

void	BookmarkX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						BOFX	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))	

								return;

				BOFX();

				//Clear	the	screen	for	the	next	display			

				system("cls");	

				BookmarkX();

				printf("Press	any	key	to	continue...");

				getch();

				::CoUninitialize();

}

///

//																																																							//

//						BOFX	Function																																				//

//																																																							//

///

void	BOFX(void)	

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr	rstPublishers	=	NULL;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				IADORecordBinding		*picRs	=	NULL;				//Interface	Pointer	declared.

				CPublishers	Publs;

				bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	strMessage;

				_variant_t	VarBookmark;

				int	intCommand	=	0;

				_variant_t	TempPublisher;

				try

				{

								//	Open	recordset	with	data	from	Publishers	table.

								TESTHR(rstPublishers.CreateInstance(__uuidof(Recordset)));		

								rstPublishers->CursorType	=	adOpenStatic;

								//	Use	client	cursor	to	enable	AbsolutePosition	property.

								rstPublishers->CursorLocation	=	adUseClient;

								rstPublishers->Open("select	pub_id,	pub_name	from	publishers"

												"	order	by	pub_name",	strCnn,	adOpenStatic,	

												adLockBatchOptimistic,	adCmdText);

								//Open	an	IADORecordBinding	interface	pointer	

								//which	will	be	used	for	Binding	Recordset	to	a	class

								TESTHR(rstPublishers->QueryInterface(

												__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here

								TESTHR(picRs->BindToRecordset(&Publs));

								rstPublishers->MoveFirst();

									while	(true)				//	Continuous	loop.

								{

												//	Display	information	about	the	current	record

												//	and	get	user	input

												printf("Publisher:%s	\n	Record	%d	of	%d\n\n",

																Publs.lP_pubnameStatus		==	adFldOK	?	

																Publs.m_szP_pubname	:	"<NULL>",

																rstPublishers->AbsolutePosition,	

																rstPublishers->RecordCount);

												printf("Enter	command:\n	");

												printf("[1	-	next										/		2	-	previous							/\n");

												printf("	3	-	set	bookmark		/		4	-	go	to	bookmark	/\n");

												printf("	5	-	quit]\n");

												scanf("%d",	&intCommand);

												if	((intCommand	<	1)	||	(intCommand	>	4))

																break;				//	Out	of	range	entry	exits	program	loop.

												switch(intCommand)	

												{

																//	Move	forward	or	backward,	trapping	for	BOF	or	EOF

																case	1:

																				rstPublishers->MoveNext();

																				if	(rstPublishers->EndOfFile)

																				{

																								printf("\nCannot	move	past	the	last	record."

																															"	Try	again...\n");

																								rstPublishers->MoveLast();

																				}

																				break;

																case	2:

																				rstPublishers->MovePrevious();

																				if	(rstPublishers->BOF)

																				{

																								printf("\nCannot	move	before	the	first	record."

																															"	Try	again...\n");

																								rstPublishers->MoveFirst();

																				}

																				break;

																//	store	the	bookmark	of	the	current	record.

																case	3:

																				VarBookmark	=	rstPublishers->Bookmark;

																				//	Go	to	the	record	indicated	by	the	

																				//	stored	bookmark

																				break;

																case	4:

																				//	Check	for	whether	bookmark	set	for	a	record

																				if	(VarBookmark.vt	==	VT_EMPTY)

																								printf("No	Bookmark	set!\n");

																				else	

																								rstPublishers->Bookmark	=	VarBookmark;

																				break;

																default:

																				break;

												}

								}

								//	Clean	up	objects	before	exit.

								rstPublishers->Close();

								//Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

				}

				catch	(_com_error	&e)

				{

								printf("Error	in	BOFx...\n");

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	rstPublishers->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																printf("Error:\n");

																printf("Code	=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source	=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

								printf("Press	any	key	to	continue...");

								getch();

				}

}

///

//																																																							//

//						BookmarkX	Function																															//

//																																																							//

///

void	BookmarkX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	rstAuthors	=	NULL;

				//Define	Other	Variables

				IADORecordBinding	*picRs	=	NULL;	//Interface	Pointer	declared.

				CAuthors	Authrs;

				HRESULT		hr	=	S_OK;

				_bstr_t		strCnn("Provider=sqloledb;Data	Source=srv;"

														"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_variant_t	vBookmark;

				//	Variable	declaration	for	safe	arrays.

				SAFEARRAY	FAR*	psa;	

				//	define	ARRAY/	VARIANT	variant.

				vBookmark.vt	=	VT_ARRAY|VT_VARIANT;	

				SAFEARRAYBOUND	rgsabound[1];

				rgsabound[0].lLbound	=	0;					

				rgsabound[0].cElements	=	11;

				long	ii	=	0;

				try

				{

								rstAuthors.CreateInstance(__uuidof(Recordset));		

								//	Set	The	Cursor	Location

								rstAuthors->CursorLocation		=	adUseClient;

								rstAuthors->PutActiveConnection((_variant_t)strCnn);				

								//	Open	Authors	table

								TESTHR(rstAuthors->Open("select	*	from	Authors",strCnn,	

												adOpenStatic,adLockBatchOptimistic,adCmdText));

								//Open	an	IADORecordBinding	interface	pointer	

								//which	we'll	use	for	binding	Recordset	to	a	class			

								TESTHR(rstAuthors->QueryInterface(__uuidof(IADORecordBinding),	

																(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here	

								TESTHR(picRs->BindToRecordset(&Authrs));

								printf("Number	of	Records	before	filtering:		%d\n",	

																rstAuthors->RecordCount);

								//	Create	safearrays	to	store	array	of	variant	

								psa	=	SafeArrayCreate(VT_VARIANT,1,rgsabound);

								//	Store	bookmark	of	every	other	record	into	an	array.

								while	((!rstAuthors->EndOfFile)	&&	(ii	<	11))

								{

												SafeArrayPutElement(psa,&ii,&rstAuthors->Bookmark);

												//ii	=	ii	+1;

												ii++;

												rstAuthors->Move(2);

								}

								vBookmark.parray	=	psa;

								//	Filter	the	Record	with	the	array	of	bookmarks.

								rstAuthors->put_Filter(vBookmark);

								printf("Number	of	Records	after	filtering:		%d\n",	

												rstAuthors->RecordCount);

								rstAuthors->MoveFirst();

								while	(!rstAuthors->EndOfFile)

								{

												printf("%d				%s\n",rstAuthors->AbsolutePosition,	

																Authrs.lau_lnameStatus	==	adFldOK	?	

																Authrs.m_szau_lname	:	"<NULL>");

												rstAuthors->MoveNext();

								}

								//Release	the	IADORecordset	Interface.

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.				

								rstAuthors->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	rstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																printf("Error:\n");

																printf("Code				=	%08lx\n",	e.Error());

																printf("Message	=	%s\n",	e.ErrorMessage());

																printf("Source		=	%s\n",	(LPCSTR)	e.Source());

																printf("Description	=	%s\n",	(LPCSTR)	e.Description());

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr				=	NULL;

				long						nCount		=	0;

				long						i							=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

BofEofBookmark.h:

#include	"icrsint.h"

//This	Class	extracts	only	pubid,lastname	and	hire_date

class	CPublishers	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CPublishers)

				//Column	title	is	the	2nd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szP_pubid,	

								sizeof(m_szP_pubid),	lP_pubidStatus,	FALSE)

				//Column	type	is	the	3rd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szP_pubname,	

								sizeof(m_szP_pubname),	lP_pubnameStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR				m_szP_pubid;

				ULONG			lP_pubidStatus;

				CHAR				m_szP_pubname[40];

				ULONG			lP_pubnameStatus;

};

//This	Class	extracts	only	authorlastname

class	CAuthors	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CAuthors)

				//Column	authorlname	is	the	2nd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,		m_szau_lname,	

									sizeof(m_szau_lname),	lau_lnameStatus,	FALSE)

END_ADO_BINDING()

public:

				CHAR				m_szau_lname[40];

				ULONG			lau_lnameStatus;

};

CacheSize	Property	Example	(VC++)

This	example	uses	the	CacheSize	property	to	show	the	difference	in	performance
for	an	operation	performed	with	and	without	a	30-record	cache.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	<winbase.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CacheSizeX();

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CacheSizeX();

				::CoUninitialize();

}

///

//																																																							//

//						CacheSizeX	Function																														//

//																																																							//

///

void	CacheSizeX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

					_RecordsetPtr				pRstRoySched		=	NULL;

					//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				DWORD	sngStart;

				DWORD	sngEnd;	

				float	sngNoCache;

				float	sngCache;

				int	intLoop	=	0;

				_bstr_t	strTemp;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

				"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//Open	the	RoySched	table.

								TESTHR(pRstRoySched.CreateInstance(__uuidof(Recordset)));

								pRstRoySched->Open("roysched",	strCnn,	adOpenForwardOnly,

												adLockReadOnly,	adCmdTable);

								//	Enumerate	the	Recordset	object	twice	and	record

								//	the	elapsed	time.

								sngStart	=	GetTickCount();

								for	(intLoop	=	1;	intLoop	<	2;	intLoop++)

								{

												pRstRoySched->MoveFirst();

								

												while(!(pRstRoySched->EndOfFile))

												{

																				//	Execute	a	simple	operation	for	the

																				//	performance	test.

																				strTemp	=	pRstRoySched->Fields->

																								Item["title_id"]->Value;

																				pRstRoySched->MoveNext();

												}

								}

								sngEnd	=	GetTickCount();

								sngNoCache	=	(float)(sngEnd	-	sngStart)/(float)1000;

								//	Cache	records	in	groups	of	30	records.

								pRstRoySched->MoveFirst();

								pRstRoySched->CacheSize	=	30;

								sngStart	=		GetTickCount();

								//	Enumerate	the	Recordset	object	twice	and	record

								//	the	elapsed	time.

								for	(intLoop	=	1;intLoop	<	2;	intLoop++)

								{

												pRstRoySched->MoveFirst();

												while(!(pRstRoySched->EndOfFile))

												{

																				//	Execute	a	simple	operation	for	the

																				//	performance	test.

																				strTemp	=	pRstRoySched->Fields->

																								Item["title_id"]->Value;

																				pRstRoySched->MoveNext();

												}

								}

								sngEnd	=		GetTickCount();

								sngCache	=	(float)(sngEnd	-	sngStart)/(float)1000;

								//	Display	performance	results.

								printf("Caching	Performance	Results:\n");

								printf("No	cache:	%6.3f		seconds	\n",	sngNoCache);

								printf("30-record	cache:	%6.3f		seconds	\n",	sngCache);

								//	Clean	up	objects	before	exit.

								pRstRoySched->Close();

				}

				catch(_com_error	&e)

				{

									//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	pRstRoySched->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

															//	Pass	a	connection	pointer	accessed	from	the	Recordset.

															PrintProviderError(vtConnect);

															break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr	pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)				

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s",	pErr->Number,	

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

			

}

Cancel	Method	Example	(VC++)

This	example	uses	the	Cancel	method	to	cancel	a	command	executing	on	a
Connection	object	if	the	connection	is	busy.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	com_issue_error(x);};

void	CancelX();

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CancelX();

				::CoUninitialize();

				}

}

///

//																																																							//

//						CancelX	Function																																	//

//																																																							//

///

void	CancelX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

					_ConnectionPtr	pConnection	=	NULL;

					//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				_bstr_t	strCmdChange;

				_bstr_t	strCmdRestore;

				BOOL	booChanged	=	FALSE;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

				"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	open	a	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open(strCnn,"","",NULL);

								//	Define	command	strings.

								strCmdChange	=	"UPDATE	Titles	SET	type	=	'self_help'	"

								"WHERE	type	=	'psychology'";

								strCmdRestore	=	"UPDATE	Titles	SET	type	=	'psychology'	"

								"WHERE	type	=	'self_help'";

								//	Begin	a	transaction,	then	execute	a	command	asynchronously.

								pConnection->BeginTrans();

								pConnection->Execute(strCmdChange,NULL,adAsyncExecute);

								//	do	something	else	for	a	little	while	-	this	could	be	changed

								for	(int	i	=	1;	i<=10	;i++)	

								{

												i	=	i	+	i;

												printf("%d\n",	i);

								}

								//	If	the	command	has	NOT	completed,	cancel	the	execute

								//	and	roll	back	the	transaction.	Otherwise,	commit	the

								//	transaction.

								if	((pConnection->GetState())	&&	(adStateExecuting))

								{

												pConnection->Cancel();

												pConnection->RollbackTrans();

												booChanged	=	FALSE;

												printf("Update	canceled.\n");

								}

								else

								{

												pConnection->CommitTrans();

												booChanged	=	TRUE;

												printf("Update	complete.\n");

								}

								//	If	the	change	was	made,	restore	the	data

								//	because	this	is	a	demonstration.

								if	(booChanged)

								{

												pConnection->Execute(strCmdRestore,NULL,0);

												printf("Data	restored.\n");

								}

								//	Cleanup	object	before	exit				

								pConnection->Close	();

				}

				catch(_com_error	&e)

				{

								//	Notify	user	of	any	errors	that	result	from

								//	executing	the	query.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr	pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Clone	Method	Example	(VC++)

This	example	uses	the	Clone	method	to	create	copies	of	a	Recordset	and	then
lets	the	user	position	the	record	pointer	of	each	copy	independently.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#define	TESTHR(x)	if	FAILED(x)	_com_issue_error(hr)

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

//	Function	Declarations.

void	CloneX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CloneX();

				::CoUninitialize();

}

///

//																																																							//

//						CloneX	Function																																		//

//																																																							//

///

void		CloneX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		arstStores[3];

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				int	intLoop	=	0;

				_bstr_t	strSQL;

				_bstr_t	strMessage;

				_bstr_t	strFind;

				int	intLoop1	=	0;

				char	*tempStr;

				bool	boolFlag	=	TRUE;

				char	m_szS_stor_name[150];

				//	Assign	SQL	statement	and	connection	string	to	variables.

				strSQL	=	"SELECT	stor_name	FROM	Stores	ORDER	BY	stor_name";

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try	

				{

								//	Open	recordset	as	a	static	cursor	type	recordset.

								arstStores[0].CreateInstance(__uuidof(Recordset));

								arstStores[0]->CursorType	=	adOpenStatic;

								arstStores[0]->LockType	=	adLockBatchOptimistic;

								TESTHR(arstStores[0]->Open(strSQL,strCnn,	adOpenStatic,

												adLockBatchOptimistic,adCmdText));

								//	Create	two	clones	of	the	original	Recordset.

								arstStores[1]	=	arstStores[0]->Clone(adLockBatchOptimistic);

								arstStores[2]	=	arstStores[0]->Clone(adLockBatchOptimistic);

								while	(boolFlag)

								{

												//	Loop	through	the	array	so	that	on	each	pass,

												//	the	user	is	searching	a	different	copy	of	the

												//	same	Recordset.

												for	(intLoop	=	1;	intLoop	<=	3	;	intLoop++)

												{

																//	Ask	for	search	string	while	showing	where

																//	the	current	record	pointer	is	for	each	Recordset.

																printf("Recordsets	from	stores	table:\n");

																_bstr_t	str1	=	arstStores[0]->Fields->

																				GetItem("stor_name")->Value;

																printf("\t1	-	Original	-	Record	pointer	at	%s",

																				(LPCSTR)str1);

																_bstr_t	str2	=	arstStores[1]->Fields->

																				GetItem("stor_name")->Value;

																printf("\n\t2	-	Clone	-	Record	pointer	at	%s",	

																				(LPCSTR)str2);

																_bstr_t	str3	=	arstStores[2]->Fields->

																				GetItem("stor_name")->Value;

																printf("\n\t3	-	Clone	-	Record	pointer	at	%s",

																				(LPCSTR)str3);	

																printf("\n\nEnter	search	string	for	#	%d\n"

																				“,	or	press	Enter	to	quit.”,	intLoop);

																gets(m_szS_stor_name);

																//	Trim	the	string.

																tempStr	=	strtok(m_szS_stor_name,	"		\t");

																strMessage	=	tempStr;

																if	(tempStr	==	NULL)

																{

																				boolFlag	=	FALSE;

																				break;

																}

																//	Find	the	search	string;	if	there's	no

																//	match,	jump	to	the	last	record.

																intLoop1	=	intLoop	-1;

																arstStores[intLoop1]->Filter	=	"stor_name	>=	'"	+	

																				strMessage	+	"'";

																if	(arstStores[intLoop1]->EndOfFile)

																{

																				arstStores[intLoop1]->Filter	=	(long)adFilterNone;

																				arstStores[intLoop1]->MoveLast();

																}

												}

								}	//	End	of	While	Loop

								//	Clean	up	objects	before	exit.

								arstStores[0]->Close();

								arstStores[1]->Close();

								arstStores[2]->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	arstStores[0]->GetActiveConnection();

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

};

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr	pErr	=	NULL;

				long					nCount	=	0;

				long					i	=	0;

				if((pConnection->Errors->Count)	>	0)

				{

								nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

CloneX.h:

#include	"icrsint.h"

//	This	Class	extracts	only	store	name	

//	from	"stores"	table.

class	CStores	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CStores)

				//Column	stor_name	is	the	1st	field	in	the	recordset		

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szS_stor_name,	

									sizeof(m_szS_stor_name),	lS_stor_nameStatus,	FALSE)

END_ADO_BINDING()

public:

				CHAR				m_szS_stor_name[150];

				ULONG			lS_stor_nameStatus;

};

CompareBookmarks	Method	Example	(VC++)

This	example	demonstrates	the	CompareBookmarks	method.	The	relative	value
of	bookmarks	is	seldom	needed	unless	a	particular	bookmark	is	somehow
special.

Designate	a	random	row	of	a	Recordset	derived	from	the	Authors	table	as	the
target	of	a	search.	Then	display	the	position	of	each	row	relative	to	that	target.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#define	TESTHR(x)	if	FAILED(x)	_com_issue_error(hr)

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	<time.h>

#include	<stdlib.h>

//	Function	declarations

void	CompareBookMarksX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CompareBookMarksX();

				::CoUninitialize();

}

//

//																																																						//

//											CompareBookMarksX	Function																	//

//																																																						//

//

void	CompareBookMarksX(void)	

{

				HRESULT	hr	=	S_OK;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstAuthors	=	NULL;

				_variant_t	vTarget;

				_bstr_t	strAns;

				_bstr_t	strTitle;

				strTitle	=	"CompareBookmarks	Example";

				try

				{				

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->Open("SELECT	*	FROM	Authors	ORDER	BY	au_id",	strCnn,

												adOpenStatic,	adLockReadOnly,	adCmdText);

								long	count	=	pRstAuthors->RecordCount;

								printf("Rows	in	the	Recordset	=	%d\n",	count);

								if	(count	==	0)	

												exit(1);									//Exit	if	an	empty	recordset

								srand((unsigned)time(NULL));						//Randomize

								//Get	position	between	1	and	count-1

								count	=	int(rand()	%	(count-1));	

								if(!count)	{count++;};

	

								printf("Randomly	chosen	row	position	=	%d\n",	count);

								_variant_t	vtBookMark	=	(short)adBookmarkFirst;

								//Move	row	to	random	position

								pRstAuthors->Move(count,vtBookMark);	

								vTarget	=	pRstAuthors->Bookmark;						//Remember	the	mystery	row.

								count	=	0;

								long	intLineCnt	=	3;

								pRstAuthors->MoveFirst();

								while	(!(pRstAuthors->EndOfFile))					//Loop	through	recordset

								{

												intLineCnt++;

												if	(intLineCnt%20	==	0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();

												}

												long	result	=	pRstAuthors->CompareBookmarks(

																pRstAuthors->Bookmark,	vTarget);

												if	(result	==	adCompareNotEqual)

																printf("Row	%d:	Bookmarks	are	not	equal.	%d\n",	count,	

																				result);

												else	if		(result	==	adCompareNotComparable)	

																printf("Row	%d:	Bookmarks	are	not	comparable.\n",	count);

												else

												{

																switch(result)

																{

																				case	adCompareLessThan:

																								strAns	=	"less	than";

																								break;

																				case	adCompareEqual:

																								strAns	=	"equal	to";

																								break;

																				case	adCompareGreaterThan:

																								strAns	=	"greater	than";

																								break;

																				default:

																								strAns	=	"in	error	comparing	to";

																								break;

																}

																printf	("Row	position		%d		is		%s		the	target.\n",

																				count,(LPCSTR)strAns);

												}

												count++;

												pRstAuthors->MoveNext();

								}

								//	Clean	up	objects	before	exit.

								pRstAuthors->Close();

			}

			catch(_com_error	&e)

			{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//																																																						//

//												PrintProviderError	Function															//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr	pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																pErr->Description);

								}

				}

}

//

//																																																						//

//								PrintComError	Function																								//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

ConnectionString,	ConnectionTimeout,	and	State	Properties
Example	(VC++)

This	example	demonstrates	different	ways	of	using	the	ConnectionString
property	to	open	a	Connection	object.	It	also	uses	the	ConnectionTimeout
property	to	set	a	connection	timeout	period,	and	the	State	property	to	check	the
state	of	the	connections.	The	GetState	function	is	required	for	this	procedure	to
run.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ConnectionStringX();

_bstr_t	GetState(int	intState);	

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ConnectionStringX();

				::CoUninitialize();

}

///

//																																																							//

//						ConnectionStringX	Function																							//

//																																																							//

///

void	ConnectionStringX()

{

				//	Define	Connection	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

					_ConnectionPtr	pConnection1	=	NULL;

					_ConnectionPtr	pConnection2	=	NULL;

					_ConnectionPtr	pConnection3	=	NULL;

					_ConnectionPtr	pConnection4	=	NULL;

				//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				try

				{

								//	Open	a	connection	without	using	a	Data	Source	Name	(DSN).

								TESTHR(pConnection1.CreateInstance(__uuidof(Connection)));

								pConnection1->ConnectionString	=	"driver={SQL	Server};"	

												"server=dhale1;uid=sa;pwd=;database=Pubs";

								pConnection1->ConnectionTimeout	=	30;

								pConnection1->Open("","","",NULL);

								//	Open	a	connection	using	a	DSN	and	ODBC	tags.

								TESTHR(pConnection2.CreateInstance(__uuidof(Connection)));

								pConnection2->ConnectionString	=	"DSN=Pubs;UID=sa;PWD=;";

								pConnection2->Open("","","",NULL);

								//	Open	a	connection	using	a	DSN	and	OLE	DB	tags.

								TESTHR(pConnection3.CreateInstance(__uuidof(Connection)));

								pConnection3->ConnectionString	=	"Data	Source=Pubs;User	ID=sa;"

												"Password=;";

								pConnection3->Open("","","",NULL);

								//	Open	a	connection	using	a	DSN	and	individual

								//	arguments	instead	of	a	connection	string.

								TESTHR(pConnection4.CreateInstance(__uuidof(Connection)));

								pConnection4->Open("Pubs","sa","",NULL);

								//	Display	the	state	of	the	connections.

								printf("cnn1	state:	%s\n",	

												(LPCTSTR)GetState(pConnection1->State));

								printf("cnn2	state:	%s\n",	

												(LPCTSTR)GetState(pConnection2->State));

								printf("cnn3	state:	%s\n",	

												(LPCTSTR)GetState(pConnection3->State));

								printf("cnn4	state:	%s\n",	

												(LPCTSTR)GetState(pConnection4->State));

								//Cleanup	objects	before	exit.

								pConnection4->Close();

								pConnection3->Close();

								pConnection2->Close();

								pConnection1->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	user	of	any	errors.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection1);

								if(pConnection2)

												PrintProviderError(pConnection2);

								if(pConnection3)

												PrintProviderError(pConnection3);

								if(pConnection4)

												PrintProviderError(pConnection4);

								PrintComError(e);

				}

}

///

//																																																							//

//						GetState	Function																																//

//																																																							//

///

_bstr_t	GetState(int	intState)	

{

				_bstr_t	strState;	

				switch(intState)	

				{

								case	adStateClosed:

												strState	=	"adStateClosed";

												break;

								case	adStateOpen:

												strState	=	"adStateOpen";

												break;

								default:

								;

				}

				return	strState;

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Count	Property	Example	(VC++)

This	example	demonstrates	the	Count	property	with	two	collections	in	the
Employee	database.	The	property	obtains	the	number	of	objects	in	each
collection,	and	sets	the	upper	limit	for	loops	that	enumerate	these	collections.
Another	way	to	enumerate	these	collections	without	using	the	Count	property
would	be	to	use	For	Each...Next	statements.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CountX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CountX();

				::CoUninitialize();

}

///

//																																																							//

//						CountX	Function																																		//

//																																																							//

///

void	CountX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr	pRstEmployee	=	NULL;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				_variant_t	Index;

				Index.vt	=	VT_I2;

				int	j	=	0;

				_bstr_t	strCnn("Provider=SQLOLEDB;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	recordset	with	data	from	Employee	table.

								TESTHR(pRstEmployee.CreateInstance(__uuidof(Recordset)));

								pRstEmployee->Open("Employee",	strCnn,	adOpenForwardOnly,

												adLockReadOnly,	adCmdTable);

				

								//	Print	information	about	Fields	collection.

								printf("%d	Fields	in	Employee\n",	pRstEmployee->Fields->Count);

								for	(int	intLoop	=	0;

													intLoop	<=	(pRstEmployee->Fields->Count-1);

													intLoop++)

								{

												Index.iVal	=	intLoop;

												printf("	%s\n",(LPSTR)	pRstEmployee->Fields->

																GetItem(Index)->Name);

								}

								//	Print	information	about	Properties	collection.

								printf("\n%d	Properties	in	Employee\n",	pRstEmployee->

												Properties->Count);

								for	(intLoop	=	0;	

													intLoop	<=	(pRstEmployee->Properties->Count	-	1);

													intLoop++)

								{

												j++;

												Index.iVal	=	intLoop;

												printf("	%s\n"	,(LPSTR)pRstEmployee->Properties->

																GetItem(Index)->Name);

												if	(((j	%	23)	==	0)	||	(intLoop	==	11))

												{

																printf("\nPress	any	key	to	continue...");

																getch();

																//Clear	the	screen	for	the	next	display			

																system("cls");	

																j	=	0;

												}

								}

								//	Clean	up	objects	before	exit.			

								pRstEmployee->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	user	of	any	errors	that	result	from

								//	executing	the	query.

								//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployee->GetActiveConnection();

												

								switch(vtConnect.vt)

								{

								case	VT_BSTR:

												PrintComError(e);

												break;

								case	VT_DISPATCH:

												PrintProviderError(vtConnect);

												break;

								default:

												printf("Errors	occured.");

												break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr	pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

CursorType,	LockType,	and	EditMode	Properties	Example
(VC++)

This	example	demonstrates	setting	the	CursorType	and	LockType	properties
before	opening	a	Recordset.	It	also	shows	the	value	of	the	EditMode	property
under	various	conditions.	The	EditModeOutput	function	is	required	for	this
procedure	to	run.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declaration

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	EditModeX(void);

void	EditModeOutput(char	*,	int);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

					EditModeX();

				::CoUninitialize();

}

///

//																																																							//

//						EditModeX	Function																															//

//																																																							//

///

void	EditModeX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr					pRstEmployees	=	NULL;

				_ConnectionPtr				pConnection		=	NULL;

				HRESULT	hr	=	S_OK;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	a	connection

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								hr	=	pConnection->Open(strCnn,"","",NULL);

								//	Open	recordset	with	data	from	Employee	table	

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->CursorLocation	=	adUseClient;

								pRstEmployees->CursorType	=	adOpenStatic;

								pRstEmployees->LockType		=	adLockBatchOptimistic;

								pRstEmployees->Open("Employee",

													_variant_t((IDispatch	*)	pConnection,true),

												adOpenStatic,adLockBatchOptimistic,adCmdTable);

								//	Show	the	EditMode	property	under	different	editing	states.

								pRstEmployees->AddNew	();

								pRstEmployees->Fields->Item["emp_id"]->Value	=	

												(_bstr_t)("T-T55555M");

								pRstEmployees->Fields->Item["fname"]->Value	=	

												(_bstr_t)("temp_fname");

								pRstEmployees->Fields->Item["lname"]->Value	=	

												(_bstr_t)("temp_lname");

								EditModeOutput("After	AddNew:	",	pRstEmployees->EditMode);

								pRstEmployees->UpdateBatch(adAffectCurrent);

								EditModeOutput("After	Update:	",	pRstEmployees->EditMode);

								

								pRstEmployees->Fields->Item["fname"]->Value	=	(_bstr_t)("test");

								EditModeOutput("After	Edit:	",	pRstEmployees->EditMode);

								//	Delete	new	record	because	this	is	a	demonstration.

								pConnection->Execute("DELETE	FROM	Employee	WHERE	emp_id	=	"

												"'T-T55555M'",	NULL,	adCmdText);

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								pConnection->Close();	

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						EditModeOutput()	Function																								//

//																																																							//

///

void	EditModeOutput(char	*strTemp,	int	intEditMode)

{

				//	Print	report	based	on	the	value	of	the	EditMode	property.

				printf("\n%s",	strTemp);

				printf("\n		EditMode	=	");

				switch	(intEditMode)

				{

								case	adEditNone	:

												printf("adEditNone");

												break;

								case	adEditInProgress	:

												printf("adEditInProgress");

												break;

								case	adEditAdd	:

												printf("adEditAdd");

												break;

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\n\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Delete	Method	Example	(VC++)

This	example	uses	the	Delete	method	to	remove	a	specified	record	from	a
Recordset.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	"DeleteX.h"

//Function	Declarations.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	DeleteX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				DeleteX();

				::CoUninitialize();

}

///

//																																																							//

//						DeleteX	Function																																	//

//																																																							//

///

void	DeleteX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstRoySched	=	NULL;

				//	Define	Other	Variables

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared.

				CRoySchedRs				royschrs;												//C++	class	object

				HRESULT	hr	=	S_OK;

				char		strTitleID[10],	strTmpTitleID[10]="";

				long		longHiRange;

				int			intRoyalty,	intLoRange,	cnt=0;

				bool		blnFound	=	TRUE;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	RoySched	table

								TESTHR(pRstRoySched.CreateInstance(__uuidof(Recordset)));

								pRstRoySched->CursorLocation	=	adUseClient;

								pRstRoySched->CursorType	=	adOpenStatic;

								pRstRoySched->LockType		=	adLockBatchOptimistic;

	

								TESTHR(pRstRoySched->Open("SELECT	*	FROM	roysched	WHERE”

												“	royalty	=	20",strCnn,adOpenStatic,adLockBatchOptimistic,

												adCmdText));

								//	Prompt	for	a	record	to	delete.

								printf("Before	delete	there	are	%d	Titles	with	20	percent	"

												"royalty	:\n",	pRstRoySched->RecordCount);

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//	for	Binding	Recordset	to	a	class.

								TESTHR(pRstRoySched->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&royschrs));

								while(!(pRstRoySched->EndOfFile))

								{

												printf("%s\n",	royschrs.lemp_titleidStatus	==	adFldOK	?	

																royschrs.m_sz_titleid	:	"<NULL>");

												pRstRoySched->MoveNext();

								}

								printf("\nEnter	the	ID	of	a	record	to	delete:	");

								gets(strTitleID);

								//	Converting	the	title_id	to	upper	case

								for(cnt=0;	cnt<10;	cnt++)

								{

												if(strTitleID[cnt]	!=	NULL)

												{

																if(IsCharAlpha(strTitleID[cnt]))

																{

																				if(islower(strTitleID[cnt]))

																								strTmpTitleID[cnt]	=	_toupper(strTitleID[cnt]);

																				else

																								strTmpTitleID[cnt]	=	strTitleID[cnt];

																}

																else

																{

																				strTmpTitleID[cnt]	=	strTitleID[cnt];

																}

												}

								}

								//	Move	to	the	record	and	save	data	so	it	can	be	restored.

								pRstRoySched->PutFilter	("title_id	=	'"	+	

												(_bstr_t)(LPCSTR)strTmpTitleID	+	"'");

								if(pRstRoySched->RecordCount	!=	0)

								{

												intLoRange	=	royschrs.m_sz_lorange;

												longHiRange	=	royschrs.m_sz_hirange;

												intRoyalty	=	royschrs.m_sz_royalty;

												//	Delete	the	record

												pRstRoySched->Delete(adAffectCurrent);

												pRstRoySched->UpdateBatch(adAffectCurrent);

								}

								else

								{

												blnFound	=	FALSE;

												printf("This	Title	ID	not	available");

								}

								//	Show	the	results.

								VARIANT	varFilter;

								varFilter.vt	=	VT_I2;

								varFilter.iVal	=	adFilterNone;

								pRstRoySched->PutFilter	(varFilter);

								pRstRoySched->Requery(-1);

								//	Bind	the	Recordset	to	a	C++	Class	here.

TESTHR(picRs->BindToRecordset(&royschrs));

								printf("\nAfter	delete	there	are	%d	Titles	with	20	percent"

												"	royalty:	",	pRstRoySched->RecordCount);

								while(!(pRstRoySched->EndOfFile))

								{

												printf("\n%s",	royschrs.lemp_titleidStatus	==	adFldOK	?

																royschrs.m_sz_titleid	:	"<NULL>");

												pRstRoySched->MoveNext();

								}

								//	Restore	the	data	because	this	is	a	demonstration.

								if(blnFound)

								{

												strcpy((char*)royschrs.m_sz_titleid,

																(const	char*)	strTmpTitleID);

												royschrs.m_sz_lorange	=	intLoRange;

												royschrs.m_sz_hirange	=	longHiRange;

												royschrs.m_sz_royalty	=	intRoyalty;

												TESTHR(picRs->AddNew(&royschrs));

												pRstRoySched->UpdateBatch(adAffectCurrent);

								}

								//	Clean	up	objects	before	exit.				

								pRstRoySched->Close();

								//	Release	the	IADORecordset	Interface	here			

								if	(picRs)

												picRs->Release();

}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstRoySched->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

DeleteX.h:

#include	"icrsint.h"

//	This	Class	extracts	titleid,	lorange,	hirange	and	royalty

//	from	the	"roysched"	table.

class	CRoySchedRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CRoySchedRs)

				//Column	empid	is	the	1st	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_sz_titleid,	

									sizeof(m_sz_titleid),	lemp_titleidStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adInteger,	m_sz_lorange,	

									sizeof(m_sz_lorange),	lemp_lorangeStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adInteger,	m_sz_hirange,	

									sizeof(m_sz_hirange),	lemp_hirangeStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(4,	adInteger,	m_sz_royalty,	

									sizeof(m_sz_royalty),	lemp_royaltyStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR					m_sz_titleid[10];

				ULONG				lemp_titleidStatus;

				ULONG				m_sz_lorange;

				ULONG				lemp_lorangeStatus;

				ULONG				m_sz_hirange;

				ULONG				lemp_hirangeStatus;

				ULONG				m_sz_royalty;

				ULONG				lemp_royaltyStatus;

};

Description,	NativeError,	Number,	Source,	and	SQLState
Properties	Example	(VC++)

This	example	triggers	an	error,	traps	it,	and	displays	the	Description,
HelpContext,	HelpFile,	NativeError,	Number,	Source,	and	SQLState	properties
of	the	resulting	Error	object.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	DescriptionX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				DescriptionX();

				::CoUninitialize();

}

///

//																																																							//

//						DescriptionX	Function																												//

//																																																							//

///

void	DescriptionX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_ConnectionPtr	pConnection	=	NULL;

				ErrorPtr	errorLoop	=	NULL;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				

				try

				{

								//	Intentionally	trigger	an	error.

								//	open	connection

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								if	(FAILED(hr	=	pConnection->Open("nothing","","",NULL)))

								{

												_com_issue_error(hr);

												exit(1);

								}

								//	Cleanup	object	before	exit.

								pConnection->Close();

				}

				

				catch(_com_error)

				{

								//	Pass	a	connection	pointer.

								PrintProviderError(pConnection);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				_bstr_t		strError;

				ErrorPtr		pErr	=	NULL;

				try

				{

								//	Enumerate	Errors	collection	and	display

								//	properties	of	each	Error	object.

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-	1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	#%d\n",	pErr->Number);

												printf("\t	%s\n",(LPCSTR)pErr->Description);

												printf("\t(Source:	%s)\n",(LPCSTR)pErr->Source);

												printf("\t(SQL	State:	%s)\n",(LPCSTR)pErr->SQLState);

												printf("\t(NativeError:	%d)\n",(LPCSTR)pErr->NativeError);

												if	((LPCSTR)pErr->GetHelpFile()	==	NULL)

												{

																printf("\tNo	Help	file	available\n");

												}

												else

												{

																printf("\t(HelpFile:	%s\n)"	,pErr->HelpFile);

																printf("\t(HelpContext:	%s\n)"	,	pErr->HelpContext);

												}

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			//	Notify	the	user	of	errors	if	any.

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.

				

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Execute,	Requery,	and	Clear	Methods	Example	(VC++)

This	example	demonstrates	the	Execute	method	when	run	from	both	a
Command	object	and	a	Connection	object.	It	also	uses	the	Requery	method	to
retrieve	current	data	in	a	recordset,	and	the	Clear	method	to	clear	the	contents	of
the	Errors	collection.	The	ExecuteCommand	and	PrintOutput	functions	are
required	for	this	example	to	run.

#include	<ole2.h>

#include	<stdio.h>

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ExecuteX(void);

void	ExecuteCommand(_CommandPtr	pCmdTemp,	_RecordsetPtr	pRstTemp);

void	PrintOutput(_RecordsetPtr	pRstTemp);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

////////////////////////////////

//						Main	Function									//

////////////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ExecuteX();

				::CoUninitialize();

}

///////////////////////////////////

//						ExecuteX	Function								//

///////////////////////////////////

void	ExecuteX(void)	

{

			HRESULT				hr	=	S_OK;

				//	Define	string	variables.

			_bstr_t	strSQLChange("UPDATE	Titles	SET	Type	=	"

												"'self_help'	WHERE	Type	=	'psychology'");

			_bstr_t	strSQLRestore("UPDATE	Titles	SET	Type	=	"

												"'psychology'	WHERE	Type	=	'self_help'");

			_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection	=	NULL;

				_CommandPtr					pCmdChange		=	NULL;

				_RecordsetPtr			pRstTitles		=	NULL;

				try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	adConnectUnspecified);

								//	Create	command	object.

								TESTHR(pCmdChange.CreateInstance(__uuidof(Command)));

								pCmdChange->ActiveConnection	=	pConnection;

								pCmdChange->CommandText	=	strSQLChange;

								//	Open	Titles	table,	casting	Connection	pointer	to	an	

								//	IDispatch	type	so	converted	to	correct	type	of	variant.

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->Open	("Titles",	_variant_t((IDispatch	*)	pConnection,	

												true),	adOpenStatic,	adLockOptimistic,	adCmdTable);

								//	Print	report	of	original	data.

								printf(

												"\n\nData	in	Titles	table	before	executing	the	query:	\n");

								//	Call	function	to	print	loop	recordset	contents.

								PrintOutput(pRstTitles);

								//	Clear	extraneous	errors	from	the	Errors	collection.

								pConnection->Errors->Clear();

								//	Call	ExecuteCommand	subroutine	to	execute	pCmdChange	command.

								ExecuteCommand(pCmdChange,	pRstTitles);

								//	Print	report	of	new	data.

								printf(

												"\n\n\tData	in	Titles	table	after	executing	the	query:	\n");

								PrintOutput(pRstTitles);

								//	Use	the	Connection	object's	Execute	method	to

								//	execute	SQL	statement	to	restore	data.

								pConnection->Execute(strSQLRestore,	NULL,	adExecuteNoRecords);

								//	Retrieve	the	current	data	by	requerying	the	recordset.

								pRstTitles->Requery(adCmdUnknown);

								//	Print	report	of	restored	data.

								printf(

												"\n\n\tData	after	exec.	query	to	restore	original	info:	\n");

								PrintOutput(pRstTitles);

								//	Clean	up	objects	before	exit.

								pRstTitles->Close();

								pConnection->Close();

				}

				catch	(_com_error	&e)

				{

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

//

//						ExecuteCommand	Function									//

//

void	ExecuteCommand(_CommandPtr	pCmdTemp,	_RecordsetPtr	pRstTemp)

{

				try

				{

								//	CommandText	property	already	set	before	function	was	called.

								pCmdTemp->Execute(NULL,	NULL,	adCmdText);

								//	Retrieve	the	current	data	by	requerying	the	Recordset.

								pRstTemp->Requery(adCmdUnknown);

				}

				catch(_com_error	&e)

				{

								//	Notify	user	of	any	errors	that	result	from

								//	executing	the	query.

								//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								PrintProviderError(pRstTemp->GetActiveConnection());

								PrintComError(e);

				}

}

/////////////////////////////////////

//						PrintOutput	Function							//

/////////////////////////////////////

void	PrintOutput(_RecordsetPtr	pRstTemp)

{

				//	Ensure	at	top	of	Recordset.

				pRstTemp->MoveFirst();

				//	If	EOF	is	true,	then	no	data	and	skip	print	loop.

				if(pRstTemp->EndOfFile)

				{

								printf("\tRecordset	empty\n");

				}

				else

				{

								//	Define	temporary	strings	for	output	conversions.

								//	Initialize	to	first	record's	values.

								_bstr_t	bstrTitle;

								_bstr_t	bstrType;

								//	Enumerate	Recordset	and	print	from	each.

								while(!(pRstTemp->EndOfFile))

												{

												//	Convert	variant	string	to	convertable	string	type.

												bstrTitle	=	pRstTemp->Fields->GetItem("Title")->Value;

												bstrType		=	pRstTemp->Fields->GetItem("Type")->Value;

												printf("\t%s,	%s	\n",	

																(LPCSTR)	bstrTitle,

																(LPCSTR)	bstrType);

				

												pRstTemp->MoveNext();

								}

				}

}

///

//						PrintProviderError	Function										//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

//////////////////////////////////////

//						PrintComError	Function						//

//////////////////////////////////////

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Filter	and	RecordCount	Properties	Example	(VC++)

This	example	uses	the	Filter	property	to	open	a	new	Recordset	based	on	a
specified	condition	applied	to	an	existing	Recordset.	It	uses	the	RecordCount
property	to	show	the	number	of	records	in	the	two	Recordsets.	The	FilterField
function	is	required	for	this	procedure	to	run.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	"FilterX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	FilterX(void);

_RecordsetPtr	FilterField(_RecordsetPtr	rstTemp,	_bstr_t	strField,	

				_bstr_t	strFilter);

void	FilterX2(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

void	main()

{

				HRESULT	hr	=	S_OK;

				if(FAILED(::CoInitialize(NULL)))

								return;

				FilterX();

				//Wait	here	for	user	to	see	the	output..

				printf("\nPress	any	key	to	Continue...");

				getch();

				//Clear	the	screen	for	the	next	display			

				system("cls");

				FilterX2();

				::CoUninitialize();

}

///

//																																																							//

//						FilterX	Function																																	//

//																																																							//

///

void		FilterX()

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	rstPublishers	=	NULL;

				_RecordsetPtr	rstPublishersCountry	=	NULL;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				int	intPublisherCount	=	0;

				long	recCount	=	0;

				_bstr_t	strCountry;	

				_bstr_t	strMessage;

				char	*tempStr;

				CHAR	sz_CountryName[50];

				bool	boolFlag	=	TRUE;

				try	

				{

								//	Open	recordset	with	data	from	Publishers	table.

								rstPublishers.CreateInstance(__uuidof(Recordset));

								rstPublishersCountry.CreateInstance(__uuidof(Recordset));

								rstPublishers->CursorType	=	adOpenStatic;

								TESTHR(hr	=		rstPublishers->Open("publishers",strCnn,	

													adOpenStatic	,	adLockReadOnly,adCmdTable));

								//	Populate	the	Recordset.

								intPublisherCount	=	rstPublishers->RecordCount;

								//	Get	user	input.

								printf("Enter	a	country	to	filter	on:");

								gets(sz_CountryName);

								//	Trim	the	string

								tempStr	=	strtok(sz_CountryName,	"		\t");

								strCountry	=	tempStr;

								if	(tempStr	==	NULL)

								{

												boolFlag	=	FALSE;

								}

								if	(boolFlag)

								{

												if	(strcmp(sz_CountryName,""))

												{

																//	Open	a	filtered	Recordset	object.

																rstPublishersCountry	=	FilterField(rstPublishers,	

																				"Country",	strCountry);

																recCount	=	rstPublishersCountry->GetRecordCount();

																if	(recCount==0)

																{

																				printf("\nNo	publishers	from	that	country.\n");

																}

																else

																{

																				//	Print	number	of	records	for	the	original

																				//	Recordset	object	and	the	filtered	Recordset

																				//	object.

																				printf("\nOrders	in	original	recordset:\n%d",

																								intPublisherCount);

																				printf("\nOrders	in	filtered	recordset	“

																								“(Country	=	'%s'):	\n%d\n\n",(LPCSTR)strCountry,

																								rstPublishersCountry->RecordCount);

																}

																rstPublishersCountry->Close();

												}

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	rstPublishers->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

_RecordsetPtr	FilterField(_RecordsetPtr	rstTemp,_bstr_t	strField,

				_bstr_t	strFilter)	

{

								//	Set	a	filter	on	the	specified	Recordset	object	and	then

								//	open	a	new	Recordset	object.

								rstTemp->Filter		=	strField	+	"	=	'"	+	strFilter	+	"'";

								return	rstTemp;

}

void	FilterX2(void)

{

				_RecordsetPtr	rstPublishers;

				CPublishers	publishers;

				//Define	Other	Variables

				HRESULT	hr	=	S_OK;

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared...

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	recordset	with	data	from	Publishers	table.

								rstPublishers.CreateInstance(__uuidof(Recordset));	

								rstPublishers->CursorType	=	adOpenStatic;

								TESTHR(hr	=	rstPublishers->Open("SELECT	*	FROM	publishers	WHERE	"

												"Country='USA'",strCnn,adOpenStatic,adLockReadOnly,

												adCmdText));

								//Open	an	IADORecordBinding	interface	pointer	

								//which	we'll	use	for	Binding	Recordset	to	a	class

								TESTHR(rstPublishers->QueryInterface(

												__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here	

								TESTHR(picRs->BindToRecordset(&publishers));

								//	Print	current	data	in	recordset.

								rstPublishers->MoveFirst();

								while	(!rstPublishers->EndOfFile)

								{

												printf("%s,	%s\n",	

																publishers.lP_pubnameStatus	==	adFldOK	?	

																publishers.m_szP_pubname:	"<NULL>",

																publishers.lP_countryStatus	==	adFldOK	?	

																publishers.m_szP_country:	"<NULL>");

												rstPublishers->MoveNext();

								}

								//Release	the	IADORecordset	Interface.

								if	(picRs)

												picRs->Release();

								//	Clean	up	object	before	exit.

								rstPublishers->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_variant_t	vtConnect	=	rstPublishers->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

FilterX.h:

#include	"icrsint.h"

//This	Class	extracts	only	Pub	Name	and	Country	Name.

class	CPublishers	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CPublishers)

				//Column	Pub	Name	is	the	2nd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szP_pubname,

									sizeof(m_szP_pubname),	lP_pubnameStatus,	TRUE)

				//Column	Country	Name	is	the	5th	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(5,	adVarChar,	m_szP_country	,	

								sizeof(m_szP_country),	lP_countryStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR				m_szP_pubname[50];

				ULONG			lP_pubnameStatus;

				CHAR				m_szP_country[50];

				ULONG			lP_countryStatus;

};

Find	Method	Example	(VC++)

This	example	uses	the	Recordset	object's	Find	method	to	locate	and	count	the
number	of	business	titles	in	the	Pubs	database.	The	example	assumes	the
underlying	provider	does	not	support	similar	functionality.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"FindX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	FindX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				If(FAILED(::CoInitialize(NULL)))

								return;

				FindX();

				//Wait	here	for	the	user	to	see	the	output.

				printf("Press	any	key	to	continue...");

				getch();

				::CoUninitialize();

}

//

//																																																						//

//													FindX	Function																											//

//																																																						//

//

void	FindX(void)	

{

				HRESULT				hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr				pConnection		=	NULL;

				_RecordsetPtr					pRstTitles			=	NULL;

				IADORecordBinding			*picRs					=	NULL;		//Interface	Pointer	declared.

				CTitlesRs	titlers;																						//C++	class	object

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								//	Open	Titles	Table

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								

								pRstTitles->Open("SELECT	title_id	FROM	Titles",

												_variant_t((IDispatch	*)pConnection),	

												adOpenStatic,	adLockReadOnly,	adCmdText);

								//	The	default	parameters	are	sufficient	to	search	forward

								//	through	a	Recordset.

								pRstTitles->Find	("title_id	LIKE	'BU%'",0,adSearchForward,"");

								//Open	an	IADORecordBinding	interface	pointer	which	

								//we'll	use	for	Binding	Recordset	to	a	class				

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here				

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Skip	the	current	record	to	avoid	finding	the	same	

								//	row	repeatedly.	The	bookmark	is	redundant	because	Find	

								//	searches	from	the	current	position.

								int	count	=	0;

								//Continue	if	last	find	succeeded.

								while	(!(pRstTitles->EndOfFile))	

								{

												printf("Title	ID:	%s\n",titlers.lt_titleidStatus	==	adFldOK	?

																titlers.m_szt_titleid	:	"<NULL>");

												count++;																							//Count	the	last	title	found.

												_variant_t	mark	=	pRstTitles->Bookmark;		//Note	current	pos.

												pRstTitles->Find("title_id	LIKE	'BU%'",	1,	adSearchForward,	

																mark);

								}

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstTitles->Close();

								pConnection->Close();

								printf("The	number	of	business	titles	is	%d\n",count);

			}

			catch(_com_error	&e)

			{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

							PrintProviderError(pConnection);

							PrintComError(e);

			}

}

//

//																																																						//

//							PrintProviderError	Function																				//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//							PrintComError	Function																									//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

FindX.h

#include	"icrsint.h"

//This	Class	extracts	only	titleId	from	Titles	table.

class	CTitlesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CTitlesRs)

				//	Column	title_id	is	the	1st	field	in	the	recordset	

				//	from	Titles	table.

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szt_titleid,	

									sizeof(m_szt_titleid),	lt_titleidStatus,	FALSE)

END_ADO_BINDING()

public:

			CHAR			m_szt_titleid[150];

			ULONG			lt_titleidStatus;

};

GetRows	Method	Example	(VC++)

This	example	uses	the	GetRows	method	to	retrieve	a	specified	number	of	rows
from	a	Recordset	and	to	fill	an	array	with	the	resulting	data.	The	GetRows
method	will	return	less	than	the	desired	number	of	rows	in	two	cases:	either	if
EOF	has	been	reached,	or	if	GetRows	tried	to	retrieve	a	record	that	was	deleted
by	another	user.	The	function	returns	False	only	if	the	second	case	occurs.	The
GetRowsOK	function	is	required	for	this	procedure	to	run.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

//	Function	Declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	GetRowsX(void);

bool	GetRowsOK(_RecordsetPtr	pRstTemp,int	intNumber,

								_variant_t&	avarData);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

					GetRowsX();

				::CoUninitialize();

}

///

//																																																							//

//						GetRowsX	Function																																//

//																																																							//

///

void	GetRowsX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstEmployees	=	NULL;

				try	

				{

								//	Open	recordset	with	names	and	hire	dates	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->Open("SELECT	fName,	lName,	hire_date	"

												"FROM	Employee	ORDER	BY	lName",strCnn,	

												adOpenStatic,	adLockReadOnly,adCmdText);

									while	(true)	//continuous	loop

								{

												int	intLines	=	0;

												//	Get	user	input	for	number	of	rows.

												printf("\nEnter	number	of	rows	to	retrieve	(0	to	exit):	");

												int	intRows;

												scanf("%d",	&intRows);

												if	(intRows	<=	0)

																break;

												//Clear	the	screen	for	the	next	display

												system("cls");

												//	If	GetRowsOK	is	successful,	print	the	results,

												//	noting	if	the	end	of	the	file	was	reached.

												_variant_t	avarRecords;

												if	(GetRowsOK(pRstEmployees,	intRows,	avarRecords))

												{

																long	lUbound;

																HRESULT	hr	=	SafeArrayGetUBound(avarRecords.parray,	

																				2,&lUbound);

																if	(hr	==	0)

																{

																				if	(intRows	>	lUbound	+	1)

																				{

																								printf("\n(Not	enough	records	in	Recordset	to	"

																												"retrieve	%d	rows)\n",	intRows);

																				}

																}

																printf("%d	records	found.",	lUbound+1);

																//	Print	the	retrieved	data.

																for	(int	intRecords	=	0;intRecords	<	lUbound+1;

																					intRecords++)

																{

																				printf("\n	");

																				long	rgIndices[2];

																				rgIndices[0]	=	0;	

																				rgIndices[1]	=	intRecords;

																				_variant_t	result;

																				result.vt	=	VT_BSTR;

																				hr=	SafeArrayGetElement(avarRecords.parray,	

																								rgIndices,	&result);

																				if	(hr	==	0){printf("%s	",(LPCSTR)(_bstr_t)result);}

																				rgIndices[0]	=	1;

																				hr=	SafeArrayGetElement(avarRecords.parray,	

																								rgIndices,	&result);

																				if	(hr	==	0){printf("%s,	",(LPCSTR)(_bstr_t)result);}

																				rgIndices[0]	=	2;

																				hr=	SafeArrayGetElement(avarRecords.parray,	

																								rgIndices,	&result);

																				if	(hr	==	0){printf("%s",(LPCSTR)(_bstr_t)result);}

																				intLines	++;

																				if	(intLines	%	10	==	0)

																				{

																								printf("\nPress	any	key	to	continue...");

																								getch();

																								intLines	=	0;

																								//Clear	the	screen	for	the	next	display

																								system("cls");

																				}

																}

												}

												else

												{

																//	Assuming	the	GetRows	error	was	due	to	data

																//	changes	by	another	user,	use	Requery	to

																//	refresh	the	Recordset	and	start	over.

																printf("GetRows	failed--retry?\n");

																char	chKey;

																do

																{

																				chKey	=	getch();

																}while(toupper(chKey)	!=	'Y'		&&	toupper(chKey)	!=	'N');

																

																if(toupper(chKey)	==	'Y')

																{

																				pRstEmployees->Requery(adOptionUnspecified);

																}

																else

																{

																				printf("GetRows	failed!\n");

																				break;

																}

												}

												//	Because	using	GetRows	leaves	the	current

												//	record	pointer	at	the	last	record	accessed,

												//	move	the	pointer	back	to	the	beginning	of	the

												//	Recordset	before	looping	back	for	another	search.

												pRstEmployees->MoveFirst();

								}

								//Clean	up	objects	before	exit.

								pRstEmployees->Close();

				}		

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

bool	GetRowsOK(_RecordsetPtr	pRstTemp,int	intNumber,

								_variant_t&	avarData)

{

				//	Store	results	of	GetRows	method	in	array.

				avarData	=	pRstTemp->GetRows(intNumber);

				

				//	Return	False	only	if	fewer	than	the	desired

				//	number	of	rows	were	returned,	but	not	because	the

				//end	of	the	Recordset	was	reached.

				long	lUbound;

				HRESULT	hr	=	SafeArrayGetUBound(avarData.parray,	2,&lUbound);			

				if	(hr	==	0)

				{

								if	((intNumber	>	lUbound	+	1)	&&	(!(pRstTemp->EndOfFile)))

												return	false;

								else

												return	true;

				}

				else	

				{

								printf	("\nUnable	to	Get	the	Arrays	Upper	Bound\n");

								return	false;

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

GetString	Method	Example	(VC++)

This	example	demonstrates	the	GetString	method.

Assume	you	are	debugging	a	data	access	problem	and	want	a	quick,	simple	way
of	printing	the	current	contents	of	a	small	Recordset.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	<string.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	GetStringX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				GetStringX();

				::CoUninitialize();

}

//

//																																																						//

//										GetStringX	Function																									//

//																																																						//

//

void	GetStringX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

			_ConnectionPtr		pConnection			=	NULL;

			_RecordsetPtr			pRstAuthors			=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	varOutput;	

				char	*strPrompt	=	"Enter	a	state	(CA,	IN,	KS,	MD,	MI,	OR,	TN,	UT):	";

				char	strState[2],	*pState;

				try

				{

							//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								//	Open	a	command	object	for	a	stored	procedure,	

								//	with	one	parameter.

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								printf("%s",strPrompt);

								gets(strState);

								pState	=	strtok(strState,"	\t");

								char	strQry[100]	=	"SELECT	au_fname,	au_lname,	address,	city	"

												"FROM	Authors	WHERE	state	=	";

								strcat(strQry,"'");

								strcat(strQry,pState);

								strcat(strQry,"'");

								_bstr_t	strQuery(strQry);

								pConnection->Open	(strCnn,	"",	"",	NULL);

								pRstAuthors->Open(strQuery,	_variant_t((IDispatch*)pConnection,

												true),	

								adOpenStatic,	adLockReadOnly,	adCmdText);

								if	(pRstAuthors->RecordCount	>	0)	

								{

												//	Use	all	defaults:	get	all	rows,	TAB	column	delimiter,	

												//	CARRIAGE	RETURN	row	delimiter,	empty-string	null	delimiter

												long	lRecCount	=		pRstAuthors->RecordCount;

												_bstr_t	varTab("\t");

												_bstr_t	varRet("\r");

												_bstr_t	varNull("");

												varOutput	=	pRstAuthors->GetString(adClipString,lRecCount,

																varTab,varRet,varNull);

												printf("State	=	'%s'\n",	strState);

												printf	("Name												Address																				City\n");

												printf	("%s\n",	(LPCTSTR)varOutput);

								}

								else

								{

												printf("\nNo	rows	found	for	state	=	'%s'\n",pState);

								}

								//	Clean	up	objects	before	exit.

								pRstAuthors->Close();

								pConnection->Close();

			}

			catch(_com_error	&e)

			{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

							PrintProviderError(pConnection);

							PrintComError(e);

			}

}

//

//																																																						//

//								PrintProviderError	Function																			//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr			pErr	=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

			

}

Handler	Property	Example	(VC++)

This	example	demonstrates	the	RDS	DataControl	object	Handler	property.	(See
DataFactory	Customization	for	more	details.)

Assume	the	following	sections	in	the	parameter	file,	MSDFMAP.INI,	located	on
the	server:

[connect	AuthorDataBase]

Access=ReadWrite

Connect="DSN=Pubs"

[sql	AuthorById]

SQL="SELECT	*	FROM	Authors	WHERE	au_id	=	?"

Your	code	looks	like	the	following.	The	command	assigned	to	the	SQL	property
will	match	the	AuthorById	identifier,	and	retrieve	a	row	for	author,	Michael
O'Leary.	Although	the	Connect	property	in	your	code	specifies	the	Northwind
data	source,	that	data	source	will	be	overwritten	by	the	MSDFMAP.INI	connect
section.	The	DataControl	object	Recordset	property	is	assigned	to	a
disconnected	Recordset	object	purely	as	a	coding	convenience.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#import	"C:\Program	Files\Common	Files\System\MSADC\msadco.dll"

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	HandlerX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				If(FAILED(::CoInitialize(NULL)))

								return;

					HandlerX();

					printf("Press	any	key	to	continue...");

					getch();

					::CoUninitialize();

				}

}

//

//																																																						//

//										HandlerX	Function																											//

//																																																						//

//

void	HandlerX(void)	

{

			HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRst	=	NULL;

				//Define	RDS	object	pointers.

				RDS::IBindMgrPtr	dc;

				try

				{

								TESTHR(dc.CreateInstance(__uuidof(RDS::DataControl)));

								dc->Handler	=	"MSDFMAP.Handler";

								dc->Server	=	"http://srv";

								dc->Connect	=	"Data	Source=AuthorDatabase";

								dc->SQL	=	"AuthorById(267-41-2394)";

								//	Retrieve	the	record.

								dc->Refresh();

								//	Use	another	Recordset	as	a	convenience.

								pRst	=	dc->GetRecordset();

								printf("Author	is	%s	%s",(LPSTR)	(_bstr_t)	pRst->Fields->

												GetItem("au_fname")->Value,

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("au_lname")->Value);

								pRst->Close();

				}

				catch	(_com_error	&e)

				{

								PrintProviderError(pRst->GetActiveConnection());

								PrintComError(e);

				}

}

//

//																																																						//

//						PrintProviderError	Function																					//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																pErr->Description);

								}

				}

}

//

//																																																								

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

InternetTimeout	Property	Example	(VC++)

This	example	demonstrates	the	InternetTimeout	property,	which	exists	on	the
DataControl	and	DataSpace	objects.	In	this	case,	the	InternetTimeout	property
is	demonstrated	on	the	DataControl	object	and	the	timeout	is	set	to	20	seconds.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#import	"C:\Program	Files\Common	Files\System\MSADC\msadco.dll"

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	InternetTimeOutX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				InternetTimeOutX();

				::CoUninitialize();

}

//

//																																																						//

//									InternetTimeOutX	Function																				//

//																																																						//

//

void	InternetTimeOutX(void)	

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRst	=	NULL;

				//Define	RDS	object	pointers

				RDS::IBindMgrPtr	dc	;

				try

				{

								TESTHR(dc.CreateInstance(__uuidof(RDS::DataControl)));

								dc->Server	=	"http://srv";

								dc->Connect	=	"DSN=Pubs";

								dc->SQL	=	"SELECT	*	FROM	Authors";

								//	Wait	at	least	20	seconds.

								dc->InternetTimeout	=	20000;

								dc->Refresh();

								//	Use	another	Recordset	as	a	convenience

								pRst	=	dc->GetRecordset();

								while(!(pRst->EndOfFile))

								{

												printf("%s	%s",(LPSTR)	(_bstr_t)	pRst->Fields->

																GetItem("au_fname")->Value,

															(LPSTR)	(_bstr_t)	pRst->Fields->

																GetItem("au_lname")->Value);

												pRst->MoveNext();

								}

								pRst->Close();

				}

				catch	(_com_error	&e)

				{

								PrintProviderError(pRst->GetActiveConnection());

								PrintComError(e);

				}

}

//

//																																																						//

//					PrintProviderError	Function																						//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,	

																pErr->Description);

								}

				}

}

//

//																																																						//

//					PrintComError	Function																											//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

IsolationLevel	and	Mode	Properties	Example	(VC++)

This	example	uses	the	Mode	property	to	open	an	exclusive	connection,	and	the
IsolationLevel	property	to	open	a	transaction	that	is	conducted	in	isolation	of
other	transactions.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"\

				no_namespace	rename("EOF","EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"IsolationLevelX.h"

//	Function	Declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	IsolationLevelX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																													//

//																																																													//

//																								Main	Function																								//

//																																																													//

//																																																													//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				IsolationLevelX();

				::CoUninitialize();

}

///

//																																																													//

//						IsolationLevelX()		Function																												//

//																																																													//

///

void	IsolationLevelX(void)

{

				//	Define	ADO	ObjectPointers

				//	Initialize	Pointers	on	define

				//	These	are	in	the	ADODB	::	namespace

				_RecordsetPtr	pRstTitles	=	NULL;

				_ConnectionPtr	pConnection	=	NULL;

				//	Define	other	Variables

				HRESULT	hr	=	S_OK;

				IADORecordBinding	*picRs		=	NULL;		//	Interface	Pointer	Declared

				CTitlesRs	titlers;																		//	C++	Class	Object

								

				//Assign	Connection	String	to	Variable

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

																				"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	Connection	and	Titles	Table

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Mode	=	adModeShareExclusive;

								pConnection->IsolationLevel	=	adXactIsolated;

								pConnection->Open(strCnn,"","",NULL);

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->CursorType	=	adOpenDynamic;

								pRstTitles->LockType	=	adLockPessimistic;

								pRstTitles->Open("Titles",_variant_t((IDispatch*)	pConnection,

												true),adOpenDynamic,adLockPessimistic,adCmdTable);

								pConnection->BeginTrans();

								//	Display	Connection	Mode

								if(pConnection->Mode	==	adModeShareExclusive)

								{

												printf("Connection	Mode	Is	Exclusive");

								}

								else

								{

												printf("Connection	Mode	Is	Not	Exclusive");						

								}

								//	Display	Isolation	Level	

								if(pConnection->IsolationLevel	==	adXactIsolated)

								{

												printf("\n\nTransaction	is	Isolated");

												printf("\n\nPress	any	key	to	continue...\n\n");

												getch();

								}

								else

								{

												printf("\n\nTransaction	is	not	Isolated");

												printf("\n\nPress	any	key	to	continue...\n\n");

												getch();

								}

								//	Open	an	IADORecordBinding	interface	pointer	which	

								//	we	will	use	for	binding	Recordset	to	a	class

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	class	here

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Change	the	type	of	psychology	titles.

								LPSTR	p_TempStr	=	(LPSTR)	malloc(sizeof(titlers.m_szau_Type));

								while	(!(pRstTitles->EndOfFile))

								{

												//	Remove	blank	string	

												strcpy(p_TempStr,strtok(titlers.m_szau_Type,"	"));

												//	Compare	type	with	psychology

												if	(!strcmp(p_TempStr,"psychology"))	

												{

																				//	Copy	"self_help"	title	field

																				strcpy(titlers.m_szau_Type,"self_help");

																				picRs->Update(&titlers);

												}

												pRstTitles->MoveNext();

								}

								//	Print	current	data	in	recordset.

								pRstTitles->Requery(adOptionUnspecified);

								//	Open	again	IADORecordBinding	interface	pointer	for	Binding	

								//	Recordset	to	a	class.

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	ReBinding	the	Recordset	to	a	C++	Class

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Move	to	the	first	record	of	the	Titles	table

								pRstTitles->MoveFirst();

								//Clear	the	screen	for	the	next	display

								system("cls");

								while	(!pRstTitles->EndOfFile)

								{

												printf("%s	-		%s\n",titlers.lau_TitleStatus	==	adFldOK	?	

																titlers.m_szau_Title	:"<NULL>",

																titlers.lau_TypeStatus	==	adFldOK	?	

																titlers.m_szau_Type	:"<NULL>");

												pRstTitles->MoveNext();

								}

								//	Restore	Original	Data

								pConnection->RollbackTrans();

								//	Deallocate	the	memory

								free(p_TempStr);

								pRstTitles->Close();

								//	Release	the	IADORecordset	Interface	here

								if(picRs)

												picRs->Release();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																													//

//																		PrintProviderError	Function																//

//																																																													//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//Print	Provider	Errors	from	Connection	object

				//pErr	is	a	record	object	in	the	Connection's	Error	collection

				ErrorPtr				pErr	=	NULL;

				if((pConnection->Errors->Count)>0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//Collection	ranges	from	0	to	nCount-1

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	Number	:%x	\t	%s",pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

IsolationLevelX.h:

//	IsolationLevelX.h

#include	"icrsint.h"

//This	class	extracts	titles	and	type	from	Titles	table

class	CTitlesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CTitlesRs)

								//	Column	title	is	the	2nd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(2,adVarChar,m_szau_Title,

												sizeof(m_szau_Title),lau_TitleStatus,FALSE)

								//	Column	type	is	the	3rd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(3,adVarChar,m_szau_Type,

												sizeof(m_szau_Type),lau_TypeStatus,TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szau_Title[81];

				ULONG	lau_TitleStatus;

				CHAR	m_szau_Type[13];

				ULONG	lau_TypeStatus;

};

Item	Property	Example	(VC++)

This	example	demonstrates	how	the	Item	property	accesses	members	of	a
collection.	The	example	opens	the	Authors	table	of	the	Pubs	database	with	a
parameterized	command.

The	parameter	in	the	command	issued	against	the	database	is	accessed	from	the
Command	object's	Parameters	collection	by	index	and	name.	Then	the	fields	of
the	returned	Recordset	are	accessed	from	that	object's	Fields	collection	by	index
and	name.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ItemX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ItemX();

				::CoUninitialize();

}

//

//																																																						//

//							ItemX	Function																																	//

//																																																						//

//

void	ItemX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

			_ConnectionPtr		pConnection		=	NULL;

			_RecordsetPtr			pRst					=	NULL;

			_CommandPtr					pCmd					=	NULL;

			_ParameterPtr			pPrm					=	NULL;

				FieldPtr							pFld					=	NULL;

				//	Other	Variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_variant_t				Column[9];

				_variant_t				vIndex;

			try

				{

							//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pRst.CreateInstance(__uuidof(Recordset)));

								TESTHR(pCmd.CreateInstance(__uuidof(Command)));

								//Set	the	array	with	the	Authors	table	field	(column)	names

								Column[0]	=	"au_id";

								Column[1]	=	"au_lname";

								Column[2]	=	"au_fname";

								Column[3]	=	"phone";

								Column[4]	=	"address";

								Column[5]	=	"city";

								Column[6]	=	"state";

								Column[7]	=	"zip";

								Column[8]	=	"contract";

								_bstr_t	strText("SELECT	*	FROM	Authors	WHERE	state	=	?");

								pCmd->CommandText	=	strText;

								pPrm	=	pCmd->CreateParameter("ItemXparm",	adChar,	adParamInput,

												2,	"CA");

								pCmd->Parameters->Append(pPrm);

								pConnection->Open(strCnn,	"",	"",	NULL);

								pCmd->ActiveConnection	=	pConnection;

								//	Connection	and	CommandType	are	omitted	because	

								//	a	Command	object	is	provided.

								_variant_t	Conn;

								Conn.vt	=	VT_ERROR;

								Conn.scode	=	DISP_E_PARAMNOTFOUND;

								pRst->Open((_variant_t((IDispatch	*)	pCmd)),Conn,adOpenStatic,

												adLockReadOnly,	-1);

								printf("The	Parameters	collection	accessed	by	index...\n");

								vIndex	=	(short)	0;

								pPrm	=	pCmd->Parameters->GetItem(&vIndex);

								printf("Parameter	name	=	'%s',	value	=	'%s'\n",

												(LPCSTR)pPrm->Name,	(LPSTR)(_bstr_t)pPrm->Value);

								printf("\nThe	Parameters	collection	accessed	by	name...\n");

								pPrm	=	pCmd->Parameters->Item["ItemXparm"];

								printf("Parameter	name	=	'%s',	value	=	'%s'\n",

												(LPCSTR)pPrm->Name,	(LPSTR)(_bstr_t)pPrm->Value);

								printf("\nThe	Fields	collection	accessed	by	index...\n");

								pRst->MoveFirst();

								long	limit	=	0;

								limit	=	((pRst->Fields->Count)	-	1);

								int	intLineCnt	=	8;	

								for	(short	iIndex	=	0;	iIndex	<=	limit;	iIndex++)

								{

												vIndex	=	iIndex;

												intLineCnt++;

												if	(intLineCnt%15	==	0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();

												}

												pFld	=	pRst->Fields->GetItem(&vIndex);

												printf("Field	%d	:	Name	=		'%s',	",	iIndex,

																(LPCSTR)pFld->GetName());

												_variant_t	FldVal	=	pFld->GetValue();		

												//	Because	Value	is	the	default	property	of	a

												//	Property	object,the	use	of	the	actual	keyword

												//	here	is	optional.

												switch(FldVal.vt)

												{

																case	(VT_BOOL):

																				if(FldVal.boolVal)

																				{

																								printf("Value	=	'True'");

																				}

																				else

																				{

																								printf("Value	=	'False'");

																				}

																				printf("\n");

																				break;

																case	(VT_BSTR):

																				printf("Value	=	'%s'",

																								(LPCSTR)(_bstr_t)FldVal.bstrVal);

																				printf("\n");

																				break;

																case	(VT_I4):

																				printf("Value	=	'%s'",(LPCSTR)FldVal.iVal);

																				printf("\n");

																				break;

																case	(VT_EMPTY):

																				printf("Value	=	'%s'",(LPCSTR)FldVal.lVal);

																				printf("\n");

																				break;

																default:

																				break;

												}

								}

								printf("\nThe	Fields	collection	accessed	by	name...\n");

								pRst->MoveFirst();

								for	(iIndex	=	0;	iIndex	<=	8;	iIndex++)

								{

												intLineCnt++;

												if	(intLineCnt%15	==	0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();

												}

												pFld	=	pRst->Fields->GetItem(Column[iIndex]);

												printf("Field	name	=	'%s',	",(LPCSTR)pFld->GetName());

												_variant_t	FldVal	=	pFld->GetValue();

												//	Because	Value	is	the	default	property	of	a

												//	Property	object,the	use	of	the	actual	keyword

												//	here	is	optional.

												switch(FldVal.vt)

												{

																case	(VT_BOOL):

																				if(FldVal.boolVal)

																				{

																								printf("Value	=	'True'");

																				}

																				else

																				{

																								printf("Value	=	'False'");

																				}

																				printf("\n");

																				break;

																case	(VT_BSTR):

																				printf("Value	=	'%s'",

																								(LPCSTR)(_bstr_t)FldVal.bstrVal);

																				printf("\n");

																				break;

																case	(VT_I4):

																				printf("Value	=	'%s'",(LPCSTR)FldVal.iVal);

																				printf("\n");

																				break;

																case	(VT_EMPTY):

																				printf("Value	=	'%s'",(LPCSTR)FldVal.lVal);

																				printf("\n");

																				break;

																default:

																				break;

												}

								}

								//	Clean	up	objects	before	exit.

								pRst->Close();

								pConnection->Close();

			}

			catch(_com_error	&e)

			{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

							PrintProviderError(pConnection);

							PrintComError(e);

			}

}

//

//																																																						//

//						PrintProviderError	Function																					//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,	

																pErr->Description);

								}

				}

}

//

//																																																						//

//							PrintComError	Function																									//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

MarshalOptions	Property	Example	(VC++)

This	example	uses	the	MarshalOptions	property	to	specify	what	rows	are	sent
back	to	the	server—All	Rows	or	only	Modified	Rows.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	<malloc.h>

#include	"MarshalOptionsX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	MarshalOptionsX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//															Main	Function																											//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				MarshalOptionsX();

				::CoUninitialize();

}

///

//																																																							//

//						Marshal	Options	Function																									//

//																																																							//

///

void			MarshalOptionsX(void)

{

				//	Define	string	variables

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr	pRstEmployees	=	NULL;

				//	Define	Other	Variables

				IADORecordBinding			*picRs		=	NULL;		//Interface	Pointer	declared

				CEmployeesRs	emprs;															//C++	Class	Object

				HRESULT	hr	=	S_OK;

				try	

				{																

								//	Open	recordset	with	names	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->CursorType	=	adOpenKeyset;

								pRstEmployees->LockType	=	adLockOptimistic;

								pRstEmployees->CursorLocation	=	adUseClient;

								pRstEmployees->Open("SELECT	fname,	lname	FROM	Employees	"

												"ORDER	BY	lname",strCnn,	

												adOpenKeyset,	adLockOptimistic,adCmdText);

								//	Open	an	IADORecordBinding	interface	pointer	which	

								//	we'll	use	for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&emprs));

								//	Store	Original	Data

								LPSTR	strOldFirst	=	(LPSTR)	malloc(sizeof(emprs.m_szemp_fname));

								LPSTR	strOldLast		=	(LPSTR)	malloc(sizeof(emprs.m_szemp_lname));

								strcpy(strOldFirst,strtok(emprs.m_szemp_fname,"	"));

								strcpy(strOldLast,strtok(emprs.m_szemp_lname,"	"));	

								//Change	Data	in	Edit	Buffer

								strcpy(emprs.m_szemp_fname,"Linda");

								strcpy(emprs.m_szemp_lname,"Kobara");

								//	Show	contents	of	buffer	and	get	user	input

								printf("Edit	in	Progress:\n");

								printf("Original	Data	=	%s		%s	\n",strOldFirst,strOldLast);

								printf("Data	in	buffer	=	%s		%s	\n",	emprs.lemp_fnameStatus	==	

												adFldOK	?	emprs.m_szemp_fname	:	"<NULL>",

												emprs.lemp_lnameStatus	==	adFldOK	?	

												emprs.m_szemp_lname	:	"<NULL>");

								printf("Use	Update	to	replace	the	original	data	with	the	"

												"buffered	data	in	the	Recordset?\nEnter	(y/n)	:?");

								char	opt1=getch();

								if(toupper(opt1)=='Y')

								{

																printf("\nWould	you	like	to	send	all	the	rows	in	"

																				"the	recordset	back	to	the	server?\nEnter	(y/n):");

																char	opt2	=	getch();

																if(toupper(opt2)	==	'Y')

																{

																				{

																								pRstEmployees->MarshalOptions	=	adMarshalAll;

																								picRs->Update(&emprs);

																				}

																}

																else	

																{

																				printf("\nWould	you	like	to	send	only	modified	"

																								"rows	back	to	the	server?\nEnter	(y/n):");

																				char	opt3=getch();

																				if(toupper(opt3)	==	'Y')

																								{

																												pRstEmployees->MarshalOptions	=	

																																adMarshalModifiedOnly;

																												picRs->Update(&emprs);

																								}

																}

								}

								//	Show	the	resulting	data

								printf("\nData	In	the	Recordset	=	%s		%s\n",

												emprs.lemp_fnameStatus	==	adFldOK	?	

												emprs.m_szemp_fname	:	"<NULL>",

												emprs.lemp_lnameStatus	==	adFldOK	?	

												emprs.m_szemp_lname	:	"<NULL>");

								//	Restore	original	data	because	this	is	a	demonstration

								if((strcmp(strOldFirst,emprs.m_szemp_fname))	&&	

											(strcmp(strOldLast,emprs.m_szemp_lname)))

								{

												strcpy(emprs.m_szemp_fname,strOldFirst);	

												strcpy(emprs.m_szemp_lname,strOldLast);

												picRs->Update(&emprs);

								}

								//	Deallocate	memory

								free(strOldFirst);

								free(strOldLast);

								//	Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr					pErr			=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

					//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

MarshalOptionsX.h:

//	MarshalOptionsX.h

#include	"icrsint.h"

//This	Class	extracts	only	fname,lname	from	employees	table		

class	CEmployeesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeesRs)

				//Column	fname	is	the	1st	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szemp_fname,	

									sizeof(m_szemp_fname),	lemp_fnameStatus,	TRUE)

			

					//Column	lname	is	the	2nd	field	in	the	recordset

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szemp_lname,	

									sizeof(m_szemp_lname),	lemp_lnameStatus,	TRUE)

END_ADO_BINDING()

public:

			CHAR			m_szemp_fname[21];

			ULONG			lemp_fnameStatus;

			CHAR			m_szemp_lname[31];

			ULONG			lemp_lnameStatus;

};

MaxRecords	Property	Example	(VC++)

This	example	uses	the	MaxRecords	property	to	open	a	Recordset	containing	the
10	most	expensive	titles	in	the	Titles	table.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"\

				no_namespace	rename("EOF","EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"MaxRecordsX.h"

//	Function	Declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	MaxRecordsX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																										//

//																								Main	Function																					//

//																																																										//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				MaxRecordsX();

				::CoUninitialize();

}

//			MaxRecordsX()		Function

void		MaxRecordsX(void)

{

				//	Define	ADO	ObjectPointers

				//	Initialize	Pointers	on	define

				//	These	are	in	the	ADODB	::	namespace

				_RecordsetPtr	pRstTemp				=	NULL;

				//	Define	Other	Variables

				IADORecordBinding	*picRs		=	NULL;			//	Interface	Pointer	Declared		

				CTitlesRs	titlers;												//	C++	Class	Object

				HRESULT	hr	=	S_OK;

				try

				{

								//Assign	Connection	String	to	Variable

								_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

																				"Initial	Catalog=Pubs;User	Id=sa;Password=;");

								

								//	Open	Recordset	containing	the	10	most	expensive	titles	in	the	

								//	Titles	table.

								TESTHR(pRstTemp.CreateInstance(__uuidof(Recordset)));

								pRstTemp->MaxRecords=10;

								pRstTemp->Open("SELECT	title,price	FROM	Titles	"

												"ORDER	BY	Price	DESC",strCnn,adOpenForwardOnly,

												adLockReadOnly,adCmdText);

								//	Open	an	IADORecordBinding	interface	pointer	which	

								//	we	will	use	for	binding	Recordset	to	a	class

								TESTHR(pRstTemp->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	class	here

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Display	the	contents	of	the	Recordset

								printf("Top	Ten	Titles	by	Price:\n\n");

								while(!(pRstTemp->EndOfFile))

								{

												printf("%s	---		%6.2lf\n\n",titlers.lau_TitleStatus	==	

																adFldOK	?	titlers.m_szau_Title	:	"<NULL>",

																				titlers.lau_PriceStatus	==	adFldOK	?	

																				titlers.m_szau_Price	:	0.00);

												pRstTemp->MoveNext();

								}

								//	Clean	up	objects	before	exit.

								pRstTemp->Close();

								if(picRs)

												picRs->Release();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTemp->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

};

//

//																																																										//

//																		PrintProviderError	Function													//

//																																																										//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//Print	Provider	Errors	from	Connection	object

				//pErr	is	a	record	object	in	the	Connection's	Error	collection

				ErrorPtr				pErr	=	NULL;

				if((pConnection->Errors->Count)>0)

				{

								long	nCount	=	pConnection->Errors->Count;

								

								//Collection	ranges	from	0	to	nCount-1

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	Number	:%x	\t	%s",pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

MaxRecordsX.h:

//	MaxRecordsX.h

#include	"icrsint.h"

//	This	class	extracts	titles	and	type	from	the	Titles	table

class	CTitlesRs	:	public	CADORecordBinding

{

				BEGIN_ADO_BINDING(CTitlesRs)

								//	Column	title	is	the	1st	field	in	the	Recordset

								ADO_VARIABLE_LENGTH_ENTRY2(1,adVarChar,m_szau_Title,

												sizeof(m_szau_Title),lau_TitleStatus,FALSE)

								//	Column	price	is	the	2nd	field	in	the	Recordset

								ADO_VARIABLE_LENGTH_ENTRY2(2,adDouble,m_szau_Price,

												sizeof(m_szau_Price),lau_PriceStatus,FALSE)

END_ADO_BINDING()

public:

				CHAR	m_szau_Title[81];

				ULONG	lau_TitleStatus;

				DOUBLE	m_szau_Price;

				ULONG	lau_PriceStatus;

};

Move	Method	Example	(VC++)

This	example	uses	the	Move	method	to	position	the	record	pointer	based	on	user
input.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<stdlib.h>

#include	<conio.h>

#include	"MoveX.h"

//	Function	Declaration.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	MoveX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				MoveX();

				::CoUninitialize();

}

//

//																																														//

//						MoveX	Function																										//

//																																														//

//

void	MoveX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstAuthors				=	NULL;

				//	Define	Other	Variables

				IADORecordBinding			*picRs	=	NULL;		//Interface	Pointer	declared		

				CAuthorsRs				authorsrs;									//C++	class	object

				HRESULT	hr	=	S_OK;

				//	Open	Authors	table

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=SRV;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	recordset	from	Authors	table.

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->CursorType	=	adOpenStatic;

								//	Use	client	cursor	to	allow	use	of	AbsolutePosition	property.

								pRstAuthors->CursorLocation	=	adUseClient;

								pRstAuthors->Open("SELECT	au_id,	au_fname,	au_lname,	city,	"

												"state	FROM	Authors	ORDER	BY	au_lname",	strCnn,	adOpenStatic,	

												adLockReadOnly,	adCmdText);

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	use	

								//	for	Binding	Recordset	to	a	class.

								TESTHR(pRstAuthors->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&authorsrs));

								pRstAuthors->MoveFirst();

								while(true)

								{

												//	Display	information	about	current	record	and	ask	how	many	

												//	records	to	move.

												printf("Record	%ld	of	%d\n",	pRstAuthors->AbsolutePosition,	

																pRstAuthors->RecordCount);

												printf("Author:	%s	%s\n",	

																authorsrs.lemp_fnameStatus	==	adFldOK	?	

																authorsrs.m_au_fname	:	"<NULL>",	

																authorsrs.lemp_lnameStatus	==	adFldOK	?	

																authorsrs.m_au_lname	:	"<NULL>");

												printf("Location:	%s,	%s\n\n",	

																authorsrs.lemp_cityStatus	==	adFldOK	?	

																authorsrs.m_au_city	:	"<NULL>",	

																authorsrs.lemp_stateStatus	==	adFldOK	?	

																authorsrs.m_au_state	:	"<NULL>");

												char	*strMove;

												char	strTemp[5];

												printf("Enter	number	of	records	to	Move	"

																"\n(positive	or	negative,	Enter	to	quit):	");

												gets(strTemp);

												strMove	=	strtok(strTemp,"	");

												if	(strMove	==	NULL)

																break;

												//	if	the	input	is	not	numeric	then	notify	the	user.

												if(!atol(strMove))

												{

																printf("Expecting	numeric	value...\n");

																continue;

												}

												//	Store	bookmark	in	case	the	Move	goes	too	far	

												//	forward	or	backward.

												_variant_t	varBookmark	=	pRstAuthors->Bookmark;

												//	Move	method	requires	parameter	of	data	type	Long.

												long	lngMove	=	atol(strMove);

												pRstAuthors->Move(lngMove);

												//	Trap	for	BOF	or	EOF.

												if(pRstAuthors->BOF)

												{

																printf("Too	far	backward!	Returning	to	current"

																				"	record.\n");

																pRstAuthors->Bookmark	=	varBookmark;

												}

												if(pRstAuthors->EndOfFile)

												{

																printf("Too	far	forward!	Returning	to	current"

																				"	record.\n");

																pRstAuthors->Bookmark	=	varBookmark;

												}

								}

								//	Clean	up	objects	before	exit.

								pRstAuthors->Close();

								//	Release	the	IADORecordset	Interface	here.

								if	(picRs)

												picRs->Release();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																	(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

MoveX.h:

//	MoveX.h

#include	"icrsint.h"

//	This	Class	extracts	fname,	lname,	city	and	state

//	from	the	"Authors"	table.

class	CAuthorsRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CAuthorsRs)

				//	Column	au_id	is	the	1st	field	in	the	recordset			

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_au_fname,	

									sizeof(m_au_fname),	lemp_fnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_au_lname,	

									sizeof(m_au_lname),	lemp_lnameStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_au_city,	

									sizeof(m_au_city),	lemp_cityStatus,	TRUE)

				ADO_VARIABLE_LENGTH_ENTRY2(5,	adChar,	m_au_state,	

									sizeof(m_au_state),	lemp_stateStatus,	TRUE)

END_ADO_BINDING()

public:

				char					m_au_fname[21];

				ULONG				lemp_fnameStatus;

				char					m_au_lname[41];

				ULONG				lemp_lnameStatus;

				char					m_au_city[21];

				ULONG				lemp_cityStatus;

				char					m_au_state[3];

				ULONG				lemp_stateStatus;

};

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods
Example	(VC++)

This	example	uses	the	MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
methods	to	move	the	record	pointer	of	a	Recordset	based	on	the	supplied
command.	The	MoveAny	function	is	required	for	this	example	to	run.

#include	<ole2.h>

#include	<stdio.h>

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	MoveFirstX();

void	MoveAny(int	intChoice,	_RecordsetPtr	pRstTemp);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

/////////////////////////////////

//						Main	Function										//

/////////////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				MoveFirstX();

				::CoUninitialize();

}

//////////////////////////////////////

//						MoveFirstX	Function									//

//////////////////////////////////////

void	MoveFirstX()	

{

				HRESULT				hr	=	S_OK;

				_RecordsetPtr				pRstAuthors		=	NULL;

				_bstr_t					strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				_bstr_t	strMessage("UPDATE	Titles	SET	Type	=	"

												"'psychology'	WHERE	Type	=	'self_help'");

				int	intCommand	=	0;

				//	Temporary	string	variable	for	type	conversion	for	printing.

				_bstr_t		bstrFName;

				_bstr_t		bstrLName;

				try

				{

								//	Open	recordset	from	Authors	table.

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->CursorType	=	adOpenStatic;

								//	Use	client	cursor	to	enable	AbsolutePosition	property.

								pRstAuthors->CursorLocation	=	adUseClient;

								pRstAuthors->Open("Authors",	strCnn,	adOpenStatic,	

												adLockBatchOptimistic,	adCmdTable);

								//	Show	current	record	information	and	get	user's	method	choice.

								while	(true)		//	Continuous	loop.

								{

												//	Convert	variant	string	to	convertable	string	type.

												bstrFName	=	pRstAuthors->Fields->Item["au_fName"]->Value;

												bstrLName	=	pRstAuthors->Fields->Item["au_lName"]->Value;

												printf("Name:	%s	%s\n	Record	%d	of	%d\n\n",

																(LPCSTR)	bstrFName,

																(LPCSTR)	bstrLName,

																pRstAuthors->AbsolutePosition,

																pRstAuthors->RecordCount);

												printf("[1	-	MoveFirst,	2	-	MoveLast,	\n");

												printf("	3	-	MoveNext,	4	–	MovePrevious,	5	-	Quit]\n");

												scanf("%d",	&intCommand);

												if	((intCommand	<	1)	||	(intCommand	>	4))

																break;			//	Out	of	range	entry	exits	program	loop.

												//	Call	method	based	on	user's	input.

												MoveAny(intCommand,	pRstAuthors);

								}

								pRstAuthors->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

/////////////////////////////////

//						MoveAny	Function							//

/////////////////////////////////

void	MoveAny(int	intChoice,	_RecordsetPtr	pRstTemp)	

{

				//	Use	specified	method,	trapping	for	BOF	and	EOF

				try

				{

								switch(intChoice)

								{

												case	1:

																pRstTemp->MoveFirst();

																break;

												case	2:

																pRstTemp->MoveLast();

																break;

												case	3:

																pRstTemp->MoveNext();

																if	(pRstTemp->EndOfFile)

																{

																				printf("\nAlready	at	end	of	recordset!\n");

																				pRstTemp->MoveLast();

																}				//End	If

																break;

												case	4:

																pRstTemp->MovePrevious();

																if	(pRstTemp->BOF)

																{

																				printf("\nAlready	at	beginning	of	recordset!\n");

																				pRstTemp->MoveFirst();

																}

																break;

												default:

																;

								}

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTemp->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//						PrintProviderError	Function							//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr		pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-	1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

//////////////////////////////////////

//						PrintComError	Function						//

//////////////////////////////////////

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

NextRecordset	Method	Example	(VC++)

This	example	uses	the	NextRecordset	method	to	view	the	data	in	a	recordset	that
uses	a	compound	command	statement	made	up	of	three	separate	SELECT
statements.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	<stdlib.h>

//Function	Declaration.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	NextRecordsetX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				NextRecordsetX();

				::CoUninitialize();

}

//

//																																														//

//						NextRecordsetX	Function																	//

//																																														//

//

void	NextRecordsetX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr				pRstCompound	=	NULL;

				//	Define	Other	Variables

				HRESULT	hr	=	S_OK;

				_variant_t	index;

				index.vt	=	VT_I2;

				//	Assign	connection	string	to	a	variable.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	recordset	from	Authors	table.

								TESTHR(pRstCompound.CreateInstance(__uuidof(Recordset)));

								//	Pass	the	Cursor	type	and	Lock	type	to	the	Recordset.

								pRstCompound->Open("SELECT	*	FROM	Authors;SELECT	*	FROM	stores;"

												"SELECT	*	FROM	jobs",	strCnn,	adOpenForwardOnly,	

												adLockReadOnly,	adCmdText);

								//	Display	results	from	each	SELECT	statement.

								int	intCount	=	1;

								while(!(pRstCompound==NULL))

								{

												printf("\n\nContents	of	recordset	#%d\n",	intCount);

												while(!pRstCompound->EndOfFile)

												{

																index.iVal	=	0;

																printf("%s\t",	(LPCSTR)(_bstr_t)pRstCompound->\

																												GetFields()->GetItem(&	index)->Value);

																index.iVal	=	1;

																printf("%s\n",	(LPCSTR)(_bstr_t)pRstCompound->\

																																Fields->GetItem(&	index)->Value);

																pRstCompound->MoveNext();

																int	intLine	=	intLine	+	1;

																if	(intLine	%	22	==	0)

																{

																				printf("\nPress	any	key	to	continue...");

																				getch();

																				//Clear	the	screen	for	the	next	display.

																				system("cls");	

																}

												}

												long				lngRec	=	0;

												pRstCompound	=	pRstCompound->

																NextRecordset((VARIANT	*)lngRec);

												printf("\nPress	any	key	to	continue...");

												getch();

												intCount	=	intCount	+	1;

								}

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstCompound->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

NumericScale	and	Precision	Properties	Example	(VC++)

This	example	uses	the	NumericScale	and	Precision	properties	to	display	the
numeric	scale	and	precision	of	fields	in	the	Discounts	table	of	the	Pubs
database.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	NumericScaleX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				NumericScaleX();

				::CoUninitialize();

}

///

//																																																							//

//						NumericScaleX	Function																											//

//																																																							//

///

void	NumericScaleX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr		pRstDiscounts		=	NULL;

					FieldsPtr		fldTemp		=	NULL;

				//Define	Other	Variables

				HRESULT		hr	=	S_OK;

				_variant_t	Index;

				Index.vt	=	VT_I2;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

									"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	recordset.

								TESTHR(pRstDiscounts.CreateInstance(__uuidof(Recordset)));

								pRstDiscounts->Open("Discounts",	strCnn,	adOpenForwardOnly,

												adLockReadOnly,	adCmdTable);

								//	Display	numeric	scale	and	precision	of

								//	numeric	and	small	integer	fields.

								fldTemp	=	pRstDiscounts->GetFields();

								for	(int	intLoop=0;intLoop	<	(int)fldTemp->GetCount();intLoop++)

								{

												Index.iVal	=	intLoop;

												if	((fldTemp->GetItem(Index)->Type	==	adNumeric)	

																||	(fldTemp->GetItem(Index)->Type	==	adSmallInt))

												{	

																printf("Field:	%s\n"	,(LPCSTR)fldTemp->

																				GetItem(Index)->GetName());

																printf("Numeric	scale:	%d\n",	fldTemp->

																				GetItem(Index)->GetNumericScale());

																printf("Precision:	%d\n",	fldTemp->

																				GetItem(Index)->GetPrecision());

												}

								}

						//	Clean	up	objects	before	exit.	

						pRstDiscounts->Close();

				}

				catch(_com_error	&e)

				{				

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstDiscounts->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Open	and	Close	Methods	Example	(VC++)

This	example	uses	the	Open	and	Close	methods	on	both	Recordset	and
Connection	objects	that	have	been	opened.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<oledb.h>

#include	<stdio.h>

#include	<conio.h>

#include	"OpenX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OpenX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				OpenX();

				::CoUninitialize();

}

///

//																																																							//

//															OpenX	Function																										//

//																																																							//

///

void	OpenX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

					_RecordsetPtr				pRstEmployees		=	NULL;

					_ConnectionPtr	pConnection				=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	Other	Variables.

				HRESULT		hr	=	S_OK;

				IADORecordBinding			*picRs		=	NULL;		//	Interface	Pointer	declared.

				CEmployeesRs	emprs;							//	C++	Class	object

				DBDATE	varDate;

				try

				{

								//	open	connection	and	record	set

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open(strCnn,"","",NULL);

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->Open("Employees",	

												_variant_t((IDispatch	*)pConnection,true),	adOpenKeyset,

												adLockOptimistic,	adCmdTable);

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	

								//	use	for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&emprs));

								//	Assign	the	first	employee	record's	hire	date

								//	to	a	variable,	then	change	the	hire	date.

								varDate	=	emprs.m_sze_hiredate;

								printf("\nOriginal	data\n");

								printf("\tName	-	Hire	Date\n");

								printf("		%s		%s	-	%d/%d/%d\n\n",

												emprs.le_fnameStatus	==	adFldOK	?	

												emprs.m_sze_fname	:	"<NULL>",

												emprs.le_lnameStatus	==	adFldOK	?	

												emprs.m_sze_lname	:	"<NULL>",

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.month	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.day	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.year	:	0);	

								emprs.m_sze_hiredate.year=1900;

								emprs.m_sze_hiredate.month=1;

								emprs.m_sze_hiredate.day=1;

								picRs->Update(&emprs);

								printf("\nChanged	data\n");

								printf("\tName	-	Hire	Date\n");

								printf("		%s	%s	-	%d/%d/%d\n\n",

												emprs.le_fnameStatus	==	adFldOK	?	

												emprs.m_sze_fname	:	"<NULL>",

												emprs.le_lnameStatus	==	adFldOK	?	

												emprs.m_sze_lname	:	"<NULL>",

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.month	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.day	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.year	:	0);	

								//	Requery	Recordset	and	reset	the	hire	date.

								pRstEmployees->Requery(adOptionUnspecified);

								//	Open	an	IADORecordBinding	interface	pointer	which	we'll	

								//	use	for	Binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Rebind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&emprs));

								emprs.m_sze_hiredate	=	varDate;

								picRs->Update(&emprs);

								printf("\nData	after	reset\n");

								printf("\tName	-	Hire	Date\n");

								printf("		%s	%s	-	%d/%d/%d",emprs.le_fnameStatus	==	adFldOK	?	

												emprs.m_sze_fname	:	"<NULL>",

												emprs.le_lnameStatus	==	adFldOK	?	

												emprs.m_sze_lname	:	"<NULL>",

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.month	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.day	:	0,

												emprs.le_hiredateStatus	==	adFldOK	?	

												emprs.m_sze_hiredate.year	:	0);	

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

OpenX.h:

#include	"icrsint.h"

//	This	Class	extracts	only	fname,lastname	and	

//	hire_date	from	employee	table

class	CEmployeesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeesRs)

				

				//	Column	fname	is	the	2nd	field	in	the	table			

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sze_fname,	

									sizeof(m_sze_fname),	le_fnameStatus,	FALSE)

				

				//	Column	lname	is	the	4th	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_sze_lname,	

									sizeof(m_sze_lname),	le_lnameStatus,	FALSE)

				//	Column	hiredate	is	the	8th	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(8,	adDBDate,m_sze_hiredate,	

									sizeof(m_sze_hiredate),	le_hiredateStatus,	TRUE)

			

END_ADO_BINDING()

public:

			CHAR								m_sze_fname[21];

			ULONG				le_fnameStatus;

			CHAR								m_sze_lname[31];

			ULONG				le_lnameStatus;

			DBDATE				m_sze_hiredate;

			ULONG				le_hiredateStatus;

};

OpenSchema	Method	Example	(VC++)

This	example	uses	the	OpenSchema	method	to	display	the	name	and	type	of
each	table	in	the	Pubs	database.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<oleauto.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OpenSchemaX(void);

void	OpenSchemaX2(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				OpenSchemaX();

				printf("Press	any	key	to	see	the	results	of	2nd	function...\n\n");

				getch();

				OpenSchemaX2();

				::CoUninitialize();

}

///

//																																																							//

//						OpenSchemaX	Function																													//

//																																																							//

///

void	OpenSchemaX()	

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection				=	NULL;

				_RecordsetPtr		pRstSchema		=	NULL;

				//Other	Variables

				HRESULT		hr	=	S_OK;

//			_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;Data	//Source=C:\\Program	Files\\Microsoft	//Office\\Office\\Samples\\Northwind.mdb;"

//												"User	Id=admin;Password=;");

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

			try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								pRstSchema	=	pConnection->OpenSchema(adSchemaTables);

								while(!(pRstSchema->EndOfFile))

								{

												_bstr_t	table_name	=	pRstSchema->Fields->

																GetItem("TABLE_NAME")->Value;

												printf("Table	Name:	%s\n\n",(LPCSTR)	table_name);

												_bstr_t	table_type	=	pRstSchema->Fields->

																GetItem("TABLE_TYPE")->Value;

												printf("Table	type:	%s\n\n",(LPCSTR)	table_type);

												pRstSchema->MoveNext();

												int	intLine	=	intLine	+	1;

																if	(intLine	%	5	==	0)

																{

																				printf("\nPress	any	key	to	continue...");

																				getch();

																				//Clear	the	screen	for	the	next	display			

																				system("cls");	

																}

								}

								//	Clean	up	objects	before	exit.

								pRstSchema->Close();

								pConnection->Close();

											

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						OpenSchemaX2	Function																												//

//																																																							//

///

void	OpenSchemaX2()	

{

				HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection2				=	NULL;

				_RecordsetPtr		pRstSchema		=	NULL;

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

			try

				{

								//	Open	connection.

								TESTHR(pConnection2.CreateInstance(__uuidof(Connection)));

								pConnection2->Open	(strCnn,	"",	"",	NULL);

								//	Create	a	safearray	which	takes	four	elements,and	pass	it	as	

								//	2nd	parameter	in	OpenSchema	method.

								SAFEARRAY	FAR*	psa	=	NULL;

								SAFEARRAYBOUND	rgsabound;

								_variant_t		var;

								_variant_t	Array;

								rgsabound.lLbound	=	0;

								rgsabound.cElements	=	4;

								psa	=	SafeArrayCreate(VT_VARIANT,	1,	&rgsabound);

								var.vt	=	VT_EMPTY;

								long	ix;

								ix	=	0;

								SafeArrayPutElement(psa,	&ix,	&var);

								ix=	1;

								SafeArrayPutElement(psa,	&ix,	&var);

								ix	=	2;

								SafeArrayPutElement(psa,	&ix,	&var);

								var.vt	=	VT_BSTR;

								char	*	s1	=	"VIEW";

								_bstr_t	str	=	s1;

								var.bstrVal=str;

								ix=	3;

								SafeArrayPutElement(psa,	&ix,	&var);

								Array.vt	=	VT_ARRAY|VT_VARIANT;

								Array.parray	=	psa;		

								pRstSchema	=	pConnection2->OpenSchema(adSchemaTables,&Array);

								while(!(pRstSchema->EndOfFile))

								{

												printf("Table	Name:	%s\n\n",(LPCSTR)	(_bstr_t)	pRstSchema->

																Fields->GetItem("TABLE_NAME")->Value);

												printf("Table	type:	%s\n\n",(LPCSTR)	(_bstr_t)	pRstSchema->

																Fields->GetItem("TABLE_TYPE")->Value);

												pRstSchema->MoveNext();

												int	intLine	=	intLine	+	1;

																if	(intLine	%	5	==	0)

																{

																				printf("\nPress	any	key	to	continue...");

																				getch();

																				//Clear	the	screen	for	the	next	display			

																				system("cls");	

																}

								}

								//	Clean	up	objects	before	exit.

								pRstSchema->Close();

								pConnection2->Close();	

				}				//	End	Try	statement.

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection2);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Optimize	Property	Example	(VC++)

This	example	demonstrates	the	Field	object	dynamic	Optimize	property.	The	zip
field	of	the	Authors	table	in	the	Pubs	database	is	not	indexed.	Setting	the
Optimize	property	to	True	on	the	zip	field	authorizes	ADO	to	build	an	index	that
improves	the	performance	of	the	Find	method.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OptimizeX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				OptimizeX();

				::CoUninitialize();

}

//

//																																																						//

//											OptimizeX	Function																									//

//																																																						//

//

void	OptimizeX(void)	

{

				HRESULT			hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr			pRst	=	NULL;

				try

				{

								TESTHR(pRst.CreateInstance(__uuidof(Recordset)));

								//	Enable	Index	creation.

								pRst->CursorLocation	=	adUseClient;

								pRst->Open	("SELECT	*	FROM	Authors",	strCnn,

												adOpenStatic,	adLockReadOnly,	adCmdText);

								//	Create	the	index

								pRst->Fields->GetItem("zip")->Properties->

												GetItem("Optimize")->PutValue("True");

								//	Find	Akiko	Yokomoto

								pRst->Find("zip	=	'94595'",1,adSearchForward);

								printf("\n%s	%s				%s	%s	%s\n",

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("au_fname")->Value,

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("au_lname")->Value,

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("address")->Value,

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("city")->Value,

												(LPSTR)	(_bstr_t)	pRst->Fields->GetItem("state")->Value);

								//	Delete	the	index

								pRst->Fields->GetItem("zip")->Properties->

												GetItem("Optimize")->PutValue("False");

								pRst->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRst->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

OriginalValue	and	UnderlyingValue	Properties	Example	(VC++)

This	example	demonstrates	the	OriginalValue	and	UnderlyingValue	properties
by	displaying	a	message	if	a	record's	underlying	data	has	changed	during	a
Recordset	batch	update.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"OriginalValueX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OriginalValueX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				OriginalValueX();

				::CoUninitialize();

}

///

//																																																							//

//												OriginalValueX	Function																				//

//																																																							//

///

void	OriginalValueX(void)	

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr			pConnection				=	NULL;

					FieldPtr						pFldType			=	NULL;

				_RecordsetPtr			pRstTitles			=	NULL;

				//	Define	string	variables.

				_bstr_t	strSQLChange("UPDATE	Titles	SET	Type	=	"

												"'sociology'	WHERE	Type	=	'psychology'");

				_bstr_t	strSQLRestore("UPDATE	Titles	SET	Type	=	"

												"'psychology'	WHERE	Type	=	'sociology'");

				//	Define	Other	Variables

				HRESULT				hr	=	S_OK;

				IADORecordBinding			*picRs		=	NULL;		//Interface	Pointer	declared

				CTitlesRs	titlers;								//	C++	Class	object

				try	

				{

								_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

								

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								

								//	Open	Recordset	for	batch	update.

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->PutActiveConnection(

												_variant_t((IDispatch	*)pConnection,true));

								pRstTitles->CursorType	=	adOpenKeyset;

								pRstTitles->LockType	=	adLockBatchOptimistic;

								

								//	Cast	Connection	pointer	to	an	IDispatch	type	so	converted	

								//	to	correct	type	of	variant.

								pRstTitles->Open("Titles",	

												_variant_t((IDispatch	*)pConnection,true),

												adOpenKeyset,	adLockBatchOptimistic,	adCmdTable);

								//Open	an	IADORecordBinding	interface	pointer	which	

								//we'll	use	for	Binding	Recordset	to	a	class.

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here		

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Set	field	object	variable	for	Type	field.

								pFldType	=	pRstTitles->Fields->GetItem("type");

								//	Change	the	type	of	psychology	titles.

								while(!(pRstTitles->EndOfFile))

								{

												if	(!strcmp(strtok((char	*)titlers.m_szau_Type,"	"),	

																"psychology"))

												{

																pFldType->Value	=	"self_help";

												}

												pRstTitles->MoveNext();

								}

								//	Simulate	a	change	by	another	user	by	updating	data

								//	using	a	command	string.

								pConnection->Execute(strSQLChange,NULL,0);

								//	Check	for	changes.

								pRstTitles->MoveFirst();

								while(!(pRstTitles->EndOfFile))

								{

												if	(strcmp(pFldType->OriginalValue.pcVal,

																pFldType->UnderlyingValue.pcVal))

												{

																printf("\n\nData	has	changed!");

																printf("\n\nTitle	ID:	%s",titlers.lau_Title_idStatus	==	

																				adFldOK	?	titlers.m_szau_Title_id	:	"<NULL>");

																printf("\n\nCurrent	Value:	%s",

																				(LPCSTR)	(_bstr_t)	pFldType->Value);

																printf("\n\nOriginal	Value:	%s",

																				(LPCSTR)	(_bstr_t)	pFldType->OriginalValue);

																printf("\n\nUnderlying	Value:	%s\n\n",

																				(LPCSTR)	(_bstr_t)	pFldType->UnderlyingValue);

																printf("Press	any	key	to	continue...");

																getch();

																system("cls");

												}

												pRstTitles->MoveNext();

								}

								//	Cancel	the	update	because	this	is	a	demonstration.

								pRstTitles->CancelBatch(adAffectAll);

								//	Restore	Original	Values.

								pConnection->Execute(strSQLRestore,NULL,0);

								//	Clean	up	objects	before	exit.

								pRstTitles->Close();

								pConnection->Close();

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

};

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

OriginalValueX.h:

#include	"icrsint.h"

//This	class	extracts	title_id	and	type	from	Titles	table

class	CTitlesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CTitlesRs)

								//	Column	title_id	is	the	1st	field	in	the	Recordset

								ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_szau_Title_id,

												sizeof(m_szau_Title_id),	lau_Title_idStatus,	FALSE)

								//	Column	type	is	the	3rd	field	in	the	Recordset

								ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szau_Type,

												sizeof(m_szau_Type),	lau_TypeStatus,	TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szau_Title_id[7];

				ULONG	lau_Title_idStatus;

				CHAR	m_szau_Type[13];

				ULONG	lau_TypeStatus;

};

Prepared	Property	Example	(VC++)

This	example	demonstrates	the	Prepared	property	by	opening	two	Command
objects—one	prepared	and	one	not	prepared.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	<winbase.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	PreparedX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																																							//

//						Main	Function																																				//

//																																																							//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				PreparedX();

				::CoUninitialize();

}

///

//																																																							//

//						PreparedX	Function																															//

//																																																							//

///

void	PreparedX(void)	

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr			pConnection				=NULL;

				_CommandPtr						pCmd1				=NULL;

				_CommandPtr						pCmd2				=NULL;

				//	Define	string	variables.		

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//Define	Other	Variables

				HRESULT			hr	=	S_OK;

			try

				{

								//	Open	a	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								_bstr_t	strCmd	("SELECT	title,type	FROM	Titles	ORDER	BY	type");

								//	Create	two	command	objects	for	the	same

								//	command	-	one	prepared	and	one	not	prepared.

								TESTHR(pCmd1.CreateInstance(__uuidof(Command)));

								pCmd1->ActiveConnection	=	pConnection;

								pCmd1->CommandText	=	strCmd;

								TESTHR(pCmd2.CreateInstance(__uuidof(Command)));

								pCmd2->ActiveConnection	=	pConnection;

								pCmd2->CommandText	=	strCmd;

								pCmd2->PutPrepared(true);

								//	Set	a	timer,then	execute	the	unprepared	command	20	times.

								DWORD	sngStart=GetTickCount();	

								for(int	intLoop=1;intLoop<=20;intLoop++)

								{

												pCmd1->Execute(NULL,NULL,adCmdText);

								}

								DWORD	sngEnd=GetTickCount();

								float	sngNotPrepared	=	(float)(sngEnd	-	sngStart)/(float)1000;

								//	Reset	the	timer,then	execute	the	prepared	command	20	times

								sngStart=GetTickCount();	

								for(intLoop=1;intLoop<=20;intLoop++)

								{

												pCmd2->Execute(NULL,NULL,adCmdText);

								}

								sngEnd=GetTickCount();

								float	sngPrepared	=	(float)(sngEnd	-	sngStart)/(float)1000;

								//	Display	performance	results

								printf("\n\nPerformance	Results:");

								printf("\n\nNot	Prepared:	%6.3f	seconds",sngNotPrepared);

								printf("\n\nPrepared:					%6.3f	seconds\n\n",sngPrepared);

								pConnection->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Provider	and	DefaultDatabase	Properties	Example	(VC++)

This	example	demonstrates	the	Provider	property	by	opening	three	Connection
objects	using	different	providers.	It	also	uses	the	DefaultDatabase	property	to	set
the	default	database	for	the	Microsoft	ODBC	Provider.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ProviderX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///////////////////////////////

//																											//

//				Main	Function										//

//																											//

///////////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ProviderX();

				::CoUninitialize();

}

/////////////////////////////////

//																													//

//				ProviderX	Function							//

//																													//

/////////////////////////////////

void	ProviderX(void)	

{

				HRESULT				hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr				pConnection1				=	NULL;

				_ConnectionPtr				pConnection2					=	NULL;

				_ConnectionPtr				pConnection3					=	NULL;

				try

				{

								//	Open	a	Connection	using	the	Microsoft	ODBC	provider.

								TESTHR(pConnection1.CreateInstance(__uuidof(Connection)));

								pConnection1->ConnectionString	=	"driver={SQL	Server};"

												"server=dhale1;uid=sa;pwd=;";

								pConnection1->Open("","","",NULL);

								pConnection1->DefaultDatabase	=	"Pubs";

								//	Display	the	provider

								printf("\n\nConnection1	provider:	%s	\n\n",

												(LPCSTR)pConnection1->Provider);

								//	Open	a	connection	using	the	OLE	DB	Provider	for	Microsoft	Jet.

								TESTHR(pConnection2.CreateInstance(__uuidof(Connection)));

								pConnection2->Provider	=	"Microsoft.Jet.OLEDB.3.51";

								char	*sConn	=	"c:\\Program	Files\\Microsoft	Office\\Office\\"

												"Samples\\Northwind.mdb";

								pConnection2->Open(sConn,"admin","",NULL);

								//	Display	the	provider

								printf("Connection2	provider:	%s	\n\n",(LPCSTR)pConnection2->

												Provider);

								//	Open	a	Connection	using	the	Microsoft	SQL	Server	provider.

								TESTHR(pConnection3.CreateInstance(__uuidof(Connection)));

								pConnection3->Provider	=	"sqloledb";

								pConnection3->Open("Data	Source=dhale1;Initial	Catalog=Pubs;",

												"sa","",NULL);

								//	Display	the	provider.

								printf("Connection3	provider:	%s\n\n",(LPCSTR)pConnection3->

												Provider);

								pConnection1->Close();

								pConnection2->Close();

								pConnection3->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintProviderError(pConnection1);

								if(pConnection2)	PrintProviderError(pConnection2);

								if(pConnection3)	PrintProviderError(pConnection3);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Refresh	Method	Example	(VC++)

This	example	demonstrates	using	the	Refresh	method	to	refresh	the	Parameters
collection	for	a	stored	procedure	Command	object.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"RefreshX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	RefreshX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//////////////////////////////

//																										//

//				Main	Function									//

//																										//

//////////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				RefreshX();

				::CoUninitialize();

}

//

//																																								//

//													RefreshX	Function										//

//																																								//

//

void	RefreshX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr				pConnection						=	NULL;

				_CommandPtr					pCmdByRoyalty		=	NULL;

				_RecordsetPtr		pRstByRoyalty		=	NULL;

				_RecordsetPtr		pRstAuthors				=	NULL;

				IADORecordBinding			*picRs				=	NULL;		//Interface	Pointer	declared.	

				CAuthorsRs	Authorsrs;												//C++	class	object

				try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								//	Open	a	command	object	for	a	stored	procedure,	

								//	with	one	parameter.

								TESTHR(pCmdByRoyalty.CreateInstance(__uuidof(Command)));

								pCmdByRoyalty->ActiveConnection	=	pConnection;

								pCmdByRoyalty->CommandText	=	"byroyalty";

								pCmdByRoyalty->CommandType	=	adCmdStoredProc;

								pCmdByRoyalty->Parameters->Refresh();

								//	Get	parameter	value	and	execute	the	command,

								//	storing	the	results	in	a	recordset.

								char	*strRoyalty;

								char	strTemp[5];

								do

								{

												printf("\n\nEnter	royalty	:	");

												gets(strTemp);

												strRoyalty	=	strtok(strTemp,"	");

												if(strRoyalty	==	NULL)

												{

																exit(1);

												}

												

												//	if	the	input	is	not	numeric	then	notify	the	user.

												if(!atoi(strRoyalty))	

												{

																printf("\nExpecting	numeric	value...");

																continue;

												}

								}while(!atoi(strRoyalty));

								_variant_t	vtroyal;

								vtroyal.vt	=	VT_I2;

								vtroyal.iVal	=	atoi(strRoyalty);

								_variant_t	Index;

								Index.vt	=	VT_I2;

								Index.iVal	=	1;

								pCmdByRoyalty->GetParameters()->GetItem(Index)->

												PutValue(vtroyal);

								pRstByRoyalty	=	pCmdByRoyalty->

												Execute(NULL,NULL,adCmdStoredProc);

								//	Open	the	Authors	table	to	get	author	names	for	display.

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->Open	("Authors",	

												_variant_t((IDispatch	*)	pConnection,	true),

												adOpenForwardOnly,	adLockReadOnly,	adCmdTable);

								//Open	an	IADORecordBinding	interface	pointer	which	we'll	use	for	

								//Binding	Recordset	to	a	class.

								TESTHR(pRstAuthors->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&Authorsrs));

								//	Print	current	data	in	the	recordset,adding	

								//	author	names	from	Authors	table.

								printf("\n\nAuthors	with	%s	percent	royalty\n\n",strRoyalty);

								while(!(pRstByRoyalty->EndOfFile))

								{

												_bstr_t	strAuthorID	=	pRstByRoyalty->Fields->GetItem(

																"au_id")->Value;

												printf("		%s",(LPCSTR)	(_bstr_t)	pRstByRoyalty->Fields->

																GetItem("au_id")->Value);

												pRstAuthors->Filter	=	"au_id	='"+strAuthorID+"'";

												printf(",	%s	%s\n\n",Authorsrs.lau_fnameStatus	==	adFldOK	?	

																Authorsrs.m_szau_fname	:	"<NULL>",

																Authorsrs.lau_lnameStatus	==	adFldOK	?	

																Authorsrs.m_szau_lname	:	"<NULL>");

												pRstByRoyalty->MoveNext();

								}

								pRstByRoyalty->Close();

								pRstAuthors->Close();

								pConnection->Close();

				}

				catch	(_com_error	&e)

				{

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

RefreshX.h

#include	"icrsint.h"

//This	Class	extracts		lname,fname	from	Authors	table.	

class	CAuthorsRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CAuthorsRs)				

				//	Column	lname	is	the	2nd	field	in	the	recordset

					ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_szau_lname,	

									sizeof(m_szau_lname),	lau_lnameStatus,	TRUE)

				//	Column	fname	is	the	3rd	field	in	the	recordset.

			ADO_VARIABLE_LENGTH_ENTRY2(3,	adVarChar,	m_szau_fname,	

									sizeof(m_szau_fname),	lau_fnameStatus,	TRUE)

			

END_ADO_BINDING()

public:

				CHAR	m_szau_fname[21];

				ULONG	lau_fnameStatus;				

				CHAR			m_szau_lname[41];

				ULONG		lau_lnameStatus;

};

Resync	Method	Example	(VC++)

This	example	demonstrates	using	the	Resync	method	to	refresh	data	in	a	static
recordset.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ResyncX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

/////////////////////////////

//																									//

//				Main	Function								//

//																									//

/////////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ResyncX();

				::CoUninitialize();

}

/////////////////////////////////

//																													//

//					ResyncX	Function								//

//																													//

/////////////////////////////////

void	ResyncX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstTitles		=	NULL;

					try

				{

								//	Open	recordset	for	Titles	table.

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->CursorLocation	=	adUseClient;

								pRstTitles->CursorType	=	adOpenStatic;

								pRstTitles->LockType	=	adLockBatchOptimistic;

								pRstTitles->Open	("Titles",strCnn,

												adOpenStatic,	adLockBatchOptimistic,	adCmdTable);

								//	Change	the	type	of	the	first	title	in	the	recordset.

								pRstTitles->Fields->GetItem("type")->Value	=	

												(_bstr_t)	("database");

								//	Display	the	results	of	the	change.

								printf("\nBefore	resync:	\n\n");

								printf("Title	-	%s\n\n",(LPSTR)	(_bstr_t)	pRstTitles->

												Fields->GetItem("title")->Value);

								printf("Type	-	%s\n\n",(LPSTR)	(_bstr_t)	pRstTitles->

												Fields->GetItem("type")->Value);

								//	Resync	with	database.

								pRstTitles->Resync(adAffectAll,adResyncAllValues);

								//	Display	the	results	of	the	resynch.

								printf("\n\nAfter	resync:	\n\n");

								printf("Title	-	%s\n\n",(LPSTR)	(_bstr_t)	pRstTitles->

												Fields->GetItem("title")->Value);

								printf("Type	-	%s\n\n",(LPSTR)	(_bstr_t)	pRstTitles->

												Fields->GetItem("type")->Value);

								pRstTitles->CancelBatch(adAffectAll);

								pRstTitles->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTitles->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Save	and	Open	Methods	Example	(VC++)

These	three	examples	demonstrate	how	the	Save	and	Open	methods	can	be	used
together.

Assume	you	are	going	on	a	business	trip	and	want	to	take	along	a	table	from	a
database.	Before	you	go,	you	access	the	data	as	a	Recordset	and	save	it	in	a
transportable	form.	When	you	arrive	at	your	destination,	you	access	the
Recordset	as	a	local,	disconnected	Recordset.	You	make	changes	to	the
Recordset,	then	save	it	again.	Finally,	when	you	return	home,	you	connect	to	the
database	again	and	update	it	with	the	changes	you	made	on	the	road.

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	<io.h>

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

bool	FileExists(void);

void	SaveX1(void);

void	SaveX2(void);

void	SaveX3(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL))

								return;

				//If	File	exists	in	the	specified	directory,	then	display	error

				if	(!FileExists())

				{

								SaveX1();

								SaveX2();

								SaveX3();

				}

				::CoUninitialize();

}

//

//																																																						//

//					SaveX1	Function																																		//

//																																																						//

//

//First,	access	and	save	the	Authors	table.

void	SaveX1()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstAuthors	=	NULL;

				//Definitions	of	other	variables

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->Open("SELECT	*	FROM	Authors",strCnn,

												adOpenDynamic,adLockOptimistic,adCmdText);

								//	For	sake	of	illustration,	save	the	Recordset	to	a	diskette	

								//	in	XML	format.

								pRstAuthors->Save("a:\\Pubs.xml",adPersistXML);

								pRstAuthors->Close();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//																																																						//

//							SaveX2	Function																																//

//																																																						//

//

//At	this	point,	you	have	arrived	at	your	destination.

//You	will	access	the	Authors	table	as	a	local,	disconnected	Recordset.	

//Don't	forget	you	must	have	the	MSPersist	provider	on	the	machine	you	

//are	using	in	order	to	access	the	saved	file,	a:\Pubs.xml.

void	SaveX2()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstAuthors	=	NULL;

				try

				{

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								//For	sake	of	illustration,	we	specify	all	parameters.

								pRstAuthors->Open("a:\\Pubs.xml","Provider=MSPersist;",

												adOpenForwardOnly,adLockOptimistic,adCmdFile);

								//Now	you	have	a	local,	disconnected	Recordset.	

								//Edit	it	as	you	desire.

								//(In	this	example,	the	change	makes	no	difference).

								pRstAuthors->Find("au_lname	=	'Carson'",NULL,adSearchForward);

								if	(pRstAuthors->EndOfFile)

								{

												printf("Name	not	found	...\n");

												pRstAuthors->Close();

												return;

								}

								pRstAuthors->GetFields()->GetItem("City")->PutValue("Berkeley");

								pRstAuthors->Update();

								//	Save	changes	in	ADTG	format	this	time,	purely	for	sake	of	

								//	illustration.	Note	that	the	previous	version	is	still	on	the	

								//	diskette	as	a:\Pubs.xml.

								pRstAuthors->Save("a:\\Pubs.adtg",adPersistADTG);

								pRstAuthors->Close();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//																																																						//

//			SaveX3	Function																																				//

//																																																						//

//

//Finally,	you	return	home.	Now	update	the	database	with

//your	changes.

void	SaveX3()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstAuthors	=	NULL;

				_ConnectionPtr	pCnn	=	NULL;

				//Definitions	of	other	variables

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

								"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								TESTHR(pCnn.CreateInstance(__uuidof(Connection)));

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								//If	there	is	no	ActiveConnection,	you	can	open	with	defaults.

								pRstAuthors->Open("a:\\Pubs.adtg","Provider=MSPersist;",

												adOpenForwardOnly,adLockOptimistic,adCmdFile);

								//Connect	to	the	database,	associate	the	Recordset	with	

								//the	connection,	then	update	the	database	table	with	the	

								//changed	Recordset.

								pCnn->Open(strCnn,"","",NULL);

								pRstAuthors->PutActiveConnection(_variant_t((IDispatch	*)	pCnn));

								pRstAuthors->UpdateBatch(adAffectAll);

								pRstAuthors->Close();

								pCnn->Close();

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstAuthors->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

bool	FileExists()

{

				struct	_finddata_t	xml_file;

				long	hFile;

				if((hFile	=	_findfirst("a:\\Pubs.xml",	&xml_file))	!=	-1L)

				{

							printf("File	already	exists!\n");

							return(true);

				}

				else

								return	(false);

}

Seek	Method	and	Index	Property	Example	(VC++)

This	example	uses	the	Recordset	object's	Seek	method	and	Index	property	in
conjunction	with	a	given	Employee	ID,	to	locate	the	employee's	name	in	the
Employees	table	of	the	Nwind.mdb	database.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

#include	<string.h>

#include	"SeekX.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	SeekX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				SeekX();

				::CoUninitialize();

}

//

//																																																						//

//					SeekX	Function																																			//

//																																																						//

//

void	SeekX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstEmp	=	NULL;

				IADORecordBinding				*picRs	=	NULL;		//	Interface	Pointer	declared

				CEmployeesRs	EmpRs;	//C++	class	object

				//Definitions	of	other	variables

				_bstr_t	strPrompt("Enter	an	EmployeeID	(e.g.,	1	to	9)");

				char	strEmpId[1];

				try

				{

								TESTHR(pRstEmp.CreateInstance(__uuidof(Recordset)));

								pRstEmp->CursorLocation	=	adUseServer;

								pRstEmp->Open("employees",	"Provider=Microsoft.Jet.OLEDB.4.0;"	

												"Data	Source=C:\\Program	Files\\Microsoft	Office\\Office\\"

												"Samples\\Northwind.mdb;user	id=admin;password=;",

												adOpenKeyset,adLockReadOnly,adCmdTableDirect);

								//Open	an	IADORecordBinding	interface	pointer	which	

								//we'll	use	for	binding	Recordset	to	a	Class		

								TESTHR(pRstEmp->QueryInterface(

												__uuidof(IADORecordBinding),	(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class

								TESTHR(picRs->BindToRecordset(&EmpRs));

								//Does	this	provider	support	Seek	and	Index?

								if	(pRstEmp->Supports(adIndex)	&&	pRstEmp->Supports(adSeek))

								{

												pRstEmp->Index	=	"EmployeeId";

												//Display	all	the	employees.

												pRstEmp->MoveFirst();

												while	(!pRstEmp->EndOfFile)

												{

																		printf("%d	:	%s	%s\n",		

																						EmpRs.le_empidStatus	==	adFldOK	?	

																						EmpRs.m_ie_empid	:	0,	

																						EmpRs.le_fnameStatus	==	adFldOK	?	

																						EmpRs.m_sze_fname	:	"<NULL>",	

																						EmpRs.le_lnameStatus	==	adFldOK	?	

																						EmpRs.m_sze_lname	:	"<NULL>");

																		pRstEmp->MoveNext();

												}

												//Prompt	the	user	for	an	EmployeeID	between	1	and	9.

												do

												{

																pRstEmp->MoveFirst();

																printf("\n\n%s\t",(LPCSTR)	strPrompt);

																gets(strEmpId);

																//Quit	if	strEmpID	is	a	zero-length	string	

																//(CANCEL,	null,	etc.)

																char	*strTemp	=	strtok(strEmpId,"	\t");

																if	(strTemp	==	NULL)	break;

																if	(strlen(strTemp)	==	1	&&	atoi(strTemp)	>=	1	&&	

																				atoi(strTemp)	<=	9)

																{

																				_variant_t	strEmployeeId(strTemp);

																				pRstEmp->Seek(strEmployeeId,	adSeekAfterEQ);

																				if	(pRstEmp->EndOfFile)

																				{

																								printf("Employee	not	found.\n");

																				}

																				else

																				{

																								printf("%d	:	Employee='%s	%s'\n",		

																												EmpRs.le_empidStatus	==	adFldOK	?	

																												EmpRs.m_ie_empid	:	0,

																												EmpRs.le_fnameStatus	==	adFldOK	?	

																												EmpRs.m_sze_fname	:	"<NULL>",	

																												EmpRs.le_lnameStatus	==	adFldOK	?	

																												EmpRs.m_sze_lname	:	"<NULL>");

																				}

																}

												}

												while(true);

								}

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstEmp->Close();						

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmp->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																																							//

//						PrintProviderError	Function																						//

//																																																							//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Error	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;i	<	nCount;i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("\t	Error	number:	%x\t%s",	pErr->Number,

																pErr->Description);

								}

				}

}

///

//																																																							//

//						PrintComError	Function																											//

//																																																							//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	COM	errors.	

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

SeekX.h

#include	"icrsint.h"

//	This	Class	extracts	only	EmployeeId,FirstName	and	LastName

//	from	Employees	table

class	CEmployeesRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeesRs)

				

			//	Column	hiredate	is	the	1st	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(1,	adInteger,m_ie_empid,	

								sizeof(m_ie_empid),	le_empidStatus,	FALSE)

				//	Column	LastName	is	the	2nd	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sze_lname,	

									sizeof(m_sze_lname),	le_lnameStatus,	FALSE)

				//	Column	FirstName	is	the	3rd	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sze_fname,	

									sizeof(m_sze_fname),	le_fnameStatus,	FALSE)

END_ADO_BINDING()

public:

			INT				m_ie_empid;

			ULONG		le_empidStatus;

			CHAR				m_sze_fname[11];

			ULONG		le_fnameStatus;

			CHAR				m_sze_lname[21];

			ULONG		le_lnameStatus;				

};

Sort	Property	Example	(VC++)

This	example	uses	the	Recordset	object's	Sort	property	to	reorder	the	rows	of	a
Recordset	derived	from	the	Authors	table	of	the	Pubs	database.	A	secondary
utility	routine	prints	each	row.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	SortX(void);

void	SortXprint(_bstr_t	title,	_RecordsetPtr	rstp);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				SortX();

				::CoUninitialize();

}

//

//																																																						//

//								SortX	Function																																//

//																																																						//

//

void	SortX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection						=	NULL;

				_RecordsetPtr		pRstAuthors				=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pRstAuthors.CreateInstance(__uuidof(Recordset)));

								pRstAuthors->CursorLocation	=	adUseClient;

								pConnection->Open	(strCnn,	"",	"",	NULL);

								pRstAuthors->Open("SELECT	*	FROM	Authors",

												_variant_t((IDispatch	*)	pConnection),

												adOpenStatic,	adLockReadOnly,	adCmdText);

								SortXprint("				Initial	Order				",	pRstAuthors);

								//Clear	the	screen	for	the	next	display.

								printf("\nPress	any	key	to	continue...");

								getch();

								system("cls");

								pRstAuthors->Sort	=	"au_lname	ASC,	au_fname	ASC";

								SortXprint("Last	Name	Ascending",	pRstAuthors);

								//Clear	the	screen	for	the	next	display.

								printf("\nPress	any	key	to	continue...");

								getch();

								system("cls");

								pRstAuthors->Sort	=	"au_lname	DESC,	au_fname	ASC";

								SortXprint("Last	Name	Descending",	pRstAuthors);

								//	Clean	up	objects	before	exit.

								pRstAuthors->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

//

//																																																						//

//								SortXprint	Function																											//

//																																																						//

//

//This	is	the	secondary	utility	routine	that	prints	

//the	given	title,	and	the	contents	of	the	specified	Recordset.

void	SortXprint(_bstr_t	title,	_RecordsetPtr	rstp)

{

				printf("---------------%s---------------\n",	(LPCSTR)title);

				printf("First	Name		Last	Name\n"

								"---\n");

				rstp->MoveFirst();

				int	intLineCnt	=	4;

				while	(!(rstp->EndOfFile))

				{

								_bstr_t	aufname;

								_bstr_t	aulname;

								aufname	=	rstp->GetFields()->GetItem("au_fname")->Value;

								aulname	=	rstp->GetFields()->GetItem("au_lname")->Value,

								printf("%s				%s\n",(LPCSTR)	aufname,	(LPCSTR)	aulname);

								rstp->MoveNext();

								intLineCnt++;

								if	(intLineCnt	%	20	==0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();				

												}

				}

}

//

//																																																						//

//					PrintProviderError	Function																						//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//		PrintComError	Function																														//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

			

}

Source	Property	Example	(VC++)

This	example	demonstrates	the	Source	property	by	opening	three	Recordset
objects	based	on	different	data	sources.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	SourceX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///////////////////////////

//																							//

//				Main	Function						//

//																							//

///////////////////////////

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				SourceX();

				::CoUninitialize();

}

///

//																																											//

//				SourceX	Function																							//

//																																											//

///

void	SourceX(void)	

{

			HRESULT		hr	=	S_OK;

			//	Define	string	variables.

			_bstr_t	strCmdSQL("Select	title,type,pubdate	"

												"FROM	Titles	ORDER	BY	title");		

			_bstr_t	strSQL("SELECT	title_ID	AS	TitleID,	title	AS	Title,	"	

												"publishers.pub_id	AS	PubID,	pub_name	AS	PubName	"

												"FROM	publishers	INNER	JOIN	titles	"	

												"ON	publishers.pub_id	=	Titles.pub_id	"	

												"ORDER	BY	Title");

			_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

			_ConnectionPtr		pConnection										=	NULL;

			_RecordsetPtr		pRstTitles								=	NULL;

			_RecordsetPtr		pRstPublishers						=	NULL;

			_RecordsetPtr		pRstPublishersDirect				=	NULL;

			_RecordsetPtr		pRstTitlesPublishers				=	NULL;

			_CommandPtr					pCmdSQL										=	NULL;

					try

				{

								//	Open	a	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								//	Open	a	recordset	based	on	a	command	object.

								TESTHR(pCmdSQL.CreateInstance(__uuidof(Command)));

								pCmdSQL->ActiveConnection	=	pConnection;

								pCmdSQL->CommandText	=	strCmdSQL;

								pRstTitles	=	pCmdSQL->Execute(NULL,NULL,adCmdText);

								//	Open	a	recordset	based	on	a	a	table.

								TESTHR(pRstPublishers.CreateInstance(__uuidof(Recordset)));

								pRstPublishers->Open	("publishers",	

												_variant_t((IDispatch	*)	pConnection,	true),

												adOpenForwardOnly,	adLockReadOnly,	adCmdTable);

								//	Open	a	recordset	based	on	a	table.

								TESTHR(pRstPublishersDirect.CreateInstance(

												__uuidof(Recordset)));

								pRstPublishersDirect->Open	("publishers",	

												_variant_t((IDispatch	*)	pConnection,	true),

												adOpenForwardOnly,	adLockReadOnly,	adCmdTableDirect);

								//	Open	a	recordset	based	on	an	SQL	string.

								TESTHR(pRstTitlesPublishers.CreateInstance(

												__uuidof(Recordset)));

								pRstTitlesPublishers->Open(strSQL,	

												_variant_t((IDispatch	*)	pConnection,	true),

												adOpenForwardOnly,	adLockReadOnly,	adCmdText);

								//	Use	the	Source	property	to	display	the	source	of	

								//	each	recordset.

								printf("rstTitles	source:	\n%s\n\n",

												(LPCSTR)(_bstr_t)	pRstTitles->GetSource().bstrVal);

								printf("rstPublishers	source:	\n%s\n\n",

												(LPCSTR)(_bstr_t)	pRstPublishers->GetSource().bstrVal);

								printf("rstPublishersDirect	source:	\n%s\n\n",

												(LPCSTR)(_bstr_t)	pRstPublishersDirect->GetSource().bstrVal);

								printf("rstTitlesPublishers	source:	\n%s\n\n",

												(LPCSTR)(_bstr_t)	pRstTitlesPublishers->GetSource().bstrVal);

								pRstTitles->Close();

								pRstPublishers->Close();

								pRstPublishersDirect->Close();

								pRstTitlesPublishers->Close();

								pConnection->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																											//

//				PrintProviderError	Function												//

//																																											//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																											//

//				PrintComError	Function																	//

//																																											//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

			

}

State	Property	Example	(VC++)

This	example	uses	the	State	property	to	display	a	message	while	asynchronous
connections	are	opening	and	asynchronous	commands	are	executing.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	StateX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																											//

//				Main	Function																										//

//																																											//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				StateX();

				::CoUninitialize();

}

///

//																																											//

//								StateX	Function																				//

//																																											//

///

void	StateX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strSQLChange("UPDATE	Titles	SET	Type	=	"

												"'self_help'	WHERE	Type	=	'psychology'");

				_bstr_t	strSQLRestore("UPDATE	Titles	SET	Type	=	"

												"'psychology'	WHERE	Type	=	'self_help'");

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr				pConnection								=	NULL;

				_ConnectionPtr				pConnection2								=	NULL;

				_CommandPtr									pCmdChange				=	NULL;

				_CommandPtr									pCmdRestore				=	NULL;

				try

				{

								//	Open	two	asynchronous	connections,displaying

								//	a	message	while	connecting.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pConnection2.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	adAsyncConnect);

								while(pConnection->State	==	adStateConnecting)

								{

												printf("Opening	first	connection....\n\n");

								}

								pConnection2->Open	(strCnn,	"",	"",	adAsyncConnect);

								while(pConnection2->State	==	adStateConnecting)

								{

												printf("Opening	second	connection....\n\n");

								}

								//	Create	two	command	objects.

								TESTHR(pCmdChange.CreateInstance(__uuidof(Command)));

								pCmdChange->ActiveConnection	=	pConnection;

								pCmdChange->CommandText	=	strSQLChange;

								TESTHR(pCmdRestore.CreateInstance(__uuidof(Command)));

								pCmdRestore->ActiveConnection	=	pConnection2;

								pCmdRestore->CommandText	=	strSQLRestore;

								//	Executing	the	commands,displaying	a	message	

								//	while	they	are	executing.

								pCmdChange->Execute(NULL,NULL,adAsyncExecute);

								while(pCmdChange->State	==	adStateExecuting)

								{

												printf("Change	command	executing...\n\n");

								}

								pCmdRestore->Execute(NULL,NULL,adAsyncExecute);

								while(pCmdRestore->State	==	adStateExecuting)

								{

												printf("Restore	command	executing...\n\n");

								}

								pConnection->Close();

								pConnection2->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

///

//																																											//

//				PrintProviderError	Function												//

//																																											//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection's	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																											//

//				PrintComError	Function																	//

//																																											//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Status	Property	Example	(VC++)

This	example	uses	the	Status	property	to	display	which	records	have	been
modified	in	a	batch	operation	before	a	batch	update	has	occurred.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"StatusX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	StatusX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																											//

//				Main	Function																										//

//																																											//

///

void	main()

{

				if(FAILED(CoInitialize(NULL)))

								return;

				StatusX();

				::CoUninitialize();

}

///

//																																											//

//				StatusX	Function																							//

//																																											//

///

void	StatusX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

					IADORecordBinding	*picRs				=	NULL;		//	Interface	Pointer	Declared

					CTitleRs	titlers;											//	C++	Class	Object

				_RecordsetPtr		pRstTitles				=	NULL;

				LPSTR	p_TempStr								=	NULL;

							try

				{

								//	Open	recordset	for	batch	update

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->CursorType	=	adOpenKeyset;

								pRstTitles->LockType	=	adLockBatchOptimistic;

								pRstTitles->Open	("Titles",	strCnn,

												adOpenKeyset,	adLockBatchOptimistic,	adCmdTable);

								//	Open	an	IADORecordBinding	interface	pointer	which	

								//	we	will	use	for	binding	Recordset	to	a	class.

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Bind	the	Recordset	to	a	C++	class	here	

								TESTHR(picRs->BindToRecordset(&titlers));

								p_TempStr	=	(LPSTR)	malloc(sizeof(titlers.m_szt_Type));

								//	Change	the	type	of	psychology	titles.

								while(!(pRstTitles->EndOfFile))

								{

												//	Remove	blank	string(trim)	

												strcpy(p_TempStr,strtok(titlers.m_szt_Type,"	"));

												//	Compare	the	type	of	psychology	titles

												if	(!strcmp(p_TempStr,"psychology"))	

												{	

																				//	Copy	"self_help"	title	field

																				pRstTitles->Fields->GetItem("type")->Value	=	

																								(_bstr_t)	("self_help");

												}

												pRstTitles->MoveNext();

								}

								//	Display	Title	ID	and	status

								pRstTitles->MoveFirst();

								while(!(pRstTitles->EndOfFile))

								{

												if(pRstTitles->Status	==	adRecModified)

												{

																printf("%s	-	Modified\n",titlers.lt_Title_idStatus	==	

																				adFldOK	?	titlers.m_szt_Title_id	:	"<NULL>");

												}

												else

												{

																printf("%s\n",titlers.lt_Title_idStatus	==	adFldOK	?	

																				titlers.m_szt_Title_id	:	"<NULL>");

												}

												pRstTitles->MoveNext();

								}

								//	Deallocate	the	memory

								free(p_TempStr);

								//	Cancel	the	update	because	this	is	a	demonstration.

								pRstTitles->CancelBatch(adAffectAll);

								pRstTitles->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTitles->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																											//

//				PrintProviderError	Function												//

//																																											//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																											//

//				PrintComError	Function																	//

//																																											//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

StatusX.h

#include	"icrsint.h"

//This	class	extracts	title_id	and	type	from	Titles	table.

class	CTitleRs	:	public	CADORecordBinding

{

				BEGIN_ADO_BINDING(CTitleRs)

								//	Column	title_id	is	the	1st	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(1,adVarChar,m_szt_Title_id,

												sizeof(m_szt_Title_id),lt_Title_idStatus,FALSE)

								//	Column	type	is	the	3rd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(3,adVarChar,m_szt_Type,

												sizeof(m_szt_Type),lt_TypeStatus,TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szt_Title_id[7];

				ULONG	lt_Title_idStatus;

				CHAR	m_szt_Type[13];

				ULONG	lt_TypeStatus;

};

StayInSync	Property	Example	(VC++)

This	example	demonstrates	how	the	StayInSync	property	facilitates	accessing
rows	in	a	hierarchical	Recordset.

The	outer	loop	displays	each	author's	first	and	last	name,	state,	and
identification.	The	appended	Recordset	for	each	row	is	retrieved	from	the	Fields
collection	and	automatically	assigned	to	rstTitleAuthor	by	the	StayInSync
property	whenever	the	parent	Recordset	moves	to	a	new	row.	The	inner	loop
displays	four	fields	from	each	row	in	the	appended	recordset.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	StayInSyncX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				StayInSyncX();

				::CoUninitialize();

}

//

//																																																						//

//							StayInSyncX	Function																											//

//																																																						//

//

void	StayInSyncX(void)	

{

				HRESULT		hr	=	S_OK;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=MSDataShape;Data	Provider=sqloledb;"

								"Data	Source=dhale1;Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr		pConnection						=	NULL;

				_RecordsetPtr		pRst						=	NULL;

				_RecordsetPtr		pRstTitleAuthors				=	NULL;

				try

				{

								TESTHR(pRstTitleAuthors.CreateInstance(__uuidof(Recordset)));

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								TESTHR(pRst.CreateInstance(__uuidof(Recordset)));

								//	Open	connection.

								pConnection->Open	(strCnn,	"",	"",	NULL);

								pRst->PutStayInSync(true);

								//	Open	recordset	with	names	from	Authors	&	titleauthor	table.

								pRst->Open("SHAPE		{select	*	from	Authors}	"	

														"APPEND	({select	*	from	titleauthor}"

														"RELATE	au_id	TO	au_id)	AS	chapTitleAuthor",

														_variant_t((IDispatch*)pConnection,true),	

												adOpenStatic,	adLockReadOnly,	adCmdText);

								pRstTitleAuthors	=	pRst->GetFields()->GetItem("chapTitleAuthor")->

												Value;

								int	intLineCnt=0;

								while(!(pRst->EndOfFile))

								{				

												printf("\n%s		%s		%s				%s\n",	(LPCSTR)(_bstr_t)pRst->

															Fields->GetItem("au_fname")->Value,

															(LPCSTR)(_bstr_t)pRst->Fields->GetItem("au_lname")->Value,

															(LPCSTR)(_bstr_t)pRst->Fields->GetItem("state")->Value,	

															(LPCSTR)(_bstr_t)pRst->Fields->GetItem("au_id")->Value);

												intLineCnt++;

												if	(intLineCnt%15	==	0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();

												}

												_variant_t	vIndex;

												while(!(pRstTitleAuthors->EndOfFile))

												{

																vIndex	=	(short)	0;

																printf("%s				",(LPCSTR)(_bstr_t)pRstTitleAuthors->

																				Fields->Item[&vIndex]->Value);

																vIndex	=	(short)	1;

																printf("%s				",(LPCSTR)(_bstr_t)pRstTitleAuthors->

																				Fields->Item[&vIndex]->Value);

																vIndex	=	(short)	2;

																printf("%s				",(LPCSTR)(_bstr_t)pRstTitleAuthors->

																				Fields->Item[&vIndex]->Value);

																vIndex	=	(short)	3;

																printf("%s\n",(LPCSTR)(_bstr_t)pRstTitleAuthors->

																				Fields->Item[&vIndex]->Value);

																intLineCnt++;

																if	(intLineCnt%15	==	0)

																{

																				printf("\nPress	any	key	to	continue...\n");

																				getch();

																}

																pRstTitleAuthors->MoveNext();

												}

												pRst->MoveNext();

								}

								//	Clean	up	objects	before	exit.

								pRst->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								PrintProviderError(pConnection);

								PrintComError(e);			

				}

}

//

//																																																						//

//								PrintProviderError	Function																			//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//					PrintComError	Function																											//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

				

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

			

}

Supports	Method	Example	(VC++)

This	example	uses	the	Supports	method	to	display	the	options	supported	by	a
recordset	opened	with	different	cursor	types.	The	DisplaySupport	function	is
required	for	this	example	to	run.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

								no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<conio.h>

//Function	Declarations.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	SupportsX(void);

void	DisplaySupport(_RecordsetPtr	pRstTemp);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																											//

//				Main	Function																										//

//																																											//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				SupportsX();

				::CoUninitialize();

}

///

//																																											//

//				SupportsX	Function																					//

//																																											//

///

void	SupportsX(void)

{

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstTitles		=	NULL;

				//	Define	Other	Variables

				HRESULT	hr	=	S_OK;

				//	Assign	connection	string	to	a	variable

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				try

				{

								//	Open	a	recordset	from	Titles	table

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								//	Fill	array	with	CursorType	constants.

								int		aintCursorType[4];

								aintCursorType[0]	=	adOpenForwardOnly;

								aintCursorType[1]	=	adOpenKeyset;

								aintCursorType[2]	=	adOpenDynamic;

								aintCursorType[3]	=	adOpenStatic;

								//	Open	recordset	using	each	CursorType	and	optimistic	locking.

								//	Then	call	the	DisplaySupport	procedure	to	display	the

								//	supported	options.

								for	(int	intIndex=0;	intIndex	<=	3;	intIndex++)

								{

												pRstTitles->CursorType	=	

															(enum	CursorTypeEnum)aintCursorType[intIndex];

												pRstTitles->LockType	=	adLockOptimistic;

												//	Pass	the	Cursor	type	and	LockType	to	the	Recordset.

												pRstTitles->Open	("Titles",	strCnn,	

																(enum	CursorTypeEnum)aintCursorType[intIndex],	

																adLockOptimistic,	adCmdTable);

												switch(aintCursorType[intIndex])

												{

																case	adOpenForwardOnly:

																				printf("\nForwardOnly	cursor	supports:\n");

																				break;

																case	adOpenKeyset:

																				printf("\nKeyset	cursor	supports:\n");

																				break;

																case	adOpenDynamic:

																				printf("\nDynamic	cursor	supports:\n");

																				break;

																case	adOpenStatic:

																				printf("\nStatic	cursor	supports:\n");

																				break;

																default	:

																				break;

												}

												DisplaySupport(pRstTitles);

												printf("\n\nPress	any	key	to	continue...");

												getch();

												//Clear	the	screen	for	the	next	display.

												system("cls");

												//	Clean	up	objects	before	exit.

												pRstTitles->Close();

								}

				}

				catch(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTitles->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																											//

//				DisplaySupport	Function																//

//																																											//

///

void	DisplaySupport	(_RecordsetPtr		pRstTemp)

{

				//	Fill	array	with	cursor	option	constants.

				long		alngConstants[11];

				alngConstants[0]	=	adAddNew;

				alngConstants[1]	=	adApproxPosition;

				alngConstants[2]	=	adBookmark;

				alngConstants[3]	=	adDelete;

				alngConstants[4]	=	adFind;

				alngConstants[5]	=	adHoldRecords;

				alngConstants[6]	=	adMovePrevious;

				alngConstants[7]	=	adNotify;

				alngConstants[8]	=	adResync;

				alngConstants[9]	=	adUpdate;

				alngConstants[10]	=	adUpdateBatch;

				for(int	intIndex=0;	intIndex	<=	10;	intIndex++)

				{

								bool	booSupports	=	pRstTemp->

												Supports((enum	CursorOptionEnum)alngConstants[intIndex]);

								if(booSupports)

								{

												switch(alngConstants[intIndex])

												{

																case	adAddNew	:

																				printf("\n		AddNew");

																				break;

																case	adApproxPosition	:

																				printf("\n		AbsolutePosition	and	AbsolutePage");

																				break;

																case	adBookmark	:

																				printf("\n		Bookmark");

																				break;

																case	adDelete	:

																				printf("\n		Delete");

																				break;

																case	adFind	:

																				printf("\n		Find");

																				break;

																case	adHoldRecords	:

																				printf("\n		Holding	Records");

																				break;

																case	adMovePrevious	:

																				printf("\n		MovePrevious	and	Move");

																				break;

																case	adNotify	:

																				printf("\n		Notifications");

																				break;

																case	adResync	:

																				printf("\n		Resyncing	data");

																				break;

																case	adUpdate	:

																				printf("\n		Update");

																				break;

																case	adUpdateBatch	:

																				printf("\n		Batch	updating");

																				break;

																default	:

																				break;

												}

								}

				}

}

///

//																																											//

//				PrintProviderError	Function												//

//																																											//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																											//

//				PrintComError	Function																	//

//																																											//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Type	Property	Example	(Field)	(VC++)

This	example	demonstrates	the	Type	property	by	displaying	the	name	of	the
constant	that	corresponds	to	the	value	of	the	Type	property	of	all	the	Field
objects	in	the	Employees	table.	The	FieldType	function	is	required	for	this
procedure	to	run.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	TypeX(void);

_bstr_t	FieldType(int	intType);	

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

///

//																																											//

//				Main	Function																										//

//																																											//

///

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				TypeX();

				::CoUninitialize();

}

///

//																																											//

//													TypeX	Function																//

//																																											//

///

void	TypeX(void)	

{

			HRESULT		hr	=	S_OK;

				//	Define	string	variables.

			_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

		_RecordsetPtr		pRstEmployees		=	NULL;

			FieldsPtr		pFldLoop						=	NULL;

					try

				{		

								//	Open	recordset	with	data	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->Open	("Employees",strCnn,

												adOpenForwardOnly,	adLockReadOnly,	adCmdTable);

								printf("Fields	in	Employees	Table:\n\n");

								//	Enumerate	the	Fields	collection	of	the	Employees	table.

								pFldLoop	=	pRstEmployees->GetFields();

								int	intLine	=	0;

								for	(int	intFields	=	0;	intFields	<	(int)pFldLoop->

												GetCount();	intFields++)

								{

												_variant_t	Index;

												Index.vt	=	VT_I2;

												Index.iVal	=	intFields;

												printf("		Name:	%s\n"	,

																(LPCSTR)	pFldLoop->GetItem(Index)->GetName());

												printf("		Type:	%s\n\n",

																(LPCTSTR)FieldType(pFldLoop->GetItem(Index)->Type));

												intLine++;

												if(intLine	%	5	==	0)

												{

																printf("Press	any	key	to	continue...");

																getch();

																system("cls");

												}

								}

								pRstEmployees->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

///

//																																											//

//													FieldType	Function												//

//																																											//

///

_bstr_t	FieldType(int	intType)	

{

								_bstr_t	strType;	

								switch(intType)	

								{

												case	adChar:

																	strType	=	"adChar";

																break;

												case	adVarChar:

																strType	=	"adVarChar";

																break;

												case	adSmallInt:

																strType	=	"adSmallInt";

																break;

												case	adUnsignedTinyInt:

																strType	=	"adUnsignedTinyInt";

																break;

												case	adDBTimeStamp:

																strType	=	"adDBTimeStamp";

																break;

												default:

																break;

								}

								return	strType;

}

///

//																																											//

//				PrintProviderError	Function												//

//																																											//

///

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

///

//																																											//

//				PrintComError	Function																	//

//																																											//

///

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.		

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Type	Property	Example	(Property)	(VC++)

This	example	demonstrates	the	Type	property.	It	is	a	model	of	a	utility	for	listing
the	names	and	types	of	a	collection,	like	Properties,	Fields,	etc.

We	do	not	need	to	open	the	Recordset	to	access	its	Properties	collection;	they
come	into	existence	when	the	Recordset	object	is	instantiated.	However,	setting
the	CursorLocation	property	to	adUseClient	adds	several	dynamic	properties	to
the	Recordset	object's	Properties	collection,	making	the	example	a	little	more
interesting.	For	sake	of	illustration,	we	explicitly	use	the	Item	property	to	access
each	Property	object.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	TypeX();

void	PrintComError(_com_error	&e);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				TypeX();

				::CoUninitialize();

}

//

//																																																						//

//								TypeX	Function																																//

//																																																						//

//

void	TypeX()

{

				HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace

				_RecordsetPtr		pRst		=	NULL;

				PropertyPtr	pProperty	=	NULL;

				//Define	Other	Variables

				_bstr_t	strMsg;

				_variant_t	vIndex;

				int	intLineCnt	=	0;			

						try

				{

								TESTHR(pRst.CreateInstance	(__uuidof(Recordset)));

								//	Set	the	Recordset	Cursor	Location

								pRst->CursorLocation	=	adUseClient;

								for	(short	iIndex	=	0;	iIndex	<=	(pRst->Properties->

												GetCount()	-	1);iIndex++)

								{

												vIndex	=	iIndex;

												pProperty	=	pRst->Properties->GetItem(vIndex);

												int	propType	=	(int)pProperty->GetType();

												switch(propType)	

												{

																case	adBigInt:

																				strMsg	=	"adBigInt";

																				break;

																case	adBinary:

																				strMsg	=	"adBinary";

																				break;

																case	adBoolean:

																				strMsg	=	"adBoolean";

																				break;

																case	adBSTR:

																				strMsg	=	"adBSTR";

																				break;

																case	adChapter:

																				strMsg	=	"adChapter";

																				break;

																case	adChar:

																				strMsg	=	"adChar";

																				break;

																case	adCurrency:

																				strMsg	=	"adCurrency";

																				break;

																case	adDate:

																				strMsg	=	"adDate";

																				break;

																case	adDBDate:

																				strMsg	=	"adDBDate";

																				break;

																case	adDBTime:

																				strMsg	=	"adDBTime";

																				break;

																case	adDBTimeStamp:

																				strMsg	=	"adDBTimeStamp";

																				break;

																case	adDecimal:

																				strMsg	=	"adDecimal";

																				break;

																case	adDouble:

																				strMsg	=	"adDouble";

																				break;

																case	adEmpty:

																				strMsg	=	"adEmpty";

																				break;

																case	adError:

																				strMsg	=	"adError";

																				break;

																case	adFileTime:

																				strMsg	=	"adFileTime";

																				break;

																case	adGUID:

																				strMsg	=	"adGUID";

																				break;

																case	adIDispatch:

																				strMsg	=	"adIDispatch";

																				break;

																case	adInteger:

																				strMsg	=	"adInteger";

																				break;

																case	adIUnknown:

																				strMsg	=	"adIUnknown";

																				break;

																case	adLongVarBinary:

																				strMsg	=	"adLongVarBinary";

																				break;

																case	adLongVarChar:

																				strMsg	=	"adLongVarChar";

																				break;

																case	adLongVarWChar:

																				strMsg	=	"adLongVarWChar";

																				break;

																case	adNumeric:

																				strMsg	=	"adNumeric";

																				break;

																case	adPropVariant:

																				strMsg	=	"adPropVariant";

																				break;

																case	adSingle:

																				strMsg	=	"adSingle";

																				break;

																case	adSmallInt:

																				strMsg	=	"adSmallInt";

																				break;

																case	adTinyInt:

																				strMsg	=	"adTinyInt";

																				break;

																case	adUnsignedBigInt:

																				strMsg	=	"adUnsignedBigInt";

																				break;

																case	adUnsignedInt:

																				strMsg	=	"adUnsignedInt";

																				break;

																case	adUnsignedSmallInt:

																				strMsg	=	"adUnsignedSmallInt";

																				break;

																case	adUnsignedTinyInt:

																				strMsg	=	"adUnsignedTinyInt";

																				break;

																case	adUserDefined:

																				strMsg	=	"adUserDefined";

																				break;

																case	adVarBinary:

																				strMsg	=	"adVarBinary";

																				break;

																case	adVarChar:

																				strMsg	=	"adVarChar";

																				break;

																case	adVariant:

																				strMsg	=	"adVariant";

																				break;

																case	adVarNumeric:

																				strMsg	=	"adVarNumeric";

																				break;

																case	adVarWChar:

																				strMsg	=	"adVarWChar";

																				break;

																case	adWChar:

																				strMsg	=	"adWChar";

																				break;

																default:

																				strMsg	=	"*UNKNOWN*";

																				break;

												}

												intLineCnt++;

												if	(intLineCnt%20	==	0)

												{

																printf("\nPress	any	key	to	continue...\n");

																getch();

												}

												printf	("Property	%d	:	%s,Type	=	%s\n",iIndex,

																(LPCSTR)pProperty->GetName(),(LPCSTR)strMsg);

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintComError(e);

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

								

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Update	and	CancelUpdate	Methods	Example	(VC++)

This	example	demonstrates	the	Update	method	in	conjunction	with	the
CancelUpdate	method.

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<stdio.h>

#include	<ole2.h>

#include	<malloc.h>

#include	<conio.h>

#include	"UpdateX.h"

//	Function	Declartion.

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	UpdateX(void);

void	UpdateX2(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

					UpdateX();

					//Wait	here	for	user	to	see	the	output..

					printf("\nPress	any	key	to	continue...");

					getch();

					//Clear	the	screen	for	the	next	display			

					system("cls");

					UpdateX2();

					::CoUninitialize();

}

//

//																																																						//

//						UpdateX	Function																																//

//																																																						//

//

void	UpdateX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr	pRstEmployees		=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				IADORecordBinding			*picRs			=	NULL;		//	Interface	Pointer	declared

				CEmployeeRs	emprs;													//	C++	Class	object.

				try

				{

								//	Open	recordset	with	names	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->CursorType	=	adOpenKeyset;

								pRstEmployees->LockType	=	adLockOptimistic;

								pRstEmployees->Open("SELECT	fname,	lname	FROM	Employee	"

												"ORDER	BY	lname",strCnn,adOpenKeyset,adLockOptimistic,

												adCmdText);

								//	Store	original	data.

								_bstr_t	strOldFirst	=	pRstEmployees->Fields->

												GetItem("fname")->Value;

								_bstr_t	strOldLast		=	pRstEmployees->Fields->

												GetItem("lname")->Value;

								//Change	data	in	edit	buffer.

								pRstEmployees->Fields->GetItem("fname")->Value	=	

												(_bstr_t)("Linda");

								pRstEmployees->Fields->GetItem("lname")->Value	=	

												(_bstr_t)("Kobara");

								//	Show	contents	of	buffer	and	get	user	input.

								printf("\n\nEdit	in	progress:\n\n");

								printf("Original	data	=		%s	%s	\n",

												(LPSTR)strOldFirst,(LPSTR)strOldLast);

								printf("Data	in	buffer	=		%s	%s",

												(LPSTR)(_bstr_t)	pRstEmployees->Fields->

												GetItem("fname")->Value,\

												(LPSTR)	(_bstr_t)	pRstEmployees->Fields->

												GetItem("lname")->Value);

								//	Ask	if	the	User	wants	to	Update

								printf("\n\nUse	Update	to	replace	the	original	data	with	the"

															"	buffered	data	in	the	Recordset?	(y/n):	");

								char	chKey	=	getch();

								if(toupper(chKey)	==	'Y')

												pRstEmployees->Update();

								else	

												pRstEmployees->CancelUpdate();

								//Open	an	IADORecordBinding	interface	pointer	which	

								//we'll	use	for	binding	Recordset	to	a	class.

								TESTHR(pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//Bind	the	Recordset	to	a	C++	Class	here.

								TESTHR(picRs->BindToRecordset(&emprs));

								pRstEmployees->MoveFirst();

								//	Show	the	resulting	data.

								printf("\nData	in	recordset	=		%s	%s",	emprs.le_fnameStatus	==	

												adFldOK	?	emprs.m_sze_fname	:	"<NULL>",

												emprs.le_lnameStatus	==	adFldOK	?	

												emprs.m_sze_lname	:	"<NULL>");

								//	Restore	original	data	because	this	is	a	demonstration.

								if	((strcmp((char	*)strOldFirst,emprs.m_sze_fname)	&&	

													strcmp((char	*)strOldLast,emprs.m_sze_lname)))

								{

												pRstEmployees->Fields->GetItem("fname")->Value	=	strOldFirst;

												pRstEmployees->Fields->GetItem("lname")->Value	=	strOldLast;

												pRstEmployees->Update();

								}	

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

				}

				catch(_com_error	&e)

				{				

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//	The	next	example	demonstrates	the	Update	method	

//	in	conjunction	with	the	AddNew	method.

//

//																																																						//

//											UpdateX2	Function																										//

//																																																						//

//

void	UpdateX2(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr	pConnection								=	NULL;

				_RecordsetPtr	pRstEmployees	=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				IADORecordBinding			*picRs		=	NULL;		//	Interface	Pointer	declared

				CEmployeeRs1	emprs;												//	C++	Class	object.

				try	

				{

								//	Open	a	connection.			

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

									pConnection->Open(strCnn,"","",NULL);

								//	Open	recordset	with	data	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->CursorType	=	adOpenKeyset;

								pRstEmployees->LockType	=	adLockOptimistic;

								pRstEmployees->Open("Employees",

												_variant_t((IDispatch*)pConnection,true),

												adOpenKeyset,	adLockOptimistic,adCmdTable);

								pRstEmployees->AddNew();

								_bstr_t	strEmpID	=	"B-S55555M";

								pRstEmployees->Fields->GetItem("emp_id")->Value	=	strEmpID;

								pRstEmployees->Fields->GetItem("fname")->Value	=	

												(_bstr_t)	("Bill");

								pRstEmployees->Fields->GetItem("lname")->Value	=	

												(_bstr_t)	("Sornsin");

								//	Show	contents	of	buffer	and	get	user	input.

								printf("\n\nAddNew	in	progress:\n\n");

								printf("Data	in	buffer	=	%s	,		%s	%s",

												(LPSTR)	(_bstr_t)	pRstEmployees->Fields->

												GetItem("emp_id")->Value,

												(LPSTR)	(_bstr_t)	pRstEmployees->Fields->

												GetItem("fname")->Value,

												(LPSTR)	(_bstr_t)	pRstEmployees->Fields->

												GetItem("lname")->Value);

								printf("\n\nUse	Update	to	save	buffer	to	recordset?(y/n):");

								char	chKey	=	getch();

								if(toupper(chKey)	==	'Y')

								{

												pRstEmployees->Update();

												//Open	an	IADORecordBinding	interface	pointer	which	

												//we'll	use	for	binding	Recordset	to	a	class.

												TESTHR(pRstEmployees->QueryInterface(

																__uuidof(IADORecordBinding),(LPVOID*)&picRs));

												//Bind	the	Recordset	to	a	C++	Class	here				

												TESTHR(picRs->BindToRecordset(&emprs));

												//	Go	to	the	new	record	and	show	the	resulting	data.

												printf	("\n\nData	in	recordset	=		%s	,		%s	%s",

																emprs.le_empidStatus	==	adFldOK	?	

																emprs.m_sze_empid	:	"<NULL>",

																emprs.le_fnameStatus	==	adFldOK	?	

																emprs.m_sze_fname	:	"<NULL>",

																emprs.le_lnameStatus	==	adFldOK	?	

																emprs.m_sze_lname	:	"<NULL>");

								}

								else

								{

												pRstEmployees->CancelUpdate();

												printf("\n\nNo	new	record	added.\n");

								}

								//	Delete	new	data	because	this	is	a	demonstration.

								_bstr_t	strSQLDelete("DELETE	FROM	Employees	WHERE	emp_id	=	'"	+	

												strEmpID	+	"'");

									pConnection->Execute(strSQLDelete	,NULL,adExecuteNoRecords);

								//Release	IADORecordset	Interface

								if	(picRs)

												picRs->Release();

								//	Clean	up	objects	before	exit.

								pRstEmployees->Close();

								pConnection->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								//	Pass	a	connection	pointer	accessed	from	the	Connection.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

//

//																																																						//

//							PrintProviderError	Function																				//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

				_bstr_t	bstrSource(e.Source());

				_bstr_t	bstrDescription(e.Description());

								

				//	Print	Com	errors.		

				printf("Error\n");

				printf("\tCode	=	%08lx\n",	e.Error());

				printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

				printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

				printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

UpdateX.h

#include	"icrsint.h"

//This	Class	extracts	only	fname,lname	from	Employees	table.

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

				//	fname	is	the	1st	field	in	the	recordset				

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_sze_fname,	

									sizeof(m_sze_fname),	le_fnameStatus,	FALSE)

				//	lname	is	the	2nd	field	in	the	recordset.

				ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sze_lname,	

									sizeof(m_sze_lname),	le_lnameStatus,	FALSE)			

	

END_ADO_BINDING()

public:

			CHAR			m_sze_lname[31];

			ULONG		le_lnameStatus;

			CHAR			m_sze_fname[21];

			ULONG		le_fnameStatus;

};

//This	Class	extracts	only	empid,fname,lname,from	Employees	table.

class	CEmployeeRs1	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs1)

				//	emp_id	is	the	1st	field	in	the	table.				

				ADO_VARIABLE_LENGTH_ENTRY2(1,	adVarChar,	m_sze_empid,	

								sizeof(m_sze_empid),	le_empidStatus,	FALSE)

				//	fname	is	the	2nd	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(2,	adVarChar,	m_sze_fname,	

									sizeof(m_sze_fname),	le_fnameStatus,	FALSE)

				//	lname	is	the	4rt	field	in	the	table.

			ADO_VARIABLE_LENGTH_ENTRY2(4,	adVarChar,	m_sze_lname,	

									sizeof(m_sze_lname),	le_lnameStatus,	FALSE)			

			

END_ADO_BINDING()

public:

			CHAR			m_sze_empid[10];

			ULONG		le_empidStatus;

			CHAR			m_sze_lname[31];

			ULONG		le_lnameStatus;

			CHAR			m_sze_fname[21];

			ULONG		le_fnameStatus;			

};

UpdateBatch	and	CancelBatch	Methods	Example	(VC++)

This	example	demonstrates	the	UpdateBatch	method	in	conjunction	with	the
CancelBatch	method.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

#include	"UpdateBatchX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	UpdateBatchX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				UpdateBatchX();

				::CoUninitialize();

}

//

//																																																						//

//						UpdateBatchX	Function																											//

//																																																						//

//

void	UpdateBatchX(void)	

{

			HRESULT		hr	=	S_OK;

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstTitles			=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				IADORecordBinding	*picRs				=	NULL;				//	Interface	Pointer	Declared

				CTitleRs	titlers;													//	C++	Class	Object

					try

				{

								//	Open	Titles	table.

								TESTHR(pRstTitles.CreateInstance(__uuidof(Recordset)));

								pRstTitles->CursorType	=	adOpenKeyset;

								pRstTitles->LockType	=	adLockBatchOptimistic;

								pRstTitles->Open	("Titles",	strCnn,

												adOpenKeyset,	adLockBatchOptimistic,	adCmdTable);

								//	Open	IADORecordBinding	interface	pointer	for	binding	

								//	Recordset	to	a	class

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	Binding	the	Recordset	to	a	C++	Class

								TESTHR(picRs->BindToRecordset(&titlers));

								pRstTitles->MoveFirst();

								//	Loop	through	recordset	and	ask	user	if	she	wants,

								//	to	change	the	type	for	a	specified	title.

								while	(!(pRstTitles->EndOfFile))

								{

												//	Compare	type	with	psychology

												if	(!strcmp((char	*)strtok(titlers.m_szt_Type,"	"),

																"psychology"))

												{	

																printf("\n\nTitle:	%s	\nChange	type	to	self_help?(y/n):",

																				titlers.m_szt_Title);

																char	chKey;

																chKey	=	getch();

																if(toupper(chKey)	==	'Y')

																{

																				//	Change	type	to	self_help.

																				pRstTitles->Fields->GetItem("type")->Value	=	

																								(_bstr_t)("self_help");

																}

												}

												pRstTitles->MoveNext();

								}

								//	Ask	the	user	if	she	wants	to	commit	to	all	the	

								//	changes	made	above.

								printf("\n\nSave	all	changes?");

								char	chKey;

								chKey	=	getch();

								if(toupper(chKey)	==	'Y')

								{

												pRstTitles->UpdateBatch(adAffectAll);

								}

								else

								{

												pRstTitles->CancelBatch(adAffectAll);

								}

								//	Print	current	data	in	recordset.

								pRstTitles->Requery(adOptionUnspecified);

								//	Open	IADORecordBinding	interface	pointer	for	Binding	Recordset	to	a	class				

								TESTHR(pRstTitles->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

								//	ReBinding	the	Recordset	to	a	C++	Class.

								TESTHR(picRs->BindToRecordset(&titlers));

								//	Move	to	the	first	record	of	the	Titles	table

								pRstTitles->MoveFirst();

								//Clear	the	screen	for	the	next	display.

								system("cls");

								while	(!pRstTitles->EndOfFile)

								{

												printf("%s	-		%s\n",

																titlers.lt_TitleStatus	==	adFldOK	?	

																titlers.m_szt_Title	:"<NULL>",

																titlers.lt_TypeStatus	==	adFldOK	?	

																titlers.m_szt_Type	:"<NULL>");

												pRstTitles->MoveNext();

								}

								pRstTitles->MoveFirst();

								//	Restore	original	data	because	this	is	demonstration.

								while	(!(pRstTitles->EndOfFile))

								{

												//	Compare	type	with	psychology

												if(!strcmp((char	*)strtok(titlers.m_szt_Type,"	"),

																"self_help"))

												{

																//	Change	type	to	psychology.

																pRstTitles->Fields->GetItem("type")->Value	=	

																				(_bstr_t)("psychology");

												}

												pRstTitles->MoveNext();

								}

								pRstTitles->UpdateBatch(adAffectAll);

								pRstTitles->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstTitles->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//																																																						//

//				PrintProviderError	Function																							//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

UpdateBatchX.h

#include	"icrsint.h"

//This	class	extracts	titles	and	type	from	Titles	table

class	CTitleRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CTitleRs)

								//	Column	title	is	the	2nd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(2,adVarChar,m_szt_Title,

												sizeof(m_szt_Title),lt_TitleStatus,FALSE)

								//	Column	type	is	the	3rd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(3,adVarChar,m_szt_Type,

												sizeof(m_szt_Type),lt_TypeStatus,TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szt_Title[81];

				ULONG	lt_TitleStatus;

				CHAR	m_szt_Type[13];

				ULONG	lt_TypeStatus;

};

Value	Property	Example	(VC++)

This	example	demonstrates	the	Value	property	with	Field	and	Property	objects
by	displaying	field	and	property	values	for	the	Employees	table.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ValueX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ValueX();

				::CoUninitialize();

}

//

//																																																						//

//														ValueX	Function																									//

//																																																						//

//

void	ValueX(void)	

{

			HRESULT		hr	=	S_OK;

				//	Define	string	variables.

			_bstr_t	strCnn("Provider=sqloledb;Data	Source=srv;"

												"Initial	Catalog=Pubs;User	Id=sa;Password=;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_RecordsetPtr		pRstEmployees		=	NULL;

				FieldsPtr				pFldLoop				=	NULL;

				PropertiesPtr		pPrpLoop				=	NULL;

				_variant_t	vtIndex;

				vtIndex.vt	=	VT_I2;

							try

				{

								//	Open	recordset	with	data	from	Employees	table.

								TESTHR(pRstEmployees.CreateInstance(__uuidof(Recordset)));

								pRstEmployees->Open	("Employees",strCnn	,

												adOpenForwardOnly,	adLockReadOnly,	adCmdTable);

								printf("Field	values	in	rstEmployees\n\n");

								//	Enumerate	the	Fields	collection	of	the	Employees	table.

								pFldLoop	=	pRstEmployees->GetFields();		

								for	(int	intFields	=	0;	intFields	<	(int)pFldLoop->

				GetCount();	intFields++)

								{

												vtIndex.iVal	=	intFields;

												//	Because	Value	is	the	default	property	of	a	

												//	Field	object,the	use	of	the	actual	keyword	

												//	here	is	optional.

												printf("	%s	=	%s\n\n"	,

																(LPCSTR)	pFldLoop->GetItem(vtIndex)->GetName(),

																(LPCSTR)	(_bstr_t)	pFldLoop->GetItem(vtIndex)->Value);

								}

								printf("Press	any	key	to	continue...\n\n");

								getch();

								printf("Property	values	in	rstEmployees\n\n");

								//	Enumerate	the	Properties	collection	of	the	Recordset	object.

								pPrpLoop	=	pRstEmployees->GetProperties();

								int	intLine	=	0;

								for	(int	intProperties	=	0;	intProperties	<	(int)pPrpLoop->

												GetCount();	intProperties++)

								{

												vtIndex.iVal	=	intProperties;

												//	Because	Value	is	the	default	property	of	a

												//	Property	object,the	use	of	the	actual	keyword

												//	here	is	optional.

												_variant_t	propValue	=	pPrpLoop->GetItem(vtIndex)->Value;

												switch(propValue.vt)

												{

												case	(VT_BOOL):

																					if(propValue.boolVal)

																					{

																								printf("	%s	=	True\n\n",(LPCSTR)	pPrpLoop->

																												GetItem(vtIndex)->GetName());

																					}

																					else

																					{

																									printf("	%s	=	False\n\n",(LPCSTR)	pPrpLoop->

																												GetItem(vtIndex)->GetName());

																					}

																break;

												case	(VT_I4):

																printf("	%s	=	%d\n\n",(LPCSTR)	pPrpLoop->

																				GetItem(vtIndex)->GetName(),

																				pPrpLoop->GetItem(vtIndex)->Value.lVal);

																break;

												case	(VT_EMPTY):

																printf("	%s	=	\n\n",(LPCSTR)	pPrpLoop->

																				GetItem(vtIndex)->GetName());

																break;

												default:

																break;

												}

												intLine++;

																if	(intLine	%	10	==	0)

																{

																				printf("\nPress	any	key	to	continue...");

																					getch();

																				//Clear	the	screen	for	the	next	display			

																				system("cls");	

																}

								}

								pRstEmployees->Close();

				}

				catch	(_com_error	&e)

				{

							//	Notify	the	user	of	errors	if	any.

							//	Pass	a	connection	pointer	accessed	from	the	Recordset.

								_variant_t	vtConnect	=	pRstEmployees->GetActiveConnection();

								//	GetActiveConnection	returns	connect	string	if	connection

								//	is	not	open,	else	returns	Connection	object.

								switch(vtConnect.vt)

								{

												case	VT_BSTR:

																PrintComError(e);

																break;

												case	VT_DISPATCH:

																PrintProviderError(vtConnect);

																break;

												default:

																printf("Errors	occured.");

																break;

								}

				}

}

//

//																																																						//

//				PrintProviderError	Function																							//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

Version	Property	Example	(VC++)

This	example	uses	the	Version	property	of	a	Connection	object	to	display	the
current	ADO	version.	It	also	uses	several	dynamic	properties	to	show:

the	current	DBMS	name	and	version.

OLE	DB	version.

provider	name	and	version.

ODBC	version.

ODBC	driver	name	and	version.

#import	"c:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				no_namespace	rename("EOF",	"EndOfFile")

#include	<ole2.h>

#include	<stdio.h>

#include	<conio.h>

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	VersionX(void);

void	PrintProviderError(_ConnectionPtr	pConnection);

void	PrintComError(_com_error	&e);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				VersionX();

				::CoUninitialize();

}

//

//																																																						//

//									VersionX	Function																												//

//																																																						//

//

void	VersionX(void)	

{

			HRESULT			hr	=	S_OK;

				//	Define	string	variables.

			_bstr_t	strCnn("driver={SQL	Server};server=srv;"

												"user	id=sa;password=;database=Pubs;");

				//	Define	ADO	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADODB::		namespace.

				_ConnectionPtr				pConnection					=	NULL;

							try

				{

								//	Open	connection.

								TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

								pConnection->Open	(strCnn,	"",	"",	NULL);

								printf("ADO	Version			:	%s\n\n",(LPCSTR)	pConnection->Version);

								printf("DBMS	Name			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("DBMS	Name")->Value);

								printf("DBMS	Version			:	%s\n\n",(LPCSTR)	(_bstr_t)	pConnection->

												Properties->GetItem("DBMS	Version")->Value);

								printf("OLE	DB	Version			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("OLE	DB	Version")->Value);

								printf("Provider	Name			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("Provider	Name")->Value);

								printf("Provider	Version			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("Provider	Version")->Value);

								printf("Driver	Name			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("Driver	Name")->Value);

								printf("Driver	Version			:	%s\n\n",(LPCSTR)	(_bstr_t)	

												pConnection->Properties->GetItem("Driver	Version")->Value);

								printf("Driver	ODBC	Version			:	%s\n\n",(LPCSTR)	(_bstr_t)	

									pConnection->Properties->GetItem("Driver	ODBC	Version")->Value);

								pConnection->Close();

				}

				catch	(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								PrintProviderError(pConnection);

								PrintComError(e);

				}

}

//

//																																																						//

//					PrintProviderError	Function																						//

//																																																						//

//

void	PrintProviderError(_ConnectionPtr	pConnection)

{

				//	Print	Provider	Errors	from	Connection	object.

				//	pErr	is	a	record	object	in	the	Connection’s	Errors	collection.

				ErrorPtr				pErr		=	NULL;

				if((pConnection->Errors->Count)	>	0)

				{

								long	nCount	=	pConnection->Errors->Count;

								//	Collection	ranges	from	0	to	nCount	-1.

								for(long	i	=	0;	i	<	nCount;	i++)

								{

												pErr	=	pConnection->Errors->GetItem(i);

												printf("Error	number:	%x\t%s\n",	pErr->Number,	

																(LPCSTR)	pErr->Description);

								}

				}

}

//

//																																																						//

//						PrintComError	Function																										//

//																																																						//

//

void	PrintComError(_com_error	&e)

{

			_bstr_t	bstrSource(e.Source());

			_bstr_t	bstrDescription(e.Description());

				//	Print	Com	errors.

			printf("Error\n");

			printf("\tCode	=	%08lx\n",	e.Error());

			printf("\tCode	meaning	=	%s\n",	e.ErrorMessage());

			printf("\tSource	=	%s\n",	(LPCSTR)	bstrSource);

			printf("\tDescription	=	%s\n",	(LPCSTR)	bstrDescription);

}

ADO	Code	Examples	in	Microsoft	Visual	J++

Use	the	following	code	examples	to	learn	how	to	use	the	ADO	methods,
properties,	and	events	when	writing	in	Microsoft	Visual	J++.

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Methods

AddNew	Method	Example
Append	and	CreateParameter	Methods	Example

AppendChunk	and	GetChunk	Methods	Example

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example

Cancel	Method	Example

Clone	Method	Example

CompareBookmarks	Method	Example

Delete	Method	Example

Execute,	Requery,	and	Clear	Methods	Example

Find	Method	Example

GetRows	Method	Example

GetString	Method	Example

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods	Example

NextRecordset	Method	Example

Open	and	Close	Methods	Example

OpenSchema	Method	Example

Refresh	Method	Example

Resync	Method	Example

Save	and	Open	Methods	Example

Supports	Method	Example

Update	and	CancelUpdate	Methods	Example

UpdateBatch	and	CancelBatch	Methods	Example

Properties

AbsolutePage,	PageCount,	and	PageSize	Properties	Example

AbsolutePosition	and	CursorLocation	Properties	Example

ActiveCommand	Property	Example

ActiveConnection,	CommandText,	CommandTimeout,	CommandType,
Size,	and	Direction	Properties	Example

ActualSize	and	DefinedSize	Properties	Example

Attributes	and	Name	Properties	Example

BOF,	EOF,	and	Bookmark	Properties	Example

CacheSize	Property	Example

ConnectionString,	ConnectionTimeout,	and	State	Properties	Example

Count	Property	Example

CursorType,	LockType,	and	EditMode	Properties	Example

Description,	NativeError,	Number,	Source,	and	SQLState	Properties
Example

Filter	and	RecordCount	Properties	Example

Handler	Property	Example

IsolationLevel	and	Mode	Properties	Example

Item	Property	Example

MarshalOptions	Property	Example

MaxRecords	Property	Example

NumericScale	and	Precision	Properties	Example

Optimize	Property	Example

OriginalValue	and	UnderlyingValue	Properties	Example

Prepared	Property	Example

Provider	and	DefaultDatabase	Properties	Example

Sort	Property	Example

Source	Property	Example

State	Property	Example

Status	Property	Example

StayInSync	Property	Example

Type	Property	Example	(Fields)

Type	Property	Example	(Property)

Value	Property	Example

Version	Property	Example

AbsolutePage,	PageCount,	and	PageSize	Properties	Example
(VJ++)

This	example	uses	the	AbsolutePage,	PageCount,	and	PageSize	properties	to
display	names	and	hire	dates	from	the	Employees	table,	five	records	at	a	time.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	AbsolutePageX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								AbsolutePageX();

								System.exit(0);

				}

				//	AbsolutePageX	function

				static	void	AbsolutePageX()

				{

								//	Define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=	new	BufferedReader	(new	

												InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

								String	strName;

								String	strFName;

								String	strLName;

								String	strHDate;

								int	intPage;

								int	intRecord;

								try

								{

												rstEmployees	=	new	Recordset();

												//	Use	client	cursor	to	enable	AbsolutePosition	property.

												rstEmployees.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												//	Open	a	recordset	using	client	cursor	for	the	Employees	table.

												rstEmployees.open("employee",	strCnn,

																AdoEnums.CursorType.FORWARDONLY,

																AdoEnums.LockType.READONLY,

																AdoEnums.CommandType.TABLE);

												//	Display	names	and	hire	dates,	five	records	at	a	time.

												rstEmployees.setPageSize(5);

												int	intPageCount	=	rstEmployees.getPageCount();

												for	(intPage	=	1;	intPage	<=	intPageCount;	intPage++)

												{

																strName	=	"";

																rstEmployees.setAbsolutePage(intPage);

																for	(intRecord	=	1;	intRecord	<=	rstEmployees.getPageSize();	

																				intRecord++)

																{

																				strFName	=	rstEmployees.getField("fname").getString();

																				strLName	=	rstEmployees.getField("lname").getString();

																				strHDate	=	rstEmployees.getField("hire_date").getString();

																				strHDate	=	strHDate.substring(5,7)	+	"/"	+	

																								strHDate.substring(8,10)	+

																								"/"	+	strHDate.substring(2,4);

																				strName	=	strName	+	"\n"	+	strFName	+	"	"	+	strLName	+	

																								"		"	+	strHDate;

																				rstEmployees.moveNext();

																				if	(rstEmployees.getEOF())

																								break;

																}

																System.out.println(strName);

																//	Get	user	input	to	display	next	records.

																System.out.println("\n\nPress	<Enter>	key	to	Continue.");

																line	=	in.readLine();

												}

												//	Cleanup	objects	before	exit.			

												rstEmployees.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstEmployees.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

AbsolutePosition	and	CursorLocation	Properties	Example	(VJ++)

This	example	demonstrates	how	the	AbsolutePosition	property	can	track	the
progress	of	a	loop	that	enumerates	all	the	records	of	a	Recordset.	It	uses	the
CursorLocation	property	to	enable	the	AbsolutePosition	property	by	setting	the
cursor	to	a	client	cursor.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	AbsolutePositionX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								AbsolutePositionX();

								System.exit(0);

				}

				//.AbsolutePositionX	function

				static	void	AbsolutePositionX()

				{

								//	define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"	+

												"Initial	Catalog=pubs;User	Id=sa;Password=;";

								String	strLName;

								String	strMessage;

								String	strAbsolutePosition,strRecordCount;

								int	intAbsolutePosition;

								int	intRecordCount;

								int	intChoice;

								

								try

								{

												rstEmployees	=	new	Recordset();

												//	Use	client	cursor	to	enable	AbsolutePosition	property.

												rstEmployees.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												//	Open	a	recordset	for	Employees	table	using	a	client	cursor.

												rstEmployees.open("employee",	strCnn,

																AdoEnums.CursorType.FORWARDONLY	,

																AdoEnums.LockType.READONLY,

																AdoEnums.CommandType.TABLE);

												//	Enumerate	Recordset.

												while	(!rstEmployees.getEOF())	//	continuous	loop

												{

																intRecordCount	=	rstEmployees.getRecordCount();

																strRecordCount	=	Integer.toString(intRecordCount);

																//	Read	data	field	in	the	variables.

																strLName	=	rstEmployees.getField("lname").getString();

																intAbsolutePosition	=	rstEmployees.getAbsolutePosition();

																strAbsolutePosition	=	Integer.toString(intAbsolutePosition);

																//	Display	current	record	information.

																strMessage	=	"\nEmployee:	"	+	strLName	+	"\n"	+	"(Record	"	+	

																				strAbsolutePosition	+	"	of	"	+strRecordCount	+	")";

																System.out.println(strMessage);

																System.out.println(

																				"\nDo	you	want	to	continue	(1	->	Yes	/	2	->	No)?");

																//user	types	a	number	followed	by	enter	(cr-lf).

																line	=	in.readLine().trim();

																intChoice	=	Integer.parseInt(line);

																if	(intChoice	!=	1)

																				break;

																rstEmployees.moveNext();

												}

												//Cleanup	objects	before	exit.

												rstEmployees.close();

								}

								catch(NumberFormatException	ne)

								{

												System.out.println("\nException	:	Integer	Input	required.");

												System.exit(0);

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstEmployees.getActiveConnection()==	null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

ActiveCommand	Property	Example	(VJ++)

This	example	demonstrates	the	ActiveCommand	property.

A	subroutine	is	given	a	Recordset	object	whose	ActiveCommand	property	is
used	to	display	the	command	text	and	parameter	that	created	the	Recordset.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	ActiveCommandX			

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								ActiveCommandX();

								System.exit(0);

				}

				//	ActiveCommandX	function

				static	void	ActiveCommandX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Command	cmd	=	null;

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=pubs;Provider=MSDASQL;uid=sa;pwd=;";

								String	strName;

								try

								{

												System.out.println("Enter	an	author's	name	(e.g.,	Ringer):	");

												strName	=	in.readLine().trim();

												cmd	=	new	Command();

												cmd.setCommandText("SELECT	*	FROM	authors	WHERE	au_lname	=	?");

												cmd.getParameters().append(cmd.createParameter("LastName",

																AdoEnums.DataType.CHAR,

																AdoEnums.ParameterDirection.INPUT,	20,	strName));

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												cmd.setActiveConnection(cnConn1);

												rstAuthors	=	cmd.execute(null,AdoEnums.CommandType.TEXT);

												ActiveCommandXprint(rstAuthors);

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	ActiveCommandXprint	function

				static	void	ActiveCommandXprint(Recordset	rstp)

				{

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strName;

								try

								{

												strName	=	rstp.getActiveCommand().getParameters().

																getItem("LastName").getValue().toString();

												System.out.println("\nCommand	text	=	'"	+

																rstp.getActiveCommand().getCommandText()	+	"'");

												System.out.println("Parameter	=	'"	+	strName	+	"'");

												if(rstp.getBOF())

												{

																System.out.println("Name	=	'"	+	strName	+	"',	not	found.");

												}

												else

												{

																System.out.println("Name	=	'"	+

																				rstp.getField("au_fname").getString()	+	"	"	+	

																				rstp.getField("au_lname").getString()	+	

																				"',	author	ID	=	'"	+	

																				rstp.getField("au_id").getString()	+	"'");

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstp	!=	null)

												{

																PrintProviderError(rstp.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	Properties	Example	(VJ++)

This	example	uses	the	ActiveConnection,	CommandText,	CommandTimeout,
CommandType,	Size,	and	Direction	properties	to	execute	a	stored	procedure.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	ActiveConnectionX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								ActiveConnectionX();

								System.exit(0);			

				}

				//.ActiveConnectionX	function

				static	void	ActiveConnectionX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Command	cmdByRoyalty	=	null;

								Parameter	prmByRoyalty	=	null;

								Recordset	rstByRoyalty	=	null;

								Recordset	rstAuthors	=	null;

								//Declarations.

								String	strCnn;

								String	strAuthorID;

								String	strFName;

								String	strLName;

								int	intRoyalty	;

								BufferedReader	in	=	new	BufferedReader	

												(new	InputStreamReader	(System.in));

								String	line	=	null;

								try

								{

												//	Open	a	connection.

												strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn,"","",AdoEnums.CommandType.UNSPECIFIED);

												//	Define	a	command	object	for	stored	procedure.

												cmdByRoyalty	=	new	Command();

												cmdByRoyalty.setActiveConnection(cnConn1);

												cmdByRoyalty.setCommandText("byRoyalty");

												cmdByRoyalty.setCommandType(AdoEnums.CommandType.STOREDPROC);

												cmdByRoyalty.setCommandTimeout(15);

												//Define	the	stored	procedure's	input	parameter.

												System.out.println	("\nEnter	Royalty	:	");

												line	=	in.readLine().trim();

												intRoyalty	=	Integer.parseInt(line);

												prmByRoyalty	=	new	Parameter	();

												prmByRoyalty.setType(AdoEnums.DataType.INTEGER);

												prmByRoyalty.setSize(3);

												prmByRoyalty.setDirection(AdoEnums.ParameterDirection.INPUT);

												prmByRoyalty.setValue(new	Integer(intRoyalty));

												cmdByRoyalty.getParameters().append(prmByRoyalty);

												//	Create	a	recordset	by	executing	the	command.

												rstByRoyalty	=	cmdByRoyalty.execute();

												//	Open	the	Authors	table	to	get	author	names	for	display.

												rstAuthors	=	new	Recordset	();

												rstAuthors.open("authors",strCnn,

																AdoEnums.CursorType.FORWARDONLY,

																AdoEnums.LockType.READONLY	,AdoEnums.CommandType.TABLE);

												//	Print	current	data	in	the	recordset,

												//	adding	author	names	from	Authors	table.

												System.out.println("\nAuthors	with	"	+	intRoyalty	+	

																"	percent	royalty");

												while	(!rstByRoyalty.getEOF())

												{

																strAuthorID	=		rstByRoyalty.getField("au_id").getString();

																rstAuthors.setFilter("au_id	='"	+		strAuthorID	+	"'");

																strFName	=	rstAuthors.getField("au_fname").getString();

																strLName	=	rstAuthors.getField("au_lname").getString();

																System.out.println("\t"	+	strAuthorID	+	",	"	+	strFName	

																				+	"	"	+	strLName);

																rstByRoyalty.moveNext();

												}

												System.out.println("\n\nPress	<Enter>	key	to	continue.");

												line	=	in.readLine();

												//Cleanup	objects	before	exit.

												rstByRoyalty.close();

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object

												if(rstByRoyalty.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												if(rstAuthors.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstByRoyalty	!=	null)

												{

																PrintProviderError(rstByRoyalty.getActiveConnection());

												}

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	This	catch	is	required	if	input	string	cannot	be	converted	to

								//	Integer	data	type.

								catch	(java.lang.NumberFormatException	ne)

								{

												System.out.println("\nException:	Integer	Input	required.");

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

ActualSize	and	DefinedSize	Properties	Example	(VJ++)

This	example	uses	the	ActualSize	and	DefinedSize	properties	to	display	the
defined	size	and	actual	size	of	a	field.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	ActualSizeX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								ActualSizeX();

								System.exit(0);

				}

				//	ActualSizeX	function

				static	void	ActualSizeX()

				{

								//	Define	ADO	Objects.

								Recordset	rstStores	=	null;

								//	Declarations.

								BufferedReader	in	=	new	

												BufferedReader(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

								String	strStoreName;

								String	strMessage;

								String	strDSize,strASize;

								int	intDefinedSize;

								int	intActualSize;

								int	intChoice	=	0;

								try

								{

												//	Open	recordset	with	Stores	table.

												rstStores	=	new	Recordset();

												rstStores.open("stores",	strCnn,

																AdoEnums.CursorType.FORWARDONLY	,

																AdoEnums.LockType.READONLY	,

																AdoEnums.CommandType.TABLE);

												//	Loop	through	the	Recordset	displaying	the	contents

												//	of	the	stor_name	field,	the	field's	defined	size

												//	and	it's	actual	size.

												while	(!(rstStores.getEOF()))	//	continuous	loop

												{

																//	Read	data	field	in	the	variables.

																strStoreName	=	rstStores.getField("stor_name").getString();

																intDefinedSize	=	

																				rstStores.getField("stor_name").getDefinedSize();

																strDSize	=	Integer.toString(intDefinedSize);

																intActualSize	=	rstStores.getField	

																				("stor_name").getActualSize	();

																strASize	=	Integer.toString(intActualSize);

																//	Display	current	record	information.

																strMessage	=	"\nStore	name:	"	+	strStoreName	+	"\n"

																					+	"Defined	Size	:	"	+	strDSize	+	"\n"

																					+	"Actual	Size	:	"	+	strASize;

																System.out.println(strMessage);

																System.out.println("\nPress	<Enter>	key	to	continue.");

																in.readLine();

																rstStores.moveNext();

												}

												//	Cleanup	objects	before	exit.

												rstStores.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstStores.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstStores	!=	null)

												{

																PrintProviderError(rstStores.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

AddNew	Method	Example	(VJ++)

This	example	uses	the	AddNew	method	to	create	a	new	record	with	the	specified
name.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	AddNewX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								AddNewX();

								System.exit(0);

				}

				//	AddNewX	function

				static	void	AddNewX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstEmployees	=	null;

								//Declarations.

								String	strCnn;

								String	strID;

								String	strFirstName;

								String	strLastName;

								boolean	booRecordAdded	;

								BufferedReader	in	=	

new	BufferedReader	(new	InputStreamReader	(System.in));

								String	line	=	null;

								try

								{

												//	Open	a	connection.

												strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);//,"","",AdoEnums.CommandType.UNSPECIFIED);

												//	Open	Employees	table.

												rstEmployees	=	new	Recordset	();

												rstEmployees.open("employee",	cnConn1,	

																AdoEnums.CursorType.KEYSET	,	AdoEnums.LockType.OPTIMISTIC	,	

																AdoEnums.CommandType.TABLE);

												/*	Get	data	from	the	user.	The	employee	ID	must	be	formatted	as

												first,middle,	and	last	initial,	five	numbers,	then	M	or	F	to

												signify	the	gender.	For	example,	the	employee	id	for	Bill	

												Sornsin	would	be	"B-S55555M".	*/

												System.out.println("\nEnter	employee	ID	:");

												strID	=	in.readLine().trim();

												System.out.println("\nEnter	first	name	:");

												strFirstName	=	in.readLine().trim();

												System.out.println("\nEnter	last	name	:");

												strLastName	=	in.readLine().trim();

												//	Proceed	only	if	the	user	actually	entered	something

												//	for	both	the	first	and	last	names.

												if	(!(strID.compareTo("")	==	0)	&	

																!(strFirstName.compareTo("")	==	0)	&	

																!(strLastName.compareTo("")==	0))

												{

																//	Add	new	record.

																rstEmployees.addNew();

																rstEmployees.getField("emp_id").setString(strID);

																rstEmployees.getField("fname").setString(strFirstName);

																rstEmployees.getField("lname").setString(strLastName);

																//	update	the	record	with	the	new	data.

																rstEmployees.update();

																booRecordAdded	=	true;

																//	Show	the	newly	added	data.

																System.out.println("\nNew	record	:	"	

																				+	rstEmployees.getField("emp_id").getString()+	"	"

																				+	rstEmployees.getField("fname").getString()+	"	"

																				+	rstEmployees.getField("lname").getString());

												}

												else

												{

																System.out.println("\nPlease	enter	an	employee	ID,"	+

																				"first	name,	and	last	name.");

												}

												System.out.println("\n\nPress	<Enter>	key	to	continue.");

												line	=	in.readLine();

												//	Delete	the	new	record	because	this	is	a	demonstration.

												cnConn1.execute("DELETE	FROM	employee	WHERE	"	

																+	"emp_id	=	'"	+	strID	+	"'");

												//Cleanup	objects	before	exit.

												rstEmployees.close();

												cnConn1.close();

												System.exit(0);

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//Check	for	null	pointer	for	connection	object.

												if(rstEmployees.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

												System.exit(0);

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Append	and	CreateParameter	Methods	Example	(VJ++)

This	example	uses	the	Append	and	CreateParameter	methods	to	execute	a	stored
procedure	with	an	input	parameter.

import	com.ms.wfc.data.*;

import	java.io.*;

import	com.ms.com.*;

public	class	AppendX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								AppendX();

				}

				//	AppendX	function

				static	void	AppendX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Command	cmdByRoyalty	=	null;

								Parameter	prmByRoyalty	=	null;

								Recordset	rstByRoyalty	=	null;

								Recordset	rstAuthors	=	null;

								//Declarations.

								String	strCnn;

								String	strAuthorID;

								String	strFName;

								String	strLName;

								int	intRoyalty	;

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader	(System.in));

								String	line	=	null;

								Variant	varRoyalty;

								try

								{

												//	Open	a	connection.

												strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												cnConn1.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												//	Open	command	object	with	one	parameter.

												cmdByRoyalty	=	new	Command();

												cmdByRoyalty.setCommandText("byRoyalty");

												cmdByRoyalty.setCommandType(AdoEnums.CommandType.STOREDPROC);

												//Get	parameter	value	and	append	parameter.

												System.out.println	("\nEnter	Royalty	:	");

												line	=	in.readLine().trim();

												intRoyalty	=	Integer.parseInt(line);

												varRoyalty	=	new	Variant(intRoyalty);

												prmByRoyalty	=	cmdByRoyalty.createParameter	("percentage",

																AdoEnums.DataType.INTEGER,

																AdoEnums.ParameterDirection.INPUT,4,varRoyalty);

												cmdByRoyalty.getParameters().append(prmByRoyalty);

												prmByRoyalty.setValue(varRoyalty);

												//	Create	a	recordset	by	executing	the	command.

												cmdByRoyalty.setActiveConnection(cnConn1);

												rstByRoyalty	=	cmdByRoyalty.execute();

												//	Open	the	Authors	table	to	get	author	names	for	display.

												rstAuthors	=	new	Recordset	();

												rstAuthors.open("authors",	cnConn1,	

																AdoEnums.CursorType.FORWARDONLY,

																AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TABLE);

												//	Print	current	data	in	the	recordset,

												//	adding	author	names	from	Authors	table.

												System.out.println("\nAuthors	with	"	+	intRoyalty	+	

																"	percent	royalty");

												while	(!rstByRoyalty.getEOF())

												{

																strAuthorID	=		rstByRoyalty.getField("au_id").getString();

																rstAuthors.setFilter("au_id	='"	+		strAuthorID	+	"'");

																strFName	=	rstAuthors.getField("au_fname").getString();

																strLName	=	rstAuthors.getField("au_lname").getString();

																System.out.println("\t"	+	strAuthorID	+	",	"	+	strFName	

																				+	"	"	+	strLName);

																rstByRoyalty.moveNext();

												}

												System.out.println("\n\nPress	<Enter>	key	to	continue.");

												line	=	in.readLine();

												//Cleanup	objects	before	exit.

												rstByRoyalty.close();

												rstAuthors.close();

												cnConn1.close();

												System.exit(0);//required	here	only.

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if(rstByRoyalty.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstByRoyalty	!=	null)

												{

																PrintProviderError(rstByRoyalty.getActiveConnection());

												}

												if	(rstAuthors	!=	null)

												{

																if	(rstAuthors.getActiveConnection()==null)

																				System.out.println("Exception:	"	+	ae.getMessage());

																else

																				PrintProviderError(rstAuthors.getActiveConnection());

												}

												else	

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	This	catch	is	required	if	input	string	cannot	be	converted	to

								//	Integer	data	type.

								catch(java.lang.NumberFormatException	ne)

								{

												System.out.println("\nException:	Integer	Number	required.");

												System.exit(0);

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

AppendChunk	and	GetChunk	Methods	Example	(VJ++)

This	example	uses	the	AppendChunk	and	GetChunk	methods	to	fill	an	image
field	with	data	from	another	record.

import	com.ms.wfc.data.*;

import	java.io.*;

import	com.ms.com.*;

import	java.util.*;

public	class	AppendChunkX

{

				

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								AppendChunkX();

								System.exit(0);

				}

				//	AppendChunkX	function

				static	void	AppendChunkX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstPubInfo	=	null;

								//Declarations.

								String	strCnn;

								String	strPubID;

								String	strPRInfo;

								String	strMessage	=	"";

								long	lngOffset	=	0;

								long	lngLogoSize;

								final		int	conChunkSize	=	100;

								byte[]	varChunk	=	new	byte[conChunkSize];

								int	intCommand	=	0	;

								int	intMulChunkSize,intLastChunkSize;

								Vector	varLogo	=	new	Vector();

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								String	line	=	null;

								int	noOfRecords;

								int	noOfRecordesDisplayed	=	5;

								int	recordCount	=	0;

								String	info;

								int	indexOfComma	;

								try

								{

												//	Open	a	connection.

												strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn,"","",AdoEnums.CommandType.UNSPECIFIED);

												//	Open	the	pub_info	Table.

												rstPubInfo	=	new	Recordset();

												rstPubInfo.setCursorType(AdoEnums.CursorType.KEYSET);

												rstPubInfo.setLockType(AdoEnums.LockType.OPTIMISTIC);

												rstPubInfo.open("pub_info",	cnConn1,AdoEnums.CursorType.KEYSET	,	

																AdoEnums.LockType.OPTIMISTIC,	AdoEnums.CommandType.TABLE);

												System.out.println	("Available	logos	are	:	\n");

												noOfRecords	=	rstPubInfo.getRecordCount();

												//	Prompt	for	the	Logo	to	copy.

												for	(int	i	=	0;	i	<	noOfRecords;	i++)

												{

																recordCount++;

																strMessage	=	strMessage	+	

																				rstPubInfo.getField("pub_id").getString()	+	"\n";

																indexOfComma	=	

																				rstPubInfo.getField("pr_info").getString().indexOf(",");

																info	=	

																				rstPubInfo.getField("pr_info").getString().substring(0,	

																				indexOfComma);

																strMessage	=	strMessage	+	info	+	"\n\n";

																//	Display	five	records	at	a	time.

																if	(recordCount	==	noOfRecordesDisplayed)

																{

																				System.out.println(strMessage);

																				System.out.println("\n\nPress	<Enter>	to	continue..");

																				line	=	in.readLine();

																				strMessage	=	"";

																				recordCount	=	0;

																}

																rstPubInfo.moveNext();

																//	Display	last	records	and	exit	if	last	record.

																if(rstPubInfo.getEOF())

																{

																				System.out.println(strMessage);

																				break;

																}

												}

												System.out.println	("\nEnter	the	ID	of	a	logo	to	copy	:\n");

												strPubID	=	in.readLine();

												//	Copy	the	logo	to	a	variable	in	chunks.

												rstPubInfo.setFilter("pub_id	=	'"	+	strPubID	+	"'");

												lngLogoSize	=	rstPubInfo.getField("logo").getActualSize();

												while	(lngOffset	<	lngLogoSize)

												{

																varChunk	=	rstPubInfo.getField("logo")

																				.getByteChunk(conChunkSize);

																int	i	=	0;

																while	(i	<	conChunkSize	&&	varLogo.size()	<	(int)lngLogoSize)

																{

																				varLogo.addElement(new	Byte(varChunk[i]));

																				i++;

																}

																lngOffset	=		lngOffset	+	conChunkSize	;

												}

																//Get	the	data	for	New	ID	from	the	user.

																System.out.println	

																				("\nEnter	a	new	pub	ID	[must	be	>	9899	&	<	9999]:");

																strPubID	=		in.readLine().trim();

																System.out.println	("\nEnter	descriptive	text	:");

																strPRInfo	=		in.readLine().trim();

																//Temporarily	add	new	publisher	to	publishers	table	to	

																//avoid	getting	error	foreign	key	constraint.

																cnConn1.execute("INSERT	publishers(pub_id)	VALUES('"	+	

																				strPubID	+	"')");

																//Add	a	new	record.

																rstPubInfo.addNew();

																rstPubInfo.getField("pub_id").setString(strPubID);

																rstPubInfo.getField("pr_info").setString(strPRInfo);

																//Copy	the	selected	logo	to	the	new	logo	in	chunks.

																lngOffset	=	0;

																//Divide	logosize	in	multiples	of	constant	chunk	size.

																intMulChunkSize	=	

																				(varLogo.size()/conChunkSize)	*	conChunkSize;

																intLastChunkSize	=	varLogo.size()-	intMulChunkSize	;

																byte[]	arrChunk		=	new	byte[conChunkSize];

																byte[]	lastChunk	=	new	byte[intLastChunkSize];

																while	(lngOffset	<	varLogo.size	())

																{

																				int	ii	=	0	;

																				//	Copy	the	logo	in	constant	chunk	size.

																				if	((int)lngOffset	<	intMulChunkSize)

																				{

																								while	(ii	<	conChunkSize	&&	

																												(int)lngOffset	<	varLogo.size	())

																								{

																												arrChunk[ii]	=	

																																((Byte)varLogo.elementAt

																																((int)lngOffset)).byteValue();

																												ii++;

																												lngOffset++;

																								}

																								rstPubInfo.getField("logo").appendChunk(arrChunk);

																				}

																				//	Copy	the	last	remaining	chunk.

																				else

																				{

																								while	(ii	<	intLastChunkSize	&&	

																												(int)lngOffset	<	varLogo.size	())

																								{

																												lastChunk[ii]	=	

																																((Byte)varLogo.elementAt

																																((int)lngOffset)).byteValue();

																												ii++;

																												lngOffset++;

																								}

																								rstPubInfo.getField("logo").appendChunk(lastChunk);

																				}

																}

																//	Update	the	new	recordset	with	new	logo.

																rstPubInfo.update();

																//Show	the	newly	added	data.

																System.out.println	("\nNew	Record	:	"	+	

																				rstPubInfo.getField("pub_id").getString()	+	"\n");

																System.out.println	("Description	:	"	+	

																				rstPubInfo.getField("pr_info").getString()	+	"\n");

																System.out.println	("Logo	Size	:	"	+	

																				rstPubInfo.getField("logo").getActualSize());

																System.out.println	("\n\nPress	<Enter>	key	to	continue.");

																in.readLine();

																//Delete	new	records	because	this	is	a	demonstration.

																rstPubInfo.requery();

																cnConn1.execute("DELETE	FROM	pub_info	WHERE		pub_id	=	'"	+	

																				strPubID	+	"'");

																cnConn1.execute("DELETE	FROM	publishers	WHERE		pub_id	=	'"	+	

																				strPubID	+	"'");

																//Cleanup	objects	before	exit.

																rstPubInfo.close();

																cnConn1.close();

								}

								catch(AdoException	ae)

												{

																//	Notify	user	of	any	errors	that	result	from	ADO.

																

																//	Check	for	null	pointer	for	connection	object.

																if(rstPubInfo.getActiveConnection()==null)

																								System.out.println("Exception:	"	+	ae.getMessage());

																//	As	passing	a	Recordset,	check	for	null	pointer	first.

																if	(rstPubInfo	!=	null)

																{

																				PrintProviderError(rstPubInfo.getActiveConnection());

																				PrintADOError(ae);

																}

																else	

																{

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

				//	PrintADOError	Function

				

				static	void	PrintADOError(AdoException	ae)

				{

								System.out.println("\t	Error	Source	=	"	+	ae.getSource()	+	"\n");

								System.out.println("\t	Description	=	"	+	ae.getMessage()	+	"\n");

				}

}

Attributes	and	Name	Properties	Example	(VJ++)

This	example	displays	the	value	of	the	Attributes	property	for	Connection,	Field,
and	Property	objects.	It	uses	the	Name	property	to	display	the	name	of	each
Field	and	Property	object.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	AttributesX

{

				//	The	main	entry	point	for	the	application

				public	static	void	main	(String[]	args)

				{

								AttributesX();

								System.exit(0);

				}

				//	AttributeX	Function

				static	void	AttributesX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstEmployees	=	null;

								Fields	listOfFields	=	null;

								AdoProperties	listOfProperties	=	null;

								//Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

								int	recordDisplaySize	=	15;

								int	propertyCount	=	0;

								try

								{

												//	Open	connection	and	recordset.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstEmployees	=	new	Recordset	();

												rstEmployees.open("employee",	

																cnConn1,AdoEnums.CursorType.FORWARDONLY,	

																AdoEnums.LockType.READONLY,	AdoEnums.CommandType.TABLE);

												//	Display	the	attributes	of	the	connection.

												System.out.println("Connection	attributes	=	"	

																+	cnConn1.getAttributes());

												//	Display	the	attributes	of	the	Employees	table's	fields.

												System.out.println("\n\nField	attributes	:	"	+	"\n");

												listOfFields	=	rstEmployees.getFields();

												for	(int	i=0;	i	<	listOfFields.getCount();i++)

												{

																System.out.println("\t\t"	+	listOfFields.getItem(i).getName()

																				+	"	=	"	+	listOfFields.getItem(i).getAttributes());

												}

												//	Display	fields	of	the	Employees	table	which	are	NULLABLE.

												System.out.println("\n\nNULLABLE	Fields	:	"	+	"\n");

												for	(int	i=0;	i	<	listOfFields.getCount();i++)

												{

																if	((listOfFields.getItem(i).getAttributes()	&	

																				AdoEnums.FieldAttribute.ISNULLABLE)	>	0)

																				System.out.println("\t\t"	+	

																				listOfFields.getItem(i).getName());

												}

												System.out.println	("\n\nPress	<Enter>	key	to	continue..");

												line	=	in.readLine();

												//	Display	the	attributes	of	the	Employees	table's	properties.

												System.out.println("\n\nProperty	attributes	:	");

												listOfProperties	=	rstEmployees.getProperties();

												for	(int	i=0;	i	<	listOfProperties.getCount()	;i++)

												{

																System.out.println("\t\t"	+	

																				listOfProperties.getItem(i).getName()

																				+	"	=	"	+	listOfProperties.getItem(i).getAttributes());

																if	(propertyCount	==	recordDisplaySize)

																{

																				System.out.println	("\n\nPress	<Enter>	key	to	continue.");

																				line	=	in.readLine();

																				propertyCount	=	0;

																}

																propertyCount++;

												}

												System.out.println	("\n\nPress	<Enter>	key	to	continue.");

												line	=	in.readLine();

												//Cleanup	objects	before	exit.

												rstEmployees.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstEmployees.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

BeginTrans,	CommitTrans,	and	RollbackTrans	Methods	Example
(VJ++)

This	example	changes	the	book	type	of	all	psychology	books	in	the	Titles	table
of	the	database.	After	the	BeginTrans	method	starts	a	transaction	that	isolates	all
the	changes	made	to	the	Titles	table,	the	CommitTrans	method	saves	the
changes.	You	can	use	the	Rollback	method	to	undo	changes	that	you	saved	using
the	Update	method.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	BeginTransX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								BeginTransX();

								System.exit(0);

				}

				//	BeginTransX	function

				static	void	BeginTransX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstTitles	=	null;

								//Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

								String	strTitle;

								String	strType;

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader	(System.in));

								String	line	=	null;

								String	strMessage="";

								int	intChoice	=	0;

								int	recordDisplaySize	=	15;

								int	recordCount	=	0;

								try

								{

												//	Open	a	connection.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn,"","",AdoEnums.CommandType.UNSPECIFIED);

												//	Open	the	Titles	table.

												rstTitles	=	new	Recordset	();

												rstTitles.setCursorType(AdoEnums.CursorType.DYNAMIC);

												rstTitles.setLockType(AdoEnums.LockType.PESSIMISTIC);

												rstTitles.open("titles",cnConn1,AdoEnums.CursorType.DYNAMIC	,

																AdoEnums.LockType.PESSIMISTIC	,AdoEnums.CommandType.TABLE);

												rstTitles.moveFirst();

												cnConn1.beginTrans();

												//	Loop	through	recordset	and	ask	user	if	he/she	wants

												//	to	change	the	type	for	a	specified	title.

												while	(!rstTitles.getEOF())

												{

																strType	=	rstTitles.getField("type").getString().trim();

																if	((rstTitles.getField("type").getString().

																				trim()).compareTo("psychology")==	0)

																{

																				strTitle	=	rstTitles.getField("title").getString().trim();

																				System.out.println("\nTitle	:	"	+	strTitle	+	"\n\n"	

																								+		"Change	type	to	self	help	(1	->	Yes	/	2	->	No)	?");

																				//	Change	the	title	for	the	specified	book.

																				line	=	in.readLine().trim();

																				intChoice	=	Integer.parseInt(line);

																				if	(intChoice	==	1)

																				{

																								rstTitles.getField("type").setString("self_help");

																								rstTitles.update();

																				}

																}

																rstTitles.moveNext();

												}

												//	Ask	if	the	user	wants	to	commit	to	all	the	

												//	changes	made	above.

												System.out.println

																("\n\nSave	all	changes	(1	->	Yes	/	2	->	No)	?");

												line	=	in.readLine().trim();

												intChoice	=	Integer.parseInt(line);

												if	(intChoice	==	1)

																cnConn1.commitTrans();

												else

																cnConn1.rollbackTrans();

												//	Print	current	data	in	recordset.

												rstTitles.requery();

												rstTitles.moveFirst();

												while(true)

												{

																strMessage	=	strMessage	+"\n	"	+	

																				rstTitles.getField("title").getString()+"	-	"

																				+	rstTitles.getField("type").getString()	;

																if	(recordCount	==	recordDisplaySize)

																{

																				System.out.println(strMessage);

																				System.out.println("\n\nPress	<Enter>	key	to	continue..");

																				line	=	in.readLine();

																				strMessage	=	"";

																				recordCount	=	0;

																}

																recordCount++;

																rstTitles.moveNext();

																if(rstTitles.getEOF())

																{

																				System.out.println(strMessage);

																				break;

																}

												}

												System.out.println("\n\nPress	<Enter>	key	to	continue..");

												line	=	in.readLine();

												//	Restore	original	data	because	this	

												//	is	a	demonstration.

												rstTitles.moveFirst();

												while	(!rstTitles.getEOF())

												{

																if	((rstTitles.getField("type").getString().

																				trim().compareTo("self_help"))==	0)

																{

																				rstTitles.getField("type").setString("psychology");

																				rstTitles.update();

																}

																rstTitles.moveNext();

												}

												//Cleanup	objects	before	exit.

												rstTitles.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if(rstTitles.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

BOF,	EOF,	and	Bookmark	Properties	Example	(VJ++)

This	example	uses	the	BOF	and	EOF	properties	to	display	a	message	if	a	user
tries	to	move	past	the	first	or	last	record	of	a	Recordset.	It	uses	the	Bookmark
property	to	let	the	user	flag	a	record	in	a	Recordset	and	return	to	it	later.

import	com.ms.wfc.data.*;

import	java.io.*;

import	com.ms.com.*;

public	class	BOFEOFBookmark

{

				Variant	varBookmark;	

				BufferedReader	in	=	

								new	BufferedReader(new	InputStreamReader(System.in));

				String	line	=	null;

				//	The	main	entry	point	for	the	application.

				

				public	static	void	main	(String[]	args)

				{

								BOFEOFBookmark	b1	=	new	BOFEOFBookmark	();

								b1.BOFX();

								b1.BOFX2();

								System.exit(0);

								try

								{

												b1.finalize();

								}

								catch(Throwable	te)

								{

								}

				}

				//	The	main	entry	point	for	the	application.

				

				public	void	BOFX()

				{

								//	Declarations.

								Recordset	rstPublishers	=	null;

								String	strCnn;

								String	strMessage;

								int	intCommand	=	0;

								strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

								try

								{

												//	Open	a	recordset	with	data	from	Publishers	table.

												rstPublishers	=	new	Recordset();

												rstPublishers.setCursorType(AdoEnums.CursorType.STATIC);

												rstPublishers.setCursorLocation(

																AdoEnums.CursorLocation.CLIENT);

												//	Use	client	cursor	to	enable	AbsolutePosition	property.

												rstPublishers.open(new	String(

																"SELECT	pub_id,pub_name	FROM	Publishers	ORDER	BY	pub_name"),	

																strCnn,	AdoEnums.CursorType.STATIC	,	

																AdoEnums.LockType.BATCHOPTIMISTIC,	

																AdoEnums.CommandType.TEXT);

												rstPublishers.moveFirst();

												//Display	information	about	current	record	and	get	user	input.

												while	(true)

												{

																strMessage	=	"\nPublisher	:"	+	

																				rstPublishers.getField("pub_name").getString()	+	"\n"

																				+	"	(Record	"	+	rstPublishers.getAbsolutePosition()	

																				+	"	of	"	+	rstPublishers.getRecordCount()	+	")"	+	"\n\n"	

																				+	"Enter	command	:	"	+	"\n"

																				+	"[1	-	next	/	2	-	previous	/"	+	"\n"	

																				+	"3	-	set	bookmark	/	4	-	go	to	bookmark]"	;

																System.out.println	(strMessage);

																line	=	in.readLine();

																//No	entry	exits	loop.

																if	(line.length()	==	0)

																				break;

																//convert	string	entry	to	int.

																intCommand	=	Integer.parseInt(line);

																//out	of	range	entry	exits	loop.

																if	((intCommand	<	1)	||	(intCommand	>	4))	break	;

																//Call	method	based	on	user's	validated	selection.

																MoveAny(intCommand,	rstPublishers);

												}

												rstPublishers.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstPublishers	!=	null)

												{

																PrintProviderError(rstPublishers.getActiveConnection());

												}

												else	

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								

								//	This	catch	is	required	if	input	string	cannot	be	converted	to

								//	Integer	data	type.	"TCS[VSD]"

								catch	(java.lang.NumberFormatException	ne)

								{

												System.out.println("\nException:	Integer	Input	required.");

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	MoveAny	Function

				public	void	MoveAny(int	intChoice,	Recordset	rsTemp)

				{

								//	Move	Forward	or	backword	per	selection	from	user,

								//	trapping	for	BOF	and	EOF.

								try

								{

												switch(intChoice)

												{

																case	1:			//	Equals	char	of	1.

																				rsTemp.moveNext();

																				if	(rsTemp.getEOF())

																				{

																								System.out.println	(

																												"\nMoving	past	the	last	record	\nTry	again.");

																								rsTemp.moveLast();

																				}

																				break;

																case	2:			//	Equals	char	of	2.

																				rsTemp.movePrevious();

																				if	(rsTemp.getBOF())

																				{

																								System.out.println	(

																												"\nMoving	past	the	first	record	\nTry	again.");

																								rsTemp.moveFirst();

																				}

																				break;

																case	3:			//	Equals	char	of	3.

																				//	Store	the	bookmark	of	the	current	record.

																				varBookmark	=	(Variant)rsTemp.getBookmark();

																				break;

																case	4:				//	Equals	char	of	4.

																				//	Go	to	the	record	indicated	by	the	stored	bookmark.

																				if	(varBookmark	==	null)

																								System.out.println	("\nNo	bookmark	set!");

																				else

																								rsTemp.setBookmark((Object)varBookmark);

																				break;

																default:

																				break;

												}

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rsTemp	!=	null)

												{

																PrintProviderError(rsTemp.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//.PrintIOError	Function

				

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

									//

								//												BOFX2()	Function.											//	

						//		

								

								public	void	BOFX2()

								{

												Recordset	rs	=	null	;

												

								try

												{

																//	Declarations.

																rs	=	new	Recordset();

																Variant[]	arrbmk	=	new	Variant[11];

																rs.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

																String	strCnn	=	"Provider=MSDASQL;Data	Source=Pubs	DSN;"

																								+	"Initial	Catalog=pubs;User	Id=sa;Password=;";

																rs.setActiveConnection	(strCnn);

																//	Open	recorset	with	data	from	authors	table.

																rs.open((new		String("SELECT	*	FROM	authors")),strCnn,AdoEnums.CursorType.STATIC	,AdoEnums.LockType.BATCHOPTIMISTIC,AdoEnums.CommandType.TEXT);

																System.out.println	("\nNumber	of	records	before	filtering	:	"	+	rs.getRecordCount());

																int	ii	=	0;

																

																//	Create	array	of	bookmarks.

																while	(rs.getEOF()	!=	true	&&	ii	<	11)

																{

																				arrbmk[ii]	=	(Variant)rs.getBookmark();

																				ii++;

																				rs.move	(2);

																}

																

																//	set	Filter	to	recordset.

																Variant	bmk=new	Variant();

																bmk.putVariantArray(arrbmk);

																rs.setFilter(bmk);

																System.out.println	("\nNumber	of	records	after	filtering	:	"	+	rs.getRecordCount());

												

																//	Dislay	the	records	after	filtering.

																rs.moveFirst();

																while	(!rs.getEOF())

																{

																				System.out.println	("\t"	+rs.getAbsolutePosition()	+	"		"	+rs.getField("au_lname").getString());

																				rs.moveNext();

																}

																rs.close();

																System.out.println	("\n\nPress	<Enter>	key	to	continue.");

																in.readLine();

																

												}

												catch(AdoException	ae)

												{

																//	Notify	user	of	any	errors	that	result	from	ADO.

																

																//	As	passing	a	Recordset,	check	for	null	pointer	first.

																if	(rs	!=	null)

																{

																				PrintProviderError(rs.getActiveConnection());

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

																else	

																{

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

												}

												//	System	Read	requires	this	catch.

												catch(java.io.IOException	je)

												{

																PrintIOError(je);

												}

								}

				}

CacheSize	Property	Example	(VJ++)

This	example	uses	the	CacheSize	property	to	show	the	difference	in	performance
for	an	operation	performed	with	and	without	a	30-record	cache.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	CacheSizeX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								CacheSizeX();

								System.exit(0);

				}

				//	CacheSizeX	function

				static	void	CacheSizeX()

				{

								//	Define	ADO	Objects.

								Recordset	rstRoySched	=	null;

								//	Declarations.

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								long	timeStart;

								long	timeEnd;

								float	timeNoCache;

								float	timeCache;

								int			intLoop;

								String	strTemp;

								try

								{

												//	Open	the	RoySched	table.

												rstRoySched	=	new	Recordset();

												rstRoySched.open("roysched",	strCnn,

																AdoEnums.CursorType.FORWARDONLY,

																AdoEnums.LockType.READONLY,

																AdoEnums.CommandType.TABLE);

												//	Enumerate	the	Recordset	object	twice	and	record

												//	the	elapsed	time.

												timeStart	=	System.currentTimeMillis();

												for	(intLoop	=	0;	intLoop	<	2;	intLoop++)

												{

																rstRoySched.moveFirst();

																while	(!rstRoySched.getEOF())

																{

																				//	Execute	a	simple	operation	for	the

																				//	performance	test.

																				strTemp	=	rstRoySched.getField("title_id").getString();

																				rstRoySched.moveNext();

																}

												}

												timeEnd	=	System.currentTimeMillis();

												timeNoCache	=(float)(timeEnd	-	timeStart)/1000f;

												//	Cache	records	in	groups	of	30	records.

												rstRoySched.moveFirst();

												rstRoySched.setCacheSize(30);

												timeStart	=	System.currentTimeMillis();

												//	Enumerate	the	Recordset	object	twice	and	record

												//	the	elapsed	time.

												for	(intLoop	=	0;	intLoop	<	2;	intLoop++)

												{

																rstRoySched.moveFirst();

																while	(!rstRoySched.getEOF())

																{

																				//	Execute	a	simple	operation	for	the

																				//	performance	test.

																				strTemp	=	rstRoySched.getField("title_id").getString();

																				rstRoySched.moveNext();

																}

												}

												timeEnd	=	System.currentTimeMillis();

												timeCache	=	(float)(timeEnd	-	timeStart)/1000f;

												//	Display	performance	results.

												System.out.println("\nCaching	Performance	Results:");

												System.out.println("\n\tNo	Cache:	"	+	timeNoCache	+	"	seconds");

												System.out.println("\n\t30-record	cache:	"	+	timeCache	+

																"	seconds");

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstRoySched.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstRoySched.getActiveConnection()==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstRoySched	!=	null)

												{

																PrintProviderError(rstRoySched.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Cancel	Method	Example	(VJ++)

This	example	uses	the	Cancel	method	to	cancel	a	command	executing	on	a
Connection	object	if	the	connection	is	busy.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	CancelX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								CancelX();

								System.exit(0);

				}

				//	CancelX	function

				static	void	CancelX()

				{

								//	Define	command	strings.

								String	strCmdChange	=	"UPDATE	titles	SET	type	=	'self_help'	"

												+	"WHERE	type	=	'psychology'";

								String	strCmdRestore	=	"UPDATE	titles	SET	type	=	'psychology'	"

												+	"WHERE	type	=	'self_help'";

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								//Declarations.

								boolean	booChanged	=	false;

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								try

								{

												//	Open	a	connection.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												//	Begin	a	transaction,	then	execute	a	command	asynchronously.

												cnConn1.beginTrans();

												cnConn1.execute(strCmdChange,

																AdoEnums.ExecuteOption.ASYNCEXECUTE);

												//	do	something	else	for	a	little	while	-	this	could	be	changed.

												for	(int	intLoop	=	0;	intLoop	<	10;	intLoop++)

												{

																System.out.println(intLoop);

												}

												//	If	the	command	has	NOT	completed,	cancel	the	execute

												//	and	roll	back	the	transaction.	Otherwise,	commit	the

												//	transaction.

												if	((cnConn1.getState()	&	AdoEnums.ObjectState.EXECUTING)	>	0)

												{

																cnConn1.cancel();

																cnConn1.rollbackTrans();

																booChanged	=	false;

																System.out.println("\nUpdate	canceled.");

												}

												else

												{

																cnConn1.commitTrans();

																booChanged	=	true;

																System.out.println("\nUpdate	complete.");

												}

												//If	the	change	was	made,	restore	the	data

												//	because	this	is	a	demonstration.

												if(booChanged)

												{

																cnConn1.execute(strCmdRestore);

																System.out.println("\nData	restored.");

												}

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	connection,	check	for	null	pointer	first.

												if	(cnConn1	!=	null)

												{

																PrintProviderError(cnConn1);

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Clone	Method	Example	(VJ++)

This	example	uses	the	Clone	method	to	create	copies	of	a	Recordset	and	then
lets	the	user	position	the	record	pointer	of	each	copy	independently.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	CloneX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								CloneX();

								System.exit(0);

				}

				//	CloneX	function

				static	void	CloneX()

				{

								//	Assign	SQL	statement	and	connection	string	to	variables.

								String	strSQL	=	"SELECT	stor_name	FROM	Stores	"

												+	"ORDER	BY	stor_name";

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								//	Define	ADO	Objects.

								Recordset[]	arstStores	=	null;

								//Declarations.

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strMessage;

								String	strFind;

								int		intLoop;

								boolean	booExit	=	true;

								try

								{

												//	Open	recordset	as	a	static	cursor	type	recordset.

												arstStores	=	new	Recordset[3];

												arstStores[0]	=	new	Recordset();

												arstStores[0].setCursorType(AdoEnums.CursorType.STATIC);

												arstStores[0].setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												arstStores[0].open(strSQL,strCnn,AdoEnums.CursorType.STATIC,

																AdoEnums.LockType.BATCHOPTIMISTIC,AdoEnums.CommandType.TEXT);

												//	Create	two	clones	of	the	original	Recordset.

												arstStores[1]	=	(Recordset)arstStores[0].clone

																(AdoEnums.LockType.BATCHOPTIMISTIC);

												arstStores[2]	=	(Recordset)arstStores[0].clone

																(AdoEnums.LockType.BATCHOPTIMISTIC);

												while(booExit)

												{

																//	Loop	through	the	array	so	that	on	each	pass,

																//	the	user	is	searching	a	different	copy	of	the

																//	same	Recordset.

																for	(intLoop	=	0;	intLoop	<	3;	intLoop++)

																{

																				//	Ask	for	search	string	while	showing	where

																				//	the	current	record	pointer	is	for	each	Recordset

																				strMessage	=	"\nRecordsets	from	stores	table:"	+	"\n"

																								+		"		1	-	Original	-	Record	pointer	at	"

																								+	arstStores[0].getField("stor_name").getString()

																								+	"\n"	+	"		2	-	Clone	-	Record	pointer	at	"

																								+	arstStores[1].getField("stor_name").getString()

																								+	"\n"	+	"		3	-	Clone	-	Record	pointer	at	"

																								+	arstStores[2].getField("stor_name").getString()

																								+	"\n";

																				System.out.println(strMessage);

																				System.out.println("Enter	search	string	for	#"

																								+	(intLoop+1)	+	"(Press	<Enter>	to	Exit.)");

																				if((strFind	=	in.readLine().trim())	==	null)

																				{

																								booExit	=	false;

																								break;

																				}

																				//	Find	the	search	string;	if	there's	no

																				//	match,	jump	to	the	last	record.

																				arstStores[intLoop].setFilter("stor_name	>=	'"	+

																								strFind	+	"'");

																				if	(arstStores[intLoop].getEOF())

																				{

																								arstStores[intLoop].setFilter

																												(new	Integer(AdoEnums.FilterGroup.NONE));

																								arstStores[intLoop].moveLast();

																				}

																}

												}

												//	Cleanup	objects	before	exit.

												arstStores[0].close();

												arstStores[1].close();

												arstStores[2].close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	connection,	check	for	null	pointer	first.

												if	(arstStores[0]	!=	null)

												{

																PrintProviderError(arstStores[0].getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

CompareBookmarks	Method	Example	(VJ++)

This	example	demonstrates	the	CompareBookmarks	method.	The	relative	value
of	bookmarks	is	seldom	needed	unless	a	particular	bookmark	is	somehow
special.

Designate	a	random	row	of	a	Recordset	derived	from	the	Authors	table	as	the
target	of	a	search.	Then	display	the	position	of	each	row	relative	to	that	target.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	CompareBookmarksX	//

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								CompareBookmarksX();

								System.exit(0);

				}

				//	CompareBookmarksX	function

				static	void	CompareBookmarksX()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								int	intCount;

								Variant	varTarget	=	null;

								int	intResult;

								String	strAns;

								int	intDisplaySize	=	15;

								try

								{

												rstAuthors	=	new	Recordset();

												rstAuthors.open("SELECT	*	FROM	authors",

																strCnn,

																AdoEnums.CursorType.STATIC,

																AdoEnums.LockType.READONLY,

																AdoEnums.CommandType.TEXT);

												intCount	=	rstAuthors.getRecordCount();

												System.out.println("Rows	in	the	Recordset	=	"	+

																Integer.toString(intCount));

												//	Exit	if	an	empty	recordset.

												if(intCount	==	0)

																System.exit(0);

												//	Randomize.

												intCount	=	(int)(intCount	*	Math.random());

												//	Get	position	between	0	and	count-1.

												System.out.println("\nRandomly	chosen	row	position	=	"	+

																Integer.toString(intCount)+	"\n");

												rstAuthors.move(intCount,new	Integer(AdoEnums.Bookmark.FIRST));													//	Move	row	to	random	position.

												varTarget	=	(Variant)rstAuthors.getBookmark();

												//	Remember	the	mystery	row.

												intCount	=	0;

												rstAuthors.moveFirst();

												//	Loop	through	recordset.

												while(!rstAuthors.getEOF())

												{

																intResult	=	rstAuthors.compareBookmarks

																				((Variant)rstAuthors.getBookmark(),	varTarget);

																if(intResult	==	AdoEnums.Compare.NOTEQUAL)

																				System.out.println("Row	"	+

																								Integer.toString(intCount)	+

																								":	Bookmarks	are	not	equal.");

																else	if(intResult	==	AdoEnums.Compare.NOTCOMPARABLE)

																				System.out.println("Row	"	+

																								Integer.toString(intCount)	+

																								":	Bookmarks	are	not	comparable.");

																else

																{

																				switch(intResult)

																				{

																				case	AdoEnums.Compare.LESSTHAN	:

																								strAns	=	"less	than";

																								break;

																				case	AdoEnums.Compare.EQUAL	:

																								strAns	=	"equal	to";

																								break;

																				case	AdoEnums.Compare.GREATERTHAN	:

																								strAns	=	"greater	than";

																								break;

																				default	:

																								strAns	=	"in	error	comparing	to";

																								break;

																				}

																				System.out.println("Row	position	"	+

																								Integer.toString(intCount)	+

																								"	is	"	+	strAns	+	"	the	target.");

																}

																if(intCount	%	intDisplaySize	==	0	&&	intCount	>	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																}

																intCount++;

																rstAuthors.moveNext();

												}

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

ConnectionString,	ConnectionTimeout,	and	State	Properties
Example	(VJ++)

This	example	demonstrates	different	ways	of	using	the	ConnectionString
property	to	open	a	Connection	object.	It	also	uses	the	ConnectionTimeout
property	to	set	a	connection	timeout	period,	and	the	State	property	to	check	the
state	of	the	connections.	The	GetState	function	is	required	for	this	procedure	to
run.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	ConnectionStringX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								ConnectionStringX();

								System.exit(0);

				}

				//	ConnectionStringX	function

				static	void	ConnectionStringX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Connection	cnConn2	=	null;

								Connection	cnConn3	=	null;

								Connection	cnConn4	=	null;

								//Declarations.

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strTemp;

								try

								{

												//	Open	a	connection	without	using	a	Data	Source	Name	(DSN).

												cnConn1	=	new	Connection();

												cnConn1.setConnectionString("driver={SQL	Server};"

																+	"server=srv;uid=sa;pwd=;database=Pubs");

												cnConn1.setCommandTimeout(30);

												cnConn1.open();

												//	Open	a	connection	using	a	DSN	and	ODBC	tags.

												cnConn2	=	new	Connection();

												cnConn2.setConnectionString("DSN=Pubs;UID=sa;PWD=;");

												cnConn2.open();

												//	Open	a	connection	using	a	DSN	and	OLE	DB	tags.

												cnConn3	=	new	Connection();

												cnConn3.setConnectionString

																("Data	Source=Pubs;User	ID=sa;Password=;");

												cnConn3.open();

												//	Open	a	connection	using	a	DSN	and	individual

												//	arguments	instead	of	a	connection	string.

												cnConn4	=	new	Connection();

												cnConn4.open("Pubs",	"sa",	"");

												//	Display	the	state	of	the	connections.

												strTemp	=	getState(cnConn1.getState());

												System.out.println("CnConn1	state:	"	+	strTemp);

												strTemp	=	getState(cnConn2.getState());

												System.out.println("CnConn2	state:	"	+	strTemp);

												strTemp	=	getState(cnConn3.getState());

												System.out.println("CnConn3	state:	"	+	strTemp);

												strTemp	=	getState(cnConn4.getState());

												System.out.println("CnConn4	state:	"	+	strTemp);

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												cnConn1.close();

												cnConn2.close();

												cnConn3.close();

												cnConn4.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												System.out.println("Exception:	"	+	ae.getMessage());

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	getState	Function

				static	String	getState(int	intState)

				{

								//	Returns	current	state	of	the	connection	object.

								String	strState=null;

								switch(intState)

								{

								case	AdoEnums.ObjectState.CLOSED	:

												strState	=	new	String("adStateClosed");

												break;

								case	AdoEnums.ObjectState.OPEN		:

												strState	=	new	String("adStateOpen");

												break;

								default	:

												break;

								}

								return	strState;

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Count	Property	Example	(VJ++)

This	example	demonstrates	the	Count	property	with	two	collections	in	the
Employees	database.	The	property	obtains	the	number	of	objects	in	each
collection,	and	sets	the	upper	limit	for	loops	that	enumerate	these	collections.
Another	way	to	enumerate	these	collections	without	using	the	Count	property
would	be	to	use	For	Each...Next	statements.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	CountX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								CountX();

								System.exit(0);

				}

				//	CountX	function

				static	void	CountX()

				{

								//	Define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								int	intLoop;

								int	intDisplaySize	=	20;

								int	recCount=0;

								try

								{

												rstEmployees	=	new	Recordset();

												//	Open	recordset	with	data	from	Employees	table.

												rstEmployees.open("employee",	strCnn,

																AdoEnums.CursorType.FORWARDONLY,

																AdoEnums.LockType.READONLY,

																AdoEnums.CommandType.TABLE);

												//	Print	information	about	Fields	collection.

												System.out.println(rstEmployees.getFields().getCount()	+

																"	Fields	in	Employees");

												for	(intLoop	=	0;	intLoop	<

																rstEmployees.getFields().getCount();	intLoop++)

												{

																System.out.println("\t"	+

																				rstEmployees.getFields().getItem(intLoop).getName());

												}

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Print	information	about	Properties	collection.

												System.out.println(rstEmployees.getProperties().getCount()	+

																"	Properties	in	Employees");

												for	(intLoop	=	0;	intLoop	<

																rstEmployees.getProperties().getCount();	intLoop++)

												{

																System.out.println("\t"	+

																				rstEmployees.getProperties().getItem(intLoop).getName());

																recCount++;

																if	(recCount	>=	intDisplaySize)

																{

																				System.out.println("\n\nPress	<Enter>	to	continue..");

																				in.readLine();

																				recCount	=	0;

																}

												}

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstEmployees.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstEmployees.getActiveConnection()==null)

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

												else

												{

																//	As	passing	a	Recordset,	check	for	null	pointer	first.

																if	(rstEmployees	!=	null)

																{

																				PrintProviderError(rstEmployees.getActiveConnection());

																}

																else

																{

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

CursorType,	LockType,	and	EditMode	Properties	Example
(VJ++)

This	example	demonstrates	setting	the	CursorType	and	LockType	properties
before	opening	a	Recordset.	It	also	shows	the	value	of	the	EditMode	property
under	various	conditions.	The	EditModeOutput	function	is	required	for	this
procedure	to	run.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	EditModeX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								EditModeX	();

								System.exit(0);

				}

				//	EditModeX	function

				static	void	EditModeX	()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								try

								{

												//	Open	recordset	with	data	from	Employees	table.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstEmployees	=	new	Recordset();

												rstEmployees.setActiveConnection(cnConn1);

												rstEmployees.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												rstEmployees.setCursorType(AdoEnums.CursorType.STATIC);

												rstEmployees.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												rstEmployees.open("employee",	cnConn1,

																AdoEnums.CursorType.STATIC,

																AdoEnums.LockType.BATCHOPTIMISTIC,

																AdoEnums.CommandType.TABLE);

												//	Show	the	EditMode	property	under	different	editing	states.

												rstEmployees.addNew();

												rstEmployees.getField("emp_id").setString("T-T55555M");

												rstEmployees.getField("fname").setString("temp_fname");

												rstEmployees.getField("lname").setString("temp_lname");

												EditModeOutput("After	AddNew:",	rstEmployees.getEditMode());

												rstEmployees.updateBatch();

												EditModeOutput("After	Update:",	rstEmployees.getEditMode());

												rstEmployees.getField("fname").setString("test");

												EditModeOutput("After	Edit:",	rstEmployees.getEditMode());

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Delete	new	record	because	this	is	a	demonstration.

												cnConn1.execute(

																"DELETE	FROM	employee	WHERE	emp_id	=	'T-T55555M'");

												//	Cleanup	objects	before	exit.

												rstEmployees.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(cnConn1==null)

																System.out.println("Exception:	"	+	ae.getMessage());

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	EditModeOutput	Function

				static	void	EditModeOutput(String	strTemp,	int	intEditMode)

				{

								String	strMessage="";

								//	Print	report	based	on	the	value	of	the	EditMode

								//	property.

								System.out.println("\n"	+	strTemp);

								strMessage	="\n\tEditMode	=	";

								switch(intEditMode)

								{

								case	AdoEnums.EditMode.NONE	:

												strMessage+="adEditNone";

												break;

								case	AdoEnums.EditMode.INPROGRESS	:

												strMessage+="adEditInProgress";

												break;

								case	AdoEnums.EditMode.ADD	:

												strMessage+="adEditAdd";

												break;

								default	:

												break;

								}

								System.out.println(strMessage);

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Delete	Method	Example	(VJ++)

This	example	uses	the	Delete	method	to	remove	a	specified	record	from	a
Recordset.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	DeleteX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								DeleteX();

								System.exit(0);

				}

				//	DeleteX	function

				static	void	DeleteX()

				{

								//	Define	ADO	Objects.

								Recordset	rstRoySched	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String		strMessage="";

								String		strTitleID;

								int	intLoRange	=0;

								int	intHiRange	=0;

								int	intRoyalty	=0;

								boolean	bolFound;

								try

								{

												rstRoySched	=	new	Recordset();

												rstRoySched.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												rstRoySched.setCursorType(AdoEnums.CursorType.STATIC);

												rstRoySched.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												//	Open	RoySched	table.

												rstRoySched.open("SELECT	*	FROM	roysched	"	+

																"WHERE	royalty	=	20",	strCnn,

																AdoEnums.CursorType.STATIC,

																AdoEnums.LockType.BATCHOPTIMISTIC,

																AdoEnums.CommandType.TEXT);

												//	Prompt	for	a	record	to	delete.

												strMessage	=	"Before	delete	there	are	"

																+	rstRoySched.getRecordCount()

																+	"	titles	with	20	percent	royalty:"	+	"\n\n";

												while(!rstRoySched.getEOF())

												{

																strMessage	+=	rstRoySched.getField("title_id").getString()	+	

																				"\n\n";

																rstRoySched.moveNext();

												}

												strMessage	+=	"Enter	the	ID	of	a	record	to	delete:"	+	"\n";

												System.out.println(strMessage);

												strTitleID	=	in.readLine().trim().toUpperCase();

												//	Move	to	the	record	and	save	data	so	it	can	be	restored.

												rstRoySched.setFilter("title_id	=	'"	+	strTitleID	+	"'");

												if(!(rstRoySched.getRecordCount()==0))

												{

																intLoRange	=	rstRoySched.getField("lorange").getInt();

																intHiRange	=	rstRoySched.getField("hirange").getInt();

																intRoyalty	=	rstRoySched.getField("royalty").getInt();

																bolFound	=	true;

												}

												else

												{

																System.out.println("\nIncorrect	ID.	No	Record	deleted.");

																bolFound	=	false;

												}

												//	Delete	the	record.

												if(bolFound)

												{

																rstRoySched.delete();

																rstRoySched.updateBatch();

												}

												//	Show	the	results.

												rstRoySched.setFilter(new	Integer(AdoEnums.FilterGroup.NONE));

												rstRoySched.requery();

												strMessage	="";

												strMessage	=	"\n\nAfter	delete	there	are	"

																+	rstRoySched.getRecordCount()

																+	"	titles	with	20	percent	royalty:"	+	"\n\n";

												while(!rstRoySched.getEOF())

												{

																strMessage	+=	rstRoySched.getField("title_id").getString()	+	

																				"\n\n";

																rstRoySched.moveNext();

												}

												System.out.println(strMessage);

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Restore	the	data	because	this	is	a	demonstration.

												if(bolFound)

												{

																rstRoySched.addNew();

																rstRoySched.getField("title_id").setString(strTitleID);

																rstRoySched.getField("lorange").setInt(intLoRange);

																rstRoySched.getField("hirange").setInt(intHiRange);

																rstRoySched.getField("royalty").setInt(intRoyalty);

																rstRoySched.updateBatch();

												}

												//	Cleanup	objects	before	exit.

												rstRoySched.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

																if	(rstRoySched	!=	null)

																{

																				PrintProviderError(rstRoySched.getActiveConnection());

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

																else

																{

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Description,	NativeError,	Number,	Source,	and	SQLState
Properties	Example	(VJ++)

This	example	triggers	an	error,	traps	it,	and	displays	the	Description,
HelpContext,	HelpFile,	NativeError,	Number,	Source,	and	SQLState	properties
of	the	resulting	Error	object.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	DescriptionX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								DescriptionX();

								System.exit(0);

				}

				//	DescriptionX	function

				static	void	DescriptionX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								try

								{

												//	Intentionally	trigger	an	error.

												cnConn1	=	new	Connection();

												cnConn1.open("nothing");

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												PrintProviderError(cnConn1);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Execute,	Requery,	and	Clear	Methods	Example	(VJ++)

This	example	demonstrates	the	Execute	method	when	run	from	both	a
Command	object	and	a	Connection	object.	It	also	uses	the	Requery	method	to
retrieve	current	data	in	a	recordset,	and	the	Clear	method	to	clear	the	contents	of
the	Errors	collection.	The	ExecuteCommand	and	PrintOutput	procedures	are
required	for	this	procedure	to	run.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

public	class	ExecuteX

{

//	Main	Function

public	static	void	main	(String[]	args)

{

				ExecuteX();

}

//	ExecuteX	Function

static	void	ExecuteX()

{

				//	Define	string	variables.

				String	strSQLChange	=	"UPDATE	Titles	SET	Type	=	"

												+	"'self_help'	WHERE	Type	=	'psychology'";

				String	strSQLRestore	=	"UPDATE	Titles	SET	Type	=	"

												+	"'psychology'	WHERE	Type	=	'self_help'";

				String	strCnn	=	"Provider=sqloledb;Data	Source=Server4;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

				//	Define	ADO	objects.

				Connection		cnConn1				=	null;

				Command		cmdChange		=	null;

				Recordset		rsTitles		=	null;

				try

				{

								//	Open	connection.

								cnConn1	=	new	Connection	();

								cnConn1.open(strCnn,	"",	"",	AdoEnums.CommandType.UNSPECIFIED);

								//	Create	command	object.

								cmdChange	=	new	Command();

								cmdChange.setActiveConnection	(cnConn1);

								cmdChange.setCommandText	(strSQLChange);

								//	Open	recordset	with	Titles	table.

								rsTitles	=	new	Recordset();

								rsTitles.open("Titles",	cnConn1,

																						AdoEnums.CursorType.STATIC,

																						AdoEnums.LockType.OPTIMISTIC,

																						AdoEnums.CommandType.TABLE);

								//	Print	report	of	original	data.

								System.out.println("\n\n\tData	in	Titles	table	"

																											+	"before	executing	the	query:	\n");

								PrintOutput(rsTitles);

								//	Clear	extraneous	errors	from	the	Errors	collection.

								cnConn1.getErrors().clear();

								//	Call	the	ExecuteCommand	subroutine	to

								//	execute	cmdChange	command.

								ExecuteCommand(cmdChange,	rsTitles);

								//	Print	report	of	new	data.

								System.out.println("\n\n\tData	in	Titles	table	after	"

												+	"executing	the	query:	\n");

								PrintOutput(rsTitles);

								//	Use	the	Connection	object's	execute	method	to

								//	execute	SQL	statement	to	restore	data.

								cnConn1.execute(strSQLRestore);

								//	Print	report	of	restored	data.

								System.out.println("\n\n\tData	after	executing	the	query	"

												+	"to	restore	the	original	information:	\n");

								PrintOutput(rsTitles);

								//	Clean	up	objects	before	exit.

								rsTitles.close();

								cnConn1.close();

				}		//	End	Try	statement.

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	Recordset,	check	for	null	pointer	first.

								if	(rsTitles	!=	null)

								{

												PrintProviderError(rsTitles.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

}

//	ExecuteCommand	Function

static	void	ExecuteCommand(Command	cmdTemp,	Recordset	rstTemp)

{

				try

				{

								//	CommandText	property	already	set	before	function	was	called.

								cmdTemp.setCommandType(AdoEnums.CommandType.TEXT);

								cmdTemp.execute();

								//	Retrieve	the	current	data	by	requerying	the	recordset.

								rstTemp.requery(AdoEnums.CommandType.UNKNOWN);

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								PrintProviderError(rstTemp.getActiveConnection());

				}

}

//		PrintOutput	Function

static	void	PrintOutput(Recordset	rstTemp)

{

				//	Ensure	at	top	of	recordset.

				rstTemp.moveFirst();

				//	If	EOF	is	true,	then	no	data	and	skip	print	loop.

				if(rstTemp.getEOF())

				{

								System.out.println("\tRecordset	empty\n");

				}

				else

				{

								//	Enumerate	Recordset	and	print	data	from	each.

								while(!(rstTemp.getEOF()))

								{

												//	Convert	variant	string	to	convertable	string	type.

												System.out.println("\t"

																+	rstTemp.getFields().getItem("Title").getValue()	+	"	"

																+	rstTemp.getFields().getItem("Type").getValue()	+	"\n");

												rstTemp.moveNext();

								}

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Filter	and	RecordCount	Properties	Example	(VJ++)

This	example	uses	the	Filter	property	to	open	a	new	Recordset	based	on	a
specified	condition	applied	to	an	existing	Recordset.	It	uses	the	RecordCount
property	to	show	the	number	of	records	in	the	two	Recordsets.	The	FilterField
function	is	required	for	this	procedure	to	run.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	FilterX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								FilterX();

								FilterX2();

								System.exit(0);

				}

				//	FilterX	function

				static	void	FilterX()

				{

								//	Define	ADO	Objects.

								Recordset	rstPublishers	=	null;

								Recordset	rstPublishersCountry	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								int	intPublisherCount;

								String	strCountry;

								String	strMessage;

								try

								{

												rstPublishers	=	new	Recordset();

												//	Open	recordset	with	data	from	Publishers	table.

												rstPublishers.setCursorType(AdoEnums.CursorType.STATIC);

												rstPublishers.open("publishers",	strCnn,

																										AdoEnums.CursorType.STATIC,

																										AdoEnums.LockType.READONLY,

																										AdoEnums.CommandType.TABLE);

												//	Populate	the	Recordset.

												intPublisherCount	=	rstPublishers.getRecordCount();

												//	Get	user	input.

												System.out.println("Enter	a	country	to	filter	on:");

												strCountry	=	in.readLine().trim();

												if(!strCountry.equals(""))

												{

																//	Open	a	filtered	Recordset	object.

																rstPublishersCountry	=	

																				FilterField(rstPublishers,	"Country",	strCountry);

																if(rstPublishersCountry.getRecordCount()==0)

																				System.out.println("\nNo	publishers	from	that	country.");

																else

																{

																				//	Print	number	of	records	for	the	original

																				//	Recordset	object	and	the	filtered	Recordset

																				//	object.

																				strMessage	=	"\nOrders	in	original	recordset:	"	+	"\n"

																								+	intPublisherCount	+	"\n"

																								+	"Orders	in	filtered	recordset	(Country	=	'"

																								+	strCountry	+	"'):	\n"	

																								+	rstPublishersCountry.getRecordCount();

																				System.out.println(strMessage);

																}

																rstPublishersCountry.close();

												}

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstPublishers.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstPublishers	!=	null)

												{

																PrintProviderError(rstPublishers.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	FilterField	Function

				static	Recordset	FilterField(Recordset	rstTemp,String	strField,

																																	String	strFilter)

				{

								//	Set	a	filter	on	the	specified	Recordset	object	and	then

								//	open	a	new	Recordset	object.

								rstTemp.setFilter(strField	+	"	=	'"	+	strFilter	+	"'");

								return	rstTemp;

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

				//	FilterX2	function

				static	void	FilterX2()

				{

								//	Define	ADO	Objects.

								Recordset	rstPublishers	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								try

								{

												rstPublishers	=	new	Recordset();

												//	Open	recordset	with	data	from	Publishers	table.

												rstPublishers.setCursorType(AdoEnums.CursorType.STATIC);

												rstPublishers.open("SELECT	*	FROM	publishers	"	+

																																"WHERE	Country	=	'USA'",	strCnn,

																																AdoEnums.CursorType.STATIC,

																																AdoEnums.LockType.READONLY,

																																AdoEnums.CommandType.TEXT);

												//	Print	current	data	in	recordset.

												rstPublishers.moveFirst();

												while(!rstPublishers.getEOF())

												{

																System.out.println(rstPublishers.getField("pub_name").getString()

																															+",	"

																															+	rstPublishers.getField("country").getString());

																rstPublishers.moveNext();

												}

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstPublishers.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	Check	for	null	pointer	for	connection	object.

												if	(rstPublishers.getActiveConnection()==null)

												{

																				System.out.println("Exception:	"	+	ae.getMessage());

												}

												else

												{

																//	As	passing	a	Recordset,	check	for	null	pointer	first.

																if	(rstPublishers	!=	null)

																{

																				PrintProviderError(rstPublishers.getActiveConnection());

																}

																else

																{

																				System.out.println("Exception:	"	+	ae.getMessage());

																}

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

}

Find	Method	Example	(VJ++)

This	example	uses	the	Recordset	object's	Find	method	to	locate	and	count	the
number	of	business	titles	in	the	Pubs	database.	The	example	assumes	the
underlying	provider	does	not	support	similar	functionality.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	FindX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								FindX();

								System.exit(0);

				}

				//	FindX	function

				static	void	FindX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstTitles	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								Variant	varMark	=	null;

								int	intCount	=	0;

								try

								{

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstTitles	=	new	Recordset();

												rstTitles.open("SELECT	title_id	FROM	titles",

																				cnConn1,

																				AdoEnums.CursorType.STATIC,

																				AdoEnums.LockType.READONLY,

																				AdoEnums.CommandType.TEXT);

												//		The	default	parameters	are	sufficient	to	search	forward

												//		through	a	Recordset.

												rstTitles.find("title_id	LIKE	'BU%'");

												//	Skip	current	record	to	avoid	finding	the	same	row	repeatedly.

												//	The	bookmark	is	redundant	because	Find	searches	from	current

												//	position.

												while(!rstTitles.getEOF())	//	Continue	if	last	find	succeeded.

												{

																System.out.println("Title	ID:	"

																																			+	rstTitles.getField("title_id").getString());

																intCount++;	//	Count	the	last	title	found.

																varMark	=	(Variant)rstTitles.getBookmark();	

																//	Note	current	position.

																rstTitles.find("title_id	LIKE	'BU%'",

																									1,

																									AdoEnums.SearchDirection.FORWARD,

																									varMark);

												}

												//	Cleanup	objects	before	exit.

												rstTitles.close();

												cnConn1.close();

												System.out.println("\nThe	number	of	business	titles	is	"	+

																															Integer.toString(intCount));

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

GetRows	Method	Example	(VJ++)

This	example	uses	the	GetRows	method	to	retrieve	a	specified	number	of	rows
from	a	Recordset	and	to	fill	an	array	with	the	resulting	data.	The	GetRows
method	will	return	less	than	the	desired	number	of	rows	in	two	cases:	either	if
EOF	has	been	reached,	or	if	GetRows	tried	to	retrieve	a	record	that	was	deleted
by	another	user.	The	function	returns	False	only	if	the	second	case	occurs.	The
GetRowsOK	function	is	required	for	this	procedure	to	run.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	GetRowsX	

{

					//	The	main	entry	point	for	the	application.

				static	Variant	avarRecords	=	null;

				public	static	void	main	(String[]	args)

				{

								GetRowsX();

								System.exit(0);

				}

				//	GetRowsX		function

				static	void	GetRowsX()

				{

								//	Define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	line	=	null;

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								int	intRows;

								int	intRecord;

								int	intUBound;

								int	intDisplaysize	=	15;

								try

								{

												//	Open	recordset	with	names	and	hire	dates	from	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.open("SELECT	fName,	lName,	hire_date	"	+

																																"FROM	Employee	ORDER	BY	lName",	strCnn,

																																AdoEnums.CursorType.FORWARDONLY,

																																AdoEnums.LockType.READONLY,

																																AdoEnums.CommandType.TEXT);

												while(true)

												{

																//	Get	user	input	for	number	of	rows.

																System.out.println(

																"\nEnter	number	of	rows	to	retrieve.	(<=	0	to	Exit)");

																line	=	in.readLine().trim();

																//	Convert	string	entry	to	int.

																intRows	=	Integer.parseInt(line);

																//	Exit	the	application	if	intRows	is	negative	or	zero.

																if(intRows	<=	0)

																				break;

																//	If	GetRowsOK	is	successful,	print	the	results,

																//	noting	if	the	end	of	the	file	was	reached.

																if(GetRowsOK(rstEmployees,intRows))

																{

																				SafeArray	sa	=	avarRecords.toSafeArray();

																				intUBound	=	sa.getUBound(2);

																				if	(intRows	>	(intUBound	+	1))

																								System.out.println("\n(Not	enough	records	in	"	+

																												"Recordset	to	retrieve	"	+	intRows	+	"	rows.)");

																				System.out.println("\n"	+	(intUBound+	1)	+

																																							"	records	found.\n");

																				//	Print	the	retrieved	data.

																				for	(intRecord	=	sa.getLBound();

																									intRecord		<=	intUBound;	intRecord++)

																				{

																								System.out.println(

																												"	"	+	sa.getString(0,	intRecord)	+	"	"	+

																												sa.getString(1,	intRecord)	+	",	"	+

																												sa.getString(2,	intRecord));

																								if	(((intRecord	+1)	%	intDisplaysize)	==	0)

																								{

																												System.out.println("\nPress	<Enter>	to	continue..");

																												in.readLine();

																								}

																				}

																}

																else

																{

																				//	Assuming	the	GetRows	error	was	due	to	data

																				//	changes	by	another	user,	use	Requery	to

																				//	refresh	the	Recordset	and	start	over.

																				System.out.println("\nGetRows	failed--retry?	(Y/N)");

																				if(in.readLine().trim().toUpperCase().equals("Y"))

																								rstEmployees.requery();

																				else

																				{

																								System.out.println("GetRows	failed!");

																								break;

																				}

																}

																//	Because	using	GetRows	leaves	the	current

																//	record	pointer	at	the	last	record	accessed,

																//	move	the	pointer	back	to	the	beginning	of	the

																//	Recordset	before	looping	back	for	another	search.

																rstEmployees.moveFirst();

												}

												//	Cleanup	objects	before	exit.

												rstEmployees.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								//	Display	Error	that	the	application	has	attempted	to	convert

								//	a	string	of	inappropriate	format	to	one	of	the	numeric	types.

								catch(java.lang.NumberFormatException	ne)

								{

												System.out.println(

																"Exception:	Must	specify	an	Integer	value.");

								}

				}

				//	GetRowsOK	Function

				static	boolean	GetRowsOK(Recordset	rstTemp,int	intNumber)

								{

								//	Store	results	of	GetRows	method	in	array.

								avarRecords	=	rstTemp.getRows(intNumber);

								//	Return	False	only	if	fewer	than	the	desired

								//	number	of	rows	were	returned,	but	not	because	the

								//	end	of	the	Recordset	was	reached.

								if	(intNumber	>	(avarRecords.toSafeArray().getUBound(2)+	1)

																				&&	!(rstTemp.getEOF()))

												return	false;

								else

												return	true;

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

GetString	Method	Example	(VJ++)

This	example	demonstrates	the	GetString	method.

Assume	you	are	debugging	a	data	access	problem	and	want	a	quick,	simple	way
of	printing	the	current	contents	of	a	small	Recordset.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	GetStringX

{

					//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								GetStringX	();

								System.exit(0);

				}

				//	GetStringX		function

				static	void	GetStringX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								String	strOutput;

								try

								{

												//	Get	the	user	input	for	state.

												System.out.println(

																"Enter	a	state	(CA,	IN,	KS,	MD,	MI,	OR,	TN,	UT):	");

												String	strState	=	in.readLine().trim();

												String	strQuery	=	

																"SELECT	au_fname,	au_lname,	address,	city	FROM	Authors	"	+

																										"WHERE	state	=	'"	+	strState	+	"'";

												//	Open	recordset	with	data	from	Authors	table.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstAuthors	=	new	Recordset();

												rstAuthors.open(strQuery,

																					cnConn1,

																					AdoEnums.CursorType.STATIC,

																					AdoEnums.LockType.READONLY,

																					AdoEnums.CommandType.TEXT);

												if	(rstAuthors.getRecordCount()	>	0)

												{

																//	Use	all	defaults:	get	all	rows,	TAB	column	delimiter,	

																//	CARRIAGE	RETURN

																//	row	delimiter,	empty-string	null	delimiter.

																strOutput	=	

																				rstAuthors.getString(AdoEnums.StringFormat.CLIPSTRING,

																				rstAuthors.getRecordCount(),

																				"\t	",

																				"\n",

																				"").trim();

																System.out.println("\nState	=	'"	+	strState	+	"'"	+

																				"\n\n"	+

																				"Name													Address													City"	+

																				"\n");

																System.out.println(strOutput);

												}

												else

																System.out.println("\nNo	rows	found	for	state	=	'"	+

																				strState	+	"'\n");

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												cnConn1.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Handler	Property	Example	(VJ++)

This	example	demonstrates	the	RDS	DataControl	object	Handler	property.	(See
DataFactory	Customization	for	more	details.)

Assume	the	following	sections	in	the	parameter	file,	MSDFMAP.INI,	located	on
the	server:

[connect	AuthorDataBase]

Access=ReadWrite

Connect="DSN=Pubs"

[sql	AuthorById]

SQL="SELECT	*	FROM	Authors	WHERE	au_id	=	?"

Your	code	looks	like	the	following.	The	command	assigned	to	the	SQL	property
will	match	the	AuthorById	identifier,	and	retrieve	a	row	for	author,	Michael
O'Leary.	Although	the	Connect	property	in	your	code	specifies	the	Northwind
data	source,	that	data	source	will	be	overwritten	by	the	MSDFMAP.INI	connect
section.	The	DataControl	object	Recordset	property	is	assigned	to	a
disconnected	Recordset	object	purely	as	a	coding	convenience.

import	com.ms.wfc.data.*;

import	com.ms.wfc.data.rds.*;

import	java.io.*	;

public	class	HandlerX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								HandlerX();

								System.exit(0);

				}

				//	HandlerX	function

				static	void	HandlerX()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								int	intCount	=	0;

								int	intDisplaysize	=	15;

								try

								{

												IBindMgr	dc	=	(IBindMgr)	new	DataControl();

												dc.setServer("http://tcsp636");

												dc.setConnect("Data	Source=AuthorDatabase");

												dc.setSQL("AuthorById(267-41-2394)");

												dc.Refresh();																								//	Retrieve	the	record.

												//	Use	another	recordset	as	a	convenience.

												rstAuthors	=	(Recordset)dc.getRecordset();

												System.out.println("Author	is	'"	+

																															rstAuthors.getField("au_fname").getString()	+

																															"	"	+

																															rstAuthors.getField("au_lname").getString()	+

																															"'");

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								catch(java.lang.UnsatisfiedLinkError	e)

								{

												System.out.println("Exception:	"	+	e.getMessage());

								}

								catch(java.lang.NullPointerException	ne)

								{

												System.out.println(

												"Exception:	Attempt	to	use	null	where	an	object	is	required.");

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

InternetTimeout	Property	Example	(VJ++)

This	example	demonstrates	the	InternetTimeout	property,	which	exists	on	the
DataControl	and	DataSpace	objects.	In	this	case,	the	InternetTimout	property	is
demonstrated	on	the	DataControl	object	and	the	timeout	is	set	to	20	seconds.

//	The	WFC	class	includes	the	ADO	objects.

import	com.ms.wfc.data.*;

import	com.ms.wfc.data.rds.*;

import	java.io.*	;

public	class	InternetTimeoutX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								InternetTimeoutX();

								System.exit(0);

				}

				//	InternetTimeoutX	function

				static	void	InternetTimeoutX()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								int	intCount	=	0;

								int	intDisplaysize	=	15;

								try

								{

												IBindMgr	dc	=	(IBindMgr)	new	DataControl();

												dc.setServer("http://tcsp636");

												dc.setConnect("DSN=Pubs");

												dc.setSQL("SELECT	*	FROM	Authors");

												dc.setInternetTimeout(20000);				//	Wait	at	least	20	seconds.

												dc.Refresh();

												rstAuthors	=	(Recordset)dc.getRecordset();

												while(!rstAuthors.getEOF())

												{

																System.out.println(rstAuthors.getField

																				("au_fname").getString()	+	"	"	+	

																				rstAuthors.getField("au_lname").getString());

																intCount++;

																if(intCount	%	intDisplaysize	==	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																				intCount	=	0;

																}

																rstAuthors.moveNext();

												}

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								catch(java.lang.UnsatisfiedLinkError	e)

								{

												System.out.println("Exception:	"	+	e.getMessage());

								}

								catch(java.lang.NullPointerException	ne)

								{

												System.out.println(

												"Exception:	Attempt	to	use	null	where	an	object	is	required.");

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

IsolationLevel	and	Mode	Properties	Example	(VJ++)

This	example	uses	the	Mode	property	to	open	an	exclusive	connection,	and	the
IsolationLevel	property	to	open	a	transaction	that	is	conducted	in	isolation	of
other	transactions.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	IsolationLevelX

{

//	The	main	entry	point	for	the	application.

public	static	void	main	(String[]	args)

{

				IsolationLevelX();

				System.exit(0);

}

//	IsolationLevelX	Function

static	void	IsolationLevelX()

{

				//	Define	ADO	Objects

				Connection	cnn1	=	null;

				Recordset	rstTitles	=	null;

				//	Assign	connection	string	to	variable

				String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																				"Initial	Catalog=Pubs;User	Id=sa;Password=;";

				//	Declarations

				BufferedReader	in	=	

								new	BufferedReader	(new	InputStreamReader(System.in));

				String	line	=	null;

				try

				{

								//	Open	connection	and	Titles	table

								cnn1	=	new	Connection();

								cnn1.setMode(AdoEnums.ConnectMode.SHAREEXCLUSIVE);

								cnn1.setIsolationLevel(AdoEnums.IsolationLevel.ISOLATED);

								cnn1.open(strCnn);

								rstTitles	=	new	Recordset();

								rstTitles.setCursorType(AdoEnums.CursorType.DYNAMIC);

								rstTitles.setLockType(AdoEnums.LockType.PESSIMISTIC);

								rstTitles.open("Titles",	cnn1,	AdoEnums.CursorType.DYNAMIC,	

												AdoEnums.LockType.PESSIMISTIC);

								cnn1.beginTrans();

								//	Display	the	connection	mode

								if	(cnn1.getMode()	==	AdoEnums.ConnectMode.SHAREEXCLUSIVE)

												System.out.println("\n\tConnection	mode	is	exclusive");

								else

												System.out.println("\n\tConnection	mode	is	not	exclusive");

								System.out.println("\nPress	<Enter>	to	continue..");

								in.readLine();

								//	Display	the	Isolation	level

								if	(cnn1.getIsolationLevel()	==	AdoEnums.IsolationLevel.ISOLATED)

												System.out.println("\tTransaction	is	Isolated\n");

								else

												System.out.println("\tTransaction	is	not	Isolated\n");

								System.out.println("\nPress	<Enter>	to	continue..");

								in.readLine();

								//	Change	the	type	of	psychology	titles

								while(!rstTitles.getEOF())

								{

												if(rstTitles.getField("Type").getString().trim().

																equals(new	String("psychology")))

												{

																rstTitles.getField("Type").setString("self_help");

																rstTitles.update();

												}

												rstTitles.moveNext();

								}

								//	Print	current	data	in	recordset

								rstTitles.requery();

								while(!rstTitles.getEOF())

								{

												System.out.println(rstTitles.getField("Title").getString()	+	

																"	-	"	+	rstTitles.getField("Type").getString());

												rstTitles.moveNext();

								}

								System.out.println("\nPress	<Enter>	to	continue..");

								in.readLine();

								//	Restore	original	data

								cnn1.rollbackTrans();

								//	Cleanup	objects	before	exit

								rstTitles.close();

								cnn1.close();

				}

				catch(AdoException	ae)

				{

								//	Notify	the	user	of	any	errors	that	result	from	ADO

								//	As	passing	a	connection,	check	for	null	pointer	first

								if(cnn1	!=null)

								{

												PrintProviderError(cnn1);

								}

								else

								{

												System.out.println("Exception:"	+	ae.getLocalizedMessage());

								}

				}

				//	System	Read	requires	this	catch

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Item	Property	Example	(VJ++)

This	example	demonstrates	how	the	Item	property	accesses	members	of	a
collection.	The	example	opens	the	Authors	table	of	the	Pubs	database	with	a
parameterized	command.

The	parameter	in	the	command	issued	against	the	database	is	accessed	from	the
Command	object's	Parameters	collection	by	index	and	name.	Then	the	fields	of
the	returned	Recordset	are	accessed	from	that	object's	Fields	collection	by	index
and	name.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	ItemX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								ItemX();

								System.exit(0);

				}

				//	ItemX		function

				static	void	ItemX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstAuthors	=	null;

								Command	cmd	=	null;

								Parameter	prm	=	null;

								Field	fld	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								Variant	[]	varColumn	=	null;

								int	intIndex;

								int	intLimit;

								try

								{

												cnConn1	=	new	Connection();

												rstAuthors	=	new	Recordset();

												cmd	=	new	Command();

												//		Set	the	array	with	the	Authors	table	field	(column)	names.

												varColumn	=	new	Variant[9];

												varColumn[0]	=	new	Variant("au_id");

												varColumn[1]	=	new	Variant("au_lname");

												varColumn[2]	=	new	Variant("au_fname");

												varColumn[3]	=	new	Variant("phone");

												varColumn[4]	=	new	Variant("address");

												varColumn[5]	=	new	Variant("city");

												varColumn[6]	=	new	Variant("state");

												varColumn[7]	=	new	Variant("zip");

												varColumn[8]	=	new	Variant("contract");

												cmd.setCommandText("SELECT	*	FROM	Authors	WHERE	state	=	?");

												prm	=	cmd.createParameter("ItemXparm",

																																						AdoEnums.DataType.CHAR,

																																						AdoEnums.ParameterDirection.INPUT,

																																						2,

																																						"CA");

												cmd.getParameters().append(prm);

												cnConn1.open(strCnn);

												cmd.setActiveConnection(cnConn1);

												//	Connection	and	CommandType	are	omitted

												//	because	a	Command	Object	is	provided.

												rstAuthors.open(cmd,

																					null	,

																					AdoEnums.CursorType.STATIC,

																					AdoEnums.LockType.READONLY);

												System.out.println(

																"The	Parameters	collection	accessed	by	index...");

												prm	=	cmd.getParameters().getItem(0);

												System.out.println("Parameter	name	=	'"	+

																															prm.getName()	+

																															"',	value	=	'"	+

																															prm.getValue().toString()	+	"'\n");

												System.out.println(

																"The	Parameters	collection	accessed	by	name...");

												prm	=	cmd.getParameters().getItem("ItemXparm");

												System.out.println("Parameters	name	=	'"	+

																															prm.getName()	+

																															"',	value	=	'"	+

																															prm.getValue().toString()	+	"'\n");

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

												System.out.println(

																"The	Fields	collection	accessed	by	index...");

												rstAuthors.moveFirst();

												intLimit	=	rstAuthors.getFields().getCount()	-	1;

												for(intIndex	=	0;	intIndex	<=	intLimit;	intIndex++)

												{

																fld	=	rstAuthors.getFields().getItem(intIndex);

																short	intVtType	=	fld.getValue().getvt();

																String	strFieldValue;

																switch(intVtType)

																{

																case	Variant.VariantString	:

																				strFieldValue	=	fld.getValue().toString();

																				break;

																case	Variant.VariantBoolean	:

																				if(fld.getValue().getBoolean())

																								strFieldValue	=	"True";

																				else

																								strFieldValue	=	"False";

																				break;

																default	:

																				strFieldValue	=	fld.getValue().toString();

																				break;

																}

																System.out.println("Field	"	+

																																			Integer.toString(intIndex)	+

																																			"	:	Name	=	'"	+

																																			fld.getName()	+

																																			"',	value	=	'"	+

																																			strFieldValue	+

																																			"'");

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												System.out.println("The	Fields	collection	accessed	by	name...");

												rstAuthors.moveFirst();

												for(intIndex	=	0;	intIndex	<=	8;	intIndex++)

												{

																fld	=	rstAuthors.getFields().getItem

																				(varColumn[intIndex].toString());

																short	intVtType	=	fld.getValue().getvt();

																String	strFieldValue;

																switch(intVtType)

																{

																case	Variant.VariantString	:

																				strFieldValue	=	fld.getValue().toString();

																				break;

																case	Variant.VariantBoolean	:

																				if(fld.getValue().getBoolean())

																								strFieldValue	=	"True";

																				else

																								strFieldValue	=	"False";

																				break;

																default	:

																				strFieldValue	=	fld.getValue().toString();

																				break;

																}

																System.out.println("Field	"	+

																																			"name	=	'"	+

																																			fld.getName()	+

																																			"',	value	=	'"	+

																																			strFieldValue	+

																																			"'");

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

MarshalOptions	Property	Example	(VJ++)

This	example	uses	the	MarshalOptions	property	to	specify	what	rows	are	sent
back	to	the	server—All	Rows	or	only	Modified	Rows.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	MarshalOptionsX

{

//	The	main	entry	point	for	the	application.

public	static	void	main	(String[]	args)

{

				MarshalOptionsX();

				System.exit(0);

}

//	MarshalX	Function

static	void	MarshalOptionsX()

{

				//	Define	ADO	Objects

				Recordset	rstEmployees	=	null;

				//	Declarations

				BufferedReader	in	=	

								new	BufferedReader(new	InputStreamReader(System.in));

				String	line	=	null;

				try

				{

								//	Open	Recordset	with	names	from	Employees	Table.

								String	strCnn	=	"	Provider=sqloledb;Data	Source=srv;"	+

																	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								rstEmployees	=	new	Recordset();

								rstEmployees.setCursorType(AdoEnums.CursorType.KEYSET);

								rstEmployees.setLockType(AdoEnums.LockType.OPTIMISTIC);

								rstEmployees.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

								rstEmployees.open(

												"SELECT	fname,lname	from	Employee	ORDER	BY	lname",	

												strCnn,AdoEnums.CursorType.KEYSET,	

												AdoEnums.LockType.OPTIMISTIC,	AdoEnums.CommandType.TEXT);

								//	Store	original	data

								String	strOldFirst	=	rstEmployees.getField("fname").getString();

								String	strOldLast	=	rstEmployees.getField("lname").getString();

								//	Change	data	in	edit	buffer

								rstEmployees.getField("fname").setString("Linda");

								rstEmployees.getField("lname").setString("Kobara");

								//	Show	contents	of	buffer	and	get	user	input

								String	strMessage	=	"Edit	in	progress:	"+	"\n"+

																					"Original	Data		=	\t"+	strOldFirst	+"	"+

																					strOldLast	+	"\n"	+	"Data	in	Buffer	=	\t"+

																					rstEmployees.getField("fname").getString()+	"	"	+

																					rstEmployees.getField("lname").getString()+"\n"+"\n"+

																					"Use	Update	to	replace	the	original	data	with	"	+

																					"the	buffered	data	in	the	recordset";

								String	strMarshalAll	=	"Would	you	like	to	send	all	the	rows"	+

																								"	in	the	recordset	back	to	the	server";

								String	strMarshalModified	=	"Would	you	like	to	send	only	"+

																													"	modified	rows	back	to	the	server";

								System.out.println(strMessage	+	"\nEnter	(Y/N)...");

								if	(in.readLine().equalsIgnoreCase("Y"))

								{

												System.out.println(strMarshalAll);

												System.out.println("\nEnter	(Y/N)...");

												if(in.readLine().equalsIgnoreCase("Y"))

												{

																rstEmployees.setMarshalOptions(AdoEnums.MarshalOptions.ALL);

																rstEmployees.update();

												}

												else

												{

																System.out.println(strMarshalModified);

																System.out.println("\nEnter	(Y/N)...");

																if	(in.readLine().equalsIgnoreCase("Y"))

																{

																				rstEmployees.setMarshalOptions(

																								AdoEnums.MarshalOptions.MODIFIEDONLY);

																				rstEmployees.update();

																}

												}

								}

								//	Show	the	resulting	data

								System.out.println("\nData	in	recordset	=	"	+	

												rstEmployees.getField("fname").getString()	+	

												"	"	+	rstEmployees.getField("lname").getString());

								//	Restore	original	data	because	this	is	a	demonstration

								if	(!((strOldFirst.equals(rstEmployees.getField("fname")))

												&&(strOldLast.equals(rstEmployees.getField("lname")))))

								{

												rstEmployees.getField("fname").setString(strOldFirst);

												rstEmployees.getField("lname").setString(strOldLast);

												rstEmployees.update();

								}

				//	Cleanup	objects	before	exit

				rstEmployees.close();

				System.out.println("\n\nPress	<Enter>	to	continue..");

				in.readLine();

				}

				catch(AdoException	ae)

				{

								//	Notify	the	user	of	any	errors	that	result	from	ADO

								//	As	passing	a	connection,	check	for	null	pointer	first

								if(rstEmployees!=	null)

								{

												PrintProviderError(rstEmployees.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getLocalizedMessage());

								}

				}

				//	System	Read	requires	this	catch

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

MaxRecords	Property	Example	(VJ++)

This	example	uses	the	MaxRecords	property	to	open	a	Recordset	containing	the
10	most	expensive	titles	in	the	Titles	table.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	MaxRecordsX

{

//	The	main	entry	point	for	the	application.

public	static	void	main	(String[]	args)

{

				MaxRecordsX();

				System.exit(0);

}

//	MaxRecordsX	Function

static	void	MaxRecordsX()

{

				//		Define	ADO	Objects

				Recordset	rstTemp	=	null;

				try

				{

								//	Declarations

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								//	Open	recordset	containing	the	10	most	expensive

								//	titles	in	the	Titles	table.

								String	strCnn	=	"	Provider=sqloledb;Data	Source=srv;"+

												"	Initial	Catalog=Pubs;User	Id=sa;Password=;";

								rstTemp	=	new	Recordset();

								rstTemp.setMaxRecords(10);

								rstTemp.open("select	title,price	from	Titles"	+	

												"	order	by	price	desc",	strCnn,AdoEnums.CursorType.FORWARDONLY,	

												AdoEnums.LockType.READONLY,	AdoEnums.CommandType.TEXT);

								//	Display	the	contents	of	the	recordset.

								System.out.println("Top	Ten	Titles	by	Price:\n");

								while	(!rstTemp.getEOF())

								{

												System.out.println("	"+	rstTemp.getField("title").getString()	+

																"	-	"	+	rstTemp.getField("Price").getString());

												rstTemp.moveNext();

								}

								//	Cleanup	objects	before	exit.

								rstTemp.close();

								System.out.println("\n\nPress	<Enter>	to	continue..");

								in.readLine();

				}

				catch(AdoException	ae)

				{

								//	Notify	the	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	connection,	check	for	null	pointer	first.

								if	(rstTemp!=null)

								{

												PrintProviderError(rstTemp.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getLocalizedMessage());

								}

				}

				//	System	read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Move	Method	Example	(VJ++)

This	example	uses	the	Move	method	to	position	the	record	pointer	based	on	user
input.

import	java.io.*;

import	com.ms.wfc.data.*;

import	com.ms.com.*;

public	class	MoveX

{

//	The	main	entry	point	for	the	application.

public	static	void	main	(String[]	args)

{

				MoveX();

				System.exit(0);

}

//	MoveX	Function

static	void	MoveX()

{

				//	Define	ADO	Objects

				Recordset	rstAuthors	=	null;

				//	Declarations

				String	line	=	null;

				Variant	varBookmark;

				String	strCommand	=	null;

				int	lngMove;

				BufferedReader	in	=	

								new	BufferedReader(new	InputStreamReader(System.in));

				try

				{

								//		Open	recordset	from	Authors	table.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

												"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								rstAuthors	=	new	Recordset();

								rstAuthors.setCursorType(AdoEnums.CursorType.STATIC);

								//	Use	client	cursor	to	allow	use	of

								//	Absolute	Position	property.

								rstAuthors.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

								rstAuthors.open("select	au_id,au_fname,au_lname,city,state	"	+	

												"from	Authors	order	by	au_lname",	

												strCnn,AdoEnums.CursorType.STATIC,	

												AdoEnums.CursorLocation.CLIENT,	AdoEnums.CommandType.TEXT);

								rstAuthors.moveFirst();

								while(true)

								{

												//	Display	information	about	current	record	and

												//	ask	how	many	records	to	move.

												strCommand	=	"Record:\t\t"+	rstAuthors.getAbsolutePosition()	+	

																"	of	"	+	rstAuthors.getRecordCount()	+	"\n"	+	"\tAuthor:\t\t"

																	+	rstAuthors.getField("au_fname").getString()	+	

																	"	"	+	rstAuthors.getField("au_lname").getString()	+	

																"\n"	+"\tLocation:\t"	+	

																rstAuthors.getField("city").getString()	+

																	",	"	+rstAuthors.getField("state").getString()

																	+"\n\n"+"\tEnter	number	of	records	to	move"	+

																"	(positive	or	negative).";

												System.out.print("\t"+	strCommand	+	"\t");

												line	=in.readLine();

												//	No	entry	exits	program	loop.

												if	(line.length()==	0)

																break;

												//	Converts	string	entry	to	int.

												lngMove	=	Integer.parseInt(line);

												//	Store	bookmark	in	case	the	move	goes	too	far

												//	forward	or	backward.

												varBookmark	=(Variant)rstAuthors.getBookmark();

												//	Move	method	requires	parameter	of	data	type	int.

												rstAuthors.move(lngMove);

												//	Trap	for	BOF	and	EOF.

												if	(rstAuthors.getBOF())

												{

																System.out.println("\tToo	far	backward!		"	+

																				"Returning	to	the	current	record.");

																rstAuthors.setBookmark(varBookmark);

												}

												if	(rstAuthors.getEOF())

												{

																System.out.println("\tToo	far	forward!		"	+

																				"Returning	to	the	current	record.");

																rstAuthors.setBookmark(varBookmark);

												}

								}

								//	Cleanup	objects	before	exit.

								rstAuthors.close();

								System.out.println("\tPress	<Enter>	to	continue..");

								in.readLine();

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	recordset,	check	for	null	pointer.

								if	(rstAuthors!=null)

								{

												PrintProviderError(rstAuthors.getActiveConnection());

								}

								else

								{

												System.out.println("	Exception:	"+	ae.getMessage());

								}

				}

				//	System	Read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

				//	Required	if	the	user	enter	non	integer	value.

				catch(java.lang.NumberFormatException	ne)

				{

								System.out.println("\n\nPlease	enter	integer	values!");

								rstAuthors.close();

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious	Methods
Example	(VJ++)

This	example	uses	the	MoveFirst,	MoveLast,	MoveNext,	and	MovePrevious
methods	to	move	the	record	pointer	of	a	Recordset	based	on	the	supplied
command.	The	MoveAny	procedure	is	required	for	this	procedure	to	run.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	MoveFirstX		//	DLL	name.

{

//	Main	Function

public	static	void	main(String	rgArg[])

{

				MoveFirstX();

}

//	MoveFirstX	Function

static	void	MoveFirstX()

{

				//	Declarations

				Recordset	rsAuthors	=	null;

				BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

				String		line	=	null;

				String	strCnn	=	"Provider=sqloledb;data	source=dianaped4;"

								+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

				String	strMessage	=	"UPDATE	Titles	SET	type	=	'psychology'	"

								+"WHERE	type	=	'self_help'";

				int	intCommand	=	0;

				String	strFName;

				String	strLName;

				try

				{

								//	Open	recordset	from	Authors	table.

								rsAuthors	=	new	Recordset();

								rsAuthors.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

								//	Use	client	cursor	to	enable	AbsolutePosition	property.

								rsAuthors.open("Authors",	strCnn,	AdoEnums.CursorType.STATIC,

												AdoEnums.LockType.BATCHOPTIMISTIC,	AdoEnums.CommandType.TABLE);

								//	Get	user's	move	requests	and	show	current	record	information.

								while(true)				//	Continuous	loop.

								{

								//	Assign	field	information	to	variable	to	simplify	output	code.

												strFName	=	rsAuthors.getField("au_fname").getString();

												strLName	=	rsAuthors.getField("au_lname").getString();

												System.out.println

																("\nName:	"	+	strFName	+	"	"	+	strLName	+	"\n"

																+	"Record	"	+	rsAuthors.getAbsolutePosition()

																+	"	of	"	+	rsAuthors.getRecordCount()	+	"\n\n");

												System.out.println("[1	-	MoveFirst,	2	-	MoveLast,	\n");

												System.out.println("	3	-	MoveNext,	4	-	MovePrevious]\n");

												//	User	types	a	number	followed	by	enter	(cr-lf).

												line	=	in.readLine();

												//	No	entry	exits	program	loop.

												if	(line.length()	==	0)	break;

												//	Convert	string	entry	to	int.

												intCommand	=	Integer.parseInt(line);

												//	Out	of	range	entry	exits	program	loop.

												if	((intCommand	<	1)	||	(intCommand	>	4))	break;

												//	Call	method	based	on	user's	validated	selection.

												MoveAny(intCommand,	rsAuthors);

								}

								rsAuthors.close();

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	Recordset,	check	for	null	pointer	first.

								if	(rsAuthors	!=	null)

								{

												PrintProviderError(rsAuthors.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

				//	System	Read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

//	MoveAny	Function

static	void	MoveAny(int	intChoice,	Recordset	rsTemp)

{

				//	Move	per	selection	from	user,	checking	for	BOF	and	EOF.

				try

				{

								switch(intChoice)

								{

								case	1:			//	Equals	char	of	1.

												rsTemp.moveFirst();

												break;

								case	2:			//	Equals	char	of	2.

												rsTemp.moveLast();

												break;

								case	3:			//	Equals	char	of	3.

												rsTemp.moveNext();

												if(rsTemp.getEOF())

												{

																System.out.println("\nAlready	at	end	of	recordset!\n");

																rsTemp.moveLast();

												}

												break;

								case	4:			//	Equals	char	of	4.

												rsTemp.movePrevious();

												if(rsTemp.getBOF())

												{

																System.out.println

																				("\nAlready	at	beginning	of	recordset!\n");

																rsTemp.moveFirst();

												}

												break;

								default:

												break;

								}

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	Recordset,	check	for	null	pointer	first.

								if	(rsTemp	!=	null)

								{

												PrintProviderError(rsTemp.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

NextRecordset	Method	Example	(VJ++)

This	example	uses	the	NextRecordset	method	to	view	the	data	in	a	recordset	that
uses	a	compound	command	statement	made	up	of	three	separate	SELECT
statements.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	NextRecordsetX

{

//	The	main	entry	point	for	the	application.

public	static	void	main	(String[]	args)

{

				NextRecordsetX();

				System.exit(0);

}

//	NextRecordsetX	Function

static	void	NextRecordsetX()

{

				//	Define	ADO	Object

				Recordset	rstCompound	=	null;

				//	Declarations

				BufferedReader	in	=	

								new	BufferedReader(new	InputStreamReader(System.in));

				String	strCnn;

				int	intCount;

				int	intDisplayRecords	=	15;

				int	intRecordCount;

				try

				{

								//	Open	compound	recordset.

								strCnn	=	"Provider=sqloledb;Data	Source=srv;"	+

													"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								rstCompound	=	new	Recordset();

								rstCompound.open("select	*	from	Authors;"	+

													"select	*	from	stores;"	+

													"select	*	from	jobs",	strCnn,	AdoEnums.CursorType.FORWARDONLY,	

												AdoEnums.LockType.READONLY,AdoEnums.CommandType.TEXT);

								//	Display	results	from	each	select	statement.

								intCount=1;

												while	(rstCompound	!=	null)

												{

																System.out.println(

																				"Contents	of	recordset	#"	+	intCount	+	"\n");

																intRecordCount	=	0;

																while(rstCompound.getEOF()	!=	true)

																				{

																								System.out.println(

																												rstCompound.getField(0).getString()+"	"	+	

																												rstCompound.getField(1).getString());

																								intRecordCount++;

																								if	(intRecordCount	==	intDisplayRecords)

																								{

																												System.out.println("\nPress	<Enter>	to	continue..");

																												in.readLine();

																												intRecordCount	=	0;

																								}

																								rstCompound.moveNext();

																				}

																System.out.println("\nPress	<Enter>	to	continue..");

																in.readLine();

																rstCompound	=	rstCompound.nextRecordset();

																intCount++;

												}

				}

				//	System	read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

				catch(AdoException	ae)

				{

								//	Notify	the	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	recordset.	check	for	the	null	pointer	first

								if(rstCompound!=null)

								{

												PrintProviderError(rstCompound.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

				catch(java.lang.NullPointerException	ne)

				{

								System.out.println("Error	Description:	"	+	ne.getMessage());

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

NumericScale	and	Precision	Properties	Example	(VJ++)

This	example	uses	the	NumericScale	and	Precision	properties	to	display	the
numeric	scale	and	precision	of	fields	in	the	Discounts	table	of	the	Pubs
database.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	NumericScaleX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								NumericScaleX();

								System.exit(0);

				}

				//	NumericScaleX	function

				static	void	NumericScaleX()

				{

								//	Define	ADO	Objects.

								Recordset	rstDiscounts	=	null;

								Field	fldTemp	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

													+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								int	intLoop;

								try

								{

												rstDiscounts	=	new	Recordset();

												//	Open	recordset.

												rstDiscounts.open("Discounts",	strCnn,

																										AdoEnums.CursorType.FORWARDONLY,

																										AdoEnums.LockType.READONLY,

																										AdoEnums.CommandType.TABLE);

												//	Display	numeric	scale	and	precision	of

												//	numeric	and	small	integer	fields.

												for	(intLoop=0;	intLoop	<	

																rstDiscounts.getFields().getCount();intLoop++)

												{

																fldTemp	=	rstDiscounts.getFields().getItem(intLoop);

																if((fldTemp.getType()==	AdoEnums.DataType.NUMERIC)	|

																				(fldTemp.getType()==	AdoEnums.DataType.SMALLINT))

																{

																				System.out.println("\nField:	"

																								+	fldTemp.getName());

																				System.out.println("\nNumeric	scale:	"

																								+	fldTemp.getNumericScale());

																				System.out.println("\nPrecision:	"

																								+	fldTemp.getPrecision());

																				System.out.println("\n\nPress	<Enter>	to	continue..");

																				in.readLine();

																}

												}

												//	Cleanup	objects	before	exit.

												rstDiscounts.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstDiscounts	!=	null)

												{

																PrintProviderError(rstDiscounts.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Open	and	Close	Methods	Example	(VJ++)

This	example	uses	the	Open	and	Close	methods	on	both	Recordset	and
Connection	objects	that	have	been	opened.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	OpenX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								OpenX();

								System.exit(0);

				}

				//	OpenX	function

				static	void	OpenX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstEmployees	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																								+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								Variant	varDate;

								String	strHDate;

								try

								{

												//	Open	connection.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												//	Open	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.setCursorType(AdoEnums.CursorType.KEYSET);

												rstEmployees.setLockType(AdoEnums.LockType.OPTIMISTIC);

												rstEmployees.open("Employees",	cnConn1,

																										AdoEnums.CursorType.KEYSET,

																										AdoEnums.LockType.OPTIMISTIC,

																										AdoEnums.CommandType.TABLE);

												//	Assign	the	first	employee	record's	hire	date

												//	to	a	variable,	then	change	the	hire	date.

												varDate	=	rstEmployees.getField("hire_date").getOriginalValue();

												System.out.println("Original	data\n");

												System.out.println("\tName	-	Hire	Date");

												strHDate	=	rstEmployees.getField("hire_date").getString();

												strHDate	=	strHDate.substring(5,7)	+	"/"	+	

																strHDate.substring(8,10)

																	+	"/"	+	strHDate.substring(2,4);

												System.out.println("\t"	+	

																rstEmployees.getField("fName").getString()+	"	"

																	+	rstEmployees.getField("lName").getString()+	"	-	"

																	+	strHDate);

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												rstEmployees.getField("hire_date").setString("1/1/1900");

												rstEmployees.update();

												System.out.println("Changed	data\n");

												System.out.println("\tName	-	Hire	Date");

												strHDate	=	rstEmployees.getField("hire_date").getString();

												strHDate	=	strHDate.substring(5,7)	+	"/"	+	

																strHDate.substring(8,10)

																	+	"/"	+	strHDate.substring(0,4);

												System.out.println("\t"	+	

																rstEmployees.getField("fName").getString()+	"	"

																	+	rstEmployees.getField("lName").getString()+	"	-	"

																	+	strHDate);

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Requery	Recordset	and	reset	the	hire	date.

												rstEmployees.requery();

												rstEmployees.getField("hire_date").setValue(varDate);

												rstEmployees.update();

												System.out.println("Data	after	reset\n");

												System.out.println("\tName	-	Hire	Date");

												strHDate	=	rstEmployees.getField("hire_date").getString();

												strHDate	=	strHDate.substring(5,7)	+	"/"	+	

																strHDate.substring(8,10)

																	+	"/"	+	strHDate.substring(2,4);

												System.out.println("\t"	+	

																rstEmployees.getField("fName").getString()+	"	"

																	+	rstEmployees.getField("lName").getString()+	"	-	"

																	+	strHDate);

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												rstEmployees.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

OpenSchema	Method	Example	(VJ++)

This	example	uses	the	OpenSchema	method	to	display	the	name	and	type	of
each	table	in	the	Pubs	database.

import	com.ms.wfc.data.*;

import	java.io.*;

import	com.ms.com.*;

public	class	OpenSchemaX

{

	//	The	main	entry	point	of	the	application.

public	static	void	main	(String[]	args)

{

				OpenSchemaX();

				OpenSchemaX2();

				System.exit(0);

}

//	OpenSchemaX	Function

static	void	OpenSchemaX()

{

				//	Define	ADO	Objects

				Connection	cnn1	=	null;

				Recordset	rstSchema	=	null;

				//		Declarations

				String	strCnn;

				BufferedReader	in	=	new	BufferedReader(new	InputStreamReader(System.in));

				int	intDisplayRecords	=	5;

				int	intRecordCount	=	0;

				try

				{

								cnn1	=	new	Connection();

								strCnn	=	"Provider	=	Microsoft.Jet.OLEDB.4.0;"	+

												"Data	Source=C:\\Program	Files\\Microsoft	"	+

												"Office\\Office\\Samples\\Northwind.mdb;"	+

												"User	Id=admin;Password=;";

								cnn1.open(strCnn);

								rstSchema	=	cnn1.openSchema(AdoEnums.Schema.TABLES);

								while	(!rstSchema.getEOF())

								{

												System.out.println("Table	Name:	"	+	

																chema.getField("TABLE_NAME").getString()+"\n"+

																"Table	Type:	"	+	

																chema.getField("TABLE_TYPE").getString()+"\n");

												intRecordCount++;

												if	(intRecordCount	==	intDisplayRecords)

												{

																System.out.println("Press	<Enter>	to	continue..");

																in.readLine();

																intRecordCount	=	0;

												}

												rstSchema.moveNext();

								}

								System.out.println("Press	<Enter>	to	continue..");

								in.readLine();

								//	Cleanup	objects	before	exit

								rstSchema.close();

								cnn1.close();

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	Recordset,	check	for	null	pointer	first.

								if(rstSchema	!=	null)

								{

												PrintProviderError(rstSchema.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

				//	System	read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

//	OpenSchemaX2	Function

static	void	OpenSchemaX2()

{

				//	Define	ADO	Objects

				Connection	cnn2	=	null;

				Recordset	rstSchema	=	null;

				//	Declarations

				String	strCnn;

				BufferedReader	in	=	

								new	BufferedReader(new	InputStreamReader(System.in));

				int	intDisplayRecords	=	5;

				int	intRecordCount	=	0;

				try

				{

								cnn2	=	new	Connection();

								strCnn	=	"Provider	=	Microsoft.Jet.OLEDB.4.0;"	+

												"Data	Source=C:\\Program	Files\\Microsoft	"	+

												"Office\\Office\\Samples\\Northwind.mdb;"	+

												"User	Id=admin;Password=;";

								cnn2.open(strCnn);

								Variant[]	va	=	new	Variant[4];

								va[0]	=	new	Variant();

								va[1]	=	new	Variant();

								va[2]	=	new	Variant();

								va[3]	=	new	Variant("VIEW");

								rstSchema	=	cnn2.openSchema(AdoEnums.Schema.TABLES,(Object[])va);

								while	(!rstSchema.getEOF())

								{

												System.out.println("Table	Name:	"	+	

																rstSchema.getField("TABLE_NAME").getString()+"\n"+

																"Table	Type:	"	+	

																rstSchema.getField("TABLE_TYPE").getString()+"\n");

												intRecordCount++;

												if	(intRecordCount	==	intDisplayRecords)

												{

																System.out.println("Press	<Enter>	to	continue..");

																in.readLine();

																intRecordCount	=	0;

												}

												rstSchema.moveNext();

								}

								System.out.println("Press	<Enter>	to	continue..");

								in.readLine();

								//	Cleanup	Objects	before	exit.

								rstSchema.close();

								cnn2.close();

				}

				catch(AdoException	ae)

				{

								//	Notify	user	of	any	errors	that	result	from	ADO.

								//	As	passing	a	Recordset,	check	for	null	pointer	first.

								if(rstSchema	!=	null)

								{

												PrintProviderError(rstSchema.getActiveConnection());

								}

								else

								{

												System.out.println("Exception:	"	+	ae.getMessage());

								}

				}

				//	System	read	requires	this	catch.

				catch(java.io.IOException	je)

				{

								PrintIOError(je);

				}

}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Optimize	Property	Example	(VJ++)

This	example	demonstrates	the	Field	object	dynamic	Optimize	property.	The	zip
field	of	the	Authors	table	in	the	Pubs	database	is	not	indexed.	Setting	the
Optimize	property	to	True	on	the	zip	field	authorizes	ADO	to	build	an	index	that
improves	the	performance	of	the	Find	method.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	OptimizeX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								OptimizeX();

								System.exit(0);

				}

				//	OptimizeX	function

				static	void	OptimizeX()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								try

								{

												rstAuthors	=	new	Recordset();

												rstAuthors.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												//	Enable	index	creation.

												rstAuthors.open("SELECT	*	FROM	Authors",

																				strCnn,

																				AdoEnums.CursorType.STATIC,

																				AdoEnums.LockType.READONLY,

																				AdoEnums.CommandType.TEXT);

												rstAuthors.getField("zip").getProperties().

																getItem("Optimize").setBoolean(true);	//	Create	the	index.

												rstAuthors.find("zip	=	'94595'");				//	Find	Akiko	Yokomoto.

												System.out.println(rstAuthors.getField("au_fname").getString()	+	

																"	"	+	rstAuthors.getField("au_lname").getString()	+	"	"	+	

																rstAuthors.getField("address").getString()	+	"	"	+	

																rstAuthors.getField("city").getString()	+	"	"	+	

																rstAuthors.getField("state").getString()	+	"	");

												rstAuthors.getField("zip").getProperties().

																getItem("Optimize").setBoolean(false);	//	Delete	the	index.

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

OriginalValue	and	UnderlyingValue	Properties	Example	(VJ++)

This	example	demonstrates	the	OriginalValue	and	UnderlyingValue	properties
by	displaying	a	message	if	a	record's	underlying	data	has	changed	during	a
Recordset	batch	update.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	OriginalValueX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								OriginalValueX();

								System.exit(0);

				}

				//	OriginalValueX	function

				static	void	OriginalValueX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstTitles	=	null;

								Field	fldType	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

												+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								try

								{

												//	Open	a	connection.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												//	Open	recordset	for	batch	update.

												rstTitles	=	new	Recordset();

												rstTitles.setActiveConnection(cnConn1);

												rstTitles.setCursorType(AdoEnums.CursorType.KEYSET);

												rstTitles.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												rstTitles.open("Titles",cnConn1,

																											AdoEnums.CursorType.KEYSET,

																											AdoEnums.LockType.BATCHOPTIMISTIC,

																											AdoEnums.CommandType.TABLE);

												//	Set	field	object	variable	for	Type	field.

												fldType	=	rstTitles.getField("type");

												//	Change	the	type	of	psychology	titles.

												while(!rstTitles.getEOF())

												{

																if(rstTitles.getField("type").getString().

																				trim().equals("psychology"))

																				fldType.setString("self_help");

																rstTitles.moveNext();

												}

												//	Similate	a	change	by	another	user	by	updating

												//	data	using	a	command	string.

												cnConn1.execute("UPDATE	Titles	SET	type	=	'sociology'	"

																																+	"WHERE	type	=	'psychology'");

												//	Check	for	changes.

												rstTitles.moveFirst();

												while(!rstTitles.getEOF())

												{

																String	strOriginalValue	=	

																				fldType.getOriginalValue().toString().trim();

																String	strUnderlyingValue	=	

																				fldType.getUnderlyingValue().toString().trim();

																if(!(strOriginalValue.equals(strUnderlyingValue)))

																{

																				System.out.println("Data	has	changed!"	+	"\n\n");

																				System.out.println("\tTitle	ID:	"

																								+	rstTitles.getField("title_id").getString().trim()	+	

																								"\n");

																				System.out.println("\tCurrent	value:	"

																												+	fldType.getString()+	"\n");

																				System.out.println("\tOriginal	value:	"

																												+	fldType.getOriginalValue().toString()+	"\n");

																				System.out.println("\tUnderlying	value:	"

																												+	fldType.getUnderlyingValue().toString()+	"\n");

																				System.out.println("\n\nPress	<Enter>	to	continue..");

																				in.readLine();

																}

																rstTitles.moveNext();

												}

												//	Cancel	the	update	because	this	is	a	demonstration.

												rstTitles.cancelBatch();

												rstTitles.close();

												//	Restore	original	values.

												cnConn1.execute("UPDATE	Titles	SET	type	=	'psychology'	"

																												+	"WHERE	type	=	'sociology'");

												//	Cleanup	objects	before	exit.

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstTitles!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Prepared	Property	Example	(VJ++)

This	example	demonstrates	the	Prepared	property	by	opening	two	Command
objects—one	prepared	and	one	not	prepared.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	PreparedX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								PreparedX();

								System.exit(0);

				}

				//	PreparedX	function

				static	void	PreparedX()

				{

								//	Define	string	variables.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String	strCmd	=	"SELECT	title,	type	FROM	Titles	ORDER	BY	type";

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Command	cmd1	=	null;

								Command	cmd2	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								long	timeStart;

								long	timeEnd;

								float	timeNotPrepared	;

								float	timePrepared;

								int			intLoop;

								String	strTemp;

								try

								{

												//	Open	a	connection.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												//	Create	two	command	objects	for	the	same

												//	command	-	one	prepared	and	one	not	prepared.

												cmd1	=	new	Command();

												cmd1.setActiveConnection(cnConn1);

												cmd1.setCommandType(AdoEnums.CommandType.TEXT);

												cmd1.setCommandText(strCmd);

												cmd2	=	new	Command();

												cmd2.setActiveConnection(cnConn1);

												cmd2.setCommandType(AdoEnums.CommandType.TEXT);

												cmd2.setCommandText(strCmd);

												cmd2.setPrepared(true);

												//	Set	a	timer,	then	execute	the	unprepared

												//	command	20	times.

												timeStart	=	System.currentTimeMillis();

												for	(intLoop	=	0;	intLoop	<	20;	intLoop++)

																cmd1.execute();

												timeEnd	=	System.currentTimeMillis();

												timeNotPrepared	=(float)(timeEnd	-	timeStart)/1000f;

												//	Reset	the	timer,	then	execute	the	prepared

												//	command	20	times.

												timeStart	=	System.currentTimeMillis();

												for	(intLoop	=	0;	intLoop	<	20;	intLoop++)

																cmd2.execute();

												timeEnd	=	System.currentTimeMillis();

												timePrepared	=(float)(timeEnd	-	timeStart)/1000f;

												//	Display	performance	results.

												System.out.println("\nPerformance	Results:");

												System.out.println("\n\tNot	Prepared:	"	+	timeNotPrepared	+	

																"	seconds");

												System.out.println("\n\tPrepared:	"	+	timePrepared	+	

																"	seconds");

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

												//	Cleanup	objects	before	exit.

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Connection,	check	for	null	pointer	first.

												if	(cnConn1!=	null)

												{

																PrintProviderError(cnConn1);

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Provider	and	DefaultDatabase	Properties	Example	(VJ++)

This	example	demonstrates	the	Provider	property	by	opening	three	Connection
objects	using	different	providers.	It	also	uses	the	DefaultDatabase	property	to	set
the	default	database	for	the	Microsoft	ODBC	Provider.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	ProviderX

{

				//				The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								ProviderX();

								System.exit(0);

				}

				//	ProviderX	Function

				static	void	ProviderX()

				{

								//	Define	ADO	Objects.

								Connection	cnn1	=	null;

								Connection	cnn2	=	null;

								Connection	cnn3	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	a	connection	using	the	Microsoft	ODBC	Provider.

												cnn1	=	new	Connection();

												cnn1.setConnectionString("driver={SQL	Server};"+

																	"server=srv;User	id=sa;Password=;");

												cnn1.open();

												cnn1.setDefaultDatabase("Pubs");

												//	Display	the	provider.

												System.out.println("\n\n\tCnn1	provider:	"+	cnn1.getProvider());

												//	Open	connection	using	the	OLE	DB	Provider	for	Microsoft	Jet.

												cnn2	=	new	Connection();

												cnn2.setProvider("Microsoft.Jet.OLEDB.3.51");

												cnn2.open("C:\\Program	Files\\Microsoft	"

												"Office\\Office\\Samples\\Northwind.mdb","admin","");

												//	Display	the	provider.

												System.out.println("\n\n\tCnn2	provider:	"	+	

																cnn2.getProvider());

												//	Open	a	connection	using	the	Microsoft	SQL	Server	Provider.

												cnn3	=	new	Connection();

												cnn3.setProvider("sqloledb");

												cnn3.open("Data	Source=srv;Initial	Catalog=	Pubs;","sa","");

												//	Display	the	provider.

												System.out.println("\n\n\tCnn3	provider:	"	+	

																cnn3.getProvider());

												//	Cleanup	Objects	before	exit.

												cnn1.close();

												cnn2.close();

												cnn3.close();

												System.out.println("\n\n\tPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Connection,	check	for	null	pointer	first.

												if(cnn1	!=	null)

												{

																PrintProviderError(cnn1);

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getLocalizedMessage());

												}

								}

								//	System	read	requires	needs	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Refresh	Method	Example	(VJ++)

This	example	demonstrates	using	the	Refresh	method	to	refresh	the	Parameters
collection	for	a	stored	procedure	Command	object.

import		com.ms.wfc.data.*;

import	java.io.*;

public	class	RefreshX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								RefreshX();

								System.exit(0);

				}

				//	RefreshX	function

				static	void	RefreshX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Command	cmdByRoyalty	=	null;

								Recordset	rstByRoyalty	=	null;

								Recordset	rstAuthors	=	null;

								//Declarations.

								String	strAuthorID;

								String	strFName;

								String	strLName;

								int	intRoyalty	;

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader	(System.in));

								String	line	=	null;

								try

								{

												//	Open	a	connection.

												String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"

																											+	"Initial	Catalog=Pubs;User	Id=sa;Password=;";

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												//	Open	a	command	object	for	a	stored	procedure

												//	with	one	parameter.

												cmdByRoyalty	=	new	Command();

												cmdByRoyalty.setActiveConnection(cnConn1);

												cmdByRoyalty.setCommandText("byRoyalty");

												cmdByRoyalty.setCommandType(AdoEnums.CommandType.STOREDPROC);

												cmdByRoyalty.getParameters().refresh();

												//	Get	Parameter	value	and	execute	the	command

												//	storing	the	results	in	the	recordset.

												System.out.println	("\nEnter	Royalty	:	");

												line	=	in.readLine().trim();

												intRoyalty	=	Integer.parseInt(line);

												cmdByRoyalty.getParameters().getItem(1).setInt(intRoyalty);

												//	Create	a	recordset	by	executing	the	command.

												rstByRoyalty	=	cmdByRoyalty.execute();

												//	Open	the	Authors	table	to	get	author	names	for	display.

												rstAuthors	=	new	Recordset	();

												rstAuthors.open(

																"Authors",strCnn,AdoEnums.CursorType.FORWARDONLY,	

																AdoEnums.LockType.READONLY,	AdoEnums.CommandType.TABLE);

												//	Print	current	data	in	the	recordset,

												//	adding	author	names	from	Authors	table.

												System.out.println("\nAuthors	with	"	+	intRoyalty	+

																															"	percent	royalty");

												while	(!rstByRoyalty.getEOF())

												{

																strAuthorID	=		rstByRoyalty.getField("au_id").getString();

																rstAuthors.setFilter("au_id	='"	+		strAuthorID	+	"'");

																strFName	=	rstAuthors.getField("au_fname").getString();

																strLName	=	rstAuthors.getField("au_lname").getString();

																System.out.println("\t"	+	strAuthorID	+	",	"	+	strFName

																																			+	"	"	+	strLName);

																rstByRoyalty.moveNext();

												}

												System.out.println("\n\nPress	<Enter>	key	to	continue..");

												line	=	in.readLine();

												//Cleanup	objects	before	exit.

												rstByRoyalty.close();

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstByRoyalty	!=	null)

												{

																PrintProviderError(rstByRoyalty.getActiveConnection());

												}

												else	if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	This	catch	is	required	if	input	string	cannot	be	converted	to

								//	Integer	data	type.

								catch	(java.lang.NumberFormatException	ne)

								{

																System.out.println("\nException:	Integer	Input	required.");

								}

								//	System	Read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Resync	Method	Example	(VJ++)

This	example	demonstrates	using	the	Resync	method	to	refresh	data	in	a	static
recordset.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	ResyncX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								ResyncX();

								System.exit(0);

				}

				static	void	ResyncX()

				{

								//	Define	ADO	Objects.

								Recordset	rstTitles	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"	+

																								"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								try

								{

												//	Open	recordset	for	Titles	table.

												rstTitles	=	new	Recordset();

												rstTitles.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												rstTitles.setCursorType(AdoEnums.CursorType.STATIC);

												rstTitles.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												rstTitles.open("Titles",	strCnn,	AdoEnums.CursorType.STATIC,	

																AdoEnums.LockType.BATCHOPTIMISTIC,	

																AdoEnums.CommandType.TABLE);

												//	Change	the	type	of	the	first	title	in	the	recordset.

												rstTitles.getField("type").setString("database");

												//	Display	the	results	of	the	change.

												System.out.println("\n\n\tBefore	resync:\n"	+	"\tTitle	-	"	+

																rstTitles.getField("title").getString()	+

																"\n\tType		-	"	+	rstTitles.getField("type").getString());

												//	Resync	with	database	and	redisplay	the	results.

												rstTitles.resync();

												System.out.println("\n\n\tAfter	resync:\n"	+	"\tTitle	-	"	+

																rstTitles.getField("title").getString()	+

																"\n\tType		-	"	+	

																rstTitles.getField("type").getString()+"\n");

												rstTitles.cancelBatch();

												//	Cleanup	Objects	before	exit.

												rstTitles.close();

												System.out.println("\tPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Save	and	Open	Methods	Example	(VJ++)

These	three	examples	demonstrate	how	the	Save	and	Open	methods	can	be	used
together.

Assume	you	are	going	on	a	business	trip	and	want	to	take	along	a	table	from	a
database.	Before	you	go,	you	access	the	data	as	a	Recordset	and	save	it	in	a
transportable	form.	When	you	arrive	at	your	destination,	you	access	the
Recordset	as	a	local,	disconnected	Recordset.	You	make	changes	to	the
Recordset,	then	save	it	again,	along	with	your	changes.	Finally,	when	you	return
home,	you	connect	to	the	database	again	and	update	it	with	the	changes	you
made	on	the	road.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	SaveX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								SaveX1();

								SaveX2();

								SaveX3();

								System.exit(0);

				}

				//	First,	access	and	save	the	Authors	table.

				//	SaveX1	function

				static	void	SaveX1()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								File	file;

								try

								{

												rstAuthors	=	new	Recordset();

												rstAuthors.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												rstAuthors.open("SELECT	*	FROM	Authors",

																																strCnn,

																																AdoEnums.CursorType.DYNAMIC,

																																AdoEnums.LockType.OPTIMISTIC,

																																AdoEnums.CommandType.TEXT);

												//	For	the	sake	of	illustration,	save	the	recordset	to	a	

												//diskette	in	XML	format.

												file	=	new	File("a:\\Pubs.xml");

												if(!file.exists())

																rstAuthors.save("a:\\Pubs.xml",AdoEnums.PersistFormat.XML);

												else

												{

																System.out.println("\nFile	already	exists.");

																System.out.println("\nPress	<Enter>	to	continue..");

																in.readLine();

																System.exit(0);

												}

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	At	this	point,	you	have	arrived	at	your	destination.	You	will

				//	access	the	Authors	table	as	a	local,	disconnected	Recordset.

				//	Don't	forget	you	must	have	the	MSPersist	provider	on	the	machine

				//	you	are	using	in	order	to	access	the	saved	file,	a:\Pubs.xml.

				//	SaveX2	function

				static	void	SaveX2()

				{

								//	Define	ADO	Objects.

								Recordset	rstAuthors	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												rstAuthors	=	new	Recordset();

												//	For	sake	of	illustration,	we	specify	all	parameters.

												rstAuthors.open("a:\\Pubs.xml",

																				"Provider=MSPersist;",

																				AdoEnums.CursorType.FORWARDONLY,

																				AdoEnums.LockType.OPTIMISTIC,

																				AdoEnums.CommandType.FILE);

												//	Now	you	have	a	local,	disconnected	recordset.

												//	Edit	it	as	you	desire.

												//	(In	this	example,	the	change	makes	no	difference).

												rstAuthors.find("au_lname	=	'Carson'");

												if(rstAuthors.getEOF())

												{

																System.out.println("Name	not	found.");

																System.out.println("\nPress	<Enter>	to	continue..");

																in.readLine();

																return;

												}

												rstAuthors.getField("city").setString("Berkeley");

												rstAuthors.update();

												//	Save	changes	in	ADTG	format	this	time,	for	illustration.

												//	Note	that	previous	version	on	the	diskette,	as	a:\Pubs.xml.

												rstAuthors.save("a:\\Pubs.adtg",AdoEnums.PersistFormat.ADTG);

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	Finally,	update	the	database	with	your	changes.

				//	SaveX3	function

				static	void	SaveX3()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstAuthors	=	null;

								//	Declarations.

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								try

								{

												//	If	there	is	no	ActiveConnection,	you	can	open	with	defaults.

												rstAuthors	=	new	Recordset();

												rstAuthors.open("c:\\Pubs.adtg");

												//	Connect	to	the	database,	associate	the	Recordset	with

												//	connection,	then	update	the	database	table	with	the	changed

												//	Recordset.

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstAuthors.setActiveConnection(cnConn1);

												rstAuthors.updateBatch();

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Sort	Property	Example	(VJ++)

This	example	uses	the	Recordset	object's	Sort	property	to	reorder	the	rows	of	a
Recordset	derived	from	the	Authors	table	of	the	Pubs	database.	A	secondary
utility	routine	prints	each	row.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	SortX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								SortX();

								System.exit(0);

				}

				//	SortX	function

				static	void	SortX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstAuthors	=	null;

								//	Declarations.

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								try

								{

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstAuthors	=	new	Recordset();

												rstAuthors.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												rstAuthors.open("SELECT	*	FROM	Authors",

																				cnConn1,

																				AdoEnums.CursorType.STATIC,

																				AdoEnums.LockType.READONLY,

																				AdoEnums.CommandType.TEXT);

												SortXprint("Initial	Order",rstAuthors);

												rstAuthors.setSort("au_lname	ASC,	au_fname	ASC");

												SortXprint("Last	Name	Ascending",rstAuthors);

												rstAuthors.setSort("au_lname	DESC,	au_fname	ASC");

												SortXprint("Last	Name	Descending",rstAuthors);

												//	Cleanup	objects	before	exit.

												rstAuthors.close();

												cnConn1.close();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	SortXprint	function

				static	void	SortXprint(String	strTitle,Recordset	rstp)

				{

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								int	intDisplaysize	=	15;

								int	intCount	=	1;

								try

								{

												System.out.println("---------------"	+

																															strTitle	+

																															"---------------");

												System.out.println("First	Name			Last	Name"	+	"\n"	+

																															"-------------------------"	+

																															"-------------------------");

												rstp.moveFirst();

												while(!rstp.getEOF())

												{

																System.out.println(rstp.getField("au_fname").getString()	+

																																			"			"	+

																																			rstp.getField("au_lname").getString());

																if(intCount	%	intDisplaysize	==	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																				intCount	=	0;

																}

																intCount++;

																rstp.moveNext();

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstp	!=	null)

												{

																PrintProviderError(rstp.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

Source	Property	Example	(VJ++)

This	example	demonstrates	the	Source	property	by	opening	three	Recordset
objects	based	on	different	data	sources.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	SourceX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								SourceX();

								System.exit(0);

				}

				//	SourceX	Function

				static	void	SourceX()

				{

								//	Define	string	variables.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"	+

																								"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String	strSQL	=	"SELECT	title_ID	AS	TitleID,	title	AS	Title,"+

																					"publishers.pub_id	AS	PubID,	pub_name	AS	PubName	"+

																					"FROM	publishers	INNER	JOIN	Titles	"+

																					"ON	publishers.pub_id=Titles.pub_id	"+

																					"ORDER	BY	Title";

								//	Define	ADO	Objects.

								Connection	cnn1	=	null;

								Recordset	rstTitles	=	null;

								Recordset	rstPublishers	=	null;

								Recordset	rstPublishersDirect	=	null;

								Recordset	rstTitlesPublishers	=	null;

								Command	cmdSQL	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	a	connection.

												cnn1	=	new	Connection();

												cnn1.open(strCnn);

												//	Open	a	recordset	based	on	a	command	object.

												cmdSQL	=	new	Command();

												cmdSQL.setActiveConnection(cnn1);

												cmdSQL.setCommandText("Select	title,type,pubdate	"	+

																	"FROM	Titles	ORDER	BY	title");

												rstTitles	=	new	Recordset();

												rstTitles	=	cmdSQL.execute();

												//	Open	a	recordset	based	on	a	table.

												rstPublishers	=	new	Recordset();

												rstPublishers.open("publishers",	strCnn,	

																AdoEnums.CursorType.FORWARDONLY,	AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TABLE);

												//	Open	a	recordset	based	on	a	table.

												rstPublishersDirect	=	new	Recordset();

												rstPublishersDirect.open("publishers",	strCnn,	

																AdoEnums.CursorType.FORWARDONLY,	AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TABLEDIRECT);

												//	Open	a	recordset	based	on	an	SQL	String.

												rstTitlesPublishers	=	new	Recordset();

												rstTitlesPublishers.open(strSQL,	strCnn,	

																AdoEnums.CursorType.FORWARDONLY,	AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TEXT);

												//	Use	Source	property	to	display	the	source	of	each	recordset.

												System.out.println("\nrstTitles	source:	\n"+

																rstTitles.getSource());

												System.out.println("\nrstPublishers	source:	\n"+

																rstPublishers.getSource());

												System.out.println("\nrstPublishersDirect	source:\n"	+

																rstPublishersDirect.getSource());

												System.out.println("\nrstTitlesPublishers	source:	\n"	+

																rstTitlesPublishers.getSource());

												//	Cleanup	Objects	before	exit.

												rstTitles.close();

												rstPublishers.close();

												rstPublishersDirect.close();

												rstTitlesPublishers.close();

												cnn1.close();

												System.out.println("\n\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstPublishers	!=	null)

												{

																PrintProviderError(rstPublishers.getActiveConnection());

												}

												else	if(rstPublishersDirect	!=	null)

												{

																PrintProviderError(

																				rstPublishersDirect.getActiveConnection());

												}

												else	if(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else	if(rstTitlesPublishers	!=	null)

												{

																PrintProviderError(

																				rstTitlesPublishers.getActiveConnection());

												}

												else

																System.out.println("Exception:	"	+	ae.getMessage());

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	Cnn1)

				{

								//	Print	Provider	errors	from	Connection	object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	collection.

								com.ms.wfc.data.Error		ErrItem	=	null;

								long	nCount	=	0;

								int		i						=	0;

								nCount	=	Cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if(nCount	>	0);

								{

												//	Collection	ranges	from	0	to	nCount	-	1

												for	(i	=	0;	i<	nCount;	i++)

												{

																ErrItem	=	Cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	number:	"	+	ErrItem.getNumber()

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error	\n");

								System.out.println("\tSource	=	"	+	je.getClass()	+	"\n");

								System.out.println("\tDescription	=	"	+	je.getMessage()	+	"\n");

				}

}

State	Property	Example	(VJ++)

This	example	uses	the	State	property	to	display	a	message	while	asynchronous
connections	are	opening	and	asynchronous	commands	are	executing.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	StateX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								StateX();

								System.exit(0);

				}

				//	StateX	Function

				static	void	StateX()

				{

								//	Define	ADO	Objects.

								Connection	cnn1	=	null;

								Connection	cnn2	=	null;

								Command	cmdChange	=	null;

								Command	cmdRestore	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;	Data	Source=srv;"+

																								"Initial	Catalog	=	Pubs;User	Id	=	sa;	Password=;";

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	two	Asynchronous	connections,	displaying

												//	a	message	while	connecting.

												cnn1	=	new	Connection();

												cnn2	=	new	Connection();

												cnn1.open(strCnn,"","",AdoEnums.ConnectOption.ASYNCCONNECT);

												while(cnn1.getState()==AdoEnums.ObjectState.CONNECTING)

																System.out.println("Opening	the	first	connection....");

												cnn2.open(strCnn,"","",AdoEnums.ConnectOption.ASYNCCONNECT);

												while(cnn2.getState()==AdoEnums.ObjectState.CONNECTING)

																System.out.println("Opening	the	second	connection....");

												//	Create	two	command	Objects.

												cmdChange	=	new	Command();

												cmdChange.setActiveConnection(cnn1);

												cmdChange.setCommandText("UPDATE	Titles	SET	type	=	'self_help'"+

																																					"WHERE	type	=	'psychology'");

												cmdRestore	=	new	Command();

												cmdRestore.setActiveConnection(cnn2);

												cmdRestore.setCommandText(

																"UPDATE	Titles	SET	type	=	'psychology'"+

																"WHERE	type	=	'self_help'");

												//	Executing	the	commands,	displaying	a	message

												//	while	they	are	executing.

												cmdChange.execute(null,AdoEnums.ExecuteOption.ASYNCEXECUTE);

												while(cmdChange.getState()	==	AdoEnums.ObjectState.EXECUTING)

																System.out.println("Change	command	executing....");

												cmdRestore.execute(null,AdoEnums.ExecuteOption.ASYNCEXECUTE);

												while(cmdRestore.getState()	==	AdoEnums.ObjectState.EXECUTING)

																System.out.println("Restore	command	executing....");

												//	Cleanup	Objects	before	exit.

												cnn1.close();

												cnn2.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	resulting	from	ADO.

												//	As	passing	a	connection,	check	for	null	pointer	first.

												if(cnn1	!=	null)

												{

																System.out.println("The	error	has	occured	in	cnn1:");

																PrintProviderError(cnn1);

												}

												else	if(cnn2	!=	null)

												{

																System.out.println("The	error	has	occured	in	cnn2:");

																PrintProviderError(cnn2);

												}

												else

												{

																System.out.println("Exception:	"+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Status	Property	Example	(VJ++)

This	example	uses	the	Status	property	to	display	which	records	have	been
modified	in	a	batch	operation	before	a	batch	update	has	occurred.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	StatusX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								StatusX();

								System.exit(0);

				}

				//	StatusX	Function

				static	void	StatusX()

				{

								//	Define	ADO	Objects.

								Recordset	rstTitles	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																								"Initial	Catalog=Pubs;User	Id	=sa;Password=;";

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	Recordset	for	batch	update.

												rstTitles	=	new	Recordset();

												rstTitles.setCursorType(AdoEnums.CursorType.KEYSET);

												rstTitles.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												rstTitles.open("Titles",	strCnn,	AdoEnums.CursorType.KEYSET,	

																AdoEnums.LockType.BATCHOPTIMISTIC,	

																AdoEnums.CommandType.TABLE);

												//	Change	the	type	of	psychology	titles.

												while(!rstTitles.getEOF())

												{

																if(rstTitles.getField("Type").getString().trim().

																				equals(new	String("psychology")))

																				rstTitles.getField("Type").setString("self_help");

																rstTitles.moveNext();

												}

												//	Display	Title	ID	and	status.

												rstTitles.moveFirst();

												while(!rstTitles.getEOF())

												{

																if(rstTitles.getStatus()==AdoEnums.RecordStatus.MODIFIED)

																				System.out.println(rstTitles.getField("title_id").

																								getString()	+	"-		Modified");

																else

																				System.out.println(rstTitles.getField("title_id").

																								getString());

																rstTitles.moveNext();

												}

												//	Cancel	the	update	because	this	is	a	demonstration.

												rstTitles.cancelBatch();

												//	Clean	up	objects	before	exit.

												rstTitles.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	the	null	pointer	first.

												if(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

StayInSync	Property	Example	(VJ++)

This	example	demonstrates	how	the	StayInSync	property	facilitates	accessing
rows	in	a	hierarchical	Recordset.

The	outer	loop	displays	each	author's	first	and	last	name,	state,	and
identification.	The	appended	Recordset	for	each	row	is	retrieved	from	the	Fields
collection	and	automatically	assigned	to	rstTitleAuthor	by	the	StayInSync
property	whenever	the	parent	Recordset	moves	to	a	new	row.	The	inner	loop
displays	four	fields	from	each	row	in	the	appended	recordset.

import	com.ms.wfc.data.*;

import	java.io.*	;

import	com.ms.com.*;

public	class	StayInSyncX

{

					//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								StayInSyncX();

								System.exit(0);

				}

				//	StayInSyncX	function

				static	void	StayInSyncX()

				{

								//	Define	ADO	Objects.

								Connection	cnConn1	=	null;

								Recordset	rstAuthors	=	null;

								Recordset	rstTitleAuthor	=	null;

								//	Declarations.

								BufferedReader	in	=	new	

												BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDataShape;"	+	

												"Data	Provider=MSDASQL;uid=sa;pwd=;";

								try

								{

												cnConn1	=	new	Connection();

												cnConn1.open(strCnn);

												rstAuthors	=	new	Recordset();

												rstAuthors.setStayInSync(true);

												rstAuthors.open("SHAPE		{select	*	from	Authors}	"	+

																					"APPEND	({select	*	from	titleauthor}"	+

																					"RELATE	au_id	TO	au_id)	AS	chapTitleAuthor",

																				cnConn1,

																				AdoEnums.CursorType.STATIC,

																				AdoEnums.LockType.READONLY,

																				AdoEnums.CommandType.TEXT);

												Variant	varRstTitleAuthor	=	rstAuthors.getFields().

																getItem("chapTitleAuthor").getValue();

												rstTitleAuthor	=new	Recordset(varRstTitleAuthor.toObject());

												int	intCount	=0;

												while(!rstAuthors.getEOF())

												{

																System.out.println("\n"	+

																				rstAuthors.getField("au_fname").getString()	+	"	"	+

																				rstAuthors.getField("au_lname").getString()	+	"	"	+

																					rstAuthors.getField("state").getString()	+	"	"	+

																					rstAuthors.getField("au_id").getString());

																while(!rstTitleAuthor.getEOF())

																{

																				System.out.println(rstTitleAuthor.getField(0).

																								getString()	+	"	"	+

																								rstTitleAuthor.getField(1).getString()	+	"	"	+

																								rstTitleAuthor.getField(2).getString()	+	"	"	+

																								rstTitleAuthor.getField(3).getString());

																				rstTitleAuthor.moveNext();

																}

																if(++intCount	%	5	==	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																}

																rstAuthors.moveNext();

												}

												//	Cleanup	objects	before	exit.

												rstTitleAuthor.close();

												rstAuthors.close();

												cnConn1.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstAuthors	!=	null)

												{

																PrintProviderError(rstAuthors.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Supports	Method	Example	(VJ++)

This	example	uses	the	Supports	method	to	display	the	options	supported	by	a
recordset	opened	with	different	cursor	types.	The	DisplaySupport	function	is
required	for	this	example	to	run.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	SupportsX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								SupportsX();

								System.exit(0);

				}

				//	SupportsX	Function

				static	void	SupportsX()

				{

								//	Define	ADO	Objects.

								Recordset	rstTitles	=	null;

								//	Declarations.

								int[]	aintCursorType	=	new	int[4];

								String	strCnn;

								int	intIndex;

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	connections.

												strCnn	=	"Provider=	sqloledb;Data	Source=srv;"+

																					"Initial	Catalog=Pubs;User	Id=sa;Password=;";

												//	Fill	array	with	CursorType	constants.

												aintCursorType[0]	=	AdoEnums.CursorType.FORWARDONLY;

												aintCursorType[1]	=	AdoEnums.CursorType.KEYSET;

												aintCursorType[2]	=	AdoEnums.CursorType.DYNAMIC;

												aintCursorType[3]	=	AdoEnums.CursorType.STATIC;

												//	Open	recordset	using	each	CursorType	and

												//	Optimistic	Locking.		Then	call	the	DisplaySupport

												//	procedure	to	display	the	supported	options.

												for(intIndex	=	0;	intIndex	<	4;	intIndex++)

												{

																rstTitles	=	new	Recordset();

																rstTitles.setCursorType(aintCursorType[intIndex]);

																rstTitles.setLockType(AdoEnums.LockType.OPTIMISTIC);

																rstTitles.open("Titles",	strCnn,	aintCursorType[intIndex],	

																				AdoEnums.LockType.OPTIMISTIC,	AdoEnums.CommandType.TABLE);

																switch(aintCursorType[intIndex])

																{

																case	AdoEnums.CursorType.FORWARDONLY:

																				System.out.println("ForwardOnly	cursor	supports:");

																				break;

																case	AdoEnums.CursorType.KEYSET:

																				System.out.println("Keyset	cursor	supports:");

																				break;

																case	AdoEnums.CursorType.DYNAMIC:

																				System.out.println("Dynamic	cursor	supports:");

																				break;

																case	AdoEnums.CursorType.STATIC:

																				System.out.println("Static	cursor	supports:");

																				break;

																default:

																				break;

																}

																DisplaySupport(rstTitles);

																rstTitles.close();

																System.out.println("Press	<Enter>	to	continue..");

																in.readLine();

												}

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstTitles!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	DisplaySupport	Function

				static	void	DisplaySupport(Recordset	rstTemp)

				{

								long[]	alngConstants	=	new	long[11];

								boolean	booSupports;

								int	intIndex;

								try

								{

												//	Fill	array	with	cursor	option	constants.

												alngConstants[0]		=	AdoEnums.CursorOption.ADDNEW;

												alngConstants[1]		=	AdoEnums.CursorOption.APPROXPOSITION;

												alngConstants[2]		=	AdoEnums.CursorOption.BOOKMARK;

												alngConstants[3]		=	AdoEnums.CursorOption.DELETE;

												alngConstants[4]		=	AdoEnums.CursorOption.FIND;

												alngConstants[5]		=	AdoEnums.CursorOption.HOLDRECORDS;

												alngConstants[6]		=	AdoEnums.CursorOption.MOVEPREVIOUS;

												alngConstants[7]		=	AdoEnums.CursorOption.NOTIFY;

												alngConstants[8]		=	AdoEnums.CursorOption.RESYNC;

												alngConstants[9]		=	AdoEnums.CursorOption.UPDATE;

												alngConstants[10]	=	AdoEnums.CursorOption.UPDATEBATCH;

												for(intIndex	=	0;	intIndex	<=	10;	intIndex++)

												{

																booSupports	=	rstTemp.supports((int)alngConstants[intIndex]);

																if	(booSupports)

																{

																				switch((int)alngConstants[intIndex])

																				{

																				case	AdoEnums.CursorOption.ADDNEW:

																												System.out.println("				AddNew");

																												break;

																				case	AdoEnums.CursorOption.APPROXPOSITION:

																												System.out.println(

																																"				AbsolutePosition	and	AbsolutePage");

																												break;

																				case	AdoEnums.CursorOption.BOOKMARK:

																												System.out.println("				Bookmark");

																												break;

																				case	AdoEnums.CursorOption.DELETE:

																												System.out.println("				Delete");

																												break;

																				case	AdoEnums.CursorOption.FIND:

																												System.out.println("				Find");

																												break;

																				case	AdoEnums.CursorOption.HOLDRECORDS:

																												System.out.println("				Holding	Records");

																												break;

																				case	AdoEnums.CursorOption.MOVEPREVIOUS:

																												System.out.println("				MovePrevious	and	Move");

																												break;

																				case	AdoEnums.CursorOption.NOTIFY:

																												System.out.println("				Notifications");

																												break;

																				case	AdoEnums.CursorOption.RESYNC:

																												System.out.println("				Resyncing	Data");

																												break;

																				case	AdoEnums.CursorOption.UPDATE:

																												System.out.println("				Update");

																												break;

																				case	AdoEnums.CursorOption.UPDATEBATCH:

																												System.out.println("				Batch	Updating");

																												break;

																				default:

																												break;

																				}

																}

												}

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rstTemp!=	null)

												{

																PrintProviderError(rstTemp.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Type	Property	Example	(Field)	(VJ++)

This	example	demonstrates	the	Type	property	by	displaying	the	name	of	the
constant	that	corresponds	to	the	value	of	the	Type	property	of	all	the	Field
objects	in	the	Employees	table.	The	FieldType	function	is	required	for	this
procedure	to	run.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	TypeX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								TypeX();

								System.exit(0);

				}

				//	TypeX	Function

				static	void	TypeX()

				{

								//	Define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								Field	fldLoop	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																					"Initial	Catalog	=	Pubs;User	Id=sa;Password=;";

								int	intLoop;

								int	intRecordCount	=	0;

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	the	Recordset	with	data	from	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.open("employee",	strCnn,	

																AdoEnums.CursorType.FORWARDONLY,	AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TABLE);

												System.out.println("Fields	in	the	Employees	table:\n");

												//	Enumerate	fields	collection	of	Employees	table.

												for(intLoop	=	0;intLoop	<	

																rstEmployees.getFields().getCount();intLoop++)

												{

																intRecordCount++;

																//	Loop	needed	for	display	of	records

																if((intRecordCount	%	6)==0)

																{

																				System.out.println("Press	<Enter>	to	continue..");

																				in.readLine();

																}

																fldLoop	=	rstEmployees.getFields().getItem(intLoop);

																System.out.println("		Name:"	+	fldLoop.getName()	+	"\n"+

																				"		Type:"	+	FieldType(fldLoop.getType())	+	"\n");

												}

												System.out.println("Press	<Enter>	to	continue");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	the	null	pointer	first.

												if(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	FieldType	Function

				static	String	FieldType(int	intType)

				{

								String	strLoop	=	null;

												switch(intType)

												{

												case	AdoEnums.DataType.CHAR:

																strLoop	=	"adChar";

																break;

												case	AdoEnums.DataType.VARCHAR:

																strLoop	="adVarChar";

																break;

												case	AdoEnums.DataType.SMALLINT:

																strLoop	=	"adSmallInt";

																break;

												case	AdoEnums.DataType.UNSIGNEDTINYINT:

																strLoop	=	"adUnsignedTinyInt"	;

																break;

												case	AdoEnums.DataType.DBTIMESTAMP:

																strLoop	=	"adDBTimeStamp";

																break;

												default:

																break;

												}

								return	strLoop;

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Type	Property	Example	(Property)	(VJ++)

This	example	demonstrates	the	Type	property.	It	is	a	model	of	a	utility	for	listing
the	names	and	types	of	a	collection,	like	Properties,	Fields,	etc.

We	do	not	need	to	open	the	Recordset	to	access	its	Properties	collection;	they
come	into	existence	when	the	Recordset	object	is	instantiated.	However,	setting
the	CursorLocation	property	to	adUseClient	adds	several	dynamic	properties	to
the	Recordset	object's	Properties	collection,	making	the	example	a	little	more
interesting.	For	sake	of	illustration,	we	explicitly	use	the	Item	property	to	access
each	Property	object.

import	com.ms.wfc.data.*;

import	java.io.*	;

public	class	TypeX

{

				//	The	main	entry	point	for	the	application.

				public	static	void	main	(String[]	args)

				{

								TypeX();

								System.exit(0);

				}

				//	TypeX		function

				static	void	TypeX()

				{

								//	Define	ADO	Objects.

								Recordset	rst	=	null;

								AdoProperty	prop	=	null;

								//	Declarations.

								BufferedReader	in	=	

												new	BufferedReader	(new	InputStreamReader(System.in));

								String	strCnn	=	"DSN=Pubs;Provider=MSDASQL;uid=sa;pwd=;";

								String	strMsg;

								int	intIndex;

								int	intDisplaysize	=	15;

								try

								{

												rst	=	new	Recordset();

												rst.setCursorLocation(AdoEnums.CursorLocation.CLIENT);

												for(intIndex	=	0;	

																intIndex	<=	rst.getProperties().getCount()	-	1;intIndex++)

												{

																prop	=	rst.getProperties().getItem(intIndex);

																switch(prop.getType())

																{

																case	AdoEnums.DataType.BIGINT	:

																								strMsg	=	"adBigInt";

																								break;

																case	AdoEnums.DataType.BINARY	:

																								strMsg	=	"adBinary";

																								break;

																case	AdoEnums.DataType.BOOLEAN	:

																								strMsg	=	"adBoolean";

																								break;

																case	AdoEnums.DataType.BSTR	:

																								strMsg	=	"adBSTR";

																								break;

																case	AdoEnums.DataType.CHAPTER	:

																								strMsg	=	"adChapter";

																								break;

																case	AdoEnums.DataType.CHAR	:

																								strMsg	=	"adChar";

																								break;

																case	AdoEnums.DataType.CURRENCY	:

																								strMsg	=	"adCurrency";

																								break;

																case	AdoEnums.DataType.DATE	:

																								strMsg	=	"adDate";

																								break;

																case	AdoEnums.DataType.DBDATE	:

																								strMsg	=	"adDBDate";

																								break;

																case	AdoEnums.DataType.DBTIME	:

																								strMsg	=	"adDBTime";

																								break;

																case	AdoEnums.DataType.DBTIMESTAMP	:

																								strMsg	=	"adDBTimeStamp";

																								break;

																case	AdoEnums.DataType.DECIMAL	:

																								strMsg	=	"adDecimal";

																								break;

																case	AdoEnums.DataType.DOUBLE	:

																								strMsg	=	"adDouble";

																								break;

																case	AdoEnums.DataType.EMPTY	:

																								strMsg	=	"adEmpty";

																								break;

																case	AdoEnums.DataType.ERROR	:

																								strMsg	=	"adError";

																								break;

																case	AdoEnums.DataType.FILETIME	:

																								strMsg	=	"adFileTime";

																								break;

																case	AdoEnums.DataType.GUID	:

																								strMsg	=	"adGUID";

																								break;

																case	AdoEnums.DataType.IDISPATCH	:

																								strMsg	=	"adIDispatch";

																								break;

																case	AdoEnums.DataType.INTEGER	:

																								strMsg	=	"adInteger";

																								break;

																case	AdoEnums.DataType.IUNKNOWN	:

																								strMsg	=	"adIUnknown";

																								break;

																case	AdoEnums.DataType.LONGVARBINARY	:

																								strMsg	=	"adLongVarBinary";

																								break;

																case	AdoEnums.DataType.LONGVARCHAR	:

																								strMsg	=	"adLongVarChar";

																								break;

																case	AdoEnums.DataType.LONGVARWCHAR	:

																								strMsg	=	"adLongVarWChar";

																								break;

																case	AdoEnums.DataType.NUMERIC	:

																								strMsg	=	"adNumeric";

																								break;

																case	AdoEnums.DataType.PROPVARIANT	:

																								strMsg	=	"adPropVariant";

																								break;

																case	AdoEnums.DataType.SINGLE	:

																								strMsg	=	"adSingle";

																								break;

																case	AdoEnums.DataType.SMALLINT	:

																								strMsg	=	"adSmallInt";

																								break;

																case	AdoEnums.DataType.TINYINT	:

																								strMsg	=	"adTinyInt";

																								break;

																case	AdoEnums.DataType.UNSIGNEDBIGINT	:

																								strMsg	=	"adUnsignedBigInt";

																								break;

																case	AdoEnums.DataType.UNSIGNEDINT	:

																								strMsg	=	"adUnsignedInt";

																								break;

																case	AdoEnums.DataType.UNSIGNEDSMALLINT	:

																								strMsg	=	"adUnsignedSmallInt";

																								break;

																case	AdoEnums.DataType.UNSIGNEDTINYINT	:

																								strMsg	=	"adUnsignedTinyInt";

																								break;

																case	AdoEnums.DataType.USERDEFINED	:

																								strMsg	=	"adUserDefined";

																								break;

																case	AdoEnums.DataType.VARBINARY	:

																								strMsg	=	"adVarBinary";

																								break;

																case	AdoEnums.DataType.VARCHAR	:

																								strMsg	=	"adVarChar";

																								break;

																case	AdoEnums.DataType.VARIANT	:

																								strMsg	=	"adVariant";

																								break;

																case	AdoEnums.DataType.VARNUMERIC	:

																								strMsg	=	"adVarNumeric";

																								break;

																case	AdoEnums.DataType.VARWCHAR	:

																								strMsg	=	"adVarWChar";

																								break;

																case	AdoEnums.DataType.WCHAR	:

																								strMsg	=	"adWChar";

																								break;

																default:

																								strMsg	=	"*UNKNOWN*";

																								break;

																}

																System.out.println("Property	"	+

																																			Integer.toString(intIndex)	+

																																			"	:	"	+

																																			prop.getName()	+

																																			",	Type	=	"	+

																																			strMsg);

																if(intIndex	%	intDisplaysize	==	0	&&	intIndex	!=	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																}

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	Recordset,	check	for	null	pointer	first.

												if	(rst	!=	null)

												{

																PrintProviderError(rst.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Update	and	CancelUpdate	Methods	Example	(VJ++)

This	example	demonstrates	the	Update	method	in	conjunction	with	the
CancelUpdate	method.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	UpdateX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								UpdateX();

								UpdateX2();

								System.exit(0);

				}

				//	UpdateX	Function

				static	void	UpdateX()

				{

								//	Define	ADO	objects.

								Recordset	rstEmployees	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																								"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String	strOldFirst;

								String	strOldLast;

								String	strMessage;

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	Recordset	with	names	from	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.setCursorType(AdoEnums.CursorType.KEYSET);

												rstEmployees.setLockType(AdoEnums.LockType.OPTIMISTIC);

												rstEmployees.open("SELECT	fname,lname	FROM	Employees	"	+

																"ORDER	BY	lname",	strCnn,	AdoEnums.CursorType.KEYSET,	

																AdoEnums.LockType.OPTIMISTIC,	AdoEnums.CommandType.TEXT);

												//	Store	Original	data.

												strOldFirst	=	rstEmployees.getField("fname").getString();

												strOldLast	=	rstEmployees.getField("lname").getString();

												//	Change	data	in	edit	buffer.

												rstEmployees.getField("fname").setString("Linda");

												rstEmployees.getField("lname").setString("Kobara");

												//	Show	contents	of	buffer	and	get	user	input.

												strMessage	=	"Edit	in	Progress	:\n"	+

																"\tOriginal	Data	=	"	+	strOldFirst	+	"		"	+	strOldLast	+

																"\n\tData	in	Buffer	=	"	+	

																rstEmployees.getField("fname").getString()	+	"	"	+	

																rstEmployees.getField("lname").getString()	+	"\n\n"	+

																	"Use	Update	to	replace	the	original	data	with	"	+

																"the	buffered	data	in	the	Recordset?Enter	(Y/N)";

												System.out.println(strMessage);

												if(in.readLine().trim().equalsIgnoreCase("Y"))

																rstEmployees.update();

												else

																rstEmployees.cancelUpdate();

												//	Show	the	resulting	data.

												System.out.println("Data	in	Recordset	=	"	+	

																rstEmployees.getField("fname").getString()	+

																"		"	+	rstEmployees.getField("lname").getString()+	"\n");

												//	Restore	original	data	because	this	is	a	demonstration.

												if(!(strOldFirst.equals(

																rstEmployees.getField("fname").getString())	&&	

																strOldLast.equals(

																rstEmployees.getField("lname").getString())))

												{

																rstEmployees.getField("fname").setString(strOldFirst);

																rstEmployees.getField("lname").setString(strOldLast);

																rstEmployees.update();

												}

												//	Cleanup	Objects	before	exit.

												rstEmployees.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	UpdateX2	Function

				static	void	UpdateX2()

				{

								//	This	example	demonstrates	the	Update	method	in	conjunction

								//	with	the	AddNew	method.

								//	Define	ADO	Objects.

								Connection	cnn1	=	null;

								Recordset	rstEmployees	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																								"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String	strEmpID;

								String	strOldFirst;

								String	strOldLast;

								String	strMessage;

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	a	connection.

												cnn1	=	new	Connection();

												cnn1.open(strCnn);

												//	Open	Recordset	with	data	from	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.setCursorType(AdoEnums.CursorType.KEYSET);

												rstEmployees.setLockType(AdoEnums.LockType.OPTIMISTIC);

												rstEmployees.open("employee",	cnn1,	AdoEnums.CursorType.KEYSET,	

																AdoEnums.LockType.OPTIMISTIC,	AdoEnums.CommandType.TABLE);

												rstEmployees.addNew();

												strEmpID="B-S55555M";

												rstEmployees.getField("emp_id").setString(strEmpID);

												rstEmployees.getField("fname").setString("Bill");

												rstEmployees.getField("lname").setString("Sornsin");

												//	Show	contents	of	buffer	and	get	user	input.

												strMessage	=	"AddNew	in	progress	:	"	+	"\n"	+

																"\tData	in	Buffer	=	"	+	

																rstEmployees.getField("emp_id").getString()	+

																"		"	+	rstEmployees.getField("fname").getString()	+	"		"	+

																rstEmployees.getField("lname").getString()+	"\n\n"	+

																"Use	Update	to	save	buffer	to	recordset?Enter	(Y/N)";

												System.out.println(strMessage);

												if(in.readLine().trim().equalsIgnoreCase("Y"))

												{

																rstEmployees.update();

																//	Go	to	the	new	record	and	show	the	resulting	data.

																System.out.println("Data	in	recordset	=	"	+	

																				rstEmployees.getField("emp_id").getString()+

																				"		"	+	rstEmployees.getField("fname").getString()	+

																				"		"	+	rstEmployees.getField("lname").getString()	+	"\n");

												}

												else

												{

																rstEmployees.cancelUpdate();

																System.out.println("No	new	Record	added.\n");

												}

												//	Delete	new	data	because	this	is	a	demonstration.

												cnn1.execute(

																"DELETE	FROM	employee	WHERE	emp_id='"	+	strEmpID	+"'");

												//	Cleanup	Objects	before	exit

												rstEmployees.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

UpdateBatch	and	CancelBatch	Methods	Example	(VJ++)

This	example	demonstrates	the	UpdateBatch	method	in	conjunction	with	the
CancelBatch	method.

import	java.io.*;

import	com.ms.wfc.data.*;

public	class	UpdateBatchX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								UpdateBatchX();

								System.exit(0);

				}

				//	UpdateBatchX	Function

				static	void	UpdateBatchX()

				{

								//	Define	ADO	Objects.

								Recordset	rstTitles	=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;Data	Source=srv;"+

																								"Initial	Catalog=Pubs;User	Id=sa;Password=;";

								String	strTitle;

								String	strMessage;

								BufferedReader	in	=	

												new	BufferedReader(new	InputStreamReader(System.in));

								try

								{

												rstTitles	=	new	Recordset();

												rstTitles.setCursorType(AdoEnums.CursorType.KEYSET);

												rstTitles.setLockType(AdoEnums.LockType.BATCHOPTIMISTIC);

												rstTitles.open("Titles",	strCnn,	AdoEnums.CursorType.KEYSET,	

																AdoEnums.LockType.BATCHOPTIMISTIC,	

																AdoEnums.CommandType.TABLE);

												rstTitles.moveFirst();

												//	Loop	through	recordset	and	ask	user	if	she	wants

												//	to	change	the	type	for	the	specified	table.

												while(!rstTitles.getEOF())

												{

																if(rstTitles.getField("Type").getString().

																				trim().equalsIgnoreCase("psychology"))

																{

																				strTitle	=	rstTitles.getField("Title").getString();

																				strMessage	=	"Title:	"+	strTitle	+	"\n"	+	

																								"Change	type	to	self_help?Enter	(Y/N)";

																				System.out.println(strMessage);

																				if(in.readLine().trim().equalsIgnoreCase("Y"))

																								rstTitles.getField("type").setString("self_help");

																}

																rstTitles.moveNext();

												}

												//	Ask	the	user	if	she	wants	to	commit	to	all	the

												//	changes	made	above.

												System.out.println("Save	all	changes?Enter	(Y/N)");

												if(in.readLine().trim().equalsIgnoreCase("Y"))

																rstTitles.updateBatch();

												else

																rstTitles.cancelBatch();

												//	Print	current	data	in	recordset.

												rstTitles.requery();

												rstTitles.moveFirst();

												while(!rstTitles.getEOF())

												{

												System.out.println(rstTitles.getField("title").getString()	+

																"	-	"	+	rstTitles.getField("type").getString());

												rstTitles.moveNext();

												}

												//	Restore	original	values	because	this	is	a	demonstration.

												rstTitles.moveFirst();

												while(!rstTitles.getEOF())

												{

																if(rstTitles.getField("type").getString().

																				trim().equalsIgnoreCase("self_help"))

																				rstTitles.getField("type").setString("psychology");

																rstTitles.moveNext();

												}

												rstTitles.updateBatch();

												//	Clean	up	objects	before	exit.

												rstTitles.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstTitles	!=	null)

												{

																PrintProviderError(rstTitles.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Value	Property	Example	(VJ++)

This	example	demonstrates	the	Value	property	with	Field	and	Property	objects
by	displaying	field	and	property	values	for	the	Employees	table.

import	java.io.*;

import	com.ms.wfc.data.*;

import	com.ms.com.*;

public	class	ValueX

{

				//	Main	Function

				public	static	void	main	(String[]	args)

				{

								ValueX();

								System.exit(0);

				}

				static	void	ValueX()

				{

								//	Define	ADO	Objects.

								Recordset	rstEmployees	=	null;

								Field				fldLoop					=	null;

								AdoProperty		prpLoop			=	null;

								//	Declarations.

								String	strCnn	=	"Provider=sqloledb;	Data	Source=	srv;"	+

												"Initial	Catalog=Pubs;	User	Id=sa;	Password=;";

								int	intLoop;

								BufferedReader	in	=	new	

												BufferedReader(new	InputStreamReader(System.in));

								Variant	varPropertyValue;

								String	strMessage;

								try

								{

												//	Open	a	Recordset	with	data	from	Employees	table.

												rstEmployees	=	new	Recordset();

												rstEmployees.open("employee",	strCnn,	

																AdoEnums.CursorType.FORWARDONLY,	AdoEnums.LockType.READONLY,	

																AdoEnums.CommandType.TABLE);

												System.out.println("Field	values	in	rstEmployees\n");

												//	Enumerate	the	Fields	collection	of	the	Employees

												//	table.

												for(intLoop	=	0;

																intLoop<rstEmployees.getFields().getCount();intLoop++)

												{

																fldLoop	=	rstEmployees.getFields().getItem(intLoop);

																//	Because	Value	is	the	default	property	of	a

																//	Field	object,	the	use	of	the	actual	keyword

																//	here	is	optional.

																System.out.println("\t"	+	fldLoop.getName()	+	"	=	"	+	

																				fldLoop.getValue());

												}

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

												System.out.println("Property	values	in	rstEmployees\n");

												//	Enumerate	the	Properties	collection	of	the

												//	Recordset	object.

												int	intCount	=	0;

												for(intLoop	=	0;

																intLoop<rstEmployees.getProperties().getCount();intLoop++)

												{

																prpLoop	=	rstEmployees.getProperties().getItem(intLoop);

																//	Because	Value	is	the	default	property	of	a

																//	Field	object,	the	use	of	the	actual	keyword

																//	here	is	optional.

																strMessage	=	"\t"	+	prpLoop.getName()	+	"	=		";

																varPropertyValue	=	prpLoop.getValue();

																short	vttype	=varPropertyValue.getvt();

																switch	(vttype)

																{

																case	Variant.VariantBoolean	:

																				{

																								if	(varPropertyValue.getBoolean())

																												strMessage	+="True";

																								else

																												strMessage	+="False";

																				}

																				break;

																case	Variant.VariantInt	:

																				strMessage	+=	varPropertyValue.getInt();

																				break;

																default	:

																				break;

																}

																System.out.println(strMessage);

																intCount++;

																//	Loop	used	to	display	records

																if	(intCount	%	15	==	0)

																{

																				System.out.println("\nPress	<Enter>	to	continue..");

																				in.readLine();

																				intCount	=	0;

																}

												}

												//	Cleanup	objects	before	exit.

												rstEmployees.close();

												System.out.println("\nPress	<Enter>	to	continue..");

												in.readLine();

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(rstEmployees	!=	null)

												{

																PrintProviderError(rstEmployees.getActiveConnection());

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Version	Property	Example	(VJ++)

This	example	uses	the	Version	property	of	a	Connection	object	to	display	the
current	ADO	version.	It	also	uses	several	dynamic	properties	to	show:

the	current	DBMS	name	and	version.

OLE	DB	version.

provider	name	and	version.

ODBC	version.

ODBC	driver	name	and	version.

import	com.ms.wfc.data.*;

import	java.io.*;

public	class	VersionX

{

				//	The	main	entry	point	of	the	application.

				public	static	void	main	(String[]	args)

				{

								VersionX();

								System.exit(0);

				}

				//	VersionX	Function

				static	void	VersionX()

				{

								//	Define	ADO	Objects.

								Connection	cnn1	=	null;

								//	Declarations.

								String	strCnn	=	"Driver={SQL	Server};Server=srv;"	+

																								"User	Id=sa;	Password=;database=Pubs;";

								String	strVersionInfo;

								BufferedReader	in	=	new	

												BufferedReader(new	InputStreamReader(System.in));

								try

								{

												//	Open	connection.

												cnn1	=	new	Connection();

												cnn1.open(strCnn);

												strVersionInfo	=	"\tADO	Version:\t\t"	+	

																cnn1.getVersion().toString()+"\n"+

																"\tDBMS	Name:\t\t"	+	

																cnn1.getProperties().getItem("DBMS	Name").getString()	+"\n"+

																"\tDBMS	Version:\t\t"+	

																cnn1.getProperties().getItem("DBMS	Version").getString()	+	

																"\n"	+	"\tOLE	DB	Version:\t\t"	+	

																cnn1.getProperties().getItem("OLE	DB	Version").getString()+	

																"\n"	+	"\tProvider	Name:\t\t"	+	

																cnn1.getProperties().getItem("Provider	Name").getString()	+	

																"\n"	+	"\tProvider	Version:\t"	+	

																cnn1.getProperties().getItem("Provider	Version").

																getString()	+	"\n"	+	"\tDriver	Name:\t\t"	+	

																cnn1.getProperties().getItem("Driver	Name").getString()	+	

																"\n"	+	"\tDriver	Version:\t\t"	+	

																cnn1.getProperties().getItem("Driver	Version").getString()+	

																"\n"	+	"\tDriver	ODBC	Version:\t"	+	

																cnn1.getProperties().getItem(

																"Driver	ODBC	Version").getString()+	"\n";

												System.out.println("\n\n"	+	strVersionInfo);

												//	Cleanup	Objects	before	exit.

												cnn1.close();

												System.out.println("Press	<Enter>	to	continue..");

												in.readLine();

								}

								//	System	read	requires	this	catch.

								catch(java.io.IOException	je)

								{

												PrintIOError(je);

								}

								catch(AdoException	ae)

								{

												//	Notify	the	user	of	any	errors	that	result	from	ADO.

												//	As	passing	a	recordset,	check	for	null	pointer	first.

												if(cnn1!=	null)

												{

																PrintProviderError(cnn1);

												}

												else

												{

																System.out.println("Exception:	"	+	ae.getMessage());

												}

								}

				}

				//	PrintProviderError	Function

				static	void	PrintProviderError(Connection	cnn1)

				{

								//	Print	Provider	Errors	from	Connection	Object.

								//	ErrItem	is	an	item	object	in	the	Connection’s	Errors	Collection.

								com.ms.wfc.data.Error															ErrItem	=	null;

								long																																	nCount	=	0;

								int																																							i	=	0;

								nCount	=	cnn1.getErrors().getCount();

								//	If	there	are	any	errors	in	the	collection,	print	them.

								if	(nCount	>	0)

								{

												//	Collection	ranges	from	0	to	nCount-1.

												for	(i=0;i<nCount;	i++)

												{

																ErrItem	=	cnn1.getErrors().getItem(i);

																System.out.println("\t	Error	Number:	"	+	ErrItem.getNumber()	

																				+	"\t"	+	ErrItem.getDescription());

												}

								}

				}

				//	PrintIOError	Function

				static	void	PrintIOError(java.io.IOException	je)

				{

								System.out.println("Error:	\n");

								System.out.println("\t	Source:	"	+	je.getClass()	+	"\n");

								System.out.println("\t	Description:	"+	je.getMessage()	+	"\n");

				}

}

Using	Providers	with	ADO

This	section	addresses	three	kinds	of	providers:	data	providers,	service
providers,	and	service	components.	Providers	fall	into	two	categories:	those
providing	data	and	those	providing	services.	A	data	provider	owns	its	own	data
and	exposes	it	in	tabular	form	to	your	application.	A	service	provider
encapsulates	a	service	by	producing	and	consuming	data,	augmenting	features	in
your	ADO	applications.	A	service	provider	may	also	be	further	defined	as	a
service	component,	which	must	work	in	conjunction	with	other	service	providers
or	components.

Data	Providers

ADO	is	powerful	and	flexible	because	it	can	connect	to	any	of	several	different
data	providers	and	still	expose	the	same	programming	model,	regardless	of	the
specific	features	of	any	given	provider.

However,	because	each	data	provider	is	unique,	how	your	application	interacts
with	ADO	will	vary	slightly	by	data	provider.	The	differences	usually	fall	into
one	of	three	categories:

Connection	parameters	in	the	ConnectionString	property.

Command	object	usage.

Provider-specific	Recordset	behavior.

Details	for	each	of	the	data	providers	currently	available	from	Microsoft	are
listed	as	follows.

Area Topic
ODBC	databases Microsoft	OLE	DB	Provider	for	ODBC

Microsoft	Indexing	Service Microsoft	OLE	DB	Provider	for
Microsoft	Indexing	Service

Microsoft	Active	Directory	Service Microsoft	OLE	DB	Provider	for
Microsoft	Active	Directory	Service

Microsoft	Jet	databases OLE	DB	Provider	for	Microsoft	Jet

Microsoft	SQL	Server Microsoft	OLE	DB	Provider	for	SQL
Server

Oracle	databases Microsoft	OLE	DB	Provider	for	Oracle

Internet	Publishing Microsoft	OLE	DB	Provider	for
Internet	Publishing

Provider-Specific	Dynamic	Properties

The	Properties	collections	of	the	Connection,	Command,	and	Recordset	objects
include	dynamic	properties	specific	to	the	provider.	These	properties	provide
information	about	functionality	specific	to	the	provider	beyond	the	built-in
properties	that	ADO	supports.

After	establishing	the	connection	and	creating	these	objects,	use	the	Refresh
method	on	the	object's	Properties	collection	to	obtain	the	provider-specific
properties.	Refer	to	the	provider	documentation	and	the	OLE	DB	Programmer's
Reference	for	detailed	information	about	these	dynamic	properties.

Service	Providers

To	use	a	service	provider,	you	must	supply	a	keyword.	You	should	also	be	aware
of	the	provider-specific	dynamic	properties	associated	with	each	service
provider.	Provider-specific	details	are	listed	for	each	of	the	service	providers
currently	available	from	Microsoft.

Microsoft	Data	Shaping	Service	for	OLE	DB

Microsoft	OLE	DB	Persistence	Provider

Microsoft	OLE	DB	Remoting	Provider

mk:@MSITStore:OLEDB.chm::/htm/oledbAbout_the_OLE_DB_Documentation.htm

Service	Components

The	Cursor	Service	for	OLE	DB	service	component	supplements	the	cursor
support	functions	of	data	providers.	It	also	requires	a	keyword	and	has	dynamic
properties.

See	Also			For	more	information	about	providers,	see	the	documentation	for
Microsoft	OLE	DB	in	the	Microsoft®	Data	Access	Components	SDK	or	visit
the	Microsoft	Universal	Data	Access	Web	site.

mk:@MSITStore:OLEDB.chm::/htm/oledbprovMicrosoft_OLE_DB_Providers_Overview.htm
http://www.microsoft.com/data/

Microsoft	OLE	DB	Provider	for
ODBC

To	an	ADO	or	RDS	programmer,	an	ideal	world	would	be	one	in	which	every
data	source	exposes	an	OLE	DB	interface,	so	that	ADO	could	call	directly	into
the	data	source.	Although	increasingly	more	database	vendors	are	implementing
OLE	DB	interfaces,	some	data	sources	are	not	yet	exposed	this	way.	However,
virtually	all	DBMS	systems	in	use	today	can	be	accessed	through	ODBC.

ODBC	drivers	are	available	for	every	major	DBMS	in	use	today,	including
Microsoft	SQL	Server™,	Microsoft	Access	(Microsoft	Jet	database	engine),	and
Microsoft	FoxPro®,	in	addition	to	non-Microsoft	database	products	such	as
Oracle.

The	Microsoft	ODBC	Provider,	however,	allows	ADO	to	connect	to	any	ODBC
data	source.	The	provider	is	free-threaded	and	unicode	enabled.

The	provider	supports	transactions,	although	different	DBMS	engines	offer
different	types	of	transaction	support.	For	example,	Microsoft	Access	supports
nested	transactions	up	to	five	levels	deep.

This	is	the	default	provider	for	ADO,	and	all	provider-dependent	ADO
properties	and	methods	are	supported.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider=	argument	of	the	ConnectionString
property	to:

MSDASQL

Reading	the	Provider	property	will	return	this	string	as	well.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=MSDASQL;DSN=dsnName;UID=userName;PWD=userPassword;"

Consisting	of	these	keywords:

Keyword Description

Provider Specifies	the	OLE	DB	Provider	for
ODBC.

DSN Specifies	the	data	source	name.
UID Specifies	the	user	name.
PWD Specifies	the	user	password.

Because	this	is	the	default	provider	for	ADO,	if	you	omit	the	Provider=
parameter	from	the	connection	string,	ADO	will	attempt	to	establish	a
connection	to	this	provider.

The	provider	does	not	support	any	specific	connection	parameters	in	addition	to
those	defined	by	ADO.	However,	the	provider	will	pass	any	non-ADO
connection	parameters	to	the	ODBC	driver	manager.

Because	you	can	omit	the	Provider	parameter,	you	can	therefore	compose	an
ADO	connection	string	that	is	identical	to	an	ODBC	connection	string	for	the
same	data	source.	Use	the	same	parameter	names	(DRIVER=,	DATABASE=,
DSN=,	and	so	on),	values,	and	syntax	as	you	would	when	composing	an	ODBC
connection	string.	You	can	connect	with	or	without	a	predefined	data	source
name	(DSN)	or	FileDSN.

Syntax	with	a	DSN	or	FileDSN:

"[Provider=MSDASQL;]	{	DSN=name	|	FileDSN=filename	}	;

[DATABASE=database;]	UID=user;	PWD=password"

Syntax	without	a	DSN	(DSN-less	connection):

"[Provider=MSDASQL;]	DRIVER=driver;	SERVER=server;

DATABASE=database;	UID=user;	PWD=password"

If	you	use	a	DSN	or	FileDSN,	it	must	be	defined	through	the	ODBC	Data
Source	Administrator	in	the	Windows	Control	Panel.	In	Microsoft	Windows
2000,	the	ODBC	Administrator	is	located	under	Administrative	Tools.	In
previous	versions	of	Windows,	the	ODBC	Administrator	icon	is	named	32-bit
ODBC	or	simply	ODBC.

As	an	alternative	to	setting	a	DSN,	you	can	specify	the	ODBC	driver
(DRIVER=),	such	as	"SQL	Server;"	the	server	name	(SERVER=);	and	the
database	name	(DATABASE=).

You	can	also	specify	a	user	account	name	(UID=),	and	the	password	for	the	user
account	(PWD=)	in	the	ODBC-specific	parameters	or	in	the	standard	ADO-
defined	User	ID	and	Password	parameters.

Although	a	DSN	definition	already	specifies	a	database,	you	can	specify	a
DATABASE	parameter	in	addition	to	a	DSN	to	connect	to	a	different	database.	It
is	a	good	idea	to	always	include	the	DATABASE	parameter	when	you	use	a
DSN.	This	will	ensure	that	you	connect	to	the	proper	database	in	the	event	that
another	user	changed	the	default	database	parameter	since	you	last	checked	the
DSN	definition.

Provider-Specific	Connection	Properties

The	OLE	DB	provider	for	ODBC	adds	several	properties	to	the	Properties
collection	of	the	Connection	object.	The	following	table	lists	these	properties
with	the	corresponding	OLE	DB	property	name	in	parentheses.

Property	Name Description
Accessible	Procedures
(KAGPROP_ACCESSIBLEPROCEDURES)

Indicates	whether	the	user	has
access	to	stored	procedures.

Accessible	Tables
(KAGPROP_ACCESSIBLETABLES)

Indicates	whether	the	user	has
permission	to	execute	SELECT
statements	against	the	database
tables.

Active	Statements
Indicates	the	number	of	handles
an	ODBC	driver	can	support	on

(KAGPROP_ACTIVESTATEMENTS) a	connection.

Driver	Name
(KAGPROP_DRIVERNAME)

Indicates	the	file	name	of	the
ODBC	driver.

Driver	ODBC	Version
(KAGPROP_DRIVERODBCVER)

Indicates	the	version	of	ODBC
that	this	driver	supports.

File	Usage
(KAGPROP_FILEUSAGE)

Indicates	how	the	driver	treats	a
file	in	a	data	source;	as	a	table	or
as	a	catalog.

Like	Escape	Clause
(KAGPROP_LIKEESCAPECLAUSE)

Indicates	whether	the	driver
supports	the	definition	and	use
of	an	escape	character	for	the
percent	character	(%)	and
underline	character	(_)	in	the
LIKE	predicate	of	a	WHERE
clause.

Max	Columns	in	Group	By
(KAGPROP_MAXCOLUMNSINGROUPBY)

Indicates	the	maximum	number
of	columns	that	can	be	listed	in
the	GROUP	BY	clause	of	a
SELECT	statement.

Max	Columns	in	Index
(KAGPROP_MAXCOLUMNSININDEX)

Indicates	the	maximum	number
of	columns	that	can	be	included
in	an	index.

Max	Columns	in	Order	By
(KAGPROP_MAXCOLUMNSINORDERBY)

Indicates	the	maximum	number
of	columns	that	can	be	listed	in
the	ORDER	BY	clause	of	a
SELECT	statement.

Max	Columns	in	Select
(KAGPROP_MAXCOLUMNSINSELECT)

Indicates	the	maximum	number
of	columns	that	can	be	listed	in
the	SELECT	portion	of	a
SELECT	statement.

Max	Columns	in	Table
(KAGPROP_MAXCOLUMNSINTABLE)

Indicates	the	maximum	number
of	columns	allowed	in	a	table.

Numeric	Functions

Indicates	which	numeric
functions	are	supported	by	the
ODBC	driver.	For	a	listing	of
function	names	and	the

(KAGPROP_NUMERICFUNCTIONS) associated	values	used	in	this
bitmask,	see	Appendix	E:	Scalar
Functions	of	the	ODBC
documentation.

Outer	Join	Capabilities
(KAGPROP_OJCAPABILITY)

Indicates	the	types	of	OUTER
JOINs	supported	by	the
provider.

Outer	Joins
(KAGPROP_OUTERJOINS)

Indicates	whether	the	provider
supports	OUTER	JOINs.

Special	Characters
(KAGPROP_SPECIALCHARACTERS)

Indicates	which	characters	have
special	meaning	for	the	ODBC
driver.

Stored	Procedures
(KAGPROP_PROCEDURES)

Indicates	whether	stored
procedures	are	available	for	use
with	this	ODBC	driver.

String	Functions
(KAGPROP_STRINGFUNCTIONS)

Indicates	which	string	functions
are	supported	by	the	ODBC
driver.	For	a	listing	of	function
names	and	the	associated	values
used	in	this	bitmask,	see
Appendix	E:	Scalar	Functions	of
the	ODBC	documentation.

System	Functions
(KAGPROP_SYSTEMFUNCTIONS)

Indicates	which	system
functions	are	supported	by	the
ODBC	driver.	For	a	listing	of
function	names	and	the
associated	values	used	in	this
bitmask,	see	Appendix	E:	Scalar
Functions	of	the	ODBC
documentation.

Time/Date	Functions
(KAGPROP_TIMEDATEFUNCTIONS)

Indicates	which	time	and	date
functions	are	supported	by	the
ODBC	driver.	For	a	listing	of
function	names	and	the
associated	values	used	in	this
bitmask,	see	Appendix	E:	Scalar
Functions	of	the	ODBC

mk:@MSITStore:ODBC.chm::/htm/odbcNumeric_Functions.htm
mk:@MSITStore:ODBC.chm::/htm/odbcString_Functions.htm
mk:@MSITStore:ODBC.chm::/htm/odbcSystem_Functions.htm
mk:@MSITStore:ODBC.chm::/htm/odbcTime__Date__and_Interval_Functions.htm

documentation.
SQL	Grammar	Support
(KAGPROP_ODBCSQLCONFORMANCE)

Indicates	the	SQL	grammar	that
the	ODBC	driver	supports.

Provider-Specific	Recordset	and	Command	Properties

The	OLE	DB	provider	for	ODBC	adds	several	properties	to	the	Properties
collection	of	the	Recordset	and	Command	objects.	The	following	table	lists
these	properties	with	the	corresponding	OLE	DB	property	name	in	parentheses.

Property	Name Description

Query	Based	Updates/Deletes/Inserts
(KAGPROP_QUERYBASEDUPDATES)

Indicates	whether	updates,
deletions,	and	insertions	can	be
performed	using	SQL	queries.

ODBC	Concurrency	Type
(KAGPROP_CONCURRENCY)

Indicates	the	method	used	to
reduce	potential	problems	caused
by	two	users	attempting	to
access	the	same	data	from	the
data	source	simultaneously.

BLOB	accessibility	on	Forward-Only	cursor
(KAGPROP_BLOBSONFOCURSOR)

Indicates	whether	BLOB	Fields
can	be	accessed	when	using	a
forward-only	cursor.

Include	SQL_FLOAT,	SQL_DOUBLE,	and
SQL_REAL	in	QBU	WHERE	clauses
(KAGPROP_INCLUDENONEXACT)

Indicates	whether	SQL_FLOAT,
SQL_DOUBLE,	and
SQL_REAL	values	can	be
included	in	a	QBU	WHERE
clause.

Position	on	the	last	row	after	insert
(KAGPROP_POSITIONONNEWROW)

Indicates	that	after	a	new	record
has	been	inserted	in	a	table,	the
last	row	in	the	table	will	be	come
the	current	row.

IRowsetChangeExtInfo
(KAGPROP_IROWSETCHANGEEXTINFO)

Indicates	whether	the
IRowsetChange	interface
provides	extended	information
support.

ODBC	Cursor	Type Indicates	the	type	of	cursor	used

(KAGPROP_CURSOR) by	the	Recordset.

Generate	a	Rowset	that	can	be	marshaled
(KAGPROP_MARSHALLABLE)

Indicates	that	the	ODBC	driver
generates	a	recordset	that	can	be
marshaled

Command	Text

How	you	use	the	Command	object	largely	depends	on	the	data	source,	and	what
type	of	query	or	command	statement	it	will	accept.

ODBC	provides	a	specific	syntax	for	calling	stored	procedures.	For	the
CommandText	property	of	a	Command	object,	the	CommandText	argument	to
the	Execute	method	on	a	Connection	object,	or	the	Source	argument	to	the	Open
method	on	a	Recordset	object,	passes	in	a	string	with	this	syntax:

"{	[?	=]	call	procedure	[(?	[,	?	[,	…]])]	}"

Each	?	references	an	object	in	the	Parameters	collection.	The	first	?	references
Parameters(0),	the	next	?	references	Parameters(1),	and	so	on.

The	parameter	references	are	optional	and	depend	on	the	structure	of	the	stored
procedure.	If	you	want	to	call	a	stored	procedure	that	defines	no	parameters,
your	string	would	look	like	this:

"{	call	procedure	}"

If	you	have	two	query	parameters,	your	string	would	look	like	this:

"{	call	procedure	(?,	?)	}"

If	the	stored	procedure	will	return	a	value,	the	return	value	is	treated	as	another
parameter.	If	you	have	no	query	parameters	but	you	do	have	a	return	value,	your
string	would	look	like	this:

"{	?	=	call	procedure	}"

Finally,	if	you	have	a	return	value	and	two	query	parameters,	your	string	would
look	like	this:

"{	?	=	call	procedure	(?,	?)	}"

Recordset	Behavior

The	following	tables	list	the	standard	ADO	methods	and	properties	available	on
a	Recordset	object	opened	with	this	provider.

For	more	detailed	information	about	Recordset	behavior	for	your	provider
configuration,	run	the	Supports	method	and	enumerate	the	Properties	collection
of	the	Recordset	to	determine	whether	provider-specific	dynamic	properties	are
present.

Availability	of	standard	ADO	Recordset	properties:

Property ForwardOnly Dynamic Keyset Static
AbsolutePage not	available not	available read/write read/write
AbsolutePosition not	available not	available read/write read/write
ActiveConnection read/write read/write read/write read/write
BOF read-only read-only read-only read-only
Bookmark not	available not	available read/write read/write
CacheSize read/write read/write read/write read/write
CursorLocation read/write read/write read/write read/write
CursorType read/write read/write read/write read/write
EditMode read-only read-only read-only read-only
Filter read/write read/write read/write read/write
LockType read/write read/write read/write read/write
MarshalOptions read/write read/write read/write read/write
MaxRecords read/write read/write read/write read/write
PageCount read/write not	available read-only read-only
PageSize read/write read/write read/write read/write
RecordCount read/write not	available read-only read-only
Source read/write read/write read/write read/write
State read-only read-only read-only read-only
Status read-only read-only read-only read-only

The	AbsolutePosition	and	AbsolutePage	properties	are	write-only	when	ADO	is
used	with	version	1.0	of	the	Microsoft	OLE	DB	Provider	for	ODBC.

Availability	of	standard	ADO	Recordset	methods:

Method ForwardOnly Dynamic Keyset Static
AddNew Yes Yes Yes Yes
Cancel Yes Yes Yes Yes
CancelBatch Yes Yes Yes Yes
CancelUpdate Yes Yes Yes Yes
Clone No No Yes Yes
Close Yes Yes Yes Yes
Delete Yes Yes Yes Yes
GetRows Yes Yes Yes Yes
Move Yes Yes Yes Yes
MoveFirst Yes Yes Yes Yes
MoveLast No Yes Yes Yes
MoveNext Yes Yes Yes Yes
MovePrevious No Yes Yes Yes
NextRecordset* Yes Yes Yes Yes
Open Yes Yes Yes Yes
Requery Yes Yes Yes Yes
Resync No No Yes Yes
Supports Yes Yes Yes Yes
Update Yes Yes Yes Yes
UpdateBatch Yes Yes Yes Yes

*Not	supported	for	Microsoft	Access	databases.

Dynamic	Properties

The	Microsoft	OLE	DB	Provider	for	ODBC	inserts	several	dynamic	properties
into	the	Properties	collection	of	the	unopened	Connection,	Recordset,	and
Command	objects.

The	tables	below	are	a	cross-index	of	the	ADO	and	OLE	DB	names	for	each
dynamic	property.	The	OLE	DB	Programmer's	Reference	refers	to	an	ADO
property	name	by	the	term,	"Description."	You	can	find	more	information	about
these	properties	in	the	OLE	DB	Programmer's	Reference.	Search	for	the	OLE

DB	property	name	in	the	Index	or	see	Appendix	C:	OLE	DB	Properties.

Connection	Dynamic	Properties

The	following	properties	are	added	to	the	Connection	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Active	Sessions DBPROP_ACTIVESESSIONS
Asynchable	Abort DBPROP_ASYNCTXNABORT
Asynchable	Commit DBPROP_ASYNCTNXCOMMIT
Autocommit	Isolation
Levels DBPROP_SESS_AUTOCOMMITISOLEVELS

Catalog	Location DBPROP_CATALOGLOCATION
Catalog	Term DBPROP_CATALOGTERM
Column	Definition DBPROP_COLUMNDEFINITION
Connect	Timeout DBPROP_INIT_TIMEOUT
Current	Catalog DBPROP_CURRENTCATALOG
Data	Source DBPROP_INIT_DATASOURCE
Data	Source	Name DBPROP_DATASOURCENAME
Data	Source	Object
Threading	Model DBPROP_DSOTHREADMODEL

DBMS	Name DBPROP_DBMSNAME
DBMS	Version DBPROP_DBMSVER
Extended	Properties DBPROP_INIT_PROVIDERSTRING
GROUP	BY	Support DBPROP_GROUPBY
Heterogeneous	Table
Support DBPROP_HETEROGENEOUSTABLES

Identifier	Case
Sensitivity DBPROP_IDENTIFIERCASE

Initial	Catalog DBPROP_INIT_CATALOG
Isolation	Levels DBPROP_SUPPORTEDTXNISOLEVELS
Isolation	Retention DBPROP_SUPPORTEDTXNISORETAIN
Locale	Identifier DBPROP_INIT_LCID
Location DBPROP_INIT_LOCATION
Maximum	Index	Size DBPROP_MAXINDEXSIZE

mk:@MSITStore:OLEDB.chm::/htm/oledbOverview_of_property_tables.htm

Maximum	Row	Size DBPROP_MAXROWSIZE
Maximum	Row	Size
Includes	BLOB DBPROP_MAXROWSIZEINCLUDESBLOB

Maximum	Tables	in
SELECT DBPROP_MAXTABLESINSELECT

Mode DBPROP_INIT_MODE
Multiple	Parameter
Sets DBPROP_MULTIPLEPARAMSETS

Multiple	Results DBPROP_MULTIPLERESULTS
Multiple	Storage
Objects DBPROP_MULTIPLESTORAGEOBJECTS

Multi-Table	Update DBPROP_MULTITABLEUPDATE
NULL	Collation	Order DBPROP_NULLCOLLATION
NULL	Concatenation
Behavior DBPROP_CONCATNULLBEHAVIOR

OLE	DB	Services DBPROP_INIT_OLEDBSERVICES
OLE	DB	Version DBPROP_PROVIDEROLEDBVER
OLE	Object	Support DBPROP_OLEOBJECTS
Open	Rowset	Support DBPROP_OPENROWSETSUPPORT
ORDER	BY	Columns
in	Select	List DBPROP_ORDERBYCOLUMNSINSELECT

Output	Parameter
Availability DBPROP_OUTPUTPARAMETERAVAILABILITY

Password DBPROP_AUTH_PASSWORD
Pass	By	Ref	Accessors DBPROP_BYREFACCESSORS
Persist	Security	Info DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO
Persistent	ID	Type DBPROP_PERSISTENTIDTYPE
Prepare	Abort
Behavior DBPROP_PREPAREABORTBEHAVIOR

Prepare	Commit
Behavior DBPROP_PREPARECOMMITBEHAVIOR

Procedure	Term DBPROP_PROCEDURETERM

Prompt DBPROP_INIT_PROMPT
Provider	Friendly
Name DBPROP_PROVIDERFRIENDLYNAME

Provider	Name DBPROP_PROVIDERFILENAME
Provider	Version DBPROP_PROVIDERVER
Read-Only	Data
Source DBPROP_DATASOURCEREADONLY

Rowset	Conversions
on	Command DBPROP_ROWSETCONVERSIONSONCOMMAND

Schema	Term DBPROP_SCHEMATERM
Schema	Usage DBPROP_SCHEMAUSAGE
SQL	Support DBPROP_SQLSUPPORT
Structured	Storage DBPROP_STRUCTUREDSTORAGE
Subquery	Support DBPROP_SUBQUERIES
Table	Term DBPROP_TABLETERM
Transaction	DDL DBPROP_SUPPORTEDTXNDDL
User	ID DBPROP_AUTH_USERID
User	Name DBPROP_USERNAME
Window	Handle DBPROP_INIT_HWND

Recordset	Dynamic	Properties

The	following	properties	are	added	to	the	Recordset	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS
Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor

IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer
IConvertType DBPROP_IConvertType
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsestLocate
IRowsetResynch 	
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS
Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSISIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIPPED
Strong	Row	Identity DBPROP_STRONGITDENTITY
Unique	Rows DBPROP_UNIQUEROWS
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

Command	Dynamic	Properties

The	following	properties	are	added	to	the	Command	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS
Column	Privileges DBPROP_COLUMNRESTRICT

Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor
IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer
IConvertType DBPROP_IConvertType
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsetLocate
IRowsetResynch 	
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS

Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIP
Strong	Row	Identity DBPROP_STRONGIDENTITY
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

See	Also			For	details	regarding	specific	implementation	and	functional
information	about	the	Microsoft	OLE	DB	Provider	for	ODBC,	consult	the
documentation	for	Microsoft	OLE	DB	Provider	for	ODBC	and	the	Microsoft
OLE	DB	Programmer'sReference	available	in	the	MDAC	SDK	or	visit	the
Universal	Data	Access	Web	site.

mk:@MSITStore:OLEDB.chm::/htm/ODBCProviderThe_ODBC_OLE_DB_Provider.htm
mk:@MSITStore:OLEDB.chm::/htm/oledbAbout_the_OLE_DB_Documentation.htm
http://www.microsoft.com/data/

Microsoft	OLE	DB	Provider	for
Microsoft	Indexing	Service

The	Microsoft	OLE	DB	Provider	for	Microsoft	Indexing	Service	provides
programmatic	read-only	access	to	file	system	and	Web	data	indexed	by
Microsoft	Indexing	Service.	ADO	applications	can	issue	SQL	queries	to	retrieve
content	and	file	property	information.

The	provider	is	free-threaded	and	unicode	enabled.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider=	argument	to	the	ConnectionString
property	to:

MSIDXS

Reading	the	Provider	property	will	return	this	string	as	well.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=MSIDXS;Data	Source=myCatalog;Locale	Identifier=nnnn;"

Consisting	of	these	keywords:

Keyword Description
Specifies	the	OLE	DB	Provider	for	Microsoft	Indexing

Provider Service.	Typically	this	is	the	only	keyword	specified	in	the
connection	string.

Data	Source Specifies	the	Indexing	Service	catalog	name.	If	this
keyword	is	not	specified,	the	default	system	catalog	is	used.

Locale	Identifier

Specifies	a	unique	32-bit	number	(for	example,	1033)	that
specifies	preferences	related	to	the	user's	language.	These
preferences	indicate	how	dates	and	times	are	formatted,
items	are	sorted	alphabetically,	strings	are	compared,	and	so
on.	If	this	keyword	is	not	specified,	the	default	system
locale	identifier	is	used.

Command	Text

The	Indexing	Service	SQL	query	syntax	consists	of	extensions	to	the	SQL-92
SELECT	statement	and	its	FROM	and	WHERE	clauses.	The	results	of	the
query	are	returned	via	OLE	DB	rowsets,	which	can	be	consumed	by	ADO	and
manipulated	as	Recordset	objects.

You	can	search	for	exact	words	or	phrases,	or	use	wildcards	to	search	for
patterns	or	stems	of	words.	The	search	logic	can	be	based	on	Boolean	decisions,
weighted	terms,	or	proximity	to	other	words.	You	can	also	search	by	"free	text,"
which	finds	matches	based	on	meaning,	rather	than	exact	words.

The	specific	command	dialect	is	fully	documented	in	the	Microsoft	Indexing
Service	Reference.

The	provider	does	not	accept	stored	procedure	calls	or	simple	table	names	(for
example,	the	CommandType	property	will	always	be	adCmdText).

Recordset	Behavior

The	following	tables	list	the	features	available	with	a	Recordset	object	opened
with	this	provider.	Only	the	Static	cursor	type	(adOpenStatic)	is	available.

For	more	detailed	information	about	Recordset	behavior	for	your	provider
configuration,	run	the	Supports	method	and	enumerate	the	Properties	collection
of	the	Recordset	to	determine	whether	provider-specific	dynamic	properties	are
present.

http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/sdkdoc/indexsrv/ixref_6xid.htm

Availability	of	standard	ADO	Recordset	properties:

Property Availability
AbsolutePage read/write
AbsolutePosition read/write
ActiveConnection read-only
BOF read-only
Bookmark* read/write
CacheSize read/write
CursorLocation always	adUseServer

CursorType always
adOpenStatic

EditMode always	adEditNone
EOF read-only
Filter read/write
LockType read/write
MarshalOptions not	available
MaxRecords read/write
PageCount read-only
PageSize read/write
RecordCount read-only
Source read/write
State read-only
Status read-only

*Bookmarks	must	be	enabled	on	the	provider	in	order	for	this	feature	to	exist	on
the	Recordset.

Availability	of	standard	ADO	Recordset	methods:

Method Available?
AddNew No
Cancel Yes
CancelBatch No
CancelUpdate No

Clone Yes
Close Yes
Delete No
GetRows Yes
Move Yes
MoveFirst Yes
NextRecordsetYes
Open Yes
Requery Yes
Resync Yes
Supports Yes
Update No
UpdateBatch No

See	Also			For	specific	implementation	details	and	functional	information	about
the	Microsoft	OLE	DB	Provider	for	Microsoft	Indexing	Service,	consult	the
Microsoft	OLE	DB	Programmer's	Reference	and	the	Microsoft	Indexing	Service
documentation,	or	visit	the	Microsoft	Internet	Information	Services	Web	page.

mk:@MSITStore:OLEDB.chm::/htm/oledbAbout_the_OLE_DB_Documentation.htm
http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/sdkdoc/indexsrv/ixuwebov_50v3.htm
http://www.microsoft.com/ntserver/web/

Microsoft	OLE	DB	Provider	for
Microsoft	Active	Directory	Service

The	Microsoft	Active	Directory	Service	Interfaces	(ADSI)	Provider	allows	ADO
to	connect	to	heterogeneous	directory	services	through	ADSI.	This	gives	ADO
applications	read-only	access	to	the	Microsoft	Windows	NT®	4.0	and	Microsoft
Windows	2000	directory	services,	in	addition	to	any	LDAP-compliant	directory
service	and	Novell	Directory	Services.	ADSI	itself	is	based	on	a	provider	model,
so	if	there	is	a	new	provider	giving	access	to	another	directory,	the	ADO
application	will	be	able	to	access	it	seamlessly.	The	ADSI	provider	is	free-
threaded	and	unicode	enabled.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider	argument	of	the	ConnectionString
property	to:

ADSDSOObject

Reading	the	Provider	property	will	return	this	string	as	well.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=ADSDSOObject;User	ID=userName;Password=userPassword;"

Consisting	of	these	keywords:

Keyword Description

Provider Specifies	the	OLE	DB	Provider	for	Microsoft
Active	Directory	Service.

User	ID Specifies	the	user	name.	If	this	keyword	is
omitted,	then	the	current	logon	is	used.

Password Specifies	the	user	password.	If	this	keyword	is
omitted,	then	the	current	logon	is	used.

Command	Text

A	four-part	command	text	string	is	recognized	by	the	provider	in	the	following
syntax:

"Root;	Filter;	Attributes[;	Scope]"

Value Description

Root Indicates	the	ADsPath	object	from	which	to	start
the	search	(that	is,	the	root	of	the	search).

Filter Indicates	the	search	filter	in	the	RFC	960	format.

Attributes Indicates	a	comma-delimited	list	of	attributes	to
be	returned.

Scope

Optional.	A	String	that	specifies	the	scope	of	the
search.	Can	be	one	of	the	following:

Base	—	Search	only	the	base	object	(root	of
the	search).

OneLevel	—	Search	only	one	level.

Subtree	—	Search	the	entire	subtree.

For	example:

"<LDAP://DC=ArcadiaBay,DC=COM>;(objectClass=*);sn,	givenName;	subtree"

The	provider	also	supports	SQL	SELECT	for	command	text.	For	example:

"SELECT	title,	telephoneNumber	From	'LDAP://DC=Microsoft,	DC=COM'	WHERE	objectClass='user'	AND	objectCategory='Person'"

The	provider	does	not	accept	stored	procedure	calls	or	simple	table	names	(for
example,	the	CommandType	property	will	always	be	adCmdText).	See	the
Active	Directory	Service	Interfaces	documentation	for	a	more	complete
description	of	the	command	text	elements.

Recordset	Behavior

The	following	tables	list	the	features	available	on	a	Recordset	object	opened
with	this	provider.	Only	the	Static	cursor	type	(adOpenStatic)	is	available.

For	more	detailed	information	about	Recordset	behavior	for	your	provider
configuration,	run	the	Supports	method	and	enumerate	the	Properties	collection
of	the	Recordset	to	determine	whether	provider-specific	dynamic	properties	are
present.

Availability	of	standard	ADO	Recordset	properties:

Property Availability
AbsolutePage read/write
AbsolutePosition read/write
ActiveConnection read-only
BOF read-only
Bookmark read/write
CacheSize read/write
CursorLocation always	adUseServer

CursorType always
adOpenStatic

EditMode always	adEditNone
EOF read-only
Filter read/write
LockType read/write
MarshalOptions not	available
MaxRecords read/write
PageCount read-only
PageSize read/write

RecordCount read-only
Source read/write
State read-only
Status read-only

Availability	of	standard	ADO	Recordset	methods:

Method Available?
AddNew No
Cancel No
CancelBatch No
CancelUpdate No
Clone Yes
Close Yes
Delete No
GetRows Yes
Move Yes
MoveFirst Yes
MoveLast Yes
MoveNext Yes
MovePrevious Yes
NextRecordsetYes
Open Yes
Requery Yes
Resync Yes
Supports Yes
Update No
UpdateBatch No

See	Also			For	more	general	information	about	ADSI	and	the	specifics	of	the
provider,	please	refer	to	the	Active	Directory	Service	Interfaces	documentation
or	visit	the	ADSI	Web	page.

http://www.microsoft.com/windows/server/Overview/features/directory.asp

OLE	DB	Provider	for	Microsoft	Jet

The	OLE	DB	Provider	for	Microsoft	Jet	allows	ADO	to	access	Microsoft	Jet
databases.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider	argument	of	the	ConnectionString
property	to:

Microsoft.Jet.OLEDB.4.0

Reading	the	Provider	property	will	return	this	string	as	well.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source=databaseName;User	ID=userName

Consisting	of	these	keywords:

Keyword Description
Provider Specifies	the	OLE	DB	Provider	for	Microsoft	Jet.

Data	Source Specifies	the	database	path	and	file	name	(for
example,	c:\Northwind.mdb).

User	ID Specifies	the	user	name.	If	this	keyword	is	not
specified,	the	string,	"admin",	is	used	by	default.

Password Specifies	the	user	password.	If	this	keyword	is	not
specified,	the	empty	string	(""),	is	used	by	default.

Provider-Specific	Connection	Parameters

The	OLE	DB	Provider	for	Microsoft	Jet	supports	several	provider-specific
dynamic	properties	in	addition	to	those	defined	by	ADO.	As	with	all	other
Connection	parameters,	they	can	be	set	via	the	Connection	object's	Properties
collection	or	as	part	of	the	connection	string.

The	following	table	lists	these	properties	with	the	corresponding	OLE	DB
property	name	in	parentheses.

Parameter

Jet	OLEDB:Compact	Reclaimed	Space	Amount
(DBPROP_JETOLEDB_COMPACTFREESPACESIZE)

Indicates	an	estimate	of	the	amount	of
space,	in	bytes,	that	can	be	reclaimed	by
compacting	the	database.	This	value	is
only	valid	after	a	database	connection	has
been	established.

Jet	OLEDB:Connection	Control
(DBPROP_JETOLEDB_CONNECTIONCONTROL)

Indicates	whether	users	can	connect	to
the	database.

Jet	OLEDB:Create	System	Database
(DBPROP_JETOLEDB_CREATESYSTEMDATABASE)

Indicates	whether	a	system	database
should	be	created	when	creating	a	new
data	source.

Jet	OLEDB:Database	Locking	Mode
(DBPROP_JETOLEDB_DATABASELOCKMODE)

Indicates	the	locking	mode	for	this
database.	The	first	user	to	open	the
database	determines	the	mode	used	while
the	database	is	open.

Jet	OLEDB:Database	Password
(DBPROP_JETOLEDB_DATABASEPASSWORD) Indicates	the	database	password.

Jet	OLEDB:Don't	Copy	Locale	on	Compact
(DBPROP_JETOLEDB_COMPACT_DONTCOPYLOCALE)

Indicates	whether	Jet	should	copy	locale
information	when	compacting	a	database.

Jet	OLEDB:Encrypt	Database
(DBPROP_JETOLEDB_ENCRYPTDATABASE)

Indicates	whether	a	compacted	database
should	be	encrypted.	If	this	property	is
not	set,	the	compacted	database	will	be
encrypted	if	the	original	database	was
also	encrypted.

Jet	OLEDB:Engine	Type
(DBPROP_JETOLEDB_ENGINE)

Indicates	the	storage	engine	used	to
access	the	current	data	store.
Indicates	the	maximum	length	of	time,	in
milliseconds,	that	Jet	can	delay

Jet	OLEDB:Exclusive	Async	Delay
(DBPROP_JETOLEDB_EXCLUSIVEASYNCDELAY)

asynchronous	writes	to	disk	when	the
database	is	opened	exclusively.

This	property	is	ignored	unless	
OLEDB:Flush	Transaction	Timeout
set	to	0.

Jet	OLEDB:Flush	Transaction	Timeout
(DBPROP_JETOLEDB_FLUSHTRANSACTIONTIMEOUT)

Indicates	the	amount	of	time	to	wait
before	data	stored	in	a	cache	for
asynchronous	writing	is	actually	written
to	disk.	This	setting	overrides	the	values
for	Jet	OLEDB:Shared	Async	Delay
and	Jet	OLEDB:Exclusive	Async
Delay.

Jet	OLEDB:Global	Bulk	Transactions
(DBPROP_JETOLEDB_GLOBALBULKNOTRANSACTIONS)

Indicates	whether	SQL	bulk	transactions
are	transacted.

Jet	OLEDB:Global	Partial	Bulk	Ops
(DBPROP_JETOLEDB_GLOBALBULKPARTIAL)

Indicates	the	password	used	to	open	the
database.

Jet	OLEDB:Implicit	Commit	Sync
(DBPROP_JETOLEDB_IMPLICITCOMMITSYNC)

Indicates	whether	changes	made	in
internal	implicit	transactions	are	written
in	synchronous	or	asynchronous	mode.

Jet	OLEDB:Lock	Delay
(DBPROP_JETOLEDB_LOCKDELAY)

Indicates	the	number	of	milliseconds	to
wait	before	attempting	to	acquire	a	lock
after	a	previous	attempt	has	failed.

Jet	OLEDB:Lock	Retry
(DBPROP_JETOLEDB_LOCKRETRY)

Indicates	how	many	times	an	attempt	to
access	a	locked	page	is	repeated.

Jet	OLEDB:Max	Buffer	Size
(DBPROP_JETOLEDB_MAXBUFFERSIZE)

Indicates	the	maximum	amount	of
memory,	in	kilobytes,	Jet	can	use	before
it	starts	flushing	changes	to	disk.

Jet	OLEDB:Max	Locks	Per	File
(DBPROP_JETOLEDB_MAXLOCKSPERFILE)

Indicates	the	maximum	number	of	locks
Jet	can	place	on	a	database.	The	default
value	is	9500.

Jet	OLEDB:New	Database	Password
(DBPROP_JETOLEDB_NEWDATABASEPASSWORD)

Indicates	the	new	password	to	be	set	for
this	database.	The	old	password	is	stored
in	Jet	OLEDB:Database	Password

Jet	OLEDB:ODBC	Command	Time	Out
(DBPROP_JETOLEDB_ODBCCOMMANDTIMEOUT)

Indicates	the	number	of	milliseconds
before	a	remote	ODBC	query	from	Jet
will	timeout.

Jet	OLEDB:Page	Locks	to	Table	Lock
(DBPROP_JETOLEDB_PAGELOCKSTOTABLELOCK)

Indicates	how	many	pages	need	to	be
locked	within	a	transaction	before	Jet
attempts	to	promote	the	lock	to	a	table
lock.	If	this	value	is	0,	then	the	lock	is
never	promoted.

Jet	OLEDB:Page	Timeout
(DBPROP_JETOLEDB_PAGETIMEOUT)

Indicates	the	number	of	milliseconds	Jet
will	wait	before	checking	to	see	if	its
cache	is	out	of	date	with	the	database	file.

Jet	OLEDB:Recycle	Long-Valued	Pages
(DBPROP_JETOLEDB_RECYCLELONGVALUEPAGES)

Indicates	whether	Jet	should	aggressively
try	to	reclaim	BLOB	pages	when	they	are
freed.

Jet	OLEDB:Registry	Path
(DBPROP_JETOLEDB_REGPATH)

Indicates	the	Windows	registry	key	that
contains	values	for	the	Jet	database
engine.

Jet	OLEDB:Reset	ISAM	Stats
(DBPROP_JETOLEDB_RESETISAMSTATS)

Indicates	whether	the	schema	
DBSCHEMA_JETOLEDB_ISAMSTATS
should	reset	its	performance	counters
after	returning	performance	information.

Jet	OLEDB:Shared	Async	Delay
(DBPROP_JETOLEDB_SHAREDASYNCDELAY)

Indicates	the	maximum	amount	of	time,
in	milliseconds,	Jet	can	delay
asynchronous	writes	to	disk	when	the
database	is	opened	in	multi-user	mode.

Jet	OLEDB:System	Database
(DBPROP_JETOLEDB_SYSDBPATH)

Indicates	the	path	and	file	name	for	the
workgroup	information	file	(system
database).

Jet	OLEDB:Transaction	Commit	Mode
(DBPROP_JETOLEDB_TXNCOMMITMODE)

Indicates	whether	Jet	writes	data	to	disk
synchronously	or	asynchronously	when	a
transaction	is	committed.

Jet	OLEDB:User	Commit	Sync
(DBPROP_JETOLEDB_USERCOMMITSYNC)

Indicates	whether	changes	made	in
transactions	are	written	in	synchronous	or
asynchronous	mode.

Provider-Specific	Recordset	and	Command	Properties

The	Jet	provider	also	supports	several	provider-specific	Recordset	and
Command	properties.	These	properties	are	accessed	and	set	through	the
Properties	collection	of	the	Recordset	or	Command	object.	The	table	lists	the

ADO	property	name	and	its	corresponding	OLE	DB	property	name	in
parentheses.

Property	Name Description

Jet	OLEDB:Bulk	Transactions
(DBPROP_JETOLEDB_BULKNOTRANSACTIONS)

Indicates
whether	SQL
bulk	operations
are	transacted.
Large	bulk
operations	might
fail	when
transacted,	due
to	resource
delays.

Jet	OLEDB:Enable	Fat	Cursors
(DBPROP_JETOLEDB_ENABLEFATCURSOR)

Indicates
whether	Jet
should	cache
multiple	rows
when	populating
a	recordset	for
remote	row
sources.

Jet	OLEDB:Fat	Cursor	Cache	Size
(DBPROP_JETOLEDB_FATCURSORMAXROWS)

Indicates	the
number	of	rows
to	cache	when
using	remote
data	store	row
caching.	This
value	is	ignored
unless	Jet
OLEDB:Enable
Fat	Cursors
True.

Jet	OLEDB:Inconsistent
(DBPROP_JETOLEDB_INCONSISTENT)

Indicates
whether	query
results	allow
inconsistent
updates.

Jet	OLEDB:Locking	Granularity
(DBPROP_JETOLEDB_LOCKGRANULARITY)

Indicates
whether	a	table
is	opened	using
row-level
locking.

Jet	OLEDB:ODBC	Pass-Through	Statement
(DBPROP_JETOLEDB_ODBCPASSTHROUGH)

Indicates	that	Jet
should	pass	the
SQL	text	in	a
Command
object	to	the
back	end
unaltered.

Jet	OLEDB:Partial	Bulk	Ops
(DBPROP_JETOLEDB_BULKPARTIAL)

Indicates	Jet's
behavior	when
SQL	DML
operations	fail.

Jet	OLEDB:Pass	Through	Query	Bulk-Op
(DBPROP_JETOLEDB_PASSTHROUGHBULKOP)

Indicates
whether	queries
that	do	not
return	a
Recordset
passed	unaltered
to	the	data
source.

Jet	OLEDB:Pass	Through	Query	Connect	String
(DBPROP_JETOLEDB_ODBCPASSTHROUGHCONNECTSTRING)

Indicates	the	Jet
connect	string
used	to	connect
to	a	remote	data
store.	This	value
is	ignored	unless
Jet
OLEDB:ODBC
Pass-Through
Statement
True.
Indicates
whether	the
command	text

Jet	OLEDB:Stored	Query
(DBPROP_JETOLEDB_STOREDQUERY)

should	be
interpreted	as	a
stored	query
instead	of	an
SQL	command.

Jet	OLEDB:Validate	Rules	On	Set
(DBPROP_JETOLEDB_VALIDATEONSET)

Indicates
whether	the	Jet
validation	rules
are	evaluated
when	column
data	is	set	or
when	the
changes	are
committed	to	the
database.

By	default,	the	OLE	DB	Provider	for	Microsoft	Jet	opens	Microsoft	Jet
databases	in	read/write	mode.	To	open	a	database	in	read-only	mode,	set	the
Mode	property	on	the	ADO	Connection	object	to	adModeRead.

Command	Object	Usage

Command	text	in	the	Command	object	uses	the	Microsoft	Jet	SQL	dialect.	You
can	specify	row-returning	queries,	action	queries,	and	table	names	in	the
command	text;	however,	stored	procedures	are	not	supported	and	should	not	be
specified.

Recordset	Behavior

The	Microsoft	Jet	database	engine	does	not	support	dynamic	cursors.	Therefore,
the	OLE	DB	Provider	for	Microsoft	Jet	does	not	support	the	adLockDynamic
cursor	type.	When	a	dynamic	cursor	is	requested,	the	provider	will	return	a
keyset	cursor	and	reset	the	CursorType	property	to	indicate	the	type	of	Recordset
returned.	Further,	if	an	updatable	Recordset	is	requested	(LockType	is
adLockOptimistic,	adLockBatchOptimistic,	or	adLockPessimistic)	the
provider	will	also	return	a	keyset	cursor	and	reset	the	CursorType	property.

Dynamic	Properties

The	OLE	DB	Provider	for	Microsoft	Jet	inserts	several	dynamic	properties	into
the	Properties	collection	of	the	unopened	Connection,	Recordset,	and	Command
objects.

The	tables	below	are	a	cross-index	of	the	ADO	and	OLE	DB	names	for	each
dynamic	property.	The	OLE	DB	Programmer's	Reference	refers	to	an	ADO
property	name	by	the	term,	"Description."	You	can	find	more	information	about
these	properties	in	the	OLE	DB	Programmer's	Reference.	Search	for	the	OLE
DB	property	name	in	the	Index	or	see	Appendix	C:	OLE	DB	Properties.

Connection	Dynamic	Properties

The	following	properties	are	added	to	the	Connection	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Active	Sessions DBPROP_ACTIVESESSIONS
Asynchable	Abort DBPROP_ASYNCTXNABORT
Asynchable	Commit DBPROP_ASYNCTNXCOMMIT
Autocommit	Isolation
Levels DBPROP_SESS_AUTOCOMMITISOLEVELS

Catalog	Location DBPROP_CATALOGLOCATION
Catalog	Term DBPROP_CATALOGTERM
Column	Definition DBPROP_COLUMNDEFINITION
Current	Catalog DBPROP_CURRENTCATALOG
Data	Source DBPROP_INIT_DATASOURCE
Data	Source	Name DBPROP_DATASOURCENAME
Data	Source	Object
Threading	Model DBPROP_DSOTHREADMODEL

DBMS	Name DBPROP_DBMSNAME
DBMS	Version DBPROP_DBMSVER
GROUP	BY	Support DBPROP_GROUPBY
Heterogeneous	Table
Support DBPROP_HETEROGENEOUSTABLES

Identifier	Case
Sensitivity DBPROP_IDENTIFIERCASE

Isolation	Levels DBPROP_SUPPORTEDTXNISOLEVELS

mk:@MSITStore:OLEDB.chm::/htm/oledbOverview_of_property_tables.htm

Isolation	Retention DBPROP_SUPPORTEDTXNISORETAIN
Locale	Identifier DBPROP_INIT_LCID
Maximum	Index	Size DBPROP_MAXINDEXSIZE
Maximum	Row	Size DBPROP_MAXROWSIZE
Maximum	Row	Size
Includes	BLOB DBPROP_MAXROWSIZEINCLUDESBLOB

Maximum	Tables	in
SELECT DBPROP_MAXTABLESINSELECT

Mode DBPROP_INIT_MODE
Multiple	Parameter	Sets DBPROP_MULTIPLEPARAMSETS
Multiple	Results DBPROP_MULTIPLERESULTS
Multiple	Storage
Objects DBPROP_MULTIPLESTORAGEOBJECTS

Multi-Table	Update DBPROP_MULTITABLEUPDATE
NULL	Collation	Order DBPROP_NULLCOLLATION
NULL	Concatenation
Behavior DBPROP_CONCATNULLBEHAVIOR

OLE	DB	Version DBPROP_PROVIDEROLEDBVER
OLE	Object	Support DBPROP_OLEOBJECTS
Open	Rowset	Support DBPROP_OPENROWSETSUPPORT
ORDER	BY	Columns
in	Select	List DBPROP_ORDERBYCOLUMNSINSELECT

Output	Parameter
Availability DBPROP_OUTPUTPARAMETERAVAILABILITY

Pass	By	Ref	Accessors DBPROP_BYREFACCESSORS
Password DBPROP_AUTH_PASSWORD
Persistent	ID	Type DBPROP_PERSISTENTIDTYPE
Prepare	Abort	Behavior DBPROP_PREPAREABORTBEHAVIOR
Prepare	Commit
Behavior DBPROP_PREPARECOMMITBEHAVIOR

Procedure	Term DBPROP_PROCEDURETERM
Prompt DBPROP_INIT_PROMPT
Provider	Friendly	Name DBPROP_PROVIDERFRIENDLYNAME
Provider	Name DBPROP_PROVIDERFILENAME
Provider	Version DBPROP_PROVIDERVER

Read-Only	Data	Source DBPROP_DATASOURCEREADONLY
Rowset	Conversions	on
Command DBPROP_ROWSETCONVERSIONSONCOMMAND

Schema	Term DBPROP_SCHEMATERM
Schema	Usage DBPROP_SCHEMAUSAGE
SQL	Support DBPROP_SQLSUPPORT
Structured	Storage DBPROP_STRUCTUREDSTORAGE
Subquery	Support DBPROP_SUBQUERIES
Table	Term DBPROP_TABLETERM
Transaction	DDL DBPROP_SUPPORTEDTXNDDL
User	ID DBPROP_AUTH_USERID
User	Name DBPROP_USERNAME
Window	Handle DBPROP_INIT_HWND

Recordset	Dynamic	Properties

The	following	properties	are	added	to	the	Recordset	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Append-Only	Rowset DBPROP_APPENDONLY
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Bookmarks	Ordered DBPROP_ORDEREDBOOKMARKS
Cache	Deferred	Columns DBPROP_CACHEDEFERRED
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS
Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Column	Writable DBPROP_MAYWRITECOLUMN
Defer	Column DBPROP_DEFERRED
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS

Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor
IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer
IConvertType DBPROP_IConvertType
ILockBytes DBPROP_ILockBytes
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetIndex DBPROP_IRowsetIndex
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsestLocate
IRowsetResynch 	
IRowsetScroll DBPROP_IRowsetScroll
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
IStorage DBPROP_IStorage
IStream DBPROP_IStream
ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Memory	Usage DBPROP_MEMORYUSAGE
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Others'	Changes	Visible DBPROP_OTHERUPDATEDELETE
Others'	Inserts	Visible DBPROP_OTHERINSERT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT

Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS
Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSISIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIPPED
Strong	Row	Identity DBPROP_STRONGITDENTITY
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

Command	Dynamic	Properties

The	following	properties	are	added	to	the	Command	object's	Properties

collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Append-Only	Rowset DBPROP_APPENDONLY
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS
Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Defer	Column DBPROP_DEFERRED
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor
IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer
IConvertType DBPROP_IConvertType
ILockBytes DBPROP_ILockBytes
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetIndex DBPROP_IRowsetIndex
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsetLocate
IRowsetResynch 	
IRowsetScroll DBPROP_IRowsetScroll
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
IStorage DBPROP_IStorage
IStream DBPROP_IStream

ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Lock	Mode DBPROP_LOCKMODE
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Others'	Changes	Visible DBPROP_OTHERUPDATEDELETE
Others'	Inserts	Visible DBPROP_OTHERINSERT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS
Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Server	Data	on	Insert DBPROP_SERVERDATAONINSERT
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIP
Strong	Row	Identity DBPROP_STRONGIDENTITY
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

See	Also			For	specific	implementation	details	and	functional	information	about
the	OLE	DB	Provider	for	Microsoft	Jet,	consult	the	OLE	DB	Provider	for
Microsoft	Jet	documentation	in	the	MDAC	SDK.

mk:@MSITStore:OLEDB.chm::/htm/oledbprovJet_Overview.htm

Microsoft	OLE	DB	Provider	for	SQL
Server

The	Microsoft	OLE	DB	Provider	for	SQL	Server,	SQLOLEDB,	allows	ADO	to
access	Microsoft	SQL	Server.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider	argument	to	the	ConnectionString
property	to:

SQLOLEDB

This	value	can	also	be	set	or	read	using	the	Provider	property.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=SQLOLEDB;Data	Source=serverName;Initial	Catalog=databaseName

Consisting	of	these	keywords:

Keyword Description
Provider Specifies	the	OLE	DB	Provider	for	SQL	Server.
Data	Source	or	Server Specifies	the	name	of	a	server.
Initial	Catalog	or	Database Specifies	the	name	of	a	database	on	the	server.

User	ID	or	uid Specifies	the	user	name	(for	SQL	Server
Authentication).

Password	or	pwd Specifies	the	user	password	(for	SQL	Server
Authentication).

Provider-Specific	Connection	Parameters

The	provider	supports	several	provider-specific	connection	parameters	in
addition	to	those	defined	by	ADO.	As	with	the	ADO	connection	properties,
these	provider-specific	properties	can	be	set	via	the	Properties	collection	of	a
Connection	or	can	be	set	as	part	of	the	ConnectionString.

Parameter Description

Trusted_Connection

Indicates	the	user	authentication	mode.	This	can	be
set	to	Yes	or	No.	The	default	value	is	No.	If	this
property	is	set	to	Yes,	then	SQLOLEDB	uses
Microsoft	Windows	NT	Authentication	Mode	to
authorize	user	access	to	the	SQL	Server	database
specified	by	the	Location	and	Datasource	property
values.	If	this	property	is	set	to	No,	then
SQLOLEDB	uses	Mixed	Mode	to	authorize	user
access	to	the	SQL	Server	database.	The	SQL	Server
login	and	password	are	specified	in	the	User	Id	and
Password	properties.

Current	Language

Indicates	a	SQL	Server	language	name.	Identifies
the	language	used	for	system	message	selection	and
formatting.	The	language	must	be	installed	on	the
SQL	Server,	otherwise	opening	the	connection	will
fail.

Network	Address Indicates	the	network	address	of	the	SQL	Server
specified	by	the	Location	property.

Network	Library

Indicates	the	name	of	the	network	library	(DLL)
used	to	communicate	with	the	SQL	Server.	The
name	should	not	include	the	path	or	the	.dll	file
name	extension.	The	default	is	provided	by	the	SQL
Server	client	configuration.

Use	Procedure	for	Prepare
Determines	whether	SQL	Server	creates	temporary
stored	procedures	when	Commands	are	prepared	(by
the	Prepared	property).
Indicates	whether	OEM/ANSI	characters	are

Auto	Translate

converted.	This	property	can	be	set	to	True	or	False.
The	default	value	is	True.	If	this	property	is	set	to
True,	then	SQLOLEDB	performs	OEM/ANSI
character	conversion	when	multi-byte	character
strings	are	retrieved	from,	or	sent	to,	the	SQL	Server.
If	this	property	is	set	to	False,	then	SQLOLEDB
does	not	perform	OEM/ANSI	character	conversion
on	multi-byte	character	string	data.

Packet	Size

Indicates	a	network	packet	size	in	bytes.	The	packet
size	property	value	must	be	between	512	and	32767.
The	default	SQLOLEDB	network	packet	size	is
4096.

Application	Name Indicates	the	client	application	name.
Workstation	ID A	string	identifying	the	workstation.

Command	Object	Usage

SQLOLEDB	accepts	an	amalgam	of	ODBC,	ANSI,	and	SQL	Server-specific
Transact-SQL	as	valid	syntax.	For	example,	the	following	SQL	statement	uses
an	ODBC	SQL	escape	sequence	to	specify	the	LCASE	string	function:

SELECT	customerid={fn	LCASE(CustomerID)}	FROM	Customers

		

LCASE	returns	a	character	string,	converting	all	uppercase	characters	to	their
lowercase	equivalents.	The	ANSI	SQL	string	function	LOWER	performs	the
same	operation,	so	the	following	SQL	statement	is	an	ANSI	equivalent	to	the
ODBC	statement	presented	above:

SELECT	customerid=LOWER(CustomerID)	FROM	Customers

		

SQLOLEDB	successfully	processes	either	form	of	the	statement	when	specified
as	text	for	a	command.

Stored	Procedures

When	executing	a	SQL	Server	stored	procedure	using	a	SQLOLEDB	command,
use	the	ODBC	procedure	call	escape	sequence	in	the	command	text.

SQLOLEDB	then	uses	the	remote	procedure	call	mechanism	of	SQL	Server	to
optimize	command	processing.	For	example,	the	following	ODBC	SQL
statement	is	the	preferred	command	text	over	the	Transact-SQL	form:

ODBC	SQL

{call	SalesByCategory('Produce',	'1995')}

		

Transact-SQL

EXECUTE	SalesByCategory	'Produce',	'1995'

	

Recordset	Behavior

SQLOLEDB	cannot	use	SQL	Server	cursors	to	support	the	multiple-rresult
generated	by	many	commands.	If	a	consumer	requests	a	recordset	requiring	SQL
Server	cursor	support,	an	error	occurs	if	the	command	text	used	generates	more
than	a	single	recordset	as	its	result.

Scrollable	SQLOLEDB	recordsets	are	supported	by	SQL	Server	cursors.	SQL
Server	imposes	limitations	on	cursors	that	are	sensitive	to	changes	made	by	other
users	of	the	database.	Specifically,	the	rows	in	some	cursors	cannot	be	ordered,
and	attempting	to	create	a	recordset	using	a	command	containing	an	SQL
ORDER	BY	clause	can	fail.

Dynamic	Properties

The	Microsoft	OLE	DB	Provider	for	SQL	Server	inserts	several	dynamic
properties	into	the	Properties	collection	of	the	unopened	Connection,	Recordset,
and	Command	objects.

The	tables	below	are	a	cross-index	of	the	ADO	and	OLE	DB	names	for	each
dynamic	property.	The	OLE	DB	Programmer's	Reference	refers	to	an	ADO
property	name	by	the	term,	"Description."	You	can	find	more	information	about
these	properties	in	the	OLE	DB	Programmer's	Reference.	Search	for	the	OLE
DB	property	name	in	the	Index	or	see	Appendix	C:	OLE	DB	Properties.

Connection	Dynamic	Properties

mk:@MSITStore:OLEDB.chm::/htm/oledbOverview_of_property_tables.htm

The	following	properties	are	added	to	the	Connection	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Active	Sessions DBPROP_ACTIVESESSIONS
Asynchable	Abort DBPROP_ASYNCTXNABORT
Asynchable	Commit DBPROP_ASYNCTNXCOMMIT
Autocommit	Isolation
Levels DBPROP_SESS_AUTOCOMMITISOLEVELS

Catalog	Location DBPROP_CATALOGLOCATION
Catalog	Term DBPROP_CATALOGTERM
Column	Definition DBPROP_COLUMNDEFINITION
Connect	Timeout DBPROP_INIT_TIMEOUT
Current	Catalog DBPROP_CURRENTCATALOG
Data	Source DBPROP_INIT_DATASOURCE
Data	Source	Name DBPROP_DATASOURCENAME
Data	Source	Object
Threading	Model DBPROP_DSOTHREADMODEL

DBMS	Name DBPROP_DBMSNAME
DBMS	Version DBPROP_DBMSVER
Extended	Properties DBPROP_INIT_PROVIDERSTRING
GROUP	BY	Support DBPROP_GROUPBY
Heterogeneous	Table
Support DBPROP_HETEROGENEOUSTABLES

Identifier	Case
Sensitivity DBPROP_IDENTIFIERCASE

Initial	Catalog DBPROP_INIT_CATALOG
Isolation	Levels DBPROP_SUPPORTEDTXNISOLEVELS
Isolation	Retention DBPROP_SUPPORTEDTXNISORETAIN
Locale	Identifier DBPROP_INIT_LCID
Maximum	Index	Size DBPROP_MAXINDEXSIZE
Maximum	Row	Size DBPROP_MAXROWSIZE
Maximum	Row	Size
Includes	BLOB DBPROP_MAXROWSIZEINCLUDESBLOB

Maximum	Tables	in
DBPROP_MAXTABLESINSELECT

SELECT
Multiple	Parameter
Sets DBPROP_MULTIPLEPARAMSETS

Multiple	Results DBPROP_MULTIPLERESULTS
Multiple	Storage
Objects DBPROP_MULTIPLESTORAGEOBJECTS

Multi-Table	Update DBPROP_MULTITABLEUPDATE
NULL	Collation	Order DBPROP_NULLCOLLATION
NULL	Concatenation
Behavior DBPROP_CONCATNULLBEHAVIOR

OLE	DB	Version DBPROP_PROVIDEROLEDBVER
OLE	Object	Support DBPROP_OLEOBJECTS
Open	Rowset	Support DBPROP_OPENROWSETSUPPORT
ORDER	BY	Columns
in	Select	List DBPROP_ORDERBYCOLUMNSINSELECT

Output	Parameter
Availability DBPROP_OUTPUTPARAMETERAVAILABILITY

Pass	By	Ref	Accessors DBPROP_BYREFACCESSORS
Password DBPROP_AUTH_PASSWORD
Persist	Security	Info DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO
Persistent	ID	Type DBPROP_PERSISTENTIDTYPE
Prepare	Abort
Behavior DBPROP_PREPAREABORTBEHAVIOR

Prepare	Commit
Behavior DBPROP_PREPARECOMMITBEHAVIOR

Procedure	Term DBPROP_PROCEDURETERM
Prompt DBPROP_INIT_PROMPT
Provider	Friendly
Name DBPROP_PROVIDERFRIENDLYNAME

Provider	Name DBPROP_PROVIDERFILENAME
Provider	Version DBPROP_PROVIDERVER
Read-Only	Data
Source DBPROP_DATASOURCEREADONLY

Rowset	Conversions
on	Command DBPROP_ROWSETCONVERSIONSONCOMMAND

Schema	Term DBPROP_SCHEMATERM
Schema	Usage DBPROP_SCHEMAUSAGE
SQL	Support DBPROP_SQLSUPPORT
Structured	Storage DBPROP_STRUCTUREDSTORAGE
Subquery	Support DBPROP_SUBQUERIES
Table	Term DBPROP_TABLETERM
Transaction	DDL DBPROP_SUPPORTEDTXNDDL
User	ID DBPROP_AUTH_USERID
User	Name DBPROP_USERNAME
Window	Handle DBPROP_INIT_HWND

Recordset	Dynamic	Properties

The	following	properties	are	added	to	the	Recordset	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS
Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Command	Time	Out DBPROP_COMMANDTIMEOUT
Defer	Column DBPROP_DEFERRED
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor
IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer

IConvertType DBPROP_IConvertType
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsestLocate
IRowsetResynch 	
IRowsetScroll DBPROP_IRowsetScroll
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Others'	Changes	Visible DBPROP_OTHERUPDATEDELETE
Others'	Inserts	Visible DBPROP_OTHERINSERT
Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS
Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSISIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Server	Cursor DBPROP_SERVERCURSOR
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIPPED
Strong	Row	Identity DBPROP_STRONGITDENTITY
Unique	Rows DBPROP_UNIQUEROWS
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

Command	Dynamic	Properties

The	following	properties	are	added	to	the	Command	object's	Properties
collection.

ADO	Property	Name OLE	DB	Property	Name
Access	Order DBPROP_ACCESSORDER
Blocking	Storage	Objects DBPROP_BLOCKINGSTORAGEOBJECTS
Bookmark	Type DBPROP_BOOKMARKTYPE
Bookmarkable DBPROP_IROWSETLOCATE
Change	Inserted	Rows DBPROP_CHANGEINSERTEDROWS

Column	Privileges DBPROP_COLUMNRESTRICT
Column	Set	Notification DBPROP_NOTIFYCOLUMNSET
Defer	Column DBPROP_DEFERRED
Delay	Storage	Object
Updates DBPROP_DELAYSTORAGEOBJECTS

Fetch	Backwards DBPROP_CANFETCHBACKWARDS
Hold	Rows DBPROP_CANHOLDROWS
IAccessor DBPROP_IAccessor
IColumnsInfo DBPROP_IColumnsInfo
IColumnsRowset DBPROP_IColumnsRowset
IConnectionPointContainerDBPROP_IConnectionPointContainer
IConvertType DBPROP_IConvertType
Immobile	Rows DBPROP_IMMOBILEROWS
IRowset DBPROP_IRowset
IRowsetChange DBPROP_IRowsetChange
IRowsetIdentity DBPROP_IRowsetIdentity
IRowsetInfo DBPROP_IRowsetInfo
IRowsetLocate DBPROP_IRowsetLocate
IRowsetResynch 	
IRowsetScroll DBPROP_IRowsetScroll
IRowsetUpdate DBPROP_IRowsetUpdate
ISequentialStream DBPROP_ISequentialStream
ISupportErrorInfo DBPROP_ISupportErrorInfo
Literal	Bookmarks DBPROP_LITERALBOOKMARKS
Literal	Row	Identity DBPROP_LITERALIDENTITY
Lock	Mode DBPROP_LOCKMODE
Maximum	Open	Rows DBPROP_MAXOPENROWS
Maximum	Pending	Rows DBPROP_MAXPENDINGROWS
Maximum	Rows DBPROP_MAXROWS
Notification	Granularity DBPROP_NOTIFICATIONGRANULARITY
Notification	Phases DBPROP_NOTIFICATIONPHASES
Objects	Transacted DBPROP_TRANSACTEDOBJECT
Others'	Changes	Visible DBPROP_OTHERUPDATEDELETE
Others'	Inserts	Visible DBPROP_OTHERINSERT

Own	Changes	Visible DBPROP_OWNUPDATEDELETE
Own	Inserts	Visible DBPROP_OWNINSERT
Preserve	on	Abort DBPROP_ABORTPRESERVE
Preserve	on	Commit DBPROP_COMMITPRESERVE
Quick	Restart DBPROP_QUICKRESTART
Reentrant	Events DBPROP_REENTRANTEVENTS
Remove	Deleted	Rows DBPROP_REMOVEDELETED
Report	Multiple	Changes DBPROP_REPORTMULTIPLECHANGES
Return	Pending	Inserts DBPROP_RETURNPENDINGINSERTS
Row	Delete	Notification DBPROP_NOTIFYROWDELETE
Row	First	Change
Notification DBPROP_NOTIFYROWFIRSTCHANGE

Row	Insert	Notification DBPROP_NOTIFYROWINSERT
Row	Privileges DBPROP_ROWRESTRICT
Row	Resynchronization
Notification DBPROP_NOTIFYROWRESYNCH

Row	Threading	Model DBPROP_ROWTHREADMODEL
Row	Undo	Change
Notification DBPROP_NOTIFYROWUNDOCHANGE

Row	Undo	Delete
Notification DBPROP_NOTIFYROWUNDODELETE

Row	Undo	Insert
Notification DBPROP_NOTIFYROWUNDOINSERT

Row	Update	Notification DBPROP_NOTIFYROWUPDATE
Rowset	Fetch	Position
Change	Notification DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE

Rowset	Release
Notification DBPROP_NOTIFYROWSETRELEASE

Scroll	Backwards DBPROP_CANSCROLLBACKWARDS
Server	Data	on	Insert DBPROP_SERVERDATAONINSERT
Server	Cursor DBPROP_SERVERCURSOR
Skip	Deleted	Bookmarks DBPROP_BOOKMARKSKIP
Strong	Row	Identity DBPROP_STRONGIDENTITY
Updatability DBPROP_UPDATABILITY
Use	Bookmarks DBPROP_BOOKMARKS

See	Also			For	specific	implementation	details	and	functional	information	about
the	Microsoft	SQL	Server	OLE	DB	Provider,	consult	the	OLE	DB	Provider	for
SQL	Server	documentation	in	the	MDAC	SDK.

mk:@MSITStore:OLEDB.chm::/htm/_SQL_Server_OLE_DB_Provider_Reference.htm

Microsoft	OLE	DB	Provider	for
Oracle

The	Microsoft	OLE	DB	Provider	for	Oracle	allows	ADO	to	access	Oracle
databases.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider	argument	of	the	ConnectionString
property	to:

MSDAORA

Reading	the	Provider	property	will	return	this	string	as	well.

If	a	join	query	with	a	keyset	or	dynamic	cursor	is	executed	in	an	Oracle
database,	an	error	occurs.	Oracle	only	supports	a	static	read-only	cursor.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=MSDAORA;Data	Source=serverName;User	ID=userName;	Password=

Consisting	of	these	keywords:

Keyword Description

Provider Specifies	the	OLE	DB	Provider	for
Oracle.

Data	Source Specifies	the	name	of	a	server.
User	ID Specifies	the	user	name.
Password Specifies	the	user	password.

Provider-Specific	Connection	Parameters

The	provider	supports	several	provider-specific	connection	parameters	in
addition	to	those	defined	by	ADO.	As	with	the	ADO	connection	properties,
these	provider-specific	properties	can	be	set	via	the	Properties	collection	of	a
Connection	or	as	part	of	the	ConnectionString.

These	parameters	are	fully	described	in	the	OLE	DB	Programmer's	Reference.
(The	ADO	Dynamic	Property	Index	provides	a	cross-reference	between	these
parameter	names	and	the	corresponding	OLE	DB	properties.)

Parameter Description

Window	Handle Indicates	the	window	handle	to	use	to	prompt	for
additional	information.

Locale	Identifier

Indicates	a	unique	32-bit	number	(for	example,
1033)	that	specifies	preferences	related	to	the	user's
language.	These	preferences	indicate	how	dates	and
times	are	formatted,	items	are	sorted	alphabetically,
strings	are	compared,	and	so	on.

OLE	DB	Services Indicates	a	bitmask	that	specifies	OLE	DB	services
to	enable	or	disable.

Prompt Indicates	whether	to	prompt	the	user	while	a
connection	is	being	established.

Extended	Properties

A	string	containing	provider-specific,	extended
connection	information.	Use	this	property	only	for
provider-specific	connection	information	that	cannot
be	described	through	the	property	mechanism.

mk:@MSITStore:OLEDB.chm::/htm/oledbAbout_the_OLE_DB_Documentation.htm

Microsoft	OLE	DB	Provider	for
Internet	Publishing

The	Microsoft	OLE	DB	Provider	for	Internet	Publishing	allows	ADO	to	access
resources	served	by	Microsoft	FrontPage	or	Microsoft	Internet	Information
Server.	Resources	include	web	source	files	such	as	HTML	files,	or	Windows
2000	web	folders.

Connection	String	Parameters

To	connect	to	this	provider,	set	the	Provider	argument	of	the	ConnectionString
property	to:

MSDAIPP.DSO

This	value	can	also	be	set	or	read	using	the	Provider	property.

Typical	Connection	String

A	typical	connection	string	for	this	provider	is:

"Provider=MSDAIPP.DSO;Data	Source=ResourceURL;User	ID=userName;Password=

-or-

"URL=ResourceURL;User	ID=userName;Password=userPassword;"

Consisting	of	these	keywords:

Keyword Description

Provider Specifies	the	OLE	DB	Provider	for	Internet
Publishing.

Data	Source	-or-	URL Specifies	the	URL	of	a	file	or	directory	published
in	a	Web	Folder.

User	ID Specifies	the	user	name.
Password Specifies	the	user	password.

If	you	set	the	ResourceURL	value	from	the	"URL="	in	the	connection	string	to
an	invalid	value,	by	default	the	Internet	Publishing	Provider	raises	a	dialog	box
to	prompt	for	a	valid	value.	This	is	undesirable	behavior	for	a	component	in	the
middle	tier	of	an	application,	because	it	suspends	program	execution	until	the
dialog	box	is	cleared	and	the	client	appears	to	freeze	because	it	has	not	received
a	response	from	the	component.

Note			If	MSDAIPP.DSO	is	explicitly	specified	as	the	value	of	the	provider,
either	with	the	Provider	connection	string	keyword	or	the	Provider	property,
you	cannot	use	"URL="	in	the	connection	string.	If	you	do,	an	error	will	occur.
Instead,	simply	specify	the	URL	as	shown	in	the	topic	Using	ADO	with	the	OLE
DB	Provider	for	Internet	Publishing.

Microsoft	Data	Shaping	Service	for
OLE	DB

The	Microsoft	Data	Shaping	Service	for	OLE	DB	service	provider	supports	the
construction	of	hierarchical	(shaped)	Recordset	objects	from	a	data	provider.

Provider	Keyword

To	invoke	the	Data	Shaping	Service	for	OLE	DB,	specify	the	following	keyword
and	value	in	the	connection	string.

"Provider=MSDataShape"

Dynamic	Properties

When	this	service	provider	is	invoked,	the	following	dynamic	properties	are
added	to	the	Connection	object's	Properties	collection.

Dynamic	Property	Name Description

Unique	Reshape	Names

Indicates	whether	Recordset	objects
with	duplicate	values	for	their	Name
properties	are	allowed.	If	this	dynamic
property	is	True	and	a	new	Recordset	is
created	with	the	same	name	as	an
existing	Recordset,	then	the	new
Recordset	object's	name	is	modified	to
make	it	unique.	If	this	property	is	False
and	a	new	Recordset	is	created	with	the

same	name	as	the	existing	Recordset,
both	Recordset	objects	will	have	the
same	name.	Therefore,	neither
Recordset	can	be	reshaped	as	long	as
both	recordsets	exist.

The	default	value	of	the	property	is
False.

Data	Provider Indicates	the	name	of	the	provider	that
will	supply	rows	to	be	shaped.

You	may	also	set	writable	dynamic	properties	by	specifying	their	names	as
keywords	in	the	connection	string.	For	example,	in	Microsoft	Visual	Basic,	set
the	Data	Provider	dynamic	property	to	"MSDASQL"	by	specifying:

Dim	cn	as	New	ADODB.Connection

cn.Open	"Provider=MSDataShape;Data	Provider=MSDASQL"

You	may	also	set	or	retrieve	a	dynamic	property	by	specifying	its	name	as	the
index	to	the	Properties	property.	For	example,	get	and	print	the	current	value	of
the	Data	Provider	dynamic	property,	then	set	a	new	value,	like	this:

Debug.Print	cn.Properties("Data	Provider")

cn.Properties("Data	Provider")	=	"MSDASQL"

For	more	information	about	data	shaping,	see	Data	Shaping.

Microsoft	OLE	DB	Persistence
Provider

The	Microsoft	OLE	DB	Persistence	Provider	enables	you	to	save	a	Recordset
object	into	a	file,	and	later	restore	that	Recordset	object	from	the	file.	Schema
information,	data,	and	pending	changes	are	preserved.

You	can	save	the	Recordset	in	either	the	proprietary	Advanced	Data	Table	Gram
(ADTG)	format,	or	the	open	Extensible	Markup	Language	(XML)	format.

Provider	Keyword

To	invoke	this	provider,	specify	the	following	keyword	and	value	in	the
connection	string.

"Provider=MSPersist"

Errors

The	following	errors	issued	by	this	provider	can	be	detected	in	your	application.

Constant Description

E_BADSTREAM
The	file	opened	does	not	have	a	valid
format	(that	is,	the	format	is	not	ADTG
or	XML).

E_CANTPERSISTROWSET
The	Recordset	object	saved	has
characteristics	that	prevent	it	from
being	stored.

Remarks

The	Microsoft	OLE	DB	Persistence	Provider	exposes	no	dynamic	properties.

Currently,	only	parameterized	hierarchical	Recordset	objects	cannot	be	saved.

For	more	information	about	persistently	storing	Recordset	objects,	see
Recordset	Persistence.

Microsoft	OLE	DB	Remoting
Provider

The	Microsoft	OLE	DB	Remoting	Provider	enables	a	local	user	on	a	client
machine	to	invoke	data	providers	on	a	remote	machine.	Specify	the	data
provider	parameters	for	the	remote	machine	as	you	would	if	you	were	a	local
user	on	the	remote	machine.	Then	specify	the	parameters	used	by	the	Remoting
Provider	to	access	the	remote	machine.	The	resulting	effect	is	that	you	will
access	the	remote	machine	as	if	you	were	a	local	user.

Provider	Keyword

To	invoke	the	OLE	DB	Remoting	Provider,	specify	the	following	keyword	and
value	in	the	connection	string.	(Note	the	blank	space	in	the	provider	name.)

"Provider=MS	Remote"

Additional	Keywords

When	this	service	provider	is	invoked,	the	following	additional	keywords	are
relevant.

Keyword Description

Data	Source

Specifies	the	name	of	the	remote	data
source.	It	is	passed	to	the	OLE	DB
Remoting	Provider	for	processing.

This	keyword	is	equivalent	to	the
RDS.DataControl	object's	Connect

property.

Dynamic	Properties

When	this	service	provider	is	invoked,	the	following	dynamic	properties	are
added	to	the	Connection	object's	Properties	collection.

Dynamic	Property	Name Description

DFMode

Indicates	the	DataFactory	Mode.	A	string
that	specifies	the	desired	version	of	the
DataFactory	object	on	the	server.	Set	this
property	before	opening	a	connection	to
request	a	particular	version	of	the
DataFactory.	If	the	requested	version	is
not	available,	an	attempt	will	be	made	to
use	the	preceding	version.	If	there	is	no
preceding	version,	an	error	will	occur.	If
DFMode	is	less	than	the	available
version,	an	error	will	occur.	This
property	is	read-only	after	a	connection
is	made.

Can	be	one	of	the	following	valid	string
values:

"25"—Version	2.5	(Default)

"21"—Version	2.1

"20"—Version	2.0

"15"—Version	1.5

Indicates	the	actual	version	number	of
the	DataFactory	on	the	server.	Check
this	property	to	see	if	the	version
requested	in	the	DFMode	property	was
honored.

Current	DFMode

Can	be	one	of	the	following	valid	Long
integer	values:

25—Version	2.5	(Default)

21—Version	2.1

20—Version	2.0

15—Version	1.5

Adding	"DFMode=20;"	to	your
connection	string	when	using	the
MSRemote	provider	can	improve	your
server's	performance	when	updating	data.
With	this	setting,	the
RDSServer.DataFactory	object	on	the
server	uses	a	less	resource-intensive
mode.	However,	the	following	features
are	not	available	in	this	configuration:

Using	parameterized	queries.

Getting	parameter	or	column
information	before	calling	the
Execute	method.

Setting	Transact	Updates	to	True.

Gettting	row	status.

Calling	the	Resync	method.

Refreshing	(explicitly	or
automatically)	via	the	Update
Resync	property.

Setting	Command	or	Recordset
properties.

Using	adCmdTableDirect.

Handler

Indicates	the	name	of	a	server-side
customization	program	(or	handler)	that
extends	the	functionality	of	the
RDSServer.DataFactory,	and	any
parameters	used	by	the	handler,	all
separated	by	commas	(",").	A	String
value.

Internet	Timeout

Indicates	the	maximum	number	of
milliseconds	to	wait	for	a	request	to
travel	to	and	from	the	server.	(The
default	is	5	minutes.)

Remote	Provider Indicates	the	name	of	the	data	provider	to
be	used	on	the	remote	server.

Remote	Server

Indicates	the	server	name	and
communication	protocol	to	be	used	by
this	connection.	This	property	is
equivalent	to	the	RDS.DataControl
object	Server	property.

You	may	also	set	writable	dynamic	properties	by	specifying	their	names	as
keywords	in	the	connection	string.	For	example,	set	the	Internet	Timeout
dynamic	property	to	five	seconds	by	specifying:

Dim	cn	as	New	ADODB.Connection

cn.Open	"Provider=MS	Remote;Internet	Timeout=5000"

You	may	also	set	or	retrieve	a	dynamic	property	by	specifying	its	name	as	the
index	to	the	Properties	property.	For	example,	get	and	print	the	current	value	of
the	Internet	Timeout	dynamic	property,	and	then	set	a	new	value,	like	this:

Debug.Print	cn.Properties("Internet	Timeout")

cn.Properties("Internet	Timeout")	=	5000

Remarks

In	ADO	2.0,	the	OLE	DB	Remoting	Provider	could	only	be	specified	in	the
ActiveConnection	parameter	of	the	Recordset	object	Open	method.	Starting	with
ADO	2.1,	the	provider	may	also	be	specified	in	the	ConnectionString	parameter
of	the	Connection	object	Open	method.

The	equivalent	of	the	RDS.DataControl	object	SQL	property	is	not	available.
The	Recordset	object	Open	method	Source	argument	is	used	instead.

Specifying	"...;Remote	Provider=MS	Remote;..."	would	create	a	four-tier
scenario.Scenarios	beyond	three	tiers	have	not	been	tested	and	should	not	be
needed.

Example

This	example	performs	a	query	on	the	authors	table	of	the	pubs	database	on	a
server	named,	YourServer.	The	names	of	the	remote	data	source	and	remote
server	are	provided	in	the	Connection	object	Open	method,	and	the	SQL	query	is
specified	in	the	Recordset	object	Open	method.	A	Recordset	object	is	returned,
edited,	and	used	to	update	the	data	source.

Dim	rs	as	New	ADODB.Recordset

Dim	cn	as	New	ADODB.Connection

cn.Open		"Provider=MS	Remote;Data	Source=pubs;"	&	_

									"Remote	Server=http://YourServer"

rs.Open	"SELECT	*	FROM	authors",	cn

...																'Edit	the	recordset

rs.UpdateBatch					'Equivalent	of	RDS	SubmitChanges

...

Microsoft	Cursor	Service	for	OLE
DB

The	Microsoft	Cursor	Service	for	OLE	DB	supplements	the	cursor	support
functions	of	data	providers.	As	a	result,	the	user	perceives	relatively	uniform
functionality	from	all	data	providers.

The	Cursor	Service	makes	dynamic	properties	available	and	enhances	the
behavior	of	certain	methods.	For	example,	the	Optimize	dynamic	property
enables	the	creation	of	temporary	indexes	to	facilitate	certain	operations,	such	as
the	Find	method.

The	Cursor	Service	enables	support	for	batch	updating	in	all	cases.	It	also
simulates	more	capable	cursor	types,	such	as	dynamic	cursors,	when	a	data
provider	can	only	supply	less	capable	cursors,	such	as	static	cursors.

Keyword

To	invoke	this	service	component,	set	the	Recordset	or	Connection	object's
CursorLocation	property	to	adUseClient.

connection.CursorLocation=adUseClient

recordset.CursorLocation=adUseClient

Dynamic	Properties

When	the	Cursor	Service	for	OLE	DB	is	invoked,	the	following	dynamic
properties	are	added	to	the	Recordset	object's	Properties	collection.	The	full	list
of	Connection	and	Recordset	object	dynamic	properties	is	listed	in	the	ADO

Dynamic	Property	Index.	The	associated	OLE	DB	property	names,	where
appropriate,	are	included	in	parenthesis	after	the	ADO	property	name.

Changes	to	some	dynamic	properties	are	not	visible	to	the	underlying	datasource
after	the	Cursor	Service	has	been	invoked.	For	example,	setting	the	Command
Time	out	property	on	a	Recordset	will	not	be	visible	to	the	underlying	data
provider.

…

Recordset1.CursorLocation	=	adUseClient					'invokes	cursor	service

Recordset1.Open	"authors",	_

				"Provider=SQLOLEDB;Data	Source=DBServer;User	Id=usr;"	&	_

				"Password=pwd;Initial	Catalog=pubs;",,adCmdTable

Recordset1.Properties.Item("Command	Time	out")	=	50

'	'Command	Time	out'	property	on	DBServer	is	still	default	(30).

…

If	your	application	requires	the	Cursor	Service,	but	you	need	to	set	dynamic
properties	on	the	underlying	provider,	set	the	properties	before	invoking	the
Cursor	Service.	Command	object	property	settings	are	always	passed	to	the
underlying	data	provider	regardless	of	cursor	location.	Therefore,	you	can	also
use	a	command	object	to	set	the	properties	at	any	time.

Property	Name Description

Auto	Recalc
(DBPROP_ADC_AUTORECALC)

For	recordsets	created	with
the	Data	Shaping	Service,
this	value	indicates	how
often	calculated	and
aggregate	columns	are
calculated.	The	default
(value=1)	is	to	recalculate
whenever	the	Data	Shaping
Service	determines	that	the
values	have	changed.	If	the
value	is	0,	the	calculated	or
aggregate	columns	are	only
calculated	when	the
hierarchy	is	initially	built.
Indicates	the	number	of
update	statements	that	can	be

Batch	Size
(DBPROP_ADC_BATCHSIZE)

batched	before	being	sent	to
the	data	store.	The	more
statements	in	a	batch,	the
fewer	round	trips	to	the	data
store.

Cache	Child	Rows
(DBPROP_ADC_CACHECHILDROWS)

For	recordsets	created	with
the	Data	Shaping	Service,
this	value	indicates	whether
child	recordsets	are	stored	in
a	cache	for	later	use.

Cursor	Engine	Version
(DBPROP_ADC_CEVER)

Indicates	the	version	of	the
Cursor	Service	being	used.

Maintain	Change	Status
(DBPROP_ADC_MAINTAINCHANGESTATUS)

Indicates	the	text	of	the
command	used	for
resynchronizing	a	one	or
more	rows	in	a	multiple	table
join.

Optimize

Indicates	whether	an	index
should	be	created.	When	set
to	True,	authorizes	the
temporary	creation	of
indexes	to	improve	the
execution	of	certain
operations.

Reshape	Name

Indicates	the	name	of	the
Recordset.	May	be
referenced	within	the
current,	or	subsequent,	data
shaping	commands.

Resync	Command

Indicates	a	custom	command
string	that	is	used	by	the
Resync	method	when	the
Unique	Table	property	is	in
effect.

Unique	Catalog

Indicates	the	name	of	the
database	containing	the	table
referenced	in	the	Unique
Table	property.

Unique	Schema

Indicates	the	name	of	the
owner	of	the	table	referenced
in	the	Unique	Table
property.

Unique	Table

Indicates	the	name	of	the	one
table	in	a	Recordset	created
from	multiple	tables	that
may	be	modified	by
insertions,	updates,	or
deletions.

Update	Criteria
(DBPROP_ADC_UPDATECRITERIA)

Indicates	which	fields	in	the
WHERE	clause	are	used	to
handle	collisions	occurring
during	an	update.

Update	Resync
(DBPROP_ADC_UPDATERESYNC)

Indicates	whether	the
Resync	method	is	implicitly
invoked	after	the
UpdateBatch	method	(and	its
behavior),	when	the	Unique
Table	property	is	in	effect.

You	may	also	set	or	retrieve	a	dynamic	property	by	specifying	its	name	as	the
index	to	the	Properties	collection.	For	example,	get	and	print	the	current	value
of	the	Optimize	dynamic	property,	then	set	a	new	value,	like	this:

Debug.Print	rs.Properties("Optimize")

rs.Properties("Optimize")	=	True

Built-in	Property	Behavior

The	Cursor	Service	for	OLE	DB	also	affects	the	behavior	of	certain	built-in
properties.

Property	Name Description

CursorType Supplements	the	types	of	cursors	that
are	available	for	a	Recordset.

LockType Supplements	the	types	of	locks	available

for	a	Recordset.	Enables	batch	updates.

Sort

Specifies	one	or	more	field	names	that
the	Recordset	is	sorted	on,	and	whether
each	field	is	sorted	in	ascending	or
descending	order.

Method	Behavior

The	Cursor	Service	for	OLE	DB	enables	or	affects	the	behavior	of	the	Field
object's	Append	method;	and	the	Recordset	object's	Open,	Resync,
UpdateBatch,	and	Save	methods.

ADO	Glossary
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z

A

absolute	URL

ActiveX	control

ADISAPI

Advanced	Data	Internet	Server	Application	Programming	Interface

aggregate	function

alias

apartment	threading

asynchronous	operation

B

binding	entry

bitmask

bookmark

business	object

business	rule

C

calculated	expression

chapter

chapter-alias

character	set

child

child-alias

class	identifier

CLSID

client	tier

COM

COM	component

comparison	operator

component

Component	Object	Model

compound	file

constant

cursor

D

data	binding

data	definition	language

data	manipulation	language

data	provider

data	shaping

data	source	name

data	source	tier

DCOM

DDL

default	stream

disconnected	recordset

distributed	application

Distributed	Component	Object	Model

DLL

DML

document	source	provider

DSN

dynamic-link	library

dynamic	property

E

enumeration

event

event	handler

F

G

H

handler

hierarchical	recordset

hierarchy

I

Internet	Server	Application	Programming	Interface

ISAPI

J

K

key

L

M

marshaling

middle	tier

MIME

Multi-purpose	Internet	Mail	Extension

N

node

O

object	variable

ODBC

OLE	DB

Open	Database	Connectivity

optimistic	locking

ordinal	value

P

parameterized	command

parent

parent-alias

parent-child	relationship

persist

pessimistic	locking

pooling

ProgID

programmatic	identifier

proxy

Q

R

relative	URL

remote	data	source

resource	record

root

rowset

S

schema

scope

service	provider

shaped	Recordset

sibling

stored	procedure

stub

sub-node

synchronous	operation

T

tree

U

Uniform	Resource	Locator

URL

V

W

Web	server

X

Y

Z

Microsoft	ADOX	Programmer's
Reference

Microsoft®	ActiveX®	Data	Objects	Extensions	for	Data	Definition	Language
and	Security	(ADOX)	is	an	extension	to	the	ADO	objects	and	programming
model.	ADOX	includes	objects	for	schema	creation	and	modification,	as	well	as
security.	Because	it	is	an	object-based	approach	to	schema	manipulation,	you	can
write	code	that	will	work	against	various	data	sources	regardless	of	differences
in	their	native	syntaxes.

ADOX	is	a	companion	library	to	the	core	ADO	objects.	It	exposes	additional
objects	for	creating,	modifying,	and	deleting	schema	objects,	such	as	tables	and
procedures.	It	also	includes	security	objects	to	maintain	users	and	groups	and	to
grant	and	revoke	permissions	on	objects.

To	use	ADOX	with	your	development	tool,	you	should	establish	a	reference	to
the	ADOX	type	library.	The	description	of	the	ADOX	library	is	"Microsoft	ADO
Ext.	for	DDL	and	Security."	The	ADOX	library	file	name	is	Msadox.dll,	and	the
program	ID	(ProgID)	is	"ADOX".	For	more	information	about	establishing
references	to	libraries,	see	the	documentation	of	your	development	tool.

The	Microsoft	OLE	DB	Provider	for	the	Microsoft	Jet	Database	Engine	fully
supports	ADOX.	Certain	features	of	ADOX	may	not	be	supported,	depending	on
your	data	provider.	For	more	information	about	supported	features	with	the
Microsoft	OLE	DB	Provider	for	ODBC,	the	Microsoft	OLE	DB	Provider	for
Oracle,	or	the	Microsoft	SQL	Server	OLE	DB	Provider,	see	the	MDAC	readme
file.

This	document	assumes	a	working	knowledge	of	the	Microsoft®	Visual	Basic®
programming	language	and	a	general	knowledge	of	ADO.	For	more	information
about	ADO,	see	the	ADO	Programmer's	Reference.	For	more	overview
information	about	ADOX,	see	the	following	topics:

ADOX	Object	Model
ADOX	Objects

ADOX	Collections

ADOX	Properties

ADOX	Methods

ADOX	Examples

What's	New	in	ADOX

Code	Example	Topics

The	examples	have	been	expanded	to	contain	code	examples	in	Microsoft	Visual
C++®	and	additional	examples	in	Microsoft	Visual	Basic.	You	can	copy	and
paste	these	code	examples	into	your	editor.

ADOX	API	Reference

This	section	of	the	ADOX	documentation	contains	topics	for	each	ADOX
object,	collection,	method,	and	property,	as	well	as	example	code	when
appropriate.	For	more	information,	search	for	a	specific	topic	in	the	index	or
refer	to	the	following	topics:

ADOX	Objects
ADOX	Collections

ADOX	Properties

ADOX	Methods

ADOX	Enumerated	Constants

ADOX	Examples

ADOX	Object	Model

The	following	diagram	illustrates	how	objects	are	represented	and	related	in
ADOX.	For	more	information	about	a	specific	object	or	collection,	see	the
specific	reference	topic,	or	ADOX	Objects	and	ADOX	Collections.

Each	of	the	Table,	Index,	and	Column	objects	also	has	a	standard	ADO
Properties	collection.

ADOX	Objects

ADOX	Object	Summary

Object Description

Catalog Contains	collections	that	describe	the	schema	catalog	of	a
data	source.

Column Represents	a	column	from	a	table,	index,	or	key.

Group Represents	a	group	account	that	has	access	permissions
within	a	secured	database.

Index Represents	an	index	from	a	database	table.

Key Represents	a	primary,	foreign,	or	unique	key	field	from	a
database	table.

Procedure Represents	a	stored	procedure.

Table Represents	a	database	table,	including	columns,	indexes,
and	keys.

User Represents	a	user	account	that	has	access	permissions
within	a	secured	database.

View Represents	a	filtered	set	of	records	or	a	virtual	table.

The	relationships	between	these	objects	are	illustrated	in	the	ADOX	Object
Model.

Each	object	can	be	contained	in	its	corresponding	collection.	For	example,	a
Table	object	can	be	contained	in	a	Tables	collection.	For	more	information,	see
ADOX	Collections	or	a	specific	collection	topic.

Catalog	Object

				 				

				 				

Contains	collections	(Tables,	Views,	Users,	Groups,	and	Procedures)	that
describe	the	schema	catalog	of	a	data	source.

Remarks

You	can	modify	the	Catalog	object	by	adding	or	removing	objects	or	by

modifying	existing	objects.	Some	providers	may	not	support	all	of	the	Catalog
objects	or	may	support	only	viewing	schema	information.

With	the	properties	and	methods	of	a	Catalog	object,	you	can:

Open	the	catalog	by	setting	the	ActiveConnection	property	to	an	ADO
Connection	object	or	a	valid	connection	string.

Create	a	new	catalog	with	the	Create	method.

Determine	the	owners	of	the	objects	in	a	Catalog	with	the	GetObjectOwner
and	SetObjectOwner	methods.

Column	Object

				 				

				 				

Represents	a	column	from	a	table,	index,	or	key.

Remarks

The	following	code	creates	a	new	Column:

Dim	obj	As	New	Column

With	the	properties	and	collections	of	a	Column	object,	you	can:

Identify	the	column	with	the	Name	property.

Specify	the	data	type	of	the	column	with	the	Type	property.

Determine	if	the	column	is	fixed-length,	or	if	it	can	contain	null	values	with
the	Attributes	property.

Specify	the	maximum	size	of	the	column	with	the	DefinedSize	property.

For	numeric	data	values,	specify	the	scale	with	the	NumericScale	property.

For	numeric	data	value,	specify	the	maximum	precision	with	the	Precision
property.

Specify	the	Catalog	that	owns	the	column	with	the	ParentCatalog	property.

For	key	columns,	specify	the	name	of	the	related	column	in	the	related	table
with	the	RelatedColumn	property.

For	index	columns,	specify	whether	the	sort	order	is	ascending	or
descending	with	the	SortOrder	property.

Access	provider-specific	properties	with	the	Properties	collection.

Note			Not	all	properties	of	Column	objects	may	be	supported	by	your	data
provider.	An	error	will	occur	if	you	have	set	a	value	for	a	property	that	the
provider	does	not	support.	For	new	Column	objects,	the	error	will	occur
when	the	object	is	appended	to	the	collection.	For	existing	objects,	the	error
will	occur	when	setting	the	property.

When	creating	Column	objects,	the	existence	of	an	appropriate	default
value	for	an	optional	property	does	not	guarantee	that	your	provider
supports	the	property.	For	more	information	about	which	properties	your
provider	supports,	see	your	provider	documentation.

Group	Object

				 				

				 				

Represents	a	group	account	that	has	access	permissions	within	a	secured
database.

Remarks

The	Groups	collection	of	a	Catalog	represents	all	the	catalog's	group	accounts.
The	Groups	collection	for	a	User	represents	only	the	group	to	which	the	user
belongs.

With	the	properties,	collections,	and	methods	of	a	Group	object,	you	can:

Identify	the	group	with	the	Name	property.

Determine	whether	a	group	has	read,	write,	or	delete	permissions	with	the
GetPermissions	and	SetPermissions	methods.

Access	the	user	accounts	that	have	memberships	in	the	group	with	the
Users	collection.

Index	Object

				 				

				 				

Represents	an	index	from	a	database	table.

Remarks

The	following	code	creates	a	new	Index:

Dim	obj	As	New	Index

With	the	properties	and	collections	of	an	Index	object,	you	can:

Identify	the	index	with	the	Name	property.

Access	the	database	columns	of	the	index	with	the	Columns	collection.

Specify	whether	the	index	keys	must	be	unique	with	the	Unique	property.

Specify	whether	the	index	is	the	primary	key	for	a	table	with	the
PrimaryKey	property.

Specify	whether	records	that	have	null	values	in	their	index	fields	have
index	entries	with	the	IndexNulls	property.

Specify	whether	the	index	is	clustered	with	the	Clustered	property.

Access	provider-specific	index	properties	with	the	Properties	collection.

Notes			An	error	will	occur	when	appending	a	Column	to	the	Columns
collection	of	an	Index	if	the	Column	does	not	exist	in	a	Table	object
already	appended	to	the	Tables	collection.

Your	data	provider	may	not	support	all	properties	of	Index	objects.	An
error	will	occur	if	you	have	set	a	value	for	a	property	that	is	not	supported
by	the	provider.	For	new	Index	objects,	the	error	will	occur	when	the	object
is	appended	to	the	collection.	For	existing	objects,	the	error	will	occur	when
setting	the	property.

When	creating	Index	objects,	the	existence	of	an	appropriate	default	value
for	an	optional	property	does	not	guarantee	that	your	provider	supports	the
property.	For	more	information	about	which	properties	your	provider
supports,	see	your	provider	documentation.

Key	Object

				 				

				 				

Represents	a	primary,	foreign,	or	unique	key	field	from	a	database	table.

Remarks

The	following	code	creates	a	new	Key:

Dim	obj	As	New	Key

With	the	properties	and	collections	of	a	Key	object,	you	can:

Identify	the	key	with	the	Name	property.

Determine	whether	the	key	is	primary,	foreign,	or	unique	with	the	Type
property.

Access	the	database	columns	of	the	key	with	the	Columns	collection.

Specify	the	name	of	the	related	table	with	the	RelatedTable	property.

Determine	the	action	performed	on	deletion	or	update	of	a	primary	key	with
the	DeleteRule	and	UpdateRule	properties.

Procedure	Object

				 				

				 				

Represents	a	stored	procedure.	When	used	in	conjunction	with	the	ADO
Command	object,	the	Procedure	object	can	be	used	for	adding,	deleting,	or
modifying	stored	procedures.

Remarks

The	Procedure	object	allows	you	to	create	a	stored	procedure	without	having	to
know	or	use	the	provider's	"CREATE	PROCEDURE"	syntax.

With	the	properties	of	a	Procedure	object,	you	can:

Identify	the	procedure	with	the	Name	property.

Specify	the	ADO	Command	object	that	can	be	used	to	create	or	execute
the	procedure	with	the	Command	property.

Return	date	information	with	the	DateCreated	and	DateModified	properties.

Table	Object

				 				

				 				

Represents	a	database	table	including	columns,	indexes,	and	keys.

Remarks

The	following	code	creates	a	new	Table:

Dim	obj	As	New	Table

With	the	properties	and	collections	of	a	Table	object,	you	can:

Identify	the	table	with	the	Name	property.

Determine	the	type	of	table	with	the	Type	property.

Access	the	database	columns	of	the	table	with	the	Columns	collection.

Access	the	indexes	of	the	table	with	the	Indexes	collection.

Access	the	keys	of	the	table	with	the	Keys	collection.

Specify	the	Catalog	that	owns	the	table	with	the	ParentCatalog	property.

Return	date	information	with	the	DateCreated	and	DateModified	properties.

Access	provider-specific	table	properties	with	the	Properties	collection.

Note			Your	data	provider	may	not	support	all	properties	of	Table	objects.
An	error	will	occur	if	you	have	set	a	value	for	a	property	that	the	provider
does	not	support.	For	new	Table	objects,	the	error	will	occur	when	the
object	is	appended	to	the	collection.	For	existing	objects,	the	error	will
occur	when	setting	the	property.

When	creating	Table	objects,	the	existence	of	an	appropriate	default	value
for	an	optional	property	does	not	guarantee	that	your	provider	supports	the
property.	For	more	information	about	which	properties	your	provider
supports,	see	your	provider	documentation.

User	Object

				 				

				 				

Represents	a	user	account	that	has	access	permissions	within	a	secured	database.

Remarks

The	Users	collection	of	a	Catalog	represents	all	the	catalog's	users.	The	Users
collection	for	a	Group	represents	only	the	users	of	the	specific	group.

With	the	properties,	collections,	and	methods	of	a	User	object,	you	can:

Identify	the	user	with	the	Name	property.

Change	the	password	for	a	user	with	the	ChangePassword	method.

Determine	whether	a	user	has	read,	write,	or	delete	permissions	with	the
GetPermissions	and	SetPermissions	methods.

Access	the	groups	to	which	a	user	belongs	with	the	Groups	collection.

View	Object

				 				

				 				

Represents	a	filtered	set	of	records	or	a	virtual	table.	When	used	in	conjunction
with	the	ADO	Command	object,	the	View	object	can	be	used	for	adding,
deleting,	or	modifying	views.

Remarks

A	view	is	a	virtual	table,	created	from	other	database	tables	or	views.	The	View
object	allows	you	to	create	a	view	without	having	to	know	or	use	the	provider's
"CREATE	VIEW"	syntax.

With	the	properties	of	a	View	object,	you	can:

Identify	the	view	with	the	Name	property.

Specify	the	ADO	Command	object	that	can	be	used	to	add,	delete,	or
modify	views	with	the	Command	property.

Return	date	information	with	the	DateCreated	and	DateModified	properties.

ADOX	Collections

ADOX	Collection	Summary

Collection Description
Columns Contains	all	Column	objects	of	a	table,	index,	or	key.

Groups Contains	all	stored	Group	objects	of	a	catalog	or
user.

Indexes Contains	all	Index	objects	of	a	table.
Keys Contains	all	Key	objects	of	a	table.
Procedures Contains	all	Procedure	objects	of	a	catalog.
Tables Contains	all	Table	objects	of	a	catalog.
Users Contains	all	stored	User	objects	of	a	catalog	or	group.
Views Contains	all	View	objects	of	a	catalog.

Columns	Collection

				 				

				

Contains	all	Column	objects	of	a	table,	index,	or	key.

Remarks

The	Append	method	for	a	Columns	collection	is	unique	for	ADOX.	You	can:

Add	a	new	column	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	column	in	the	collection	with	the	Item	property.

Return	the	number	of	columns	contained	in	the	collection	with	the	Count
property.

Remove	a	column	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Note			An	error	will	occur	when	appending	a	Column	to	the	Columns
collection	of	an	Index	if	the	Column	does	not	exist	in	a	Table	that	is
already	appended	to	the	Tables	collection.

Groups	Collection

				 				

				

Contains	all	stored	Group	objects	of	a	catalog	or	user.

Remarks

The	Groups	collection	of	a	Catalog	represents	all	of	the	catalog's	group
accounts.	The	Groups	collection	for	a	User	represents	only	the	group	to	which
the	user	belongs.

The	Append	method	for	a	Groups	collection	is	unique	for	ADOX.	You	can:

Add	a	new	security	group	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	group	in	the	collection	with	the	Item	property.

Return	the	number	of	groups	contained	in	the	collection	with	the	Count
property.

Remove	a	group	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Note			Before	appending	a	Group	object	to	the	Groups	collection	of	a	User
object,	a	Group	object	with	the	same	Name	as	the	one	to	be	appended	must
already	exist	in	the	Groups	collection	of	the	Catalog.

Indexes	Collection

				 				

				

Contains	all	Index	objects	of	a	table.

Remarks

The	Append	method	for	an	Indexes	collection	is	unique	for	ADOX.	You	can:

Add	a	new	index	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	an	index	in	the	collection	with	the	Item	property.

Return	the	number	of	indexes	contained	in	the	collection	with	the	Count
property.

Remove	an	index	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Keys	Collection

				 				

				

Contains	all	Key	objects	of	a	table.

Remarks

The	Append	method	for	a	Keys	collection	is	unique	for	ADOX.	You	can:

Add	a	new	key	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	key	in	the	collection	with	the	Item	property.

Return	the	number	of	keys	contained	in	the	collection	with	the	Count
property.

Remove	a	key	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Procedures	Collection

				 				

				

Contains	all	Procedure	objects	of	a	catalog.

Remarks

The	Append	method	for	a	Procedures	collection	is	unique	for	ADOX.	You	can:

Add	a	new	procedure	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	procedure	in	the	collection	with	the	Item	property.

Return	the	number	of	procedures	contained	in	the	collection	with	the	Count
property.

Remove	a	procedure	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Tables	Collection

				 				

				

Contains	all	Table	objects	of	a	catalog.

Remarks

The	Append	method	for	a	Tables	collection	is	unique	for	ADOX.	You	can:

Add	a	new	table	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	table	in	the	collection	with	the	Item	property.

Return	the	number	of	tables	contained	in	the	collection	with	the	Count
property.

Remove	a	table	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Some	providers	may	return	other	schema	objects,	such	as	a	View,	in	the	Tables
collection.	Therefore,	some	ADOX	collections	may	contain	references	to	the
same	object.	Should	you	delete	the	object	from	one	collection,	the	change	will
not	be	visible	in	another	collection	that	references	the	deleted	object	until	the
Refresh	method	is	called	on	the	collection.	For	example,	with	the	OLE	DB
Provider	for	Microsoft	Jet,	Views	are	returned	with	the	Tables	collection.	If	you
drop	a	View,	you	must	Refresh	the	Tables	collection	before	the	collection	will
reflect	the	change.

Users	Collection

				 				

				

Contains	all	stored	User	objects	of	a	catalog	or	group.

Remarks

The	Users	collection	of	a	Catalog	represents	all	the	catalog's	users.	The	Users
collection	for	a	Group	represents	only	the	users	that	have	a	membership	in	the
specific	group.

The	Append	method	for	a	Users	collection	is	unique	for	ADOX.	You	can:

Add	a	new	user	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	user	in	the	collection	with	the	Item	property.

Return	the	number	of	users	contained	in	the	collection	with	the	Count
property.

Remove	a	user	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

Note			Before	appending	a	User	object	to	the	Users	collection	of	a	Group
object,	a	User	object	with	the	same	Name	as	the	one	to	be	appended	must
already	exist	in	the	Users	collection	of	the	Catalog.

Views	Collection

				 				

				

Contains	all	View	objects	of	a	catalog.

Remarks

The	Append	method	for	a	Views	collection	is	unique	for	ADOX.	You	can:

Add	a	new	view	to	the	collection	with	the	Append	method.

The	remaining	properties	and	methods	are	standard	to	ADO	collections.	You
can:

Access	a	view	in	the	collection	with	the	Item	property.

Return	the	number	of	views	contained	in	the	collection	with	the	Count
property.

Remove	a	view	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema
with	the	Refresh	method.

ADOX	Properties

ADOX	Property	Summary

Property Description

ActiveConnection Indicates	the	ADO	Connection	object	to	which	the	catalogbelongs.
Attributes Describes	column	characteristics.
Clustered Indicates	whether	the	index	is	clustered.

Command Specifies	an	ADO	Command	object	that	can	be	used	to
create	or	execute	the	procedure.

Count Indicates	the	number	of	objects	in	a	collection.
DateCreated Indicates	the	date	the	object	was	created.
DateModified Indicates	the	date	the	object	was	last	modified.
DefinedSize Indicates	the	stated	maximum	size	of	the	column.
DeleteRule Indicates	the	action	performed	when	a	primary	key	is	deleted.

IndexNulls Indicates	whether	records	that	have	null	values	in	their	index
fields	have	index	entries.

Name Indicates	the	name	of	the	object.
NumericScale Indicates	the	scale	of	a	numeric	value	in	the	column.

ParentCatalog Specifies	the	parent	catalog	of	a	table	or	column	to	provide
access	to	provider-specific	properties.

Precision Indicates	the	maximum	precision	of	data	values	in	the
column.

PrimaryKey Indicates	whether	the	index	represents	the	primary	key	on	the
table.
Indicates	the	name	of	the	related	column	in	the	related	table

RelatedColumn (key	columns	only).

RelatedTable Indicates	the	name	of	the	related	table.

SortOrder Indicates	the	sort	sequence	for	the	column	(index	columns
only).

Type	(Column) Indicates	the	data	type	of	a	column.
Type	(Key) Indicates	the	data	type	of	the	Key.
Type	(Table) Indicates	the	type	of	a	table.
Unique Indicates	whether	the	index	keys	must	be	unique.

UpdateRule Indicates	the	action	performed	when	a	primary	key	is
updated.

ActiveConnection	Property

				 				

Indicates	the	ADO	Connection	object	to	which	the	Catalog	belongs.

Settings	and	Return	Values

Sets	a	Connection	object	or	a	String	containing	the	definition	for	a	connection.
Returns	the	active	Connection	object.

Remarks

The	default	value	is	a	null	object	reference.

Attributes	Property

				 				

Describes	column	characteristics.

Settings	and	Return	Values

Sets	or	returns	a	Long	value.	The	value	specifies	characteristics	of	the	table
represented	by	the	Column	object	and	can	be	a	combination	of
ColumnAttributesEnum	constants.	The	default	value	is	zero	(0),	which	is	neither
adColFixed	nor	adColNullable.

Clustered	Property

				 				

Indicates	whether	the	index	is	clustered.

Settings	and	Return	Values

Sets	and	returns	a	Boolean	value.

Remarks

The	default	value	is	False.

This	property	is	read-only	on	Index	objects	already	appended	to	a	collection.

Command	Property

				 				

Specifies	an	ADO	Command	object	that	can	be	used	to	create	or	execute	the
procedure.

Settings	and	Return	Values

Sets	or	returns	a	valid	ADO	Command	object.

Remarks

An	error	will	occur	when	getting	and	setting	this	property	if	the	provider	does
not	support	persisting	commands.

DateCreated	Property

				 				

Indicates	the	date	the	object	was	created.

Return	Values

Returns	a	Variant	value	specifying	the	date	created.	The	value	is	null	if
DateCreated	is	not	supported	by	the	provider.

Remarks

The	DateCreated	property	is	null	for	newly	appended	objects.	After	appending
a	new	View	or	Procedure,	you	must	call	the	Refresh	method	of	the	Views	or
Procedures	collection	to	obtain	values	for	the	DateCreated	property.

DateModified	Property

				 				

Indicates	the	date	the	object	was	last	modified.

Return	Values

Returns	a	Variant	value	specifying	the	date	modified.	The	value	is	null	if
DateModified	is	not	supported	by	the	provider.

Remarks

The	DateModified	property	is	null	for	newly	appended	objects.	After	appending
a	new	View	or	Procedure,	you	must	call	the	Refresh	method	of	the	Views	or
Procedures	collection	to	obtain	values	for	the	DateModified	property.

DefinedSize	Property

				 				

Indicates	the	stated	maximum	size	of	the	column.

Settings	and	Return	Values

Sets	and	returns	a	Long	value	that	is	the	maximum	length	in	characters	of	data
values.

Remarks

The	default	value	is	zero	(0).

This	property	is	read-only	for	Column	objects	already	appended	to	a	collection.

DeleteRule	Property

				 				

Indicates	the	action	performed	when	a	primary	key	is	deleted.

Settings	and	Return	Values

Sets	and	returns	a	Long	value	that	can	be	one	of	the	RuleEnum	constants.	The
default	value	is	adRINone.

Remarks

This	property	is	read-only	on	Key	objects	already	appended	to	a	collection.

IndexNulls	Property

				 				

Indicates	whether	records	that	have	null	values	in	their	index	fields	have	index
entries.

Settings	and	Return	Values

Sets	and	returns	an	AllowNullsEnum	value.	The	default	value	is
adIndexNullsDisallow.

Remarks

This	property	is	read-only	on	Index	objects	already	appended	to	a	collection.

Name	Property

				 				

Indicates	the	name	of	the	object.

Settings	and	Return	Values

Sets	or	returns	a	String	value.

Remarks

Names	do	not	have	to	be	unique	within	a	collection.

The	Name	property	is	read/write	on	Column,	Group,	Key,	Index,	Table,	and
User	objects.	The	Name	property	is	read-only	on	Catalog,	Procedure,	and	View
objects.

For	read/write	objects	(Column,	Group,	Key,	Index,	Table	and	User	objects),
the	default	value	is	an	empty	string	("").

Notes

For	keys,	this	property	is	read-only	on	Key	objects	already	appended	to	a
collection.

For	tables,	this	property	is	read-only	for	Table	objects	already	appended	to
a	collection.

NumericScale	Property

				 				

Indicates	the	scale	of	a	numeric	value	in	the	column.

Settings	and	Return	Values

Sets	and	returns	a	Byte	value	that	is	the	scale	of	data	values	in	the	column	when
the	Type	property	is	adNumeric	or	adDecimal.	NumericScale	is	ignored	for	all
other	data	types.

Remarks

The	default	value	is	zero	(0).

NumericScale	is	read-only	for	Column	objects	already	appended	to	a	collection.

ParentCatalog	Property

				 				

Specifies	the	parent	catalog	of	a	table	or	column	to	provide	access	to	provider-
specific	properties.

Settings	and	Return	Values

Sets	and	returns	a	Catalog	object.	Setting	ParentCatalog	to	an	open	Catalog
allows	access	to	provider-specific	properties	prior	to	appending	a	table	or
column	to	a	Catalog	collection.

Remarks

Some	data	providers	allow	provider-specific	property	values	to	be	written	only	at
creation	(when	a	table	or	column	is	appended	to	its	Catalog	collection).	To
access	these	properties	before	appending	these	objects	to	a	Catalog,	specify	the
Catalog	in	the	ParentCatalog	property	first.

An	error	occurs	when	the	table	or	column	is	appended	to	a	different	Catalog
than	the	ParentCatalog.

Precision	Property

				 				

Indicates	the	maximum	precision	of	data	values	in	the	column.

Settings	and	Return	Values

Sets	and	returns	a	Long	value	that	is	the	maximum	precision	of	data	values	in
the	column	when	the	Type	property	is	a	numeric	type.	Precision	is	ignored	for
all	other	data	types.

Remarks

The	default	value	is	zero	(0).

This	property	is	read-only	for	Column	objects	already	appended	to	a	collection.

PrimaryKey	Property

				 				

Indicates	whether	the	index	represents	the	primary	key	on	the	table.

Settings	and	Return	Values

Sets	and	returns	a	Boolean	value.

Remarks

The	default	value	is	False.

This	property	is	read-only	on	Index	objects	already	appended	to	a	collection.

RelatedColumn	Property

				 				

Indicates	the	name	of	the	related	column	in	the	related	table	(key	columns	only).

Settings	and	Return	Values

Sets	and	returns	a	String	value	that	is	the	name	of	the	related	column	in	the
related	table.

Remarks

The	default	value	is	an	empty	string	("").

This	property	is	read-only	for	Column	objects	already	appended	to	a	collection.

RelatedTable	Property

				 				

Indicates	the	name	of	the	related	table.

Settings	and	Return	Values

Sets	and	returns	a	String	value.

Remarks

The	default	value	is	an	empty	string	("").

If	the	key	is	a	foreign	key,	then	RelatedTable	is	the	name	of	the	table	that
contains	the	key.

SortOrder	Property

				 				

Indicates	the	sort	sequence	for	the	column	(index	columns	only).

Settings	and	Return	Values

Sets	and	returns	a	Long	value	that	can	be	one	of	the	SortOrderEnum	constants.
The	default	value	is	adSortAscending.

Remarks

This	property	only	applies	to	Column	objects	in	the	Columns	collection	of	an
Index.

Type	Property	(Column)

				 				

Indicates	the	data	type	of	a	column.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	can	be	one	of	the	DataTypeEnum	constants.
The	default	value	is	adVarWChar.

Remarks

This	property	is	read/write	until	the	Column	object	is	appended	to	a	collection	or
to	another	object,	after	which	it	is	read-only.

Type	Property	(Key)

				 				

Indicates	the	type	of	the	key.

Settings	and	Return	Values

Sets	or	returns	a	Long	value	that	can	be	one	of	the	KeyTypeEnum	constants.	The
default	value	is	adKeyPrimary.

Remarks

This	property	is	read-only	on	Key	objects	already	appended	to	a	collection.

Type	Property	(Table)

				 				

Indicates	the	type	of	a	table.

Return	Values

Returns	a	String	value	that	specifies	the	type	of	table;	for	example,	"TABLE",
"SYSTEM	TABLE",	or	"GLOBAL	TEMPORARY".

Remarks

This	property	is	read-only.

Unique	Property

				 				

Indicates	whether	the	index	keys	must	be	unique.

Settings	and	Return	Values

Sets	and	returns	a	Boolean	value.

Remarks

The	default	value	is	False.

This	property	is	read-only	on	Index	objects	already	appended	to	a	collection.

UpdateRule	Property

				 				

Indicates	the	action	performed	when	a	primary	key	is	updated.

Settings	and	Return	Values

Sets	and	returns	a	Long	value	that	can	be	one	of	the	RuleEnum	constants.	The
default	value	is	adRINone.

Remarks

This	property	is	read-only	on	Key	objects	already	appended	to	the	collection.

ADOX	Methods

ADOX	Method	Summary

Method Description
Append	(Columns) Adds	a	new	Column	object	to	the	Columns	collection.
Append	(Groups) Adds	a	new	Group	object	to	the	Groups	collection.
Append	(Indexes) Adds	a	new	Index	object	to	the	Indexes	collection.
Append	(Keys) Adds	a	new	Key	object	to	the	Keys	collection.
Append
(Procedures)

Adds	a	new	Procedure	object	to	the	Procedures
collection.

Append	(Tables) Adds	a	new	Table	object	to	the	Tables	collection.
Append	(Users) Adds	a	new	User	object	to	the	Users	collection.
Append	(Views) Adds	a	new	View	object	to	the	Views	collection.
ChangePassword Changes	the	password	for	a	user	account.
Create Creates	a	new	catalog.
Delete Removes	an	object	from	a	collection.
GetObjectOwner Returns	the	owner	of	an	object	in	a	catalog.
GetPermissions Returns	the	permissions	for	a	group	or	user	on	an	object.

Refresh Updates	the	objects	in	a	collection	to	reflect	objects
available	from	and	specific	to	the	provider.

SetObjectOwner Specifies	the	owner	of	an	object	in	a	catalog.
SetPermissions Specifies	the	permissions	for	group	or	user	on	an	object.

Append	Method	(Columns)

				 				

Adds	a	new	Column	object	to	the	Columns	collection.

Syntax

Columns.Append	Column	[,	Type]	[,	DefinedSize]

Parameters

Column			The	Column	object	to	append	or	the	name	of	the	column	to	create	and
append.

Type			Optional.	A	Long	value	that	specifies	the	data	type	of	the	column.	The
Type	parameter	corresponds	to	the	Type	property	of	a	Column	object.

DefinedSize			Optional.	A	Long	value	that	specifies	the	size	of	the	column.	The
DefinedSize	parameter	corresponds	to	the	DefinedSize	property	of	a	Column
object.

Note			An	error	will	occur	when	appending	a	Column	to	the	Columns	collection
of	an	Index	if	the	Column	does	not	exist	in	a	Table	that	is	already	appended	to
the	Tables	collection.

Append	Method	(Groups)

				 				

Adds	a	new	Group	object	to	the	Groups	collection.

Syntax

Groups.Append	Group

Parameters

Group			The	Group	object	to	append	or	the	name	of	the	group	to	create	and
append.

Remarks

The	Groups	collection	of	a	Catalog	represents	all	of	the	catalog's	group
accounts.	The	Groups	collection	for	a	User	represents	only	the	group	to	which
the	user	belongs.

An	error	will	occur	if	the	provider	does	not	support	creating	groups.

Note			Before	appending	a	Group	object	to	the	Groups	collection	of	a	User
object,	a	Group	object	with	the	same	Name	as	the	one	to	be	appended	must
already	exist	in	the	Groups	collection	of	the	Catalog.

Append	Method	(Indexes)

				 				

Adds	a	new	Index	object	to	the	Indexes	collection.

Syntax

Indexes.Append	Index	[,	Columns]

Parameters

Index			The	Index	object	to	append	or	the	name	of	the	index	to	create	and
append.

Columns			Optional.	A	Variant	value	that	specifies	the	name(s)	of	the	column(s)
to	be	indexed.	The	Columns	parameter	corresponds	to	the	value(s)	of	the	Name
property	of	a	Column	object	or	objects.

Remarks

The	Columns	parameter	can	take	either	the	name	of	a	column	or	an	array	of
column	names.

An	error	will	occur	if	the	provider	does	not	support	creating	indexes.

Append	Method	(Keys)

				 				

Adds	a	new	Key	object	to	the	Keys	collection.

Syntax

Keys.Append	Key	[,	KeyType]	[,	Column]	[,	RelatedTable]	[,

RelatedColumn]

Parameters

Key			The	Key	object	to	append	or	the	name	of	the	key	to	create	and	append.

KeyType			Optional.	A	Long	value	that	specifies	the	type	of	key.	The	Key
parameter	corresponds	to	the	Type	property	of	a	Key	object.

Column			Optional.	A	String	value	that	specifies	the	name	of	the	column	to	be
indexed.	The	Columns	parameter	corresponds	to	the	value	of	the	Name	property
of	a	Column	object.

RelatedTable			Optional.	A	String	value	that	specifies	the	name	of	the	related
table.	The	RelatedTable	parameter	corresponds	to	the	value	of	the	Name
property	of	a	Table	object.

RelatedColumn			Optional.	A	String	value	that	specifies	the	name	of	the	related
column	for	a	foreign	key.	The	RelatedColumn	parameter	corresponds	to	the
value	of	the	Name	property	of	a	Column	object.

Remarks

The	Columns	parameter	can	take	either	the	name	of	a	column	or	an	array	of
column	names.

Append	Method	(Procedures)

				 				

Adds	a	new	Procedure	object	to	the	Procedures	collection.

Syntax

Procedures.Append	Name,	Command

Parameters

Name			A	String	value	that	specifies	the	name	of	the	procedure	to	create	and
append.

Command			An	ADO	Command	object	that	represents	the	procedure	to	create
and	append.

Remarks

Creates	a	new	procedure	in	the	data	source	with	the	name	and	attributes
specified	in	the	Command	object.

If	the	command	text	that	the	user	specifies	represents	a	view	rather	than	a
procedure,	the	behavior	is	dependent	upon	the	provider	being	used.	Append	will
fail	if	the	provider	does	not	support	persisting	commands.

Note:			When	using	the	OLE	DB	Provider	for	Microsoft	Jet,	the	Procedures
collection	Append	method	will	allow	you	to	specify	a	View	rather	than	a
Procedure	in	the	Command	parameter.	The	View	will	be	added	to	the	data
source	and	will	be	added	to	the	Procedures	collection.	After	the	Append,	if	the
Procedures	and	Views	collections	are	refreshed,	the	View	will	no	longer	be	in
the	Procedures	collection	and	will	appear	in	the	Views	collection.

Append	Method	(Tables)

				 				

Adds	a	new	Table	object	to	the	Tables	collection.

Syntax

Tables.Append	Table

Parameters

Table			A	Variant	value	that	contains	a	reference	to	the	Table	to	append	or	the
name	of	the	table	to	create	and	append.

Remarks

An	error	will	occur	if	the	provider	does	not	support	creating	tables.

Append	Method	(Users)

				 				

Adds	a	new	User	object	to	the	Users	collection.

Syntax

Users.Append	User[,	Password]

Parameters

User			A	Variant	value	that	contains	the	User	object	to	append	or	the	name	of
the	user	to	create	and	append.

Password			Optional.	A	String	value	that	contains	the	password	for	the	user.	The
Password	parameter	corresponds	to	the	value	specified	by	the	ChangePassword
method	of	a	User	object.

Remarks

The	Users	collection	of	a	Catalog	represents	all	the	catalog's	users.	The	Users
collection	for	a	Group	represents	only	the	users	that	have	a	membership	in	the
specific	group.

An	error	will	occur	if	the	provider	does	not	support	creating	users.

Note			Before	appending	a	User	object	to	the	Users	collection	of	a	Group
object,	a	User	object	with	the	same	Name	as	the	one	to	be	appended	must
already	exist	in	the	Users	collection	of	the	Catalog.

Append	Method	(Views)

				 				

Creates	a	new	View	object	and	appends	it	to	the	Views	collection.

Syntax

Views.Append	Name,	Command

Parameters

Name			A	String	value	that	specifies	the	name	of	the	view	to	create.

Command			An	ADO	Command	object	that	represents	the	view	to	create.

Remarks

Creates	a	new	view	in	the	data	source	with	the	name	and	attributes	specified	in
the	Command	object.

If	the	command	text	that	the	user	specifies	represents	a	procedure	rather	than	a
view,	the	behavior	is	dependent	upon	the	provider.	Append	will	fail	if	the
provider	does	not	support	persisting	commands.

Note:			When	using	the	OLE	DB	Provider	for	Microsoft	Jet,	the	Views

collection	Append	method	will	allow	you	to	specify	a	Procedure	rather	than	a
View	in	the	Command	parameter.	The	Procedure	will	be	added	to	the	data
source	and	will	be	added	to	the	Views	collection.	After	the	Append,	if	the
Procedures	and	Views	collections	are	refreshed,	the	Procedure	will	no	longer
be	in	the	Views	collection	and	will	appear	in	the	Procedures	collection.

ChangePassword	Method

				 				

Changes	the	password	for	a	user	account.

Syntax

User.ChangePassword	OldPassword,	NewPassword

Parameters

OldPassword			A	String	value	that	specifies	the	user's	existing	password.	If	the
user	doesn't	currently	have	a	password,	use	an	empty	string	("")	for
OldPassword.

NewPassword			A	String	value	that	specifies	the	new	password.

Remarks

For	security	reasons,	the	old	password	must	be	specified	in	addition	to	the	new
password.

An	error	will	occur	if	the	provider	does	not	support	the	administration	of	trustee
properties.

Create	Method

				 				

Creates	a	new	catalog.

Syntax

Catalog.Create	ConnectString

Parameters

ConnectString			A	String	value	used	to	connect	to	the	data	source.

Remarks

The	Create	method	creates	and	opens	a	new	ADO	Connection	to	the	data	source
specified	in	ConnectString.	If	successful,	the	new	Connection	object	is	assigned
to	the	ActiveConnection	property.

An	error	will	occur	if	the	provider	does	not	support	creating	new	catalogs.

Delete	Method	(Collections)

				 				

Removes	an	object	from	a	collection.

Syntax

Collection.Delete	Name

Parameters

Name			A	Variant	that	specifies	the	name	or	ordinal	position	(index)	of	the
object	to	delete.

Remarks

An	error	will	occur	if	the	Name	does	not	exist	in	the	collection.

For	Tables	and	Users	collections,	an	error	will	occur	if	the	provider	does	not
support	deleting	tables	or	users,	respectively.	For	Procedures	and	Views
collections,	Delete	will	fail	if	the	provider	does	not	support	persisting
commands.

GetObjectOwner	Method

				 				

Returns	the	owner	of	an	object	in	a	Catalog.

Syntax

Owner	=	Catalog.GetObjectOwner(ObjectName,	ObjectType	[,

ObjectTypeId])

Return	Value

Returns	a	String	value	that	specifies	the	Name	of	the	User	or	Group	that	owns
the	object.

Parameters

ObjectName			A	String	value	that	specifies	the	name	of	the	object	for	which	to
return	the	owner.

ObjectType			A	Long	value	which	can	be	one	of	the	ObjectTypeEnum	constants,
that	specifies	the	type	of	the	object	for	which	to	get	the	owner.

ObjectTypeId			Optional.	A	Variant	value	that	specifies	the	GUID	for	a	provider
object	type	not	defined	by	the	OLE	DB	specification.	This	parameter	is	required

if	ObjectType	is	set	to	adPermObjProviderSpecific;	otherwise,	it	is	not	used.

Remarks

An	error	will	occur	if	the	provider	does	not	support	returning	object	owners.

GetPermissions	Method

				 				

Returns	the	permissions	for	a	group	or	user	on	an	object	or	object	container.

Syntax

ReturnValue	=	GroupOrUser.GetPermissions(Name,	ObjectType	

			[,	ObjectTypeId])

Return	Value

Returns	a	Long	value	that	specifies	a	bitmask	containing	the	permissions	that	the
group	or	user	has	on	the	object.	This	value	can	be	one	or	more	of	the
RightsEnum	constants.

Parameters

Name			A	Variant	value	that	specifies	the	name	of	the	object	for	which	to	set
permissions.	Set	Name	to	a	null	value	if	you	want	to	get	the	permissions	for	the
object	container.

ObjectType			A	Long	value	which	can	be	one	of	the	ObjectTypeEnum	constants,
that	specifies	the	type	of	the	object	for	which	to	get	permissions.

ObjectTypeId			Optional.	A	Variant	value	that	specifies	the	GUID	for	a	provider
object	type	not	defined	by	the	OLE	DB	specification.	This	parameter	is	required
if	ObjectType	is	set	to	adPermObjProviderSpecific;	otherwise,	it	is	not	used.

SetObjectOwner	Method

				 				

Specifies	the	owner	of	an	object	in	a	Catalog.

Syntax

Catalog.SetObjectOwner	ObjectName,	ObjectType	,	OwnerName	[,

ObjectTypeId]

Parameters

ObjectName			A	String	value	that	specifies	the	name	of	the	object	for	which	to
specify	the	owner.

ObjectType			A	Long	value	which	can	be	one	of	the	ObjectTypeEnum	constants
that	specifies	the	owner	type.

OwnerName			A	String	value	that	specifies	the	Name	of	the	User	or	Group	to
own	the	object.

ObjectTypeId			Optional.	A	Variant	value	that	specifies	the	GUID	for	a	provider
object	type	not	defined	by	the	OLE	DB	specification.	This	parameter	is	required
if	ObjectType	is	set	to	adPermObjProviderSpecific;	otherwise,	it	is	not	used.

Remarks

An	error	will	occur	if	the	provider	does	not	support	specifying	object	owners.

SetPermissions	Method

				 				

Specifies	the	permissions	for	a	group	or	user	on	an	object.

Syntax

GroupOrUser.SetPermissions	Name,	ObjectType,	Action,	Rights	[,

Inherit]				[,	ObjectTypeId]

Parameters

Name			A	String	value	that	specifies	the	name	of	the	object	for	which	to	set
permissions.

ObjectType				A	Long	value	which	can	be	one	of	the	ObjectTypeEnum	constants,
that	specifies	the	type	of	the	object	for	which	to	get	permissions.

Action			A	Long	value	which	can	be	one	of	the	ActionEnum	constants	that
specifies	the	type	of	action	to	perform	when	setting	permissions.

Rights			A	Long	value	which	can	be	a	bitmask	of	one	or	more	of	the
ActionEnum	constants,	that	indicates	the	rights	to	set.

Inherit			Optional.	A	Long	value	which	can	be	one	of	the	InheritTypeEnum

constants,	that	specifies	how	objects	will	inherit	these	permissions.	The	default
value	is	adInheritNone.

ObjectTypeId			Optional.	A	Variant	value	that	specifies	the	GUID	for	a	provider
object	type	not	defined	by	the	OLE	DB	specification.	This	parameter	is	required
if	ObjectType	is	set	to	adPermObjProviderSpecific;	otherwise,	it	is	not	used.

Remarks

An	error	will	occur	if	the	provider	does	not	support	setting	access	rights	for
groups	or	users.

Note			When	calling	SetPermissions,	setting	Actions	to	adAccessRevoke
overrides	any	settings	of	the	Rights	parameter.	Do	not	set	Actions	to
adAccessRevoke	if	you	want	the	rights	specified	in	the	Rights	parameter	to	take
effect.

ADOX	Enumerated	Constants

To	assist	debugging,	the	ADOX	enumerated	constants	list	a	value	for	each
constant.	However,	this	value	is	purely	advisory,	and	may	change	from	one
release	of	ADOX	to	another.	Your	code	should	only	depend	on	the	name,	not	the
actual	value,	of	enumerated	constants.

The	following	enumerated	constants	are	defined.

Enumeration Description

ActionEnum Specifies	the	type	of	action	to	be	performed	when
SetPermissions	is	called.

AllowNullsEnum Specifies	whether	records	with	null	values	are	indexed.
ColumnAttributesEnum Specifies	characteristics	of	a	Column.

DataTypeEnum Specifies	the	data	type	of	a	Field,	Parameter,	or
Property.

InheritTypeEnum Specifies	how	objects	will	inherit	permissions	set	with
SetPermissions.

KeyTypeEnum Specifies	the	type	of	Key:	primary,	foreign,	or	unique.

ObjectTypeEnum Specifies	the	type	of	database	object	for	which	to	set
permissions	or	ownership.

RightsEnum Specifies	the	rights	or	permissions	for	a	group	or	user
on	an	object.

RuleEnum Specifies	the	rule	to	follow	when	a	Key	is	deleted.
SortOrderEnum Specifies	the	sort	sequence	for	an	indexed	column.

ActionEnum

				

Specifies	the	type	of	action	to	be	performed	when	SetPermissions	is	called.

Constant Value Description

adAccessDeny 3 The	group	or	user	will	be	denied	the
specified	permissions.

adAccessGrant 1 The	group	or	user	will	have	at	least	the
requested	permissions.

adAccessRevoke 4 Any	explicit	access	rights	the	group	or
user	has	will	be	revoked.

adAccessSet 2 The	group	or	user	will	have	exactly	the
requested	permissions.

AllowNullsEnum

				

Specifies	whether	records	with	null	values	are	indexed.

Constant Value Description

adIndexNullsAllow 0

The	index	does	allow	entries	in	which	the
key	columns	are	null.	If	a	null	value	is
entered	in	a	key	column,	the	entry	is
inserted	into	the	index.

adIndexNullsDisallow 1

Default.	The	index	does	not	allow	entries
in	which	the	key	columns	are	null.	If	a	null
value	is	entered	in	a	key	column,	an	error
will	occur.

adIndexNullsIgnore 2

The	index	does	not	insert	entries
containing	null	keys.	If	a	null	value	is
entered	in	a	key	column,	the	entry	is
ignored	and	no	error	occurs.

adIndexNullsIgnoreAny 4

The	index	does	not	insert	entries	where
some	key	column	has	a	null	value.	For	an
index	having	a	multi-column	key,	if	a	null
value	is	entered	in	some	column,	the	entry
is	ignored	and	no	error	occurs.

ColumnAttributesEnum

				

Specifies	characteristics	of	a	Column.

Constant Value Description
adColFixed 1 The	column	is	a	fixed	length.
adColNullable 2 The	column	may	contain	null	values.

InheritTypeEnum

				

Specifies	how	objects	will	inherit	permissions	set	with	SetPermissions.

Constant Value Description

adInheritBoth 3
Both	objects	and	other	containers
contained	by	the	primary	object	inherit	the
entry.

adInheritContainers 2 Other	containers	that	are	contained	by	the
primary	object	inherit	the	entry.

adInheritNone 0 Default.	No	inheritance	occurs.

adInheritNoPropagate 4
The	adInheritObjects	and
adInheritContainers	flags	are	not
propagated	to	an	inherited	entry.

adInheritObjects 1 Non-container	objects	in	the	container
inherit	the	permissions.

KeyTypeEnum

				

Specifies	the	type	of	Key:	primary,	foreign,	or	unique.

Constant Value Description
adKeyPrimary 1 Default.	The	key	is	a	primary	key.
adKeyForeign 2 The	key	is	a	foreign	key.
adKeyUnique 3 The	key	is	unique.

ObjectTypeEnum

				

Specifies	the	type	of	database	object	for	which	to	set	permissions	or	ownership.

Constant Value Description
adPermObjColumn 2 The	object	is	a	column.
adPermObjDatabase 3 The	object	is	a	database.
adPermObjProcedure 4 The	object	is	a	procedure.

adPermObjProviderSpecific -1

The	object	is	a	type	defined	by	the
provider.	An	error	will	occur	if	the
ObjectType	parameter	is
adPermObjProviderSpecific	and	an
ObjectTypeId	is	not	supplied.

adPermObjTable 1 The	object	is	a	table.
adPermObjView 5 The	object	is	a	view.

RightsEnum

				

Specifies	the	rights	or	permissions	for	a	group	or	user	on	an	object.

Constant Value Description

adRightCreate 16384
(&H4000)

The	user	or	group	has	permission	to
create	new	objects	of	this	type.

adRightDelete 65536
(&H10000)

The	user	or	group	has	permission	to
delete	data	from	an	object.	For
objects	such	as	Tables,	the	user	has
permission	to	delete	data	values
from	records.

adRightDrop 256
(&H100)

The	user	or	group	has	permission	to
remove	objects	from	the	catalog.
For	example,	Tables	can	be	deleted
by	a	DROP	TABLE	SQL
command.

adRightExclusive 512
(&H200)

The	user	or	group	has	permission	to
access	the	object	exclusively.

adRightExecute 536870912
(&H20000000)

The	user	or	group	has	permission	to
execute	the	object.

adRightFull 268435456
(&H10000000)

The	user	or	group	has	all
permissions	on	the	object.

adRightInsert 32768
(&H8000)

The	user	or	group	has	permission	to
insert	the	object.	For	objects	such
as	Tables,	the	user	has	permission
to	insert	data	into	the	table.
The	user	or	group	has	the
maximum	number	of	permissions

adRightMaximumAllowed 33554432
(&H2000000)

allowed	by	the	provider.	Specific
permissions	are	provider-
dependent.

adRightNone 0 The	user	or	group	has	no
permissions	for	the	object.

adRightRead -2147483648
(&H80000000)

The	user	or	group	has	permission	to
read	the	object.	For	objects	such	as
Tables,	the	user	has	permission	to
read	the	data	in	the	table.

adRightReadDesign 1024
(&H400)

The	user	or	group	has	permission	to
read	the	design	for	the	object.

adRightReadPermissions 131072
(&H20000)

The	user	or	group	can	view,	but	not
change,	the	specific	permissions	for
an	object	in	the	catalog.

adRightReference 8192
(&H2000)

The	user	or	group	has	permission	to
reference	the	object.

adRightUpdate 1073741824
(&H40000000)

The	user	or	group	has	permission	to
update	the	object.	For	objects	such
as	Tables,	the	user	has	permission
to	update	the	data	in	the	table.

adRightWithGrant 4096
(&H1000)

The	user	or	group	has	permission	to
grant	permissions	on	the	object.

adRightWriteDesign 2048
(&H800)

The	user	or	group	has	permission	to
modify	the	design	for	the	object.

adRightWriteOwner 524288
(&H80000)

The	user	or	group	has	permission	to
modify	the	owner	of	the	object.

adRightWritePermissions 262144
(&H40000)

The	user	or	group	can	modify	the
specific	permissions	for	an	object
in	the	catalog.

RuleEnum

				

Specifies	the	rule	to	follow	when	a	Key	is	deleted.

Constant Value Description
adRICascade 1 Cascade	changes.
adRINone 0 Default.	No	action	is	taken.
adRISetDefault 3 Foreign	key	value	is	set	to	the	default.
adRISetNull 2 Foreign	key	value	is	set	to	null.

SortOrderEnum

				

Specifies	the	sort	sequence	for	an	indexed	column.

Constant Value Description

adSortAscending 1 Default.	The	sort	sequence	for	the	column
is	ascending.

adSortDescending 2 The	sort	sequence	for	the	column	is
descending.

ADOX	Code	Examples

Use	the	following	code	examples	to	learn	how	to	use	the	ADOX	objects,
methods,	properties,	and	events.

Note			Paste	the	entire	code	example	into	your	code	editor.	The	example	may	not
run	correctly	if	partial	examples	are	used	or	if	paragraph	formatting	is	lost.

ADOX	Code	Examples	in	Microsoft	Visual	Basic
ADOX	Code	Examples	in	Microsoft	Visual	C++

ADOX	Code	Examples	in	Microsoft	Visual	Basic

These	topics	provide	sample	code	to	help	you	understand	how	to	use	ADOX.	All
code	examples	are	written	using	Microsoft	Visual	Basic.

Note			Paste	the	entire	code	example,	from	Sub	to	End	Sub,	into	your	code
editor.	The	example	may	not	run	correctly	if	you	use	partial	examples	or	if
paragraph	formatting	is	lost.

Methods

Columns	and	Tables	Append	Methods,	Name	Property	Example	(VB)
Connection	Close	Method,	Table	Type	Property	Example	(VB)

Create	Method	Example	(VB)

GetObjectOwner	and	SetObjectOwner	Methods	Example	(VB)

Get	Permissions	and	Set	Permissions	Methods	Example	(VB)

Groups	and	Users	Append,	ChangePassword	Methods	Example	(VB)

Indexes	Append	Method	Example	(VB)

Keys	Append	Method,	Key	Type,	RelatedColumn,	RelatedTable,	and
UpdateRule	Properties	Example	(VB)

Procedures	Append	Method	Example	(VB)

Procedures	Delete	Method	Example	(VB)

Procedures	Refresh	Method	Example	(VB)

Views	Append	Method	Example	(VB)

Views	Delete	Method	Example	(VB)

Views	Refresh	Method	Example	(VB)

Properties

Attributes	Property	Example	(VB)

Catalog	ActiveConnection	Property	Example	(VB)

Clustered	Property	Example	(VB)

Command	and	CommandText	Properties	Example	(VB)

Command	Property,	Parameters	Collection	Example	(VB)

CommandText	Property,	Views	Collection	Example	(VB)

DateCreated	and	DateModified	Properties	Example	(VB)

DefinedSize	Property	Example	(VB)

DeleteRule	Property	Example	(VB)

IndexNulls	Property	Example	(VB)

Key	Type,	RelatedColumn,	RelatedTable,	and	UpdateRule	Properties,	Keys
Append	Method	Example	(VB)

Name	Property,	Columns	and	Tables	Append	Methods	Example	(VB)

NumericScale	and	Precision	Properties	Example	(VB)

ParentCatalog	Property	Example	(VB)

PrimaryKey	and	Unique	Properties	Example	(VB)

SortOrder	Property	Example	(VB)

Table	Type	Property,	Connection	Close	Method,	Example	(VB)

Collections

Parameters	Collection,	Command	Property	Example	(VB)

Views	Collection,	CommandText	Property	Example	(VB)

Views	and	Fields	Collections	Example	(VB)

Attributes	Property	Example	(VB)

This	example	demonstrates	the	Attributes	property	of	a	Column.	Setting	it	to
adColNullable	allows	the	user	to	set	the	value	of	a	Recordset	Field	to	an	empty
string.	In	this	situation,	the	user	can	distinguish	between	a	record	where	data	is
not	known	and	a	record	where	the	data	does	not	apply.

Sub	AttributesX()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	colTemp	As	New	ADOX.Column

				Dim	rstEmployees	As	New	Recordset

				Dim	strMessage	As	String

				Dim	strInput	As	String

								

				'	Connect	the	catalog.

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;data	source=c:\"	&	_

								"Program	Files\Microsoft	Office\Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				Set	tblEmp	=	cat.Tables("Employees")

				

				'	Create	a	new	Field	object	and	append	it	to	the	Fields

				'	collection	of	the	Employees	table.

				colTemp.Name	=	"FaxPhone"

				colTemp.Type	=	adVarWChar

				colTemp.DefinedSize	=	24

				colTemp.Attributes	=	adColNullable

				cat.Tables("Employees").Columns.Append	colTemp

				

				'	Open	the	Employees	table	for	updating	as	a	Recordset

				rstEmployees.Open	"Employees",	cnn,	adOpenKeyset,	adLockOptimistic

				

				With	rstEmployees

								'	Get	user	input.

								strMessage	=	"Enter	fax	number	for	"	&	_

												!FirstName	&	"	"	&	!LastName	&	"."	&	vbCr	&	_

												"[?	-	unknown,	X	-	has	no	fax]"

								strInput	=	UCase(InputBox(strMessage))

								If	strInput	<>	""	Then

												Select	Case	strInput

																Case	"?"

																				!FaxPhone	=	Null

																Case	"X"

																				!FaxPhone	=	""

																Case	Else

																				!FaxPhone	=	strInput

												End	Select

												.Update

												

												'	Print	report.

												Debug.Print	"Name	-	Fax	number"

												Debug.Print	!FirstName	&	"	"	&	!LastName	&	"	-	";

												If	IsNull(!FaxPhone)	Then

																Debug.Print	"[Unknown]"

												Else

																If	!FaxPhone	=	""	Then

																				Debug.Print	"[Has	no	fax]"

																Else

																				Debug.Print	!FaxPhone

																End	If

												End	If

								End	If

								.Close

				End	With

				'	Delete	new	field	because	this	is	a	demonstration.

				tblEmp.Columns.Delete	colTemp.Name

				cnn.Close

				

End	Sub

Catalog	ActiveConnection	Property	Example	(VB)

Setting	the	ActiveConnection	property	to	a	valid,	open	connection	"opens"	the
catalog.	From	an	open	catalog,	you	can	access	the	schema	objects	contained
within	that	catalog.

Sub	OpenConnection()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=	c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				Debug.Print	cat.Tables(0).Type

End	Sub

Setting	the	ActiveConnection	property	to	a	valid	connection	string	also	"opens"
the	catalog.

Sub	OpenConnectionWithString()

				Dim	cat	As	New	ADOX.Catalog

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				Debug.Print	cat.Tables(0).Type

End	Sub

Clustered	Property	Example	(VB)

This	example	demonstrates	the	Clustered	property	of	an	Index.	Note	that
Microsoft	Jet	databases	do	not	support	clustered	indexes,	so	this	example	will
return	False	for	the	Clustered	property	of	all	indexes	in	the	Northwind	database.

Sub	ClusteredX()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	tblLoop	As	ADOX.Table

				Dim	idxLoop	As	ADOX.Index

				Dim	strCnn	as	String

			StrCnn	=	"Provider=SQLOLEDB;Data	Source=srv;Initial	Catalog=pubs;"	&	_

												"User	Id=sa;Password=;"

				'	Connect	the	catalog.

			cnn.Open	strCnn

				cat.ActiveConnection	=	cnn

				

				'	Enumerate	Tables

				For	Each	tblLoop	In	cat.Tables

								'Enumerate	Indexes

								For	Each	idxLoop	In	tblLoop.Indexes

												Debug.Print	tblLoop.Name	&	"	"	&	_

																idxLoop.Name	&	"	"	&	idxLoop.Clustered

								Next	idxLoop

				Next	tblLoop

End	Sub

Columns	and	Tables	Append	Methods,	Name	Property	Example
(VB)

The	following	code	demonstrates	how	to	create	a	new	table.

Sub	CreateTable()

				Dim	tbl	As	New	Table

				Dim	cat	As	New	ADOX.Catalog

'Open	the	catalog.

				'	Open	the	Catalog.

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				tbl.Name	=	"MyTable"

				tbl.Columns.Append	"Column1",	adInteger

				tbl.Columns.Append	"Column2",	adInteger

				tbl.Columns.Append	"Column3",	adVarWChar,	50

				cat.Tables.Append	tbl

End	Sub

Command	and	CommandText	Properties	Example	(VB)

The	following	code	demonstrates	how	to	use	the	Command	property	to	update
the	text	of	a	procedure.

Sub	ProcedureText()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	cmd	As	New	ADODB.Command

				'	Open	the	Connection

				cnn.Open	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Open	the	catalog

				Set	cat.ActiveConnection	=	cnn

				'	Get	the	Command

				Set	cmd	=	cat.Procedures("CustomerById").Command

				'	Update	the	CommandText

				cmd.CommandText	=	"Select	CustomerId,	CompanyName,	ContactName	"	&	_

								"From	Customers	"	&	_

								"Where	CustomerId	=	[CustId]"

				'	Update	the	Procedure

				Set	cat.Procedures("CustomerById").Command	=	cmd

End	Sub

Connection	Close	Method,	Table	Type	Property	Example	(VB)

Setting	the	ActiveConnection	property	to	Nothing	should	"close"	the	catalog.
Associated	collections	will	be	empty.	Any	objects	that	were	created	from	schema
objects	in	the	catalog	will	be	orphaned.	Any	properties	on	those	objects	that	have
been	cached	will	still	be	available,	but	attempting	to	read	properties	that	require
a	call	to	the	provider	will	fail.

Sub	CloseConnectionByNothing()

				Dim	cnn	As	New	Connection

				Dim	cat	As	New	Catalog

				Dim	tbl	As	Table

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=	c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				Set	tbl	=	cat.Tables(0)

				Debug.Print	tbl.Type				'	Cache	tbl.Type	info

				Set	cat.ActiveConnection	=	Nothing

				Debug.Print	tbl.Type				'	tbl	is	orphaned

				'	Previous	line	will	succeed	if	this	was	cached

				Debug.Print	tbl.Columns(0).DefinedSize

				'	Previous	line	will	fail	if	this	info	has	not	been	cached

End	Sub

Closing	a	Connection	object	that	was	used	to	"open"	the	catalog	should	have	the
same	effect	as	setting	the	ActiveConnection	property	to	Nothing.

Sub	CloseConnection()

				Dim	cnn	As	New	Connection

				Dim	cat	As	New	Catalog

				Dim	tbl	As	Table

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=	c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				Set	tbl	=	cat.Tables(0)

				Debug.Print	tbl.Type				'	Cache	tbl.Type	info

				cnn.Close

				Debug.Print	tbl.Type				'	tbl	is	orphaned

				'	Previous	line	will	succeed	if	this	was	cached

				Debug.Print	tbl.Columns(0).DefinedSize

				'	Previous	line	will	fail	if	this	info	has	not	been	cached

End	Sub

Create	Method	Example	(VB)

The	following	code	shows	how	to	create	a	new	Microsoft	Jet	database	with	the
Create	method.

Sub	CreateDatabase()

				Dim	cat	As	New	ADOX.Catalog

				cat.Create	"Provider=Microsoft.Jet.OLEDB.4.0;Data	Source=c:\new.mdb"

End	Sub

DateCreated	and	DateModified	Properties	Example	(VB)

This	example	demonstrates	the	DateCreated	and	DateModified	properties	by
adding	a	new	Column	to	an	existing	Table	and	by	creating	a	new	Table.	The
DateOutput	procedure	is	required	for	this	example	to	run.

Sub	DateCreatedX()

				Dim	cat	As	New	ADOX.Catalog

				Dim	tblEmployees	As	ADOX.Table

				Dim	tblNewTable	As	ADOX.Table

				'	Connect	the	catalog.

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				

				With	cat

								Set	tblEmployees	=	.Tables("Employees")

								

								'	Print	current	information	about	the	Employees	table.

								DateOutput	"Current	properties",	tblEmployees

								

								'	Create	and	append	column	to	the	Employees	table.

								tblEmployees.Columns.Append	"NewColumn",	adInteger

								.Tables.Refresh

								

								'	Print	new	information	about	the	Employees	table.

								DateOutput	"After	creating	a	new	column",	tblEmployees

								

								'	Delete	new	column	because	this	is	a	demonstration.

								tblEmployees.Columns.Delete	"NewColumn"

					

								'	Create	and	append	new	Table	object	to	the	Northwind	database.

								Set	tblNewTable	=	New	ADOX.Table

								tblNewTable.Name	=	"NewTable"

								tblNewTable.Columns.Append	"NewColumn",	adInteger

								.Tables.Append	tblNewTable

								.Tables.Refresh

								

								'	Print	information	about	the	new	Table	object.

								DateOutput	"After	creating	a	new	table",	.Tables("NewTable")

								

								'	Delete	new	Table	object	because	this	is	a	demonstration.

								.Tables.Delete	tblNewTable.Name

				

				End	With

End	Sub

Sub	DateOutput(strTemp	As	String,	tblTemp	As	ADOX.Table)

				'	Print	DateCreated	and	DateModified	information	about

				'	specified	Table	object.

				Debug.Print	strTemp

				Debug.Print	"				Table:	"	&	tblTemp.Name

				Debug.Print	"								DateCreated	=	"	&	tblTemp.DateCreated

				Debug.Print	"								DateModified	=	"	&	tblTemp.DateModified

				Debug.Print

End	Sub

DefinedSize	Property	Example	(VB)

This	example	demonstrates	the	DefinedSize	property	of	a	Column.	The	code	will
redefine	the	size	of	the	FirstName	column	of	the	Employees	table	of	the
Northwind	database.	Then,	the	change	in	the	values	of	the	FirstName	Field	of	a
Recordset	based	on	the	Employees	table	is	displayed.	Note	that	by	default,	the
FirstName	field	becomes	padded	with	spaces	after	you	redefine	the	DefinedSize
property.

Public	Sub	DefinedSizeX()

				Dim	rstEmployees	As	ADODB.Recordset

				Dim	catNorthwind	As	New	ADOX.Catalog

				Dim	colFirstName	As	ADOX.Column

				Dim	colNewFirstName	As	New	ADOX.Column

				Dim	aryFirstName()	As	String

				Dim	i	As	Integer

				Dim	strCnn	As	String

				strCnn	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

													"Data	Source=c:\Program	Files\"	&	_

													"Microsoft	Office\Office\Samples\Northwind.mdb;"

				'	Open	a	Recordset	for	the	Employees	table.

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"Employees",	strCnn,	adOpenKeyset,	,	adCmdTable

				ReDim	aryFirstName(rstEmployees.RecordCount)

				

				'	Open	a	Catalog	for	the	Northwind	database,

				'	using	same	connection	as	rstEmployees

				Set	catNorthwind.ActiveConnection	=	rstEmployees.ActiveConnection

				

				'	Loop	through	the	recordset	displaying	the	contents

				'	of	the	FirstName	field,	the	field's	defined	size,

				'	and	its	actual	size.

				'	Also	store	FirstName	values	in	aryFirstName	array.

				rstEmployees.MoveFirst

				Debug.Print	"	"

				Debug.Print	"Original	Defined	Size	and	Actual	Size"

				i	=	0

				Do	Until	rstEmployees.EOF

								Debug.Print	"Employee	name:	"	&	rstEmployees!FirstName	&	_

												"	"	&	rstEmployees!LastName

								Debug.Print	"				FirstName	Defined	size:	"	_

												&	rstEmployees!FirstName.DefinedSize

								Debug.Print	"				FirstName	Actual	size:	"	&	_

												rstEmployees!FirstName.ActualSize

												aryFirstName(i)	=	rstEmployees!FirstName

								rstEmployees.MoveNext

								i	=	i	+	1

				Loop

				rstEmployees.Close

	

				'	Redefine	the	DefinedSize	of	FirstName	in	the	catalog

				Set	colFirstName	=	catNorthwind.Tables("Employees").Columns("FirstName")

				colNewFirstName.Name	=	colFirstName.Name

				colNewFirstName.Type	=	colFirstName.Type

				colNewFirstName.DefinedSize	=	colFirstName.DefinedSize	+	1

				

				'	Append	new	FirstName	column	to	catalog

				catNorthwind.Tables("Employees").Columns.Delete	colFirstName.Name

				catNorthwind.Tables("Employees").Columns.Append	colNewFirstName

				'	Open	Employee	table	in	Recordset	for	updating

				rstEmployees.Open	"Employees",	catNorthwind.ActiveConnection,	_

								adOpenKeyset,	adLockOptimistic,	adCmdTable

				

				'	Loop	through	the	recordset	displaying	the	contents

				'	of	the	FirstName	field,	the	field's	defined	size,

				'	and	its	actual	size.

				'	Also	restore	FirstName	values	from	aryFirstName.

				rstEmployees.MoveFirst

				Debug.Print	"	"

				Debug.Print	"New	Defined	Size	and	Actual	Size"

				i	=	0

				Do	Until	rstEmployees.EOF

								rstEmployees!FirstName	=	aryFirstName(i)

								Debug.Print	"Employee	name:	"	&	rstEmployees!FirstName	&	_

												"	"	&	rstEmployees!LastName

								Debug.Print	"				FirstName	Defined	size:	"	_

												&	rstEmployees!FirstName.DefinedSize

								Debug.Print	"				FirstName	Actual	size:	"	&	_

												rstEmployees!FirstName.ActualSize

								rstEmployees.MoveNext

								i	=	i	+	1

				Loop

				rstEmployees.Close

				

				'	Restore	original	FirstName	column	to	catalog

				catNorthwind.Tables("Employees").Columns.Delete	colNewFirstName.Name

				catNorthwind.Tables("Employees").Columns.Append	colFirstName

				

				'	Restore	original	FirstName	values	to	Employees	table

				rstEmployees.Open	"Employees",	catNorthwind.ActiveConnection,	_

								adOpenKeyset,	adLockOptimistic,	adCmdTable

				

				rstEmployees.MoveFirst

				i	=	0

				Do	Until	rstEmployees.EOF

								rstEmployees!FirstName	=	aryFirstName(i)

								rstEmployees.MoveNext

								i	=	i	+	1

				Loop

				rstEmployees.Close

								

				Set	catNorthwind	=	Nothing

End	Sub

DeleteRule	Property	Example	(VB)

This	example	demonstrates	the	DeleteRule	property	of	a	Key	object.	The	code
appends	a	new	Table	and	then	defines	a	new	primary	key,	setting	DeleteRule	to
adRICascade.

DeleteRule	Prop

Sub	DeleteRuleX()

				

				Dim	kyPrimary	As	New	ADOX.Key

				Dim	cat	As	New	ADOX.Catalog

				Dim	tblNew	As	New	ADOX.Table

				'	Connect	the	catalog

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

																					"data	source=c:\Program	Files\"	&	_

																					"Microsoft	Office\Office\Samples\Northwind.mdb;"

				'	Name	new	table

				tblNew.Name	=	"NewTable"

				

				'	Append	a	numeric	and	a	text	field	to	new	table.

				tblNew.Columns.Append	"NumField",	adInteger,	20

				tblNew.Columns.Append	"TextField",	adVarWChar,	20

				'	Append	the	new	table

				cat.Tables.Append	tblNew

				'	Define	the	Primary	key

				kyPrimary.Name	=	"NumField"

				kyPrimary.Type	=	adKeyPrimary

				kyPrimary.RelatedTable	=	"Customers"

				kyPrimary.Columns.Append	"NumField"

				kyPrimary.Columns("NumField").RelatedColumn	=	"CustomerId"

				kyPrimary.DeleteRule	=	adRICascade

				

				'	Append	the	primary	key

				cat.Tables("NewTable").Keys.Append	kyPrimary

				

				'Delete	the	table	as	this	is	a	demonstration

				cat.Tables.Delete	tblNew.Name

End	Sub

GetObjectOwner	and	SetObjectOwner	Methods	Example	(VB)

This	example	demonstrates	the	GetObjectOwner	and	SetObjectOwner	methods.
This	code	assumes	the	existence	of	the	group	Accounting	(see	the	Groups	and
Users	Append,	ChangePassword	Methods	Example	to	see	how	to	add	this	group
to	the	system).	The	owner	of	the	Categories	table	is	set	to	Accounting.

Sub	OwnersX()

				Dim	tblLoop	As	New	ADOX.Table

				Dim	cat	As	New	ADOX.Catalog

				Dim	strOwner	As	String

				'	Open	the	Catalog.

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"	&	_

								"jet	oledb:system	database="	&	_

								"c:\Program	Files\Microsoft	Office\Office\system.mdw"

				'	Print	the	original	owner	of	Categories

				strOwner	=	cat.GetObjectOwner("Categories",	adPermObjTable)

				Debug.Print	"Owner	of	Categories:	"	&	strOwner

				'	Set	the	owner	of	Categories	to	Accounting

				cat.SetObjectOwner	"Categories",	adPermObjTable,	"Accounting"

				'	List	the	owners	of	all	tables	and	columns	in	the	catalog.

				For	Each	tblLoop	In	cat.Tables

								Debug.Print	"Table:	"	&	tblLoop.Name

								Debug.Print	"			Owner:	"	&	_

												cat.GetObjectOwner(tblLoop.Name,	adPermObjTable)

				Next	tblLoop

				

				'	Restore	the	original	owner	of	Categories

				cat.SetObjectOwner	"Categories",	adPermObjTable,	strOwner

End	Sub

GetPermissions	and	SetPermissions	Methods	Example	(VB)

This	example	demonstrates	the	GetPermissions	and	SetPermissions	methods.
The	following	code	gives	full	access	for	the	Orders	table	to	the	Admin	user.

Sub	GrantPermissions()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	lngPerm	As	Long

				'	Opens	a	connection	to	the	northwind	database

				'	using	the	Microsoft	Jet	4.0	provider

				cnn.Provider	=	"Microsoft.Jet.OLEDB.4.0"

				cnn.Open	"data	source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"	&	_

								"jet	oledb:system	database="	&	_

								"c:\Program	Files\Microsoft	Office\Office\system.mdw"

				Set	cat.ActiveConnection	=	cnn

				'	Retrieve	original	permissions

				lngPerm	=	cat.Users("admin").GetPermissions("Orders",	adPermObjTable)

				Debug.Print	"Original	permissions:	"	&	Str(lngPerm)

				

				'	Revoke	all	permissions

				cat.Users("admin").SetPermissions	"Orders",	adPermObjTable,	_

								adAccessRevoke,	adRightFull

				

				'	Display	permissions

				Debug.Print	"Revoked	permissions:	"	&	_

								Str(cat.Users("admin").GetPermissions("Orders",	adPermObjTable))

				

				'	Give	the	Admin	user	full	rights	on	the	orders	object

				cat.Users("admin").SetPermissions	"Orders",	adPermObjTable,	_

								adAccessSet,	adRightFull

				'	Display	permissions

				Debug.Print	"Full	permissions:	"	&	_

								Str(cat.Users("admin").GetPermissions("Orders",	adPermObjTable))

				'	Restore	original	permissions

				cat.Users("admin").SetPermissions	"Orders",	adPermObjTable,	_

								adAccessSet,	lngPerm

				'	Display	permissions

				Debug.Print	"Final	permissions:	"	&	_

								Str(cat.Users("admin").GetPermissions("Orders",	adPermObjTable))

				

Groups	and	Users	Append,	ChangePassword	Methods	Example
(VB)

This	example	demonstrates	the	Append	method	of	Groups,	as	well	as	the
Append	method	of	Users	by	adding	a	new	Group	and	a	new	User	to	the	system.
The	new	Group	is	appended	to	the	Groups	collection	of	the	new	User.
Consequently,	the	new	User	is	added	to	the	Group.	Also,	the	ChangePassword
method	is	used	to	specify	the	User	password.

Sub	GroupX()

				Dim	cat	As	ADOX.Catalog

				Dim	usrNew	As	ADOX.User

				Dim	usrLoop	As	ADOX.User

				Dim	grpLoop	As	ADOX.Group

				

				Set	cat	=	New	ADOX.Catalog

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"	&	_

								"jet	oledb:system	database=c:\samples\system.mdb"

				With	cat

								'Create	and	append	new	group	with	a	string.

								.Groups.Append	"Accounting"

							

								'	Create	and	append	new	user	with	an	object.

								Set	usrNew	=	New	ADOX.User

								usrNew.Name	=	"Pat	Smith"

								usrNew.ChangePassword	"",	"Password1"

								.Users.Append	usrNew

								'	Make	the	user	Pat	Smith	a	member	of	the

								'	Accounting	group	by	creating	and	adding	the

								'	appropriate	Group	object	to	the	user's	Groups

								'	collection.	The	same	is	accomplished	if	a	User

								'	object	representing	Pat	Smith	is	created	and

								'	appended	to	the	Accounting	group	Users	collection

								usrNew.Groups.Append	"Accounting"

						

								'	Enumerate	all	User	objects	in	the

								'	catalog's	Users	collection.

								For	Each	usrLoop	In	.Users

												Debug.Print	"		"	&	usrLoop.Name

												Debug.Print	"				Belongs	to	these	groups:"

												'	Enumerate	all	Group	objects	in	each	User

												'	object's	Groups	collection.

												If	usrLoop.Groups.Count	<>	0	Then

																For	Each	grpLoop	In	usrLoop.Groups

																				Debug.Print	"				"	&	grpLoop.Name

																Next	grpLoop

												Else

																Debug.Print	"				[None]"

												End	If

								Next	usrLoop

								'	Enumerate	all	Group	objects	in	the	default

								'	workspace's	Groups	collection.

								For	Each	grpLoop	In	.Groups

												Debug.Print	"		"	&	grpLoop.Name

												Debug.Print	"				Has	as	its	members:"

												'	Enumerate	all	User	objects	in	each	Group

												'	object's	Users	collection.

												If	grpLoop.Users.Count	<>	0	Then

																For	Each	usrLoop	In	grpLoop.Users

																				Debug.Print	"				"	&	usrLoop.Name

																Next	usrLoop

												Else

																Debug.Print	"				[None]"

												End	If

								Next	grpLoop

								

								'	Delete	new	User	and	Group	objects	because	this

								'	is	only	a	demonstration.

								.Users.Delete	"Pat	Smith"

								.Groups.Delete	"Accounting"

				End	With

End	Sub

Indexes	Append	Method	Example	(VB)

The	following	code	demonstrates	how	to	create	a	new	index.	The	index	is	on
two	columns	in	the	table.

Sub	CreateIndex()

				Dim	tbl	As	New	Table

				Dim	idx	As	New	ADOX.Index

				Dim	cat	As	New	ADOX.Catalog

'Open	the	catalog.

				'	Open	the	Catalog.

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Define	the	table	and	append	it	to	the	catalog

				tbl.Name	=	"MyTable"

				tbl.Columns.Append	"Column1",	adInteger

				tbl.Columns.Append	"Column2",	adInteger

				tbl.Columns.Append	"Column3",	adVarWChar,	50

				cat.Tables.Append	tbl

				'	Define	a	multi-column	index

				idx.Name	=	"multicolidx"

				idx.Columns.Append	"Column1"

				idx.Columns.Append	"Column2"

				'	Append	the	index	to	the	table

				tbl.Indexes.Append	idx

End	Sub

IndexNulls	Property	Example	(VB)

This	example	demonstrates	the	IndexNulls	property	of	an	Index.	The	code
creates	a	new	index	and	sets	the	value	of	IndexNulls	based	on	user	input	(from	a
list	box	named	List1).	Then,	the	Index	is	appended	to	the	Employees	Table	in
the	Northwind	Catalog.	The	new	Index	is	applied	to	a	Recordset	based	on	the
Employees	table,	and	the	Recordset	is	opened.	A	new	record	is	added	to	the
Employees	table,	with	a	Null	value	in	the	indexed	field.	Whether	this	new
record	is	displayed	depends	on	the	setting	of	the	IndexNulls	property.

Sub	IndexNullsX()

				Dim	cnn	As	New	ADODB.Connection

				Dim	catNorthwind	As	New	ADOX.Catalog

				Dim	idxNew	As	New	ADOX.Index

				Dim	rstEmployees	As	New	ADODB.Recordset

				Dim	varBookmark	As	Variant

											

				'	Connect	the	catalog.

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"data	source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				Set	catNorthwind.ActiveConnection	=	cnn

				

				'	Append	Country	column	to	new	index

				idxNew.Columns.Append	"Country"

				idxNew.Name	=	"NewIndex"

								

				'	Set	IndexNulls	based	on	user	selection	in	listbox	List1

				Select	Case	List1.List(List1.ListIndex)

								Case	"Allow"

												idxNew.IndexNulls	=	adIndexNullsAllow

								Case	"Ignore"

												idxNew.IndexNulls	=	adIndexNullsIgnore

								Case	Else

												End

				End	Select

				

				'Append	new	index	to	Employees	table

				catNorthwind.Tables("Employees").Indexes.Append	idxNew

				

				rstEmployees.Index	=	idxNew.Name

				rstEmployees.Open	"Employees",	cnn,	adOpenKeyset,	_

								adLockOptimistic,	adCmdTableDirect

								

				With	rstEmployees

								'	Add	a	new	record	to	the	Employees	table.

								.AddNew

								!FirstName	=	"Gary"

								!LastName	=	"Haarsager"

								.Update

								

								'	Bookmark	the	newly	added	record

								varBookmark	=	.Bookmark

								'	Use	the	new	index	to	set	the	order	of	the	records.

								.MoveFirst

								Debug.Print	"Index	=	"	&	.Index	&	_

												",	IndexNulls	=	"	&	idxNew.IndexNulls

								Debug.Print	"		Country	-	Name"

								'	Enumerate	the	Recordset.	The	value	of	the

								'	IndexNulls	property	will	determine	if	the	newly

								'	added	record	appears	in	the	output.

								Do	While	Not	.EOF

												Debug.Print	"				"	&	_

																IIf(IsNull(!Country),	"[Null]",	!Country)	&	_

																"	-	"	&	!FirstName	&	"	"	&	!LastName

												.MoveNext

								Loop

								'	Delete	new	record	because	this	is	a	demonstration.

								.Bookmark	=	varBookmark

								.Delete

								

								.Close

				End	With

				'	Delete	new	Index	because	this	is	a	demonstration.

				catNorthwind.Tables("Employees").Indexes.Delete	idxNew.Name

				Set	catNorthwind	=	Nothing

End	Sub

Keys	Append	Method,	Key	Type,	RelatedColumn,	RelatedTable
and	UpdateRule	Properties	Example	(VB)

The	following	code	demonstrates	how	to	create	a	new	foreign	key.	It	assumes
two	tables	(Customers	and	Orders)	exist.

Sub	CreateKey()

				Dim	kyForeign	As	New	ADOX.Key

				Dim	cat	As	New	ADOX.Catalog

				'	Connect	the	catalog

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Define	the	foreign	key

				kyForeign.Name	=	"CustOrder"

				kyForeign.Type	=	adKeyForeign

				kyForeign.RelatedTable	=	"Customers"

				kyForeign.Columns.Append	"CustomerId"

				kyForeign.Columns("CustomerId").RelatedColumn	=	"CustomerId"

				kyForeign.UpdateRule	=	adRICascade

				

				'	Append	the	foreign	key

				cat.Tables("Orders").Keys.Append	kyForeign

				

				'Delete	the	Key	as	this	is	a	demonstration

				cat.Tables("Orders").Keys.Delete	kyForeign.Name

End	Sub

NumericScale	and	Precision	Properties	Example	(VB)

This	example	demonstrates	the	NumericScale	and	Precision	properties	of	the
Column	object.	This	code	displays	their	value	for	the	Order	Details	table	of	the
Northwind	database.

Sub	NumericScalePrecX()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	tblOD	As	ADOX.Table

				Dim	colLoop	As	ADOX.Column

								

				'	Connect	the	catalog.

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"data	source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				

				'	Retrieve	the	Order	Details	table

				Set	tblOD	=	cat.Tables("Order	Details")

				

				'	Display	numeric	scale	and	precision	of

				'	small	integer	fields.

				For	Each	colLoop	In	tblOD.Columns

								If	colLoop.Type	=	adSmallInt	Then

												MsgBox	"Column:	"	&	colLoop.Name	&	vbCr	&	_

																"Numeric	scale:	"	&	_

																				colLoop.NumericScale	&	vbCr	&	_

																"Precision:	"	&	colLoop.Precision

								End	If

				Next	colLoop

End	Sub

Parameters	Collection,	Command	Property	Example	(VB)

The	following	code	demonstrates	how	to	use	the	Command	property	with	the
Command	object	to	retrieve	parameter	information	for	the	procedure.

Sub	ProcedureParameters()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cmd	As	ADODB.Command

				Dim	prm	As	ADODB.Parameter

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Connection

				cnn.Open	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Open	the	catalog

				Set	cat.ActiveConnection	=	cnn

				'	Get	the	command	object

				Set	cmd	=	cat.Procedures("CustomerById").Command

				'	Retrieve	Parameter	information

				cmd.Parameters.Refresh

				For	Each	prm	In	cmd.Parameters

								Debug.Print	prm.Name	&	":"	&	prm.Type

				Next

End	Sub

ParentCatalog	Property	Example	(VB)

The	following	code	demonstrates	how	to	use	the	ParentCatalog	property	to
access	a	provider-specific	property	prior	to	appending	a	table	to	a	catalog.	The
property	is	AutoIncrement,	which	creates	an	AutoIncrement	field	in	a	Microsoft
Jet	database.

Sub	CreateAutoIncrColumn()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	tbl	As	New	ADOX.Table

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=	c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				Set	cat.ActiveConnection	=	cnn

				With	tbl

								.Name	=	"MyContacts"

								Set	.ParentCatalog	=	cat

								'	Create	fields	and	append	them	to	the	new	Table	object.

								.Columns.Append	"ContactId",	adInteger

								'	Make	the	ContactId	column	and	auto	incrementing	column

								.Columns("ContactId").Properties("AutoIncrement")	=	True

								.Columns.Append	"CustomerID",	adVarWChar

								.Columns.Append	"FirstName",	adVarWChar

								.Columns.Append	"LastName",	adVarWChar

								.Columns.Append	"Phone",	adVarWChar,	20

								.Columns.Append	"Notes",	adLongVarWChar

				End	With

				cat.Tables.Append	tbl

				Set	cat	=	Nothing

End	Sub

PrimaryKey	and	Unique	Properties	Example	(VB)

This	example	demonstrates	the	PrimaryKey	and	Unique	properties	of	an	Index.
The	code	creates	a	new	table	with	two	columns.	The	PrimaryKey	and	Unique
properties	are	used	to	make	one	column	the	primary	key	for	which	duplicate
values	are	not	allowed.

Sub	PrimaryKeyX()

				Dim	catNorthwind	As	New	ADOX.Catalog

				Dim	tblNew	As	New	ADOX.Table

				Dim	idxNew	As	New	ADOX.Index

				Dim	idxLoop	As	New	ADOX.Index

				Dim	colLoop	As	New	ADOX.Column

				

				'	Connect	the	catalog

				catNorthwind.ActiveConnection="Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"data	source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				

				'	Name	new	table

				tblNew.Name	=	"NewTable"

				

				'	Append	a	numeric	and	a	text	field	to	new	table.

				tblNew.Columns.Append	"NumField",	adInteger,	20

				tblNew.Columns.Append	"TextField",	adVarWChar,	20

				

				'	Append	new	Primary	Key	index	on	NumField	column

				'	to	new	table

				idxNew.Name	=	"NumIndex"

				idxNew.Columns.Append	"NumField"

				idxNew.PrimaryKey	=	True

				idxNew.Unique	=	True

				tblNew.Indexes.Append	idxNew

				

				'	Append	an	index	on	Textfield	to	new	table.

				'	Note	the	different	technique:	Specifying	index	and

				'	column	name	as	parameters	of	the	Append	method

				tblNew.Indexes.Append	"TextIndex",	"TextField"

				

				'	Append	the	new	table

				catNorthwind.Tables.Append	tblNew

				

				With	tblNew

				

								Debug.Print	tblNew.Indexes.Count	&	"	Indexes	in	"	&	_

												tblNew.Name	&	"	Table"

								'	Enumerate	Indexes	collection.

								For	Each	idxLoop	In	.Indexes

												With	idxLoop

																Debug.Print	"Index	"	&	.Name

																Debug.Print	"			Primary	key	=	"	&	.PrimaryKey

																Debug.Print	"			Unique	=	"	&	.Unique

																'	Enumerate	Columns	collection	of	each	Index

																'	object.

																Debug.Print	"				Columns"

																For	Each	colLoop	In	.Columns

																				Debug.Print	"							"	&	colLoop.Name

																Next	colLoop

												End	With

								Next	idxLoop

				End	With

				'	Delete	new	table	as	this	is	a	demonstration

				catNorthwind.Tables.Delete	tblNew.Name

				Set	catNorthwind	=	Nothing

End	Sub

Procedures	Append	Method	Example	(VB)

The	following	code	demonstrates	how	to	use	a	Command	object	and	the
Procedures	collection	Append	method	to	create	a	new	procedure	in	the
underlying	data	source.

Sub	CreateProcedure()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cmd	As	New	ADODB.Command

				Dim	prm	As	ADODB.Parameter

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Connection

				cnn.Open	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Create	the	parameterized	command	(Microsoft	Jet	specific)

				Set	cmd.ActiveConnection	=	cnn

				cmd.CommandText	=	"PARAMETERS	[CustId]	Text;"	&	_

								"Select	*	From	Customers	Where	CustomerId	=	[CustId]"

				'	Open	the	Catalog

				Set	cat.ActiveConnection	=	cnn

				'	Create	the	new	Procedure

				cat.Procedures.Append	"CustomerById",	cmd

End	Sub

Procedures	Delete	Method	Example	(VB)

The	following	code	demonstrates	how	to	delete	a	procedure	using	the
Procedures	collection	Delete	method.

Sub	DeleteProcedure()

Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Catalog.

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Delete	the	Procedure.

				cat.Procedures.Delete	"CustomerById"

End	Sub

Procedures	Refresh	Method	Example	(VB)

The	following	code	shows	how	to	refresh	the	Procedures	collection	of	a	Catalog.
This	is	required	before	Procedure	objects	from	the	Catalog	can	be	accessed.

Sub	ProcedureRefresh()

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Catalog

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				'	Refresh	the	Procedures	collection

				cat.Procedures.Refresh

End	Sub

SortOrder	Property	Example	(VB)

This	example	demonstrates	the	SortOrder	property	of	a	Column	that	has	been
appended	to	the	Columns	collection	of	an	Index.	The	code	appends	an	ascending
index	to	the	Country	column	in	the	Employees	table,	then	displays	the	records.
Then	the	code	appends	a	descending	index	to	the	Country	column	in	the
Employees	table	and	displays	the	records	again.	The	difference	between
ascending	and	descending	indexes	is	shown.

Sub	SortOrderX()

				Dim	cnn	As	New	ADODB.Connection

				Dim	catNorthwind	As	New	ADOX.Catalog

				Dim	idxAscending	As	New	ADOX.Index

				Dim	idxDescending	As	New	ADOX.Index

				Dim	rstEmployees	As	New	ADODB.Recordset

								

				'	Connect	the	catalog.

				cnn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"data	source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				Set	catNorthwind.ActiveConnection	=	cnn

				'	Append	Country	column	to	new	index

				idxAscending.Columns.Append	"Country"

				idxAscending.Columns("Country").SortOrder	=	adSortAscending

				idxAscending.Name	=	"Ascending"

				

				'Append	new	index	to	Employees	table

				catNorthwind.Tables("Employees").Indexes.Append	idxAscending

				

				rstEmployees.Index	=	idxAscending.Name

				rstEmployees.Open	"Employees",	cnn,	adOpenKeyset,	_

								adLockOptimistic,	adCmdTableDirect

								

				With	rstEmployees

								.MoveFirst

								Debug.Print	"Index	=	"	&	.Index

								Debug.Print	"		Country	-	Name"

								'	Enumerate	the	Recordset.	The	value	of	the

								'	IndexNulls	property	will	determine	if	the	newly

								'	added	record	appears	in	the	output.

								Do	While	Not	.EOF

												Debug.Print	"				"	&	!Country	&	"	-	"	&	_

																!FirstName	&	"	"	&	!LastName

												.MoveNext

								Loop

								.Close

				End	With

				'	Append	Country	column	to	new	index

				idxDescending.Columns.Append	"Country"

				idxDescending.Columns("Country").SortOrder	=	adSortDescending

				idxDescending.Name	=	"Descending"

				

				'Append	descending	index	to	Employees	table

				catNorthwind.Tables("Employees").Indexes.Append	idxDescending

				

				rstEmployees.Index	=	idxDescending.Name

				rstEmployees.Open	"Employees",	cnn,	adOpenKeyset,	_

								adLockOptimistic,	adCmdTableDirect

								

'				DisplaySortedRecords	(rstEmployees)

								

					With	rstEmployees

								.MoveFirst

								Debug.Print	"Index	=	"	&	.Index

								Debug.Print	"		Country	-	Name"

								'	Enumerate	the	Recordset.	The	value	of	the

								'	IndexNulls	property	will	determine	if	the	newly

								'	added	record	appears	in	the	output.

								Do	While	Not	.EOF

												Debug.Print	"				"	&	!Country	&	"	-	"	&	_

																!FirstName	&	"	"	&	!LastName

												.MoveNext

								Loop

								.Close

				End	With

							

								

				'	Delete	new	Indexes	because	this	is	a	demonstration.

				catNorthwind.Tables("Employees").Indexes.Delete	idxAscending.Name

				catNorthwind.Tables("Employees").Indexes.Delete	idxDescending.Name

				Set	catNorthwind	=	Nothing

End	Sub

Views	and	Fields	Collections	Example	(VB)

The	following	code	demonstrates	how	to	use	the	Command	property	and	the
Recordset	object	to	retrieve	field	information	for	the	view.

Sub	ViewFields()

				Dim	cnn	As	New	ADODB.Connection

				Dim	rst	As	New	ADODB.Recordset

				Dim	fld	As	ADODB.Field

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Connection

				cnn.Open	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Open	the	catalog

				Set	cat.ActiveConnection	=	cnn

				'	Set	the	Source	for	the	Recordset

				Set	rst.Source	=	cat.Views("AllCustomers").Command

				'	Retrieve	Field	information

				rst.Fields.Refresh

				For	Each	fld	In	rst.Fields

								Debug.Print	fld.Name	&	":"	&	fld.Type

				Next

End	Sub

Views	Append	Method	Example	(VB)

The	following	code	demonstrates	how	to	use	a	Command	object	and	the	Views
collection	Append	method	to	create	a	new	view	in	the	underlying	data	source.

Sub	CreateView()

				Dim	cmd	As	New	ADODB.Command

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Catalog

				cat.ActiveConnection	=	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Create	the	command	representing	the	view.

								cmd.CommandText	=	"Select	*	From	Customers"

				'	Create	the	new	View

				cat.Views.Append	"AllCustomers",	cmd

End	Sub

Views	Collection,	CommandText	Property	Example	(VB)

The	following	code	demonstrates	how	to	use	the	Command	property	to	update
the	text	of	a	view.

Sub	ViewText()

				Dim	cnn	As	New	ADODB.Connection

				Dim	cat	As	New	ADOX.Catalog

				Dim	cmd	As	New	ADODB.Command

				'	Open	the	Connection

				cnn.Open	_

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	Open	the	catalog

				Set	cat.ActiveConnection	=	cnn

				'	Get	the	command

				Set	cmd	=	cat.Views("AllCustomers").Command

				'	Update	the	CommandText	of	the	Command

				cmd.CommandText	=	_

								"Select	CustomerId,	CompanyName,	ContactName	From	Customers"

				'	Update	the	View

				Set	cat.Views("AllCustomers").Command.	=	cmd

End	Sub

Views	Delete	Method	Example	(VB)

The	following	code	shows	how	to	use	the	Delete	method	to	delete	a	view	from
the	catalog.

Sub	DeleteView()

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	catalog

				cat.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'Delete	the	View

				cat.Views.Delete	"AllCustomers"

End	Sub

Views	Refresh	Method	Example	(VB)

The	following	code	shows	how	to	refresh	the	Views	collection	of	a	Catalog.	This
is	required	before	View	objects	from	the	Catalog	can	be	accessed.

Sub	ProcedureRefresh()

				Dim	cat	As	New	ADOX.Catalog

				'	Open	the	Catalog

				cat.ActiveConnection	=	_	

								"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=c:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb;"

				'	Refresh	the	Procedures	collection

				cat.Views.Refresh

End	Sub

ADOX	Code	Examples	in	Microsoft	Visual	C++

These	topics	provide	sample	code	to	help	you	understand	how	to	use	ADOX.	All
code	examples	are	written	using	Microsoft	Visual	C++.

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	you	use	partial	examples	or	if
paragraph	formatting	is	lost.

Methods

Columns	and	Tables	Append	Methods,	Name	Property	Example	(VC++)
Connection	Close	Method,	Table	Type	Property	Example	(VC++)

Create	Method	Example	(VC++)

GetObjectOwner	and	SetObjectOwner	Methods	Example	(VC++)

GetPermissions	and	SetPermissions	Methods	Example	(VC++)

Groups	and	Users	Append,	ChangePassword	Methods	Example	(VC++)

Indexes	Append	Method	Example	(VC++)

Keys	Append	Method,	Key	Type,	RelatedColumn,	RelatedTable,	and
UpdateRule	Properties	Example	(VC++)

Properties

Attributes	Property	Example	(VC++)

Catalog	ActiveConnection	Property	Example	(VC++)

Clustered	Property	Example	(VC++)

Command	and	CommandText	Properties	Example	(VC++)

Command	Property,	Parameters	Collection	Example	(VC++)

DateCreated	and	DateModified	Properties	Example	(VC++)

DefinedSize	Property	Example	(VC++)

DeleteRule	Property	Example	(VC++)

IndexNulls	Property	Example	(VC++)

Key	Type,	RelatedColumn,	RelatedTable,	UpdateRule	Properties,	Keys
Append	Method	Example	(VC++)

Name	Property,	Columns	and	Tables	Append	Methods	Example	(VC++)

NumericScale	and	Precision	Properties	Example	(VC++)

ParentCatalog	Property	Example	(VC++)

PrimaryKey	and	Unique	Properties	Example	(VC++)

Table	Type	Property,	Connection	Close	Method	Example	(VC++)

Collections

Parameters	Collection,	Command	Property	Example	(VC++)

Attributes	Property	Example	(VC++)

This	example	demonstrates	the	Attributes	property	of	a	Column.	Setting	it	to
adColNullable	allows	the	user	to	set	the	value	of	a	Recordset	Field	to	an	empty
string.	In	this	situation,	the	user	can	distinguish	between	a	record	where	data	is
not	known	and	a	record	where	the	data	does	not	apply.

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

#include	"AttributesX.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	AttributesX(void);

//

//																																																						//

//									Main	Function																																//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				AttributesX();

				::CoUninitialize();

}

//

//																																																						//

//								AttributesX	Function																										//

//																																																						//

//

void	AttributesX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog		=	NULL;

				_ColumnPtr	m_pColumn		=	NULL;

				_TablePtr	m_pTable		=	NULL;

				//	Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn									=	NULL;

				ADODB::_RecordsetPtr	m_pRstEmployees		=	NULL;

				IADORecordBinding	*picRs		=	NULL;			//	Interface	Pointer	Declared

				CEmployeeRs	emprs;												//	C++	Class	Object

				//	Define	string	variables.

				_bstr_t	strcnn("Provider=Microsoft.Jet.OLEDB.4.0;"

								"Data	Source=	c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

				try

				{

								//	Connect	the	catalog.

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof	(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								TESTHR(hr	=	m_pColumn.CreateInstance(__uuidof(Column)));

								TESTHR(hr	=	m_pRstEmployees.CreateInstance(

												__uuidof(ADODB::Recordset)));

								m_pCnn->Open(strcnn,"","",NULL);

								m_pCatalog->PutActiveConnection(

												_variant_t((IDispatch	*)	m_pCnn));

								m_pTable=	m_pCatalog->Tables->GetItem("Employees");

								//	Create	a	new	Field	object	and	append	it	to	the	Fields

								//	collection	of	the	Employees	table.

								m_pColumn->Name	=	"FaxPhone";

								m_pColumn->Type	=	adVarWChar;

								m_pColumn->DefinedSize	=	24;

								m_pColumn->Attributes	=	adColNullable;

								m_pCatalog->Tables->GetItem("Employees")->Columns->

												Append("FaxPhone",adVarWChar,24);

								//	Open	the	Employees	table	for	updating	as	a	Recordset.

								m_pRstEmployees->Open("Employees",

												_variant_t((IDispatch	*)	m_pCnn),

												ADODB::adOpenKeyset,ADODB::adLockOptimistic,

												ADODB::adCmdTable);

								//	Get	user	input.

								printf("Enter	fax	number	for	:	%s	%s\n",(LPSTR)	(_bstr_t)	

												m_pRstEmployees->Fields->GetItem("LastName")->Value,

											(LPSTR)	(_bstr_t)	m_pRstEmployees->Fields->

												GetItem("FirstName")->Value);

								printf("[?	-	unknown,	X	-	has	no	fax]	:	\n");

								char	strInput[10];

								gets(strInput);

								char*	strTemp	=	strtok(strInput,"	\t");

								_variant_t	vNull;

								vNull.vt	=	VT_BSTR;

								vNull.bstrVal	=	NULL;

								if(strTemp!=NULL)

								{

												if(strcmp(strTemp,"?")	==	0)

												{

																m_pRstEmployees->Fields->GetItem("FaxPhone")->

																				PutValue(vNull);

												}

												else	if((strcmp(strTemp,"X")	==	0)	|	

																					(strcmp(strTemp,"x")	==	0))

											{

																m_pRstEmployees->Fields->GetItem("FaxPhone")->

																				PutValue("");

												}

												else

												{

																m_pRstEmployees->Fields->GetItem("FaxPhone")->

																				PutValue(strTemp);

												}

												m_pRstEmployees->Update();

												//	Open	an	IADORecordBinding	interface	pointer	which	

												//	we	will	use	for	binding	Recordset	to	a	class

												TESTHR(hr	=	m_pRstEmployees->QueryInterface(

																__uuidof(IADORecordBinding),(LPVOID*)&picRs));

												//	Bind	the	Recordset	to	a	C++	class	here

												TESTHR(hr	=	picRs->BindToRecordset(&emprs));

												//	Print	report.

												printf("\nName	-	Fax	number\n");

												printf("%s	%s	",emprs.lemp_LastNameStatus	==	adFldOK	?	

																emprs.m_szemp_LastName	:	"<NULL>",

																emprs.lemp_FirstNameStatus	==	adFldOK	?	

																emprs.m_szemp_FirstName	:	"<NULL>");

												if	(emprs.lemp_FaxphoneStatus	==	adFldNull)

																printf("-	[Unknown]");

												else	if	(strcmp((LPSTR)emprs.m_szemp_Faxphone,"")	==	0)

																printf("-	[Has	no	fax]");

												else

																printf("-	%s",emprs.m_szemp_Faxphone);

								}

								m_pRstEmployees->Close();

								//	Delete	new	field	because	this	is	a	demonstration.

								m_pTable->Columns->Delete(m_pColumn->Name);

								//	Release	the	IADORecordset	Interface	here

								if(picRs)

												picRs->Release();

								m_pCnn->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

AttributesX.h

#include	"icrsint.h"

//This	class	extracts	LastName,	FirstName,	FaxPhone	from	Employees	table

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

								//	Column	LastName	is	the	2nd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(2,adVarChar,m_szemp_LastName,

												sizeof(m_szemp_LastName),lemp_LastNameStatus,TRUE)

								//	Column	FirstName	is	the	17th	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(17,adVarChar,m_szemp_FirstName,

												sizeof(m_szemp_FirstName),lemp_FirstNameStatus,TRUE)

								//	Column	FaxPhone	is	the	18th	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(18,adVarChar,m_szemp_Faxphone,

												sizeof(m_szemp_Faxphone),lemp_FaxphoneStatus,TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szemp_LastName[21];

				ULONG	lemp_LastNameStatus;

				CHAR	m_szemp_FirstName[11];

				ULONG	lemp_FirstNameStatus;

				CHAR	m_szemp_Faxphone[25];

				ULONG	lemp_FaxphoneStatus;

};

Catalog	ActiveConnection	Property	Example	(VC++)

Setting	the	ActiveConnection	property	to	a	valid,	open	connection	"opens"	the
catalog.	From	an	open	catalog,	you	can	access	the	schema	objects	contained
within	that	catalog.

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OpenConnectionX(void);

void	OpenConnectionWithStringX(void);

//

//																																																						//

//									Main	Function																																//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				OpenConnectionX();

				OpenConnectionWithStringX();

				::CoUninitialize();

}

//

//																																																						//

//					OpenConnectionX	Function																									//

//																																																						//

//

void	OpenConnectionX(void)	

{

			HRESULT			hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.				

				_CatalogPtr	m_pCatalog	=	NULL;

				//Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn			=	NULL;

			

				//	Define	string	variables.

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

								"Data	source	=	c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

							try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								m_pCnn->Open(strcnn,"","",NULL);

								m_pCatalog->PutActiveConnection(

												_variant_t((IDispatch	*)	m_pCnn));

								_variant_t	vIndex	=	(short)	0;

								cout<<m_pCatalog->Tables->GetItem(vIndex)->Type<<endl;

								m_pCnn->Close();

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

//

//																																																						//

//									OpenConnectionWithStringX	Function											//

//																																																						//

//

void	OpenConnectionWithStringX(void)	

{

			HRESULT			hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

			_CatalogPtr	m_pCatalog	=	NULL;

		

			//	Define	string	variables.

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

																"Data	source	=	c:\\Program	Files\\Microsoft	Office\\"

												"Office\\Samples\\Northwind.mdb;");

							try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								m_pCatalog->PutActiveConnection(strcnn);

								_variant_t	vIndex	=	(short)	0;

								cout<<m_pCatalog->Tables->GetItem(vIndex)->Type<<endl;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

											(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Clustered	Property	Example	(VC++)

This	example	demonstrates	the	Clustered	property	of	an	Index.	Note	that
Microsoft	Jet	databases	do	not	support	clustered	indexes,	so	this	example	will
return	False	for	the	Clustered	property	of	all	indexes	in	the	Northwind	database.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ClusteredX(void);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ClusteredX();

				::CoUninitialize();

}

//

//																																																						//

//							ClusteredX	Function																												//

//																																																						//

//

void	ClusteredX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTable	=	NULL;

				_IndexPtr	m_pIndex	=	NULL;

				//Define	other	variables	here

				_variant_t	vIndex;

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								//	Connect	to	the	catalog.

								m_pCatalog->PutActiveConnection(

												"Provider=Microsoft.Jet.OLEDB.4.0;data	source="

												"c:\\Program	Files\\Microsoft	Office\\Office\\Samples"

												"\\Northwind.mdb;");

								int	iLineCnt	=	1;	

								//Enumerate	Tables.

								for(short	iTable	=	0;iTable	<	m_pCatalog->Tables->Count;iTable++)

								{

												vIndex	=	iTable;

												m_pTable	=	m_pCatalog->Tables->GetItem(vIndex);

												//Enumerate	Indexes.

												for(short	iIndex	=	0;iIndex	<	m_pTable->Indexes->Count;

																iIndex++)

												{

																vIndex	=	iIndex;

																m_pIndex	=	m_pTable->Indexes->GetItem(vIndex);

																cout	<<	m_pTable->Name	<<	"	"	;

																cout	<<	m_pIndex->Name	<<	"	"	<<	(m_pIndex->

																				GetClustered()	?	"True"	:	"False")	<<	endl;

																	if	(iLineCnt%15	==	0)

																{

																				printf("\nPress	any	key	to	continue...\n");

																				getch();

																}

																iLineCnt++;

												}

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Columns	and	Tables	Append	Methods,	Name	Property	Example
(VC++)

The	following	code	demonstrates	how	to	create	a	new	table.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CreateTableX(void);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CreateTableX();

				::CoUninitialize();

}

//

//																																																						//

//							CreateTableX	Function																										//

//																																																						//

//

void	CreateTableX()

{

								HRESULT	hr	=	S_OK;

								//	Define	ADOX	object	pointers.

								//	Initialize	pointers	on	define.

								//	These	are	in	the	ADOX::		namespace.

								_CatalogPtr	m_pCatalog	=	NULL;

								_TablePtr	m_pTable	=	NULL;

								try

								{

												TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

												//Open	the	catalog

												m_pCatalog->PutActiveConnection(

																"Provider=Microsoft.Jet.OLEDB.4.0;"	\

																"data	source=c:\\Program	Files\\Microsoft	Office"

																"\\Office\\Samples\\Northwind.mdb;");

												TESTHR(hr	=	m_pTable.CreateInstance(__uuidof(Table)));

												m_pTable->PutName("MyTable");

												m_pTable->Columns->Append("Column1",adInteger,0);

												m_pTable->Columns->Append("Column2",adInteger,0);

												m_pTable->Columns->Append("Column3",adVarWChar,50);

												m_pCatalog->Tables->Append(

																_variant_t((IDispatch	*)m_pTable));

												//Delete	the	table

												m_pCatalog->Tables->Delete("MyTable");

								}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Command	and	CommandText	Properties	Example	(VC++)

The	following	code	demonstrates	how	to	use	the	Command	property	to	update
the	text	of	a	procedure.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ProcedureTextX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ProcedureTextX();

				::CoUninitialize();

}

//

//																																																						//

//							ProcedureTextX	Function																								//

//																																																						//

//

void	ProcedureTextX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				//	Define	ADODB	object	pointers.

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				ADODB::_CommandPtr	m_pCommand	=	NULL;

				try

				{

								//Open	the	Connection

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								TESTHR(hr	=	m_pCommand.CreateInstance(__uuidof(ADODB::Command)));

								m_pCnn->Open("Provider=Microsoft.Jet.OLEDB.4.0;"

												"data	source=c:\\Program	Files\\Microsoft	Office"

												"\\Office\\Samples\\Northwind.mdb;","","",NULL);

								//Open	the	catalog

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								//Get	the	Command

								m_pCommand	=	m_pCatalog->Procedures->GetItem("CustomerById")->

												GetCommand();

								//Update	the	CommandText

								m_pCommand->PutCommandText("PARAMETERS	[CustId]	Text;select	"

												"CustomerId,	CompanyName,	ContactName"

												"from	Customers	where	CustomerId	=	[CustId]");

								//Update	the	Procedure

								m_pCatalog->Procedures->GetItem("CustomerById")->PutCommand(

												_variant_t((IDispatch	*)m_pCommand));

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Connection	Close	Method,	Table	Type	Property	Example	(VC++)

Setting	the	ActiveConnection	property	to	Nothing	should	"close"	the	catalog.
Associated	collections	will	be	empty.	Any	objects	that	were	created	from	schema
objects	in	the	catalog	will	be	orphaned.	Any	properties	on	those	objects	that	have
been	cached	will	still	be	available,	but	attempting	to	read	properties	that	require
a	call	to	the	provider	will	fail.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CloseConnectionByNothingX(void);

void	CloseConnectionX(void);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CloseConnectionByNothingX();

				CloseConnectionX();

				::CoUninitialize();

}

//

//																																																						//

//								CloseConnectionByNothingX	Function												//

//																																																						//

//

void	CloseConnectionByNothingX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTable	=	NULL;

				//Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				//Define	other	variables

				_variant_t	vIndex	=	(short)	0;

				try

				{									

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								

								m_pCnn->Open("Provider=Microsoft.Jet.OLEDB.4.0;"

												"Data	Source=	c:\\Program	Files\\Microsoft	Office\\"

												"Office\\Samples\\Northwind.mdb;","","",NULL);

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								m_pTable	=	m_pCatalog->Tables->GetItem(vIndex);

								//	Cache	m_pTable.Type	info

								cout	<<	m_pTable->Type	<<	endl;	

								_variant_t	vCnn;

								vCnn.vt	=	VT_DISPATCH;

								vCnn.pdispVal	=	NULL;

								m_pCatalog->PutActiveConnection(vCnn);

								//	m_pTable	is	orphaned

								cout	<<	m_pTable->Type	<<	endl;	

								//	Previous	line	will	succeed	if	this	was	cached

								cout	<<	m_pTable->Columns->GetItem(vIndex)->DefinedSize	<<	endl;

								//	Previous	line	will	fail	if	this	info	has	not	been	cached

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

//

//																																																						//

//					CloseConnectionX	Function																								//

//																																																						//

//

void	CloseConnectionX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTable	=	NULL;

				//Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				//Define	other	variables

				_variant_t	vIndex	=	(short)	0;

				try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								m_pCnn->Open("Provider=Microsoft.Jet.OLEDB.4.0;"

												"Data	Source=	c:\\Program	Files\\Microsoft	Office\\"

												"Office\\Samples\\Northwind.mdb;","","",NULL);

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								m_pTable	=	m_pCatalog->Tables->GetItem(vIndex);

								//	Cache	m_pTable.Type	info

								cout	<<	m_pTable->Type	<<	endl;

								m_pCnn->Close();

								//	m_pTable	is	orphaned

								cout	<<	m_pTable->Type	<<	endl;

								//	Previous	line	will	succeed	if	this	was	cached

								cout	<<	m_pTable->Columns->GetItem(vIndex)->DefinedSize	<<	endl;

								//	Previous	line	will	fail	if	this	info	has	not	been	cached

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Create	Method	Example	(VC++)

The	following	code	shows	how	to	create	a	new	Microsoft	Jet	database	with	the
Create	method.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CreateDatabaseX(void);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				if(FAILED(CoInitialize(NULL)))

								return;

				CreateDatabaseX();

								

				::CoUninitialize();

}

//

//																																																						//

//					CreateDatabaseX	Function																									//

//																																																						//

//

void	CreateDatabaseX()

{				

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				

				_CatalogPtr	m_pCatalog	=	NULL;

				

				//Set	ActiveConnection	of	Catalog	to	this	string

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

																"Data	source	=	c:\\new.mdb");

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								m_pCatalog->Create(strcnn);

				}				

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

DateCreated	and	DateModified	Properties	Example	(VC++)

This	example	demonstrates	the	DateCreated	and	DateModified	properties	by
adding	a	new	Column	to	an	existing	Table	and	by	creating	a	new	Table.	The
DateOutput	procedure	is	required	for	this	example	to	run.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	DateCreatedX(void);

void	DateOutPut(_bstr_t	strTemp	,	_TablePtr	tblTemp);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				DateCreatedX();

				::CoUninitialize();

}

//

//																																																						//

//							DateCreatedX	Function																										//

//																																																						//

//

void	DateCreatedX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTblEmployees	=	NULL;

				_TablePtr	m_pTblNew	=	NULL;

				//Set	ActiveConnection	of	Catalog	to	this	string

				_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;"	

								"Data	Source=	c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								//	Connect	the	catalog.

								m_pCatalog->PutActiveConnection(strCnn);

								m_pTblEmployees	=	m_pCatalog->Tables->GetItem("Employees");

								//	Print	current	information	about	the	Employees	table.

								DateOutPut((_bstr_t)"Current	properties",	m_pTblEmployees);

								//	Create	and	append	column	to	the	Employees	table.

								m_pTblEmployees->Columns->Append("NewColumn",	adInteger,0);

								m_pCatalog->Tables->Refresh();

								//	Print	new	information	about	the	Employees	table.

								DateOutPut((_bstr_t)"After	creating	a	new	column",	

												m_pTblEmployees);

								//	Delete	new	column	because	this	is	a	demonstration.

								m_pTblEmployees->Columns->Delete("NewColumn");

								//	Create	and	append	new	Table	object	to	the	Northwind	database.

									TESTHR(hr	=	m_pTblNew.CreateInstance(__uuidof(Table)));

								m_pTblNew->Name	=	"NewTable";

								m_pTblNew->Columns->Append("NewColumn",	adInteger,0);

								m_pCatalog->Tables->Append(_variant_t((IDispatch*)m_pTblNew));

								m_pCatalog->Tables->Refresh();

								//Print	information	about	the	new	Table	object.

								DateOutPut((_bstr_t)"After	creating	a	new	table",	m_pCatalog->

												Tables->GetItem("NewTable"));

								//	Delete	new	Table	object	because	this	is	a	demonstration.

								m_pCatalog->Tables->Delete(m_pTblNew->Name);

}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

//

//																																																						//

//								DateOutPut	Function																											//

//																																																						//

//

void	DateOutPut(_bstr_t	strTemp	,	_TablePtr	tblTemp)

{

				//	Print	DateCreated	and	DateModified	information	about

				//	specified	Table	object.

				cout	<<	strTemp	<<	endl;

				cout	<<	"				Table:	"	<<	tblTemp->GetName()	<<	endl;

				cout	<<	"								DateCreated	=	"	<<	(_bstr_t)tblTemp->

								GetDateCreated()	<<	endl;

				cout	<<	"								DateModified	=	"	<<	(_bstr_t)tblTemp->

								GetDateModified()	<<	endl;

}

DefinedSize	Property	Example	(VC++)

This	example	demonstrates	the	DefinedSize	property	of	a	Column.	The	code	will
redefine	the	size	of	the	FirstName	column	of	the	Employees	table	of	the
Northwind	database.	Then,	the	change	in	the	values	of	the	FirstName	Field	of	a
Recordset	based	on	the	Employees	table	is	displayed.	Note	that	by	default,	the
FirstName	field	becomes	padded	with	spaces	after	you	redefine	the	DefinedSize
property.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

					rename("EOF",	"EndOfFile")

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	DefinedSizeX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				DefinedSizeX();

				::CoUninitialize();

}

//

//																																																						//

//						DefinedSizeX	Function																											//

//																																																						//

//

void	DefinedSizeX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatNorthwind			=	NULL;

				_ColumnPtr	m_pColFirstName				=	NULL;

				_ColumnPtr	m_pColNewFirstName	=	NULL;

				//	Define	ADODB	object	pointers

				ADODB::_RecordsetPtr	m_pRstEmployees		=	NULL;

				//	Define	string	variables.

				_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;data	source="

								"c:\\Program	Files\\Microsoft	Office\\Office\\Samples\\"

								"Northwind.mdb;");

				_bstr_t	aryFirstName[10];

				try

				{

								//	Open	a	Recordset	for	the	Employees	table.

								TESTHR(hr	=	m_pRstEmployees.CreateInstance(

												__uuidof(ADODB::Recordset)));

								TESTHR(hr	=	m_pCatNorthwind.CreateInstance(__uuidof	(Catalog)));

								TESTHR(hr	=	m_pColNewFirstName.CreateInstance(__uuidof(Column)));

								m_pRstEmployees->Open("Employees",strCnn,ADODB::adOpenKeyset,

												ADODB::adLockReadOnly,ADODB::adCmdTable);

								long	lngSize	=	m_pRstEmployees->RecordCount;

								aryFirstName[lngSize];

								//	Open	a	catalog	for	the	Northwind	database,

								//	using	same	connection	as	rstEmployees.

								m_pCatNorthwind->PutActiveConnection(m_pRstEmployees->

												GetActiveConnection());

								//	Loop	through	the	recordset	displaying	the	contents,

								//	of	the	FirstName	field,	the	field's	defined	size,

								//	and	its	actual	size.

								//	Also	store	FirstName	values	in	aryFirstName	array.

								m_pRstEmployees->MoveFirst();

								printf("\nOriginal	Defined	Size	and	Actual	Size");

								int	iCount=0;

								while	(!(m_pRstEmployees->EndOfFile))

								{

												printf("\nEmployee	Name:");

												printf("%s	",(LPSTR)(_bstr_t)m_pRstEmployees->Fields->

																GetItem("FirstName")->Value);

												printf("%s\n",(LPSTR)(_bstr_t)m_pRstEmployees->Fields->

																GetItem("LastName")->Value);

												printf("		FirstName	Defined	size:	%d\n",m_pRstEmployees->

																Fields->GetItem("FirstName")->DefinedSize)	;

												printf("		FirstName	Actual	size:	%d\n",m_pRstEmployees->

																Fields->GetItem("FirstName")->ActualSize);

												aryFirstName[iCount]	=	(_bstr_t)	m_pRstEmployees->Fields->

																GetItem("FirstName")->Value;

												m_pRstEmployees->MoveNext();

												iCount++;

												if(iCount%5==0)

												{

																printf("Press	any	key	to	continue...");

																getch();

																system("cls");

												}

								}

								m_pRstEmployees->Close();

								//	Redefine	the	DefinedSize	of	FirstName	in	the	catalog.

								m_pColFirstName	=	m_pCatNorthwind->Tables->GetItem("Employees")->

												Columns->GetItem("FirstName");

								m_pColNewFirstName->Name	=	m_pColFirstName->Name;

								m_pColNewFirstName->Type	=	m_pColFirstName->Type;

								m_pColNewFirstName->DefinedSize	=	

												(m_pColFirstName->DefinedSize)	+	1;

								//	Append	new	FirstName	column	to	catalog.

								m_pCatNorthwind->Tables->GetItem("Employees")->Columns->

												Delete(m_pColFirstName->Name);

								m_pCatNorthwind->Tables->GetItem("Employees")->Columns->

												Append(_variant_t((IDispatch*)m_pColNewFirstName,true),

												adVarWChar,m_pColNewFirstName->DefinedSize);

								//	Open	Employee	table	in	Recordset	for	updating.

								m_pRstEmployees->Open("Employees",m_pCatNorthwind->

												GetActiveConnection(),ADODB::adOpenKeyset,

												ADODB::adLockOptimistic,ADODB::adCmdTable);

								//	Loop	through	the	recordset	displaying	the	contents	

								//	of	the	FirstName	field,the	field's	defined	size,

								//	and	its	actual	size.

								//	Also	restore	FirstName	values	from	aryFirstName.

								printf("Press	any	key	to	continue...");

								getch();

								system("cls");

								m_pRstEmployees->MoveFirst();

								printf("\n\nNew	Defined	Size	and	Actual	Size");

								iCount=0;

								while	(!(m_pRstEmployees->EndOfFile))

								{

												m_pRstEmployees->Fields->GetItem("FirstName")->Value	=	

																aryFirstName[iCount];

												printf("\nEmployee	Name:	");

												printf("%s	",(LPSTR)	(_bstr_t)m_pRstEmployees->Fields->

																GetItem("FirstName")->Value);

												printf("%s\n",(LPSTR)(_bstr_t)m_pRstEmployees->Fields->

																GetItem("LastName")->Value);

												printf("		FirstName	Defined	size:	%d\n",m_pRstEmployees->

																Fields->GetItem("FirstName")->DefinedSize);

												printf("		FirstName	Actual	size:	%d\n",m_pRstEmployees->

																Fields->GetItem("FirstName")->ActualSize);

												m_pRstEmployees->MoveNext();

												iCount++;

												if(iCount%5==0)

												{

																printf("Press	any	key	to	continue...");

																getch();

																system("cls");

												}												

								}

								m_pRstEmployees->Close();

								//	Restore	original	FirstName	column	to	catalog

								m_pCatNorthwind->Tables->GetItem("Employees")->Columns->

												Delete(m_pColNewFirstName->Name);

								m_pCatNorthwind->Tables->GetItem("Employees")->Columns->

												Append(_variant_t((IDispatch*)m_pColFirstName,true),

												adVarWChar,m_pColFirstName->DefinedSize);

								//	Restore	original	FirstName	values	to	Employees	table.

								m_pRstEmployees->Open("Employees",m_pCatNorthwind->

												GetActiveConnection(),ADODB::adOpenKeyset,

												ADODB::adLockOptimistic,ADODB::adCmdTable);

								m_pRstEmployees->MoveFirst();

								iCount	=	0;

								while(!(m_pRstEmployees->EndOfFile))

								{

												m_pRstEmployees->Fields->GetItem("FirstName")->Value	=	

																aryFirstName[iCount];

												m_pRstEmployees->MoveNext();

												iCount++;

								}

								m_pRstEmployees->Close();

								m_pCatNorthwind	=	NULL;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

DeleteRule	Property	Example	(VC++)

This	example	demonstrates	the	DeleteRule	property	of	a	Key	object.	The	code
appends	a	new	Table	and	then	defines	a	new	primary	key,	setting	DeleteRule	to
adRICascade.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	DeleteRuleX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				DeleteRuleX();

				::CoUninitialize();

}

//

//																																																						//

//							DeleteRuleX	Function																											//

//																																																						//

//

void	DeleteRuleX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_KeyPtr	m_pKeyPrimary	=	NULL;

				_CatalogPtr	m_pCatalog			=	NULL;

				_TablePtr	m_pTblNew		=	NULL;

				//	Define	string	variables.

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

																"Data	source	=	c:\\Program	Files\\Microsoft	Office"

																"\\Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pKeyPrimary.CreateInstance(__uuidof(Key)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								TESTHR(hr	=	m_pTblNew.CreateInstance(__uuidof(Table)));

								//	Connect	the	catalog.

								m_pCatalog->PutActiveConnection(strcnn);

								//	Name	new	table.

								m_pTblNew->Name	=	"NewTable";

								//	Append	a	numeric	and	a	text	field	to	new	table.

								m_pTblNew->Columns->Append("NumField",adInteger,20);

								m_pTblNew->Columns->Append("TextField",adVarWChar,20);

								//	Append	the	new	table.

								m_pCatalog->Tables->Append(_variant_t((IDispatch*)m_pTblNew));

								//	Define	the	Primary	key.

								m_pKeyPrimary->Name	=	"NumField";

								m_pKeyPrimary->Type	=	adKeyPrimary;

								m_pKeyPrimary->RelatedTable	=	"Customers";

								m_pKeyPrimary->Columns->Append("NumField",adInteger,20);

								m_pKeyPrimary->Columns->GetItem("NumField")->RelatedColumn	=	

												"CustomerId";

								m_pKeyPrimary->DeleteRule	=	adRICascade;

								//to	pass	an	optional	column	parameter	to	Key's	Apppend	method

								_variant_t	vOptional;

								vOptional.vt	=	VT_ERROR;

								vOptional.scode	=	DISP_E_PARAMNOTFOUND;

								//	Append	the	primary	key.

								m_pCatalog->Tables->GetItem("NewTable")->Keys->Append(

												_variant_t((IDispatch*)m_pKeyPrimary),

												adKeyPrimary,vOptional,L"",L"");

								//	Delete	the	table	as	this	is	a	demonstration.

								m_pCatalog->Tables->Delete(m_pTblNew->Name);

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

												(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

GetObjectOwner	and	SetObjectOwner	Methods	Example	(VC++)

This	example	demonstrates	the	GetObjectOwner	and	SetObjectOwner	methods.
This	code	assumes	the	existence	of	the	group	Accounting	(see	the	Groups	and
Users	Append,	ChangePassword	Methods	Example	to	see	how	to	add	this	group
to	the	system).	The	owner	of	the	Categories	table	is	set	to	Accounting.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	OwnersX(void);

//

//																																																						//

//								Main	Function																																	//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				OwnersX();

								::CoUninitialize();

}

//

//																																																						//

//						OwnersX	Function																																//

//																																																						//

//

void	OwnersX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_TablePtr	m_pTable	=	NULL;

				_CatalogPtr	m_pCatalog	=	NULL;

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								TESTHR(hr	=	m_pTable.CreateInstance(__uuidof(Table)));

								//Open	the	Catalog.

								m_pCatalog->PutActiveConnection(

												"Provider=Microsoft.Jet.OLEDB.4.0;"	\

												"data	source=c:\\Program	Files\\Microsoft	Office\\"

																"Office\\Samples\\Northwind.mdb;"	

																"jet	oledb:system	database=c:\\WINNT\\system32\\"

																"system.mdw");

								//Print	the	original	owner	of	Categories

								_bstr_t	strOwner	=	m_pCatalog->GetObjectOwner("Categories",

												adPermObjTable);

								cout	<<	"Owner	of	Categories:	"	<<	strOwner	<<	"\n"	<<	endl;

								int	iLineCnt	=	2;	

								//Create	and	append	new	group	with	a	string.

								m_pCatalog->Groups->Append("Accounting");

								//Set	the	owner	of	Categories	to	Accounting.

								m_pCatalog->SetObjectOwner("Categories",

												adPermObjTable,"Accounting");

								_variant_t	vIndex;

								//List	the	owners	of	all	tables	and	columns	in	the	catalog.

								for	(long	iIndex	=	0;iIndex	<	m_pCatalog->Tables->Count;iIndex++)

								{

												vIndex	=	iIndex;

												m_pTable	=	m_pCatalog->Tables->GetItem(vIndex);

												cout	<<	"Table:	"	<<	m_pTable->Name	<<	endl;

												cout	<<	"			Owner:	"	<<	m_pCatalog->

																GetObjectOwner(m_pTable->Name,adPermObjTable)	<<	endl;

												if	(iLineCnt%16	==	0)

																{

																				printf("\nPress	any	key	to	continue...\n");

																				getch();

																}

																iLineCnt	=	iLineCnt	+	2;

								}

								//Restore	the	original	owner	of	Categories

								m_pCatalog->SetObjectOwner("Categories",adPermObjTable,strOwner);

								//Delete	Accounting

								m_pCatalog->Groups->Delete("Accounting");

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

GetPermissions	and	SetPermissions	Methods	Example	(VC++)

This	example	demonstrates	the	GetPermissions	and	SetPermissions	methods.
The	following	code	gives	full	access	to	the	Orders	table	to	the	Admin	user.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	GrantPermissionsX(void);

//

//																																																						//

//					Main	Function																																				//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				GrantPermissionsX();

				::CoUninitialize();

}

//

//																																																						//

//				GrantPermissionsX	Function																								//

//																																																						//

//

void	GrantPermissionsX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

	

				//Define	ADODB	object	pointers;

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				//Define	other	variables	here.

				try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								//Opens	a	connection	to	the	northwind	database

								//using	the	Microsoft	Jet	4.0	provider

								m_pCnn->PutProvider("Microsoft.Jet.OLEDB.4.0");

								m_pCnn->Open("data	source=c:\\Program	Files\\"		\

								"Microsoft	Office\\Office\\Samples\\Northwind.mdb;"		\

								"jet	oledb:system	database=c:\\WINNT\\system32\\system.mdw",

												"","",NULL);

									TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								//Retrieve	original	permissions

								long	lngPerm	=	m_pCatalog->Users->GetItem("admin")->

												GetPermissions("Orders",adPermObjTable);

								long	lngOrgPerm	=	lngPerm;

								cout	<<	"Original	Permissions:	"	<<	lngPerm	<<	"\n"	<<	endl;

								//Revoke	all	permissions

								m_pCatalog->Users->GetItem("admin")->SetPermissions("Orders",

												adPermObjTable,adAccessRevoke,adRightFull,adInheritNone);

								//Display	permissions

								lngPerm	=	m_pCatalog->Users->GetItem("admin")->

												GetPermissions("Orders",adPermObjTable);

								cout	<<	"Revoked	permissions:	"	<<	lngPerm	<<	"\n"	<<	endl;

								//Give	the	Admin	user	full	rights	on	the	orders	object

								m_pCatalog->Users->GetItem("admin")->SetPermissions("Orders",

												adPermObjTable,adAccessSet,adRightFull,adInheritNone);

								//Display	permissions

								lngPerm	=	m_pCatalog->Users->GetItem("admin")->

												GetPermissions("Orders",adPermObjTable);

								cout	<<	"Full	permissions:	"	<<	lngPerm	<<	"\n"	<<	endl;

								//Restore	original	permissions

								m_pCatalog->Users->GetItem("admin")->SetPermissions("Orders",

												adPermObjTable,adAccessSet,(RightsEnum)	lngOrgPerm,

												adInheritNone);

								//Display	permissions

								lngPerm	=	m_pCatalog->Users->GetItem("admin")->

												GetPermissions("Orders",adPermObjTable);

								cout	<<	"Final	permissions:	"	<<	lngPerm	<<	"\n"	<<	endl;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

														(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Groups	and	Users	Append,	ChangePassword	Methods	Example
(VC++)

This	example	demonstrates	the	Append	method	of	Groups,	as	well	as	the
Append	method	of	Users	by	adding	a	new	Group	and	a	new	User	to	the	system.
The	new	Group	is	appended	to	the	Groups	collection	of	the	new	User.
Consequently,	the	new	User	is	added	to	the	Group.	Also,	the	ChangePassword
method	is	used	to	specify	the	User	password.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	GroupX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				GroupX();

				::CoUninitialize();

}

//

//																																																						//

//									GroupX	Function																														//

//																																																						//

//

void	GroupX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog			=	NULL;

				_UserPtr	m_pUserNew			=	NULL;

				_UserPtr	m_pUser		=	NULL;

				_GroupPtr	m_pGroup	=	NULL;

				//	Define	String	Variables.

				_bstr_t	strCnn("Provider=Microsoft.JET.OLEDB.4.0;"

								"Data	source	=	c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;"

								"jet	oledb:system	database=c:\\WINNT\\system32\\system.mdw");

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								m_pCatalog->PutActiveConnection(strCnn);

								//	Create	and	append	new	group	with	a	string.

								m_pCatalog->Groups->Append("Accounting");

								//	Create	and	append	new	user	with	an	object.

								TESTHR(hr	=	m_pUserNew.CreateInstance(__uuidof(User)));

								m_pUserNew->PutName("Pat	Smith");

								m_pUserNew->ChangePassword("","Password1");

								m_pCatalog->Users->Append(

												_variant_t((IDispatch	*)m_pUserNew),"");

								//	Make	the	user	Pat	Smith	a	member	of	the	

								//	Accounting	group	by	creating	and	adding	the

								//	appropriate	Group	object	to	the	user's	Groups	

								//	collection.The	same	is	accomplished	if	a	User

								//	object	representing	Pat	Smith	is	created	and	

								//	appended	to	the	Accounting	group	Users	collection	

								m_pUserNew->Groups->Append("Accounting");

								//	Enumerate	all	User	objects	in	the	

								//	catalog's	Users	collection.

								long	lUsrIndex;

								long	lGrpIndex;

								_variant_t	vIndex;

								for(lUsrIndex=0;lUsrIndex<=m_pCatalog->Users->Count;lUsrIndex++)

								{

												vIndex	=	lUsrIndex;

												m_pUser	=	m_pCatalog->Users->GetItem(vIndex);

												cout<<"		"<<m_pUser->Name	<<endl;

												cout<<"			Belongs	to	these	groups:"<<endl;

												//	Enumerate	all	Group	objects	in	each	User

												//	object's	Groups	collection.

												if(m_pUser->Groups->Count	!=	0)

												{

																for(lGrpIndex=0;lGrpIndex<=m_pUser->Groups->

																				Count;lGrpIndex++)

																{

																				vIndex	=	lGrpIndex;

																				m_pGroup	=	m_pUser->Groups->GetItem(vIndex);

																				cout<<"					"<<	m_pGroup->Name<<endl;

																}

												}

												else

												{

																cout<<"							[None]"<<endl;

												}

								}

								//	Enumerate	all	Group	objects	in	the	default	

								//	workspace's	Groups	collection.

								for(lGrpIndex=0;lGrpIndex<=m_pCatalog->Groups->Count;lGrpIndex++)

								{

												vIndex	=	lGrpIndex;

												m_pGroup	=	m_pCatalog->Groups->GetItem(vIndex);

												cout<<"			"<<	m_pGroup->Name	<<endl;

												cout<<"				Has	as	its	members:"<<endl;

												

												//	Enumerate	all	User	objects	in	each	Group

												//	object's	Users	Collection.

												if(m_pGroup->Users->Count	!=	0)

												{

																for(lUsrIndex=0;lUsrIndex<=m_pGroup->Users->Count;

																				lUsrIndex++)

																{

																				vIndex	=	lUsrIndex;

																				m_pUser	=	m_pGroup->Users->GetItem(vIndex);

																				cout<<"				"<<m_pUser->Name<<endl;

																}

												}

												else

												{

																cout<<"						[None]"<<endl;

												}

								}

								//	Delete	new	User	and	Group	object	because	this	

								//	is	only	a	demonstration.

								m_pCatalog->Users->Delete("Pat	Smith");

								m_pCatalog->Groups->Delete("Accounting");

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Indexes	Append	Method	Example	(VC++)

The	following	code	demonstrates	how	to	create	a	new	index.	The	index	is	on
two	columns	in	the	table.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CreateIndexX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				CreateIndexX();

				::CoUninitialize();

}

//

//																																																						//

//								CreateIndexX	Function																									//

//																																																						//

//

void	CreateIndexX(void)

{				

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_TablePtr	m_pTable			=	NULL;

				_IndexPtr	m_pIndex				=	NULL;

				_CatalogPtr	m_pCatalog	=	NULL;

	

				//Define	other	variables

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

								"Data	source	=	c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pTable.CreateInstance(__uuidof(Table)));

								TESTHR(hr	=	m_pIndex.CreateInstance(__uuidof(Index)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								//	Open	the	catalog.

								m_pCatalog->PutActiveConnection(strcnn);

								//	Define	the	table	and	append	it	to	the	catalog.

								m_pTable->Name	=	"MyTable";

								m_pTable->Columns->Append("Column1",adInteger,0);

								m_pTable->Columns->Append("Column2",adInteger,0);

								m_pTable->Columns->Append("Column3",adVarWChar,50);

								m_pCatalog->Tables->Append(_variant_t((IDispatch	*)m_pTable));

								//	Define	a	multi-column	index.

								m_pIndex->Name	=	"multicolidx";

								m_pIndex->Columns->Append("Column1",adInteger,0);

								m_pIndex->Columns->Append("Column2",adInteger,0);

								//	Append	the	index	to	the	table.

								m_pTable->Indexes->Append(_variant_t((IDispatch	*)m_pIndex));

								//	Delete	the	table.

								m_pCatalog->Tables->Delete("MyTable");

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

	

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

IndexNulls	Property	Example	(VC++)

This	example	demonstrates	the	IndexNulls	property	of	an	Index.	The	code
creates	a	new	index	and	sets	the	value	of	IndexNulls	based	on	user	input.	Then,
the	Index	is	appended	to	the	Employees	Table	in	the	Northwind	Catalog.	The
new	Index	is	applied	to	a	Recordset	based	on	the	Employees	table,	and	the
Recordset	is	opened.	A	new	record	is	added	to	the	Employees	table,	with	a	Null
value	in	the	indexed	field.	Whether	this	new	record	is	displayed	depends	on	the
setting	of	the	IndexNulls	property.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"C:\Program	Files\Common	Files\System\ADO\msado15.dll"	\

				rename("EOF",	"EndOfFile")

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

#include	"IndexNullsX.h"

//	Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	IndexNullsX(_bstr_t);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				printf("\nShow	records	having	indexed	field	value	=	NULL?	(Y/N):");

				char	input	=	getche();

				if(toupper(input)=='Y')

				{

								IndexNullsX("Allow");

				}

				else	if(toupper(input)=='N')

				{

								IndexNullsX("Ignore");

				}

				else

				{

							exit(0);

				}

				::CoUninitialize();

}

//

//																																																						//

//						IndexNullsX	Function																												//

//																																																						//

//

void	IndexNullsX(_bstr_t	strSel)

{

				HRESULT	hr	=	S_OK;

	

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog					=	NULL;

				_IndexPtr	m_pIndexNew						=	NULL;

								

				//	Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn											=	NULL;

				ADODB::_RecordsetPtr		m_pRstEmployees		=	NULL;

				//	Define	other	variables

				IADORecordBinding	*picRs		=	NULL;		//	Interface	Pointer	Declared

				CEmployeeRs	emprs;										//	C++	Class	Object

				//	Define	string	variable.

				_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;"

								"data	source=c:\\Program	Files\\Microsoft	Office\\Office\\"

								"Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								TESTHR(hr	=	m_pIndexNew.CreateInstance(__uuidof(Index)));

								TESTHR(hr	=	m_pRstEmployees.CreateInstance(

												__uuidof(ADODB::Recordset)));

								//	Connect	the	catalog.

								m_pCnn->Open(strCnn,"","",NULL);

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								//	Append	Country	column	to	new	index.

								m_pIndexNew->Columns->Append("Country",adVarWChar,0);

								m_pIndexNew->Name	=	"NewIndex";

								//	Set	IndexNulls	based	on	user	input

								if(strcmp((LPSTR)strSel,"Allow")==0)

								{

												m_pIndexNew->IndexNulls	=	adIndexNullsAllow;

								}

								else	if(strcmp((LPSTR)strSel,"Ignore")==0)

								{

												m_pIndexNew->IndexNulls	=	adIndexNullsIgnore;

								}

								//	Append	new	index	to	Employees	table

								m_pCatalog->Tables->GetItem("Employees")->Indexes->Append(

												_variant_t((IDispatch	*)m_pIndexNew));

								m_pRstEmployees->Index	=	m_pIndexNew->Name;

								m_pRstEmployees->Open("Employees",

												_variant_t((IDispatch	*)m_pCnn),

												ADODB::adOpenKeyset,ADODB::adLockOptimistic,

												ADODB::adCmdTableDirect);

								//	Add	a	new	record	to	the	Employees	table.

								m_pRstEmployees->AddNew();

								m_pRstEmployees->Fields->GetItem("FirstName")->Value	=	

													(_bstr_t)	"Gary";

								m_pRstEmployees->Fields->GetItem("LastName")->Value	=	

													(_bstr_t)	"Haarsager";

								m_pRstEmployees->Update();

								//	Bookmark	the	newly	added	record.

								_variant_t	varBookmark	=	m_pRstEmployees->Bookmark;

								//	Use	the	new	index	to	set	the	order	of	the	records.

								m_pRstEmployees->MoveFirst();

								printf("\n\nIndex	=	%s,",(LPSTR)	m_pRstEmployees->Index);

								printf("IndexNulls	=	%d\n\n",m_pIndexNew->IndexNulls);

								cout<<"Country												-								Name"<<endl;

								//	Open	an	IADORecordBinding	interface	pointer	which	

								//	we	will	use	for	binding	Recordset	to	a	class

								TESTHR(hr	=	m_pRstEmployees->QueryInterface(

												__uuidof(IADORecordBinding),(LPVOID*)&picRs));

	

								//	Bind	the	Recordset	to	a	C++	class	here	

								TESTHR(hr	=	picRs->BindToRecordset(&emprs));

								//	Enumerate	the	Recordset.The	value	of	the	

								//	IndexNulls	property	will	determine	if	the	newly

								//	added	record	appears	in	the	output.

								while(!(m_pRstEmployees->EndOfFile))

								{

												printf("%s				-				%s	%s\n",

																emprs.lemp_CountryStatus	==	adFldOK	?

																emprs.m_szemp_Country	:"[Null]",

																emprs.lemp_FirstNameStatus	==	adFldOK	?	

																emprs.m_szemp_FirstName	:"<NULL>",

																emprs.lemp_LastNameStatus	==	adFldOK	?	

																emprs.m_szemp_LastName	:"<NULL>");

												m_pRstEmployees->MoveNext();

								}

								//	Delete	new	record	because	this	is	a	demonstration.

								m_pRstEmployees->Bookmark	=	varBookmark;

								m_pRstEmployees->Delete(ADODB::adAffectCurrent);

								m_pRstEmployees->Close();

								//	Delete	new	Index	because	this	is	a	demonstration.

								m_pCatalog->Tables->GetItem("Employees")->Indexes->

												Delete(m_pIndexNew->Name);

								m_pCatalog	=	NULL;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

	

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

IndexNullX.h

//	IndexNullsX.h

#include	"icrsint.h"

//This	class	extracts	LastName,Country,FirstName	from	Employees	table

class	CEmployeeRs	:	public	CADORecordBinding

{

BEGIN_ADO_BINDING(CEmployeeRs)

								//	Column	LastName	is	the	2nd	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(2,adVarChar,m_szemp_LastName,

												sizeof(m_szemp_LastName),lemp_LastNameStatus,TRUE)

								//	Column	Country	is	the	11th	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(11,adVarChar,m_szemp_Country,

												sizeof(m_szemp_Country),lemp_CountryStatus,TRUE)

												//	Column	Country	is	the	17th	field	in	the	table

								ADO_VARIABLE_LENGTH_ENTRY2(17,adVarChar,m_szemp_FirstName,

												sizeof(m_szemp_FirstName),lemp_FirstNameStatus,TRUE)

END_ADO_BINDING()

public:

				CHAR	m_szemp_LastName[21];

				ULONG	lemp_LastNameStatus;

				CHAR	m_szemp_Country[16];

				ULONG	lemp_CountryStatus;

				CHAR	m_szemp_FirstName[11];

				ULONG	lemp_FirstNameStatus;

};

Keys	Append	Method,	Key	Type,	RelatedColumn,	RelatedTable
and	UpdateRule	Properties	Example	(VC++)

The	following	code	demonstrates	how	to	create	a	new	foreign	key.	It	assumes
two	tables	(Customers	and	Orders)	exist.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CreateKeyX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				CreateKeyX();

				::CoUninitialize();

}

//

//																																																						//

//								CreateKeyX	Function																											//

//																																																						//

//

void	CreateKeyX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_KeyPtr	m_pKeyForeign	=	NULL;	

				_CatalogPtr	m_pCatalog			=	NULL;

				//Define	other	variables

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

																"Data	source	=	c:\\Program	Files\\Microsoft	Office\\"

																"Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pKeyForeign.CreateInstance(__uuidof(Key)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								m_pCatalog->PutActiveConnection(strcnn);

								//	Define	the	foreign	key.

								m_pKeyForeign->Name	=	"CustOrder";

								m_pKeyForeign->Type	=	adKeyForeign;

								m_pKeyForeign->RelatedTable	=	"Customers";

								m_pKeyForeign->Columns->Append("CustomerId",adVarWChar,0);

								m_pKeyForeign->Columns->GetItem("CustomerId")->RelatedColumn	=	

												"CustomerId";

								m_pKeyForeign->UpdateRule	=	adRICascade;

								//	To	pass	as	column	parameter	to	Key's	Apppend	method

								_variant_t	vOptional;

								vOptional.vt	=	VT_ERROR;

								vOptional.scode	=	DISP_E_PARAMNOTFOUND;

								//	Append	the	foreign	key.

								m_pCatalog->Tables->GetItem("Orders")->Keys->

												Append(_variant_t((IDispatch	*)m_pKeyForeign),

												adKeyPrimary,vOptional,L"",L"");

								//	Delete	the	key	as	this	is	a	demonstration.

								m_pCatalog->Tables->GetItem("Orders")->Keys->

												Delete(m_pKeyForeign->Name);

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

NumericScale	and	Precision	Properties	Example	(VC++)

This	example	demonstrates	the	NumericScale	and	Precision	properties	of	the
Column	object.	This	code	displays	their	value	for	the	Order	Details	table	of	the
Northwind	database.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	NumericScalePrecX(void);

//

//																																																						//

//							Main	Function																																		//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				NumericScalePrecX();

				::CoUninitialize();

}

//

//																																																						//

//										NumericScalePrecX	Function																		//

//																																																						//

//

void	NumericScalePrecX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTable	=	NULL;

				_ColumnPtr	m_pColumn	=	NULL;

				//Define	ADODB	object	pointers

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				//Declare	string	variables

				_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;"

								"Data	Source=c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								//	Connect	the	catalog.

								m_pCnn->Open	(strCnn,	"",	"",	NULL);

								m_pCatalog->PutActiveConnection(variant_t((IDispatch	*)m_pCnn));

								

								//	Retrieve	the	Order	Details	table

								m_pTable	=	m_pCatalog->Tables->GetItem("Order	Details");

								//	Display	numeric	scale	and	precision	of

								//	small	integer	fields.

								_variant_t	vIndex;

								for	(long	lIndex=0;	lIndex	<	m_pTable->Columns->Count;	lIndex++)

								{

												vIndex	=	lIndex	;

												m_pColumn	=	m_pTable->Columns->GetItem(vIndex);

																if(m_pColumn->Type	==	adSmallInt)

																{

																				cout	<<	"Column:	"	<<	m_pColumn->GetName()	<<	endl;

																				cout	<<	"Numeric	scale:	"	<<	(_bstr_t)	m_pColumn->

																								GetNumericScale()	<<	endl;

																				cout	<<	"Precision:	"	<<	m_pColumn->GetPrecision()	<<	

																								endl;

																}

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Parameters	Collection,	Command	Property	Example	(VC++)

The	following	code	demonstrates	how	to	use	the	Command	property	with	the
Command	object	to	retrieve	parameter	information	for	the	procedure.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	ProcedureParametersX(void);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				ProcedureParametersX();

				::CoUninitialize();

}

//

//																																																						//

//						ProcedureParametersX	Function																			//

//																																																						//

//

void	ProcedureParametersX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				//Define	ADODB	object	pointers.

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				ADODB::_CommandPtr	m_pCommand	=	NULL;

				ADODB::_ParameterPtr	m_pParameter	=	NULL;

				try	

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								//Open	the	Connection

								m_pCnn->Open("Provider=Microsoft.Jet.OLEDB.4.0;"

																"Data	Source=c:\\Program	Files\\Microsoft	Office\\"

																"Office\\Samples\\Northwind.mdb;","","",NULL);

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								//Open	the	catalog

								m_pCatalog->PutActiveConnection(_variant_t((IDispatch	*)m_pCnn));

								//Get	the	command	object

								m_pCommand	=	m_pCatalog->Procedures->GetItem("CustomerById")->

												GetCommand();

								_variant_t	vIndex;

								//Retrieve	Parameter	information

								m_pCommand->Parameters->Refresh();

								for	(long	lIndex	=	0;	lIndex	<	m_pCommand->Parameters->Count;

												lIndex	++)

								{

												vIndex	=	lIndex;

												m_pParameter	=	m_pCommand->Parameters->GetItem(vIndex);

												cout	<<	m_pParameter->Name	<<	":"	<<	m_pParameter->Type	<<	

																"\n"	<<	endl;

								}

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

										

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

ParentCatalog	Property	Example	(VC++)

The	following	code	demonstrates	how	to	use	the	ParentCatalog	property	to
access	a	provider-specific	property	prior	to	appending	a	table	to	a	catalog.	The
property	is	AutoIncrement,	which	creates	an	AutoIncrement	field	in	a	Microsoft
Jet	database.

#import	"c:\Program	Files\Common	Files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\Program	Files\Common	Files\system\ado\msado15.dll"

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	CreateAutoIncrColumnX(void);

//

//																																																						//

//						Main	Function																																			//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;

				CreateAutoIncrColumnX();

					::CoUninitialize();

}

//

//																																																						//

//							CreateAutoIncrColumnX	Function																	//

//																																																						//

//

void	CreateAutoIncrColumnX(void)

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTable	=	NULL;

				//	Define	ADODB	object	pointers.

				ADODB::_ConnectionPtr	m_pCnn	=	NULL;

				//Define	string	variables

				_bstr_t	strCnn("Provider=Microsoft.Jet.OLEDB.4.0;"

								"Data	Source=c:\\Program	Files\\Microsoft	Office\\"

								"Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pCnn.CreateInstance(__uuidof(ADODB::Connection)));

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof	(Catalog)));

								

								TESTHR(hr	=	m_pTable.CreateInstance(__uuidof	(Table)));

								//	Connect	the	catalog.

								m_pCnn->Open	(strCnn,	"",	"",	NULL);

								m_pCatalog->PutActiveConnection(variant_t((IDispatch	*)m_pCnn));

								m_pTable->Name="MyContacts";

								m_pTable->ParentCatalog	=	m_pCatalog;

								//	Create	fields	and	append	them	to	the	new	Table	object.

								m_pTable->Columns->Append("ContactId",	adInteger,0);

								//	Make	the	ContactId	column	and	auto	incrementing	column

								m_pTable->Columns->GetItem("ContactId")->Properties->

												GetItem("AutoIncrement")->Value	=	true;

								m_pTable->Columns->Append("CustomerID",	adVarWChar,0);

								m_pTable->Columns->Append("FirstName",	adVarWChar,0);

								m_pTable->Columns->Append("LastName",	adVarWChar,0);

								m_pTable->Columns->Append("Phone",	adVarWChar,	20);

								m_pTable->Columns->Append("Notes",	adLongVarWChar,0);

								m_pCatalog->Tables->Append(_variant_t((IDispatch*)m_pTable));

								//	Refresh	the	database.

								m_pCatalog->Tables->Refresh();

								//	Delete	new	table,	since	this	is	only	an	example

								m_pCatalog->Tables->Delete("MyContacts");

								m_pCatalog	=	NULL;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

													(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

PrimaryKey	and	Unique	Properties	Example	(VC++)

This	example	demonstrates	the	PrimaryKey	and	Unique	properties	of	an	Index.
The	code	creates	a	new	table	with	two	columns.	The	PrimaryKey	and	Unique
properties	are	used	to	make	one	column	the	primary	key	for	which	duplicate
values	are	not	allowed.

#import	"c:\program	files\common	files\system\ado\msadox.dll"	\

				no_namespace

#import	"c:\program	files\common	files\system\ado\msado15.dll"	

#include	"iostream.h"

#include	"stdio.h"

#include	"conio.h"

//Function	Declarations

inline	void	TESTHR(HRESULT	x)	{if	FAILED(x)	_com_issue_error(x);};

void	PrimaryKeyX(void);

//

//																																																						//

//				Main	Function																																					//

//																																																						//

//

void	main()

{

				if(FAILED(::CoInitialize(NULL)))

								return;	

				PrimaryKeyX();

				::CoUninitialize();

}

//

//																																																						//

//								PrimaryKeyX	Function																										//

//																																																						//

//

void	PrimaryKeyX()

{

				HRESULT	hr	=	S_OK;

				//	Define	ADOX	object	pointers.

				//	Initialize	pointers	on	define.

				//	These	are	in	the	ADOX::		namespace.

				_CatalogPtr	m_pCatalog	=	NULL;

				_TablePtr	m_pTableNew	=	NULL;

				_IndexPtr	m_pIndexNew		=	NULL;

				_IndexPtr	m_pIndex		=	NULL;

				_ColumnPtr	m_pColumn	=	NULL;

				//Define	string	variable

				_bstr_t	strcnn("Provider=Microsoft.JET.OLEDB.4.0;"

								"Data	Source	=	c:\\Program	Files\\"

								"Microsoft	Office\\Office\\Samples\\Northwind.mdb;");

				try

				{

								TESTHR(hr	=	m_pCatalog.CreateInstance(__uuidof(Catalog)));

								TESTHR(hr	=	m_pTableNew.CreateInstance(__uuidof(Table)));

								TESTHR(hr	=	m_pIndexNew.CreateInstance(__uuidof(Index)));

								TESTHR(hr	=	m_pIndex.CreateInstance(__uuidof(Index)));

								TESTHR(hr	=	m_pColumn.CreateInstance(__uuidof(Column)));

								//	Connect	the	catalog

								m_pCatalog->PutActiveConnection(strcnn);

								//	Name	new	table

								m_pTableNew->Name	=	"NewTable";

								//	Append	a	numeric	and	a	text	field	to	new	table.

								m_pTableNew->Columns->Append("NumField",	adInteger,	20);

								m_pTableNew->Columns->Append("TextField",	adVarWChar,	20);

								//	Append	new	Primary	Key	index	on	NumField	column

								//	to	new	table

								m_pIndexNew->Name	=	"NumIndex";

								m_pIndexNew->Columns->Append("NumField",adInteger,0);

								//	here	"-1"	is	required	instead	of	"true".

								m_pIndexNew->PutPrimaryKey(-1);

								m_pIndexNew->PutUnique(-1);

								m_pTableNew->Indexes->Append(

												_variant_t	((IDispatch*)m_pIndexNew));

								//	Append	an	index	on	Textfield	to	new	table.

								//	Note	the	different	technique:	Specifying	index	and

								//	column	name	as	parameters	of	the	Append	method

								m_pTableNew->Indexes->Append("TextIndex",	"TextField");

								//	Append	the	new	table

								m_pCatalog->Tables->Append(_variant_t	((IDispatch*)m_pTableNew));

								cout	<<	m_pTableNew->Indexes->Count	<<	"	Indexes	in	"	

												<<	m_pTableNew->Name	<<	"	Table"	<<	endl;

								m_pCatalog->Tables->Refresh();

								_variant_t	vIndex;

								//	Enumerate	Indexes	collection.

								for	(long	lIndex	=	0;lIndex	<	m_pTableNew->Indexes->Count;

													lIndex++)

								{

												vIndex	=	lIndex;

												m_pIndex	=	m_pTableNew->Indexes->GetItem(vIndex);

												cout	<<	"Index	"	<<	m_pIndex->Name	<<	endl;

												cout	<<	"			Primary	key	=	"	<<	(m_pIndex->GetPrimaryKey()	?	

																"True"	:	"False")	<<	endl;

												cout	<<	"			Unique	=	"		<<	(m_pIndex->GetUnique()	?	"True"	:	

																"False")	<<	endl;

												//	Enumerate	Columns	collection	of	each	Index

												//	object.

												cout	<<	"				Columns"	<<	endl;

												for	(long	lIndex	=	0;lIndex	<	m_pIndex->Columns->Count;

																	lIndex++)

												{

																vIndex	=	lIndex		;

																m_pColumn	=	m_pIndex->Columns->GetItem(vIndex);

																cout	<<	"							"	<<	m_pColumn->Name	<<	endl;

												}

								}

								//	Delete	new	table	as	this	is	a	demonstration

								m_pCatalog->Tables->Delete(m_pTableNew->Name);

								m_pCatalog	=	NULL;

				}

				catch(_com_error	&e)

				{

								//	Notify	the	user	of	errors	if	any.

								_bstr_t	bstrSource(e.Source());

								_bstr_t	bstrDescription(e.Description());

								printf("\n\tSource	:		%s	\n\tdescription	:	%s	\n	",

														(LPCSTR)bstrSource,(LPCSTR)bstrDescription);

				}

				catch(...)

				{

								cout	<<	"Error	occured	in	include	files...."<<	endl;

				}

}

Microsoft	ADO	MD	Programmer's
Reference

Microsoft®	ActiveX®	Data	Objects	(Multidimensional)	(ADO	MD)	provides
easy	access	to	multidimensional	data	from	languages	such	as	Microsoft	Visual
Basic®,	Microsoft	Visual	C++®,	and	Microsoft	Visual	J++®.	ADO	MD	extends
Microsoft	ActiveX®	Data	Objects	(ADO)	to	include	objects	specific	to
multidimensional	data,	such	as	the	CubeDef	and	Cellset	objects.	With	ADO	MD
you	can	browse	multidimensional	schema,	query	a	cube,	and	retrieve	the	results.

Like	ADO,	ADO	MD	uses	an	underlying	OLE	DB	provider	to	gain	access	to
data.	To	work	with	ADO	MD,	the	provider	must	be	a	multidimensional	data
provider	(MDP)	as	defined	by	the	OLE	DB	for	OLAP	specification.	MDPs
present	data	in	multidimensional	views	as	opposed	to	tabular	data	providers
(TDPs)	that	present	data	in	tabular	views.	Refer	to	the	documentation	for	your
OLAP	OLE	DB	provider	for	more	detailed	information	on	the	specific	syntax
and	behaviors	supported	by	your	provider.

This	document	assumes	a	working	knowledge	of	the	Visual	Basic	programming
language	and	a	general	knowledge	of	ADO	and	OLAP.	For	more	information,
see	the	ADO	Programmer’s	Reference	and	the	OLE	DB	for	OLAP
Programmer’s	Reference.	For	more	overview	information	about	ADO	MD,	see
the	following	topics:

What's	New	in	ADO	MD
Overview	of	Multidimensional	Schemas	and	Data

Working	with	Multidimensional	Data

mk:@MSITStore:oledb.chm::/htm/Oledbpart3_ole_db_for_olap.htm

Using	ADO	with	ADO	MD

Programming	with	ADO	MD

ADO	MD	Object	Model

What's	New	in	ADO	MD

Code	Example	Topics

The	Visual	Basic	examples	have	been	improved	and	examples	in	Visual	Basic
Scripting	Edition	are	also	included.	You	can	copy	and	paste	these	code	examples
into	your	editor.

Overview	of	Multidimensional
Schemas	and	Data

Understanding	Multidimensional	Schemas

The	central	metadata	object	in	ADO	MD	is	the	cube,	which	consists	of	a
structured	set	of	related	dimensions,	hierarchies,	levels,	and	members.

A	dimension	is	an	independent	category	of	data	from	your	multidimensional
database,	derived	from	your	business	entities.	A	dimension	typically	contains
items	to	be	used	as	query	criteria	for	the	measures	of	the	database.

A	hierarchy	is	a	path	of	aggregation	of	a	dimension.	A	dimension	may	have
multiple	levels	of	granularity,	which	have	parent-child	relationships.	A	hierarchy
defines	how	these	levels	are	related.

A	level	is	a	step	of	aggregation	in	a	hierarchy.	For	dimensions	with	multiple
layers	of	information,	each	layer	is	a	level.

A	member	is	a	data	item	in	a	dimension.	Typically,	you	create	a	caption	or
describe	a	measure	of	the	database	using	members.

Cubes	are	represented	by	CubeDef	objects	in	ADO	MD.	Dimensions,
hierarchies,	levels,	and	members	are	also	represented	by	their	corresponding
ADO	MD	objects:	Dimension,	Hierarchy,	Level,	and	Member.

Dimensions

The	dimensions	of	a	cube	depend	on	your	business	entities	and	types	of	data	to
be	modeled	in	the	database.	Typically,	each	dimension	is	an	independent	entry
point	or	mechanism	for	selecting	data.

For	example,	a	cube	containing	sales	data	has	the	following	five	dimensions:
Salesperson,	Geography,	Time,	Products,	and	Measures.	The	Measures
dimension	contains	actual	sales	data	values,	while	the	other	dimensions
represent	ways	to	categorize	and	group	the	sales	data	values.

The	Geography	dimension	has	the	following	set	of	members:

{All,	North	America,	Europe,	Canada,	USA,	UK,	Germany,	Canada-West,

Canada-East,	USA-NW,	USA-SW,	USA-NE,	USA-SE,	England,	Scotland,	

Wales,Ireland,	Germany-North,	Germany-South,	Ottawa,	Toronto,	

Vancouver,	Calgary,	Seattle,	Boise,	Los	Angeles,	Houston,	

Shreveport,	Miami,	Boston,	New	York,	London,	Dover,	Glasgow,	

Edinburgh,	Cardiff,	Pembroke,	Belfast,	Londonderry,	Berlin,	

Hamburg,	Munich,	Stuttgart}

Hierarchies

Hierarchies	define	the	ways	in	which	the	levels	of	a	dimension	can	be	"rolled
up"	or	grouped.	A	dimension	can	have	more	than	one	hierarchy.	A	natural
hierarchy	exists	in	the	Geography	dimension:

Levels

In	the	example	Geography	dimension	pictured	in	the	previous	figure,	each	box
represents	a	level	in	the	hierarchy.

Each	level	has	a	set	of	members,	as	follows:

The	World	=	{All}

Continents	=	{North	America,	Europe}

Countries	=	{Canada,	USA,	UK,	Germany}

Regions	=	{Canada-East,	Canada-West,	USA-NE,	USA-NW,	USA-SE,
USA-SW,	England,	Ireland,	Scotland,	Wales,	Germany-North,

Germany-South}

Cities	=	{Ottawa,	Toronto,	Vancouver,	Calgary,	Seattle,	Boise,
Los	Angeles,	Houston,	Shreveport,	Miami,	Boston,	New	York,

London,	Dover,	Glasgow,	Edinburgh,	Cardiff,	Pembroke,	Belfast,

Londonderry,	Berlin,	Hamburg,	Munich,	Stuttgart}

Members

Members	at	the	leaf	level	of	a	hierarchy	have	no	children,	and	members	at	the
root	level	have	no	parent.	All	other	members	have	at	least	one	parent	and	at	least
one	child.	For	example,	a	partial	traversal	of	the	hierarchy	tree	in	the	Geography
dimension	yields	the	following	parent-child	relationships:

{All}	(parent	of)	{Europe,	North	America}

{North	America}	(parent	of)	{Canada,	USA}

{USA}	(parent	of)	{USA-NE,	USA-NW,	USA-SE,	USA-SW}

{USA-NW}	(parent	of)	{Boise,	Seattle}

Members	can	be	consolidated	along	one	or	more	hierarchies	per	dimension.
Consider	a	Time	dimension	where	there	are	two	ways	to	roll	up	to	the	Year	level
from	the	Days	level:

This	example	also	illustrates	another	characteristic:	Some	members	of	the	Week
level	of	the	Year-Week	hierarchy	do	not	appear	in	any	level	of	the	Year-Quarter
hierarchy.	Thus,	a	hierarchy	need	not	include	all	members	of	a	dimension.

Working	with	Multidimensional	Data

A	cellset	is	the	result	of	a	query	on	multidimensional	data.	It	consists	of	a
collection	of	axes,	usually	no	more	than	four	axes	and	typically	only	two	or
three.	An	axis	is	a	collection	of	members	from	one	or	more	dimensions,	which	is
used	to	locate	or	filter	specific	values	in	a	cube.

A	position	is	a	point	along	an	axis.	For	an	axis	consisting	of	a	single	dimension,
these	positions	are	a	subset	of	the	dimension	members.	If	an	axis	consists	of
more	than	one	dimension,	then	each	position	is	a	compound	entity,	which	has	n
parts	where	n	is	the	number	of	dimensions	oriented	along	that	axis.	Each	part	of
the	position	is	a	member	from	one	constituent	dimension.

For	example,	if	the	Geography	and	Product	dimensions	from	a	cube	containing
sales	data	are	oriented	along	the	x-axis	of	a	cellset,	a	position	along	this	axis	may
contain	the	members	"USA"	and	"Computers."	In	this	example,	determining	a
position	along	the	x-axis	requires	that	members	from	each	dimension	are
oriented	along	the	axis.

A	cell	is	an	object	positioned	at	the	intersection	of	axis	coordinates.	Each	cell
has	multiple	pieces	of	information	associated	with	it,	including	the	data	itself,	a
formatted	string	(the	displayable	form	of	cell	data),	and	the	cell	ordinal	value.
(Each	cell	is	a	unique	ordinal	value	in	the	cellset.	The	ordinal	value	of	the	first
cell	in	the	cellset	is	zero,	while	the	leftmost	cell	in	the	second	row	of	a	cellset
with	eight	columns	would	have	an	ordinal	value	of	eight.)

For	example,	a	cube	has	the	following	six	dimensions	(note	that	this	cube
schema	differs	slightly	from	the	example	given	in	Overview	of
Multidimensional	Schemas	and	Data):

Salesperson

Geography	(natural	hierarchy)—Continents,	Countries,	States,	and	so	on

Quarters—Quarters,	Months,	Days

Years

Measures—Sales,	PercentChange,	BudgetedSales

Products

The	following	cellset	represents	sales	for	1991	for	all	products:

Note			The	cell	values	in	the	example	can	be	viewed	as	ordered	pairs	of	axis
position	ordinals	where	the	first	digit	represents	the	x-axis	position	and	the
second	digit	the	y-axis	position.

The	characteristics	of	this	cellset	are	as	follows:

Axis	dimensions:	Quarters,	Salesperson,	Geography

Filter	dimensions:	Measures,	Years,	Products

Two	axes:	COLUMN	(x,	or	Axis	0)	and	ROW	(y,	or	Axis	1)

x-axis:	two	nested	dimensions,	Salesperson	and	Geography

y-axis:	Quarters	dimension

The	x-axis	has	two	nested	dimensions:	Salesperson	and	Geography.	From
Geography,	four	members	are	selected:	Seattle,	Boston,	USA-South,	and	Japan.
Two	members	are	selected	from	Salesperson:	Valentine	and	Nash.	This	yields	a
total	of	eight	positions	on	this	axis	(8	=	4*2).

Each	coordinate	is	represented	as	a	position	with	two	members—one	from	the
Salesperson	dimension	and	another	from	the	Geography	dimension:

(Valentine,	Seattle),	(Valentine,	Boston),	(Valentine,	USA_North),

(Valentine,	Japan),	(Nash,	Seattle),	(Nash,	Boston),	(Nash,	USA_North),

(Nash,	Japan)

The	y-axis	has	only	one	dimension,	containing	the	following	eight	positions:

Jan,	Feb,	Mar,	Qtr2,	Qtr3,	Oct,	Nov,	Dec

Cellsets,	cells,	axes,	and	positions	are	all	represented	in	ADO	MD	by
corresponding	objects:	Cellset,	Cell,	Axis,	and	Position.

Using	ADO	with	ADO	MD

ADO	and	ADO	MD	are	related	but	separate	object	models.	ADO	provides
objects	for	connecting	to	data	sources,	executing	commands,	retrieving	tabular
data	and	schema	metadata	in	a	tabular	format,	and	viewing	provider	error
information.	ADO	MD	provides	objects	for	retrieving	multidimensional	data	and
viewing	multidimensional	schema	metadata.

When	working	with	an	MDP	you	may	choose	to	use	ADO,	ADO	MD,	or	both
with	your	application.	By	referencing	both	libraries	within	your	project,	you	will
have	full	access	to	the	functionality	provided	by	your	MDP.

It	is	often	useful	for	consumers	to	get	a	flattened,	tabular	view	of	a
multidimensional	dataset.	You	can	do	this	by	using	the	ADO	Recordset	object.
Specify	the	source	for	your	Cellset	as	the	Source	parameter	for	the	Open	method
of	a	Recordset,	rather	than	as	the	source	for	an	ADO	MD	Cellset.

It	may	also	be	useful	to	view	the	schema	metadata	in	a	tabular	view	rather	than
as	a	hierarchy	of	objects.	The	ADO	OpenSchema	method	on	the	Connection
object	allows	the	user	to	open	a	Recordset	containing	schema	information.	The
QueryType	parameter	of	the	OpenSchema	method	has	several	SchemaEnum
values	that	relate	specifically	to	MDPs.	These	values	are:

adSchemaCubes
adSchemaDimensions

adSchemaHierarchies

adSchemaLevels

adSchemaMeasures

adSchemaMembers

To	use	ADO	enum	values	with	ADO	MD	properties	or	methods,	your	project
must	reference	both	the	ADO	and	ADO	MD	libraries.	For	example,	you	can	use
the	ADO	adState	enum	values	with	the	ADO	MD	State	property.	For	more
information	about	establishing	references	to	libraries,	see	the	documentation	of
your	development	tool.

For	more	information	about	the	ADO	objects	and	methods,	see	the	ADO
Programmer’s	Reference.

Programming	with	ADO	MD

To	use	ADO	MD	with	your	development	tool,	you	should	establish	a	reference
to	the	ADO	MD	type	library.	The	description	of	the	ADO	MD	library	is
Microsoft	ActiveX	Data	Objects	(Multi-dimensional)	Library.	The	ADO	MD
library	filename	is	msadomd.dll,	and	the	program	ID	(ProgID)	is	"ADOMD".
For	more	information	about	establishing	references	to	libraries,	see	the
documentation	of	your	development	tool.

ADO	MD	API	Reference

This	section	of	the	ADO	MD	documentation	contains	topics	for	each	ADO	MD
object,	collection,	method,	and	property,	as	well	as	example	code	when
appropriate.	For	more	information,	search	for	a	specific	topic	in	the	index	or
refer	to	the	following	topics:

ADO	MD	Objects
ADO	MD	Collections

ADO	MD	Properties

ADO	MD	Methods

ADO	MD	Enumerated	Constants

ADO	MD	Examples

ADO	MD	Object	Model

The	following	diagram	shows	how	these	objects	are	represented	and	related	in
ADO	MD.

The	Axis	and	Cell	objects	each	have	a	Positions	collection.

The	Level	and	Position	objects	each	have	a	Members	collection.

The	Axis,	Cell,	Cellset,	CubeDef,	Dimension,	Hierarchy,	Level,	and	Member
objects	each	have	a	standard	ADO	Properties	collection.

ADO	MD	Objects

ADO	MD	Object	Summary

Object Description

Axis Represents	a	positional	or	filter	axis	of	a	cellset,	containing
selected	members	of	one	or	more	dimensions.

Catalog
Contains	multidimensional	schema	information	(that	is,	cubes
and	underlying	dimensions,	hierarchies,	levels,	and	members)
specific	to	a	multidimensional	data	provider	(MDP).

Cell Represents	the	data	at	the	intersection	of	axis	coordinates,
contained	in	a	cellset.

Cellset Represents	the	results	of	a	multidimensional	query.	It	is	a
collection	of	cells	selected	from	cubes	or	other	cellsets.

CubeDef Represents	a	cube	from	a	multidimensional	schema,	containing	a
set	of	related	dimensions.

Dimension Represents	one	of	the	dimensions	of	a	multidimensional	cube,
containing	one	or	more	hierarchies	of	members.

Hierarchy
Represents	one	way	in	which	the	members	of	a	dimension	can	be
aggregated	or	"rolled	up."	A	dimension	can	be	aggregated	along
one	or	more	hierarchies.

Level Contains	a	set	of	members,	each	of	which	has	the	same	rank
within	a	hierarchy.

Member
Represents	a	member	of	a	level	in	a	cube,	the	children	of	a
member	of	a	level,	or	a	member	of	a	position	along	an	axis	of	a
cellset.

Position Represents	a	set	of	one	or	more	members	of	different	dimensions
that	defines	a	point	along	an	axis.

Also,	the	Catalog	object	is	connected	to	an	ADO	Connection	object,	which	is
included	with	the	standard	ADO	library:

Object Description
Connection Represents	an	open	connection	to	a	data	source.

The	relationships	between	these	objects	are	illustrated	in	the	ADO	MD	Object
Model.

Many	ADO	MD	objects	can	be	contained	in	a	corresponding	collection.	For
example,	a	CubeDef	object	can	be	contained	in	a	CubeDefs	collection	of	a
Catalog.	For	more	information,	see	ADO	MD	Collections.

Axis	Object

				 				

				 				

Represents	a	positional	or	filter	axis	of	a	cellset,	containing	selected	members	of
one	or	more	dimensions.

Remarks

An	Axis	object	can	be	contained	by	an	Axes	collection,	or	returned	by	the
FilterAxis	property	of	a	Cellset.

With	the	collections	and	properties	of	an	Axis	object,	you	can	do	the	following:

Identify	the	Axis	with	the	Name	property.

Iterate	through	each	position	along	an	Axis	using	the	Positions	collection.

Obtain	the	number	of	dimensions	on	the	Axis	with	the	DimensionCount
property.

Obtain	provider-specific	attributes	of	the	Axis	with	the	standard	ADO
Properties	collection.

Catalog	Object

				 				

				 				

Contains	multidimensional	schema	information	(that	is,	cubes	and	underlying
dimensions,	hierarchies,	levels,	and	members)	specific	to	a	multidimensional
data	provider	(MDP).

Remarks

With	the	collections	and	properties	of	a	Catalog	object,	you	can	do	the
following:

Open	the	catalog	by	setting	the	ActiveConnection	property	to	a	standard
ADO	Connection	object	or	to	a	valid	connection	string.

Identify	the	Catalog	with	the	Name	property.

Iterate	through	the	cubes	in	a	catalog	using	the	CubeDefs	collection.

Cell	Object

				 				

				 				

Represents	the	data	at	the	intersection	of	axis	coordinates	contained	in	a	cellset.

Remarks

A	Cell	object	is	returned	by	the	Item	property	of	a	Cellset	object.

With	the	collections	and	properties	of	a	Cell	object,	you	can	do	the	following:

Return	the	data	in	the	Cell	with	the	Value	property.

Return	the	string	representing	the	formatted	display	of	the	Value	property
with	the	FormattedValue	property.

Return	the	ordinal	value	of	the	Cell	within	the	Cellset	with	the	Ordinal
property.

Determine	the	position	of	the	Cell	within	the	CubeDef	with	the	Positions
collection.

Retrieve	other	information	about	the	Cell	with	the	standard	ADO	Properties
collection.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description
BackColor Background	color	used	when	displaying	the	cell.
FontFlags Bitmask	detailing	effects	on	the	font.
FontName Font	used	to	display	the	cell	value.
FontSize Font	size	used	to	display	the	cell	value.
ForeColor Foreground	color	used	when	displaying	the	cell.
FormatStringValue	in	a	formatted	string.

Cellset	Object

				 				

				 				

Represents	the	results	of	a	multidimensional	query.	It	is	a	collection	of	cells
selected	from	cubes	or	other	cellsets.

Remarks

Data	within	a	Cellset	is	retrieved	using	direct,	array-like	access.	You	can	"drill
down"	to	a	specific	member	to	obtain	data	about	that	member.	For	example,	the
following	code	returns	the	caption	of	the	first	member	in	the	first	position	on	the

first	axis	of	a	cellset	named	cst:

cst.Axes(0).Positions(0).Members(0).Caption

There	is	no	notion	of	a	current	cell	within	a	cellset.	Instead,	the	Item	property
retrieves	a	specific	Cell	object	from	the	cellset.	The	arguments	of	the	Item
property	determine	which	cell	is	retrieved.	You	can	specify	the	unique	ordinal
value	of	a	cell.	You	can	also	retrieve	cells	by	using	their	position	numbers	along
each	axis	of	the	cellset.	For	more	information	about	retrieving	cells,	see	the	Item
property.

With	the	collections,	methods,	and	properties	of	a	Cellset	object,	you	can	do	the
following:

Associate	an	open	connection	with	a	Cellset	object	by	setting	its
ActiveConnection	property.

Execute	and	retrieve	the	results	of	a	multidimensional	query	with	the	Open
method.

Retrieve	a	Cell	from	the	Cellset	with	the	Item	property.

Return	the	Axis	objects	that	define	the	Cellset	with	the	Axes	collection.

Retrieve	information	about	the	dimensions	used	to	filter	the	data	in	the
Cellset	with	the	FilterAxis	property.

Return	or	specify	the	query	used	to	define	the	Cellset	with	the	Source
property.

Return	the	current	state	of	the	Cellset	(open,	closed,	executing,	or
connecting)	with	the	State	property.

Close	an	open	Cellset	with	the	Close	method.

Retrieve	provider-specific	information	about	the	Cellset	with	the	standard
ADO	Properties	collection.

CubeDef	Object

				 				

				 				

Represents	a	cube	from	a	multidimensional	schema,	containing	a	set	of	related
dimensions.

Remarks

With	the	collections	and	properties	of	a	CubeDef	object,	you	can	do	the
following:

Identify	a	CubeDef	with	the	Name	property.

Return	a	string	that	describes	the	cube	with	the	Description	property.

Return	the	dimensions	that	make	up	the	cube	with	the	Dimensions
collection.

Obtain	additional	information	about	the	CubeDef	with	the	standard	ADO
Properties	collection.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description
CatalogName The	name	of	the	catalog	to	which	this	cube	belongs.
CreatedOn Date	and	time	of	cube	creation.
CubeGUID Cube	GUID.
CubeName The	name	of	the	cube.
CubeType The	type	of	the	cube.
DataUpdatedBy User	ID	of	the	person	doing	the	last	data	update.
Description A	meaningful	description	of	the	cube.
LastSchemaUpdate Date	and	time	of	last	schema	update.

SchemaName The	name	of	the	schema	to	which	this	cube
belongs.

SchemaUpdatedBy User	ID	of	the	person	doing	the	last	schema	update.

Dimension	Object

				 				

				 				

Represents	one	of	the	dimensions	of	a	multidimensional	cube,	containing	one	or
more	hierarchies	of	members.

Remarks

With	the	collections	and	properties	of	a	Dimension	object,	you	can	do	the
following:

Identify	the	Dimension	with	the	Name	and	UniqueName	properties.

Return	a	meaningful	string	that	describes	the	Dimension	with	the
Description	property.

Return	the	Hierarchy	objects	that	make	up	the	Dimension	with	the
Hierarchies	collection.

Use	the	standard	ADO	Properties	collection	to	obtain	additional
information	about	the	Dimension	object.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description
CatalogName The	name	of	the	catalog	to	which	this	cube	belongs.
CubeName The	name	of	the	cube.
DefaultHierarchy The	unique	name	of	the	default	hierarchy.
Description A	meaningful	description	of	the	cube.
DimensionCaption A	label	or	caption	associated	with	the	dimension.
DimensionCardinality The	number	of	members	in	the	dimension.
DimensionGUID The	GUID	of	the	dimension.
DimensionName The	name	of	the	dimension.

DimensionOrdinal The	ordinal	number	of	the	dimension	among	the
group	of	dimensions	that	form	the	cube.

DimensionType The	dimension	type.
DimensionUniqueName The	unambiguous	name	of	the	dimension.

SchemaName The	name	of	the	schema	to	which	this	cube
belongs.

Hierarchy	Object

				 				

				 				

Represents	one	way	in	which	the	members	of	a	dimension	can	be	aggregated	or
"rolled	up."	A	dimension	can	be	aggregated	along	one	or	more	hierarchhies.

Remarks

With	the	collections	and	properties	of	a	Hierarchy	object,	you	can	do	the
following:

Identify	the	Hierarchy	with	the	Name	and	UniqueName	properties.

Return	a	meaningful	string	that	describes	the	Hierarchy	with	the
Description	property.

Return	the	Level	objects	that	make	up	the	Hierarchy	with	the	Levels
collection.

Use	the	standard	ADO	Properties	collection	to	obtain	additional
information	about	the	Hierarchy	object.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description

AllMember The	member	at	the	highest	level	of	rollup	in	the
hierarchy.

CatalogName The	name	of	the	catalog	to	which	this	cube	belongs.
CubeName The	name	of	the	cube.

DefaultMember The	unique	name	of	the	default	member	for	this
hierarchy.

Description A	meaningful	description	of	the	hierarchy.

DimensionType The	type	of	dimension	to	which	this	hierarchy
belongs.

DimensionUniqueName The	unambiguous	name	of	the	dimension.
HierarchyCaption A	label	or	caption	associated	with	the	hierarchy.
HierarchyCardinality The	number	of	members	in	the	hierarchy.
HierarchyGUID The	GUID	of	the	hierarchy.
HierarchyName The	name	of	the	hierarchy.
HierarchyUniqueName The	unambiguous	name	of	the	hierarchy.
SchemaName The	name	of	the	schema	to	which	this	cube	belongs.

Level	Object

				 				

				 				

Contains	a	set	of	members,	each	of	which	has	the	same	rank	within	a	hierarchy.

Remarks

With	the	collections	and	properties	of	a	Level	object,	you	can	do	the	following:

Identify	the	Level	with	the	Name	and	UniqueName	properties.

Return	a	string	to	use	when	displaying	the	Level	with	the	Caption	property.

Return	a	meaningful	string	that	describes	the	Level	with	the	Description
property.

Return	the	Member	objects	that	make	up	the	Level	with	the	Members
collection.

Return	the	number	of	levels	from	the	root	of	the	Level	with	the	Depth
property.

Use	the	standard	ADO	Properties	collection	to	obtain	additional
information	about	the	Level	object.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description
CatalogName The	name	of	the	catalog	to	which	this	cube	belongs.
CubeName The	name	of	the	cube.
Description A	meaningful	description	of	the	level.
DimensionUniqueName The	unambiguous	name	of	the	dimension.
HierarchyUniqueName The	unambiguous	name	of	the	hierarchy.
LevelCaption A	label	or	caption	associated	with	the	level.
LevelCardinality The	number	of	members	in	the	level.
LevelGUID The	GUID	of	the	level.
LevelName Name	of	the	level.

LevelNumber The	distance	between	the	level	and	the	root	of	the
hierarchy.

LevelType The	type	of	level.
LevelUniqueName The	unambiguous	name	of	the	level.
SchemaName The	name	of	the	schema	to	which	this	cube	belongs.

Member	Object

				 				

				 				

Represents	a	member	of	a	level	in	a	cube,	the	children	of	a	member	of	a	level,	or
a	member	of	a	position	along	an	axis	of	a	cellset.

Remarks

The	properties	of	a	Member	differ	depending	on	the	context	in	which	it	is	used.
A	Member	of	a	Level	in	a	CubeDef	has	a	Children	property	that	returns	the
Members	on	the	next	lower	level	in	the	hierarchy	from	the	current	Member.

For	a	Member	of	a	Position,	the	Children	collection	is	always	empty.	Also,	the
Type	property	applies	only	to	Members	of	a	Level.

A	Member	of	Position	has	two	properties—DrilledDown	and
ParentSameAsPrev—that	are	useful	when	displaying	the	Cellset.	An	error	will
occur	if	these	properties	are	accessed	on	a	Member	of	a	Level.

With	the	collections	and	properties	of	a	Member	object	of	a	Level,	you	can	do
the	following:

Identify	the	Member	with	the	Name	and	UniqueName	properties.

Return	a	string	to	use	when	displaying	the	Member	with	the	Caption
property.

Return	a	meaningful	string	that	describes	a	measure	or	formula	Member
with	the	Description	property.

Determine	the	nature	of	the	Member	with	the	Type	property.

Obtain	information	about	the	Level	of	the	Member	with	the	LevelDepth
and	LevelName	properties.

Obtain	related	Members	in	a	Hierarchy	with	the	Parent	and	Children
properties.

Count	the	children	of	a	Member	with	the	ChildCount	property.

Use	the	standard	ADO	Properties	collection	to	obtain	additional
information	about	the	Level	object.

With	the	collections	and	properties	of	a	Member	of	a	Position	along	an	Axis,
you	can	do	the	following:

Identify	the	Member	with	the	Name	and	UniqueName	properties.

Return	a	string	to	use	when	displaying	the	Member	with	the	Caption
property.

Return	a	meaningful	string	that	describes	a	measure	or	formula	Member
with	the	Description	property.

Obtain	information	about	the	Level	of	the	Member	with	the	LevelDepth
and	LevelName	properties.

Count	the	children	of	a	Member	with	the	ChildCount	property.

Use	the	DrilledDown	property	to	determine	whether	there	is	at	least	one
child	on	the	Axis	immediately	following	this	Member.

Use	the	ParentSameAsPrev	property	to	determine	whether	the	parent	of	this
Member	is	the	same	as	the	parent	of	the	immediately	preceding	Member.

Use	the	standard	ADO	Properties	collection	to	obtain	additional
information	about	the	Level	object.

The	Properties	collection	contains	provider-supplied	properties.	The	following
table	lists	properties	that	might	be	available.	The	actual	property	list	may	differ
depending	upon	the	implementation	of	the	provider.	See	the	documentation	for
your	provider	for	a	more	complete	list	of	available	properties.

Name Description
CatalogName The	name	of	the	catalog	to	which	this	cube	belongs.
ChildrenCardinality The	number	of	children	that	the	member	has.
CubeName The	name	of	the	cube.
Description A	meaningful	description	of	the	member.
DimensionUniqueName The	unambiguous	name	of	the	dimension.
HierarchyUniqueName The	unambiguous	name	of	the	hierarchy.

LevelNumber The	distance	between	the	level	and	the	root	of	the
hierarchy.

LevelUniqueName The	unambiguous	name	of	the	level.
MemberCaption A	label	or	caption	associated	with	the	member.
MemberGUID The	GUID	of	the	member.
MemberName The	name	of	the	member.
MemberOrdinal The	ordinal	number	of	the	member.
MemberType The	type	of	the	member.

MemberUniqueName The	unambiguous	name	of	the	member.

ParentCount The	count	of	the	number	of	parents	that	this	member
has.

ParentLevel The	level	number	of	the	member's	parent.
ParentUniqueName The	unambiguous	name	of	the	member's	parent.
SchemaName The	name	of	the	schema	to	which	this	cube	belongs.

Position	Object

				 				

				 				

Represents	a	set	of	one	or	more	members	of	different	dimensions	that	defines	a
point	along	an	axis.

Remarks

With	the	properties	and	collections	of	a	Position	object	you	can	do	the
following:

Use	the	Ordinal	property	to	return	the	ordinal	position	of	the	Position

along	the	Axis.

Use	the	Members	collection	to	return	the	members	that	make	up	the
position	along	the	Axis.

ADO	MD	Collections

ADO	MD	Collection	Summary

Collection Description
Axes Contains	the	Axis	objects	that	define	a	cellset.

CubeDefs Contains	the	CubeDef	objects	that	represent	a	cube	from	a
multidimensional	catalog.

Dimensions Contains	the	Dimension	objects	that	make	up	a	cube.
Hierarchies Contains	the	set	Hierarchy	objects	from	a	dimension.
Levels Contains	the	Level	objects	that	make	up	a	hierarchy.

Members Contains	the	Member	objects	from	a	level	or	a	position	along	an
axis.

Positions Contains	the	Position	objects	that	define	a	point	on	an	axis.

Axes	Collection

				 				

				

Contains	the	Axis	objects	that	define	a	cellset.

Remarks

A	Cellset	object	contains	an	Axes	collection.	Once	the	Cellset	is	opened,	this
collection	will	contain	at	least	one	Axis.	See	the	Axis	object	for	a	more	detailed
explanation	of	how	to	use	Axis	objects.

Note			The	filter	axis	of	a	Cellset	is	not	contained	in	the	Axes	collection.	See	the
FilterAxis	property	for	more	information.

Axes	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

CubeDefs	Collection

				 				

				

Contains	the	CubeDef	objects	that	represent	a	cube	from	a	multidimensional
catalog.

Remarks

CubeDefs	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

Dimensions	Collection

				 				

				

Contains	the	Dimension	objects	that	make	up	a	cube.

Remarks

Dimensions	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

Hierarchies	Collection

				 				

				

Contains	the	set	Hierarchy	objects	from	a	dimension.

Remarks

Hierarchies	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

Levels	Collection

				 				

				

Contains	the	Level	objects	that	make	up	a	hierarchy.

Remarks

Levels	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

Members	Collection

				 				

				

Contains	the	Member	objects	from	a	level	or	a	position	along	an	axis.

Remarks

A	Members	collection	is	used	to	contain	the	following	types	of	members:

The	members	that	make	up	a	level	in	a	cube.	These	are	contained	in	the
Members	collection	of	a	Level	object.	For	example,	using	the	sample	from
Overview	of	Multidimensional	Schemas	and	Data,	the	four	members	of	the
Countries	level	are	Canada,	USA,	UK,	and	Germany.

The	members	that	are	the	children	of	a	specific	member	within	a	hierarchy.
These	members	are	returned	by	the	Children	property	of	the	parent
Member	object.	For	example,	again	using	the	same	sample,	the	two
children	of	the	Canada	member	are	Canada-East	and	Canada-West.

The	members	that	define	a	specific	position	along	an	axis	of	a	cellset.	Using
the	cellset	from	Working	with	Multidimensional	Data	as	an	example,	the
two	members	of	the	first	position	on	the	x-axis	are	Valentine	and	Seattle.
These	members	are	contained	by	the	Members	collection	of	a	Position
object.

Members	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

Positions	Collection

				 				

				

Contains	the	Position	objects	that	define	a	point	on	an	axis.

Remarks

Positions	is	a	standard	ADO	collection.	With	the	properties	and	methods	of	a
collection,	you	can	do	the	following:

Obtain	the	number	of	objects	in	the	collection	with	the	Count	property.

Return	an	object	from	the	collection	with	the	default	Item	property.

Update	the	objects	in	the	collection	from	the	provider	with	the	Refresh
method.

ADO	MD	Properties

ADO	MD	Property	Summary

Property Description

ActiveConnection Indicates	to	which	ADO	Connection	object	the	current
cellset	or	catalog	currently	belongs.

Caption Indicates	the	text	caption	to	use	when	displaying	a	Level	or
Member	object.

ChildCount Indicates	the	number	of	members	for	which	the	current
Member	object	is	the	parent	in	a	hierarchy.

Children Returns	a	collection	of	Members	for	which	the	current
Member	is	the	parent	in	the	hierarchy.

Count Indicates	the	number	of	objects	in	a	collection.

Depth Indicates	the	number	of	levels	between	the	Level	and	the
root	of	the	hierarchy	level.

Description Returns	a	text	explanation	of	the	current	object.
DimensionCount Indicates	the	number	of	dimensions	on	an	axis.

DrilledDown Indicates	whether	no	children	immediately	follow	the
member	on	the	axis.

FilterAxis Indicates	filter	information	for	the	current	cellset.
Item Retrieves	a	cell	from	a	cellset	using	its	coordinates.

Item Returns	a	specific	member	of	a	collection	by	name	or
ordinal	number.

FormattedValue Indicates	the	formatted	display	of	a	cell	value.

LevelDepth Indicates	the	number	of	levels	between	the	root	of	the
hierarchy	and	a	member.

LevelName Indicates	the	name	of	the	level	of	a	member.
Name Indicates	the	name	of	an	object.
Ordinal	(Cell) Uniquely	identifies	a	cell	by	its	position	within	a	cellset.
Ordinal	(Position) Uniquely	identifies	a	position	along	an	axis.

Parent Indicates	the	member	that	is	the	parent	of	the	current
member	in	a	hierarchy.

ParentSameAsPrev Indicates	whether	the	parent	of	this	position	member	is	thesame	as	the	parent	of	the	immediately	preceding	member.
Source Indicates	the	source	for	the	data	in	the	cellset.
State Indicates	the	current	state	of	the	cellset.
Type Indicates	the	type	of	the	current	member.
UniqueName Indicates	an	unambiguous	name	for	the	current	object.
Value Indicates	the	value	of	the	current	cell.

ActiveConnection	Property

				 				

Indicates	to	which	ADO	Connection	object	the	current	cellset	or	catalog
currently	belongs.

Settings	and	Return	Values

Sets	or	returns	a	Variant	that	contains	a	string	defining	a	connection	or
Connection	object.	The	default	is	empty.

Remarks

You	can	set	this	property	to	a	valid	ADO	Connection	object	or	to	a	valid
connection	string.	When	this	property	is	set	to	a	connection	string,	the	provider
creates	a	new	Connection	object	using	this	definition	and	opens	the	connection.

If	you	use	the	ActiveConnection	argument	of	the	Open	method	to	open	a	Cellset
object,	the	ActiveConnection	property	will	inherit	the	value	of	the	argument.

Setting	the	ActiveConnection	property	of	a	Catalog	object	to	Nothing	releases
the	associated	data,	including	data	in	the	CubeDefs	collection	and	any	related
Dimension,	Hierarchy,	Level,	and	Member	objects.	Closing	a	Connection	object
that	was	used	to	open	a	Catalog	has	the	same	effect	as	setting	the
ActiveConnection	property	to	Nothing.

An	error	will	occur	if	you	attempt	to	change	the	ActiveConnection	property	for
an	open	Cellset	object.

Note			In	Visual	Basic,	remember	to	use	the	Set	keyword	when	setting	the
ActiveConnection	property	to	a	Connection	object.	If	you	omit	the	Set
keyword,	you	will	actually	be	setting	the	ActiveConnection	property	equal	to
the	Connection	object's	default	property,	ConnectionString.	The	code	will
work;	however,	you	will	create	an	additional	connection	to	the	data	source,
which	may	have	negative	performance	implications.

When	using	the	MSOLAP	data	provider,	set	the	data	source	in	a	connection
string	to	a	server	name	and	set	the	initial	catalog	to	the	name	of	a	catalog	from
the	data	source.	To	connect	to	a	cube	file	that	is	disconnected	from	a	server,	set
the	location	to	the	full	path	to	the	.CUB	file.	In	either	case,	set	the	provider	to	the
provider	name.	For	example,	the	following	string	connects	to	a	catalog	named
Bobs	Video	Store	on	a	server	named	Servername	with	the	MSOLAP	Provider:

"Data	Source=Servername;Initial	Catalog=Bobs	Video	Store;Provider=msolap"

The	following	string	connects	to	a	local	cube	file	at	the	location
C:\MSDASDK\samples\oledb\olap\data\bobsvid.cub:

"Location=C:\MSDASDK\samples\oledb\olap\data\bobsvid.cub;Provider=msolap"

Caption	Property

				 				

Indicates	the	text	caption	to	use	when	displaying	a	Level	or	Member	object.

Return	Values

Returns	a	String	and	is	read-only.

ChildCount	Property

				 				

Indicates	the	number	of	members	for	which	the	current	Member	object	is	the
parent	in	a	hierarchy.

Return	Values

Returns	a	Long	integer	and	is	read-only.

Remarks

Use	the	ChildCount	property	to	return	an	estimate	of	how	many	children	a
Member	has.	The	actual	children	of	a	Member	can	be	returned	by	the	Children
property.

For	Member	objects	from	a	Position	object,	the	maximum	number	returned	is
65536.	If	the	actual	number	of	children	exceeds	65536,	the	value	returned	will
still	be	65536.	Therefore,	the	application	should	interpret	a	ChildCount	of
65536	as	equal	to	or	greater	than	65536	children.

For	Member	objects	from	a	Level	object,	use	the	ADO	collection	Count
property	on	the	Children	collection	to	determine	the	exact	number	of	children.
Determining	the	exact	number	of	children	may	be	slow	if	the	number	of	children
in	the	collection	is	large.

Children	Property

				 				

Returns	a	Members	collection	for	which	the	current	Member	is	the	parent	in	the
hierarchy.

Return	Values

Returns	a	Members	collection	and	is	read-only.

Remarks

The	Children	property	contains	a	Members	collection	for	which	the	current
Member	is	the	hierarchical	parent.	Leaf	level	Member	objects	have	no	child
members	in	the	Members	collection.	This	property	is	only	supported	on
Member	objects	belonging	to	a	Level	object.	An	error	occurs	when	this	property
is	referenced	from	Member	objects	belonging	to	a	Position	object.

Depth	Property

				 				

Indicates	the	number	of	levels	between	the	Level	and	the	root	of	the	hierarchy.

Return	Values

Returns	an	integer,	and	is	read-only.

Remarks

A	Level	at	the	root	of	a	hierarchy	has	a	Depth	value	of	zero	(0).

Description	Property

				 				

Returns	a	text	explanation	of	the	current	object.

Return	Values

Returns	a	String	and	is	read-only.

Remarks

For	Member	objects,	Description	applies	only	to	measure	and	formula
members.	Description	returns	an	empty	string	("")	for	all	other	types	of
members.	For	more	information	about	the	various	types	of	members,	see	the
Type	property.

This	property	is	only	supported	on	Member	objects	belonging	to	a	Level	object.
An	error	occurs	when	this	property	is	referenced	from	Member	objects
belonging	to	a	Position	object.

DimensionCount	Property

				 				

Indicates	the	number	of	dimensions	on	an	axis.

Return	Values

Returns	a	Long	integer,	and	is	read-only.

DrilledDown	Property

				 				

Indicates	whether	no	children	immediately	follow	the	member	on	the	axis.

Return	Values

Returns	a	Boolean	value	and	is	read-only.	DrilledDown	returns	True	if	there	are
no	child	members	of	the	current	member	on	the	axis.	DrilledDown	returns	False
if	there	is	one	or	more	child	members	of	the	current	member	on	the	axis.

Remarks

Use	the	DrilledDown	property	to	determine	whether	there	is	at	least	one	child	of
this	member	on	the	axis	immediately	following	this	member.	This	information	is
useful	when	displaying	the	member.

This	property	is	only	supported	on	Member	objects	belonging	to	a	Position
object.	An	error	occurs	when	this	property	is	referenced	from	Member	objects
belonging	to	a	Level	object.

FilterAxis	Property

				 				

Indicates	filter	information	about	the	current	cellset.

Return	Values

Returns	an	Axis	object,	and	is	read-only.

Remarks

Use	the	FilterAxis	property	to	return	information	about	the	dimensions	that
were	used	to	slice	the	data.	The	DimensionCount	property	of	the	Axis	returns	the
number	of	slicer	dimensions.	This	axis	usually	has	just	one	row.

The	Axis	returned	by	FilterAxis	is	not	contained	in	the	Axes	collection	for	a
Cellset	object.

FormattedValue	Property

				 				

Indicates	the	formatted	display	of	a	cell	value.

Return	Values

Returns	a	String	and	is	read-only.

Remarks

Use	the	FormattedValue	property	to	obtain	the	formatted	display	value	of	the
Value	property	of	a	Cell	object.	For	example,	if	the	value	of	a	cell	was	1056.87,
and	this	value	represented	a	dollar	amount,	FormattedValue	would	be
$1,056.87.

Item	Property	(Cellset)

				 				

Retrieves	a	cell	from	a	cellset	using	its	coordinates.

Syntax

Set	Cell	=	Cellset.Item	(Positions)

Parameters

Positions			A	Variant	Array	of	values	that	uniquely	specify	a	cell.	Positions	can
be	one	of	the	following:

An	array	of	position	numbers

An	array	of	member	names

The	ordinal	position

Remarks

Use	the	Item	property	to	return	a	Cell	object	within	a	Cellset	object.	If	the	Item
property	cannot	find	the	cell	corresponding	to	the	Positions	argument,	an	error
occurs.

The	Item	property	is	the	default	property	for	the	Cellset	object.	The	following
syntax	forms	are	interchangeable:

Cellset.Item	(Positions)

Cellset	(Positions)

The	Positions	argument	specifies	which	cell	to	return.	You	can	specify	the	cell
by	ordinal	position	or	by	the	position	along	each	axis.	When	specifying	the	cell
by	position	along	each	axis,	you	can	specify	the	numeric	value	of	the	position	or
the	names	of	the	members	for	each	position.

The	ordinal	position	is	a	number	that	uniquely	identifies	one	cell	within	the
Cellset.	Conceptually,	cells	are	numbered	in	a	Cellset	as	if	the	Cellset	were	a	p-
dimensional	array,	where	p	is	the	number	of	axes.	Cells	are	addressed	in	row-
major	order.	Below	is	the	formula	for	calculating	the	ordinal	number	of	a	cell:

If	member	names	are	passed	as	strings	to	Item,	the	members	must	be	listed	in
increasing	order	of	the	numeric	axis	identifiers.	Within	an	axis,	the	members
must	be	listed	in	increasing	order	of	dimension	nesting	—	that	is,	the	outermost
dimension's	member	comes	first,	followed	by	members	of	inner	dimensions.
Each	dimension	should	be	represented	by	a	separate	string,	and	the	list	of
member	strings	should	be	separated	by	commas.

Note			Retrieving	cells	by	member	name	may	not	be	supported	by	your	data
provider.	See	the	documentation	for	your	provider	for	more	information.

LevelDepth	Property

				 				

Indicates	the	number	of	levels	between	the	root	of	the	hierarchy	and	a	member.

Return	Values

Returns	a	Long	integer,	and	is	read-only.

Remarks

Use	the	LevelDepth	property	to	determine	the	distance	of	the	Member	object
from	the	root	level	of	the	hierarchy.	The	LevelDepth	of	a	member	at	the	root
level	is	0.	This	corresponds	to	the	Depth	property	of	a	Level	object.

LevelName	Property

				 				

Indicates	the	name	of	the	level	of	a	member.

Return	Values

Returns	a	String	and	is	read-only.

Remarks

Use	the	LevelName	property	to	retrieve	the	name	of	the	level	to	which	a
member	belongs.	This	corresponds	to	the	Name	property	of	a	Level	object.

Name	Property

				 				

Indicates	the	name	of	an	object.

Return	Values

Returns	a	String	and	is	read-only.

Remarks

You	can	retrieve	the	Name	property	of	an	object	by	an	ordinal	reference,	after
which	you	can	refer	to	the	object	directly	by	name.	For	example,	if
cdf.CubeDefs(0).Name	yields	"Bobs	Video	Store",	you	can	refer	to	this	CubeDef
as	cdf.CubeDefs("Bobs	Video	Store").

Ordinal	Property	(Cell)

				 				

Uniquely	identifies	a	cell	by	its	position	within	a	cellset.

Return	Values

Returns	a	Long	integer	and	is	read-only.

Remarks

The	cell's	ordinal	value	uniquely	identifies	the	cell	within	a	cellset.
Conceptually,	cells	are	numbered	in	a	cellset	as	if	the	cellset	were	a	p-
dimensional	array,	where	p	is	the	number	of	axes.	Cells	are	numbered	starting
from	zero	in	row-major	order.	Here	is	the	formula	for	calculating	the	ordinal
number	of	a	cell:

The	cell's	ordinal	value	can	be	used	with	the	Item	property	of	the	Cellset	object
to	quickly	retrieve	the	Cell.

Ordinal	Property	(Position)

				 				

Uniquely	identifies	a	position	along	an	axis.

Return	Values

Returns	a	Long	integer	and	is	read-only.

Remarks

The	Ordinal	of	a	Position	object	corresponds	to	the	index	of	the	Position	within
the	Positions	collection.

A	cell	can	quickly	be	retrieved	using	the	Ordinal	of	the	Position	along	each	axis
with	the	Item	property	of	the	Cellset	object.

Parent	Property

				 				

Indicates	the	member	that	is	the	parent	of	the	current	member	in	a	hierarchy.

Return	Values

Returns	a	Member	object	and	is	read-only.

Remarks

A	member	that	is	at	the	top	level	of	a	hierarchy	(the	root)	has	no	parent.	This
property	is	supported	only	on	Member	objects	belonging	to	a	Level	object.	An
error	occurs	when	this	property	is	referenced	from	Member	objects	belonging	to
a	Position	object.

ParentSameAsPrev	Property

				 				

Indicates	whether	the	parent	of	this	position	member	is	the	same	as	the	parent	of
the	immediately	preceding	member.

Return	Values

Returns	a	Boolean	value	and	is	read-only.

Remarks

This	property	is	supported	only	on	Member	objects	belonging	to	a	Position
object.	An	error	occurs	when	this	property	is	referenced	from	Member	objects
belonging	to	a	Level	object.

Source	Property

				 				

Indicates	the	source	for	the	data	in	the	cellset.

Settings	and	Return	Values

Sets	or	returns	a	Variant,	and	is	read/write	for	closed	Cellset	objects	and	read-
only	for	open	Cellset	objects.	The	Variant	should	contain	a	valid	String,	for
example,	an	MDX	query.

State	Property

				 				

Indicates	the	current	state	of	the	cellset.

Return	Values

Returns	a	Long	integer	indicating	the	current	condition	of	the	Cellset	object	and
is	read-only.	The	following	values	are	valid:	adStateClosed	(0)	and
adStateOpen	(1).

Remarks

To	use	the	ObjectStateEnum	constant	names,	you	must	have	the	ADO	type
library	referenced	in	your	project.	See	Using	ADO	with	ADO	MD	for	more
information.

Type	Property

				 				

Indicates	the	type	of	the	current	member.

Return	Values

Returns	a	MemberTypeEnum	value	and	is	read-only.

Remarks

This	property	is	supported	only	on	Member	objects	belonging	to	a	Level	object.
An	error	occurs	when	this	property	is	referenced	from	Member	objects
belonging	to	a	Position	object.

UniqueName	Property

				 				

Indicates	an	unambiguous	name	for	the	current	object.

Return	Values

Returns	a	String	and	is	read-only.

Value	Property

				 				

Indicates	the	value	of	the	current	cell.

Return	Values

Returns	a	Variant	and	is	read-only.

ADO	MD	Methods

ADO	MD	Method	Summary

Method Description
Close Closes	an	open	cellset.

Open Retrieves	the	results	of	a	multidimensional	query	and	returns	the
results	to	a	cellset.

Refresh Updates	the	objects	in	a	collection	to	reflect	objects	available
from	and	specific	to	the	provider.

Close	Method

				 				

Closes	an	open	cellset.

Syntax

Cellset.Close

Remarks

Using	the	Close	method	to	close	a	Cellset	object	will	release	the	associated	data,
including	data	in	any	related	Cell,	Axis,	Position,	or	Member	objects.	Closing	a
Cellset	does	not	remove	it	from	memory;	you	can	change	its	property	settings
and	open	it	again	later.	To	completely	eliminate	an	object	from	memory,	set	the
object	variable	to	Nothing.

You	can	later	call	the	Open	method	to	reopen	the	Cellset	using	the	same	or
another	source	string.	While	the	Cellset	object	is	closed,	retrieving	any
properties	or	calling	any	methods	that	reference	the	underlying	data	or	metadata
generates	an	error.

Open	Method

				 				

Retrieves	the	results	of	a	multidimensional	query	and	returns	the	results	to	a
cellset.

Syntax

Cellset.Open	Source,	ActiveConnection

Parameters

Source			Optional.	A	Variant	that	evaluates	to	a	valid	multidimensional	query,
such	as	a	Multidimensional	Expression	(MDX)	query.	The	Source	argument
corresponds	to	the	Source	property.	For	more	information	about	MDX,	see	the
OLE	DB	for	OLAP	Programmer's	Reference	in	the	Microsoft	Data	Access
Components	SDK.

ActiveConnection			Optional.	A	Variant	that	evaluates	to	a	string	specifying
either	a	valid	ADO	Connection	object	variable	name	or	a	definition	for	a
connection.	The	ActiveConnection	argument	specifies	the	connection	in	which	to
open	the	Cellset	object.	If	you	pass	a	connection	definition	for	this	argument,
ADO	opens	a	new	connection	using	the	specified	parameters.	The
ActiveConnection	argument	corresponds	to	the	ActiveConnection	property.

mk:@MSITStore:OLEDB.chm::/htm/Oledbpart3_ole_db_for_olap.htm

Remarks

The	Open	method	generates	an	error	if	either	of	its	parameters	is	omitted	and	its
corresponding	property	value	has	not	been	set	prior	to	attempting	to	open	the
Cellset.

ADO	MD	Enumerated	Constants

To	assist	debugging,	the	ADO	MD	enumerated	constants	list	a	value	for	each
constant.	However,	this	value	is	purely	advisory,	and	may	change	from	one
release	of	ADO	MD	to	another.	Your	code	should	only	depend	on	the	name,	not
the	actual	value,	of	enumerated	constants.

The	following	enumeration	is	defined.

MemberTypeEnum

MemberTypeEnum

				

Specifies	the	setting	for	the	Type	property	of	a	Member	object.

Constant Value Description

adMemberAll 4 Indicates	that	the	Member	object
represents	all	members	of	the	level.

adMemberFormula 3 Indicates	that	the	Member	object	is
calculated	using	a	formula	expression.

adMemberMeasure 2
Indicates	that	the	Member	object	belongs
to	the	Measures	dimension	and	represents
a	quantitative	attribute.

adMemberRegular 1 Default.	Indicates	that	the	Member	object
represents	an	instance	of	a	business	entity.

adMemberUnknown 0 Cannot	determine	the	type	of	the	member.

ADO	MD	Code	Examples

Use	the	following	code	examples	to	learn	how	to	use	the	ADO	MD	objects,
methods,	and	properties.	These	examples	are	a	subset	of	the	sample	applications
installed	with	Microsoft	SQL	Server	OLAP	Services	for	SQL	Server	7.0.

These	examples	use	the	MSOLAP	OLE	DB	provider,	and	run	against	a
Microsoft	SQL	Server	OLAP	Services	local	host.	However,	these	examples	are
intended	to	show	fundamental	ADO	MD	programming	techniques,	and	should
be	easily	adapted	to	other	data	sources	or	providers.

ADO	MD	Code	Examples	in	Visual	Basic
ADO	MD	Code	Examples	in	Visual	Basic,	Scripting	Edition

ADO	MD	Code	Examples	in	Visual	Basic

The	following	examples	require	Microsoft	Visual	Basic	version	5.0	with	Service
Pack	3	or	Visual	Basic	version	6.0.

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Cellset	Example
Catalog	Example

Cellset	Example	(VB)

This	Visual	Basic	project	demonstrates	the	basics	of	using	ADO	MD	to	access
cube	data.	It	displays	member	captions	for	column	and	row	headers,	then
displays	formatted	values	of	specific	cells	within	the	cellset.

Private	Sub	cmdCellSettoDebugWindow_Click()

Dim	cat	As	New	ADOMD.Catalog

Dim	cst	As	New	ADOMD.Cellset

Dim	i	As	Integer

Dim	j	As	Integer

Dim	strServer	As	String

Dim	strSource	As	String

Dim	strColumnHeader	As	String

Dim	strRowText	As	String

On	Error	GoTo	Error_cmdCellSettoDebugWindow_Click

Screen.MousePointer	=	vbHourglass

'*---

'*	Set	Server	to	Local	Host

'*---

				strServer	=	"LOCALHOST"

'*---

'*	Set	MDX	query	string	Source

'*---

				strSource	=	strSource	&	"SELECT	"

				strSource	=	strSource	&	"{[Measures].members}	ON	COLUMNS,"

				strSource	=	strSource	&	_

								"NON	EMPTY	[Store].[Store	City].members	ON	ROWS"

				strSource	=	strSource	&	"	FROM	Sales"

'*---

'*	Set	Active	Connection

'*---

								cat.ActiveConnection	=	"Data	Source="	&	strServer	&	_

												";Provider=msolap;"

'*---

'*	Set	Cell	Set	source	to	MDX	query	string

'*---

								cst.Source	=	strSource

'*---

'*	Set	Cell	Sets	active	connection	to	current	connection

'*---

				Set	cst.ActiveConnection	=	cat.ActiveConnection

'*---

'*	Open	Cell	Set

'*---

				cst.Open

'*---

'*	Allow	space	for	Row	Header	Text

'*---

strColumnHeader	=	vbTab	&	vbTab	&	vbTab	&	vbTab	&	vbTab	&	vbTab

'*---

'*	Loop	through	Column	Headers

'*---

							For	i	=	0	To	cst.Axes(0).Positions.Count	-	1

												strColumnHeader	=	strColumnHeader	&	_

																cst.Axes(0).Positions(i).Members(0).Caption	&	vbTab	&	_

																				vbTab	&	vbTab	&	vbTab

							Next

							Debug.Print	vbTab	&	strColumnHeader	&	vbCrLf

'*---

'*	Loop	through	Row	Headers	and	Provide	data	for	each	row

'*---

								strRowText	=	""

								For	j	=	0	To	cst.Axes(1).Positions.Count	-	1

												strRowText	=	strRowText	&	_

																cst.Axes(1).Positions(j).Members(0).Caption	&	vbTab	&	_

																				vbTab	&	vbTab	&	vbTab

												For	k	=	0	To	cst.Axes(0).Positions.Count	-	1

																strRowText	=	strRowText	&	cst(k,	j).FormattedValue	&	_

																				vbTab	&	vbTab	&	vbTab	&	vbTab

												Next

												Debug.Print	strRowText	&	vbCrLf

												strRowText	=	""

								Next

				Screen.MousePointer	=	vbDefault

Exit	Sub

Error_cmdCellSettoDebugWindow_Click:

			Beep

			Screen.MousePointer	=	vbDefault

			MsgBox	"The	Following	Error	has	occurred:"	&	vbCrLf	&	_

						Err.Description,	vbCritical,	"	Error!"

			Exit	Sub

End	Sub

Catalog	Example	(VB)

This	Visual	Basic	project	creates	a	new	cube	using	MDX.	Then,	it	documents
the	structure	of	a	cube	in	a	Microsoft	Word	document.

Private	Sub	cmdCreateDocForCube_Click()

Dim	cn	As	ADODB.Connection

Dim	s	As	String

Dim	strProvider	As	String

Dim	strDataSource	As	String

Dim	strSourceDSN	As	String

Dim	strSourceDSNSuffix	As	String

Dim	strCreateCube	As	String

Dim	strInsertInto	As	String

On	Error	GoTo	Error_cmdCreateDocForCube_Click

'*---

'*	The	following	code	builds	a	cube	file	then	documents	the	properties	

'*	with	an	OLE	Connection	to	Word	8.0

'*---

'*---

'*	Add	Provider	to	the	connection	string.

'*---

strProvider	=	"PROVIDER=MSOLAP"

'*---

'*	Add	DataSource,	the	name	of	the	file	we	will	create.

'*---

strDataSource	=	"DATA	SOURCE=c:\DocumentCube.cub"

'*---

'*	Add	Source	DSN,	the	connection	string	for	where	the	data	comes	from.

'*	We	need	to	quote	the	value	so	it	is	parsed	as	one	value.

'*	This	can	either	be	an	ODBC	connection	string	or	an	OLE	DB	connection	

'*	string.	(As	returned	by	the	Data	Source	Locator	component.)

'*---

strSourceDSN	=	"SOURCE_DSN=FoodMart"

'*---

'*	We	may	have	some	other	parameters	that	we	want	applied	at	run	time,	

'*	but	not	stored	in	the	cube	file,	or	returned	in	the	output	string.

'*---

'	strSourceDSNSuffix	=	"UID=;PWD="

'*---

'*	Add	CREATE	CUBE.		This	defines	the	structure	of	the	cube,	but	not	the	

'*	data	in	it.	The	BNF	for	is	documented	in	the	OLE	DB	for	OLAP	

'*	Programmer's	Reference.	Note	that	we	can	quote	names	with	either	

'*	double	quotes	or	square	brackets.

'*---

strCreateCube	=	"CREATECUBE=CREATE	CUBE	Sample("

strCreateCube	=	strCreateCube	&	"DIMENSION	[Product],"

								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Products]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Family]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Department]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Category]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Subcategory]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Brand	Name]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Name]	,"

strCreateCube	=	strCreateCube	&	"DIMENSION	[Store],"

								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Stores]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Country]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	State]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	City]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Name]	,"

strCreateCube	=	strCreateCube	&	"DIMENSION	[Store	Type],"

								strCreateCube	=	strCreateCube	&	_

												"LEVEL	[All	Store	Type]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Type]	,"

strCreateCube	=	strCreateCube	&	"DIMENSION	[Time]	TYPE	TIME,"

				strCreateCube	=	strCreateCube	&	"HIERARCHY	[Column],"

								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Time]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Year]		TYPE	YEAR,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Quarter]		TYPE	QUARTER,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Month]		TYPE	MONTH,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Week]		TYPE	WEEK,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Day]		TYPE	DAY,"

				strCreateCube	=	strCreateCube	&	"HIERARCHY	[Formula],"

								strCreateCube	=	strCreateCube	&	_

												"LEVEL	[All	Formula	Time]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Year]		TYPE	YEAR,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Quarter]		TYPE	QUARTER,"

								strCreateCube	=	strCreateCube	&	_

												"LEVEL	[Month]		TYPE	MONTH	OPTIONS	(SORTBYKEY)	,"

strCreateCube	=	strCreateCube	&	"DIMENSION	[Warehouse],"

								strCreateCube	=	strCreateCube	&	_

												"LEVEL	[All	Warehouses]		TYPE	ALL,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Country]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[State	Province]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[City]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[Warehouse	Name]	,"

strCreateCube	=	strCreateCube	&	"MEASURE	[Store	Invoice]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#',"

strCreateCube	=	strCreateCube	&	"MEASURE	[Supply	Time]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#',"

strCreateCube	=	strCreateCube	&	"MEASURE	[Warehouse	Cost]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#',"

strCreateCube	=	strCreateCube	&	"MEASURE	[Warehouse	Sales]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#',"

strCreateCube	=	strCreateCube	&	"MEASURE	[Units	Shipped]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#',"

strCreateCube	=	strCreateCube	&	"MEASURE	[Units	Ordered]	"

				strCreateCube	=	strCreateCube	&	"Function	Sum	"

				strCreateCube	=	strCreateCube	&	"Format	'#.#')"

'*---

'*	Add	INSERT	INTO.		This	defines	where	the	data	comes	from,	and	how	it

'*	maps	into	the	already-defined	cube	structure.		Note	that	the	SELECT	

'*	clause	might	just	be	passed	through	to	the	relational	database.

'*	So	I	could	pass	in	a	stored	procedure,	for	example.		If	we	needed	to,	

'*	we	could	quote	this	whole	thing.		Note	that	the	columns	in	the	SELECT	

'*	can	be	in	any	order.		One	merely	has	to	adjust	the	ordering	of	the	

'*	list	of	level/measure	names	to	match	the	SELECT	ordering.

'*---

strInsertInto	=	strInsertInto	&	

				"INSERTINTO=INSERT	INTO	Sample("	&	_

								"Product.[Product	Family],	Product.[Product	Department],"

strInsertInto	=	strInsertInto	&	

				"Product.[Product	Category],	Product.[Product	Subcategory],"

strInsertInto	=	strInsertInto	&	

				"Product.[Brand	Name],	Product.[Product	Name],"

strInsertInto	=	strInsertInto	&	

				"Store.[Store	Country],	Store.[Store	State],	Store.[Store	City],"

strInsertInto	=	strInsertInto	&	

				"Store.[Store	Name],	[Store	Type].[Store	Type],	[Time].[Column],"

strInsertInto	=	strInsertInto	&	

				"[Time].Formula.Year,	[Time].Formula.Quarter,	"	&	_

								"[Time].Formula.Month.[Key],"

strInsertInto	=	strInsertInto	&	

				"[Time].Formula.Month.Name,	Warehouse.Country,	"	&	_

								"Warehouse.[State	Province],"

strInsertInto	=	strInsertInto	&	

				"Warehouse.City,	Warehouse.[Warehouse	Name],	"	*	_

								"Measures.[Store	Invoice],"

strInsertInto	=	strInsertInto	&	

				"Measures.[Supply	Time],	Measures.[Warehouse	Cost],	"	&	_

								"Measures.[Warehouse	Sales],"

strInsertInto	=	strInsertInto	&	

				"Measures.[Units	Shipped],	Measures.[Units	Ordered])"

'*---

'*	Add	some	options	to	the	INSERT	INTO	if	we	need	to.		These	can	control	

'*	if	the	SELECT	clause	is	analyzed	or	just	passed	through,	and	if	the	

'*	storage	mode	is	MOLAP	or	ROLAP	(DEFER_DATA).

'*	strInsertInto	=	strInsertInto	&	"	OPTIONS	ATTEMPT_ANALYSIS"

'*---

'*---

'*	Add	the	SELECT	clause	of	the	INSERT	INTO	statement.		Note	that	it	is	

'*	merely	concatenated	onto	the	end	of	the	INSERT	INTO	statement.		OLAP	

'*	Services	will	pass	this	through	to	the	source	database	if	unable	to	

'*	parse	it.		Note	that	for	OLAP	Services	to	analyze	the	SELECT	clause,	

'*	each	column	must	be	qualified	with	the	table	name.

'*---

strInsertInto	=	strInsertInto	&	

				"SELECT	product_class.product_family	AS	Col1,"

strInsertInto	=	strInsertInto	&	

				"product_class.product_department	AS	Col2,"

strInsertInto	=	strInsertInto	&	"product_class.product_category	AS	Col3,"

strInsertInto	=	strInsertInto	&	

				"product_class.product_subcategory	AS	Col4,"

strInsertInto	=	strInsertInto	&	"product.brand_name	AS	Col5,"

strInsertInto	=	strInsertInto	&	"product.product_name	AS	Col6,"

strInsertInto	=	strInsertInto	&	"store.store_country	AS	Col7,"

strInsertInto	=	strInsertInto	&	"store.store_state	AS	Col8,"

strInsertInto	=	strInsertInto	&	"store.store_city	AS	Col9,"

strInsertInto	=	strInsertInto	&	"store.store_name	AS	Col10,"

strInsertInto	=	strInsertInto	&	"store.store_type	AS	Col11,"

strInsertInto	=	strInsertInto	&	"time_by_day.the_date	AS	Col12,"

strInsertInto	=	strInsertInto	&	"time_by_day.the_year	AS	Col13,"

strInsertInto	=	strInsertInto	&	"time_by_day.quarter	AS	Col14,"

strInsertInto	=	strInsertInto	&	"time_by_day.month_of_year	AS	Col15,"

strInsertInto	=	strInsertInto	&	"time_by_day.the_month	AS	Col16,"

strInsertInto	=	strInsertInto	&	"warehouse.warehouse_country	AS	Col17,"

strInsertInto	=	strInsertInto	&	

				"warehouse.warehouse_state_province	AS	Col18,"

strInsertInto	=	strInsertInto	&	"warehouse.warehouse_city	AS	Col19,"

strInsertInto	=	strInsertInto	&	"warehouse.warehouse_name	AS	Col20,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.store_invoice	AS	Col21,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.supply_time	AS	Col22,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.warehouse_cost	AS	Col23,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.warehouse_sales	AS	Col24,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.units_shipped	AS	Col25,"

strInsertInto	=	strInsertInto	&	

				"inventory_fact_1997.units_ordered	AS	Col26	"

strInsertInto	=	strInsertInto	&	

				"From	[inventory_fact_1997],	[product],	[product_class],	"	&_

								"[time_by_day],	[store],	[warehouse]	"

strInsertInto	=	strInsertInto	&	

				"Where	[inventory_fact_1997].[product_id]	=	[product]."	&_

								"[product_id]	And	"

strInsertInto	=	strInsertInto	&	

				"[product].[product_class_id]	=	[product_class]."	&_

								"[product_class_id]	And	"

strInsertInto	=	strInsertInto	&	

				"[inventory_fact_1997].[time_id]	=	[time_by_day].[time_id]	And	"

strInsertInto	=	strInsertInto	&	

				"[inventory_fact_1997].[store_id]	=	[store].[store_id]	And	"

strInsertInto	=	strInsertInto	&	

				"[inventory_fact_1997].[warehouse_id]	=	[warehouse].[warehouse_id]"

'*---

'*	Create	the	cube	by	passing	connection	string	to	Open.

'*---

Set	cn	=	New	ADODB.Connection

s	=	strProvider	&	";"	&	strDataSource	&	";"	&	strSourceDSN	&	";"	&	_

				strCreateCube	&	";"	&	strInsertInto	&	";"

Screen.MousePointer	=	vbHourglass

cn.Open	s

'*---

'*	Cube	file	is	written	to	hard	drive	a	Word	Document	can	be	produced	by	

'*	automating	Word	with	VB

'*---

Dim	cat	As	New	ADOMD.Catalog

Dim	cdf	As	ADOMD.CubeDef

Dim	di	As	Integer

Dim	hi	As	Integer

Dim	le	As	Integer

Dim	mem	As	Integer

Dim	docWord	As	Word.Document

Dim	rngCurrent	As	Word.Range

Dim	SenCount	As	Integer

Dim	strServer	As	String

Dim	strSource	As	String

Dim	strCubeName	As	String

'*---

'*	Connection	is	made	to	cube	file

'*---

cat.ActiveConnection	=	"DATA	SOURCE=c:\DocumentCube.cub;Provider=msolap;"

'*---

'*	Cube	Definition	is	set	to	Name	of	Cube	in	cube	file

'*---

Set	cdf	=	cat.CubeDefs("Sample")

'*---

'*	Object	is	created	to	hold	Word	8.0

'*---

Set	appword	=	CreateObject("Word.Application.8")

'*---

'*	Create	the	document	variable

'*---

			Set	docWord	=	appword.Documents.Add()

			Set	rngCurrent	=	docWord.Content

			SenCount	=	0

'*---

'*	Cube	Title	and	Header	written	to	Document

'*---

			With	rngCurrent

							.InsertAfter	"Report	for	Sample	Cube"

							.InsertAfter	vbCrLf

							SenCount	=	SenCount	+	1

							docWord.Paragraphs(SenCount).Range.Bold	=	True

							docWord.Paragraphs(SenCount).Range.Underline	=	wdUnderlineSingle

							docWord.Paragraphs(SenCount).Range.Italic	=	False

							docWord.Paragraphs(SenCount).Range.Font.Size	=	18

'*---

'*	Properties	of	Cube	are	written	to	Document

'*---

For	i	=	0	To	cdf.Properties.Count	-	1

				.InsertAfter	"("	&	i	&	")	"	&	cdf.Properties(i).Name	&	":	"	&	_

								cdf.Properties(i).Value

				.InsertAfter	vbCrLf

				SenCount	=	SenCount	+	1

				docWord.Paragraphs(SenCount).Range.Bold	=	False

				docWord.Paragraphs(SenCount).Range.Italic	=	True

				docWord.Paragraphs(SenCount).Range.Font.Size	=	8

Next	i

'*---

'*	Dimension	Name(s)	written	to	Document

'*---

				For	di	=	0	To	cdf.Dimensions.Count	-	1

				.InsertAfter	"Dimension:	"	&	cdf.Dimensions(di).Name

				.InsertAfter	vbCrLf

				SenCount	=	SenCount	+	1

				docWord.Paragraphs(SenCount).Range.Bold	=	True

				docWord.Paragraphs(SenCount).Range.Italic	=	False

				docWord.Paragraphs(SenCount).Range.Font.Size	=	14

'*---

'*	Properties	of	Dimension	are	written	to	Document

'*---

				For	i	=	0	To	cdf.Dimensions(di).Properties.Count	-	1

								.InsertAfter	"("	&	i	&	")	"	&	_

												cdf.Dimensions(di).Properties(i).Name	&	":	"	&	_

												cdf.Dimensions(di).Properties(i).Value

								.InsertAfter	vbCrLf

								SenCount	=	SenCount	+	1

								docWord.Paragraphs(SenCount).Range.Bold	=	False

								docWord.Paragraphs(SenCount).Range.Italic	=	True

								docWord.Paragraphs(SenCount).Range.Font.Size	=	8

				Next	i

'*---

'*	Hierarchy	Name(s)	written	to	Document

'*---

				For	hi	=	0	To	cdf.Dimensions(di).Hierarchies.Count	-	1

								.InsertAfter	vbTab	&	"Hierarchy:	"	&	_

												cdf.Dimensions(di).Hierarchies(hi).Name

								.InsertAfter	vbCrLf

								SenCount	=	SenCount	+	1

								docWord.Paragraphs(SenCount).Range.Bold	=	True

								docWord.Paragraphs(SenCount).Range.Italic	=	False

								docWord.Paragraphs(SenCount).Range.Font.Size	=	12

'*---

'*	Properties	of	Hierarchy	are	written	to	Document

'*---

				For	i	=	0	To	cdf.Dimensions(di).Hierarchies(hi).Properties.Count	-	1

								.InsertAfter	vbTab	&	"("	&	i	&	")	"	&	_

												cdf.Dimensions(di).Hierarchies(hi).Properties(i).Name	&	_

												":	"	&	cdf.Dimensions(di).Hierarchies(hi).Properties(i).Value

								.InsertAfter	vbCrLf

								SenCount	=	SenCount	+	1

								docWord.Paragraphs(SenCount).Range.Bold	=	False

								docWord.Paragraphs(SenCount).Range.Italic	=	True

								docWord.Paragraphs(SenCount).Range.Font.Size	=	8

				Next	i

'*---

'*	Level	Name(s)	written	to	Document

'*---

				For	le	=	0	To	cdf.Dimensions(di).Hierarchies(hi).Levels.Count	-	1

								.InsertAfter	vbTab	&	vbTab	&	"Level:	"	&	_

												cdf.Dimensions(di).Hierarchies(hi).Levels(le).Name	&	_

												"	with	a	Member	Count	of:	"	&	_

												cdf.Dimensions(di).Hierarchies(hi).Levels(le).Members.Count

								.InsertAfter	vbCrLf

								SenCount	=	SenCount	+	1

								docWord.Paragraphs(SenCount).Range.Bold	=	True

								docWord.Paragraphs(SenCount).Range.Italic	=	False

								docWord.Paragraphs(SenCount).Range.Font.Size	=	10

'*---

'*	Properties	of	Level	are	written	to	Document

'*---

				For	i	=	0	To	

							cdf.Dimensions(di).Hierarchies(hi).Levels(le).Properties.Count	-	1

								.InsertAfter	vbTab	&	vbTab	&	"("	&	i	&	")	"	&	_

													cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																	Properties(i).Name	&	":	"	&	_

													cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																	Properties(i).Value

								.InsertAfter	vbCrLf

								SenCount	=	SenCount	+	1

								docWord.Paragraphs(SenCount).Range.Bold	=	False

								docWord.Paragraphs(SenCount).Range.Italic	=	True

								docWord.Paragraphs(SenCount).Range.Font.Size	=	8

				Next	i

				Next	le

				Next	hi

				Next	di

'*---

'*	Set	Word	Document	to	visible

'*---

								appword.Visible	=	True

				End	With

			Screen.MousePointer	=	vbDefault

'*---

'*	Set	Word	Object	to	nothing	to	drop	OLE	connection

'*---

			Set	appword	=	Nothing

Exit	Sub

Error_cmdCreateDocForCube_Click:

				Screen.MousePointer	=	vbDefault

				MsgBox	Err.Description

End	Sub

ADO	MD	Code	Examples	in	Visual	Basic,	Scripting
Edition

The	following	examples	require	Microsoft	Active	Server	Pages	(ASP)	for
Microsoft	Internet	Information	Server	4.0.

Note			Paste	the	entire	code	example,	from	beginning	to	end,	into	your	code
editor.	The	example	may	not	run	correctly	if	partial	examples	are	used	or	if
paragraph	formatting	is	lost.

Axis	Example
Members	Example

CubeDef	Example

Axis	Example	(VBScript)

This	Active	Server	Pagedisplays	OLAP	data	from	an	MDX	Query	string	and
writes	the	resulting	cellset	to	an	HTML	table	structure.

<%@	Language=VBScript	%>

<%

'**

'***	Active	Server	Page	displays	OLAP	data	from	default

'***	MDX	Query	string	and	writes	resulting	cell	set	to	HTML	table

'***	structure.

'**

Response.Buffer=True

Response.Expires=0

%>

<HTML>

<HEAD>

<META	NAME="GENERATOR"	Content="Microsoft	Visual	Studio	6.0">

</HEAD>

<BODY	bgcolor=Ivory>

<%

Dim	cat,cst,i,j,strSource,csw,intDC0,intDC1,intPC0,intPC1

'**

'***	Set	Connection	Objects	for	Multidimensional	Catalog	and	Cellset

'**

Set	cat	=	Server.CreateObject("ADOMD.Catalog")

Set	cst	=	Server.CreateObject("ADOMD.CellSet")

'**

'***	Use	default	settings	of	a	known	OLAP	Server

'***	for	Server	Name	for	Connection	Set	Server	Name	Session	Object

'***	to	default	value

'**

'***	Must	set	OLAPServerName	to	OLAP	Server	that	is

'***	present	on	network

'**

				OLAPServerName	=	"Please	set	to	present	OLAP	Server"

				cat.ActiveConnection	=	"Data	Source="	&	OLAPServerName	&	_

								";Initial	Catalog=FoodMart;Provider=msolap;"

'**

'***	Use	default	MDX	Query	string	of	a	known	query	that	works

'***	with	default	server	Set	MDXQuery	Session	Object	to	default	value

'**

				strSource	=	strSource	&	"SELECT	"

				strSource	=	strSource	&	"{[Measures].members}	ON	COLUMNS,"

				strSource	=	strSource	&	_

								"NON	EMPTY	[Store].[Store	City].members	ON	ROWS"

				strSource	=	strSource	&	"	FROM	Sales"

'**

'***	Set	Cell	Set	Source	property	to	strSource	to	be	passed	on	cell	set	'***	open	method

'**

				cst.Source	=	strSource

'**

'***	Set	Cell	Sets	Active	connection	to	use	the	current	Catalogs	Active	

'***	connection

'**

Set	cst.ActiveConnection	=	cat.ActiveConnection

'**

'***	Using	Open	method,	Open	cell	set

'**

cst.Open

'**

'***	Set	Dimension	Counts	minus	1	for	Both	Axes	to	intDC0,	intDC1

'***	Set	Position	Counts	minus	1	for	Both	Axes	to	intPC0,	intPC1

'**

intDC0	=	cst.Axes(0).DimensionCount-1

intDC1	=	cst.Axes(1).DimensionCount-1

intPC0	=	cst.Axes(0).Positions.Count	-	1

intPC1	=	cst.Axes(1).Positions.Count	-	1

'**

'***	Create	HTML	Table	structure	to	hold	MDX	Query	return	Record	set

'**

								Response.Write	"<Table	width=100%	border=1>"

'**

'***	Loop	to	create	Column	header

'**

								For	h=0	to	intDC0

												Response.Write	"<TR>"

'**

'***	Loop	to	create	spaces	in	front	of	Column	headers

'***	to	align	with	Row	header

'**

												For	c=0	to	intDC1

																Response.Write	"<TD></TD>"

												Next

'**

'***	Iterate	through	Axes(0)	Positions	writing	member	captions	to	table	

'***	header

'**

												For	i	=	0	To	intPC0

																Response.Write	"<TH>"

																Response.Write	""

																Response.Write	cst.Axes(0).Positions(i).Members(h).Caption

																Response.Write	""

																Response.Write	"</TH>"

												Next

												Response.Write	"</TR>"

								Next

'**

'***	Use	Array	values	for	row	header	formatting	to	provide

'***	spaces	under	beginning	row	header	titles

'**

								For	j	=	0	To	intPC1

												Response.Write	"<TR>"

												For	h=0	to	intDC1

																Response.Write	"<TD>"

																Response.Write	""

																Response.Write	cst.Axes(1).Positions(j).Members(h).Caption

																Response.Write	""

																Response.Write	"</TD>"

												Next

												For	k	=	0	To	intPC0

																Response.Write	"<TD	align=right	bgcolor="

																Response.Write	csw

																Response.Write	">"

																Response.Write	""

																Response.Write	cst(k,	j).FormattedValue

																Response.Write	""

																Response.Write	"</TD>"

												Next

												Response.Write	"</TR>"

								Next

								Response.Write	"</Table>"

%>

</BODY>

</HTML>

Members	Example	(VBScript)

This	sample	uses	an	MDX	query	string	to	retrieve	OLAP	data	and	writes	the
resulting	cellset	to	an	HTML	table	structure	using	column	spanning	features	for
multiple-dimension	cellsets.

<%@	Language=VBScript	%>

<%

'**

'***	Active	Server	Page	displays	OLAP	data	from	default	or	provided

'***	MDX	Query	string	and	writes	resulting	cell	set	to	HTML	table

'***	structure.	This	ASP	provides	colspan	features	for	multiple

'***	dimension	cell	sets.

'**

Response.Buffer=True

Response.Expires=0

%>

<html>

<head>

<meta	NAME="GENERATOR"	Content="Microsoft	Visual	Studio	6.0">

</head>

<body	bgcolor="Ivory">

<%

Dim	cat,cst,i,j,strSource,csw,LevelValue,intDC0,intDC1,intPC0,	intPC1

'**

'***	Gather	Server	Name	and	MDX	Query	Strings	from	text	box	and

'***	text	area	and	assign	them	to	Session	Objects	of	same	name

'**

Session("ServerName")=Request.Form("strServerName")

Session("InitialCatalog")=Request.Form("strInitialCatalog")

Session("MDXQuery")=Request.Form("MDXQuery")

'**

'***	Set	Connection	Objects	for	Multi	dimensional	Catalog	and	Cell	Set

'**

Set	cat	=	Server.CreateObject("ADOMD.Catalog")

Set	cst	=	Server.CreateObject("ADOMD.CellSet")

'**

'***	Check	to	see	if	the	Session	Object	Server	Name	is	present

'***	If	present	then:	Create	Active	Connection	using	Server	Name

'***	and	MSOLAP	as	connection	Provider

'***	If	not	present	then:	Use	default	settings	of	a	known	OLAP	Server

'***	for	Server	Name	for	Connection	Set	Server	Name	Session	Object

'***	to	default	value

'**

If	Len(Session("ServerName"))	>	0	Then

				cat.ActiveConnection	=	"Data	Source="	&	Session("ServerName")	&	_

								";Initial	Catalog="	&	Session("InitialCatalog")	&	_

								";Provider=msolap;"

Else

'**

'***	Must	set	OLAPServerName	to	OLAP	Server	that	is

'***	present	on	network

'**

				OLAPServerName	=	"Please	set	to	present	OLAP	Server"

				cat.ActiveConnection	=	"Data	Source="	&	OLAPServerName	&	_

								";Initial	Catalog=FoodMart;Provider=msolap;"

				Session("ServerName")	=	OLAPServerName

				Session("InitialCatalog")	=	"FoodMart"

End	if

'**

'***	Check	to	see	if	the	Session	Object	MDXQuery	is	present

'***	If	present	then:	Set	strSource	using	MDXQuery	Session	Object

'***	If	not	present	then:	Use	default	MDX	Query	string	of	a	known	query

'***	that	works	with	default	server	Set	MDXQuery	Session	Object	to	

'***	default	value

'**

If	Len(Session("MDXQuery"))	<	5	Then

				strSource	=	strSource	&	"SELECT	"

				strSource	=	strSource	&	"CROSSJOIN({[Store].[Store	Country].MEMBERS},"

				strSource	=	strSource	&	"{[Measures].[Store	"	&	_

								"Invoice],[Measures].[Supply	Time]})	ON	COLUMNS,"

				strSource	=	strSource	&	"CROSSJOIN({[Time].[Year].MEMBERS},"

				strSource	=	strSource	&	"CROSSJOIN({[Store	Type].[Store	"	&	_

								"Type].Members},{[Product].[Product	Family].members}))	ON	ROWS"

				strSource	=	strSource	&	"	FROM	Warehouse"

Else

				strSource	=	Session("MDXQuery")

End	if

'**

'***	Set	Cell	Set	Source	property	to	strSource	to	be	passed	on	cell	set	

'***	open	method

'**

				cst.Source	=	strSource

'**

'***	Set	Cell	Sets	Active	connection	to	use	the	current	Catalogs	Active	

'***	connection

'**

Set	cst.ActiveConnection	=	cat.ActiveConnection

'**

'***	Using	Open	method,	Open	cell	set

'**

cst.Open

'**

'***	Standard	HTML	to	collect	Sever	Name	and	MDX	Query	Information

'***	Note	that	post	action	posts	back	to	same	page	to	process

'***	thus	using	state	of	Session	Variables	to	change	look	of	page

'**

%>

<form	action="ASPADOComplex.asp"	method="POST"	id="form1"	name="form1">

<table>

<tr><td	align="left">

Olap	Server	name:
<input	type="text"	id="strServerName"	name="strServerName"	value="<%=Session("ServerName")%>"	size="20">

Catalog	name:
<input	type="text"	id="strInitialCatalog"	name="strInitialCatalog"	value="<%=Session("InitialCatalog")%>"	size="20">

</td><td	align="center">

MDX	Query:

<textarea	rows="7"	cols="70"	id="textareaMDX"	name="MDXQuery"	wrap="soft">

<%=Session("MDXQuery")%>

</textarea>

</td></tr>

</table>

<table>

<tr><td>

<input	type="submit"	value="Submit	MDX	Query"	id="submit1"	name="submit1">

</td><td>

<input	type="reset"	value="Reset"	id="reset1"	name="reset1">

</td></tr>

</table>

</form>

<p	align="left">

<%=strSource%>

</p>

<%

'**

'***	Set	Dimension	Counts	minus	1	for	Both	Axes	to	intDC0,	intDC1

'***	Set	Position	Counts	minus	1	for	Both	Axes	to	intPC0,	intPC1

'**

intDC0	=	cst.Axes(0).DimensionCount-1

intDC1	=	cst.Axes(1).DimensionCount-1

intPC0	=	cst.Axes(0).Positions.Count	-	1

intPC1	=	cst.Axes(1).Positions.Count	-	1

'**

'***	Create	HTML	Table	structure	to	hold	MDX	Query	return	Record	set

'**

Response.Write	"<Table	width=100%	border=1>"

'**

'***	Loop	to	create	Column	header	for	all	Dimensions	based

'***	on	Count	of	Dimensions	for	Axes(0)

'**

For	h=0	to	intDC0

				Response.Write	"<TR>"

'**

'***	Loop	to	create	spaces	in	front	of	Column	headers

'***	to	align	with	Row	headers

'**

				For	c=0	to	intDC1

								Response.Write	"<TD></TD>"

				Next

'**

'***	Check	current	dimension	to	see	if	equal	to	Last	Dimension

'***	If	True:	Write	Table	header	titles	normally	to	HTML	output	with	out	

'***	ColSpan	value	

'***	If	False:	Write	Table	header	titles	with	ColSpan	values	to	HTML	

'***	output

'**

				If	h	=	intDC0	then

'**

'***	Iterate	through	Axes(0)	Positions	writing	member	captions	to	table	

'***	header

'**

								For	i	=	0	To	intPC0

												Response.Write	"<TH>"

												Response.Write	""

												Response.Write	cst.Axes(0).Positions(i).Members(h).Caption

												Response.Write	""

												Response.Write	"</TH>"

								Next

				Else

'**

'***	Iterate	through	Axes(0)	Positions	writing	member	captions	to	table	

'***	header	taking	into	account	for	the	span	of	columns	for	duplicate	

'***	member	captions

'**

								CaptionCount	=	1

								LastCaption	=	cst.Axes(0).Positions(0).Members(h).Caption

								Response.Write	"<TH"

								For	t=1	to	intPC0

'**

'***	Check	to	see	if	LastCaption	is	equal	to	current	members	caption

'***	If	True:	Add	one	to	CaptionCount	to	increase	Colspan	value

'***	If	False:	Write	Table	header	titles	with	ColSpan	values	to	HTML	

'***	output	using	current	CaptionCount	for	Colspan	and	LastCaption	for	

'***	header	string

'**

												If	LastCaption	=	_

																cst.Axes(0).Positions(t).Members(h).Caption	then

																CaptionCount	=	CaptionCount+1

'**

'***	Check	if	at	last	position

'***	If	True:	Write	HTML	to	finish	table	row	using	current

'***	CaptionCount	and	LastCaption

'**

																If	t	=	intPC0	then

																				Response.Write	"	colspan="	&	CaptionCount	&	_

																								">"	&	LastCaption	&	"</TH>"

																End	if

												Else

																Response.Write	"	colspan="	&	CaptionCount	&	_

																				">"	&	LastCaption	&	"</TH><TH"

																CaptionCount	=	1

																LastCaption=cst.Axes(0).Positions(t).Members(h).Caption

												End	if

								Next

												End	if

												Response.Write	"</TR>"

								Next

'**

'***	Iterate	through	Axes(1)	Positions	first	writing	member	captions	

'***	to	table	row	headers	then	writing	cell	set	data	to	table	structure

'**

								Dim	aryRows()

								Dim	intArray,Marker

								intArray=0

'**

'***	Set	value	of	Array	for	row	header	formatting

'**

								For	a=1	To	intDC1

												intArray	=	intArray+(intPC1+1)

								Next

								intArray	=	intArray-1

								ReDim	aryRows(intArray)

								Marker=0

'**

'***	Use	Array	values	for	row	header	formatting	to	provide

'***	spaces	under	beginning	row	header	titles

'**

								For	j	=	0	To	intPC1

												Response.Write	"<TR>"

												For	h=0	to	intDC1

																If	h=intDC1	then

																				Response.Write	"<TD>"

																				Response.Write	""

																				Response.Write	cst.Axes(1).Positions(j).Members(h).Caption

																				Response.Write	""

																				Response.Write	"</TD>"

																Else

																				aryRows(Marker)	=	_

																								cst.Axes(1).Positions(j).Members(h).Caption

																				If	Marker	<	intDC1	then

																								Response.Write	"<TD>"

																								Response.Write	""

																								Response.Write	_

																												cst.Axes(1).Positions(j).Members(h).Caption

																								Response.Write	""

																								Response.Write	"</TD>"

																								Marker	=	Marker	+	1

																				Else

																								If	aryRows(Marker)	=	aryRows(Marker	-	intDC1)	then

																												Response.Write	"<TD> </TD>"

																												Marker	=	Marker	+	1

																								Else

																												Response.Write	"<TD>"

																												Response.Write	""

																												Response.Write	_

																																cst.Axes(1).Positions(j).Members(h).Caption

																												Response.Write	""

																												Response.Write	"</TD>"

																												Marker	=	Marker	+	1

																								End	if

																				End	if

																End	if

												Next

'**

'***	Alternates	Cell	background	color

'**

												If	(j+1)	Mod	2	=	0	Then

																csw	=	"#cccccc"

												Else

																csw	=	"#ccffff"

												End	If

												For	k	=	0	To	intPC0

																Response.Write	"<TD	align=right	bgcolor="

																Response.Write	csw

																Response.Write	">"

																Response.Write	""

'**

'***	FormattedValue	property	pulls	data

'**

																Response.Write	cst(k,	j).FormattedValue

																Response.Write	""

																Response.Write	"</TD>"

												Next

												Response.Write	"</TR>"

								Next

								Response.Write	"</Table>"

%>

</body>

</html>

CubeDef	Example	(VBScript)

This	example	displays	cube	metadata	on	a	web	page.

<%@	Language=VBScript	%>

<%

Response.Buffer=True

'Response.Expires=0

%>

<html>

<head>

<meta	NAME="GENERATOR"	Content="Microsoft	Visual	Studio	6.0">

</head>

<body>

<%

Server.ScriptTimeout=360

Dim	cat,cdf,di,hi,le,mem,strServer,strSource,strCubeName

'**

'***	Set	Session	Variables

'**

Session("CubeName")	=	Request.Form("strCubeName")

Session("CatalogName")	=	Request.Form("strCatalogName")

Session("ServerName")	=	Request.Form("strServerName")

Session("chkDim")	=	Request.Form("chkDimension")

Session("chkHier")	=		Request.Form("chkHierarchy")

Session("chkLev")	=		Request.Form("chkLevel")

'**

'***	Create	Catalog	Object

'**

Set	cat	=	Server.CreateObject("ADOMD.Catalog")

If	Len(Session("ServerName"))	>	0	Then

				cat.ActiveConnection	=	"Data	Source="	&	Session("ServerName")	&	";Initial	Catalog="	&	Session("CatalogName")	&	";Provider=msolap;"

Else

'**

'***	Must	set	OLAPServerName	to	OLAP	Server	that	is

'***	present	on	network

'**

OLAPServerName	=	"Please	set	to	present	OLAP	Server"

				cat.ActiveConnection	=	"Data	Source="	&	OLAPServerName	&	_

								";Initial	Catalog=FoodMart;Provider=msolap;"

				Session("ServerName")	=	OLAPServerName

				Session("InitialCatalog")	=	"FoodMart"

End	if

If	Len(Session("CubeName"))	>	0	Then

				Set	cdf	=	cat.CubeDefs(Session("CubeName"))

Else

				Set	cdf	=	cat.CubeDefs("Sales")

				Session("CubeName")="Sales"

End	if

'**

'***	Collect	Information	in	HTML	Form

'**

%>

<form	action="ASPADOCubeDoc.asp"	method="post"	id="form1"	name="form1">

<table>

				<tr>

								<td>

								Olap	Server	name:		
<input	type="text"	id="strServerName"	name="strServerName"	value="<%=Session("ServerName")%>"	size="20">

								Catalog	Name:		
<input	type="text"	id="strCatalogName"	name="strCatalogName"	value="<%=Session("CatalogName")%>"	size="20">

								Cube	Name:		
<input	type="text"	id="strCubeName"	name="strCubeName"	value="<%=Session("CubeName")%>"	size="20">

								</td>

								<td	<TD>

												Add	Property	Detail:		

												Dimension	Detail:	<input	type="checkbox"	id="chkDimension"	name="chkDimension">

												Hierarchy	Detail:	<input	type="checkbox"	id="chkHierarchy"	name="chkHierarchy">

												Level	Detail:	<input	type="checkbox"	id="chkLevel"	name="chkLevel">

								</td>	

				</tr>

</table>

<input	type="submit"	value="Cube	Information"	id="submit1"	name="submit1"><input	type="reset"	value="Reset"	id="reset1"	name="reset1">

</form>

<%

'**

'***	Start	of	Report

'**

Response.Write	"<H3>Report	for	"	&	Session("CubeName")	&	"	Cube</H3>"

Response.Write	"<OL	TYPE='i'>"

'**

'***	Show	properties	of	Cube

'**

																For	i	=	0	To	cdf.Properties.Count	-	1

																				Response.Write	""

																				Response.Write	""	&	cdf.Properties(i).Name	&	":	"	&	cdf.Properties(i).Value	&	""

																Next

																Response.Write	""

																Response.Write	"<UL	TYPE='SQUARE'>"			

	'**

'***	Loop	to	display	Dimension	Name	and	Properties	if	Check	box	is	

'***	Checked

'**

								For	di	=	0	To	cdf.Dimensions.Count	-	1

												Response.Write	""

												Response.Write	"Dimension:	"	&	_

																cdf.Dimensions(di).Name	&	""

												If	Request.Form("chkDimension")	=	"on"	Then

																Response.Write	"<OL	TYPE='1'>"

																For	i	=	0	To	cdf.Dimensions(di).Properties.Count	-	1

																				Response.Write	""

																				Response.Write	""	&	_

																								cdf.Dimensions(di).Properties(i).Name	&	":	"	&	_

																								cdf.Dimensions(di).Properties(i).Value	&	""

																Next

																Response.Write	""

												End	If

												Response.Write	"<UL	TYPE=	'Circle'>"

'**

'***	Loop	to	display	Hierarchy	Name	and	Properties	if	Check	box	is	

'***	Checked

'**

												For	hi	=	0	To	cdf.Dimensions(di).Hierarchies.Count	-	1

																Response.Write	""

																Response.Write	"Hierarchy:	"	&	_

																				cdf.Dimensions(di).Hierarchies(hi).Name	&	""

																If	Request.Form("chkHierarchy")	=	"on"	Then

																				Response.Write	"<OL	TYPE='1'>"

																				For	i	=	0	To	_

																								cdf.Dimensions(di).Hierarchies(hi).Properties.Count	-	1

																								Response.Write	""

																								Response.Write	""	&	_

																												cdf.Dimensions(di).Hierarchies(hi).Properties(i)._

																												Name	&	":	"	&	_

																												cdf.Dimensions(di).Hierarchies(hi).Properties(i)._

																												Value	&	""

																				Next

																				Response.Write	""

																End	If

																Response.Write	"<UL	TYPE='Disc'>"

'**

'***	Loop	to	display	Level	Name	and	Properties	if	Check	box	is	Checked

'**

								For	le	=	0	To	cdf.Dimensions(di).Hierarchies(hi).Levels.Count	-	1

																				Response.Write	""

																				Response.Write	"Level:	"	&	_

																								cdf.Dimensions(di).Hierarchies(hi).Levels(le).Name	&	_

																								"	with	a	Member	Count	of:	"	&	_

																								cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																								Properties("LEVEL_CARDINALITY")	&	""

																				If	Request.Form("chkLevel")	=	"on"	Then

																								Response.Write	"<OL	TYPE='1'>"

																								For	i	=	0	To	

																												cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																												Properties.Count	-	1

																												Response.Write	""

																												Response.Write	""	&	_

																																cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																																Properties(i).Name	&	":	"	&	_

																																cdf.Dimensions(di).Hierarchies(hi).Levels(le)._

																																Properties(i).Value	&	""

																								Next

																								Response.Write	""

																				End	If

																Next

																Response.Write	""

												Next

												Response.Write	""

								Next

								Response.Write	""

%>

</body>

</html>

URL	(Uniform	Resource	Locator)

Specifies	the	location	of	a	resource	residing	on	the	Internet	or	an	intranet.	A
complete	URL	consists	of	a	scheme	(such	as	FTP,	HTTP,	mailto,	file,	and	so	on),
followed	by	a	colon,	a	server	name,	and	the	full	path	of	a	resource	(such	as	a
document,	graphic,	or	other	file).	Some	examples	of	URLs	are:

http://www.domain.com/default.html

ftp://ftp.server.somewhere/ftp.file

file://Server/Share/File.doc

See	also	absolute	URL	and	relative	URL.

data	provider

Software	that	directly	exposes	data	to	an	ADO	application.	See	also	service
provider.

service	provider

Sofware	that	encapsulates	a	service	by	producing	and	consuming	data,
augmenting	features	in	your	ADO	applications.	It	is	a	provider	that	does	not
directly	expose	data,	rather	it	provides	a	service,	such	as	query	processing.	The
service	provider	may	process	data	provided	by	a	data	provider.	See	also	data
provider.

Step	2:	Create	a	Command	(ADO	Tutorial)	Sidebar

Commands	can	be	parameterized.	A	parameterized	command	consists	of
command	text	that	can	be	modified	with	a	user-specified	value	each	time	the
command	is	invoked.

A	placeholder	('?')	indicates	the	part	of	the	command	text	that	will	be	modified.
Each	placeholder	in	the	command	text	will	be	replaced	by	the	value	of	the
corresponding	Parameter	object	in	the	Parameters	collection	when	the	command
is	executed.

There	are	two	ways	to	create	a	Parameter	object	and	append	it	to	the	Command
object	Parameters	collection.	The	first	way	is	to	create	a	Parameter	object,	set
its	Name,	Type,	Direction,	Size,	and	Value	properties	individually,	then	append	it
to	the	Parameters	collection.	The	second	way	is	to	create	and	set	properties	of
the	Parameter	object	with	the	Command	object	CreateParameter	method,	then
append	the	newly	created	Parameter	object,	all	in	one	statement.

Finally,	call	the	Command.Execute	or	Recordset.Open	methods	to	substitute
the	parameter	for	the	placeholder	and	obtain	a	Recordset.	Change	the
Parameter	object	Value	property	to	another	name.	Then,	call	the	Execute
method	or	the	Recordset.Close	and	Open	methods	again	to	obtain	a	new
Recordset	for	another	author.

Optimize	the	performance	of	the	parameterized	command	with	the	Prepared
property.	Note	that	the	Execute	method	cannot	specify	the	Recordset	object
CursorType	or	LockType	properties.

Here	is	a	brief	example:

Public	Sub	main()

Dim	cnn	As	New	ADODB.Connection

Dim	cmd	As	New	ADODB.Command

Dim	prm	As	ADODB.Parameter

Dim	strCmd	As	String

strCmd	=	"SELECT	*	FROM	Authors	WHERE	au_lname	=	?"

cmd.CommandText	=	strCmd

cmd.Parameters.Append	_

				cmd.CreateParameter("last	name",	adVarChar,	adParamInput,	40,	"")

cnn.Open	"dsn=Pubs;uid=sa;pwd=;"

cmd.ActiveConnection	=	cnn

cmd.Parameters("last	name")	=	"Ringer"

DisplayRst	cmd.Execute

cmd.Parameters("last	name")	=	"Karsen"

DisplayRst	cmd.Execute

cnn.Close

End	Sub

Private	Sub	DisplayRst(rst	As	ADODB.Recordset)

If	rst.EOF	=	True	Then

				Debug.Print	"No	recordset	returned	for	Name	=	'";	_

																				rst.ActiveCommand.Parameters(0);	"'"

End	If

While	rst.EOF	=	False

				Debug.Print	"Name	=	'";	rst!au_fname;	"	";	rst!au_lname;	"'"

				rst.MoveNext

Wend

End	Sub

Return	to	Step	2:	Create	a	Command

parameterized	command

A	query	or	command	that	allows	you	to	set	parameter	values	before	the
command	is	executed.	For	example,	a	SQL	string	can	be	parameterized	by
embedding	parameter	markers	in	the	SQL	string	(designated	by	the	'?'	character).
The	application	then	specifies	values	for	each	parameter	and	executes	the
command.

cursor

A	database	element	that	controls	record	navigation,	updatability	of	data,	and	the
visibility	of	changes	made	to	the	database	by	other	users.

Step	4:	Manipulate	the	Data	(ADO	Tutorial)	Schema

The	following	is	the	schema	of	the	Authors	table	of	the	Pubs	database:

Column	Name Data	Type	(Length) Nullable
au_id ID	(11) no
au_lname varchar(40) no
au_fname varchar(20) no
Phone char(12) no
Address varchar(40) yes
City varchar(20) yes
State char(2) yes
Zip char(5) yes
Contract bit no

Return	to	Step	4:	Manipulate	the	Data

DLL	(dynamic-link	library)

A	file	that	contains	one	or	more	functions	that	are	compiled,	linked,	and	stored
separately	from	the	processes	that	use	them.	The	operating	system	maps	the
DLLs	into	the	address	space	of	the	calling	process	when	the	process	is	starting,
or	while	it	is	running.

asynchronous	operation

An	operation	that	returns	control	to	the	calling	program	without	waiting	for	the
operation	to	complete.	Before	the	operation	is	complete,	code	execution
continues.	See	also	synchronous	operation.

proxy

An	interface-specific	object	that	provides	the	parameter	marshaling	and
communication	required	for	a	client	to	call	an	application	object	that	is	running
in	a	different	execution	environment,	such	as	on	a	different	thread	or	in	another
process.	The	proxy	is	located	with	the	client	and	communicates	with	a
corresponding	stub	that	is	located	with	the	application	object	that	is	being	called.
See	also	stub.

business	object

An	object	that	performs	a	defined	set	of	operations,	such	as	data	validation	or
business	rule	logic.	Business	objects	usually	reside	on	the	middle	tier.

client	tier

A	logical	layer	of	a	distributed	system	that	typically	presents	data	to	and
processes	input	from	the	user,	sometimes	referred	to	as	the	front	end.	Usually,
the	client	tier	requests	data	from	a	server	based	on	input,	and	then	formats	and
displays	the	result.	See	also	middle	tier,	data	source	tier,	distributed	application.

DCOM

A	wire	protocol	that	enables	COM	components	to	communicate	directly	with
each	other	across	a	network.	See	also	COM,	component.

COM	(Component	Object	Model)

A	binary	standard	that	enables	objects	to	interoperate	in	a	networked
environment	regardless	of	the	language	in	which	they	were	developed	or	on
which	computers	they	reside.	COM-based	technologies	include	ActiveX
Controls,	Automation,	and	object	linking	and	embedding	(OLE).	COM	allows
an	object	to	expose	its	functionality	to	other	components	and	to	host
applications.	It	defines	both	how	the	object	exposes	itself	and	how	this	exposure
works	across	processes	and	across	networks.	COM	also	defines	the	object's	life
cycle.

ActiveX	control

Self-registering,	in-process	COM	component	that	often	has	a	visual	element
either	at	design	time	or	run	time.	ActiveX	controls	also	have	the	ability	to
communicate	with	an	Active	Document	container,	such	as	Microsoft	Internet
Explorer.

Web	server

A	computer	that	provides	Web	services	and	pages	to	intranet	and	Internet	users.

CLSID	(class	identifier)

A	universally	unique	identifier	(UUID)	that	identifies	a	COM	component.	Each
COM	component	has	its	CLSID	in	the	Windows	Registry	so	that	it	can	be	loaded
by	other	applications.	See	also	ProgID,	COM.

ODBC	(Open	Database	Connectivity)

A	standard	programming	language	interface	used	to	connect	to	a	variety	of	data
sources.	This	is	usually	accessed	through	Control	Panel,	where	data	source
names	(DSNs)	can	be	assigned	to	use	specific	ODBC	drivers.

marshaling

The	process	of	packaging,	sending,	and	unpackaging	interface	method
parameters	across	thread	or	process	boundaries.

middle	tier

The	logical	layer	in	a	distributed	system	between	a	user	interface	or	Web	client
and	the	database.	This	is	typically	where	business	objects	are	instantiated.	The
middle	tier	is	a	collection	of	business	rules	and	functions	that	generate	and
operate	upon	receiving	information.	They	accomplish	this	through	business
rules,	which	can	change	frequently,	and	are	thus	encapsulated	into	components
that	are	physically	separate	from	the	application	logic	itself.	Also	known	as
application	server	tier.	See	also	distributed	application,	client	tier,	data	source
tier.

synchronous	operation

An	operation	initiated	by	code	that	completes	before	the	next	operation	may
start.	See	also	asynchronous	operation.

parent

The	controlling	side	of	a	hierarchical	relationship.	In	a	hierarchical	structure,	a
parent	has	one	or	more	child	nodes	directly	beneath	it	in	the	hierarchy.	See	also
parent-alias,	parent-child	relationship,	child.

child

The	dependant	side	of	a	hierarchical	relationship.	A	child	is	a	node	in	a
hierarchical	stucture	that	has	another	node	above	it	(closer	to	the	root).	See	also
child-alias,	parent-child	relationship,	parent.

aggregate	function

In	a	query,	a	function	such	as	COUNT,	AVG,	or	STDEV	that	calculates	a	value
using	all	the	rows	in	a	column	of	a	table.	In	writing	expressions	and	in
programming,	you	can	use	SQL	aggregate	functions	(including	the	three	listed
above)	and	domain	aggregate	functions	to	determine	various	statistics.

calculated	expression

An	expression	that	is	not	constant,	but	whose	value	depends	upon	other	values.
To	be	evaluated,	a	calculated	expression	must	obtain	and	compute	values	from
other	sources,	typically	in	other	fields	or	rows.

hierarchical	Recordset

A	Recordset	that	contains	another	Recordset.	See	also	data	shaping,	chapter.

For	more	information,	see	Accessing	Rows	in	a	Hierarchical	Recordset

persist

To	save	data	in	a	permanent	state,	such	as	saving	a	Recordset	to	a	file.

object	variable

A	variable	that	contains	a	reference	to	an	object.	For	example,	objCustomObject
is	a	variable	that	points	to	an	object	of	type	CustomObject:

Set	objCustomObject	=	CreateObject(adodb.Recordset)

ADISAPI	(Advanced	Data	Internet	Server	Application	Programming
Interface)

An	ISAPI	DLL	that	provides	parsing,	Automation	control,	Recordset
marshaling,	and	MIME	packaging.	The	ADISAPI	component	works	through	the
API	provided	by	Internet	Information	Services	(IIS).	See	also	ISAPI.

business	rule

The	combination	of	validation	edits,	logon	verifications,	database	lookups,
policies,	and	algorithmic	transformations	that	constitute	an	enterprise's	way	of
doing	business.	Also	known	as	business	logic.

component

An	object	that	encapsulates	both	data	and	code,	and	provides	a	well-specified	set
of	publicly	available	services.

relative	URL

A	partially	qualified	URL	that	specifies	a	resource	on	the	Internet	or	an	intranet
whose	location	is	relative	to	a	starting	point	specified	by	an	absolute	URL	or
equivalent	ADO	Connection	object.	In	effect,	the	concatenated	absolute	and
relative	URLs	consitute	a	complete	URL.	See	also	URL	and	absolute	URL.

absolute	URL

A	fully	qualified	URL	that	specifies	the	location	of	a	resource	that	resides	on	the
Internet	or	an	intranet.	See	also	URL	and	relative	URL.

rowset

A	set	of	rows	from	a	data	source,	all	having	the	same	field	schema.	A	rowset	can
represent	all	or	some	fields	from	a	table.	A	rowset	can	also	represent	a	virtual
table,	created	by	a	query	or	a	join	of	two	or	more	tables.	In	ADO,	rowsets	are
represented	by	Recordset	objects.

dynamic	property

A	property	specific	to	a	data	provider	or	the	cursor	service.	The	Properties
collection	of	an	object	is	populated	with	these	automatically	("dynamically").	An
object	has	no	dynamic	properties	until	it	is	connected	to	a	data	source	through	a
particular	data	provider.	See	also	data	provider,	cursor.

MIME	(Multi-purpose	Internet	Mail	Extension)

An	Internet	protocol	originally	developed	to	allow	exchange	of	electronic	mail
messages	with	rich	content	across	heterogeneous	network,	machine,	and	e-mail
environments.	In	practice,	MIME	has	also	been	adopted	and	extended	by	non-
mail	applications.

MIME	is	a	standard	that	allows	binary	data	to	be	published	and	read	on	the
Internet.	The	header	of	a	file	with	binary	data	contains	the	MIME	type	of	the
data;	this	informs	client	programs	(Web	browsers	and	mail	packages,	for
instance)	that	they	will	need	to	handle	the	data	in	a	different	way	than	they
handle	straight	text.	For	example,	the	header	of	a	Web	document	containing	a
JPEG	graphic	contains	the	MIME	type	specific	to	the	JPEG	file	format.	This
allows	a	browser	to	display	the	file	with	its	JPEG	viewer,	if	one	is	present.

stub

An	interface-specific	object	that	provides	the	parameter	marshaling	and
communication	required	for	an	application	object	to	receive	calls	from	a	client
that	is	running	in	a	different	execution	environment,	such	as	on	a	different	thread
or	in	another	process.	The	stub	is	located	with	the	application	object	and
communicates	with	a	corresponding	proxy	that	is	located	with	the	client	that
calls	it.	See	also	proxy.

chapter

A	reference	to	a	range	of	rows	from	a	data	source.	In	ADO,	a	chapter	is	typically
a	reference	to	another	Recordset.

Chapter	columns	make	it	possible	to	define	a	parent-child	relationship	where	the
parent	is	the	Recordset	containing	the	chapter	column	and	the	child	is	the
Recordset	represented	by	the	chapter.

optimistic	locking

A	type	of	locking	in	which	the	data	page	containing	one	or	more	records,
including	the	record	being	edited,	is	unavailable	to	other	users	only	while	the
record	is	being	updated	by	the	Update	method,	but	is	available	before	and	after
the	call	to	Update.

Optimistic	locking	is	used	when	the	Recordset	object	is	opened	with	the
LockType	parameter	or	property	set	to	adLockOptimistic	or
adLockBatchOptimistic.	See	also	pessimistic	locking.

bookmark

A	marker	that	uniquely	identifies	a	row	within	a	set	of	rows	so	that	a	user	can
quickly	navigate	to	it.

sibling

Any	two	or	more	nodes	in	a	hierarchical	structure	that	are	on	the	same	level	in
the	hierarchy.	The	root	node	in	a	hierarchy	has	no	siblings.

data	binding

The	process	of	associating	the	objects	or	controls	of	an	application	to	a	data
source.	A	control	associated	with	a	data	source	is	called	a	data-bound	control.

The	contents	of	a	data-bound	control	are	associated	with	values	from	a	database.
For	example,	a	grid	control	that	is	bound	to	a	Recordset	object	can	be	updated
when	the	rows	in	the	Recordset	are	updated.	When	new	values	are	retrieved	by
the	Recordset,	new	values	are	displayed	in	the	grid.

bitmask

A	numeric	value	intended	for	a	bit-by-bit	value	comparison	with	other	numeric
values,	typically	to	flag	options	in	parameter	or	return	values.	Usually	this
comparison	is	done	with	bitwise	logical	operators,	such	as	And	and	Or	in	Visual
Basic,	&	and	|	in	C++.

For	example,	the	ADO	FieldAttributeEnum	values	can	be	used	as	bitmasks	to
determine	the	attributes	of	a	field.	Suppose	you	wanted	to	determine	if	a	field
was	updatable.	You	could	test	for	this	with	the	following	expression	in	Visual
Basic:

Field.Attributes	AND	adFldUpdatable

If	the	result	is	TRUE,	then	the	field	is	updatable.

data	shaping

A	technique	which	makes	use	of	a	formalized	syntax	(called	Shape	language)	to
define	a	specialized	Recordset	object	(called	a	shaped	Recordset)	that	contains
not	just	data,	but	also	references	to	other	Recordset	objects	and/or	computed
values	based	on	those	other	Recordset	objects.

remote	data	source

A	data	source	that	exists	on	a	another	computer,	rather	than	on	the	local	system
(where	the	client	application	runs).

alias

An	alternate	name	you	give	to	a	column	or	expression	in	an	SQL	SELECT
statement,	often	shorter	or	more	meaningful.	For	example,	BobSales	is	the	alias
in	the	following	SELECT	statement:	"Select	wr-Sales	as	BobSales	from
SalesDB".	An	alias	can	be	used	to	dynamically	assign	columns	to	control
bindings	on	the	DataControl	object.

apartment	threading

A	COM	threading	model	where	all	calls	to	an	object	occur	on	one	thread.	In
apartment	threading,	COM	synchronizes	and	marshals	calls.	See	also	COM.

binding	entry

A	mapping	between	a	field	in	a	table	and	a	variable.	In	the	ADO	Visual	C++
extensions,	Recordset	fields	are	mapped	to	C/C++	variables.

chapter-alias

An	alias	that	refers	to	the	column	appended	to	the	parent.

character	set

A	mapping	of	a	set	of	characters	to	their	numeric	values.	For	example,	Unicode
is	a	16-bit	character	set	capable	of	encoding	all	known	characters	and	used	as	a
worldwide	character-encoding	standard.

child-alias

An	alias	that	refers	to	the	child.	See	also	alias,	child.

COM	component

Binary	file	—	such	as	.dll,	.ocx,	and	some	.exe	files	—	that	supports	the	COM
standard	for	providing	objects.	Such	a	file	contains	code	for	one	or	more	class
factories,	COM	classes,	registry-entry	mechanisms,	loading	code,	and	so	on.

comparison	operator

An	operator	that	compares	two	expressions	and	returns	a	Boolean	value.

A	criteria	parameter	that	may	be	expressed	as	">"	(greater	than),	"<"	(less	than),
"="	(equal),	">="	(greater	than	or	equal),	"<="	(less	than	or	equal),	"<>"	(not
equal),	or	"like"	(pattern	matching).

compound	file

An	implementation	of	COM	structured	storage	for	files.	A	compound	file	stores
separate	objects	in	a	single,	structured	file	consisting	of	two	main	elements:
storage	objects	and	stream	objects.	Together,	they	function	like	a	file	system
within	a	file.	For	more	information,	see	Compound	Files	in	the	Microsoft®
Platform	SDK.

A	number	of	individual	files	bound	together	in	one	physical	file.	Each	individual
file	in	a	compound	file	can	be	accessed	as	if	it	were	a	single	physical	file.

constant

A	numeric	or	string	value	that	does	not	change.	Named	ADO	enumerations
(enumerated	constants)	can	be	used	in	your	code	instead	of	actual	values,	for
example,	adUseClient	is	a	constant	whose	value	is	3.	(Const	adUseClient	=	3).
See	also	enumeration.

DDL	(Data	Definition	Language)

Those	statements	in	SQL	that	define,	as	opposed	to	manipulate,	data.	The
schema	of	a	database	is	created	or	modified	with	DDL.	For	example,	CREATE
TABLE,	CREATE	INDEX,	GRANT,	and	REVOKE	are	SQL	DDL
statements.

DML	(Data	Manipulation	Language)

Those	statements	in	SQL	that	manipulate,	as	opposed	to	define,	data.	The	values
in	a	database	are	selected	and	modified	with	DML.	For	example,	INSERT,
UPDATE,	DELETE,	and	SELECT	are	SQL	DML	statements.

DSN	(data	source	name)

The	collection	of	information	used	to	connect	your	application	to	a	particular
ODBC	database.	The	ODBC	Driver	Manager	uses	this	information	to	create	a
connection	to	the	database.	A	DSN	can	be	stored	in	a	file	(a	file	DSN)	or	in	the
Windows	Registry	(a	machine	DSN).

data	source	tier

A	logical	layer	of	a	distributed	system	that	represents	a	computer	running	a
DBMS,	such	as	an	SQL	Server	database.	See	also	client	tier,	middle	tier,
distributed	application.

default	stream

A	text	or	binary	stream	(represented	by	a	Stream	object)	that	is	associated	with
Record	or	Recordset	objects	when	using	certain	OLE	DB	providers,	such	as	the
Microsoft	OLE	DB	Provider	for	Internet	Publishing.	The	default	stream
typically	contains	the	contents	of	a	file	such	as	the	HTML	code	for	the	root	of	a
Web	site.

disconnected	Recordset

A	Recordset	object	in	a	client	cache	that	no	longer	has	a	live	connection	to	the
server.	If	the	original	data	source	needs	to	be	accessed	again	for	some	reason,
such	as	updating	data,	the	connection	must	be	re-established.	However,	the
collections,	properties,	and	methods	of	a	disconnected	Recordset	can	still	be
accessed.

distributed	application

A	program	written	so	that	the	processing	can	be	divided	across	multiple
computers	over	a	network.	Typically,	a	distributed	application	is	divided	into
presentation,	business	logic,	and	data	store	layers,	or	tiers.	See	also	client	tier,
middle	tier,	data	source	tier.

document	source	provider

A	special	class	of	providers	that	manage	folders	and	documents.	When	a
document	is	represented	by	a	Record	object,	or	a	folder	of	documents	is
represented	by	a	Recordset	object,	the	document	source	provider	populates
those	objects	with	a	unique	set	of	fields	that	describe	characteristics	of	the
document,	instead	of	the	actual	document	itself.	See	also	resource	record.

enumeration

A	list	of	named	constants.	Enumerated	values	need	not	be	unique.	However	the
name	of	each	value	must	be	unique	within	the	scope	where	the	enumeration	is
defined.	In	ADO,	enumerations	are	used	for	numeric	parameter	and	return
values,	to	add	meaning	to	ADO	code	and	to	shield	the	developer	from	the
numeric	values	(which	may	change	from	version	to	version).	For	example,	to
open	a	static	Recordset,	use	the	adOpenStatic	enumerated	value:

Recordset.Open	,,adOpenStatic

Also	referred	to	as	enumerated	constant.	See	also	constant.

event

An	action	recognized	by	an	object,	for	which	you	can	write	code	to	respond.
Events	can	be	generated	by	command	execution,	transaction	completion,
recordset	navigation,	and	data	updates,	among	other	actions.	See	also	event
handler.

event	handler

An	event	handler	is	the	code	that	is	executed	when	an	event	occurs.	See	also
event.

handler

A	routine	that	manages	a	common	and	relatively	simple	condition	or	operation,
such	as	error	recovery	or	data	management.

hierarchy

In	general,	a	hierarchy	is	a	ranked	structure	with	a	top	level	and	subordinate
levels.	In	ADO,	hierarchical	Recordsets	are	used	to	represent	the	parent-child
relationship	between	a	record	and	a	chapter.	Also	in	ADO,	Record	and	Stream
objects	can	be	used	to	access	hierarchical	tree	structures	such	as	a	folder	and
documents.	ADO	MD	also	includes	Hierarchy	objects	to	represent	a
relationship	between	the	levels	of	a	dimension	in	an	OLAP	cube.	See	also
hierarchical	Recordsets,	parent-child	relationship,	chapter,	tree.

ISAPI	(Internet	Server	Application	Programming	Interface)

A	set	of	functions	for	Internet	servers,	such	as	a	Windows	NT®
Server/Windows	2000	Server	running	Microsoft®	Internet	Information	Services
(IIS).

key

A	column	or	columns	in	a	table	that	uniquely	identify	a	row;	often	used	to	index
a	table.

node

An	element	in	a	hierarchical	tree	structure.	A	node	may	be	the	root,	or	the	child
of	another	node.	A	node	can	also	be	the	parent	of	multiple	children.	See	also
hierarchy,	tree,	root,	child,	parent.

OLE	DB

A	set	of	interfaces	that	expose	data	from	a	variety	of	sources	using	COM.	OLE
DB	interfaces	provide	applications	with	uniform	access	to	data	stored	in	diverse
information	sources.	These	interfaces	support	the	amount	of	DBMS	functionality
appropriate	to	the	data	source,	enabling	it	to	share	its	data.	See	also	COM.

ordinal	value

The	numeric	location	of	an	item	within	an	order.	In	an	ADO	collection,	the
ordinal	value	of	the	first	item	is	zero	(0).	The	next	item	is	one	(1),	and	so	on.

parent-alias

An	alias	that	refers	to	the	parent.	See	also	alias,	parent.

parent-child	relationship

A	relationship	in	a	hierarchical	structure	in	which	the	parent	is	one	level	higher
and	directly	associated	with	one	or	more	children.	A	child	is	one	level	lower	and
must	have	one	parent.	See	also	parent,	child.

pessimistic	locking

A	type	of	locking	in	which	the	page	containing	one	or	more	records,	including
the	record	being	edited,	is	unavailable	to	other	users	to	ensure	that	an	update	will
be	made.	Pessimistic	locking	behavior	is	defined	by	the	OLE	DB	provider.
Typically,	records	are	locked	upon	editing	and	remain	unavailable	until	the
Update	method	has	completed.

Pessimistic	locking	is	enabled	when	the	Recordset	object	is	opened	with	the
LockType	parameter	or	property	set	to	adLockPessimistic.	See	also	optimistic
locking.

pooling

A	performance	optimization	based	on	using	collections	of	pre-allocated
resources,	such	as	objects	or	database	connections.	It	is	more	efficient	to	draw	an
existing	resource	from	the	pool	than	to	create	a	new	resource.

ProgID	(programmatic	identifier)

A	unique	name	mapped	to	the	Windows	registry	by	a	COM	application.	The
ProgID	for	an	ADO	Connection	is	"ADODB.Connection".	See	also	CLSID,
COM.

resource	record

A	record	from	a	document	source	provider	that	countains	fields	for	the	definition
and	description	of	a	folder	or	document.	The	document	itself	is	not	contained	in
the	resource	record	but	typically	can	be	accessed	by	the	default	stream	or	a	field
in	the	resource	record	containing	a	URL.	See	also	document	source	provider,
default	stream,	URL.

root

The	top	level	in	a	hierarchical	tree	structure.	The	root	node	has	no	parents,	but
may	have	children.	See	also	hierarchy,	tree,	parent,	child.

schema

A	description	of	a	database	to	the	database	management	system	(DBMS),
typically	generated	using	the	data	definition	language	provided	by	the	DBMS.	A
schema	defines	attributes	of	the	database,	such	as	tables,	columns,	and
properties.

scope

The	range	of	reference	for	an	object	or	variable	or	a	range	of	records	in	a	view	or
table.	For	example,	local	variables	can	be	referenced	only	within	the	procedure
in	which	they	were	defined.	Public	variables	are	accessible	from	anywhere	in	the
application.	Objects,	such	as	the	current	database,	are	in	scope	if	they	are	in	the
defined	search	path.	Record	ranges	can	be	specified	with	a	Scope	clause	in	many
commands.

shaped	Recordset

A	Recordset	whose	columns	have	been	specifically	defined	to	contain	not	just
data,	but	also	references	(called	chapters)	to	other	Recordset	objects	and/or
computed	values	based	on	other	Recordset	objects.

stored	procedure

A	precompiled	collection	of	code	such	as	SQL	statements	and	optional	control-
of-flow	statements	stored	under	a	name	and	processed	as	a	unit.	Stored
procedures	are	stored	within	a	database;	they	can	be	executed	with	one	call	from
an	application	and	allow	user-declared	variables,	conditional	execution,	and
other	powerful	programming	features.

sub-node

See	child.

tree

A	structure	representing	a	hierarchical	relationship	between	elements	(nodes).
There	is	one	node	at	the	top	level	of	a	tree	(the	root).	Underneath	the	root,	there
can	be	multiple	children.	Each	child	may	in	turn	be	the	parent	of	other	children,
thus	branching	like	a	tree.	A	folder	containing	documents	and	other	folders	is	a
typical	example	of	a	tree	structure.	See	also	hierarchy,	node,	root,	child,	parent.

	Microsoft ActiveX Data Objects (ADO)
	Microsoft ADO Programmer's Reference
	What's New in ADO
	Getting Started with ADO
	ADO Overview
	Solutions for Local Data Access
	Basic ADO Programming Model
	ADO Programming Model in Detail
	ADO Programming Model with Objects
	ADO Object Model Summary
	ADO Tutorial
	Step 1: Open a Connection (ADO Tutorial)
	Step 2: Create a Command (ADO Tutorial)
	Step 3: Execute the Command (ADO Tutorial)
	Step 4: Manipulate the Data (ADO Tutorial)
	Step 5: Update the Data (ADO Tutorial)
	Step 6: Conclude the Update (ADO Tutorial)
	ADO Tutorial (Visual Basic)
	ADO Tutorial (Visual C++)
	ADO Tutorial (Visual J++)

	RDS Overview
	Solutions for Remote Data Access
	Basic RDS Programming Model
	RDS Programming Model in Detail
	RDS Programming Model with Objects
	RDS Object Model Summary
	RDS Tutorial
	Step 1: Specify a Server Program (RDS Tutorial)
	Step 2: Invoke the Server Program (RDS Tutorial)
	Step 3: Server Obtains a Recordset (RDS Tutorial)
	Step 4: Server Returns the Recordset (RDS Tutorial)
	Step 5: DataControl is made usable (RDS Tutorial)
	Step 6: Changes are Sent to the Server (RDS Tutorial)
	RDS Tutorial (VBScript)
	RDS Tutorial (VJ++)

	RDS Scenario
	System Requirements for the Address Book Application
	Running the Address Book SQL Script
	Running the Address Book Sample Application
	Address Book Data-Binding Object
	Address Book Command Buttons
	Address Book Navigation Buttons

	Using RDS
	Configuring RDS
	Granting Guest Privileges to a Web Server Computer
	Registering a Custom Business Object
	Marking Business Objects as Safe for Scripting
	Registering Business Objects on the Client for Use with DCOM
	Setting DCOM Stream Marshaling Format
	Enabling a DLL to Run on DCOM
	Configuring Virtual Servers on IIS
	Specifying Threads Per Processor on IIS
	Securing RDS Applications
	Configuring DataFactory for Safe or Unrestricted Modes

	Using Related Technologies with RDS
	Using RDS with ODBC Connection Pooling
	Running Business Objects in Component Services

	Troubleshooting RDS
	Internet Server Error: Access Denied
	Deadlocks With Read Repeatable Isolation Level
	Ensuring Sufficient TempDB Space
	Minimizing Log File Space Usage

	ADO Features
	Shorthand for Creating a Recordset
	Recordset Persistence
	XML Recordset Persistence Scenario
	Step 1: Set Up the Application
	Step 2: Get the Data
	Step 3: Send the Data
	Step 4: Receive and Display the Data

	Index Support and Find, Sort, and Filter
	Records and Streams
	Absolute and Relative URLs
	Records and Provider-Supplied Fields
	Streams
	Streams and Persistence
	Using ADO with the OLE DB Provider for Internet Publishing
	Internet Publishing Scenario
	Step 1: Set Up the Visual Basic Project
	Step 2: Initialize the Main List Box
	Step 3: Populate the Fields List Box
	Step 4: Populate the Details Text Box

	ADO Event Model, Synchronous and Asynchronous Operations
	ADO Event Handler Summary
	Types of Events
	Event Parameters
	How Event Handlers Work Together
	ADO Events in ADO/WFC
	ADO Event Instantiation by Language

	Data Shaping
	Data Shaping Summary
	Required Providers for Data Shaping
	Shape Commands in General
	Shape Append Clause
	Shape Compute Clause
	Fabricating Hierarchical Recordsets
	Accessing Rows in a Hierarchical Recordset
	Formal Shape Grammar
	Visual Basic for Applications Functions

	DataFactory Customization
	Understanding the Customization File
	Customization File Connect Section
	Customization File SQL Section
	Customization File UserList Section
	Customization File Logs Section
	Required Client Settings
	Writing Your Own Customized Handler

	ADO API Reference
	ADO Object Model
	ADO Objects
	Command Object (ADO)
	Connection Object (ADO)
	DataControl Object (RDS)
	DataFactory Object (RDSServer)
	DataSpace Object (RDS)
	Error Object (ADO)
	Field Object (ADO)
	Parameter Object (ADO)
	Property Object (ADO)
	Record Object (ADO)
	Recordset Object (ADO)
	Stream Object (ADO)

	ADO Collections
	Errors Collection (ADO)
	Fields Collection (ADO)
	Parameters Collection (ADO)
	Properties Collection (ADO)

	ADO Properties
	AbsolutePage Property (ADO)
	AbsolutePosition Property (ADO)
	ActiveCommand Property (ADO)
	ActiveConnection Property (ADO)
	ActualSize Property (ADO)
	Attributes Property (ADO)
	BOF, EOF Properties (ADO)
	Bookmark Property (ADO)
	CacheSize Property (ADO)
	Charset Property (ADO)
	CommandText Property (ADO)
	CommandTimeout Property (ADO)
	CommandType Property (ADO)
	Connect Property (RDS)
	ConnectionString Property (ADO)
	ConnectionTimeout Property (ADO)
	Count Property (ADO)
	CursorLocation Property (ADO)
	CursorType Property (ADO)
	DataMember Property (ADO)
	DataSource Property (ADO)
	DefaultDatabase Property (ADO)
	DefinedSize Property (ADO)
	Description Property (ADO)
	Direction Property (ADO)
	EditMode Property (ADO)
	EOS Property (ADO)
	ExecuteOptions Property (RDS)
	FetchOptions Property (RDS)
	Filter Property (ADO)
	FilterColumn Property (RDS)
	FilterCriterion Property (RDS)
	FilterValue Property (RDS)
	Handler Property (RDS)
	HelpContext, HelpFile Properties (ADO)
	Index Property (ADO)
	InternetTimeout Property (RDS)
	IsolationLevel Property (ADO)
	Item Property (ADO)
	LineSeparator Property (ADO)
	LockType Property (ADO)
	MarshalOptions Property (ADO)
	MaxRecords Property (ADO)
	Mode Property (ADO)
	Name Property (ADO)
	NativeError Property (ADO)
	Number Property (ADO)
	NumericScale Property (ADO)
	OriginalValue Property (ADO)
	PageCount Property (ADO)
	PageSize Property (ADO)
	ParentURL Property (ADO)
	Position Property (ADO)
	Precision Property (ADO)
	Prepared Property (ADO)
	Provider Property (ADO)
	ReadyState Property (RDS)
	RecordCount Property (ADO)
	Recordset, SourceRecordset Properties (RDS)
	RecordType Property (ADO)
	Server Property (RDS)
	Size Property (ADO)
	Size Property (ADO Stream)
	Sort Property (ADO)
	SortColumn Property (RDS)
	SortDirection Property (RDS)
	Source Property (ADO Error)
	Source Property (ADO Record)
	Source Property (ADO Recordset)
	SQL Property (RDS)
	SQLState Property (ADO)
	State Property (ADO)
	Status Property (ADO Field)
	Status Property (ADO Recordset)
	StayInSync Property (ADO)
	Type Property (ADO)
	Type Property (ADO Stream)
	UnderlyingValue Property (ADO)
	URL Property (RDS)
	Value Property (ADO)
	Version Property (ADO)

	ADO Dynamic Properties
	ADO Dynamic Property Index
	Optimize Property--Dynamic (ADO)
	Prompt Property--Dynamic (ADO)
	Reshape Name Property--Dynamic (ADO)
	Resync Command Property--Dynamic (ADO)
	Unique Table, Unique Schema, Unique Catalog Properties--Dynamic (ADO)
	Update Resync Property--Dynamic (ADO)

	ADO Methods
	AddNew Method (ADO)
	Append Method (ADO)
	AppendChunk Method (ADO)
	BeginTrans, CommitTrans, and RollbackTrans Methods (ADO)
	Cancel Method (ADO)
	Cancel Method (RDS)
	CancelBatch Method (ADO)
	CancelUpdate Method (ADO)
	CancelUpdate Method (RDS)
	Clear Method (ADO)
	Clone Method (ADO)
	Close Method (ADO)
	CompareBookmarks Method (ADO)
	ConvertToString Method (RDS)
	CopyRecord Method (ADO)
	CopyTo Method (ADO)
	CreateObject Method (RDS)
	CreateParameter Method (ADO)
	CreateRecordset Method (RDS)
	Delete Method (ADO Parameters Collection)
	Delete Method (ADO Fields Collection)
	Delete Method (ADO Recordset)
	DeleteRecord Method (ADO)
	Execute Method (ADO Command)
	Execute Method (ADO Connection)
	Find Method (ADO)
	Flush Method (ADO)
	GetChildren Method (ADO)
	GetChunk Method (ADO)
	GetRows Method (ADO)
	GetString Method (ADO)
	LoadFromFile Method (ADO)
	Move Method (ADO)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods (ADO)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods (RDS)
	MoveRecord Method (ADO)
	NextRecordset Method (ADO)
	Open Method (ADO Connection)
	Open Method (ADO Record)
	Open Method (ADO Recordset)
	Open Method (ADO Stream)
	OpenSchema Method (ADO)
	Query Method (RDS)
	Read Method (ADO)
	ReadText Method (ADO)
	Refresh Method (ADO)
	Refresh Method (RDS)
	Requery Method (ADO)
	Reset Method (RDS)
	Resync Method (ADO)
	Save Method (ADO)
	SaveToFile Method (ADO)
	Seek Method (ADO)
	SetEOS Method (ADO)
	SkipLine Method (ADO)
	SubmitChanges Method (RDS)
	Supports Method (ADO)
	Update Method (ADO)
	UpdateBatch Method (ADO)
	Write Method (ADO)
	WriteText Method (ADO)

	ADO Events
	BeginTransComplete, CommitTransComplete, and RollbackTransComplete Events (ADO)
	ConnectComplete and Disconnect Events (ADO)
	EndOfRecordset Event (ADO)
	ExecuteComplete Event (ADO)
	FetchComplete Event (ADO)
	FetchProgress Event (ADO)
	InfoMessage Event (ADO)
	onError Event (RDS)
	onReadyStateChange Event (RDS)
	WillChangeField and FieldChangeComplete Events (ADO)
	WillChangeRecord and RecordChangeComplete Events (ADO)
	WillChangeRecordset and RecordsetChangeComplete Events (ADO)
	WillConnect Event (ADO)
	WillExecute Event (ADO)
	WillMove and MoveComplete Events (ADO)

	ADO Enumerated Constants
	ADCPROP_ASYNCTHREADPRIORITY_ENUM
	ADCPROP_AUTORECALC_ENUM
	ADCPROP_UPDATECRITERIA_ENUM
	ADCPROP_UPDATERESYNC_ENUM
	AffectEnum
	BookmarkEnum
	CommandTypeEnum
	CompareEnum
	ConnectModeEnum
	ConnectOptionEnum
	ConnectPromptEnum
	CopyRecordOptionsEnum
	CursorLocationEnum
	CursorOptionEnum
	CursorTypeEnum
	DataTypeEnum
	EditModeEnum
	ErrorValueEnum
	EventReasonEnum
	EventStatusEnum
	ExecuteOptionEnum
	FieldEnum
	FieldAttributeEnum
	FieldStatusEnum
	FilterGroupEnum
	GetRowsOptionEnum
	IsolationLevelEnum
	LineSeparatorsEnum
	LockTypeEnum
	MarshalOptionsEnum
	MoveRecordOptionsEnum
	ObjectStateEnum
	ParameterAttributesEnum
	ParameterDirectionEnum
	PersistFormatEnum
	PositionEnum
	PropertyAttributesEnum
	RecordCreateOptionsEnum
	RecordOpenOptionsEnum
	RecordStatusEnum
	RecordTypeEnum
	ResyncEnum
	SaveOptionsEnum
	SchemaEnum
	SearchDirectionEnum
	SeekEnum
	StreamOpenOptionsEnum
	StreamReadEnum
	StreamTypeEnum
	StreamWriteEnum
	StringFormatEnum
	XactAttributeEnum

	ADO Errors
	ADO Error Codes
	DataControl Error Codes
	Internet Explorer Error Codes
	Internet Information Services Error Codes

	Programming with ADO
	Using ADO with Microsoft Visual Basic
	Using ADO with Scripting Languages
	ADO in VBScript
	ADO in JScript

	Using ADO with Microsoft Visual C++
	How Visual C++ Users Should Read the ADO Documentation
	Visual C++ Extensions for ADO
	Using Visual C++ Extensions for ADO
	Visual C++ Extensions Header in Detail
	ADO with Visual C++ Extensions Example

	ADO for Visual C++ Syntax Index for COM
	Collections (ADO for Visual C++ Syntax)
	Command (ADO for Visual C++ Syntax)
	Connection (ADO for Visual C++ Syntax)
	Error (ADO for Visual C++ Syntax)
	Field (ADO for Visual C++ Syntax)
	Parameter (ADO for Visual C++ Syntax)
	Record (ADO for Visual C++ Syntax)
	Recordset (ADO for Visual C++ Syntax)
	Stream (ADO for Visual C++ Syntax)

	ADO for Visual C++ Syntax Index with #import
	Collections (Visual C++ Syntax Index with #import)
	Command (Visual C++ Syntax Index with #import)
	Connection (Visual C++ Syntax Index with #import)
	Error (Visual C++ Syntax Index with #import)
	Field (Visual C++ Syntax Index with #import)
	Parameter (Visual C++ Syntax Index with #import)
	Property (Visual C++ Syntax Index with #import)
	Record (Visual C++ Syntax Index with #import)
	Recordset (Visual C++ Syntax Index with #import)
	Stream (Visual C++ Syntax Index with #import)
	ConnectionEvents (Visual C++ Syntax Index with #import)
	RecordsetEvents (Visual C++ Syntax Index with #import)

	Using ADO with Microsoft Visual J++
	ADO for Windows Foundation Classes
	Using ADO with the Java Type Library Wizard
	Using ADO with the Microsoft SDK for Java
	ADO Java Class Wrappers
	ADO/WFC Syntax Index
	Collections (ADO/WFC Syntax)
	Command (ADO/WFC Syntax)
	Connection (ADO/WFC Syntax)
	DataSpace (ADO/WFC Syntax)
	Error (ADO/WFC Syntax)
	Field (ADO/WFC Syntax)
	ObjectProxy (ADO/WFC Syntax)
	Parameter (ADO/WFC Syntax)
	Recordset (ADO/WFC Syntax)

	ADO Samples
	Sample Applications
	ADO ASP Sample
	ADO ISAPI Sample
	ADO Java Sample
	ADO VBScript Sample
	ADO Internet Publishing Sample
	ADO XML Sample
	RDS Test Sample
	RDS Address Book Sample
	RDS Handler Sample

	ADO Code Examples
	ADO Code Examples in Microsoft Visual Basic
	AbsolutePage, PageCount, and PageSize Properties Example (VB)
	AbsolutePosition and CursorLocation Properties Example (VB)
	ActiveCommand Property Example (VB)
	ActiveConnection, CommandText, CommandTimeout, CommandType, Size, and Direction Properties Example (VB)
	ActualSize and DefinedSize Properties Example (VB)
	AddNew Method Example (VB)
	Append and CreateParameter Methods Example (VB)
	AppendChunk and GetChunk Methods Example (VB)
	Attributes and Name Properties Example (VB)
	BeginTrans, CommitTrans, and RollbackTrans Methods Example (VB)
	BOF, EOF, and Bookmark Properties Example (VB)
	CacheSize Property Example (VB)
	Cancel Method Example (VB)
	Clone Method Example (VB)
	CompareBookmarks Method Example (VB)
	ConnectionString, ConnectionTimeout, and State Properties Example (VB)
	ConvertToString Method Example (VB)
	CopyRecord, CopyTo, and SaveToFile Methods Example (VB)
	Count Property Example (VB)
	CreateRecordset Method Example (VB)
	CursorType, LockType, and EditMode Properties Example (VB)
	Delete Method Example (VB)
	DeleteRecord and MoveRecord Methods Example (VB)
	Description, NativeError, Number, Source, and SQLState Properties Example (VB)
	EOS and LineSeparator Properties and SkipLine Method Example (VB)
	Execute, Requery, and Clear Methods Example (VB)
	Filter and RecordCount Properties Example (VB)
	Find Method Example (VB)
	GetRows Method Example (VB)
	GetString Method Example (VB)
	Handler Property Example (VB)
	InternetTimeout Property Example (VB)
	IsolationLevel and Mode Properties Example (VB)
	Item Property Example (VB)
	MarshalOptions Property Example (VB)
	MaxRecords Property Example (VB)
	Move Method Example (VB)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods Example (VB)
	NextRecordset Method Example (VB)
	NumericScale and Precision Properties Example (VB)
	Open and Close Methods Example (VB)
	OpenSchema Method Example (VB)
	Optimize Property Example (VB)
	OriginalValue and UnderlyingValue Properties Example (VB)
	Prepared Property Example (VB)
	Provider and DefaultDatabase Properties Example (VB)
	Read, ReadText, Write, and WriteText Methods Example (VB)
	Refresh Method Example (VB)
	Resync Method Example (VB)
	Save and Open Methods Example (VB)
	Seek Method and Index Property Example (VB)
	Sort Property Example (VB)
	Source Property Example (VB)
	State Property Example (VB)
	Status Property Example (Field) (VB)
	Status Property Example (Recordset) (VB)
	StayInSync Property Example (VB)
	Supports Method Example (VB)
	Type Property Example (Field) (VB)
	Type Property Example (Property) (VB)
	Update and CancelUpdate Methods Example (VB)
	UpdateBatch and CancelBatch Methods Example (VB)
	Value Property Example (VB)
	Version Property Example (VB)

	ADO Code Examples in Microsoft Visual Basic Scripting Edition
	AddNew Method Example (VBScript)
	Cancel Method Example (VBScript)
	CancelUpdate Method Example (VBScript)
	Clone Method Example (VBScript)
	Connect Property Example (VBScript)
	ConvertToString Method Example (VBScript)
	CreateRecordset Method Example (VBScript)
	DataControl Object Example (VBScript)
	DataSpace Object and CreateObject Method Example (VBScript)
	DataFactory Object, Query Method, and CreateObject Method Example (VBScript)
	Delete Method Example (VBScript)
	Execute, Requery, and Clear Methods Example (VBScript)
	ExecuteOptions and FetchOptions Properties Example (VBScript)
	FilterColumn, FilterCriterion, FilterValue, SortColumn, and SortDirection Properties and Reset Method Example (VBScript)
	Move Method Example (VBScript)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods Example (VBScript)
	Open and Close Methods Example (VBScript)
	ReadyState Property Example (VBScript)
	Recordset and SourceRecordset Properties Example (VBScript)
	Refresh Method Example (VBScript)
	Server Property Example (VBScript)
	SQL Property Example (VBScript)
	SubmitChanges Method Example (VBScript)
	URL Property Example (VBScript)

	ADO Code Examples in Microsoft Visual C++
	ADO Events Model Example (VC++)
	AbsolutePage, PageCount, and PageSize Properties Example (VC++)
	AbsolutePosition and CursorLocation Properties Example (VC++)
	ActiveCommand Property Example (VC++)
	ActiveConnection, CommandText, CommandTimeout, CommandType, Size, and Direction Properties Example (VC++)
	ActualSize and DefinedSize Properties Example (VC++)
	AddNew Method Example (VC++)
	Append and CreateParameter Methods Example (VC++)
	AppendChunk and GetChunk Methods Example (VC++)
	Attributes and Name Properties Example (VC++)
	BeginTrans, CommitTrans, and RollbackTrans Methods Example (VC++)
	BOF, EOF, and Bookmark Properties Example (VC++)
	CacheSize Property Example (VC++)
	Cancel Method Example (VC++)
	Clone Method Example (VC++)
	CompareBookmarks Method Example (VC++)
	ConnectionString, ConnectionTimeout, and State Properties Example (VC++)
	Count Property Example (VC++)
	CursorType, LockType, and EditMode Properties Example (VC++)
	Delete Method Example (VC++)
	Description, NativeError, Number, Source, and SQLState Properties Example (VC++)
	Execute, Requery, and Clear Methods Example (VC++)
	Filter and RecordCount Properties Example (VC++)
	Find Method Example (VC++)
	GetRows Method Example (VC++)
	GetString Method Example (VC++)
	Handler Property Example (VC++)
	InternetTimeout Property Example (VC++)
	IsolationLevel and Mode Properties Example (VC++)
	Item Property Example (VC++)
	MarshalOptions Property Example (VC++)
	MaxRecords Property Example (VC++)
	Move Method Example (VC++)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods Example (VC++)
	NextRecordset Method Example (VC++)
	NumericScale and Precision Properties Example (VC++)
	Open and Close Methods Example (VC++)
	OpenSchema Method Example (VC++)
	Optimize Property Example (VC++)
	OriginalValue and UnderlyingValue Properties Example (VC++)
	Prepared Property Example (VC++)
	Provider and DefaultDatabase Properties Example (VC++)
	Refresh Method Example (VC++)
	Resync Method Example (VC++)
	Save and Open Methods Example (VC++)
	Seek Method and Index Property Example (VC++)
	Sort Property Example (VC++)
	Source Property Example (VC++)
	State Property Example (VC++)
	Status Property Example (VC++)
	StayInSync Property Example (VC++)
	Supports Method Example (VC++)
	Type Property Example (Field) (VC++)
	Type Property Example (Property) (VC++)
	Update and CancelUpdate Methods Example (VC++)
	UpdateBatch and CancelBatch Methods Example (VC++)
	Value Property Example (VC++)
	Version Property Example (VC++)

	ADO Code Examples in Microsoft Visual J++
	AbsolutePage, PageCount, and PageSize Properties Example (VJ++)
	AbsolutePosition and CursorLocation Properties Example (VJ++)
	ActiveCommand Property Example (VJ++)
	ActiveConnection, CommandText, CommandTimeout, CommandType, Size, and Direction Properties Example (VJ++)
	ActualSize and DefinedSize Properties Example (VJ++)
	AddNew Method Example (VJ++)
	Append and CreateParameter Methods Example (VJ++)
	AppendChunk and GetChunk Methods Example (VJ++)
	Attributes and Name Properties Example (VJ++)
	BeginTrans, CommitTrans, and RollbackTrans Methods Example (VJ++)
	BOF, EOF, and Bookmark Properties Example (VJ++)
	CacheSize Property Example (VJ++)
	Cancel Method Example (VJ++)
	Clone Method Example (VJ++)
	CompareBookmarks Method Example (VJ++)
	ConnectionString, ConnectionTimeout, and State Properties Example (VJ++)
	Count Property Example (VJ++)
	CursorType, LockType, and EditMode Properties Example (VJ++)
	Delete Method Example (VJ++)
	Description, NativeError, Number, Source, and SQLState Properties Example (VJ++)
	Execute, Requery, and Clear Methods Example (VJ++)
	Filter and RecordCount Properties Example (VJ++)
	Find Method Example (VJ++)
	GetRows Method Example (VJ++)
	GetString Method Example (VJ++)
	Handler Property Example (VJ++)
	InternetTimeout Property Example (VJ++)
	IsolationLevel and Mode Properties Example (VJ++)
	Item Property Example (VJ++)
	MarshalOptions Property Example (VJ++)
	MaxRecords Property Example (VJ++)
	Move Method Example (VJ++)
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods Example (VJ++)
	NextRecordset Method Example (VJ++)
	NumericScale and Precision Properties Example (VJ++)
	Open and Close Methods Example (VJ++)
	OpenSchema Method Example (VJ++)
	Optimize Property Example (VJ++)
	OriginalValue and UnderlyingValue Properties Example (VJ++)
	Prepared Property Example (VJ++)
	Provider and DefaultDatabase Properties Example (VJ++)
	Refresh Method Example (VJ++)
	Resync Method Example (VJ++)
	Save and Open Methods Example (VJ++)
	Sort Property Example (VJ++)
	Source Property Example (VJ++)
	State Property Example (VJ++)
	Status Property Example (VJ++)
	StayInSync Property Example (VJ++)
	Supports Method Example (VJ++)
	Type Property Example (Field) (VJ++)
	Type Property Example (Property) (VJ++)
	Update and CancelUpdate Methods Example (VJ++)
	UpdateBatch and CancelBatch Methods Example (VJ++)
	Value Property Example (VJ++)
	Version Property Example (VJ++)

	Using Providers with ADO
	Microsoft OLE DB Provider for ODBC
	Microsoft OLE DB Provider for Microsoft Indexing Service
	Microsoft OLE DB Provider for Microsoft Active Directory Service
	OLE DB Provider for Microsoft Jet
	Microsoft OLE DB Provider for SQL Server
	Microsoft OLE DB Provider for Oracle
	Microsoft OLE DB Provider for Internet Publishing
	Microsoft Data Shaping Service for OLE DB (ADO Service Provider)
	Microsoft OLE DB Persistence Provider (ADO Service Provider)
	Microsoft OLE DB Remoting Provider (ADO Service Provider)
	Microsoft Cursor Service for OLE DB (ADO Service Component)

	ADO Glossary

	Microsoft ADOX Programmer's Reference
	What's New in ADOX
	ADOX API Reference
	ADOX Object Model
	ADOX Objects
	Catalog Object (ADOX)
	Column Object (ADOX)
	Group Object (ADOX)
	Index Object (ADOX)
	Key Object (ADOX)
	Procedure Object (ADOX)
	Table Object (ADOX)
	User Object (ADOX)
	View Object (ADOX)

	ADOX Collections
	Columns Collection (ADOX)
	Groups Collection (ADOX)
	Indexes Collection (ADOX)
	Keys Collection (ADOX)
	Procedures Collection (ADOX)
	Tables Collection (ADOX)
	Users Collection (ADOX)
	Views Collection (ADOX)

	ADOX Properties
	ActiveConnection Property (ADOX)
	Attributes Property (ADOX)
	Clustered Property (ADOX)
	Command Property (ADOX)
	DateCreated Property (ADOX)
	DateModified Property (ADOX)
	DefinedSize Property (ADOX)
	DeleteRule Property (ADOX)
	IndexNulls Property (ADOX)
	Name Property (ADOX)
	NumericScale Property (ADOX)
	ParentCatalog Property (ADOX)
	Precision Property (ADOX)
	PrimaryKey Property (ADOX)
	RelatedColumn Property (ADOX)
	RelatedTable Property (ADOX)
	SortOrder Property (ADOX)
	Type Property (Column) (ADOX)
	Type Property (Key) (ADOX)
	Type Property (Table) (ADOX)
	Unique Property (ADOX)
	UpdateRule Property (ADOX)

	ADOX Methods
	Append Method (ADOX Columns)
	Append Method (ADOX Groups)
	Append Method (ADOX Indexes)
	Append Method (ADOX Keys)
	Append Method (ADOX Procedures)
	Append Method (ADOX Tables)
	Append Method (ADOX Users)
	Append Method (ADOX Views)
	ChangePassword Method (ADOX)
	Create Method (ADOX)
	Delete Method (ADOX Collections)
	GetObjectOwner Method (ADOX)
	GetPermissions Method (ADOX)
	SetObjectOwner Method (ADOX)
	SetPermissions Method (ADOX)

	ADOX Enumerated Constants
	ActionEnum
	AllowNullsEnum
	ColumnAttributesEnum
	InheritTypeEnum
	KeyTypeEnum
	ObjectTypeEnum
	RightsEnum
	RuleEnum
	SortOrderEnum

	ADOX Code Examples
	ADOX Code Examples in Microsoft Visual Basic
	Attributes Property Example (VB)
	Catalog ActiveConnection Property Example (VB)
	Clustered Property Example (VB)
	Columns and Tables Append Methods, Name Property Example (VB)
	Command and CommandText Properties Example (VB)
	Connection Close Method, Table Type Property Example (VB)
	Create Method Example (VB)
	DateCreated and DateModified Properties Example (VB)
	DefinedSize Property Example (VB)
	DeleteRule Property Example (VB)
	GetObjectOwner and SetObjectOwner Methods Example (VB)
	GetPermissions and SetPermissions Methods Example (VB)
	Groups and Users Append, ChangePassword Methods Example (VB)
	Indexes Append Method Example (VB)
	IndexNulls Property Example (VB)
	Keys Append Method, Key Type, RelatedColumn, RelatedTable and UpdateRule Properties Example (VB)
	NumericScale and Precision Properties Example (VB)
	Parameters Collection, Command Property Example (VB)
	ParentCatalog Property Example (VB)
	PrimaryKey and Unique Properties Example (VB)
	Procedures Append Method Example (VB)
	Procedures Delete Method Example (VB)
	Procedures Refresh Method Example (VB)
	SortOrder Property Example (VB)
	Views and Fields Collections Example (VB)
	Views Append Method Example (VB)
	Views Collection, CommandText Property Example (VB)
	Views Delete Method Example (VB)
	Views Refresh Method Example (VB)

	ADOX Code Examples in Microsoft Visual C++
	Attributes Property Example (VC++)
	Catalog ActiveConnection Property Example (VC++)
	Clustered Property Example (VC++)
	Columns and Tables Append Methods, Name Property Example (VC++)
	Command and CommandText Properties Example (VC++)
	Connection Close Method, Table Type Property Example (VC++)
	Create Method Example (VC++)
	DateCreated and DateModified Properties Example (VC++)
	DefinedSize Property Example (VC++)
	DeleteRule Property Example (VC++)
	GetObjectOwner and SetObjectOwner Methods Example (VC++)
	GetPermissions and SetPermissions Methods Example (VC++)
	Groups and Users Append, ChangePassword Methods Example (VC++)
	Indexes Append Method Example (VC++)
	IndexNulls Property Example (VC++)
	Keys Append Method, Key Type, RelatedColumn, RelatedTable and UpdateRule Properties Example (VC++)
	NumericScale and Precision Properties Example (VC++)
	Parameters Collection, Command Property Example (VC++)
	ParentCatalog Property Example (VC++)
	PrimaryKey and Unique Properties Example (VC++)

	Microsoft ADO MD Programmer's Reference
	What's New in ADO MD
	Overview of Multidimensional Schemas and Data
	Working with Multidimensional Data
	Using ADO with ADO MD
	Programming with ADO MD
	ADO MD API Reference
	ADO MD Object Model
	ADO MD Objects
	Axis Object (ADO MD)
	Catalog Object (ADO MD)
	Cell Object (ADO MD)
	Cellset Object (ADO MD)
	CubeDef Object (ADO MD)
	Dimension Object (ADO MD)
	Hierarchy Object (ADO MD)
	Level Object (ADO MD)
	Member Object (ADO MD)
	Position Object (ADO MD)

	ADO MD Collections
	Axes Collection (ADO MD)
	CubeDefs Collection (ADO MD)
	Dimensions Collection (ADO MD)
	Hierarchies Collection (ADO MD)
	Levels Collection (ADO MD)
	Members Collection (ADO MD)
	Positions Collection (ADO MD)

	ADO MD Properties
	ActiveConnection Property (ADO MD)
	Caption Property (ADO MD)
	ChildCount Property (ADO MD)
	Children Property (ADO MD)
	Depth Property (ADO MD)
	Description Property (ADO MD)
	DimensionCount Property (ADO MD)
	DrilledDown Property (ADO MD)
	FilterAxis Property (ADO MD)
	FormattedValue Property (ADO MD)
	Item Property (ADO MD Cellset)
	LevelDepth Property (ADO MD)
	LevelName Property (ADO MD)
	Name Property (ADO MD)
	Ordinal Property (ADO MD Cell)
	Ordinal Property (ADO MD Position)
	Parent Property (ADO MD)
	ParentSameAsPrev Property (ADO MD)
	Source Property (ADO MD)
	State Property (ADO MD)
	Type Property (ADO MD)
	UniqueName Property (ADO MD)
	Value Property (ADO MD)

	ADO MD Methods
	Close Method (ADO MD)
	Open Method (ADO MD)

	ADO MD Enumerated Constants
	MemberTypeEnum

	ADO MD Code Examples
	ADO MD Code Examples in Visual Basic
	Cellset Example (VB)
	Catalog Example (VB)

	ADO MD Code Examples in Visual Basic, Scripting Edition
	Axis Example (VBScript)
	Members Example (VBScript)
	CubeDef Example (VBScript)

