
ACS	Help
The	following	pages	provide	help	for	using	the	basic	functions	of	the	ACS,	as
well	as	descriptions	of	all	implemented	plugins.



ACS	Basic	Functions
The	figure	below	shows	the	main	panel	of	the	AsTeRICS	Configuration
Suite	after	the	application	has	started.	The	screen	is	divided	in	four	main
areas,	the	menu	area	(1),	the	Deployment	area	(2)	(where	the	drawing
will	be	done),	the	GUI	Designer	area	(3),	switchable	with	the	Deployment
area	and	the	Properties	area	(4),	where	the	settings	of	the	components
can	be	adapted.

	ACS
after	Startup

Additionally,	the	main	menu	will	open,	if	the	AsTeRICS-Button	is	pressed
in	the	menu	bar	-	see	figure	below.	All	functions	of	the	main	menu	are
also	reachable	via	buttons	in	the	tabs,	except	the	About	and	the	Print
dialog.	This	dialog	shows	general	information	about	the	ACS	and	the
AsTeRICS	project.



Menu	Bar	with	Open	Main	Menu



Create	and	Edit	a	Model
To	create	a	new	model,	add	one	or	several	components.	To	do	so,	select
the	tab	Components,	and	from	the	sub-menu	select	a	group	of
components,	depending	on	what	is	supposed	to	be	added.	The	three
component	groups	are	Sensors,	Processors	and	Actuators.	Within	these
sections,	the	components	are	devided	in	subsections,	making	it	easier
finding	one	plugin	out	of	the	hugh	amount	of	available	plugins.
Additionally,	there	is	a	fifth	section	Saved	Groups	where	saved	groups
can	be	added	to	the	drawing.

	The
Components	Tab

Now,	this	added	component	can	be	manipulated	in	the	drawing	area.
This	can	be	done	with	the	functions	in	the	Edit-tab	or	directly	by	using	the
mouse	or	the	keyboard.



Model	Manipulation	via	Mouse
After	a	component	has	been	added	to	the	drawing	field,	it	can	be	moved
by	using	the	drag	and	drop	functionality.	Several	elements	(components,
channels,	eventchannels)	can	be	selected	by	drawing	a	selection
rectangle	(just	press	the	left	mouse	button	and	move	the	mouse)	or	by
pressing	the	Ctrl-Key	and	clicking	on	each	element.	All	the	selected
elements	can	be	also	moved	using	drag	and	drop.	All	selected
components	are	marked	with	a	blue	rectange	in	the	background,	the
component,	which	has	the	keyboard	focus	(and	displayed	in	the	property
editor),	is	surrounded	with	a	blue	border.	Channels	can	be	drawn	by
pressing	the	mouse	button	over	an	output	port	and	dragging	the	channel
to	an	input	port.	Connecting	eventchannels	is	similar	to	the	channels.

Selection	of	Components



Model	Manipulation	via	Keyboard
All	elements	within	the	drawing	area	can	be	set	on	focus,	using	the	Tab-
key	or	the	arrow-keys.	To	select	an	element,	the	Space-key	has	to	be
used,	to	select	several	elements,	use	Ctrl-	and	Space-Keys	at	the	same
time.	By	pressing	the	Alt-Key,	the	ribbon	menu	shortcuts	will	appear	at
the	menus.	The	App-Key	opens	the	context	menu.	More	information
about	the	usage	of	the	keyboard	within	the	ACS	can	be	found	in	the
section	Component	Context	Menu.



Selection
It	is	possible	to	select	several	components,	channels	and	event	channels
at	the	same	time.	The	selection	can	be	made	with	the	mouse	(by
dragging	a	selection	rectangle	or	by	the	usage	of	the	Ctrl-key,	like	in
many	standard	programs)	or	with	the	keyboard	using	the	Space	key.	The
selected	components	are	marked	with	a	blue	frame.	The	figure	below
shows	a	model	with	several	selected	components.

Model	with	three	selected	components



The	Edit	Tab
The	edit	tab	is	used	for	manipulating	properties	of	the	components	and
their	interconnections.	The	list	below	provides	a	detailed	description	of
the	available	operations	found	on	the	Edit	Tab	as	shown	in	the	figure.

	The
Edit	Tab

Description	of	the	Model	Properties	Group:

Edit	Model	ID	edits	the	unique	model	ID.	This	ID	is	generated
automatically	and	is	used	by	the	ARE	to	store	model	based
informations	belonging	to	the	editing	model.
Show	Model	Description	shows	the	model	description	dialog.	Within
this	dialog,	the	model	description	will	be	shown	and	can	be	edited.
The	description	is	divided	in	the	parts	of	Short	Description,	Model
Requirements	and	Detailed	Description

Description	of	the	Edit	Components	Group:

Move	Component	enables	the	move	mode	of	a	component.	Now	the
component	can	be	moved	around	the	drawing	board	using	the	arrow
keys.	Using	the	enter-key	or	tabbing	to	another	component	ends	the
move	mode.
Component	Properties	shows	the	properties	of	the	component.

Description	of	the	Edit	Group:

New	Channel	indicates	that	a	channel	is	about	to	be	drawn.	To	start
drawing	a	channel,	click	on	an	output	port	or	use	the	context	menu.
New	Eventchannel	indicates	that	an	event	channel	is	about	to	be
drawn.	To	start	drawing	an	event	channel,	click	on	an	event	trigger
port	or	use	the	context	menu.
Cut	cuts	out	the	selected	elements	and	store	the	cutted	elements	in



the	clipboard.
Copy	copies	the	selected	elements	to	the	clipboard.
Paste	copies	the	elements	from	the	clipboard	to	the	drawing	field.
Delete	Selection	deletes	the	selected	elements.	This	can	also	be
done	with	the	delete-key.
Undo	the	last	editing	action	like	move	a	component,	add/delete	a
component	or	also	the	channel	and	event	channel	operations.
Setting	properties	and	events	(things	done	in	the	property	window)
are	excluded	form	undo.
Redo	the	last	editing	action	that	has	been	undone	with	Undo.	Setting
properties	and	events	(things	done	in	the	property	window)	are
excluded	form	redo.
Group	the	selected	components	(incl.	channels	and	event	channels)
to	one	group.	The	selected	components	must	not	contain	a	group.
All	connected	ports	and	event	ports	will	be	available	as	external
connection	points	of	the	group.	The	figure	above	shows	a	very
simple	example,	the	grouping	of	two	components	to	one	group.

Grouping	of	two	components

Ungroup	the	selected	group,	showing	the	single	components	of	the
group.
Save	Group	saves	a	selected	group,	so	the	group	can	be	reused	in
this	or	in	other	models.	The	saved	groups	are	available	in



Components	/	Saved	Groups

After	at	least	two	components	have	been	added	to	the	deployment,	they
can	be	connected	to	each	other.	A	connection	always	has	to	start	at	the
output	port	(right	hand	side	of	a	component)	connecting	to	an	input	port
(left	side	of	the	component).	One	output	port	can	be	connected	to	several
input	ports,	but	an	input	port	can	only	receive	data	from	one	output	port.
Additionally	the	data	types	of	the	ports	must	match	in	order	to	be	able	to
connect	them,	see	the	section	on	Channels.



Component	Context	Menu
All	editing	functions,	which	require	the	usage	of	the	mouse,	can	also	be
done	with	the	keyboard,	using	the	context	menu	of	the	component.	The
context	menu	appears	using	the	right	mouse	key,	the	space	key	or	the
application	key.

	A
Component	with	the	Opened	Component	Context	Menu



Channels
Channels	are	the	main	way	to	transmit	data	from	one	component	to
another.	A	channel	always	transmits	information	from	the	output	port	to
the	input	port.	The	data	type	of	the	channel	is	always	equal	the	data	type
of	the	output	port.	The	components	of	the	AsTeRICS	platform	process
one	or	several	of	the	following	data	types,	represented	by	the	ports	of	the
components:

Boolean:	can	be	true	or	false
Byte:	numbers	from	-128	to	127
Char:	one	character
Integer:	numbers	from	approx.	-2	billion	to	+2	billion
Double:	huge	amount	of	positive	and	negative	floating	point	numbers
String:	a	string	of	characters	(up	to	whole	sentences)

The	ports	can	be	connected	to	ports	with	the	same	data	type	or	following
these	connection	rules:

byte	to	integer
byte	to	double
char	to	integer
char	to	double
integer	to	double
double	to	integer



Events
The	AsTeRICS	platform	knows	two	concepts	of	connecting	two
components	to	each	other.	The	first	one	is	channels,	where	data	is
transported	from	one	component	to	another.	The	second	one	is	the
events-concept.	Events	are	single	or	continuous	happenings,	which
should	trigger	an	action	at	the	receiver.	After	an	event	channel	has	been
established	between	a	trigger	and	a	listener,	the	events	have	to	be	set	in
the	events	tab	(which	appears	in	the	property	area	-	by	default	on	the
right	side	of	the	ACS).	In	this	event	tab,	there	is	a	table	with	two	columns:
the	left	column	lists	the	event	listeners,	the	right	column	the	event
triggers.	So,	with	the	selection	box	on	the	right	side	(second	column),	the
triggering	event	for	the	listener	will	be	set.	One	component	can	send	and
receive	events	from	several	other	components.	The	following	figure
shows	the	setting	of	events.

	ACS
with	Active	Events	Tab



Setting	the	Properties
Each	component	has	0	to	several	properties,	by	means	of	which	the
behaviour	of	the	component	can	be	adapted	or	functions	can	be	enabled.
These	properties	are	not	limited	to	the	component	itself.	Also	the	ports
(input	and	output,	but	not	the	event	ports)	can	have	properties.	The
usage	of	the	properties	and	their	effects	can	be	found	in	the
documentation	of	the	components.	The	following	figure	shows	the
property	editor	editing	the	characteristics	of	the	component	"generator".
By	default,	the	property	area	is	on	the	right	hand	side	of	the	ACS.

	The
Property	Tab	showing	a	Component's	Properties



Dynamic	Properties
Beside	the	standard	properties,	components	can	also	have	dynamic
properties.	This	means,	properties	in	the	property	editor	can	become
values	from	the	component	on	the	ARE.	This	feature	might	be	useful	in
several	cases,	as	example	if	a	plugin	is	hardware	dependent	(selecting	a
soundcard	or	a	midi	player),	or	depending	on	files	on	the	target	system,
like	several	sound	files.

If	a	plugin	is	implementing	a	dynamic	property,	the	values	will	be
requested	from	the	ARE,	as	soon	as	the	ACS	is	synchronised	with	the
ARE.	Then,	the	received	values	can	be	selected	in	a	combobox	within
the	property	editor	(as	shown	in	the	figure	below).

Plugin	with	Dynamic	Property



Tooltips
Tooltips	are	used	to	provide	context	information	when	editing	the	model.
They	can	be	found	when	hovering	over	an	item	of	interest.	The	following
items	provide	tooltips:

Deployment	(drawing)	area,	when	hovering
a	component
an	input	port	of	a	component
an	output	port	of	a	component
the	event	listener	item	of	a	component
the	event	trigger	item	of	a	component
an	event	channel	line

Property	editor,	when	hovering
a	property	key

Input	port	editor,	when	hovering
a	property	key

Output	port	editor,	when	hovering
a	property	key

Event	channel	editor,	when	hovering
the	column	heading	of	event	trigger	or	event	listener
an	entry	of	an	event	trigger	or	event	listener

Components	menu,	when	hovering
a	menu	item

Components	search,	when	hovering
a	search	result	item



Open	and	Save	Models
In	the	system	tab,	models	can	be	saved	on	the	local	file	system	(Save
Model,	Save	Model	as),	or	loaded	from	the	local	file	system	(Open
Model).	New	Model	cleans	up	the	drawing	field,	preparing	everything	for
a	new	model.

Local	Operations	Group	in	Tab	System



Control	the	ARE
In	the	system-tab,	the	group	ARE	handles	the	functionalities	for
connecting	to	and	communicating	with	the	ARE.	The	connection	to	the
ARE	is	handled	by	the	AsTeRICS	Application	Programming	Interface
(ASAPI).

	System
Tab,	ARE	and	ARE	Storage	Group

Connect	to	ARE	connects	the	ACS	with	the	ARE.	The	Connect	to
ARE	dialog	appears,	asking	for	the	connection	data.	The	host	name
(IP-address	of	the	host)	can	be	found	in	the	ARE	configuration,	the
default	port	should	be	9090.	Beside	this	connection	dialog,	also	auto
connection	can	be	used,	see	the	section	Options	/	General	Settings.

The	ARE	Connection	Dialog

When	the	connection	has	been	established,	two	special	cases	can
occur:

An	active	model	(deployment)	has	been	detected	on	the	ARE.
The	user	will	be	asked	to	download	this	model	or	to	proceed
without	downloading	it.
An	active	model	(deployment)	has	been	detected	and	is	running
on	the	ARE.	The	user	will	be	asked	to	download	this	model	and
switch	the	ACS	to	Running	mode	or	to	proceed	without
downloading	it.

Disconnect	from	ARE	closes	the	connection	to	the	ARE.
Upload	Model	transmits	the	model	in	the	drawing	from	the	ACS	to
the	ARE.	The	model	on	the	ARE	will	be	overwritten.	Uploading	the



model	to	the	ARE	does	not	start	the	model	on	the	ARE.
Download	Model	transmits	the	active	model	from	the	ARE	to	the
ACS.	The	model	on	the	drawing	area	will	be	overwritten.
Download	Bundles	transmits	the	bundel	description	(describing	the
components)	form	the	connected	ARE	to	the	ACS.	These	bundel
descrptions	will	be	available	as	components	in	the	components-tab.
Then	bundles	can	be	managed	with	the	Bundle	Manager.

The	group	ARE	Storage	deals	with	the	storage	on	the	ARE.	The	storage
is	an	area	within	the	ARE	where	models	can	be	stored	and	also	activated
using	the	ARE	interface.

Store	Model	on	ARE	transmits	the	model	in	the	drawing	from	the
ACS	to	the	ARE	storage.	A	dialog	appears	to	set	the	filename.
Load	Model	from	Storage	transmits	a	model	from	the	ARE	storage	to
the	ACS.	The	model	on	the	ACS	drawing	area	will	be	overwritten.	A
dialog	appears	to	select	the	filename	of	the	model.
Activate	a	Stored	Model:	A	dialog	appears	to	select	the	filename	of	a
model	in	the	storage.	This	model	will	be	set	active	in	the	ARE	and
also	will	be	started.	Furthermore,	the	model	on	the	ACS	drawing
area	will	be	overwritten	with	the	selected	model	and	the	ACS
switches	to	run-mode.
Delete	a	Stored	Model	deletes	a	model	from	the	ARE	storage	using
a	file	dialog.
Set	as	Autorun	sets	the	model	as	autorun	model.	This	model	will	be
started	automatically	when	the	ARE	starts.

Starting	and	stopping	a	model	can	be	done	with	the	buttons	in	the	group
Model.

The	Model	Group	in	the	System	Tab



Start	Model	starts	the	model	on	the	ARE	and	switches	the	ACS	into
run-mode.	This	means	that	now	no	components,	channels	and	event
channels	can	be	added,	edited	or	deleted.	The	drawing	area	is
greyed	out.
Pause	Model	pauses	the	model	on	the	ARE.
Stop	Model	stops	the	model	on	the	ARE	and	ends	the	run-mode.



GUI	Designer
The	GUI	Designer	allows	to	arrange	the	GUI	Elements	of	components
with	a	graphical	user	interface.	These	GUI	Elements	will	then	be	shown
on	the	ARE	GUI.	All	GUI	elements	will	be	drawn	and	deleted
automatically,	if	a	component	with	a	GUI	is	added	or	deleted.	Within	the
GUI	Designer,	the	size	and	the	position	of	the	GUI	Elements	can	be
changed.

	The
GUI	Designer



Miscellaneous
Within	the	tab	Miscellaneous	(Misc.),	status	reports	and	logging	files	can
be	requested	from	the	connected	ARE,	options	can	be	set,	the
Component	Collection	Manager	can	be	called	and	external	tools	can	be
launched.	The	three	supported	external	tools	are	the	Plugin	Creation
Wizard,	the	Plugin	Activation	Wizard	and	the	Language	Translation	File
Creator.

	The
Miscellaneous	Tab



Status	Reporting	and	Error
Logging
Within	the	tab	Miscellaneous	(Misc.),	status	information	and	error	logging
can	be	requested	from	the	ARE	(if	an	active	connection	to	the	ARE	is
available).

	The
Miscellaneous	Tab

Get	ARE	Status	opens	a	window,	showing	status	messages	from	the
ARE	and	from	the	components	within	the	ARE.	These	messages
can	be	copied	to	the	clipboard	or	saved	to	a	file:

The	ARE	Status	Window

Show	Logfile	from	ARE	shows	the	logging	file	from	the	ARE,
containing	status	and	error	messages:



The	ARE	Logging	Window

Beside	this	general	information,	the	status	of	each	component	can	be
requested	using	the	Show	Component	Status	in	the	context	menu	of
each	component.	The	following	figure	shows	a	component	with	a	red
background	-	this	means	an	error	occurred	in	this	component.	The	status
window	shows	this	error	and	with	the	button	Remove	Error	Marker	the
red	background	can	be	removed.

A	Component	in	Error	State	with	the	opened	Status	Window



Component	Collection	Manager
The	Component	Collection	Manager	(see	Figure	below)	is	a	small	tool	in
which	downloaded	component	collections	(the	description	of	the	available
plugins	within	the	AsTeRICS	Runtime	Environment)	can	be	saved	and
administered.	Within	the	component	collection	manager,	the	following
functionalities	are	provided:

Use	Default	sets	the	default	ACS	component	collection	as	active
component	collection
Set	as	Autostart	sets	the	active	component	collection	as	autostart
component	collection,	which	will	be	loaded	at	ACS	startup.
Save	Component	Collection	saves	the	active	component	collection
(e.g.	a	downloaded	component	collection	from	the	ARE)	into	the
ACS	folder.
The	Saved	Component	Collections	list	shows	all	saved	component
collections.	A	component	collection	can	be	selected	and	set	active.

Component	Collection	Manager



Print
The	ACS	also	includes	very	basic	print	functionality,	located	in	the	main
menu.	The	model	will	be	printed	on	one	A4	page,	properties	or	set	events
will	not	be	printed.



Options
Within	the	miscellaneous	tab,	the	options	dialog	can	be	opened.	This
dialog	is	divided	in	three	parts:	General	Settings,	Dialogs	and	Colours.



General	Settings

	Options
Dialog,	General	Settings

Reset	Window	Arrangement	resets	all	layout	settings	to	default
values.
Language	gives	the	possibility	to	select	the	ACS	language	between
English,	German,	Spanish	and	Polish.	The	properties	of	the
components	will	not	be	affected	by	this,	as	they	are	dependent	on
the	component	description.	After	changing	the	language,	a	restart	of
the	ACS	is	required	for	the	changes	to	take	effect.
Connection	Data	is	responsible	for	the	connection	of	the	ACS	with
the	ARE.	The	Host	contains	the	IP-address	of	the	ARE,	the	Port	its
IP-port.	Default	port	is	9090.	If	Detect	ARE	automatically	is	selected,
the	host	information	will	be	ignored	and	the	ACS	tries	to	find	the
ARE	in	the	network.	If	more	then	one	ARE	will	be	detected	in	the
network,	an	ARE	selection	dialog	will	appear.	Connection	Timeout



sets	time	network	timeout	time	(in	milliseconds).	If	the	ARE	is	not
reacting	after	this	time,	the	connection	to	the	ARE	will	be	closed.
ARE	Status	Update	enables	or	disables	an	automatic	update	of	the
ARE	status.	This	status	update	works	while	the	ACS	is	in	run-mode.
The	Update	Frequency	sets	the	time	between	two	status	updates	(in
milliseconds).
Automatic	Backup	Files	creates	a	backup	file	during	each	Save	File
process.	The	backup	file	gets	the	ending	.backup.



Dialogs	Settings

	Options
Dialog,	Dialogs	Settings

Within	this	options	tab,	dialogs	can	be	activated	or	deactivated.	In	the
ACS,	several	dialogs	have	the	option	Show	this	dialog	every	time	.	If	a
dialog	has	been	deactivated	there,	it	can	be	reactivated	in	the	options
dialog.



Colours	Settings

	Options
Dialog,	Colours	Settings

Within	the	Colours	tab,	the	colours	of	the	different	parts	of	a	component
can	be	changed.	The	colour	chooser	not	only	allows	changing	the	colour,
also	the	transparency	can	be	changed.



Modes
The	ACS	can	enter	several	different	modes,	depending	on	the	status	of
the	connected	ARE.	The	connection	status	is	displayed	at	the	bottom	left
corner	of	the	ACS.	Possible	ACS	modes	are:

Disconnected
Connected
Synchronized
Running
Pause



Disconnected
This	is	the	standard	mode	after	the	ACS	has	been	started.	The	drawing
area	is	enabled,	new	components	can	be	added	and	channels	between
the	components	can	be	established.	Models	cannot	be	uploaded	or
downloaded	and	also	the	ARE	storage	is	not	accessible,	due	to	the	fact
that	there	is	no	ARE	connected.



Connected
This	mode	is	reached	after	the	ACS	has	been	connected	to	the	ARE.	The
drawing	area	is	enabled,	new	components	can	be	added	and	channels
between	the	components	can	be	established.	Models	can	be	uploaded	or
downloaded,	also	the	ARE	storage	is	accessible.	The	status	and	the
logging	file	can	be	requested	from	the	ARE.



Synchronized
After	a	model	has	been	uploaded	or	downloaded,	the	ARE	is
synchronized	with	the	ACS.	The	model	can	now	be	started	on	the	ARE,
using	the	Start	Model	button.	Adding	or	removing	components	and
editing	channels	or	event	channels	will	cause	a	switch	back	to	the	mode
connected.	Changing	properties	of	the	components	will	not	change	the
mode,	as	these	changes	are	transmitted	to	the	ARE	in	the	background.
Also	the	status	and	the	logging	file	can	be	requested	from	the	ARE.



Running
After	the	Start	Model	button	has	been	pressed,	the	ACS	is	in	the	running
mode.	Within	this	mode,	the	drawing	area	is	disabled	(indicated	by	a	grey
background)	and	the	buttons	in	the	components	tab	and	the	edit	tab	are
disabled,	so	elements	can	only	be	selected	or	moved.	The	following
figure	shows	a	screenshot	of	the	ACS	in	running	mode.

	The
ACS	in	the	Running	Modus



Pause
This	mode	is	similar	to	the	running	mode,	with	the	difference,	that	the
model	on	the	ARE	is	not	running	but	in	a	pause	state.



Keyboard	Control
The	AsTeRICS	Configuration	Suite	is	fully	accessible	by	keyboard.	The
following	sections	describe	the	usage	in	the	different	parts	of	the	ACS.



Menus
The	whole	ACS	is	fully	accessible	by	keyboard.	The	menu	items	of	the
ACS	menus	can	be	acessed	pressing	the	Alt-key,	followed	by	the	keys,
being	displayed.	Screenshot	1	shows	the	menu	after	pressing	Alt,
Screenshot	2	shows	the	System	menu	after	pressing	Alt	folowed	by
pressing	Y.

Screenshot:	The	menu	after	pressing	Alt

Screenshot:	The	menu	after	pressing	Alt	followed	by	pressing	Y



The	Drawing	Area
The	drawing	area	can	be	reached,	pressing	Ctrl+D,	the	focus	will	be	on
the	first	element.	The	focus	between	the	elements	can	be	changed	using
the	Tab	key	or	the	Arrow	keys.	Elements	can	be	selected	using	the
Space	Key,	multiple	elements	can	be	selected,	pressing	Ctrl+Space.
Pressing	the	App	Key	(also	called	Context	Menu	key)	opens	the	context
menu.	Screenshot	3	shows	a	selected	component	with	the	opend	context
menu.

Screenshot:	Component	with	opend	context
menu

The	Context	Menu

Add	Channel	creates	a	new	channel.	An	output	port	must	be
selected	to	initiate	a	new	channel.
Connect	Channel	sets	the	end	point	of	the	new	channel.	Select	an
empty	input	port	to	finish	the	channel
Drop	Channel	deletes	an	initiated	but	unfinished	channel

Add	Event	Channel	creates	a	new	event	channel.	An	event	trigger



must	be	selected	to	initiate	a	new	event	channel.
Connect	Event	Channel	sets	the	end	point	of	the	new	event	channel.
Select	an	event	listener	to	finish	the	event	channel.	Afterwards,	the
events	must	be	set	in	the	Event	Editor
Drop	Event	Channel	deletes	an	initiated	but	unfinished	event
channel

Move	Selection	moves	the	selected	elements	on	the	drawing	area	by
using	the	arrow	keys.	The	move	operation	can	be	stopped	by
pressing	Enter.
Delete	Selection	deletes	the	selected	components,	channels	and
event	channels.
Properties	sets	the	focus	to	the	Property	Editor
Show	Component	Status	displays	a	component	status	window.
Remove	Conflict	Marker	removes	the	marker,	indicating	a	version
conflict	between	the	component	collection	of	the	ARE	and	the	ACS.



The	GUI	Editor
Accessing	the	GUI	Editor	is	quite	similar	to	the	Drawing	area.	Using	the
Ctrl+G	key	combination	sets	the	focus	on	the	first	element.	The	App	Key
(also	called	Context	Menu	key)	opens	the	context	menu,	offering	the
options	of:

Resize	chnages	the	width	and	hight	of	the	GUI	element	by	using	the
arrow	keys.
Stop	Resize	stops	the	resize	operation.	This	function	will
automatically	be	called	if	the	focus	is	set	to	any	other	element	(e.g
by	pressing	the	Tab	or	the	App	key).

Move	moves	the	GUI	element	on	the	GUI	area	by	using	the	arrow
keys.
Stop	Move	stops	the	move	operation.	This	function	will	automatically
be	called	if	the	focus	is	set	to	any	other	element	(e.g	by	pressing	the
Tab	or	the	App	key).



Property	and	Port	Editor
Ctrl+G	sets	the	focus	to	the	property	editor	tab.	Using	the	Tab	key	sets
the	focus	to	the	property	editor,	using	the	arrow	keys	allows	to	navigate
to	the	other	tabs	(input	and	output	ports,	event	triggers	and	listeners).
Within	the	property	editor,	navigation	will	be	handled	using	the	Tab	key	to
select	and	edit	the	different	properties.	Within	the	input	and	output	ports,
the	list	of	ports	can	be	navigated	using	the	arrow	keys	(so	shown	in
screenshot	4).

Screenshot:	Port	Editor	with	opend	and	closed
output	ports



Event	Editor
With	the	Event	Editor	(reachable	with	the	shortcut	Ctrl+E),	events	within
an	event	channel	will	be	set.	Once	again,	the	navigation	will	be	handled
using	the	Tab	key.	When	a	combobox	is	in	focus,	the	value	can	be
changed	using	the	up	an	down	arrow	keys.	Furthermore,	the	combobox
can	be	opend	using	the	Enter	key.	Screenshot	5	shows	the	event	editor
with	an	opend	combo	box.

Screenshot:	Event	Editor	with	opend	combobox



Keyboard	Shortcuts
Keyboard	Shortcuts

Key Command
F1 Open	Help	window
F5 Start	the	model
F6 Pause	the	model
F7 Stop	the	model
Ctrl	+	A Select	all	elements	in	the	drawing	area
Ctrl	+	C Copy	all	selected	elements	to	the	clipboard

Ctrl	+	X Cut	out	all	selected	elements	and	copy	them	to	the
clipboard

Ctrl	+	V Paste	the	elements	from	the	clipcoard	to	the	drawing	area
Ctrl	+	Z Undo	last	operation
Ctrl	+	Y Redo	last	operation	(after	Undo)
Ctrl	+	S Save	the	drawing
Del Delete	the	selected	elements
Ctrl	+	+ Zoom	in
Ctrl	+	- Zoom	out
Ctrl	+	D Set	focus	on	the	drawing	area
Ctrl	+	G Set	focus	on	the	GUI	area
Ctrl	+	P Set	focus	on	the	Property	editor
Ctrl	+	E Set	focus	on	the	Event	editor
Alt Display	keyboard	shortcuts	of	the	menu	elements
Tab Navigate	to	the	next	element	(in	several	areas)
Arrow
Keys Move	Focus	in	several	areas,	also	move	in	scroll	areas

Alt	+	F4 Close	the	ACS



Plugins
In	the	following	sections,	all	the	plugins	available	in	the	AsTeRICS
framework	will	be	presented.	The	plugins	can	be	divided	in	3	groups:
sensor	modules,	processing	modules	and	actuator	modules.

Sensors	include	all	software	modules	which	make	physical	or
simulated	data	available	to	other	AsTeRICS	plugins.	Examples
include	a	digital	switch	interface,	an	analogue	sip/puff	sensor,	a
webcam	or	a	signal	generator.
Processors	include	mathematical	transformations,	feature	detectors,
threshold	level	monitors	etc.	which	are	necessary	to	scale	or
combine	signals	or	detect	interesting	events	in	the	data	streams
acquired	from	the	sensors.
Actuators	enable	assistive	functionalities	like	mouse-	or	keyboard
replacement,	visual	or	acoustic	feedback	or	direct	interaction	with
the	environment,	e.g.	infrared	remote	control,	home	automation	or
physical	manipulation.

The	plugins	represent	the	functional	blocks	of	AsTeRICS.	They	can	be
combined	to	tailored	Assistive	Technology	setups	via	the	graphical
AsTeRICS	Configuration	Suite	software	application	(ACS),	where	plugins
can	be	selected,	connected	via	channels,	and	parameterized.	Thus,	the
ACS	can	be	considered	as	a	user	friendly	environment	to	arrange	the
plugins.	The	result	of	this	configuration	process	is	an	.xml	file	containing
the	deployment	model	for	the	AsTeRICS	Runtime	Environment	(ARE).



Sensors
Sensors	are	defined	as	components	which	generate	data	to	be
processed	within	the	processing	chain	set	up	in	the	AsTeRICS	Runtime
Environment.	Sensors	can	either	generate	data	in	the	component	itself
(e.g.	a	signal	generator)	or	they	can	read	data	from	an	external	sensor
(such	as	an	ADC	or	a	digital	GPIO	port).	Sensors	only	contain	output
ports	as	no	input	data	from	within	the	ARE	is	needed.



Acceleration
Component	Type:	Sensor	(Subcategory:	Inertial
Measurement)

The	Acceleration	input	component	is	a	sensor	which	is	used	in
combination	with	the	Acceleration	CIM	created	in	the	course	of	the
AsTeRICS	project.	The	component	provides	three	output	ports	which
provide	acceleration	values	for	x,	y	and	z	axis.	Via	the	component
properties,	the	sampling	rate	and	the	sensitivity	(acceleration	range)	can
be	set.

Acceleration	plugin



Requirements
This	software	component	requires	an	Acceleration	CIM	(CIM	ID:	0x0501)
connected	to	the	platform.

Acceleration	CIM	(preliminary	version)



Output	Port	Description
xAcc	[double],	yAcc	[double],	zAcc	[double]:	These	three	output
ports	provide	actual	acceleration	values	of	the	X-,	Y-	and	Z	axis.	The
values	are	updated	as	a	new	data	packet	comes	in	(the	sampling
rate	is	set	via	the	property	update_frequency.
total	[double]:	This	output	port	provides	the	total	acceleration	value,
calculated	by	the	square	root	of	(x*x	+	y*y	+	z*z).



Event	Listener	Description
start:	An	incoming	event	on	this	port	starts	the	Acceleration	CIM.	(If
the	property	autostart	is	set,	the	CIM	is	started	automatically	when
the	model	is	started).
stop:	An	incoming	event	on	this	port	stops	the	Acceleration	CIM.
calibrate:	An	incoming	event	on	this	port	samples	the	current	values
of	X,	Y	and	Z	axis	and	stores	them	as	new	"offset	values".	These
offset	values	are	subtracted	from	the	incoming	x,	y	and	z	values.
Please	note	that	this	is	not	a	real	calibration	of	the	sensor,	but	can
set	a	baseline	for	the	output	values	to	zero,	for	example	when	the
sensor	is	in	resting	pose.



Properties
autoStart	[boolean]:	This	property	specifies	if	the	Acceleration	CIM
shall	be	started	together	with	the	model	(if	value	is	true)	or	if	the
Acceleration	CIM	receives	a	sepertate	start	condition	via	the
dedicated	event	listener	port	(if	value	is	false).
discreteSteps	[integer]:	If	this	property	has	a	positive	value	greater
than	zero,	the	effective	range	of	values	for	the	X,Y	and	Z	axis	(-8192
to	8192)	is	mapped	to	a	smaller	number	of	values	given	by	the
property.	For	example:	If	he	value	is	10,	the	whole	range	of
acceleration	is	mapped	to	values	from	-5	to	5.	This	can	be	helpful	if	a
small	number	of	different	values	is	desired,	e.g.	for	controlling	the
mouse	cursor	speed.
updateFrequency	[integer]:	This	property	defines	the	bandwidth	of
the	acceleration	sensor	-	and	respectively	the	update	rate	of
acceleration	values	on	the	output	ports.	The	update	rate	is	twice	as
fast	as	the	selected	bandwidth.	The	bandwidth	can	be	selected	as
10Hz,	20Hz,	40Hz,	75Hz,	150Hz	or	300Hz.	This	means	that	if	a
bandwidth	of	40Hz	is	selected,	the	x,	y	and	z	values	are	updated	80
times	per	second	and	frequencies	up	to	40	Hz	can	be	measured	with
the	acceleration	sensor.	Values	of	20	Hz	to	75	Hz	are	recommended
for	normal	operation	where	body	movements	are	measured	(the
highest	possible	frequency	-	300Hz	-	can	cause	performance
troubles	in	the	current	platform	implementation	because	the	update
rate	of	600	times	per	second	is	too	fast).
accelerationRange	[integer]:	This	property	defines	the	sensitivity	of
the	acceleration	sensor	(the	measureable	range	of	acceleration,
defined	in	g).	The	range	can	be	selected	as	1g,	1.5g,	2g,	3g,	4g,	8g
or	16	g	via	the	combo	box	selection	in	the	ACS.	The	selected
acceleration	range	is	mapped	to	values	of	-8192	to	8192	on	the
output	ports.	A	value	of	3	g	is	recommended	for	normal	operation
where	body	movements	are	measured.



Analog	In
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

The	AnalogIn	component	is	a	sensor	which	is	used	in	combination	with
the	ADC	CIM.	The	component	provides	two	output	ports	which	correlate
to	the	inputs	IN1	and	IN2	of	the	CIM.	The	component	can	be	set	up	to
sample	the	inputs	periodically	or	upon	an	incoming	event.	Both	inputs
can	be	used	for	voltage	and	resistance	measurement.

AnalogIn	plugin



Requirements
This	software	component	requires	an	ADC	CIM	(CIM	ID:	0x0901)
connected	to	a	USB	port.



Output	Port	Description
in1	to	in2	[integer]:	Each	of	these	output	port	corresponds	to	one
input	of	the	ADC	CIM.	The	measured	values	are	forwarded	directly
from	the	CIM	thus	corresponding	to	the	description	given	in	the	CIM
specification.	Depending	on	the	type	of	connected	sensor	the	values
either	correspond	to	a	voltage	or	a	resistive	value.



Event	Listener	Description
adcSampleTrigger:	An	incoming	event	on	this	port	will	cause	the
ADC	CIM	to	sample	data	on	its	inputs.	This	event	will	only	take	effect
if	the	periodic_update	property	is	set	to	0.



Properties
periodicUpdate	[integer]:	This	property	defines	the	time	between
data	sampling	requests	to	the	ADC	CIM	(in	milliseconds).	The
software	component	will	send	requests	to	the	CIM	in	the	given
intervals.	Due	to	current	limitations	of	the	ADC	CIM	it	is
recommended	to	use	time	intervals	not	lower	than	50	milliseconds
(20	samples	per	second).
activateInput1	to	activateInput2	[Boolean]:	These	properties
correspond	the	CIM's	ADC	inputs	IN1	to	IN8,	if	the	property	is	true,
the	corresponding	output	port	of	the	software	component	will	send
the	sampled	data.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



Autostart	Event
Component	Type:	Sensor	(Subcategory:	Simulation)

The	AutostartEvent	component	sends	an	event	after	model	start,	with	a
delay	defined	by	the	Delay	property.

AutostartEvent	plugin



Event	Trigger	Description
output	The	output	event.



Properties
Delay	[integer]:	The	event	delay[ms].



Button	Grid
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

The	Button	Grid	component	is	a	simple	GUI	on-screen	keyboard.	It	sends
events	after	buttons	have	been	pressed.

ButtonGrid	plugin



Event	Trigger	Description
button1...button20:	These	events	are	fired	as	the	corresponding
buttons	are	pressed.



Properties
caption	[string]:	The	text	shown	on	the	component	caption.
horizontalOrientation	[boolean]:	If	selected,	the	keyboard	will	be
placed	horizontally,	otherwise	the	keyboard	will	be	placed	vertically.
textColor	[integer,	combobox	selection]:	The	color	of	the	caption
text	("default"	keeps	the	standard	setting)
backgroundColor	[integer,	combobox	selection]:	The	color	of	the
button	background	("default"	keeps	the	standard	setting)
borderColor	[integer,	combobox	selection]:	The	color	of	the
button	frame	("default"	keeps	the	standard	setting)
borderThickness	[integer]:	The	size	of	the	button	frame
selectionFrameColor	[integer,	combobox	selection]:	The	color	of
the	selection	frame	(active	button,	"default"	keeps	the	standard
setting)
selectionFrameThickness	[integer]:	The	size	of	the	selection
frame
displayGUI	[boolean]:	if	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.
buttonCaption1...buttonCaption20	[string]:	The	text	shown	on	the
buttons:1...20.	If	the	text	is	empty,	the	button	will	not	be	displayed	at
all.
toolTip1...toolTip20	[string]:	The	text	shown	as	tooltip	when	the
mouse	hovers	over	a	corresponding	button.	If	the	text	is	empty,	no
tooltip	will	be	displayed.



CellBoard
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

The	CellBoard	plugin	is	a	GUI	plugin	which	can	display	a	panel	with
multiple	cells.	It	can	be	used	as	a	simple	on-screen	keyboard.	Each	cell
can	contain	text	and	a	picture,	and	it	can	provide	acoustic	feedback	on
selection.	Cells	can	emit	command	strings	and	sounds	or	switch	to	other
cellboards	(which	can	be	stored	as	.xml	files).	The	CellBoard	plugin
provides	basic	scanning	options	(to	select	a	cell	via	a	stepwise	process).
It	also	provides	a	small	editor	for	designing	the	cells	and	saving	the
whole	cellboard	grid	as	an	.xml	file.

CellBoard	plugin



Using	the	cell	editor
The	cell	editor	can	be	opened	by	right-clicking	a	cell.	(This	option	can	be
enabled/disabled	by	using	the	property	"enableEdit").	The	cell	editor
allows	to	define	the	content	of	a	cell	(cell	caption,	action	string,	cell	image
and	sounds	for	cell-selection	or	acoustic	preview	during	cell	scanning).
"Switch	to	Cellboard"	allows	to	specify	a	cellboard	grid	which	will	be
loaded	when	this	cell	is	selected.	When	"back"	is	entered	here,	the
previously	loded	cellboard	will	be	restored.	Thus,	complex
communication/selection	grids	can	be	layered.	The	whole	current
cellboard	is	saved	as	an	.xml	file	when	"Save	Cellboard"	is	clicked.
Existing	.xml	files	can	be	selected	to	be	loaded	on	startup	via	the
"keyboardFile"-property	of	the	cellboard	plugin	in	the	ACS	property	editor.

CellBoard	editor



Input	Port	Description
row	[integer]:	This	port	can	be	used	in	"directed	scanning"	mode	to
set	the	row	of	the	highlighted	cell.
column	[integer]:	This	port	can	be	used	in	"directed	scanning"
mode	to	set	the	column	of	the	highlighted	cell.
cellNumber	[integer]:	This	port	can	be	used	in	"directed	scanning"
mode	to	set	the	number	of	the	highlighted	cell.
xmlFile	[string]:	Name	of	a	keyboard	file	(default	location	in
data/cellBoardKeyboards)	which	can	be	loaded	or	saved.	A	load
operating	can	be	triggered	via	the	dedicated	event	listener	port.



Output	Port	Description
actCell	[integer]:	Sends	the	number	of	the	currently	scanned	cell.
actCellCaption	[string]:	Sends	the	cell	caption	of	the	currently
scanned	cell.
actCellText	[string]:	Sends	the	action	string	of	the	currently
scanned	cell
selectedCell	[integer]:	Sends	the	number	of	the	selected	cell.
selectedCellCaption	[string]:	Sends	the	cell	caption	of	the	selected
cell.
selectedCellText	[string]:	Sends	the	action	string	of	the	currently
active	cell
scanRow	[integer]:	Sends	the	number	of	the	currently	scanned	row
(in	row/column	scanning	mode)
scanColumn	[integer]:	Sends	the	number	of	the	currently	scanned
column	(in	row/column	scanning	mode)



Event	Listener	Description
scanMove:	Moves	the	scanning	highlight	frame	in	the	row-column
and	column-row	scanning	modes.
scanSelect:	Selects	the	highlighted	cell	in	the	row-column,	column-
row	and	directed	scanning	modes.
moveUp:	Moves	the	scanning	highlight	up	in	the	directed	scanning
mode	(wrap	around	is	possible).
moveRight:	Moves	the	scanning	highlight	to	the	right	in	the	directed
scanning	mode	(wrap	around	is	possible).
moveLeft:	Moves	the	scanning	highlight	to	the	left	in	the	directed
scanning	mode	(wrap	around	is	possible).
moveDown:	Moves	the	scanning	highlight	down	in	the	directed
scanning	mode	(wrap	around	is	possible).
load:	loads	a	keyboard	from	the	given	xml-filename	(property
"keyboardFile").



Event	Trigger	Description
cellClicked:	This	event	is	triggered	when	one	of	the	cells	is	clicked.
scanCancel:	This	event	is	triggered	when	the	row/column	scanning
process	is	cancelled	because	the	maximum	number	of	scan	cycles
has	been	reached.
cell1...cell36:	This	event	is	triggered	when	the	given	cell	is	selected.



Properties
caption	[string]:	The	component	caption.
rows	[integer]:	The	number	of	the	cell	rows	(1-36,	rows	x	cols	<=
100).
columns	[integer]:	The	number	of	the	cell	columns	(1-36,	rows	x
cols	<=	100).
textColor	[integer]:	The	color	of	the	cell	text.
backgroundColor	[integer]:	The	color	of	the	cell	background.
scanColor	[integer]:	The	color	of	the	scanning	highlighting.
scanMode	[integer]:	This	property	defines	the	scanning	mode:

"none":	The	board	is	not	scanned.	Users	can	select	the	cell	by
clicking	on	it.
"row-column":	In	this	mode,	rows	of	the	cells	are	scanned.
When	the	user	selects	the	row,	cells	in	the	row	are	scanned.
The	scanning	frame	can	be	moved	using	the	scanMove	event
port.	The	row	and	the	cell	itself	can	be	selected	using	the
scanSelect	event	port.
"column-row":	In	this	mode,	columns	of	the	cells	are	scanned.
When	the	user	selects	the	column,	cells	in	the	column	are
scanned.	The	scanning	frame	can	be	moved	using	the
scanMove	event	port.	The	column	and	the	cell	itself	can	be
selected	using	the	scanSelect	event	port.
"directed":	In	this	mode	only	one	cell	is	highlighted.	The	user
can	move	the	scan	highlighting	via	the	moveUp,	moveRight,
moveLeft	or	moveDown	event	ports	or	the	row,	cellNumber	and
column	input	ports.	The	cell	can	be	selected	using	the
scanSelect	event	port.
"hover	selection":	In	this	mode	the	user	can	select	the	cell	by
hovering	the	mouse	pointer	above	the	cell.

scanCycles	[integer]:	This	parameter	is	used	in	"row/column
scanning"	mode.	After	the	number	of	scan	cycles	is	reached,	the
scanning	switches	back	to	the	highest	level.
hoverTime	[integer]:	This	parameter	is	used	in	"hover	selection"
mode.	It	defines	the	time	of	hovering	needed	to	select	the	cell	(in
milliseconds).
hoverTimeIndicator	[integer]:	This	parameter	adjusts	the	way	a



hover	selection	prgress	is	indicated	to	the	user:
"fixed	frame":	No	graphical	indication	-	the	frame	of	the	currently
active	cell	is	shown	but	does	not	change.
"growing	frame":	The	frame	of	the	active	cell	is	growing	until	the
value	of	property	"hoverSelectionThickness"	is	reached	-	then
the	cell	is	selected.
"backgorund	color":	The	background	color	of	the	cell	changes
slowly	from	the	selected	"backgroundColor"	to	the	selected
"scanColor"	-	then	the	cell	is	selected.

hoverFrameThickness	[integer]:	Maximum	thickness	of	the	cell
frame	(only	valid	for	the	hover	selection	mode	with	indicator	"growing
frame").
enableEdit	[boolean]:	If	selected,	the	cells	can	be	right-clicked	to
display	the	cell	editor,	which	also	allows	to	save	the	xml-keyboard
file.
enableClickSelection	[boolean]:If	selected,	all	cells	can	be
selected	via	a	left	click,	regardless	of	the	scanning	process
commandSeparator	[string]:If	a	character	(or	characters)	are
specified	here,	they	will	be	used	to	tokenize	the	cell	text	which	is
sent	to	the	"selectedCellText"	output	port	when	teh	cell	is	selected.
This	can	be	used	to	send	multiple	strings	(seperately)	to	this	output
port.	In	the	example	screenshot	above,	a	semicolon	(";")	is	used	to
send	two	different	action	string	to	the	output	port	when	the	cell	is
selected.	A	"StringFilter"	plugin	can	then	be	used	to	route	these
commands	to	different	plugins.
keyboardFile	[string]:	Name	of	a	cellboard	.xml	file	(the	sugeested
files	are	located	in	folder	data/cellBoardKeyboards	or	in	folder
"models").	This	file	will	be	loaded	at	startup	of	the	model.	If	no	file	is
specified,	only	the	cell	contents	defined	via	the	ACS	editor	will	be
available.Supports	value	suggestions	for	existing	xml-files	from
the	ARE	(dynamic	property)
ignoreKeyboardFileProperties	[boolean]:	If	selected,	the	general
cellboard	parameters	(rows/columns/colors/scan	mode	etc.)	will	be
kept	as	defined	via	the	ACS	editor	when	a	cellboard	.xml	file	is
loaded.	If	not	selected,	these	parameters	will	be	loaded	from	the	.xml
file,	thereby	overriding	the	values	defined	in	the	ACS	editor.
dispayGUI	[boolean]:	If	selected,	the	component	will	be	displayed
in	the	ARE	GUI.	Otherwise	the	componentent	will	be	hidden	!



The	following	properties	will	be	overwritten	if	cellboard	.xml	files	are
loaded:

cellText1...cellText36	[string]:	The	text	displayed	on	the	cell.
cellImage1...cellImage36	[string]:	The	path	of	the	image	displayed
on	the	cell.
actionText1...actionText36	[string]:	The	text	sent	through	the
selectedCellText	output	port,	when	the	cell	is	selected.



Digital	In
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

The	DigitalIn	component	provides	an	interface	to	read	the	digital	inputs	of
the	GPIO	CIM.	On	state	changes	of	the	connected	signals	(transitions	to
high	or	low	level),	the	component	generates	corresponding	trigger-
events.

Screenshot:	DigitalIn	plugin

	DigitalIn
plugin



Requirements
This	component	requires	the	DigitalIn	(GPO)	CIM	(CIM	Id:	0x0701)
connected	to	an	USB	port.



Event	Trigger	Description
in1High	to	in6High:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	high	level,	an	event	will	be	raised	on	the	corresponding
port.
in1Low	to	in6Low:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	low	level,	an	event	will	be	raised	on	the	corresponding
port.



Properties
activateEventIn1	to	activateEventIn6	[Boolean]:	These	properties
declare	for	each	port	whether	or	not	a	signal	transition	on	the	actual
input	port	should	result	in	an	event	being	triggered	in	the	ARE.	If	a
property	is	set	true	for	one	input,	it	will	raise	events	on	signal
transitions,	if	it	is	set	to	false	it	will	not.
periodicUpdate:	Period	in	milliseconds	for	update	messages	about
state	of	device	inputs.	If	the	property	is	set	to	zero,	the	plugin	will
receive	messages	from	the	CIM	on	signal	transitions,	if	the	property
is	non-zero,	the	CIM	will	send	status	messages	in	the	defined
intervals	without	extra	event	messages	on	signal	changes.	Both
modes	will	have	the	same	effect	on	the	software	plugin,	it	will	raise
events	on	its	trigger	ports.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



EDF	Reader
Component	Type:	Sensor	(Subcategory:	File	System)

This	plugin	reads	an	.edf	file	and	sends	the	data	to	its	output	ports

ReadEDF



Output	port	Description
CH1	-	CH8[double]:	these	ports	send	the	samples	of	the	recorded
signals.



Properties
FileName[string]:	specifies	the	name	of	the	file,	in	which	the	data
has	been	recorded	Supports	value	suggestions	from	ARE
(dynamic	property)



Edit	Box
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

This	component	creates	a	GUI	edit	field	which	can	send	the	text	to	other
components.	The	text	will	be	sent	to	the	output	port	when	enter	is
pressed	or	when	the	edit	box	looses	the	input	focus	(when	the	cursor	is
removed	from	the	edit	field).

	EditBox
plugin



Output	Port	Description
output	[string]:	String	output	port.



Event	Listener	Description
clear:	Removes	the	text	from	the	component.
send:	Send	the	text	value	to	the	String	output	port.



Properties
caption	[string]:	Caption	of	the	component.
default	[string]:	The	default	text,	which	is	set	at	startup.
textColor	[integer]:	Defines	color	of	the	text.
backgroundColor	[integer]:	Defines	background	color.
insertAction	[integer]:	Defines	behaviour	of	the	component	after
the	text	has	been	sent	to	the	output	port.	The	text	in	the	component
can	be	selected	or	removed.
sendDefaultValue	[boolean]:	When	this	checkbox	is	checked	the
default	String	value	is	sent	to	the	String	output	port	when	the	model
gets	started.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Enobio
Component	Type:	Sensor	(Subcategory:	Bioelectric
Measurement)

This	component	interfaces	the	Enobio	sensor	to	the	AsTeRICS	system.	It
is	in	charge	of	driving	the	USB	interface,	commanding	the	proprietary
protocol	that	Enobio	uses,	filtering	the	signal	for	removing	the
environmental	noise	and	performing	an	automatic	offset	compensation
for	each	channel	in	order	to	keep	the	electrophysiological	signal	correctly
calibrated	and	avoid	the	effects	that	the	skin	contact	may	introduce	in	the
signal.	The	component	delivers	the	sampled	signal	in	the	Enobio
electrodes	through	four	output	ports	(one	per	channel).	In	addition,	there
is	another	output	port	which	reports	the	calibration	status	of	the	channels
and	information	regarding	the	sample	loses	due	to	environmental	issues
in	the	wireless	link.	The	output	ports	(sampled	data	and	status)	deliver
250	values	per	second,	which	corresponds	to	the	sample	rate	in	the
Enobio	electrodes.

	Enobio
plugin



Requirements
This	software	component	requires	an	Enobio	receiver	connected	to	the
platform,	the	Enobio	device	switched	on	and	the	electrodes	correctly
placed	on	the	user.

Enobio	device



Output	Port	Description
Channel1	to	Channel4	[integer]:	Each	output	corresponds	to	the
sampled	data	from	its	corresponding	Enobio	channel.	The	integer
represents	the	microvolts	of	the	electro-physiological	signal	read	by
Enobio.	The	data	might	be	pre-processed	according	to	the	value	of
the	properties	of	the	component.
Status	[integer]:	This	port	provides	information	regarding	both	the
calibration	status	of	the	four	channels	and	the	status	of	the	wireless
link.	For	every	integer	value	that	is	available	in	the	data	output	ports,
another	integer	value	is	available	in	this	port	with	the	corresponding
status	information.	The	information	is	proprietary	codified	within	a
16-bit	integer.	This	includes	information	of	calibration	status	of	each
channel	and	the	status	of	the	wireless	link.	This	information	would	be
kept	away	for	the	moment	form	the	ARE	programmers	and	provided
upon	request	if	necessary.



Event	Trigger	Description
externalSignalPosEdgeEvent:	This	event	is	fired	if	the	external
signal	toggles	from	low	to	high	level.
externalSignalNegEdgeEvent:	This	event	is	fired	if	the	external
signal	toggles	from	high	to	low	level.



Properties
IsChannel1Activated	to	IsChannel4Activated	[Boolean]:	If	this
property	is	set	to	true,	the	corresponding	channel	is	calibrated,	thus
the	raw	data	from	this	channel	will	be	meaningful.
HighPassFilterInChannel1	to	HighPassFilterInChannel4
[Boolean]:	If	this	property	is	set	to	true,	a	high	pass	filter	is	applied
to	the	data	from	the	corresponding	channel.
LineNoiseFilter	[Boolean]:	If	this	property	is	set	to	true,	a	50	Hz
band	pass	filter	is	applied	to	the	data	before	it	is	passed	to	the	output
port.	This	filter	is	useful	when	the	environmental	electrical	noise	is
present	in	the	signal.



EOG
Component	Type:	Sensor	(Subcategory:Sensor	Modules)

This	component	provides	the	EOG	signal	(electro-oculogram)	from	the
EOG	sensor	board,	which	has	been	developed	in	course	of	the	Bachelor
theses	of	Benedikt	Rossboth	at	the	UAS	Technikum	Wien.	The	EOG
sensor	board	delivers	information	about	eye	movements	and	eye	blinks
which	can	be	used	in	alternative	user	input	setups.

For	operation,	three	surface	electrodes	must	be	fixed	to	the	users	head
(one	electrode	aside	and	above	one	eye,	and	one	DRL	electrode	e.g.	at
the	wrist	of	the	user).	In	a	proof-of-concept	model,	a	musical	instrument
was	implemented	where	a	user	can	control	midi	tones	via	eye
movements.	For	detailed	information	please	refer	to	the	file
Documentation/DIYGuides/EOG_Rossboth.pdf

	the
EOG	sensor	plugin



Requirements
The	EOG	sensor	has	to	be	connected	to	a	USB	port.	The	design
documentation	of	the	electronic	circuit	can	be	found	in	the	thesis	pdf.	The
firmware	for	the	EOG	sensor's	microcontroller	is	available	in	the	folder
CIMs/EOG_CIM.	The	image	below	shows	the	breadboard	setup	of	the
circuit	and	a	measurement	of	6	eye	blinks	(above)	and	a	left/right	eye
movement	(below).

EOG	sensor	application



Output	Port	Description
horizontal	[integer]:	the	currently	measured	horizontal	eye
movement	value
vertical	[integer]:	the	currently	measured	vertical	eye	movement
value



Properties
updatePeriod	[integer]:	the	update	period	for	values	in
milliseconds.



EShoe
Component	Type:	Sensor	(Subcategory:	Sensor	Modules)

This	component	provides	an	interface	to	the	eShoe	which	is	an	insole	for
shoes	with	sensor	inlays,	capabale	of	measuring	multiple	degrees	of
freedom	(pressure,	acceleration	and	angular	velocity)	for	gait	analysis
and	rehabilitation	purposes.	See:	eShoe-info	(german).	The	COM	Port
number	for	the	device	must	be	specified	in	the	plugin	properties.

	EShoe
plugin

http://deutsch.ceit.at/ceit-raltec/projekte/aal---eshoe


Requirements
This	software	component	requires	an	EShoe	connected	via	Bluetooth	to
a	COM	Port.

Picture	of	the	EShoe

Schematic	view	of	the	EShoe	(left	insole),	light	grey	circles	mark	pressure	sensors	(big
toe	(BT),	metatarsal	head	I	(M1),	metatarsal	head	V	(M5),	heel	(HE)),	the	grey	box
marks	the	positon	of	the	triaxial	acceleration	sensor	(a)	and	triaxial	gyroscope	(ω).

V.	David,	H.	Jagos,	S.	Litzenberger,	and	M.	Reichel,	"Instrumented	insole	for	mobile	and
long	distance	motion	pattern	measurement,"	Procedia	Eng.,	vol.	34,	pp.	760-765,	2012.



Output	Port	Description
Channel1	to	Channel3	[Short]:	Output	of	the	acceleration	in	X,	Y
and	Z	direction.	The	values	range	for	-1285,81632m/s²	to
1285,77708m/s².
Channel4	to	Channel7	[Unsigned	Short]:	Output	of	the	pressure
sensors	of	heel,	metaV,	metaI	and	toe.	The	unit	of	the	output	data	is
gram.
Channel8	to	Channel10	[Short]:	Output	of	the	gyroscope	in	X,	Y
and	Z	direction.	The	values	range	for	-2280,6528°/s	to	2280,5832°/s.
Channel11	[Short]:	This	is	the	angle	between	subsurface	and	insole
of	the	users	foot.	The	values	range	for	-327,68°	to	327,67°.



Properties
COMPort	[String]:	The	name	of	the	COM	port,	for	example	COM2
or	COM17.
SamplingRate	[Integer]:	The	sampling	rate	of	the	eShoe.	Could	be
chosen	between	50Hz	and	200Hz.
SDMemory	[Boolean]:	The	storage	on	the	SD	card	in	the	eShoe
can	be	turned	on	if	checked.



Event	Generator
The	event	generator	plugin	can	be	used	to	periodically	send	event
triggers	at	a	given	time	interval.



Requirements
No	special	hardware	or	software	required



Port	Description
No	input	or	output	ports	available



Event	Trigger	Description
event_out_1:	Events	will	be	generated	and	sent	to	this	port.



Properties
generation_delay	[integer]:	The	time	interval	for	generating	events
in	milliseconds.
event_payload	[string]:	A	string	value	which	will	be	sent	with	the
event	as	a	parameter	(currently	not	used	by	other	plugins).



Eyetracker
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

This	component	provides	different	computer	vision	tracking	algorithms
which	can	be	selected	via	the	"trackingMode"	property.	The	available
modes	include	"blob-tracking",	"calibrated	eye-tracking"	and	"calibrated
eye-tracking	with	head	pose	estimation".	The	two	eye-tracking	modes
deliver	estimations	of	the	x/y-positions	where	the	user	is	looking	on	the
computer	screen	which	can	be	used	for	cursor	control	(gaze	estimation).

Plugin	modes

only	blob	tracking	In	this	mode,	the	plugin	just	outputs	the	x/y
coordinates	of	a	round	surface	detected	in	the	live	camera	images.
No	calibration	procedure	is	needed.	The	plugins	starts	immediately
with	the	coordinate	output	at	the	ports	"x"	and	"y".	A	possible
application	for	this	mode	is	tracking	of	a	round	marker	which	could
be	placed	anywhere	on	the	body.
calibrated	eye	tracking	In	this	mode,	the	plugin	expects	close-up
images	of	an	eye,	recorded	by	a	head-mounted	setup.	The
suggested	hardware	configuration	is	the	AsTeRICS	headmounted
SVM	system	(see	image	below).	The	eye-pupil	location	is
determined	and	mapped	to	an	estimated	position	at	the	computer
screen	where	the	person	is	looking	at.	For	this	mode,	the	plugins
needs	to	be	calibrated.	First,	a	rectangular	region	of	interest	(ROI)
has	to	be	selected	by	clicking	into	the	live	camera	image	while
holding	the	CTRL/STRG	key.	The	ROI	should	cover	the	area	where
the	eyeball	is	moving	when	the	user	is	looking	in	different	directions.
Then,	the	calibration	sequence	can	be	started	by	sending	an	event
to	the	"calibrate"	event	listener	port.	During	calibration,	the	cursor	is
moved	to	several	locations	on	the	screen	and	the	user	is	supposed
to	look	at	these	positions	without	moving	the	head.	The	changing	of
the	cursor	position	is	indicated	with	an	acoustic	signal.	Calibration
succeeds	if	all	calibration	location	can	be	recorded	without
excessively	distorted	values.	If	the	calibration	cannot	be



accomplished	successfully,	an	acoustic	signal	is	emitted	and	the
Eyetracker	plugin	does	not	start	to	put	out	x/y	data.	In	this	case	the
calibration	procedure	has	to	be	repeated.	The	coordinate-output	of
the	eye	tracking	is	only	working	correctly	if	no	head	movements
occur.	Any	head	movement	will	compromise	the	correctness	of	the
x/y	estimation	for	the	cursor	position..
calibrated	eye	tracking	with	head	pose	estimation	This	mode	is
an	extension	of	the	"calibrated	eye	tracking"	mode.	The	calibration
has	to	be	performed	as	above.	Additionally	to	the	head-mounted
camera,	an	external	LED-frame	mounted	on	the	computer	monitor	is
used	to	minimize	the	negative	effects	of	head	movements	to	the
tracking	accuracy.	Please	note	that	this	mode	needs	the	head-
mounted	SVM	device	plus	the	external	Led-Frame.

Eyetracker	in	operation	(calibrated	eyetracking	mode)



Requirements
A	camera	has	to	be	available	in	the	operating	system,	to	detect	round
blobs	or	the	eye-pupil	position.	Depending	on	the	mode	(if	head	pose
estimation	is	selected),	a	head	mounted	camera	which	films	a	close-up	of
the	eye	and	an	external	LED-mount	are	needed.

head	mounted	SVM	device



Input	Port	Description
pt1x	-	pt4x	[integer]:
pt1y	-	pt4y	[integer]:	These	8	input	ports	can	be	connected	to	the
corresponding	output	ports	of	the	Sensorboard	plugin.	The
Sensorboard	delivers	the	location	of	4	IR-led	tracking	points	in	the
field-of-view	of	the	IR-object-tracking	camera	of	the	headmounted
SVM.	This	information	can	be	used	to	compensate	the	head
movement	to	increase	gaze	estimation	stability.	The	8	input	ports
have	to	be	synchronized	(turn	the	synchronized-property	on	for
every	input	port).	These	8	input	ports	support	synchronization



Output	Port	Description
x	[integer]:	The	x-coordinate	delivered	by	the	tracking	algorithm.
The	meaning	of	this	value	depends	on	the	selected	mode.
y	[integer]:	The	y-coordinate	delivered	by	the	tracking	algorithm.
The	meaning	of	this	value	depends	on	the	selected	mode.



Event	Listener	Description
calibrate:	if	this	event	is	triggered,	calibration	procedure	for	the
Eyetracker	is	started	(this	is	not	relevant	for	the	mode	"only	blob
tracking").
offsetCorrection:	this	event	is	useful	for	eyetracking	mode,	when	a
drift	of	the	cursor	position	has	occured.	When	the	event	is	triggered,
the	plugin	stops	the	output	of	x/y	coordinates	for	two	seconds,	where
the	user	has	time	to	fix	the	exact	cursor	position	with	the	eyes.	A
new	offset	will	be	calculated	to	match	the	cursor	position	after	the	2
seconds	pause.
showCameraSettings	an	incoming	event	displays	the	settings
window	for	the	camera	device,	where	parameters	like	image
brightness	or	contrast	can	be	adjusted.
togglePoseInfoWindow	an	incoming	event	displays	the	pose	info
window,	where	the	current	location	of	the	4	IR	tracking	points	for
head-pose	compensation	can	be	seen.	For	a	normal	head
orientation	these	4	points	should	be	centered	in	the	middle	of	the
window	(change	the	angle	of	the	frontal	camera	to	adjust	the	position
of	the	yellow	dots).
startEvaluation	an	incoming	event	displays	the	accuracy	evaluation
window	and	starts	evaluation.	When	the	user	follows	the	cross	to	9
positions	in	the	window,	the	x/y	coordinates	of	the	cursor	are	stored
to	a	file	in	the	ARE	folder	which	can	then	be	used	to	calculate	and
compare	the	gaze	accuracy.
saveProfile	an	incoming	event	saves	the	camera	settings	to	a	file	of
the	given	name	(property	cameraProfile).	Use	with	caution	-	a	saved
settings-profile	does	only	work	with	the	same	camera	which	was
used	to	save	the	settings.



Event	Trigger	Description
blinkDetected:	triggered	if	the	blob	detection	is	lost	for	a	timespan
bigger	than	minBlinkDuration	and	lower	than	maxBlinkDuration.	This
can	be	used	for	a	single	eye-blink	detection.
longBlinkDetected:	triggered	if	the	blob	detection	is	lost	for	a
timespan	bigger	than	maxBlinkDuration.	This	can	be	used	for	a	long
eye-blink	detection.



Properties
cameraSelection	[string,	combobox	selection]:	using	this
property,	the	utilized	camera	can	be	chosen.	Possible	values	range
from	“first	camera”	to	“fith	camera”.	If	only	one	camera	is	available	in
the	system,	“first	camera”	shall	be	chosen.
cameraResolution	[string,	combobox	selection]:	This	selection
box	provides	several	standard	camera	resolutions.	Changing	the
resolution	affects	accuracy	and	performance	(CPU	load	of	the
runtime	system).	Provided	selections	include	“160x120”,	“320x240”,
“640x480”,	“800x600”,	“1024x768”	and	“1600x1200”.	If	the	selectied
resolution	cannot	be	delivered	by	the	image	acquisition	device,	the
next	matching	resolution	is	chosen	by	the	plugin.
cameraProfile	[string]	a	filename	for	the	camera	settings	profile	to
be	saved	(property	cameraProfile).	Use	with	caution	-	a	saved
settings-profile	does	only	work	with	the	same	camera	which	was
used	to	save	the	settings.
cameraDisplayUpdate	[integer]:	This	property	allows	to	select	the
update	rate	for	the	camera	display	in	milliseconds.	If	“0”	milliseconds
is	chosen,	no	window	for	the	live-video	will	be	displayed.	If	“100”	is
chosen,	the	live	image	window	will	be	updated	10	times	a	second.
This	property	does	not	influence	the	frame	rate	of	the	camera	nor	the
processing	interval	for	new	camera	frames,	only	the	display	in	the
GUI	is	adjusted.
tracking	mode	[string,	combobox	selection]:	The	selection	of	the
plugin's	mode	of	operation	("only	blob	tracking",	"calibrated	eye
tracking",	or	"calibrated	eye	tracking	with	head	pose	estimation")
xMin	[integer]:	the	minimum	value	for	the	x-coordinate	output
xMax	[integer]:	the	maximum	value	for	the	x-coordinate	output.	If
"0"	is	selected,	the	plugins	auto-detects	the	screen	resolution	and
uses	the	X-Size	of	the	computer	screen.
yMin	[integer]:	the	minimum	value	for	the	y-coordinate	output
yMax	[integer]:	the	maximum	value	for	the	y-coordinate	output.	If
"0"	is	selected,	the	plugins	auto-detects	the	screen	resolution	and
uses	the	Y-Size	of	the	computer	screen.
calibrationStepsX	[integer]:	the	number	of	rows	for	generating
calibration	positions



calibrationStepsY	[integer]:	the	number	of	columns	for	generating
calibration	positions.	For	example:	if	4	x-steps	and	3	y-steps	are
chosen,	the	user	has	to	look	at	12	cursor	positions	during	the
calibration	phase.	More	positions	increase	the	gaze-tracking
accuracy	but	result	in	a	longer	calibration	phase.
averaging	[integer]:	the	length	of	the	averaging	window	for
smoothening	the	ouput	values.
screenSize	[double]:	the	diameter	of	the	computer	screen
(important	if	head	pose	correction	is	used)
minBlinkDuration	[integer]:	the	minimum	time	for	a	short	blink	to
be	detected	(a	short	blink	is	detected	if	the	blink	time	is	bigger	than
minBlinkDuration	and	lower	than	maxBlinkDuration.
maxBlinkDuration	[integer]:	the	maximum	time	for	a	short	blink	to
be	detected	(a	long	blink	is	detected	if	the	blink	time	is	bigger	than
maxBlinkDuration).



Eyetribe
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

This	component	provides	access	to	the	raw	gaze	tracking	data	from	the
EyeTribe	eye	tracking	device.	The	data	includes	the	estimated	gazepoint
(x/y),	the	eye	location	(x/y),	fixation	time	and	eye	close	time.	The	plugin
connects	to	a	running	EyeTribe	server.

Eyetribe	plugin

https://theeyetribe.com/


Requirements
The	Eyetribe	tracker	must	be	connected	to	an	USB3.0	port	and	the
Eyetribe	server	software	must	be	running.

Eyetribe	hardware



Output	Port	Description
gazex	[integer]:	The	x-coordinate	of	the	estimated	gazepoint	on	the
computer	screen	(in	pixels)
gazey	[integer]:	The	y-coordinate	of	the	estimated	gazepoint	on	the
computer	screen	(in	pixels)
posx	[integer]:	The	x-coordinate	of	the	eye	pupil(s)	-	left	/	right	/
both	pupils	can	be	selected	via	property
posy	[integer]:	The	y-coordinate	of	the	eye	pupil(s)	-	left	/	right	/
both	pupils	can	be	selected	via	property
fixationTime	[integer]:	The	time	period	for	fixation	of	a	particular
spot	on	the	screen
closeTime	[integer]:	The	time	period	for	closing	both	eyes	(or	eye
tracking	signal	lost)



Event	Listener	Description
startCalibration:	if	this	event	is	triggered,	calibration	procedure	for
the	Eyetracker	is	started.
offsetCorrection:	this	event	is	useful	when	a	drift	of	the	cursor
position	has	occured.	When	the	event	is	triggered,	the	plugin	stops
the	output	of	x/y	coordinates	for	several	seconds,	where	the	user
has	time	to	fix	the	exact	cursor	position	with	the	eyes.	(see
description	below).
removeLastOffsetCorrection	when	this	event	is	triggered,	the	last
offset	correction	point	will	be	removed	-	useful	if	the	offset	correction
did	not	work	as	intended.



Event	Trigger	Description
blink:	triggered	if	the	eye	detection	is	lost	for	a	timespan	bigger	than
minBlinkTime	and	lower	than	midBlinkTime.	This	can	be	used	for	a
single	eye-blink	detection.
longBlink:	triggered	if	the	blob	detection	is	lost	for	a	timespan
bigger	than	midBlinkTime	and	lower	than	maxBlinkTime.	This	can	be
used	for	a	long	eye-blink	detection.
fixation:	triggered	if	the	user	looks	at	a	particular	location	on	the
screen	for	longer	than	defined	in	via	the	fixationTime	property.
fixationEnd:	triggered	if	the	user	looks	stops	looking	at	a	particular
location	(which	triggered	a	fixation	event).



Properties
minBlinkTime	[integer]:	the	minimum	time	for	a	short	blink	to	be
detected	(a	short	blink	is	detected	if	the	blink	time	is	bigger	than
minBlinkTime	and	lower	than	midBlinkTime.)
midBlinkTime	[integer]:	the	time	for	seperating	short	blinks	from
long	blinks.
maxBlinkTime	[integer]:	the	maximum	time	for	a	short	blink	to	be
detected	(a	long	blink	is	detected	if	the	blink	time	is	bigger	than
midBlinkTime	and	lower	than	maxBlinkTime..
fixationTime	[integer]:	the	minimum	time	for	triggereing	a	fixation
event	when	the	user	looks	at	a	particular	spot	on	the	screen
pupilPositionMode	[combobox]:	selects	the	mode	for	calculation
of	the	eye	position	output	port	values.	(left	eye	/	right	eye	or	an
average	of	both	eyes)
offsetCorrectionRadius	[integer]:	defines	the	distance	to	an	offset
correction	point	where	this	offset	correction	points	starts	to	influece
the	eye	coordinates	(see	description	below)
offsetCorrectionMode	[combobox]:	selects	the	mode	for	the	offset
correction	measurement.	(manual	or	automatic	mode,	see	above
description)

Calibration	and	Offset	Correction

A	sucessful	gaze	estimation	needs	prior	calibration.	This	should	be
done	using	the	application/GUI	provided	by	the	EyeTribe	software.
However,	a	calibration	can	also	be	initiated	using	the	provided
startCalibration	EventListener	port	(see	below).	When	starting	the
calibration	process	using	this	event,	the	mouse	cursor	is	positioned
to	9	screen	locations,	starting	at	the	left	upper	corner	and	iterating
via	middle	and	right	position	through	3	rows	until	the	right	bottom
corner	is	reached.	During	calibration,	follow	the	cursor	with	the	eyes
(reducing	head	movements	to	a	minimum).	For	each	calibration
position,	an	acoustic	signal	indicates	the	time	when	the	samples	are
taken.	When	the	calibration	process	is	finished,	the	plugin	continues
sending	the	measurement	data	from	it's	output	ports.
The	offset	correction	event	listener	port	allows	setting	so	called



"offset	correction	points"	at	desired	screen	locations.	This	is	possible
during	the	normal	operation	of	the	eye	tracking.	This	is	useful	when
certain	locations	on	the	screen	cannot	be	reached	because	of	a
calibration	problem	but	a	new	calibraiton	is	either	not	desired	or	not
successful	/	precise	enough.	The	goal	of	the	offset	correction	is	to
reduce	the	error	between	the	real	gaze	point	and	the	estimated
(weak)	gaze	point	where	usually	the	cursor	is	positioned,	by	adding
a	small	offset	value.	After	starting	the	offset	correction	(which	is
indicated	by	an	acoustic	signal)	look	at	the	intended	spot	on	the
screen.	After	1	second,	another	acoustic	signal	indicates	that	the
coordinates	have	been	saved.	Now	look	at	the	mouse	cursor	(the
weak	gaze	point	which	shall	be	corrected).	The	next	step	differs
according	to	the	selected	offset	correction	mode	(which	can	be
chosen	via	the	offsetCorrectionMode	property:

manual	offset	correction:	try	to	follow	the	cursor	with	the	eyes.	It
should	move	slowly	towards	the	original	gaze	point,	correcting
the	error.	This	manual	calibration	phase	takes	about	4	seconds.
automatic	offset	correction:	look	at	the	cursor.	After	1	second,
the	offest	is	measured.

After	the	offset	correction	has	been	performed,	the	given	offset	value
is	stored	into	an	internal	list.	As	soon	as	the	estimated	gaze	point
enters	an	area	around	the	offset	correction	point	(the	area	size	is
defined	via	the	property	offsetCorrectionRadius),	an	appropriate
fraction	of	the	offset	value	is	added	to	the	estimated	gaze	point
coordinates.	Here,	linear	approximation	is	used,	so	that	looking	at
the	original	(weak)	gaze	estimation	point	will	add	the	full	offest	value,
resulting	the	corrected	gaze	estimation	point.



Facetracker	CLM
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

The	FacetrackerCLM	component	is	one	of	the	vision	based	plugin.	At	this
stage	of	development	it	offers	the	same	functionalities	for	mouse
emulation	as	the	other	sensor	plugin	named	facetrackerLK	.

The	underlying	mechanism	is	based	on	the	tracking	of	facial	features
detected	in	a	first	initialization	stage	by	fitting	a	deformable	face	model	on
the	image	as	soon	as	the	region	of	interest	is	identified	thanks	to	the
OpenCV	implementation	of	the	Viola-Jones	classifier.

The	plugin	outputs	at	each	frame	the	relative	offsets	of	a	series	of
measures	based	on	the	tracked	points	with	respect	to	the	previous	frame.
These	offsets	may	be	integrated	or	used	directly	as	inputs	for	the	mouse
emulator	actuators.	Usually	it	is	a	good	idea	to	use	the	relative
displacement	of	the	centre	of	the	face	(PosX	and	PosY)	to	guide	the
mouse	movements	and	reserve	the	other	measurements	or	events	to
implement	other	optional	functionalities	(the	head	roll,	pitch	and	yaw
angles	and	relative	scale	of	the	face).

The	FacetrackerCLM	also	introduces	the	detection	of	facial	gestures	that
can	be	then	exploited	in	the	ACS	models	to	directly	perform	actions	or
trigger	events.	To	this	purpose	in	this	version	there	are	two	distinct	event
related	outputs:

Detection	of	the	raising	of	both	eyebrows.

For	a	closer	explaination	of	the	EyeTrackerCLM	functions	and	the
training	algorithm	for	eye	states	please	refer	to	the	document
FacetrackerCLM.pdf	in	the	folder	/documentation.



FacetrackerCLM	plugin



Requirements
A	camera	has	to	be	available	in	the	operating	system	(preferably	a
consumer	USB	camera).



Input	Port	Description
There	are	no	input	ports	for	this	plugin.



Output	Port	Description
Roll[double]:	The	output	port	Roll	outputs	the	relative	change	of	the
roll	angle	of	the	head	pose	(degrees).

Pitch[double]:	The	output	port	Pitch	outputs	the	relative	change	of
the	pitch	angle	of	the	head	pose	(degrees).

Yaw[double]:	The	output	port	Yaw	outputs	the	relative	change	of	the
yaw	angle	of	the	head	pose	(degrees).

PosX[double]:	The	output	port	PosX	outputs	the	relative
displacement	of	the	x	coordinate	(image	coordinates)	of	the	tracked
point	(approximatively	located	around	the	nose).

PosY[double]:	The	output	port	PosX	outputs	the	relative
displacement	of	the	y	coordinate	(image	coordinates)	of	the	tracked
point	(approximatively	located	around	the	nose).

Scale[double]:	The	output	port	Scale	outputs	the	relative	change	in
scale	of	the	apparent	size	of	the	fitted	face	model	in	the	current
image.

EyeLeft[int]:	The	output	port	EyeLeft	outputs	0	if	the	left	eye	is
opened,	1	if	closed	in	the	current	image.

EyeRight[int]:	The	output	port	EyeRight	outputs	0	if	the	right	eye	is
opened,	1	if	closed	in	the	current	image.



Event	Listener	Description
reset:	Forces	reinit	of	the	fitting	of	deformable	model	for	the	face	in
order	to	reset	the	tracking	points.
showCameraSettings:	Displays	the	camera	settings	dialog	on
screen
setReferencePose:	sets	the	reference	pose



Event	Trigger	Description
EyebrowsRaised:	this	event	gets	raised	everytime	the	plugin	detects	a

specific	configuration	of	the	facial	landmarks	corresponding	to	a	surprise
expression.



Properties
cameraSelection	[string,	combobox	selection]:	this	property
determines	the	index	of	the	input	camera.	Possible	values	range
from	"first	camera"	to	"fifth	camera".	If	only	one	camera	is	available
in	the	system,	"first	camera"	is	the	correct	choice.

cameraResolution	[string,	combobox	selection]:	this	selection
box	provides	several	standard	camera	resolutions.	Changing	the
resolution	affects	accuracy	and	performance	(CPU	load	of	the
runtime	system).	Provided	selections	include	"160x120",	"320x240",
"640x480"	and	"800x600".	If	the	selected	resolution	cannot	be
delivered	by	the	image	acquisition	device,	the	closest	matching
resolution	is	chosen	automatically	by	the	plugin.

cameraDisplayUpdate	[integer]:	this	property	allows	to	select	the
update	rate	for	the	camera	display	in	milliseconds.	If	"0"	milliseconds
is	chosen,	no	window	for	the	live-video	will	be	displayed.	If	"100"	is
chosen,	the	live	image	window	will	be	updated	10	times	a	second.
Please	note	that	this	property	does	not	influence	the	frame	rate	of
the	camera	nor	the	processing	interval	for	new	camera	frames,	only
the	display	in	the	GUI	is	adjusted.

modelName	[string]:	this	property	informs	the	plugin	about	which	is
the	trained	model	to	load.	The	file	is	searched	in	the	the
FacetrackerCLM/EyeStateModels	folder	inside	the	plugin	"data"
folder.	Specify	the	name	without	.yml	extension.



EyeX
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

This	component	provides	access	to	the	raw	gaze	tracking	data	from	the
Tobii	EyeX	eye	tracking	device.	The	data	includes	the	estimated
gazepoint	(x/y),	the	eye	location	(x/y),	fixation	time	and	eye	close	time.
The	plugin	connects	to	the	deveice	via	the	Tobii	EyeX	SDK.

	Tobii
EyeX	plugin

http://www.tobii.com/en/eye-experience/eyex/


Requirements
The	Tobii	EyeX	tracker	must	be	connected	to	an	USB3.0	port	and	the
Tobii	EyeX	server	software	must	be	running.

Tobii	EyeX	hardware



Output	Port	Description
gazeX	[integer]:	The	x-coordinate	of	the	estimated	gazepoint	on	the
computer	screen	(in	pixels)
gazeY	[integer]:	The	y-coordinate	of	the	estimated	gazepoint	on	the
computer	screen	(in	pixels)
posX	[integer]:	The	x-coordinate	of	the	eye	pupil(s)	-	left	/	right	/
both	pupils	can	be	selected	via	property
posY	[integer]:	The	y-coordinate	of	the	eye	pupil(s)	-	left	/	right	/
both	pupils	can	be	selected	via	property
fixationTime	[integer]:	The	time	period	for	fixation	of	a	particular
spot	on	the	screen
closeTime	[integer]:	The	time	period	for	closing	both	eyes	(or	eye
tracking	signal	lost)



Event	Listener	Description
offsetCorrection:	when	offset	correction	mode	"CorrectionSpots"	is
selecte,	an	new	correction	spot	can	be	added	via	this	event.	When
the	event	is	triggered,	the	plugin	stops	the	output	of	x/y	coordinates
for	several	seconds,	where	the	user	has	time	to	fix	the	exact	cursor
position	with	the	eyes,	thereby	defining	the	x/y	correction	offset.
removeLastOffsetCorrection	when	this	event	is	triggered,	the	last
offset	correction	spot	will	be	removed	-	useful	if	the	offset	correction
did	not	work	as	intended.
stopOffsetCorrection	when	this	event	is	triggered,	any	offset
correction	mode	is	stopped.
createAndCalibrateGuestProfile	creates	a	new	guest	profiles	and
initiates	calibration.
calibrateCurrentProfile	initiates	calibration	of	the	currently	active
profile.
switchToOffsetCorrectionSpots	selects	uses	multiple	correction
spot	which	can	be	added	via	envet	"offsetCorrection".
switchToPermanentOffsetCorrection	permanently	adds	the	input
port	values	of	xOffset	and	yOffset	to	the	gazepoint.
switchToCombinedOffsetCorrection	uses	the	xOffset	/	yOffset
input	port	values	to	fine-tune	the	gazePoint	(this	switches	off	gaze-
updates	until	a	certain	gaze	offset	is	detected.)
activate	activates	the	eye	tracker.
deactivate	deactivates	the	eye	tracker.



Event	Trigger	Description
blink:	triggered	if	the	eye	detection	is	lost	for	a	timespan	bigger	than
minBlinkTime	and	lower	than	midBlinkTime.	This	can	be	used	for	a
single	eye-blink	detection.
longBlink:	triggered	if	the	blob	detection	is	lost	for	a	timespan
bigger	than	midBlinkTime	and	lower	than	maxBlinkTime.	This	can	be
used	for	a	long	eye-blink	detection.
fixation:	triggered	if	the	user	looks	at	a	particular	location	on	the
screen	for	longer	than	defined	in	via	the	fixationTime	property.
fixationEnd:	triggered	if	the	user	looks	stops	looking	at	a	particular
location	(which	triggered	a	fixation	event).



Properties
enabled	[boolean]:	selects	if	the	eyetracker	is	enabled	on	startup	of
the	model.
averaging	[integer]:	selects	the	size	of	an	internal	averager	for	the
gaze	point	x/y	values.
minBlinkTime	[integer]:	the	minimum	time	for	a	short	blink	to	be
detected	(a	short	blink	is	detected	if	the	blink	time	is	bigger	than
minBlinkTime	and	lower	than	midBlinkTime.)
midBlinkTime	[integer]:	the	time	for	seperating	short	blinks	from
long	blinks.
maxBlinkTime	[integer]:	the	maximum	time	for	a	short	blink	to	be
detected	(a	long	blink	is	detected	if	the	blink	time	is	bigger	than
midBlinkTime	and	lower	than	maxBlinkTime..
fixationTime	[integer]:	the	minimum	time	for	triggereing	a	fixation
event	when	the	user	looks	at	a	particular	spot	on	the	screen
pupilPositionMode	[combobox]:	selects	the	mode	for	calculation
of	the	eye	position	output	port	values.	(left	eye	/	right	eye	or	an
average	of	both	eyes)
offsetCorrectionRadius	[integer]:	defines	the	distance	to	an	offset
correction	point	where	this	offset	correction	points	starts	to	influece
the	eye	coordinates	(see	description	below)
offsetCorrectionMode	[combobox]:	selects	the	mode	for	the	offset
correction.	(correction	spots,	permanent	offset	correction	or
combined	correction)

Calibration	and	Offset	Correction

A	sucessful	gaze	estimation	needs	prior	calibration.	This	should	be
done	using	the	application/GUI	provided	by	the	Tobii	EyeX	software,
but	can	also	be	accomplished	by	the	provided	event	listeners.
The	offset	correction	modes	allow	application	of	drift	correction
during	normal	operation	of	the	eye	tracking.	This	is	useful	when
certain	locations	on	the	screen	cannot	be	reached	because	of	a
calibration	problem	but	a	new	calibraiton	is	either	not	desired	or	not
successful	/	precise	enough.	The	goal	of	the	offset	correction	is	to
reduce	the	error	between	the	real	gaze	point	and	the	estimated



(weak)	gaze	point	where	usually	the	cursor	is	positioned,	by	adding
small	offset	values.

There	are	three	offset	correction	modes	provided,	which	can	be
chosen	via	the	offsetCorrectionMode	property	or	the	respective
events:

offset	correction	spots
when	a	new	spot	is	set	via	the	provided	event	listener,	eye
tracking	is	stopped	for	several	seconds.	Look	at	the	cursor.	After
1	second,	the	offest	is	measured.	When	the	tracking	starts
again,	the	measured	offset	is	applied	in	the	area	of	the	selected
offsetCorrectionRadius.	Here,	linear	approximation	is	used,	so
that	looking	at	the	original	(weak)	gaze	estimation	point	will	add
the	full	offest	value,	resulting	the	corrected	gaze	estimation
point.	Multiple	spots	can	be	added	at	different	screen	loactions.

permanent	offset	correction:
the	correction	values	for	x	and	y	which	are	provided	via	the	input
ports	xOffset	and	yOffset	are	permanenty	added	to	the	gazepoint
location.	A	joystick,	mouthmouse	or	similar	input	device	can	be	used
to	provide	these	values.
combined	offset	correction:
if	the	correction	values	for	x	and	y	which	provided	via	the	input	ports
xOffset	and	yOffset	are	not	zero,	the	eyetracking	stops	and	the
correction	values	are	applied	to	the	last	gazepoint.	Eye-tracking
starts	again	when	the	measured	gazepoint	differs	from	the	corrected
gazepoint	by	more	than	the	selected	offsetCorrectionRadius.



Facetracker	LK
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

This	component	provides	a	face	tracking	computer	vision	algorithm	which
puts	out	estimated	movement	of	a	users’	nose	and	chin	in	x	and	y
coordinates.	The	underlying	mechanism	builds	upon	the	OpenCV	library
(in	particular	a	trained	cascade	of	haar-like	features	and	an	optical	flow
algorithm).	The	x-	and	y-	coordinates	can	be	used	in	camera-mouse
configurations	or	to	enable	selection	or	control	tasks.	The	values	are	only
provided	if	a	face	can	be	tracked	by	the	algorithm	and	are	updated	with
the	achievable	frame	rate.	Note	that	the	x-	and	y-	values	represent
relative	movement	in	pixels	and	have	to	be	accumulated	(e.g.	via	the
integrate	component)	to	generate	e.g.	absolute	mouse	positions.

FacetrackerLK	plugin



Requirements
A	camera	has	to	be	available	(this	can	be	any	webcam	or	a	camera
which	is	available	as	image	acquisition	device	via	the	operating	system).
The	picture	below	shows	the	Logitech	Webcam	9000	Pro.

Logitech	Webcam	9000	Pro



Output	Port	Description
noseX	[integer]:	This	value	specifies	the	relative	change	in	the	x
coordinate	of	the	user's	nose	with	respect	to	the	previous	image
frame.
noseY	[integer]:	This	value	specifies	the	relative	change	in	the	y
coordinate	of	the	user's	nose	with	respect	to	the	previous	image
frame.
chinX	[integer]:	This	value	specifies	the	relative	change	in	the	x
coordinate	of	the	user's	chin	with	respect	to	the	previous	image
frame.
chinY	[integer]:	This	value	specifies	the	relative	change	in	the	y
coordinate	of	the	user's	chin	with	respect	to	the	previous	image
frame.



Event	Listener	Description
init:	if	this	event	is	triggered,	the	face	recognition	procedure	is
initiated.	This	can	be	useful	if	the	correct	face	position	has	been	lost
due	to	drifting	of	the	LK	algorithm.
showCameraSettings	an	incoming	event	displays	the	settings
window	for	the	camera	device,	where	parameters	like	image
brightness	or	contrast	can	be	adjusted.
saveProfile:	if	this	event	is	triggered,	the	camera	profile	is	saved.



Properties
cameraSelection	[string,	combobox	selection]:	using	this
property,	the	utilized	camera	can	be	chosen.	Possible	values	range
from	“first	camera”	to	“fith	camera”.	If	only	one	camera	is	available	in
the	system,	“first	camera”	shall	be	chosen.
cameraResolution	[string,	combobox	selection]:	This	selection
box	provides	several	standard	camera	resolutions.	Changing	the
resolution	affects	accuracy	and	performance	(CPU	load	of	the
runtime	system).	Provided	selections	include	“160x120”,	“320x240”,
“640x480”,	“800x600”,	“1024x768”	and	“1600x1200”.	If	the	selectied
resolution	cannot	be	delivered	by	the	image	acquisition	device,	the
next	matching	resolution	is	chosen	by	the	plugin.
cameraDisplayUpdate	[integer]:	This	property	allows	to	select	the
update	rate	for	the	camera	display	in	milliseconds.	If	“0”	milliseconds
is	chosen,	no	window	for	the	live-video	will	be	displayed.	If	“100”	is
chosen,	the	live	image	window	will	be	updated	10	times	a	second.
Please	note	that	this	property	does	not	influence	the	frame	rate	of
the	camera	nor	the	processing	interval	for	new	camera	frames,	only
the	display	in	the	GUI	is	adjusted.
cameraProfile	[string]:	Filename	of	the	camera	profile.



FS20	Receiver
Component	Type:	Sensor	(Subcategory:	Home	Control)

The	FS20Receiver	receives	commands	of	the	home	automation	system
FS20	for	ELV	Electronics.	Depending	on	the	received	commands,	events
will	be	fired.

	FS20
Receiver	Plugin



Requirements
This	component	requires	the	FS20	PCE	(see	http://www.elv.de/FS20-PC-
Empfauml;nger-FS20-PCE/x.aspx/cid_74/detail_10/detail2_31219)
connected	to	an	USB	port.

FS20	PCE	Receiver

http://www.elv.de/FS20-PC-Empfauml;nger-FS20-PCE/x.aspx/cid_74/detail_10/detail2_31219


Output	Port	Description
fs20command	[string]:	The	received	FS20	command	will	be	send
out	of	the	plugin.	The	data	has	the	following	format:
housecode_sendaddress_command,	e.g.	11111111_3343_17



Event	Trigger	Description
Each	received	command	triggers	an	event,	being	mapped	to	this
command.	The	following	table	will	describe	this	events:

Command	Mapping
Event Command

Off 0
Level1 1
Level2 2
Level3 3
Level4 4
Level5 5
Level6 6
Level7 7
Level8 8
Level9 9
Level10 10
Level11 11
Level12 12
Level13 13
Level14 14
Level15 15
Level16 16
OnOldLevel 17
Toggle 18
Dim	Up 19
Dim	Down 20
Dim	Up	and	Down 21
Program	internal	timer 22
Off	for	timer	then	old	brightness	level 24



On	for	timer	then	off 25
On	old	brightness	level	for	timer	then	off 26
On	for	timer	then	old	brightness	level 30
On	for	old	level	then	previous	state 31



Properties
housecode	[integer]	The	housecode,	the	system	should	react	on.
The	housecode	has	8	digits,	each	from	1	to	4.	This	property
influences	the	event	triggers,	but	not	the	fs20command	output	port.
sendaddress	[integer]	The	sendaddress,	the	system	should	react
on.	The	sendaddress	has	4	digits,	each	from	1	to	4.	This	property
influences	the	event	triggers,	but	not	the	fs20command	output	port.



HeadPositionHC
Component	Type:	Sensor	(Subcategory:Computer	Vision)

This	plug-in	provides	a	selection	of	up	to	12	choices	via	the	head.	A
choice	can	be	selected	through	looking	to	the	side.	The	angle	of	the	head
is	calculated	with	the	position	of	the	ear	and	the	mouth.	The	detection	of
the	features	is	realised	with	HaarCascade.

	the
HeadPositionHC	sensor	plug-in



Requirements
A	webcam	or	an	other	camera	has	to	be	connected	to	the	computer.



Output	Port	Description
CellNumber:	the	number	of	the	current	selected	Choice



Event	Triggerer	Description
Select:	will	be	triggered	when	the	position	is	held	for	an	amount	of
time



Properties
ChoiceEachSide	[integer]:	sets	the	choices,	which	are	visible	and
selectable	for	each	side.	(1-6	Choices	each	side	are	possible)
Angle1LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
first	choice	on	the	left	side.	Every	value	lower	than	this	value	and
higher	than	the	value	of	Angle2LeftSide	selects	the	first	choice	of	the
left	side.
Angle2LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
second	choice	on	the	left	side.	Every	value	lower	than	this	value	and
higher	than	the	value	of	Angle3LeftSide	selects	the	second	choice	of
the	left	side.
Angle3LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
third	choice	on	the	left	side.	Every	value	lower	than	this	value	and
higher	than	the	value	of	Angle4LeftSide	selects	the	third	choice	of
the	left	side.
Angle4LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
fourth	choice	on	the	left	side.	Every	value	lower	than	this	value	and
higher	than	the	value	of	Angle5LeftSide	selects	the	fourth	choice	of
the	left	side.
Angle5LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
fifth	choice	on	the	left	side.	Every	value	lower	than	this	value	and
higher	than	the	value	of	Angle6LeftSide	selects	the	fifth	choice	of	the
left	side.
Angle6LeftSide	[integer]:	sets	the	upper	value	of	the	angle	for	the
sixth	choice	on	the	left	side.	Every	value	lower	than	this	value
selects	the	sixth	choice	of	the	left	side.
Angle1RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
first	choice	on	the	right	side.	Every	value	higher	than	this	value	and
lower	than	the	value	of	Angle2RightSide	selects	the	first	choice	of
the	right	side.
Angle2RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
second	choice	on	the	right	side.	Every	value	higher	than	this	value
and	lower	than	the	value	of	Angle3RightSide	selects	the	first	choice
of	the	right	side.
Angle3RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
third	choice	on	the	right	side.	Every	value	higher	than	this	value	and



lower	than	the	value	of	Angle4RightSide	selects	the	first	choice	of
the	right	side.
Angle4RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
fourth	choice	on	the	right	side.	Every	value	higher	than	this	value
and	lower	than	the	value	of	Angle5RightSide	selects	the	first	choice
of	the	right	side.
Angle5RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
fifth	choice	on	the	right	side.	Every	value	higher	than	this	value	and
lower	than	the	value	of	Angle6RightSide	selects	the	first	choice	of
the	right	side.
Angle6RightSide	[integer]:	sets	the	lower	value	of	the	angle	for	the
sixth	choice	on	the	right	side.	Every	value	higher	than	this	value
selects	the	first	choice	of	the	right	side.
PathForHaarCascade	[string]:	Filepath	to	the	folder,	where	the
HaarCascade-files	are	stored.
CameraID	[integer]:	the	ID	of	the	Camera.
CounterResettingROI	[integer]:	the	number	of	frames	to	wait
before	resetting	the	ROI	(finding	the	face)	when	no	feature	is	found.
CounterToSendSelectEvent	[integer]:	the	number	of	frames,
which	the	person	has	to	hold	the	position	until	the	select	event	is
triggered.



HoverPanel
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

This	component	creates	a	panel	window	with	selectable	opacity	which
can	be	placed	anywhere	on	the	screen/desktop.	No	window	decoration	is
used.	The	plugin	provides	x/y	input	port	for	coordinates	and	the	panel
reacts	if	these	coordinates	are	located	within	the	panel.	Via	a	selectable
hover	time,	events	can	be	triggered	if	the	coordinates	stay	within	the
panel	for	a	given	time.	Note	that	the	hoverPanel	represents	a	seperate
window	and	is	not	a	child	window	of	the	ARE	window.

HoverPanel	plugin



2	HoverPanels	on	screen



Input	Port	Description
x	[integer]:	x	coordinate
y	[integer]:	y	coordinate



Event	Listener	Description
activate:	activates	the	hover	panel.
deactivate:	deactivates	the	hover	panel.



Event	Trigger	Description
selected:	triggered	if	coordinates	are	in	range	of	the	panel	position
for	the	hover	time	period.
enter:	triggered	if	coordinates	enter	the	range/location	of	the	panel.
exit:	triggered	if	coordinates	exit	the	range/location	of	the	panel.



Properties
dataSource	[integer,	combobox	selection]:	If	"mouse	coursor"	is
selected,	the	coordinates	are	grabbed	from	the	current	position	of
the	mouse	cursor.	If	"coordinateInputs"	is	selected,	the	input	ports
(x/y)	are	used.
caption	[string]:	The	caption	of	the	hover	panel.
fontSize	[integer]:	The	size	of	the	caption	text.
textColor	[integer]:	Defines	color	of	the	caption	text.
backgroundColor	[integer]:	Defines	background	color.
activationColor	[integer]:	Defines	color	for	the	hover	selection
process.
dwellTime	[integer]:	The	hover	time	for	a	selection.
idleTime	[integer]:	The	time	how	long	the	panel	will	stay	inactive
after	a	selection.
opacity	[integer]:	the	opacity	of	the	hver	panel	(0-100%).
stayActive	[boolean]:	If	selected,	the	hover	panel	will	remain	in
active	state	after	a	selection	(deactivation	via	event).



Joystick	Capture
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

The	JoystickCapture	component	provides	data	from	the	first	detected
Joystick	controller	which	is	available	on	the	local	system.	Six	Joystick
analog	positions	(axis),	the	Point-Of-View	angle	and	up	to	20	Buttons	are
available	as	output	ports	and	event	triggers.

JoystickCapture	plugin



Requirements
A	joystick	has	to	be	connected	and	available	to	the	operating	system.

PC	compatible	GamePad



Output	Port	Description
x	[integer]:	The	X-Position	of	the	Joystick.
y	[integer]:	The	Y-Position	of	the	Joystick.
z	[integer]:	The	Z-Position	of	the	Joystick.
r	[integer]:	The	R-Position	of	the	Joystick.
u	[integer]:	The	U-Position	of	the	Joystick.
v	[integer]:	The	V-Position	of	the	Joystick.
pov	[integer]:	The	POV-angle	of	the	Joystick.



Event	Trigger	Description
pressedButton1	-	pressedButton20:	This	event	is	fired	if	the
corresponding	button	of	the	Joystick	has	been	pressed.
releasedButton1	-	releasedButton20:	This	event	is	fired	if	the
corresponding	button	of	the	Joystick	has	been	released.



Properties
updatePeriod	[integer]:	This	property	value	sets	the	update	time	for
refreshing	the	joystick	information	(in	milliseconds).



Key	Capture
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

This	component	provides	access	to	keystrokes	of	a	single	key	on	the
keyboard.	The	keystroke	capture	does	not	depend	on	a	particular	window
or	text	field	to	have	the	input	focus.	For	every	keypress	and	release	of
the	specified	key	an	event	gets	fired.	Possible	applications	include
triggering	functions	by	keyboard	input,	interfacing	to	speech	recognition
software	or	remapping	keys	to	other	keycodes.

KeybCapture	plugin



Requirements
A	keyboard	which	generates	keystrokes	or	a	software	component	which
injects	keystrokes	into	the	operating	system	message	queue.



Mapping	of	keyCodes	to	actual	keys

Key KeyCode
A 30
B 48
C 46
D 32
E 18
F 33
G 34
H 35
I 23
J 36
K 37
L 38
M 50
N 49
O 24
P 25
Q 16
R 19
S 31
T 20
U 22
V 47
W 17
X 45
Y 21
Z 44
0 11



1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
F1 59
F2 60
F3 61
F4 62
F5 63
F6 64
F7 65
F8 66
F9 67
F10 68
F11 87
F12 88
F13 91
F14 92
F15 93
F16 99
F17 100
F18 101
F19 102
F20 103
F21 104
F22 105



F23 106
F24 107
ESC 1
- 12
=/+ 13

Backspace 14
Tab 15

Caps	Lock 58
Cursor	Up 57416
Cursor	Left 57419
Cursor	Right 57421
Cursor	Down 57424
NumPad	0 82
NumPad	1 79
NumPad	2 80
NumPad	3 81
NumPad	4 75
NumPad	5 76
NumPad	6 77
NumPad	7 71
NumPad	8 72
NumPad	9 73
Ctrl	left 29
Ctrl	right 3613
Alt	left 56
Alt	right 3640

Context	Menu 3677
Windows	Key 3675	or	3676

SPACE 57
Print	Screen 3639
Scroll	Lock 70



Pause 3653
Enter 28

Page	Up 3657
Page	Down 3665

, 51
. 52

The	full	list	of	keycodes	is	defined	here:
https://github.com/kwhat/jnativehook/blob/master/src/java/org/jnativehook/keyboard/NativeKeyEvent.java



Input	Port	Description
keyCode	[integer]:	The	keycode	of	the	key	which	should	be
captured.	For	a	list	of	the	mapping	between	keycodes	and	keys	see
the	graphics	above.



Event	Trigger	Description
keyPressed:	This	event	port	fires	an	event	if	the	key	with	the
specified	keyCode	was	pressed.
keyReleased:	This	event	port	fires	an	event	if	the	key	with	the
specified	keyCode	was	released.



Event	Listener	Description
enable:	The	keystate	is	captured	and	events	get	fired
disable:	The	plugin	does	not	fire	any	event.
block:	After	this	event,	the	keystroke	of	the	key	with	the	specified
keyCode	is	not	forwarded	to	the	operating	system.
unblock:	After	this	event,	the	keystroke	of	the	key	with	the	specified
keyCode	is	forwarded	to	the	operating	system.



Properties
block	[boolean]:	If	this	property	is	set	to	true,	no	key	press	activities
will	be	routed	to	the	operating	system
keyCode[integer]:The	keycode	of	the	key	which	should	be
captured.	For	a	list	of	the	mapping	between	keycodes	and	keys	see
the	graphics	above.



Keyboard	Capture
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

This	component	provides	access	to	keystrokes	input	via	a	standard
keyboard.	The	keystroke	capture	does	not	depend	on	a	particular	window
or	text	field	to	have	the	input	focus.	The	keycodes	of	the	pressed	keys
and	accumulated	words	(multiple	keys	separated	by	)	are	provided	at	the
output	ports	of	this	component.	Possible	applications	include	triggering
functions	by	keyboard	input,	interfacing	to	speech	recognition	software	or
remapping	keys	to	other	keycodes.

KeyboardCapture	plugin



Requirements
A	keyboard	which	generates	keystrokes	or	a	software	component	which
injects	keystrokes	into	the	operating	system	message	queue.



Output	Port	Description
keyCode	[integer]:	This	port	sends	the	virtual	keycode	of	the	last
pressed	key	as	an	integer	value.
words	[string]:	This	ports	accumulates	keystrokes	and	sends	them
as	a	string	as	soon	as	a	blank	separator	(space	key)	appears	in	the
key	input	stream.



Event	Trigger	Description
recognizedCommand1	-	recognizedCommand10:	These	event
ports	fire	an	event	if	one	of	seven	command	strings	has	been
detected	in	the	current	input	stream	of	keys.



Properties
blockEvents	[boolean]:	If	this	property	is	set	to	true,	no	key	press
activities	will	be	routed	to	the	operating	system	-	they	will	not	be
processed	by	other	applications	and	disappear.	If	the	property	value
is	set	to	false,	keystrokes	will	be	passed	back	to	the	operating
system	and	processed	as	usual.
command1	[string]	-	command10	[string]:	Seven	string	properties
to	specify	command	strings.	The	component	looks	for	these
command	strings	in	the	input	stream	of	keystrokes.	If	a	command
string	matches,	the	corresponding	event	trigger	port	is	raised.	This
can	be	useful	for	example	to	define	voice	commands	which	should
trigger	certain	actions	in	other	ARE	plugins.



Kinect
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

The	Kinect	component	interfaces	to	the	Microsoft	Kinect	camera	over	the
OpenNI	library.	It	provides	the	skeleton	Data	of	exactly	one	person	in
front	of	the	kinect	camera.

For	the	installation	of	the	OpenNI	framework	and	the	drivers	see	for
example	here.

	Kinect
plugin

http://studentguru.gr/b/vangos/archive/2011/01/20/how-to-successfully-install-kinect-windows-openni-nite.aspx


Requirements
A	Microsoft	Kinect	must	be	connected	to	the	system.
The	installed	drivers	must	be	compatible	to	the	framework.	e.g.	The
SensorKinect	drivers	work	perfectly.
The	OpenNI	Framework	must	be	installed.
The	Nite	Middleware	must	be	installed



Output	Port	Description
The	range	of	the	coordinates	is	0	-	640	for	the	x	coordinates	and	0	-
480	for	the	y	coordinates	if	centerZeroPoint	is	set	false	and	-320	-
320	for	the	x	coordinate	and	-240	-	240	for	the	y	coordinate	when	set
to	true.

HeadX	[double]:	The	X	position	of	the	Head
HeadY	[double]:	The	Y	position	of	the	Head
HeadZ	[double]:	The	Z	position	of	the	Head
leftHandX	[double]:	The	X	position	of	the	left	Hand
leftHandY	[double]:	The	Y	position	of	the	left	Hand
leftHandZ	[double]:	The	Z	position	of	the	left	Hand
rightHandX	[double]:	The	X	position	of	the	right	Hand
rightHandY	[double]:	The	Y	position	of	the	right	Hand
rightHandZ	[double]:	The	Z	position	of	the	right	Hand
rightFootX	[double]:	The	X	position	of	the	right	Foot
rightFootY	[double]:	The	Y	position	of	the	right	Foot
rightFootZ	[double]:	The	Z	position	of	the	right	Foot
leftFootX	[double]:	The	X	position	of	the	left	Foot
leftFootY	[double]:	The	Y	position	of	the	left	Foot
leftFootZ	[double]:	The	Z	position	of	the	left	Foot



Properties
visualize	[boolean]:	When	set	to	true	a	windows	is	displayed
which	shows	the	tracked	skeleton.	While	the	window	is	simply
grey,	no	skeleton	has	been	found	yet.
centerZeroPoint	[boolean]:	Specifies	wether	the	0,0	point	is	at
the	top	left	corner	(centerZeroPoint=false)	or	in	the	middle	of	the
frame	(centerZeroPoint=true)



KinectJ4K
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

The	Kinect	component	interfaces	to	the	Microsoft	Kinect	v1	camera	over
the	J4K	library.	It	provides	the	skeleton	data	of	exactly	one	person	in
front	of	the	kinect	v1	camera.

For	the	installation	the	SDK	from	Microsoft	is	needed.	The	plugin	was
tested	with	the	SDK-Version	1.5	(see	here).

http://research.dwi.ufl.edu/ufdw/j4k/J4KSDK.php
http://www.microsoft.com/en-us/download/details.aspx?id=29866




KinectJ4K	plugin



Requirements
A	Microsoft	Kinect	v1	must	be	connected	to	the	system.
The	drivers	from	Microsoft	(usually	installed	with	the	SDK)	are
required.



Output	Port	Description
You	can	find	more	information	about	the	Coordinate	Spaces	here.

FootLeftX	[double]:	The	X	position	of	the	left	Foot
FootLeftY	[double]:	The	Y	position	of	the	left	Foot
FootLeftZ	[double]:	The	Z	position	of	the	left	Foot
FootRightX	[double]:	The	X	position	of	the	right	Foot
FootRightY	[double]:	The	Y	position	of	the	right	Foot
FootRightZ	[double]:	The	Z	position	of	the	right	Foot
AnkleLeftX	[double]:	The	X	position	of	the	left	Ankle
AnkleLeftY	[double]:	The	Y	position	of	the	left	Ankle
AnkleLeftZ	[double]:	The	Z	position	of	the	left	Ankle
AnkleRightX	[double]:	The	X	position	of	the	right	Ankle
AnkleRightY	[double]:	The	Y	position	of	the	right	Ankle
AnkleRightZ	[double]:	The	Z	position	of	the	right	Ankle
KneeLeftX	[double]:	The	X	position	of	the	left	Knee
KneeLeftY	[double]:	The	Y	position	of	the	left	Knee
KneeLeftZ	[double]:	The	Z	position	of	the	left	Knee
KneeRightX	[double]:	The	X	position	of	the	right	Knee
KneeRightY	[double]:	The	Y	position	of	the	right	Knee
KneeRightZ	[double]:	The	Z	position	of	the	right	Knee
HipLeftX	[double]:	The	X	position	of	the	left	side	of	the	Hip
HipLeftY	[double]:	The	Y	position	of	the	left	side	of	the	Hip
HipLeftZ	[double]:	The	Z	position	of	the	left	side	of	the	Hip
HipCenterX	[double]:	The	X	position	of	the	center	of	the	Hip
HipCenterY	[double]:	The	Y	position	of	the	center	of	the	Hip
HipCenterZ	[double]:	The	Z	position	of	the	center	of	the	Hip
HipRightX	[double]:	The	X	position	of	the	right	side	of	the	Hip
HipRightY	[double]:	The	Y	position	of	the	right	side	of	the	Hip
HipRightZ	[double]:	The	Z	position	of	the	right	side	of	the	Hip
SpineX	[double]:	The	X	position	of	the	Spine
SpineY	[double]:	The	Y	position	of	the	Spine
SpineZ	[double]:	The	Z	position	of	the	Spine
ShoulderLeftX	[double]:	The	X	position	of	the	left	Shoulder
ShoulderLeftY	[double]:	The	Y	position	of	the	left	Shoulder
ShoulderLeftZ	[double]:	The	Z	position	of	the	left	Shoulder
ShoulderCenterX	[double]:	The	X	position	of	the	area	between

http://www.microsoft.com/en-us/download/details.aspx?id=29866


the	Shoulders
ShoulderCenterY	[double]:	The	Y	position	of	the	area	between
the	Shoulders
ShoulderCenterZ	[double]:	The	Z	position	of	the	area	between
the	Shoulders
ShoulderRightX	[double]:	The	X	position	of	the	right	Shoulder
ShoulderRightY	[double]:	The	Y	position	of	the	right	Shoulder
ShoulderRightZ	[double]:	The	Z	position	of	the	right	Shoulder
ElbowLeftX	[double]:	The	X	position	of	the	left	Elbow
ElbowLeftY	[double]:	The	Y	position	of	the	left	Elbow
ElbowLeftZ	[double]:	The	Z	position	of	the	left	Elbow
ElbowRightX	[double]:	The	X	position	of	the	right	Elbow
ElbowRightY	[double]:	The	Y	position	of	the	right	Elbow
ElbowRightZ	[double]:	The	Z	position	of	the	right	Elbow
WristLeftX	[double]:	The	X	position	of	the	left	Wrist
WristLeftY	[double]:	The	Y	position	of	the	left	Wrist
WristLeftZ	[double]:	The	Z	position	of	the	left	Wrist
WristRightX	[double]:	The	X	position	of	the	right	Wrist
WristRightY	[double]:	The	Y	position	of	the	right	Wrist
WristRightZ	[double]:	The	Z	position	of	the	right	Wrist
HandLeftX	[double]:	The	X	position	of	the	left	Hand
HandLeftY	[double]:	The	Y	position	of	the	left	Hand
HandLeftZ	[double]:	The	Z	position	of	the	left	Hand
HandRightX	[double]:	The	X	position	of	the	right	Hand
HandRightY	[double]:	The	Y	position	of	the	right	Hand
HandRightZ	[double]:	The	Z	position	of	the	right	Hand
HeadX	[double]:	The	X	position	of	the	Head
HeadY	[double]:	The	Y	position	of	the	Head
HeadZ	[double]:	The	Z	position	of	the	Head



Legacy	Analog	In
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

The	LegacyAnalogIn	component	is	a	sensor	which	is	used	in	combination
with	the	legacy	ADC	CIM	(CIM	Id:	0x0401).	The	component	provides
eight	output	ports	which	correlate	to	the	inputs	IN1	to	IN8	of	the	CIM.	The
component	can	be	set	up	to	sample	the	inputs	periodically	or	upon	an
incoming	event.

	Legacy
AnalogIn	plugin



Requirements
This	software	component	requires	an	ADC-DAC	CIM	(CIM	ID:	0x0401)
connected	to	a	USB	port.

Legacy	ADC/DAC	CIM



Output	Port	Description
in1	to	in8	[integer]:	Each	of	these	output	port	corresponds	to	one
input	of	the	ADC	CIM.	The	measured	values	are	forwarded	directly
from	the	CIM	thus	corresponding	to	the	description	given	in	the	CIM
specification.



Event	Listener	Description
adcSampleTrigger:	An	incoming	event	on	this	port	will	cause	the
ADC	CIM	to	sample	data	on	its	inputs.	This	event	will	only	take	effect
if	the	periodic_update	property	is	set	to	0.



Properties
periodicUpdate	[integer]:	This	property	defines	the	time	between
data	sampling	requests	to	the	ADC	CIM	(in	milliseconds).	The
software	component	will	send	requests	to	the	CIM	in	the	given
intervals.	Due	to	current	limitations	of	the	ADC	CIM	it	is
recommended	to	use	time	intervals	not	lower	than	50	milliseconds
(20	samples	per	second).
activateInput1	to	activateInput8	[Boolean]:	These	properties
correspond	the	CIM's	ADC	inputs	IN1	to	IN8,	if	the	property	is	true,
the	corresponding	output	port	of	the	software	component	will	send
the	sampled	data.



Legacy	Digital	In
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

The	LegacyDigitalIn	component	provides	an	interface	to	read	the	digital
inputs	of	the	legacy	GPIO	CIM	(CIM	Id:	0x0201).	On	state	changes	of	the
connected	signals	(transitions	to	high	or	low	level),	the	component
generates	corresponding	trigger-events.

LegacyDigitalIn	plugin



Requirements
This	component	requires	the	legacy	GPIO	CIM	(CIM	Id:	0x0201)
connected	to	an	USB	port.

GPIO	CIM



Event	Trigger	Description
in1High	to	in8High:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	high	level,	an	event	will	be	raised	on	the	corresponding
port.
in1Low	to	in8Low:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	low	level,	an	event	will	be	raised	on	the	corresponding
port.



Properties
activateEventIn1	to	activateEventIn8	[Boolean]:	These	properties
declare	for	each	port	whether	or	not	a	signal	transition	on	the	actual
input	port	should	result	in	an	event	being	triggered	in	the	ARE.	If	a
property	is	set	true	for	one	input,	it	will	raise	events	on	signal
transitions,	if	it	is	set	to	false	it	will	not.
periodicUpdate:	Period	in	milliseconds	for	update	messages	about
state	of	device	inputs.	If	the	property	is	set	to	zero,	the	plugin	will
receive	messages	from	the	CIM	on	signal	transitions,	if	the	property
is	non-zero,	the	CIM	will	send	status	messages	in	the	defined
intervals	without	extra	event	messages	on	signal	changes.	Both
modes	will	have	the	same	effect	on	the	software	plugin,	it	will	raise
events	on	its	trigger	ports.



LineReader
Component	Type:	Sensor	(Subcategory:	File	System)

This	component	reads	lines	from	a	text	file	and	sends	them	to	an	output
port.	The	line	reading	can	be	triggered	by	an	incoming	event.

ButtonGrid	plugin



Input	port	Description
skipLines	(integer):	When	an	integer	number	is	received	at	this
port,	the	component	tries	to	skip	this	number	of	lines.	The	next	line
will	be	read	from	the	resulting	position.



Output	port	Description
actLine	(string):	A	line	of	text	which	has	been	read	from	the	file	(as
line	termination	character,	the	"enter"-key	(\n)	is	used.



Event	Listener	Description
readNextLine:	When	this	event	is	triggered,	the	component	tries	to
read	one	line	of	text	from	the	file	and	sends	it	to	the	output	port.
resetToFirstLine:	When	this	event	is	triggered,	the	internal	file
pointer	is	reset	ot	the	beginning	of	the	file.



Event	Trigger	Description
endOfFile:	This	event	is	fired	when	no	line	can	be	read	from	the	file
(file	end	or	other	error	occurred)



Properties
fileName	[string]:	The	full	path	and	file	name	of	the	text	file	to	read.
The	path	can	be	given	as	absolute	path	or	relative	to	the	ARE
executable's	directory



Lipmouse
Component	Type:	Sensor	(Subcategory:Sensor	Modules)

This	component	provides	signals	from	the	Lipmouse	module,	which
allows	computer	control	via	a	mouthpiece.	The	user	can	create	input
signals	with	3	degrees	of	freedom	by	interacting	with	the	mouthpiece:
left/right,	up/down	and	sip/puff.	The	horizontal	and	vertical	movements
are	measured	via	force	sensors	inside	the	lipmouse	module.	The	sip/puff
actions	are	measured	via	a	pressure	sensor.	The	lipmouse	can	be
adjusted	to	very	low	force	that	it	can	be	used	by	persons	with	severly
reduced	motor	capabilites	(e.g.	late	stage	musculuar	dystrophy	or
quadraplegia	up	to	C1/C2	lesions).

	the
Lipmouse	sensor	plugin



Requirements
The	Lipmouse	module	must	be	connected	to	a	USB	port.	Firmware	for
the	lipmouse	sensor	can	be	found	in	the	folder	CIMs/Lipmouse_CIM.	The
free	"teensy	loader"	tool	can	be	used	to	update	the	firmware	of	the
lipmouse	module.	An	alternative	stand-alone	firmware	and	configuration
GUI	is	provided	in	the	folder	CIMs/StandAlone_Modules_FLipWare.
Detailed	design	documentation	will	be	provided	in	the	future.

Lipmouse	sensor	application



Output	Port	Description
X	[integer]:	the	force	applied	to	the	Lipmouse	mouthpiece	in	x-
direction
Y	[integer]:	the	force	applied	to	the	Lipmouse	mouthpiece	in	y-
direction
pressure	[integer]:	the	pressure	value	applied	to	the	sip/puff	-
sensor



Event	Listener	Description
calibration:	if	this	event	is	received,	the	x/y	force	value	is	set	to	0
(removing	any	drift	of	the	sensor	values)
setLed1:	if	this	event	is	received,	Led1	will	be	turned	on
clearLed1:	if	this	event	is	received,	Led1	will	be	turned	off
setLed2:	if	this	event	is	received,	Led2	will	be	turned	on
clearLed2:	if	this	event	is	received,	Led2	will	be	turned	off
setLed3:	if	this	event	is	received,	Led3	will	be	turned	on
clearLed3:	if	this	event	is	received,	Led3	will	be	turned	off



Event	Triggerer	Description
sip:	will	be	triggered	when	pressure	decreases	under	the	selected
sip	treshold	and	increses	back	before	the	selected	sipTime	has
passed
longSip:	will	be	triggered	when	pressure	decreases	under	the
selected	sip	treshold	and	increases	back	after	the	selected	sipTime
has	passed
sipStart:	will	be	triggered	at	the	moment	when	pressure	decreases
under	the	selected	sip	treshold
sipEnd:	will	be	triggered	at	the	moment	when	pressure	increases
above	the	selected	sip	treshold
puff:	will	be	triggered	when	pressure	increases	above	the	selected
puff	treshold	and	decreases	back	before	the	selected	puffTime	has
passed
longPuff:	will	be	triggered	when	pressure	increases	above	the
selected	puff	treshold	and	decreases	back	after	the	selected
puffTime	has	passed
puffStart:	will	be	triggered	at	the	moment	when	pressure	increases
above	the	selected	puff	treshold
puffEnd:	will	be	triggered	at	the	moment	when	pressure	decreases
under	the	selected	puff	treshold
button1Pressed:	will	be	triggered	when	button1	of	the	lipmouse	is
pressed
button1Released:	will	be	triggered	when	button1	of	the	lipmouse	is
released
button2Pressed:	will	be	triggered	when	button2	of	the	lipmouse	is
pressed
button2Released:	will	be	triggered	when	button2	of	the	lipmouse	is
released
button3Pressed:	will	be	triggered	when	button3	of	the	lipmouse	is
pressed
button3Released:	will	be	triggered	when	button3	of	the	lipmouse	is
released



Properties
uniqueID	[integer]:	a	unique	identifier,	useful	if	more	then	one
lipmouse	modules	are	used	(dynamic	property).
periodicADCUpdate	[integer]:	the	update	rate	for	force	and
pressure	values	in	milliseconds.
sipThreshold	[integer]:	threshold	value	for	sip	actions.
sipTime	[integer]:	threshold	time	for	sip/longSip	events.
puffThreshold	[integer]:	threshold	value	for	puff	actions.
puffTime	[integer]:	threshold	time	for	puff/longPuff	events.



LipmouseIR
Component	Type:	Sensor	(Subcategory:Sensor	Modules)

This	component	provides	signals	from	the	Lipmouse	module,	which
allows	computer	control	via	a	mouthpiece.	The	user	can	create	input
signals	with	3	degrees	of	freedom	by	interacting	with	the	mouthpiece:
left/right,	up/down	and	sip/puff.	The	horizontal	and	vertical	movements
are	measured	via	force	sensors	inside	the	lipmouse	module.	The	sip/puff
actions	are	measured	via	a	pressure	sensor.	The	lipmouse	can	be
adjusted	to	very	low	force	that	it	can	be	used	by	persons	with	severly
reduced	motor	capabilites	(e.g.	late	stage	musculuar	dystrophy	or
quadraplegia	up	to	C1/C2	lesions).	Additionally	the	Lipmouse	has	an
infrared	interface	which	enables	it	to	control	electronic	devices.	Through
a	receiver	it	is	possible	to	record	commands	from	existing	remote
controls	and	store	the	codes	to	a	database.	When	needed,	the	IR	signal
is	reconstructed	and	transmitted	to	the	device	to	be	controlled.

	the
LipmouseIR	sensor	plugin



Requirements
The	LipmouseIR	module	must	be	connected	to	a	USB	port.	Firmware	for
the	lipmouseIR	sensor	can	be	found	in	the	folder	CIMs/Lipmouse_CIM.
The	free	"teensy	loader"	tool	can	be	used	to	update	the	firmware	of	the
lipmouseIR	module.	Detailed	design	documentation	will	be	provided	in
the	future.



Input	Port	Description
DeviceType	[string]:	Type	of	the	device	to	be	controlled	via	IR	(e.g.:
TV)
DeviceName	[string]:	Name	of	the	device	to	be	controlled	via	IR
(e.g.:	Sony,	Samsung,	etc.)
DeviceFunction	[string]:	Name	of	function	of	the	device	(e.g.:	On,
Off,	VolumeUp,	etc.)



Output	Port	Description
X	[integer]:	the	force	applied	to	the	Lipmouse	mouthpiece	in	x-
direction
Y	[integer]:	the	force	applied	to	the	Lipmouse	mouthpiece	in	y-
direction
pressure	[integer]:	the	pressure	value	applied	to	the	sip/puff	-
sensor



Event	Listener	Description
SendIRCode:	Send	an	IR	Code	to	the	Lipmouse
RecordIRCode:	Record	an	IR	Code	through	the	Lipmouse
calibration:	if	this	event	is	received,	the	x/y	force	value	is	set	to	0
(removing	any	drift	of	the	sensor	values)
setLed1:	if	this	event	is	received,	Led1	will	be	turned	on
clearLed1:	if	this	event	is	received,	Led1	will	be	turned	off
setLed2:	if	this	event	is	received,	Led2	will	be	turned	on
clearLed2:	if	this	event	is	received,	Led2	will	be	turned	off
setLed3:	if	this	event	is	received,	Led3	will	be	turned	on
clearLed3:	if	this	event	is	received,	Led3	will	be	turned	off



Event	Triggerer	Description
StartRecord:	will	be	triggered	when	Lipmouse	is	recording
StopRecord:	will	be	triggered	when	Lipmouse	has	finished
recording
sip:	will	be	triggered	when	pressure	decreases	under	the	selected
sip	treshold	and	increses	back	before	the	selected	sipTime	has
passed
longSip:	will	be	triggered	when	pressure	decreases	under	the
selected	sip	treshold	and	increases	back	after	the	selected	sipTime
has	passed
sipStart:	will	be	triggered	at	the	moment	when	pressure	decreases
under	the	selected	sip	treshold
sipEnd:	will	be	triggered	at	the	moment	when	pressure	increases
above	the	selected	sip	treshold
puff:	will	be	triggered	when	pressure	increases	above	the	selected
puff	treshold	and	decreases	back	before	the	selected	puffTime	has
passed
longPuff:	will	be	triggered	when	pressure	increases	above	the
selected	puff	treshold	and	decreases	back	after	the	selected
puffTime	has	passed
puffStart:	will	be	triggered	at	the	moment	when	pressure	increases
above	the	selected	puff	treshold
puffEnd:	will	be	triggered	at	the	moment	when	pressure	decreases
under	the	selected	puff	treshold
button1Pressed:	will	be	triggered	when	button1	of	the	lipmouse	is
pressed
button1Released:	will	be	triggered	when	button1	of	the	lipmouse	is
released
button2Pressed:	will	be	triggered	when	button2	of	the	lipmouse	is
pressed
button2Released:	will	be	triggered	when	button2	of	the	lipmouse	is
released
button3Pressed:	will	be	triggered	when	button3	of	the	lipmouse	is
pressed
button3Released:	will	be	triggered	when	button3	of	the	lipmouse	is
released



Properties
uniqueID	[integer]:	a	unique	identifier,	useful	if	more	then	one
lipmouse	modules	are	used	(dynamic	property).
periodicADCUpdate	[integer]:	the	update	rate	for	force	and
pressure	values	in	milliseconds.
sipThreshold	[integer]:	threshold	value	for	sip	actions.
sipTime	[integer]:	threshold	time	for	sip/longSip	events.
puffThreshold	[integer]:	threshold	value	for	puff	actions.
puffTime	[integer]:	threshold	time	for	puff/longPuff	events.
IRCodeFilePath	[string]:	Filepath	to	the	file,	where	the	IR	Codes
are	stored.



IR	Code	Database
The	database	which	contains	the	IR	codes	as	well	as	the	information
about	the	type	and	name	of	the	device	and	the	specific	function	is	a
comma	separated	value	file.	The	first	value	is	the	type,	the	second	one	is
the	name	and	the	third	one	is	the	function.	The	following	512	values	are
the	IR	code.	This	database	is	automatically	generated	and	maintained	if
new	IR	codes	are	recorded	with	the	Lipmouse	with	IR	functions.



MicGPI
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

This	component	reads	the	input	from	the	microphone	or	line-in	of	a
computer's	sound	device.	The	averaged	amplitude	/	sound	pressure	level
and	the	dominant	frequency	can	be	calculated	and	used	for	control
purposes.	It	is	highly	recommended	to	use	a	headset	microphone	to
avoid	unwanted	detections	from	ambient	noise.	The	sampling	rate	can	be
set	(300-44100	Hz),	the	other	device	properties	are	mono	(1	channel)
and	8	bit	resoltion.

It	is	possible	to	attach	a	momentary	switch	via	standard	3.5mm	jack	plug
to	the	mic/line	input	of	the	soundcard	(or	a	cheap	USB	soundcard)	and
use	this	component	for	detection	of	switch	presses.

Disclaimer:	Attaching	a	switch	to	mic/line	input	does	not	work	with	all
sound	cards.	Although	we	are	not	aware	of	a	permanent	damage	to	a
sound	card,	you	do	this	on	your	own	risk	!



Requirements
A	internal	or	external	sound	device	with	mic	or	line	input	is	required.	If	the
component	is	utilized	as	switch	input,	a	momentary	switch	must	be
attached	to	the	line-in	or	microphone	input	jack.	No	additional	input	circuit
is	required.	Any	sort	of	filtering	of	the	signal	like	background	noise
cancelling	must	be	disabled.



Input	Port	Description
thresholdLow	[int]:	This	input	port	sets	the	low	threshold	below	a
signal	must	move	that	a	inLow	event	gets	triggered.
thresholdHigh	[int]:	This	input	port	sets	the	high	threshold	above	a
signal	must	move	that	a	inHigh	event	gets	triggered.



Output	Port	Description
pressure	[double]:	This	port	outputs	the	sound	amplitude	or
pressure	level	of	the	mic	input	signal	(the	values	depend	on	the
selected	calculation	mode).
frequency	[integer]:	In	case	frequency	calculation	is	enabled,	this
port	outputs	the	dominant	frequency	of	the	spectrum	(in	Hz).



Event	Trigger	Description
inLow:	This	event	is	fired	if	the	calculated	level	goes	below	the	low
threshold	(can	be	used	to	detect	switch	press/release	or	sound
pressure	level).
inHigh:	This	event	is	fired	if	the	calculated	level	goes	above	the	high
threshold	(can	be	used	to	detect	switch	press/release	or	sound
pressure	level).



Properties
samplingRate	[int]:	Defines	the	sampling	rate	in	Hz	(allowed	values
are	in	the	rang	of	300	-	44100	Hz)
sampleSize	[int]:	Defines	the	size	of	the	sample	buffer.	Must	be	a
power	of	2.	The	values	32/64/128/256/512/1024/2048	can	be
selected	from	a	combobox.	This	buffer	size	determines	the
calculation-interval	on	the	output	ports.
mode	[int,	combobox	selection]:	Defines	the	way	how	the	output
signal	(which	is	also	compared	to	the	threshold	values)	is	calculated.
The	calculation	is	applied	on	a	block	of	samples	of	the	selected	size.
Available	options	are:	average	sample	values,	average	absolute
sample	values,	min	value,	max	value	and	max	absolute	value
thresholdLow	[int]:	This	property	sets	the	low	threshold	below	a
signal	must	move	that	a	inLow	event	gets	triggered.
thresholdHigh	[int]:	This	property	sets	the	high	threshold	above	a
signal	must	move	that	a	inHigh	event	gets	triggered.
noiseLevel	[double]:	This	property	defines	a	minimum	level	fo	a
valid	sound	signal.	All	noise	which	is	below	this	level	will	be
attenauted	to	avoid	unwanted	detections.
calculateFrequency	[boolean]:	If	true,	an	FFT	will	be	performed	to
calculate	the	frequency	spectrum	and	output	the	dominant	frequency
to	the	associated	port.
printSpectrum	[boolean]:	If	this	property	is	set	to	true	and
frequency	calculation	is	enabled,	the	FFT	spectrum	will	be	printed	to
the	console	(only	reasonable	in	debug	mode).
captureDevice:	[string]:	This	property	defines	the	sound	card	from
which	the	audio	samples	should	be	analysed.	(dynamic	property,
values	are	suggested	when	ARE	is	in	synced	state)



Mouse	Capture
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

This	component	provides	access	to	mouse	input	activities	of	connected	a
standard	mouse,	like	mouse	x/y	movement	or	button	press/release
activities.	Mouse	wheel	and	third	mouse	button	are	supported.

MouseCapture	plugin



Requirements
A	mouse	or	mouse-equivalent	must	be	connected	to	the
computer/personal	platform.



Output	Port	Description
mouseX	[integer]:	This	port	provides	current	absolute	mouse	X-
position	or	relative	mouse	X-movement	as	integer	value	(depending
on	the	mode	of	operation).
mouseY	[integer]:	This	port	provides	current	absolute	mouse	Y-
position	or	relative	mouse	Y-movement	as	integer	value	(depending
on	the	mode	of	operation).



Event	Listener	Description
blockEvents:	After	this	incoming	event	no	mouse	activities	will	be
routed	to	the	operating	system.
forwardEvents:	After	this	incoming	event	all	mouse	activities	will
also	be	forwarded	to	the	operating	system.
toggleBlock:	An	incoming	event	toggles	the	current	blockEvents.	If
the	mouse	activities	were	forwarded	they	will	now	be	kept	and	vica
versa.



Event	Trigger	Description
leftButtonPressed:	This	port	fires	an	event	as	the	left	mouse	button
is	pressed.
leftButtonReleased:	This	port	fires	an	event	as	the	left	mouse
button	is	released.
rightButtonPressed:	This	port	fires	an	event	as	the	right	mouse
button	is	pressed.
rightButtonReleased:	This	port	fires	an	event	as	the	right	mouse
button	is	released.
middleButtonPressed:	This	port	fires	an	event	as	the	middle
mouse	button	is	pressed.
middleButtonReleased:	This	port	fires	an	event	as	the	middle
mouse	button	is	released.
wheelUp:	This	port	fires	an	event	as	the	mouse	wheel	is	turned	one
step	away	from	the	user.
wheelDown:	This	port	fires	an	event	as	the	mouse	wheel	is	turned
one	step	towards	the	user.



Properties
blockEvents	[boolean]:	This	property	defines	the	mode	of
operation	of	the	mousehook	component.	If	this	property	is	set	to	true,
no	mouse	activities	will	be	routed	to	the	operating	system	-	they	will
not	be	processed	by	other	applications,	the	mouse	cursor	will	not
move	and	no	clicks	will	be	actually	performed	by	the	operation
system.	This	can	be	useful	if	the	mouse	activity	shall	be	transferred
e.g.	from	the	AsTeRICS	personal	platform	to	another	system	(via	the
HID	actuator)	or	the	mouse	should	be	trapped	to	control	a	particular
GUI	or	menu	structure.	In	this	case,	the	mouse	component	outputs
only	relative	mouse	movements	in	X	and	Y	axis	at	the	corresponding
output	ports.	If	the	property	value	is	set	to	false,	mouse	activities	will
be	passed	back	to	the	operating	system	and	will	be	processed	as
usual.	In	this	case,	the	mousehook	component	provides	the	absolute
mouse	positions	at	the	component?s	output	ports.



OpenBCI
Component	Type:	Sensor	(Subcategory:	Bioelectric
Measurement)

This	component	provides	an	interface	to	bioelectric	amplifiers	which	are
compatible	to	the	openBCI	packet	fromat.	For	more	information	please
refer	to	the	OpenBCI	website.	The	COM	Port	number	where	the	device	is
connected	must	be	specified	in	the	plugin	properties.

OpenBCI	plugin

http://www.openbci.com/


Requirements
This	software	component	requires	an	Open	BCI	compatible	device
connected	to	a	COM	Port,	which	sends	packet	protocol	for	channel	data.



Output	Port	Description
Channel1	to	Channel8	[integer]:	Each	output	corresponds	to	the
sampled	data	from	its	corresponding	channel.	A	calibration
procedure	to	obtain	the	factor	for	calculation	of	microvolts	must	be
performed	with	the	amplifier	device.
AccX,	AccY,	AccZ	[integer]:	The	current	values	of	the	3	axis	of	the
acceleration	sensor.



Properties
COMPort	[String]:	The	name	of	the	COM	port,	for	example	COM2
or	COM17.
Baudrate	[Integer]:	The	baud	rate	for	the	transmission.	Standard	is
115200.



OpenVibe
Component	Type:	Sensor	(Subcategory:	Bioelectric
Measurement)

The	OpenVibe	plugin	allows	obtaining	data	from	a	connection	to	the
OpenVibe	BCI	software	which	is	currently	one	of	the	most	prominent	BCI
frameworks.	OpenVibe	supports	a	wide	range	of	biosignal	and	EEG
acquisition	devices	and	provides	sophisticated	signal	processor	training
and	classification	algorithms.	The	graphical	design	concept	is	similar	to
the	ACS,	and	plugins	can	be	committed	by	the	open	source	community.
To	send	data	from	OpenVibe	to	the	ARE	plugin,	a	dedicated	OpenVibe
Plugin	called	“AsTeRICS	connection”	has	been	created.	This	OpenVibe
plugin	sends	up	to	16	channels	of	signal	data	and	up	to	61	different
stimulation	events	to	the	ARE	plugin	via	a	UDP	connection,	by	using	the
Open	Sound	Control	(OSC)	protocol.	The	following	figure	shows	this
communication	flow.

	data
flow	from	OpenVibe	to	AsTeRICS



Requirements
The	OpenVibe	framework	has	to	be	installed	and	the	AsTeRICS
connection	plugin	must	be	available	(this	means	that	OpenVibe	has	to	be
built	from	sources	and	the	AsTeRICS	connection	plugin	is	included	in	the
build	process).	Furthermore,	the	correct	UDP	port	must	be	set	in	the
properties	of	both	plugins,	and	the	ARE	plugin	has	to	be	running	when
OpenVibe	is	started	(because	the	ARE	plugin	acts	as	server	and	opens	a
listening	port).

OpenVibe	plugin



Output	Port	Description
CH1	–	CH16	[double]:these	are	the	output	ports	for	the	OpenVibe
signals.	Up	to	16	signals	can	be	sent



Event	Listener	Description
OVTK_StimulationId_Label_00	–	0C
OVTK_StimulationId_Letter_0	–	Z
OVTK_StimulationId_Label_Target
OVTK_StimulationId_Label_NonTarget
These	are	the	Event	triggers	which	can	be	linked	to	the
corresponding	OpenVibe	Stimulation	IDs.	In	total,	56	different
stimulations	can	be	processed



Properties
Port	[integer]:	the	UPD	port	which	is	opened	by	the	AsTeRICS
plugin	to	wait	for	the	OpenVibe	connection



Osc	Server
Component	Type:	Sensor	(Subcategory:	Communication)

The	OscServer	component	enables	the	ARE	to	receive	messages	using
the	OpenSoundControl	(OSC)	protocol.	The	OscServer	can	receive
various	OSC	data	messages	which	can	be	divided	in	the	individual	data
segments	and	forwarded	to	the	output	ports.	The	properties	are	used	for
the	segmentation	of	the	individual	information	segments	of	a	whole	OSC
message.	This	plugin	utilizes	the	NetUtil	java	library
(http://www.sciss.de/netutil/)	for	the	OSC	implementation,	it	is
(C)opyrighted	2004-2011	by	Hanns	Holger	Rutz	and	released	under	the
GNU	Lesser	General	Public	License.

OscServer	plugin



Requirements
Any	OSC	client	software	which	sends	data	to	the	server	e.g.	ARE
OscOutClient	Plugin,	various	OSC	Apps	for	Android	and	various	PC
software.
Check	your	firewall	configuration	and	network	settings	to	ensure	that
OSC	messages	are	not	blocked.
Exact	knowledge	about	the	structure	of	the	OSC	message,	to
determine	the	OSC	message	structure	refere	to	the	OSC	client
documentation	or	utilze	a	neworksniffer	e.g.	Wireshark
(www.wireshark.org)



Functional	Principle

Symbolic	OSC	Message
Each	time	the	OscServer	Plugin	receives	a	OSC	message	it	decompose
it	according	to	the	plugin	properties	(AddressCH[n],	ArgNrCH[n])	and
forward	it	to	the	output	ports.	The	OscServer	is	able	to	receive	OSC
messages	with	arguments	of	the	type	float	and	string.	The	OSC	datatype
float	is	typcased	to	the	ARE	type	double.



Output	Port	Description
out	1-8	[double]:	Forward	data	form	the	OSC	message.
out	9-12	[string]:	Forward	strings	from	the	OSC	message



Properties
Port	[integer]:	This	value	specifies	the	OscServer	port.
AddressCH[n]	[string]:	This	value	specifies	the	OSC	input	address
e.g.	"/path/to/sensor/accxyz".
ArgNrCH[n]	[integer]:	The	Argument	Number	defines	which	single
argument	of	an	entire	message	is	picked	out	and	forwarded	to	the
output.	The	first	argument	of	an	OSC	message	begins	with	the	index
value	zero,	e.g.	the	first	argument	has	the	index	0,	the	second	the
index	1	and	so	on.



Referred	Plugins
OscOutClient
OpenVibe
OscGestureFollower



P2Parser
Component	Type:	Sensor	(Subcategory:	Bioelectric
Measurement)

This	component	provides	an	interface	to	bioelectric	amplifiers	which	are
compatible	to	the	openEEG	P2	packet	fromat	(e.g.	the	ModualarEEG	or
the	SMTEEG	by	Olimex).	For	more	information	please	refer	to	the
OpenEEG	website.The	COM	Port	number	where	the	device	is	connected
must	be	specified	in	the	plugin	properties.

OpenEEG	P2	Parser	plugin

http://openeeg.sf.net


Requirements
This	software	component	requires	an	OpenEEG	compatible	device
connected	to	a	COM	Port,	which	sends	the	P2	packet	protocol	for
channel	data.



Output	Port	Description
Channel1	to	Channel6	[integer]:	Each	output	corresponds	to	the
sampled	data	from	its	corresponding	channel.	The	values	range	for
-512	to	512.	A	calibration	procedure	to	obtain	the	factor	for
calculation	of	microvolts	must	be	performed	with	the	amplifier	device.



Properties
COMPort	[String]:	The	name	of	the	COM	port,	for	example	COM2
or	COM17.
Baudrate	[Integer]:	The	baud	rate	for	the	transmission.	Standard	is
57600.



Platform	Analog	In
Component	Type:	Sensor	(Subcategory:	Generic	Control
Input)

The	PlatformAnalogIn	component	is	a	sensor	which	is	used	in
combination	with	the	analog	inputs	of	the	personal	platform.	The
component	provides	two	output	ports	which	correlate	to	the	inputs	IN1
and	IN2	of	the	platform.	The	component	can	be	set	up	to	sample	the
inputs	periodically	or	upon	an	incoming	event.	Both	inputs	can	be	used
for	voltage	and	resistance	measurement.

Platform	AnalogIn	plugin



Requirements
This	component	requires	the	Core	CIM	(CIM	Id:	0x0602)	of	the
AsTeRICS	Personal	Platform.

The	AsteRICS	Personal	Platform



Output	Port	Description
in1	to	in2	[integer]:	Each	of	these	output	port	corresponds	to	one
input	of	the	ADC	CIM.	The	measured	values	are	forwarded	directly
from	the	CIM	thus	corresponding	to	the	description	given	in	the	CIM
specification.	Depending	on	the	type	of	connected	sensor	the	values
either	correspond	to	a	voltage	or	a	resistive	value.



Event	Listener	Description
adcSampleTrigger:	An	incoming	event	on	this	port	will	cause	the
ADC	CIM	to	sample	data	on	its	inputs.	This	event	will	only	take	effect
if	the	periodic_update	property	is	set	to	0.



Properties
periodicUpdate	[integer]:	This	property	defines	the	time	between
data	sampling	requests	to	the	ADC	CIM	(in	milliseconds).	The
software	component	will	send	requests	to	the	CIM	in	the	given
intervals.	Due	to	current	limitations	of	the	ADC	CIM	it	is
recommended	to	use	time	intervals	not	lower	than	50	milliseconds
(20	samples	per	second).
activateInput1	to	activateInput2	[Boolean]:	These	properties
correspond	the	CIM's	ADC	inputs	IN1	to	IN8,	if	the	property	is	true,
the	corresponding	output	port	of	the	software	component	will	send
the	sampled	data.



Platform	Digital	In
Component	Type:	Sensor	(Subcategory:	Personal	Platform)

The	PlatformDigitalIn	component	provides	an	interface	to	read	the	digital
inputs	of	the	AsTeRICS	Personal	Platform.	On	state	changes	of	the
connected	signals	(transitions	to	high	or	low	level),	the	component
generates	corresponding	trigger	events.

PlatformDigitalIn	plugin



Requirements
This	component	requires	the	Core	CIM	(CIM	Id:	0x0602)	of	the
AsTeRICS	Personal	Platform.

The	AsteRICS	Personal	Platform



Event	Trigger	Description
in1High	to	in3High:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	high	level,	an	event	will	be	raised	on	the	corresponding
port.
in1Low	to	in3Low:	Each	of	these	event	ports	is	linked	to	one	input
port,	if	the	device	connection	to	this	input	port	delivers	a	signal	which
changes	to	low	level,	an	event	will	be	raised	on	the	corresponding
port.



Properties
activateEventIn1	to	activateEventIn3	[Boolean]:	These	properties
declare	for	each	port	whether	or	not	a	signal	transition	on	the	actual
input	port	should	result	in	an	event	being	triggered	in	the	ARE.	If	a
property	is	set	true	for	one	input,	it	will	raise	events	on	signal
transitions,	if	it	is	set	to	false	it	will	not.



Proximity
Component	Type:	Sensor	(Subcategory:Sensor	Modules)

This	component	provides	the	distance	sensor	signal	from	the	Proximity
sensor	board,	which	has	been	developed	in	course	of	the	Bachelor
Theses	of	Franziska	Horak	at	the	UAS	Technikum	Wien.	The	Proximity
sensor	board	can	be	head	mounted	and	offers	an	alternative	input
method	via	minimal	movements	of	facial	features	-	e.g.	chin	movements.
In	several	proof-of-concept	models,	on-screen	keyboard	control	and
mouse	control	could	be	shown.	For	detailed	information	please	refer	to
the	file	Documentation/DIYGuides/ProximitySensor_Horak.pdf

	the
Proximity	sensor	plugin



Requirements
The	Proximity	sensor	has	to	be	connected	to	a	USB	port.	Design	files
and	firmware	for	the	proximity	sensor	can	be	found	in	the	folder
CIMs/Proximity_CIM.

Proximity	sensor	application



Input	Port	Description
input	[integer]:	this	input	port	allows	setting	the	threshold	value	for
the	creation	of	events



Output	Port	Description
distance	[integer]:	the	currently	measured	distance	from	sensor	to
subject



Event	Trigger	Description
LowToHigh:	this	event	is	triggered	when	the	distance	increases
above	the	threshold	value
HighToLow:	this	event	is	triggered	when	the	distance	decreases
below	the	threshold	value



Properties
threshold	[integer]:	the	threshold	value	for	creating	events.
sendingMode	[combobox	selection]:	if	"Continuous	data"	is
selected,	the	distance	values	are	sent	to	the	output	port,	if	"Events:
below->above",	"Events:	above->below"	or	"Events:	both"	are
selected,	the	respective	event	triggers	will	be	generated.



Razor	IMU
Component	Type:	Sensor	(Subcategory:	Inertial
Measurement)

The	RazorIMU	plugin	provides	the	serial	output	of	the	9DOF	Razor
Inertial	Measurement	Unit	at	three	output	ports:	pitch,	yaw	and	roll.
These	three	values	represent	the	orientation	in	terms	of	rotation	along
the	three	axes	of	the	coordinate	system.

RazorIMU	plugin



Requirements
This	plugin	requires	a	9DOF	Razor	IMU	module	connected	to	the
AsTeRICS	platform	via	a	UART/USB	converter	cable	(e.g.	an	FTDI	cable)
which	creates	a	COM	port.	The	Razor	IMU	module	(and	also	the
converter	cable)	is	available	at	SparkFun	electronics.	It	has	to	be
updated	with	the	Sparkfun	9DOF	Razor	IMU	AHRS	firmware.	(The	COM
port	must	be	determined	by	looking	in	the	device	manager	window	and
cannot	be	automatically	detected	like	with	dedicated	AsTeRICS	CIMs.)
The	required	baud	rate	is	57600.

RazorIMU	module



Output	Port	Description
pitch	[double]:	The	value	for	the	current	pitch.
yaw	[double]:	The	value	for	the	current	yaw.
roll	[double]:	The	value	for	the	current	roll.



Properties
comPort	[String]:	The	name	of	the	COM	port	the	IMU	is	connected
to.
baudRate	[integer]:	The	baud	rate	the	IMU	is	transferring	its	data
at.
operationMode	[String]:	Designates	the	operation	mode	(currently
only	"PitchYawRoll"	is	available).



CSV	Reader
Component	Type:	Sensor	(Subcategory:	File	System)

This	plugin	reads	a	whole	.csv	file	and	sends	the	seperate	lines	as
strings	to	the	output	port.

ReadCSV



Event	Listener	Description
read:	Opens	a	file-chooser	menu	to	select	a	csv-file	which	should	be
opened	and	read.	The	file	is	read	immideately	after	selection
(attention:	this	blocks	the	ARE	model	execution	until	the	file	contents
are	read	completely	!)



Output	port	Description
Output[string]:	The	port	sends	the	individual	lines	of	the	file	as
strings.	An	example	for	the	string	is:	"data1;data2;data3".	To
seperate	the	string	into	individual	strin	values,	the	StringSplitter	can
be	used.



Properties
FilePath[string]:	Defines	the	default	Path	were	the	file	is	located.
(TBD:	add	property	for	default	FileName	and	line-by-line	read	option)



RFID	Reader
Component	Type:	Sensor	(Subcategory:	Others)

The	RFIDReader	component	provides	an	interface	to	the	ID-Innovations
RFID	reader	modules.	These	modules	are	available	for	example	from
Sparkfun	electronics.	The	recognized	ID-Tags	are	transferred	from	the
module	to	a	COM	port,	where	the	RFIDReader	components	reads	the	ID
and	puts	it	to	the	output	port	as	an	ASCII	string.	The	RFIDReader	can	be
useful	to	switch	to	a	different	a	model	(e.g.	for	another	users	or	use
cases)	or	to	change	parameters	of	a	running	model.

RFIDReader	plugin



Requirements
This	software	component	requires	an	ID-Innovations	RFID	reader	to	be
connected	to	a	COM	port	via	the	Sparkfun	USB	breakout	board	or	a
UART/USB	bridge	or	converter	cable.	Dedicated	drivers	have	to	be
installed	(e.g.	the	FTDI	VCP	drivers	for	the	Sparkfun	breakout	board).	All
needed	components	are	contained	in	the	Sparkfun	RFID	Starter	Kit:

RFID	Starter	Kit



Output	Port	Description
tagID	[string]:	A	recognized	TagID	is	put	out	on	this	port	as	a
sequence	of	12	hexadecimal	numbers	in	an	ASCII	string.



Properties
comPort	[string]:	The	COM	port	where	the	RFID	reader	module	is
connected	to	(e.g	"COM5")
baudRate	[integer]:	The	baudrate	for	communication	with	the	RFID
reader	module,	should	be	9600	for	the	ID	Innovations	modules



Sensorboard
Component	Type:	Sensor	(Subcategory:Sensor	Modules)

This	component	provides	the	sensor	signals	from	the	Sensorboard	CIM
module,	which	has	been	developed	in	course	of	the	Master	Thesis	of	Yat-
Sin	Yeung	at	the	UAS	Technikum	Wien.	The	Sensorboard	is	part	of	the
head-mounted	Smart	Vision	Module	setup	but	can	also	be	used	as	a
stand-alone	unit	for	movement	analysis.	The	Sensorboard	contains	a	3-
axis	accelerometer,	a	3-axis	gyroscope,	a	3-axis	compass	module,	one
analogue	pressure	sensor	(a	sip/puff	sensor)	and	a	connection	to	an
optical	IR-object	tracking	sensor	which	can	track	the	position	of	up	to	4
infrared	LEDs	in	the	field	of	view	of	the	sensor.	Furthermore,	the
Sensorboard	contains	a	USB	hub	so	that	a	USB	camera	can	be
connected.

The	sensorboard	is	necessary	for	the	headpose-compensated	eye	gaze
tracking	applications	of	the	SVM.	It	can	be	used	also	for	other
applications	like	remote	IR-led	tracking	or	as	inertial	measurement	unit.
For	a	detailled	description	of	the	Sensorboard	and	its	application	for	eye-
tracking	please	refer	to	the	files
Documentation/DIYGuides/SVM_Eyetracking_Yeung.pdf	and
Documentation/DIYGuides/SmartVisionModule.pdf

	the
Sensorboard	plugin



Requirements
The	Sensorboard	has	to	be	connected	to	an	USB	port.	Design	files	and
firmware	of	the	Sensorboard	can	be	found	in	the	folder
CIMs/Sensorboard.

The	Sensorboard	PCB



Output	Port	Description
accX/Y/Z	[integer]:	the	three	axis	output	of	the	acceleration	sensor
gyroX/Y/Z	[integer]:	the	three	axis	output	of	the	gyroscope	sensor
compassX/Y/Z	[integer]:	the	three	axis	output	of	the	compass
sensor
pt1x	-	pt4x	[integer]:
pt1y	-	pt4y	[integer]:	The	x/y	corrdinates	of	the	IR-LED	tracking
camera	(0-1022,	1023	if	no	LED	detected)
pressure	[integer]:	the	output	of	the	pressure	(sip/puff)	sensor



Properties
refreshInterval	[integer]:	the	refresh	interval	for	sensor	values	in
milliseconds	(should	not	be	less	than	20).



Signal	Generator
Component	Type:	Sensor	(Subcategory:	Simulation)

The	SignalGenerator	component	can	generate	several	output	waveforms
for	component	tests	or	other	purposes	like	timing	or	event	generation.
Available	waveforms	are	sine,	sawtooth,	rectangle	and	random	signal
data.

SignalGenerator	plugin



Output	Port	Description
out	[double]:	The	generated	waveform	is	provided	at	this	port.



Properties
sendInterval	[integer]:	This	value	specifies	the	output	rate	in
milliseconds.	Please	note	that	the	output	rate	has	to	be	fast	enough
to	assemble	the	selected	output	frequency.	For	example	if	a
frequency	of	2	Hz	is	set,	the	send_interval	should	not	be	greater
than	125	milliseconds	according	to	the	sample	theorem.
waveForm	[integer]:	The	waveform	types	random,	sine,	sawtooth
and	rectangle	can	be	selected.
frequency	[double]:	The	frequency	of	the	output	signal	in	Hertz.
amplitude	[double]:	The	amplitude	of	the	output	signal.
phaseShift	[double]:	The	output	signal	is	phase-shifted	by	this
value	(in	milliseconds).
offset	[double]:	Amplitude-offset	of	the	output	signal	(this	value	is
added	to	each	generated	waveform	value).



Signal	Shaper
Component	Type:	Sensor	(Subcategory:	Simulation)

The	SignalShaper	component	can	be	used	to	generate	signal	composed
from	basic	linear	functions.

SignalShaper	plugin

Example	composed	signal	created	from	three	linear	signals



Output	Port	Description
output	[double]:	The	output	port	for	the	signal.



Event	Listener	Description
start:	Start	the	signal	generation.	If	this	event	is	received	during
signal	generation,	the	signal	generation	is	restarted.



Properties
interval	[integer]:	The	sampling		rate	in	milliseconds.
numberOfLines	[integer]:	The	number	of	linear	signals	used	to
shape	the	output	signal.
behaviourAfterFinish	[integer]:	Defines	the	component	behaviour
after	all	signal	lines	have	been	sent:

do	nothing:	stop	any	action.
repeat:	Send	the	signal	lines	from	beginning.
send	the	last	value:	Continue	to	send	the	last	value	of	the
signal.

beginValue1...beginValue5	[double]:	The	begin	value	of	the	linear
signals.
endValue1...endValue5	[double]:	The	end	value	of	the	linear
signals.
time1...time5	[integer]:	The	duration	of	the	linear	signals	in
milliseconds.



Slider
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

The	Slider	component	generates	a	slider	with	adjustable	range	of	values
and	size	on	the	ARE	desktop.	This	slider	can	be	used	to	change
important	parameters	of	the	model	during	runtime.	Furthermore,	an
incoming	signal	can	be	adjusted	by	the	slider	component,	using	a	gain
factor	property.

	Slider
plugin



Input	Port	Description
setValue	[integer]:	Sets	the	slider	position	to	the	incoming	value.
Note	that	this	value	is	not	propagated	to	the	output	port	(to	avoid
loops).
in	[double]:	input	port	for	an	incoming	signal	which	can	be	amplified
by	the	slider	component



Output	Port	Description
value	[integer]:	This	port	provides	the	currently	selected	slider	value
(position).	Only	integer	values	are	possible.
out	[double]:	The	amplified	(or	attenuated)	input	signal	(out	=	in	*
gain	*	slider	value)



Properties
min	[integer]:	The	minimum	value	of	the	slider	range
max	[integer]:	The	maximum	value	of	the	slider	range
default	[integer]:	The	defualt	position	of	the	slider	at	model	startup
(this	value	is	not	automatically	sent	to	the	port	at	model	startup.
gain	[double]:	The	amplification	value	for	an	(optional)	incoming
signal	(out	=	in	*	gain	*	slider	value)
caption	[string]:	A	label	for	the	slider
majorTickspacing	[integer]:	Coarse	sections	for	the	slider	value
captions
minorTickspacing	[integer]:	Fine	sections	for	the	slider	value
captions
alignment	[integer,	combobox	selection]:	Slider	orientation	in	the
GUI,	can	be	horizontal	or	vertical
fontSize	[integer]:	Font	size	of	the	caption
storeValue	[boolean]:	if	the	storeValue	property	is	enabled,	the
current	value	of	the	slider	position	is	stored	and	restored	when	the
model	is	started	next	time.	Note	that	this	overrides	the	defaultValue
property.
displayGUI	[boolean]:	if	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Space	Navigtor	3D	Mouse
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

This	component	interfaces	the	3Dconnexion	3D	Mouse	device.

SpaceNavigator3DMouse	plugin



Requirements
The	3D	Mouse	device	connected	to	the	platform

SpaceNavigator	3DMouse



Output	Port	Description
mouseX	[integer]:	Data	of	axis	X.
mouseY	[integer]:	Data	of	axis	Y.
mouseZ	[integer]:	Data	of	axis	Z.
mouseRx	[integer]:	Data	of	rotation	of	axis	X.
mouseRy	[integer]:	Data	of	rotation	of	axis	Y.
mouseRz	[integer]:	Data	of	rotation	of	axis	Z.
buttons	[integer]:	Data	of	selected	buttons	combination.



Properties
interval	[integer]:	The	interval	of	capturing	3D	mouse	state	(ms).



Textfield	Reader
Component	Type:	Sensor	(Subcategory:	Graphical	User
Interface)

Similar	to	the	Keyboard	Hook	component,	this	component	provides
access	to	keystrokes	coming	from	a	standard	keyboard	or	injected	via
software.	The	difference	to	the	Keyboard	Hook	is	that	the	Text	Field
Reader	opens	a	GUI	element	with	a	text	input	filed	and	processes	key
input	only	from	this	text	field.	The	keycodes	of	the	pressed	keys	and
accumulated	words	(multiple	keys	separated	by	)	are	provided	at	the
output	ports	of	this	component.	Possible	applications	include	triggering
functions	by	keyboard	input	or	remapping	keys	to	other	keycodes.

TextfieldReader	plugin



Requirements
A	keyboard	which	generates	keystrokes	or	a	software	component	which
injects	keystrokes	into	the	operating	system?s	message	queue.



Output	Port	Description
keys	[integer]:	This	port	sends	the	virtual	keycode	of	the	last
pressed	key	as	an	integer	value.
words	[string]:	This	ports	accumulates	keystrokes	and	sends	them
as	a	string	as	soon	as	a	blank	separator	(space	key)	appears	in	the
key	input	stream.



Event	Trigger	Description
recognizedCommand1	-	recognizedCommand7:	These	event
ports	fire	an	event	if	one	of	seven	command	strings	has	been
detected	in	the	current	input	stream	of	keys.



Properties
command1	[string]	-	command7	[string]:	Seven	string	properties
to	specify	command	strings.	The	component	looks	for	these
command	strings	in	the	input	stream	of	keystrokes.	If	a	command
string	matches,	the	corresponding	event	trigger	port	is	raised.	This
can	be	useful	for	example	to	define	voice	commands	which	should
trigger	certain	actions	in	other	ARE	plugins.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Timer
Component	Type:	Sensor	(Subcategory:	Simulation)

The	timer	component	can	measure	time	in	milliseconds,	provide	current
time	on	an	output	port	and	trigger	events	when	a	specified	time	period
has	passed.	It	can	be	used	to	influence	other	features	(e.g.	to	provide
acceleration)	or	to	enable	dwell	selection,	for	example	clicking	when	a
certain	time	has	passed.

	Timer
plugin



Input	Port	Description
period	[integer]:	The	number	of	milliseconds	the	timer	period
property	is	set	to.



Output	Port	Description
time	[integer]:	The	number	of	milliseconds	which	have	passed
since	the	timer	has	been	started.



Event	Listener	Description
start:	An	incoming	event	starts	the	timer.
stop:	An	incoming	event	stops	the	timer	(pause,	the	current	time
value	is	not	reset	to	0).
reset:	An	incoming	event	resets	the	time	value	to	0	(but	does	not
stop	the	timer).



Event	Trigger	Description
periodFinished:	This	event	is	triggered	when	the	given	time	has
passed.



Properties
mode	[integer]:	This	property	selects	one	of	several	possible
modes	of	operation	of	the	timer:

"one	shot":	The	timer	runs	once	from	0	to	the	specified	time,	and
then	stops.
"repeat	n	times":	The	timer	completes	the	time	period	several
times	(the	number	is	selected	with	the	repeat	counter	property).
"endless	loop":	the	timer	completes	the	time	period	until	it	is
stopped	by	an	event	at	the	stop	listener	port.
"once	and	continue	time	output":	The	time	period	is	completed
once,	the	timer	is	not	stopped	but	continues	to	send	the	last
time	value	(this	is	useful	to	generate	increasing	values	with
persisting	maximum	value,	e.g.	for	utilization	as	accelerated
speed	value).
"measure	time	between	start	and	stop":	The	timer	sends	the
time	passed	from	start	to	stop	events	to	the	output	port	(when
stop	was	received).

repeatCounter	[integer]:	The	number	of	periods	to	finish	for	the
"repeat	n	times	"	mode.
timePeriod	(ms)	[integer]:	The	time	period	covered	by	this	counter
in	milliseconds.
resolution	(ms)	[integer]:	The	update	rate	of	the	timer	in
milliseconds.	This	value	defines	how	often	the	current	time	value	is
updated	and	sent	to	the	output	port.	It	thereby	defines	the	accuracy
for	the	timer.
waitPeriod	(ms)	[integer]:	This	value	specifies	how	long	the	timer	is
bypassed	before	it	actually	starts	(after	receiving	a	start	event).
autostart	[boolean]:	This	property	defines	if	the	timer	will	be	started
automatically	together	with	the	model	(true)	or	if	it	will	be	started	by
an	event	(false).



Tobi	TiC
Component	Type:	Sensor	(Subcategory:	Bioelectric
Measurement)

The	Tobi	TiC	plugin	allows	obtaining	data	from	a	connection	to	the	Tobi
Framework	(Tools	for	Brain	Computer	Interaction).	Tobi	defined	standard
for	BCI	interfaces,	e.g.	beteween	classification	and	actuator	modues.
Tobi	supports	a	wide	range	of	biosignal	and	EEG	acquisition	devices.
The	TiC	interface	is	dedicated	to	transfer	classifier	results	to	actuators.
This	plugin	implements	a	simple	TiC	reader	via	a	TCP	socket.	Up	to	5
TOBI	class	labels	can	be	defined	which	will	be	used	to	extract	values
from	incoming	TiC-compatible	xml	messages.	These	class	labels	and	the
sever	socket	which	is	openend	by	the	plugin	can	be	defined	viy	plugin
properties.

	Tobi
TiC	plugin

http://www.tobi-project.org


Requirements
TiC-compatible	messages	must	be	sent	to	the	server	port	which	is
opened	by	the	plugin.

Internal	structure	of	a	TOBI	iC	message

Example	iC	message:

example	TOBI	iC	message



Output	Port	Description
value1	–	value5	[double]:these	are	the	output	ports	for	the	Tobi
class	values.	Up	to	5	signals	can	be	sent



Properties
tcpPort	[integer]:	the	TCP	port	which	is	opened	by	the	AsTeRICS
plugin	to	wait	for	the	Tobi	connection
classLabel1	-	classLabel5	[string]:	the	classLabels	to	extract
values	from	the	Tobi	TiC	messages.	Values	will	be	directed	to	the
corresponding	output	ports	of	the	plugin.



TuioReactivision
Component	Type:	Sensor	(Subcategory:	Sensor	Modules)

This	component	integrates	reacTIVision	into	AsTeRICS

TuioReactivision	plug-in



Requirements
This	component	requires	that	the	reacTIVision.exe	is	running	-->
Download:	http://reactivision.sourceforge.net/.	It	can	either	be	started
manually,	with	the	ApplicationLauncher	plug-in	or	via	a	reference	in	the
tuioReactivision	plug-in's	property	"reactivisionPath"



Output	Port	Description
Marker	ID	[Integer]:	The	fiducial	marker's	ID
Session	ID	[Float]]:	Temporary	object	ID
xPos	[Float]:	The	marker's	position	on	the	x-axis
yPos	[Float]:	The	marker's	position	on	the	y-axis
angel	[Float]:	The	marker's	angle
motion	speed	[Float]:	Movement	vector	which	shows	the	marker's
motion	speed
rotation	speed	[Float]:	Rotation	vector	which	shows	the	marker's
rotation	speed
motionAccel	[Float]:	The	marker's	motion	acceleration
rotationAccel	[Float]:	The	marker's	rotation	acceleration
Text	[String]:	Sends	the	text	assigned	to	the	marker	which	is
recognised	on	the	display



Properties
Text	Output	[Boolean]:	If	it	is	true,	a	string	can	be	assigned	to	a
marker.	Therefor,	a	text	file	is	necessary
Marker	Allocation	[Boolean]:	If	it	is	true,	an	event	port	can	be
assigned	to	a	marker.	Therefor,	a	text	file	is	necessary.	Only	Text
Output	or	Marker	Allocation	can	be	true
reactivisionPath	[Boolean]:	Contains	the	path	to	the
reacTIVision.exe
Text	File	[String]:	Contains	the	path	of	the	text	file	in	which	the
marker	is	either	assigned	to	a	text	or	an	event	port	(e.g.	"1-3"	marker
three	is	assigned	to	event	trigger	one	)

Examplary	text	file	when	a	marker	should	be	assigned	to	a	string	(Marker	number	is	on
the	left	side)

Examplary	text	file	ehen	a	marker	should	be	assigned	to	an	integer	(Marker	number	is
on	the	right	side)



Event	Trigger
Event	Trigger	Port	1-6	can	only	be	used	when	marker	allocation	is
true.



WiiMote
Component	Type:	Sensor	(Subcategory:	Standard	Input
Devices)

The	WiiMote	component	interfaces	to	the	Nintendo	WiiMote	controller	via
Bluetooth	and	the	WiiYourself!	library.	It	provides	various	sensor	values
including	the	Wiimote	buttons	and	the	tracked	IR-points	of	the	Wiimote	IR
front	camera	and	the	Joystick	position	of	the	Nunchuk	extension.

Contains	WiiYourself!	wiimote	code	by	gl.tter	-	see	http://gl.tter.org

For	Wiimote	connection	and	pairing,	please	see	e.g.	here.

	WiiMote
plugin

http://gl.tter.org
http://code.google.com/p/giimote/wiki/GettingConnected


Requirements
A	Wiimote	controller	has	to	be	available	and	paired	with	the	Bluetooth
radio	module	of	the	system.

WiiMote	and	Nunchuk



Output	Port	Description
pitch	[integer]:	The	calculated	pitch	orientation	of	the	Wiimote
controller	(in	degrees)
roll	[integer]:	The	calculated	roll	orientation	of	the	Wiimote
controller	(in	degrees)
point1X	[integer]:	The	X	position	of	the	first	visible	IR	point	(0-1023)
point1Y	[integer]:	The	Y	position	of	the	first	visible	IR	point	(0-768)
point2X	[integer]:	The	X	position	of	the	second	visible	IR	point	(0-
1023)
point2Y	[integer]:	The	Y	position	of	the	second	visible	IR	point	(0-
768)
nunX	[integer]:	The	X-position	of	the	analog	joystick	on	the
Nunchuk	extension	(if	connected)
nunY	[integer]:	The	Y-position	of	the	analog	joystick	on	the
Nunchuk	extension	(if	connected)
battery	[integer]:	The	battery	level	(0-100%)



Event	Trigger	Description
pressedUp:	Up	direction	button	pressed
releasedUp:	Up	direction	button	released
pressedDown:	Down	direction	button	pressed
releasedDown:	Down	direction	button	released
pressedLeft:	Left	direction	button	pressed
releasedLeft:	Left	direction	button	released
pressedRight:	Right	direction	button	pressed
releasedRight:	Right	direction	button	released
pressedA:	A	direction	button	pressed
releasedA:	A	direction	button	released
pressedB:	B	direction	button	pressed
releasedB:	B	direction	button	released
pressed1:	1	direction	button	pressed
released1:	1	direction	button	released
pressed2:	2	direction	button	pressed
released2:	2	direction	button	released
pressedPlus:	Plus	direction	button	pressed
releasedPlus:	Plus	direction	button	released
pressedMinus:	Minus	direction	button	pressed
releasedMinus:	Minus	direction	button	released
pressedHome:	Home	direction	button	pressed
releasedHome:	Home	direction	button	released
pressedNunchuckC:	NunchuckC	direction	button	pressed
releasedNunchuckC:	NunchuckC	direction	button	released
pressedNunchuckZ:	NunchuckZ	direction	button	pressed
releasedNunchuckZ:	NunchuckZ	direction	button	released



Properties
updatePeriod	[integer]:	This	property	defines	how	often	the
WiiMote	is	queried	for	new	data	(in	milliseconds)



XFacetrackerLK
Component	Type:	Sensor	(Subcategory:	Computer	Vision)

OS:	Windows,	Linux,	Mac	OSX

This	component	provides	a	cross-platform	face	tracking	computer	vision
algorithm	which	puts	out	estimated	movement	of	a	users’	nose	and	chin
in	x	and	y	coordinates.	The	underlying	mechanism	builds	upon	the
JavaCV	(OpenCV)	library	(in	particular	a	trained	cascade	of	haar-like
features	in	combination	with	a	Lukas	Kanade	optical	flow	algorithm	is
used	to	track	a	face	and	its	movement).	The	x-	and	y-	coordinates	can	be
used	in	camera-mouse	configurations	or	to	enable	selection	or	control
tasks.	The	values	are	only	provided	if	a	face	can	be	tracked	by	the
algorithm.	Note	that	the	x-	and	y-	values	represent	relative	movement	in
pixels	and	have	to	be	accumulated	(e.g.	via	the	integrate	component)	to
generate	e.g.	absolute	mouse	positions.



Requirements
A	camera	has	to	be	available	(this	can	be	any	webcam	or	a	camera
which	is	available	as	image	acquisition	device	via	the	operating	system).
The	picture	below	shows	the	Logitech	Webcam	9000	Pro.	Also	the
camera	device	of	a	Kinect	sensor	or	PS3Eye	should	work.	Furthermore,
a	video	stream	of	an	IP	camera	can	be	used	for	tracking.

Logitech	Webcam	9000	Pro



Output	Port	Description
noseX	[integer]:	This	value	specifies	the	relative	change	in	the	x
coordinate	of	the	user's	nose	with	respect	to	the	previous	image
frame.
noseY	[integer]:	This	value	specifies	the	relative	change	in	the	y
coordinate	of	the	user's	nose	with	respect	to	the	previous	image
frame.
chinX	[integer]:	This	value	specifies	the	relative	change	in	the	x
coordinate	of	the	user's	chin	with	respect	to	the	previous	image
frame.
chinY	[integer]:	This	value	specifies	the	relative	change	in	the	y
coordinate	of	the	user's	chin	with	respect	to	the	previous	image
frame.



Event	Listener	Description
init:	if	this	event	is	triggered,	the	face	recognition	procedure	is
initiated.	This	can	be	useful	if	the	correct	face	position	has	been	lost
due	to	drifting	of	the	LK	algorithm.
showCameraSettings	an	incoming	event	displays	the	settings
window	for	the	camera	device	(only	on	Windows),	where	parameters
like	image	brightness	or	contrast	can	be	adjusted.



Properties
frameGrabber[string,	combobox	selection]:Name	of
FrameGrabber	to	use	(Default,	VideoInput,	OpenCV,	FFmpeg,
OpenKinect,	PS3Eye,	IPCamera).
frameGrabberFormat[string]:Format	for	grabber,	e.g.	FFmpeg:
'dshow'	(default),	'vfwcap',	'gdigrab'.
deviceList	[string,	combobox	selection]:List	of	available	devices,
if	supported	by	grabber
cameraSelection	[string]:	The	camera	device	to	be	used	-	use
camdIdx	e.g.	'0'	(VideoInput,	OpenCV,	OpenKinect,	PS3Eye),	or
camName	e.g.	'video=Integrated	Camera'	or	'desktop'	(FFmpeg),
stream-url	for	IPCamera.
cameraResolution	[string,	combobox	selection]:	This	selection
box	provides	several	standard	camera	resolutions.	Changing	the
resolution	affects	accuracy	and	performance	(CPU	load	of	the
runtime	system).	Provided	selections	include	“160x120”,	“320x240”,
“640x480”,	“800x600”,	“1024x768”	and	“1600x1200”.
titleVideoFrameWindow	[string]:The	title	of	the	window	showing
the	video	frame.



Example	Configuraitons

Default

Let	the	plugin	probe	available	framegrabbers	and	choose	the	first
available	one.	The	following	grabber	are	tried	in	the	following	order:

1.	 OpenCV
2.	 VideoInput
3.	 FFmpeg

Configuration

frameGrabber:Default
cameraSelection:0

OpenCV

frameGrabber:OpenCV
cameraSelection:0

VideoInput

frameGrabber:VideoInput
cameraSelection:0

FFmpeg

frameGrabber:FFmpeg
frameGrabberFormat	(or	vfwcap):dshow
cameraSelection	(device	name	as	of	device
manager):video=Integrated	Camera

MJPEG	stream	of	SmartPhone	camera

Install	the	following	Android	app	on	your	smartphone	and	start	streaming
the	front	camera:	Camera	Stream	-	WiFi	IP	Webcam	(Web	Host	LLC)

https://play.google.com/store/apps/details?id=com.vinternete.camerastream


Enter	the	http	url	displayed	at	your	smartphone	and	add	/video	to	the	url

e.g.

http://192.168.1.100:8080/video

Set	the	cameraSelection	property	of	the	XFacetrackerLK	plugin	to	this
url.

Configuration

frameGrabber:IPCamera
cameraSelection:http://192.168.1.100:8080/video



Processors
Processors	are	components	which	modify	data	provided	by	other	plugins.
Thus	processors	contain	input	ports	as	well	as	output	ports	and	are
placed	in	the	middle	of	the	ARE	processing	chain.	Types	of	processors
are	either	data	modifiers	(such	as	amplifiers	and	averagers)	or	flow
control	elements	(such	as	conditional	path	selectors).



AdjustmentCurve
Component	Type:	Processor	(Subcategory:	Signal
Shaping)

The	AdjustmentCurve	component	allows	transformation	of	an	incoming
signal	to	an	outgoing	signal.	The	signal	mapping	can	be	freely	arranged
in	a	drawing	window	(GUI)	during	runtime	of	the	model.	The	resulting
mapping	can	be	saved	as	a	curve	file.	The	GUI	is	optional	-	an	existing
curve	can	be	loaded	to	perform	the	signal	mapping	without	the	GUI.

AdjustmentCurve	plugin



AdjustmentCurve	GUI	during	runtime



Input	Port	Description
in	[double]:	This	port	receives	the	input	values	which	will	be
mapped	to	output	values.
CurveName	[string]:	When	this	port	receives	a	string,	the	plugin
tries	to	load	a	curve	file	of	this	name	from	the	plugin's	data
subdirectory	(ARE/data/processor.adjustmentcurve).



Output	Port	Description
out	[double]:	This	port	provides	the	resulting	output	value.



Event	Listener	Description
displayGui:	An	incoming	event	makes	the	GUI	visible.
hideGui:	An	incoming	event	makes	the	GUI	invisible.
loadCurve:	An	incoming	event	loads	a	curve	of	the	current	filename
(as	given	in	the	plugin	property	or	received	from	the	input	port
"curveName").
saveCurve:	An	incoming	event	saves	the	current	mapping	curve
under	the	given	filename.	This	event	has	teh	same	function	like	the
"save"-button	which	is	available	in	the	GUI	window	of	the	plugin.



Properties
filename	[string]:	The	filename	of	the	curve	file.	If	the	curve	file
exists	in	the	plugin's	subdirectory
(ARE/data/processor.adjustmentcurve),	this	curve	is	loaded.	If	the
file	does	not	exist,	a	new	curve	can	be	drawn	in	the	GUI	and	saved
under	this	name	into	the	plugin's	data	subfolder
(ARE/data/processor.adjustmentcurve).
display	GUI	[boolean]:	If	checked,	the	GUI	of	the	adjustment	curve
plugin	will	be	shown	and	the	user	can	modify	and	save	the	curve	in
real	time	by	dragging,	creating	or	deleting	curve	points.
intMin	[double]:	Sets	the	minimum	value	of	the	input	range.
outMax	[double]:	Sets	the	maximum	value	of	the	input	range.
outMin	[double]:	Sets	the	minimum	value	of	the	output	range.
outMax	[double]:	Sets	the	maximum	value	of	the	output	range.
mode	[combobox]:	"autoupdate	min	and	max"	modifies	the	input
range	if	incoming	values	exceed	the	current	minimum	or	maximum,
"clip	to	min	and	max"	which	keeps	the	values	as	set	by	the	min/max
properties.
fontSize	[integer]:	The	size	of	the	font	for	dispaying	text	in	the	GUI.
caption	[string]:	The	caption	of	the	AdjustmentCurve	GUI.



Amplifier
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	takes	an	input	and	multiplies	it	with	a	gain	factor	set	in
the	properties.	It	can	be	used	to	amplify	or	reduce	signal	values	or	to
invert	them.

Amplifier	plugin



Input	Port	Description
sigIn	[double]:	The	input	value	to	be	amplified.



Output	Port	Description
sigOut	[double]:	The	amplified	output	value.



Properties
factor	[double]:	The	gain	factor	that	inputs	are	multiplied	with.



Arduino
Component	Type:	Processors	(Subcategory:
Microcontroller	Interface)

The	Arduino	component	provides	an	interface	to	the	Arduino	Uno
microcontroller	and	makes	available	analog	inputs	and	digital	inputs	and
outputs.

	Arduino
plugin



Requirements
An	Arduino	UNO	microcontroller	board	has	to	be	connected	to	an	USB
port.	The	Arduino	CIM	firmware	must	have	been	downloaded	into	the
Arduino	to	communicate	via	the	CIM	protocol	with	the	Arduino
component.

Arduino	UNO	board



Input	Port	Description
pwm3	[integer]:	PWM	channel	3,	output	value	(range:	0-255).	The
output	signal	depends	on	the	mode	(PWM	or	servo	PWM)
pwm5	[integer]:	PWM	channel	5,	output	value	(range:	0-255).	The
output	signal	depends	on	the	mode	(PWM	or	servo	PWM)
Warning:Due	to	hardware	limitations,	either	PWM	or	IO	mode	is
available	for	pin	5	AND	6.	It	is	not	possible	to	use	these	pins
individually!
pwm6	[integer]:	PWM	channel	6,	output	value	(range:	0-255).	The
output	signal	depends	on	the	mode	(PWM	or	servo	PWM)
Warning:Due	to	hardware	limitations,	either	PWM	or	IO	mode	is
available	for	pin	5	AND	6.	It	is	not	possible	to	use	these	pins
individually!



Output	Port	Description
A0	-	A5	[integer]:	The	readings	of	the	6	analog	channels	of	the
Arduino	(0-1023)



Event	Listener	Description
setPin2	-	setPin13:	An	incoming	event	will	set	the	corresponding
digital	output	pin	on	the	Arduino	to	high	level	(5V)
clearPin2	-	clearPin13:	An	incoming	event	will	set	the
corresponding	digital	output	pin	on	the	Arduino	to	low	level	(0V)



Event	Trigger	Description
pin2ChangedToLow	-	pin13ChangedToLow:	This	event	is
triggered	if	the	corresponding	input	pin	on	the	Arduino	switches	from
high	to	low	level	(connected	to	0V)
pin2ChangedToHigh	-	pin13ChangedToHigh:	This	event	is
triggered	if	the	corresponding	input	pin	on	the	Arduino	switches	from
low	to	high	level	(connected	to	5V)



Properties
uniqueID	[integer]:	If	more	than	one	Arduino	CIM	is	used,	this
property	allows	the	identification	of	the	module.	(dynamic	property)
periodicADCUpdate	[integer]:	This	property	defines	how	often	the
ADC	values	are	measured	and	put	out	on	the	ports	A0-A5
(0=disable	ADC)
pin2Mode	-	pin13Mode	[integer]:	This	property	defines	the	mode
of	the	Arduino	Pins.	The	value	can	be	selected	via	a	ComboBox.
Possible	selections	are:

not	used
Input	without	pullup	resistor
Input	with	pullup	resistor
output,	default	low
output,	default	high
PWM	servo	(PWM	for	servo	driving,	1-2ms	pulse),	available
only	on	pin	3,5	and	6
500Hz	PWM	(normal	0-100%	PWM),	available	only	on	pin	3,5
and	6



Audio	Selector
Component	Type:	Processor	(Subcategory:	Audio	and
Voice)

This	plug-in	manages	the	audio	tracks	present	in	the	data/music	folder
and	different	external	request	working	as	an	interface	with	the
wavefileplayer	plug-in

AudioSelector	plugin



Requirements
To	work	along	with	wavefileplayer	plug-in.



Output	Port	Description
TrackName	[string]:	of	the	Track	to	be	played.	Supports	value
suggestions	from	ARE	(dynamic	property)



Event	Listener	Description
StartStop:	Togle	between	play	stop	state	request.
NextTrack:	Play	next	track	request.
VolumeUp:	Put	the	volume	up	request.
VolumeDown:	Put	the	volume	down	request.



Event	Trigger	Description
Play:	Play	Track	Request.
Pause:	Stop	Track	Requests.
VolumeUp:	Volume	Up	request.
VolumeDown:	Volume	Down	Request.



Averager
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	averager	component	takes	an	input	stream	and	forwards	the
average	of	certain	amount	of	buffered	last	inputs.	The	size	of	the	buffer
can	be	set	via	a	property.	The	component	can	be	used	to	eliminate
spikes	in	an	input	data	stream.	Furthermore	the	unit	can	also	be	used	as
an	accumulator	which	accumulates	all	inputs	within	a	certain	time
interval.

Averager	plugin



Input	Port	Description
input	[double]:	This	port	reads	the	inputs	to	be	averaged.



Output	Port	Description
output	[double]:	This	port	provides	the	current	average	of	the
buffered	inputs.



Properties
mode	[integer]:	Denotes	the	operating	mode	of	the	unit,	three
modes	are	available:

average:	unit	performs	averaging	calculations	and	emits	double
values	average	with	integer.
output:	unit	performs	calculations	and	rounds	result	to	integer.
accumulate:	unit	accumulates	inputs	for	certain	amount	of	time.

bufferSize	[integer]:	Specifies	the	size	of	the	buffer	in	the	averaging
modes	or	the	amount	of	milliseconds	to	accumulate	in	the
accumulator	mode.



Basic	Tremor	Reduction
algorithms
Component	Type:	Processor	(Subcategory:	Singal
Shaping)

This	plugin	contains	three	algorithms	for	user	hand	tremor	reduction:
Arithmetic	Mean,	Outlier	Reduction	and	Exponential	Smoothing.	The
Arithmetic	Mean	algorithm	calculates	the	cursor	position	as	an	average	of
the	past	n	cursor	positions.	N	is	defined	by	the	bufferSize	parameter.	The
Outlier	Reduction	algorithm	keeps	the	maximum	distance	between	two
followed	cursor	positions.	The	maximum	distance	is	defined	by	the
maxDistance	parameter.	If	the	distance	between	two	cursor	positions	is
greater	than	maxDistance,	it	is	reduced	to	the	value	of	maxDistance.	The
Exponential	Smoothing	algorithm	implements	the	Exponential	smoothing
technique.	The	factor	parameter	defines	the	Exponential	Smoothing	and
the	degree	parameters	define	the	degree	of	the	equation.

	Basic
Tremor	Reduction	algorithms	plugin

http://en.wikipedia.org/wiki/Exponential_smoothing


Input	Port	Description
inputX	[integer]:	Input	mouse	X	position.
inputY	[integer]:	Input	mouse	Y	position.
bufferSize	[integer]:	The	new	buffer	size	value	for	the	Arithmetic
Mean	algorithm.
maxDistance	[double]:	The	new	maximum	distance	value	for	the
Outlier	Reduction	algorithm.
factor	[double]:	The	new	factor	value	for	Exponential	Smoothing
algorithm.



Output	Port	Description
outputX	[integer]:	Output	mouse	X	position.
outputY	[integer]:	Output	mouse	Y	position.



Properties
algorithm	[integer]:	Defines	the	algorithm	used	for	the	tremor
reduction.
eventsType	[integer]:	Defines	if	the	mouse	coordinates	are
absolute	or	relative.
bufferSize	[integer]:	The	buffer	size	value	for	the	Arithmetic	Mean
algorithm.
maxDistance	[double]:	The	maximum	distance	value	for	the	Outlier
Reduction	algorithm.
factor	[double]:	The	factor	value	for	Exponential	Smoothing
algorithm.
degree	[integer]:	The	degree	of	the	equation	for	Exponential
Smoothing	algorithm.



Benchmark
Component	Type:	Processor	(Subcategory:	Others)

This	component	may	be	used	to	perform	benchmark	of	data	throughput
at	a	particular	location	of	the	model	/	design.	It	counts	port	activity	of	data
and	event	ports	per	given	time.

Benchmark	plugin



Input	Port	Description
in	[double]:	Input	port	for	numeric	values.	Incoming	activity
increases	the	data	counter.



Output	Port	Description
dataCount	[integer]:	The	current	value	of	the	data	counter.
eventCount	[integer]:	The	current	value	of	the	event	counter.



Event	Listener	Description
eventIncrease:	Incoming	events	increase	the	event	counter.
resetCounter:	An	incoming	event	resets	data	counter	and	event
counter	to	0.



Properties
time	[integer]:	The	time	period	in	milliseconds	for	measuring	data
activity	and	events.	After	the	time	has	passed,	the	current	values	of
data	counter	and	event	counter	are	provided	at	the	output	port,	and
the	counters	are	reset	to	zero.



Blink	Detection
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	component	detects	the	shape	that	a	blink	produces	in	an	electro-
oculogram	signal.	The	plugin	analyses	the	input	samples	and	recognises
both	a	single	blink	and	a	double	blink.	Here	a	single	blink	is	defined	by	an
action	whereby	both	eyes	are	simultaneously	and	voluntary	closed	and
open.	A	double	blink	refers	to	the	repletion	of	this	action	twice	in	an
consecutive	way.	When	one	of	these	conditions	is	found	the
corresponding	event	is	fired.	In	addition,	a	true	Boolean	will	be	output	to
the	corresponding	output	port.

	Blink
Detection	plugin



Requirements
The	input	signal	shall	correspond	to	a	250-Hz	sampled	electro-oculogram
signal,	i.e.,	an	output	port	of	the	Enobio	component	when	the
corresponding	electrode	is	placed	on	the	user's	forehead.



Input	Port	Description
input	[integer]:	Input	values	that	correspond	to	a	250-Hz	sampled
electro-oculogram	signal.



Event	Trigger	Description
BlinkDetected:	This	event	port	fires	an	event	if	a	blink	is	detected	in
the	input	sequence	of	integers.
DoubleblinkDetected:	This	event	port	fires	an	event	if	a	double
blink	is	detected	in	the	input	sequence	of	integers.



Blink	Detector
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	component	detects	the	shape	that	a	blink	produces	in	an	electro-
oculogram	signal.	The	plugin	analyses	the	input	samples	and	recognises
both	a	single	blink	and	a	double	blink.	Here	a	single	blink	is	defined	by	an
action	whereby	both	eyes	are	simultaneously	and	voluntary	closed	and
open.	A	double	blink	refers	to	the	repletion	of	this	action	twice	in	an
consecutive	way.	When	one	of	these	conditions	is	found	the
corresponding	event	is	fired.	Note	that	the	plugin	will	only	detect	simple
or	double	blinks	with	a	duration	smaller	than	BlinkLength	miliseconds.
Similarly,	it	will	only	detect	double	blinks	that	are	separated	by	less	than
DoubleBlinkSeparation	miliseconds.	In	addition,	the	"strength"	of	the
blinks	is	defined	by	the	maxThreshold	and	minThreshodld	properties:

	EEG
signal	double	blink



Double	blink	derivative
In	order	to	propperly	configure	these	4	properties,	they	should	be
previously	obtained	by	running	the	BlinkDetectorTrainer	plugin	for	each
different	subject.	In	order	to	correctly	detect	simple	and	double	blinks,	the
input	signal	is	internally	decimated	by	a	factor	of	11	and	derivated.	For
debugging	purposes,	the	decimated	samples	and	the	derivated	samples
are	output	to	the	corresponding	output	ports.



Blink	Detector	plugin



Requirements
The	input	signal	shall	correspond	to	a	250-Hz	sampled	electro-oculogram
signal,	i.e.,	an	output	port	of	the	Enobio	component	when	the
corresponding	electrode	is	placed	on	the	user's	forehead.



Input	Port	Description
input	[integer]:	Input	values	that	correspond	to	a	250-Hz	sampled
electro-oculogram	signal.



Output	Port	Description
Filtered	Sample	[integer]:	For	each	input	sample,	this	output	port
delivers	the	decimated	sample	with	a	decimation	factor	of	11.
Differential	[integer]:	For	each	input	sample,	this	output	port
delivers	the	derivated	sample	(after	the	decimation).



Event	Trigger	Description
BlinkDetected:	This	event	port	fires	an	event	if	a	blink	is	detected	in
the	input	sequence	of	integers.
DoubleblinkDetected:	This	event	port	fires	an	event	if	a	double
blink	is	detected	in	the	input	sequence	of	integers.



Properties
sampleRate	[integer]:	Sample	rate	of	the	input	signal	in	Hertz.
maxThreshold	[integer]:	Positive	threshold	for	a	peak	in	the
derivated	signal	to	be	considered	as	a	potential	blink	(see	"Double
blink	derivative"	figure).
minThreshold	[integer]:	Negative	threshold	for	a	peak	in	the
derivated	signal	to	be	considered	as	a	potential	blink	(see	"Double
blink	derivative"	figure).
BlinkLength	[integer]:	Duration	of	one	blink	in	miliseconds	(see
"Double	blink	derivative"	figure).
DoubleBlinkSeparation	[integer]:	Separation	(in	miliseconds)
between	two	blinks	that	correspond	to	a	double	blink	(see	"Double
blink	derivative"	figure).



Blink	Detector	Trainer
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	component	calculates	the	maxThreshold,	minThreshold,	BlinkLength
and	DoubleBlinkSeparation	customized	properties	of	the	Blink	Detector
plugin	for	each	specific	subject.	For	a	description	of	the	meaning	of	these
properties,	please	see	Blink	Detector.	The	training	of	the	system	consists
on	asking	the	subject	to	follow	a	protocol.	This	protocol	consists	on	a
series	of	5	simple	blinks	and	5	double	blinks.	Note	that	the	subject	can
perform	only	one	simple	(or	double)	blink	each	time	the	protocol
indicates	so	through	its	Protocol	port.	When	the	protocol	finishes,	the
results	show	up	through	the	Results	output	port.

	Blink
Detector	plugin



Requirements
The	input	signal	shall	correspond	to	a	250-Hz	sampled	electro-oculogram
signal,	i.e.,	an	output	port	of	the	Enobio	component	when	the
corresponding	electrode	is	placed	on	the	user's	forehead.



Input	Port	Description
input	[integer]:	Input	values	that	correspond	to	a	250-Hz	sampled
electro-oculogram	signal.



Output	Port	Description
Protocol	[string]:	Actions	to	be	performed	by	the	user.	Note	that	the
user	must	perform	just	one	blink	(or	double	blink)	each	time	the
corresponding	message	is	delivered	through	this	port.
Results	[string]:	Final	parameters	calculated	for	the	specific
subject.	They	will	delivered	when	the	protocol	has	finished.



Event	Listener	Description
StartProtocol	[integer]:	Starts	the	training	protocol.	The	actions	to
be	performed	by	the	subject	will	be	delivered	through	the	Protocol
port.
StopProtocol:	Stops	the	training	protocol.



Properties
sampleRate	[integer]:	Sample	rate	of	the	input	signal	in	Hertz.
language	[list]:	Language	of	the	messages	thrown	through	the
Protocol	port	while	the	protocol	is	running.	The	user	can	chose
English	or	Spanish.



Comparator
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	compares	the	numerical	values	of	two	input	ports	and
provides	output	depending	on	the	result	of	the	comparison.

Comparator	plugin



Input	Port	Description
inA	[double]:	Input	port	for	signal	a.	This	input	port	supports
synchronization
inB	[double]:	Input	port	for	signal	b.	This	input	port	supports
synchronization



Output	Port	description
out	[double]:	Output	port	of	the	comparator	(value	according	to
condition	and	operational	mode).



Event	Trigger	Description
conditionTrue:	This	event	is	triggered	when	the	comparator
condition	switches	from	false	to	true.
comparatorFalse:	This	event	is	triggered	when	the	comparator
condition	switches	from	true	to	false.



Properties
condition	[integer]:	Defines	the	condition	to	be	met.	Available
conditions	are	"a	greater	b",	"a	equals	b",	"a	lower	b",	"a	greater
threshold",	"a	equals	threshold",	"a	lower	threshold"	and	"a	between
threshold	and	threshold2".
outputMode	[integer]:	Defines	the	mode	of	operation,	respectively
which	values	are	put	to	the	output	port	of	the	plugin.	Following
modes	are	available:	"output	min",	"output	max"	and	"output	a	if
condition	met".
eventMode	[integer]:	Defines	the	mode	of	event	generation	(if
events	are	created	on	every	comparison	of	input	values	or	only	if	the
output	condition	changes).
threshold	[double]:	Defines	the	threshold	value	for	the	condition
modes	"a	greater	than	threshold",	"a	equals	threshold"	and	"a	lower
than	threshold".
threshold2	[double]:	Defines	the	threshold2	value	for	the	condition
mode	"a	between	threshold	and	threshold2".



Compute	Bandpower
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	component	computes	the	power	that	an	input	signal	has	in	a	specific
frequency	band.	The	plugin	stores	as	many	values	as	the	DataLen
property	indicates	before	providing	a	new	value	in	the	output	port.	This
solution	is	based	on	the	FFT	so	only	the	bins	corresponding	to	the
specified	band	are	considered.	This	approach	removes	the	contribution
of	the	out-band	frequencies	to	the	final	value.	This	approach	improves
the	power	output	of	the	filter	plugin	which	uses	the	filtered	signal	for
computing	the	output	value	so	the	frequencies	out	of	the	pass	band
contributes	to	the	final	value	since	the	filter	is	implemented	as	FIR	filter
with	a	finite	number	of	coefficients	so	the	frequency	response	will	not
never	be	perfect.

Compute	Bandpower	plugin



Requirements
The	values	in	the	input	port	shall	correspond	to	a	time	series.



Input	Port	Description
input	[double]:	Input	port	for	the	values	of	time	series	which	power
in	band	is	computed.



Output	Port	description
output	[double]:	Output	of	the	value	that	corresponds	to	the	power
of	the	signal	present	in	the	last	DataLen	samples.	If	the	input	signal
is	expressed	in	volts,	then	the	output	is	expressed	in	squared	volts.



Properties
DataLen	[integer]:	Defines	the	length	of	the	time	series	over	which
the	band	power	computation	is	performed.	Only	power	of	two	values
are	allowed	for	this	property.
SampleRate	[integer]:	Defines	the	sample	rate	of	the	input	time
series.	It	is	defined	in	samples	per	second.
StartBandFrequency	[integer]:	Defines	the	beginning	of	the	band
to	be	analysed.	It	is	defined	in	Hertz.
EndBandFrequency	[integer]:	Defines	the	end	of	the	band	to	be
analysed.	It	is	defined	in	Hertz.



Constant	Dispatcher
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	sends	double	values	from	the	chosen	slot.

ConstantDispatcher	plugin



Input	Port	Description
slotDispatch	[integer]:	Sends	the	value	from	the	slot	defined	by
number.



Output	Port	Description
output	[double]:	The	port	for	the	output	value.



Event	Listener	Description
dispatchSlot1...dispatchSlot20	:	Sends	the	double	value	from	the
slot:	1...20.
dispatchNextSlot:	Sends	double	value	from	the	next	slot.
dispatchPreviousSlot:	Sends	double	value	from	the	previous	slot.
dispatchSlotSeries:	Sends	slots	values	in	sequence	from	slot	1	to
slot	defined	by	the	Number	property	with	the	delay	defined	by	the
Delay	property.



Properties
number	[integer]:	Number	of	used	slots.
delay	[integer]:	Delay	in	ms	used	in	sequence	slot	dispatch.
slot1...slot20	[double]:	The	slot	for	the	value:	1...20.
autosendSlot	[integer]:	Number	of	slot	which	is	automatically	sent
at	start	(0=disable).



DataType	conversion
Component	Type:	Processor	(Subcategory:	Data
Converters)

This	is	a	component	for	testing	implicit	data	type	conversion.

The	component	sends	the	given	property	value	converted	to	the	data
type	of	the	used	output	port.	A	value	received	at	any	of	the	input	ports	is
printed	out	at	the	console.



Input	Port	Description
inByte	[byte]:	Input	data	of	type	byte.
inChar	[char]:	Input	data	of	type	char.
inInteger	[integer]:	Input	data	of	type	integer.
inDouble	[double]:	Input	data	of	type	double.
inString	[string]:	Input	data	of	type	string.
inBoolean	[boolean]:	Input	data	of	type	boolean.



Output	Port	Description
outByte	[byte]:	Output	data	of	type	byte.
outChar	[char]:	Output	data	of	type	char.
outInteger	[integer]:	Output	data	of	type	integer.
outDouble	[double]:	Output	data	of	type	double.
outString	[string]:	Output	data	of	type	string.
outBoolean	[boolean]:	Output	data	of	type	boolean.



Deadzone
Component	Type:	Processor	(Subcategory:	Signal
Shaping)

The	purpose	of	this	component	is	to	define	active	and	passive	areas
(zones)	for	one-	or	two	dimensional	sensor	values.	This	function	could
also	be	called	"resting	zone"	or	"centerzone".	It	can	be	useful	for	example
when	a	mouse	pointer	should	not	move	before	a	certain	value	of	a
sensor	(displacement	of	an	analogue	sensor,	strength	of	activity)	is
reached.

Deadzone	plugin



Input	Port	Description
inX	[double]:	Input	of	x	values.	This	input	port	supports
synchronization
inY	[double]:	Input	of	y	values.	This	input	port	supports
synchronization
radius	[double]:	The	radius	of	the	active/passive	zone	around	the
centre	point.



Output	Port	Description
outX	[double]:	Output	of	modified	x	values.
outY	[double]:	Output	of	modified	y	values.



Event	Listener	Description
setCenter:	An	incoming	event	stores	the	current	x-	and	y-	input
values	to	represent	the	centre	(It	defines	them	as	offset	values).	This
can	be	useful	for	sensor	calibration	because	it	defines	the	"baseline"
or	resting	position.



Event	Trigger	Description
enterZone:	This	event	is	triggered	when	the	x	or	x-	and	y-	values
enter	the	specified	radius	around	the	centre.
exitZone:	This	event	is	triggered	when	the	x	or	x-	and	y-	values
leave	the	specified	radius	around	the	centre.



Properties
xCenter	[double]:	This	value	defines	the	x-	position	of	the	centre
(the	middle	of	the	active/passive	zones).
yCenter	[double]:	This	value	defines	the	y-	position	of	the	centre
(the	middle	of	the	active/passive	zones).
radius	[double]:	The	radius	of	the	active/passive	zone	around	the
centre	point.
mode	[integer]:	Selects	the	mode	of	operation	of	the	centerzone
component,	following	modes	are	available:

"only	inner	values":	x-	and	y-	values	are	passed	to	the	output
ports	only	if	the	distance	to	the	centre	is	lower	than	the	given
radius.
"only	outer	values":	x-	and	y-	values	are	passed	to	the	output
ports	only	if	the	distance	to	the	centre	is	greater	than	the	given
radius.
"deadzone":	x-	and	y-	values	are	passed	to	the	output	ports	only
if	the	distance	to	the	center	is	lower	than	the	given	radius,	and
additionally	a	correction	of	the	values	is	performed	so	that	they
start	with	0	when	leaving	the	inner	zone.	This	is	useful	for
defining	a	"deadzone"	for	sensor	values,	where	an	inactive	area
shall	be	provided	and	no	sudden	acceleration	is	desired	when
leaving	this	inactive	area.



Decimation
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	decimation	operation	performed	by	this	component	consists	in	an
anti-aliasing	low	band	pass	filter	plus	a	down-sampling.	The	component
outputs	a	computed	sample	after	receiving	a	certain	number	of	input
samples	according	to	the	down-sampling-ratio	property	value.	So	the
resultant	signal	is	like	the	original	signal,	but	sampled	to	a	lower	ratio
determined	by	the	mentioned	property.

Decimation	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	signal	to	be	decimated.



Output	Port	Description
output	[double]:	Output	port	of	the	decimated	signal.



Properties
DownSamplingRatio	[integer]:	Defines	the	ratio	between	the
number	of	samples	in	the	input	and	output	ports.



Delay
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	plugin	passes	received	double	values	after	a	defined	delay.	

Delay	plugin



Input	Port	Description
in	(double):	Input	port	for	the	incoming	signal.



Output	Port	Description
out	(double):	Output	port	for	the	delayed	signal.



Properties
delay	[integer]:	Delay	between	input	and	output	signal	(in
milliseconds).



Derivative
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	computes	the	first	derivative	operation	of	the	input	signal
by	using	an	approximation	by	a	numerical	differentiation	method	using
five	points.	Due	to	the	fact	that	the	component	takes	into	consideration
the	previous	four	samples	plus	the	current	one,	it	will	output	the
derivative	value	corresponding	to	the	centre	sample	of	the	five	ones.	It
means	two	samples	earlier	from	the	one	that	is	received	in	the	input	port.

Derivative	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	signal	to	be	derived.



Output	Port	Description
output	[double]:	Output	port	of	the	first	derivative	of	the	input
signal.	The	output	values	present	a	delay	of	two	samples	because	of
the	reason	given	in	the	general	description.



Properties
SampleFrequency	[integer]:	Defines	the	frequency	which	the	input
signal	is	sampled,	so	the	distance	between	two	consecutive
samples,	which	is	used	by	the	component,	is	defined.



Differentiate
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	differentiate	component	outputs	the	difference	of	the	previous	to	the
current	input	value	on	the	output	port.	This	functionality	can	be
considered	as	a	simplified	implementation	of	the	derivative	component.

Differentiate	plugin



Input	Port	Description
in	[double]:	Input	port	for	signal.



Output	Port	Description
out	[double]:	Output	of	difference	value.



Properties
resetValue	[double]:	The	value	that	is	used	in	the	first	difference
calculation	after	start.



Dissimilarity
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	component	computes	the	Euclidean	distance	between	two	input
vectors.	The	component	stores	the	input	values	from	both	input	ports
until	DataLen	values	have	been	received,	then	the	computation	is
performed	and	sent	to	the	output	port.

Dissimilarity	plugin



Input	Port	Description
input1	[double]:	Input	port	for	the	first	signal.
input2	[double]:	Input	port	for	the	second	signal.



Output	Port	Description
output	[double]:	Output	port	for	the	dissimilarity	computation.	A
value	is	provided	every	time	DataLen	samples	arrive	to	the	input
ports.



Properties
DataLen	[integer]:	Defines	the	length	of	the	signals	over	which	the
dissimilarity	is	computed.



Double	To	String
Component	Type:	Processor	(Subcategory:	Data
Converters)

This	component	converts	the	double	values	at	the	input	port	to	string
values	at	the	output.

DoubleToString	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	double	values	to	be	converted.



Output	Port	Description
output	[string]:	Output	port	for	the	converted	string	values.



ECMAScriptInterpreter
Component	Type:	Processor	(Subcategory:	Scripting)

This	component	is	a	general	purpose	processor	that	can	relays	the	input
and	incoming	events	to	a	script	compatible	to	the	ECMA	script
specification	(e.g.	JavaScript).	The	script	is	specified	by	the	property
scriptname.	If	the	property	is	left	empty,	the	component	will	load	the	file
"script.js"	from	local	storage.	If	this	file	does	not	exist,	the	component	will
generate	the	file	in	local	storage	and	fill	it	with	a	default	"pass-through"
script.

There	are	certain	constraints	for	the	script:

the	script	has	to	contain	an	object	named	scriptclass.
the	object	has	to	implement	a	method	dataInput(input_index,
input_data)
the	object	has	to	implement	a	method	eventInput(event_index)

The	script	is	provided	with	the	following	external	variables:

output:	an	array	of	size	8	representing	8	IRuntimeOutputPorts
eventout:	an	array	of	size	8	representing	8
IRuntimeEventTriggererPorts
property:	an	array	of	size	8	holding	strings	with	the	property	inputs
from	the	components	property	fields

The	sendData	method	of	the	output	variables	has	to	be	called	with	a
string.	If	necessary	this	needs	to	be	converted	into	a	Java	string,	this	can
be	done	like	this:

	str	=	new	java.lang.String(in_data);

	output[in_nb].sendData(str.getBytes());

For	more	information	please	see	a	demo	script	in	the	plugin	source	code!



ECMAScriptInterpreter	plugin



Input	Port	Description
inputPort1	-	inputPort8	[string]:	input	ports	for	script	parameters



Output	Port	description
outputPort1	-	outputPort8	[string]:	output	ports	for	script	results



Event	Listener	Description
elpPort1	-	elpPort8:	8	event	listener	ports	which	can	be	used	by	the
script	code.



Event	Trigger	Description
etpPort1	-	elpPort8:	8	event	trigger	ports	which	can	be	used	by	the
script	code.



Properties
scriptname	[string]:	a	valid	filename	of	an	ECMA-compatible	script
(e.g.	Javascript)	which	shall	be	interpreted
value1	-	value8	[string]:	8	properties	which	can	be	used	by	the
script.



Event	Block
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	plugin,	depending	on	its	state,	can	pass	or	block	events	from	the
input	port.	

EventBlock	plugin



Event	Listener	Description
input:	Input	port	for	the	events.
pass:	Pass	the	events.
block:	Block	the	events.
change:	Change	the	state	of	component:	pass/block	to	the	opposite.



Event	Trigger	Description
output	:	Output	port	for	events.



Properties
block	[boolean]:	If	is	set	to	true,	the	component	will	block	the
events	after	start.
blockAfterEvent	[boolean]:	If	is	set	to	true,	the	component	will
block	the	events	after	passing	one	event.



Event	Cascade
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

The	EventCascade	component	can	be	used	to	generate	a	sequence	(or
loops)	of	events	with	selectable	delay	times.	The	sequence	can	be
started	and	stopped	via	incoming	events.

EventCascade	plugin



Event	Listener	Description
nextEvent:	Triggers	the	next	event	in	the	event	cascade	(with	wrap-
around)
previousEvent:	Triggers	the	previouse	event	in	the	event	cascade
(with	wrap-around)
startCascade:	Starts	the	event	sequence
startCascade:	Stops	the	event	sequence
reset:	Sets	the	next	event	number	to	zero	(first	in	the	sequence)



Event	Trigger	Description
trigger1	-	trigger15:	The	available	event	trigger	outputs



Properties
activeTriggers	[integer]:	How	many	event	triggers	are	active
(defines	the	wrap-around)
loops	[integer]:	How	many	loops	will	be	performed	before	the	event
sequence	stops	(0=endless	loop)
autoStart	[boolean]:	Defines	if	the	event	cascade	will	be
automatically	started	at	model	startup
delayBeforeTrigger1	-	delayBeforeTrigger15[integer]:	Delay	time
before	the	corresponding	trigger	event	is	created



Event	Counter
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	component	counts	events.	It	can	increase	and	decrease	a	counts
via	incoming	events.

EventCounter	plugin



Input	Port	Description
setValue	[integer]:	Sets	the	event	counter	to	the	incoming	value.
Note	that	this	value	is	not	propagated	to	the	output	port	(to	avoid
loops).



Output	Port	Description
output	[integer]:	Sends	the	number	of	events.



Event	Listener	Description
increase:	Increases	the	number	of	events.
decrease:	Decreases	the	number	of	events.
resetToZero:	Sets	the	event	counter	to	zero.
resetToInitial:	Sets	the	event	counter	to	the	initial	value	(property).
sendNow:	sendes	the	current	value	of	the	counter	to	the	output	port



Properties
mode	[integer]:	Defines	counting	mode:

no	limit:	The	component	counts	events	without	any	limitation.
limit	maximum:	In	this	mode,	the	maximum	value	of	the	counter
is	limited	by	the	maxValue	property.
limit	minimum:	In	this	mode,	the	minimum	value	of	the	counter	is
limited	by	the	minValue	property.
limit	minimum	and	maximum:	In	this	mode,	both	maximum	and
minimum	values	of	the	counter	are	limited	by	the	maxValue	amd
minValue	properties.

minValue	[integer]:	Defines	the	minimum	value	of	the	counter.
maxValue	[integer]:	Defines	the	maximum	value	of	the	counter.
initialValue	[integer]:	Defines	the	initial	value	of	the	counter.
wrapAround	[boolean]:	if	selected	and	the	appropriate	mode	is	set,
exceeding	the	maximum	value	will	wrap	to	the	minimum	value	and
vice	versa.
sendInitialValue	[boolean]:	if	selected,	the	initial	value	is	sent	at
the	startup.
autoSend	[boolean]:	if	selected,	the	changes	of	the	event	counter
are	sent	immediately	to	the	output	port



Event	Delay
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	plugin	passes	received	events	after	a	defined	delay.	

EventDelay	plugin



Event	Listener	Description
input:	Input	port	for	the	events.



Event	Trigger	Description
output	:	Output	port	for	events.



Properties
delay	[integer]:	Delay	between	input	and	output	event	(in
milliseconds).



Event	Dispatcher
Component	Type:	Sensor	(Subcategory:	Event	and	String
Processing)

This	component	translates	incoming	strings	to	events.	Ten	string	slots	for
commands	and	ten	associated	Event	Trigger	Ports	are	available.	This
component	can	be	useful	to	generate	an	event	from	a	string	command
(which	is	generated	by	OSKA	or	another	string-sending	component).

EventDispatcher	plugin



Input	Port	Description
cmd	[string]:	The	incoming	command	string.



Event	Trigger	Description
recognizedCommand1	-	recognizedCommand10:	the	events
triggered	by	the	recognized	commands



Properties
command1	-	command10	[string]:	Ten	string	slots	for	commands.
If	an	incoming	string	matches	one	of	these	property	values,	the
associated	event	trigger	is	raised.



Event	Flip	Flop
This	component	stores	the	state,	driven	by	an	event.	When	the	event-in
event	is	received	and	the	internal	status	is	1,	event-out1	is	fired	and	the
internal	status	set	to	2.	When	the	event-in	event	is	received	and	the
internal	status	is	2,	event-out2	is	fired	and	the	internal	status	set	to	1.

Component	Type:	Processor	(Subcategory:	Event	and
Signal	Processing)

	Event
Flip	Flop	plugin



Event	Listener	Ports
event-in:	Event	input	to	change	the	state	of	the	flip-flop	and	fire	an
out-event.
selectOut1:	selects	state	1	(event-out1	trigger	port	will	send	the	next
incoming	event)
selectOut2:	selects	state	2	(event-out2	trigger	port	will	send	the	next
incoming	event)



Event	Trigger	Description
event-out1:	Event	fired,	if	event-in	received	and	stored	state	is	1.
event-out2:	Event	fired,	if	event-in	received	and	stored	state	is	2.



Properties
No	Properties.



EventRouter
This	component	allows	routing	up	to	6	incoming	events	to	one	of	8
corresponding	output	(trigger)	event	ports.

Component	Type:	Processor	(Subcategory:	Event	and
Signal	Processing)

	Event
Router	plugin



Event	Listener	Description
eventIn1-6:	The	incoming	events	to	be	routed.
select1-select8:	selects	one	of	the	8	corresponding	event	routes
(trigger	output	ports)	events	entering	the	eventIn	ports
selectNext:	selects	the	next	event	route
selectPrevious:	selects	the	next	event	route



Event	Trigger	Description
eventOut1-eventOut8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn	can	be	routed	to.
eventOut2_1-eventOut2_8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn2	can	be	routed	to.
eventOut3_1-eventOut3_8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn3	can	be	routed	to.
eventOut4_1-eventOut4_8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn4	can	be	routed	to.
eventOut5_1-eventOut5_8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn5	can	be	routed	to.
eventOut6_1-eventOut6_8:	8	event	trigger	ports	where	the	events
entering	the	listener	port	eventIn6	can	be	routed	to.



Properties
activeRoutes	(integer):	number	of	active	routes	(relevant	for	the

selectNext	and	selectPrevious	functions	and	the	wrapAround	feature)
wrapAround	(boolean):	if	selected	selectNext	srats	again	at	the	first

route	when	the	last	active	route	was	reached,	and	selectPrevious
continues	at	the	last	active	route	when	triggered	at	the	first	route.



EventStateMachine
This	component	allows	definition	of	a	sequence	of	events	(up	to	9
different	incoming	events	are	supported).	If	the	sequence	appears	at	the
event	listener	ports	in	the	given	order,	an	event	is	fired	by	the
EventStateMachine	plugin.	Optionally,	a	timing	can	be	specified	for	a
valid	event	sequence.

Component	Type:	Processor	(Subcategory:	Event	and
Signal	Processing)

	Event
State	Machine	plugin



EventStateMachine	Description
in1-in9:	Incoming	events
reset:	Resets	the	current	state	detection	to	the	first	element	of	the
sequence



Event	Trigger	Description
finalStateReached:	fired	if	the	last	element	of	the	sequence	is
reached.
stateError:	fired	if	an	incoming	event	does	not	fit	the	sequence.
stateChanged:	fired	if	a	new	state	of	the	sequence	is	reached.



Properties
stateSequence	[string]:	A	sequence	of	digits	separated	by
commas,	representing	the	order	of	incoming	events,	for	example:
"1,5,2,3,1".
stateTiming	[string]:	An	(optional)	sequence	of	timings	for	the
above	events,	specified	in	min/max	milliseconds	for	a	state
transition.	One	timing	information	consists	of	a	numeric	value	for	the
maximum	time	or	two	numeric	values	separated	by	a	forward	slash
(/)	for	minimum	and	maximum	time.	For	example	the	timing
"1000/2000,500/1000,x,3000"	defines	that	the	transition	from	first	to
second	state	my	take	a	minimum	of	1000	milliseconds	and	a
maximum	of	3000	milliseconds;	The	transition	to	the	next	state	may
trake	500-1000	milliseconds,	the	next	transition	has	no	timing
contraints,	the	next	transition	may	take	up	to	3000	milliseconds.	If
this	property	is	left	empty,	no	timing	constraints	are	active	for	the
event	state	transitions.
resetOnIncorrectEvent	[boolean]:	if	checked,	an	incoming	event
which	does	not	fit	the	current	element	of	the	sequence	will	reset	the
state	detection	to	the	first	element	of	the	sequence.



FABI
Component	Type:	Processor	(Subcategory:	Microcontroller
Interface)

This	component	provides	an	interface	for	a	FABI	controller	and	enables
the	programming	process.	It	is	possible	to	configure	the	buttons	which
are	connected	to	the	FABI	controller	and	store	the	set	to	the	built	in
EEPROM.

	FABI
plugin



Requirements
The	Plugin	requires	a	FABI2.0	compatible	Version	as	well	as	the	right
COM	Port.	The	Baudrate	is	predefined	at	9600	Baud.



Input	Port	Description
ButtonMode	[integer]:	Number	of	the	button
SlotSaveName	[string]:	Name	of	the	slot	to	save	the	set	of	modes
SlotLoadName	[string]:	Name	of	the	slot	to	load	the	set	of	modes
MoveMouseX	[integer]:	Number	of	pixels	to	move	the	mouse	in	X
direction	(right)
MoveMouseY	[integer]:	Number	of	pixels	to	move	the	mouse	in	Y
direction	(down)
Text	[string]:	Text	for	the	KeyWrite	command
key	[string]:	Text	for	the	KeyPress	command
(e.g.	AT	KP	KEY_UP	presses	the	"Cursor-Up"	key,	AT	KP
KEY_CTRL	KEY_ALT	KEY_DELETE	presses	all	three	keys)	
supported	key	identifiers	for	key	press	command	(AT	KP):
KEY_A	KEY_B	KEY_C	KEY_D	KEY_E	KEY_F	KEY_G	KEY_H
KEY_I	KEY_J	KEY_K	KEY_L	KEY_M	KEY_N	KEY_O	KEY_P
KEY_Q	KEY_R	KEY_S	KEY_T	KEY_U	KEY_V	KEY_W	KEY_X
KEY_Y	KEY_Z	KEY_1	KEY_2	KEY_3	KEY_4	KEY_5	KEY_6	KEY_7
KEY_8	KEY_9	KEY_0	KEY_F1	KEY_F2	KEY_F3	KEY_F4	KEY_F5
KEY_F6	KEY_F7	KEY_F8	KEY_F9	KEY_F10	KEY_F11	KEY_F12
KEY_RIGHT	KEY_LEFT	KEY_DOWN	KEY_UP	KEY_ENTER
KEY_ESC	KEY_BACKSPACE	KEY_TAB	KEY_HOME
KEY_PAGE_UP	KEY_PAGE_DOWN	KEY_DELETE	KEY_INSERT
KEY_END	KEY_NUM_LOCK	KEY_SCROLL_LOCK	KEY_SPACE
KEY_CAPS_LOCK	KEY_PAUSE	KEY_SHIFT	KEY_CTRL	KEY_ALT
KEY_RIGHT_ALT	KEY_GUI	KEY_RIGHT_GUI



Output	Port	Description
List	[string]:	Lists	the	slots	stored	in	the	EEPROM	of	the	FABI
controller
ID	[string]:	Shows	the	ID	of	the	FABI	version



Event	Listener	Description
ID	:	identification	string	will	be	returned	(e.g.	"FABI	Version	2.0")
Corresponding	FABI	command	is	:	"AT	ID"
ButtonMode	:	button	mode	setting	for	a	button	(e.g.	AT	BM	2	->
next	command	defines	the	new	function	for	button	2)
Corresponding	FABI	command	is	:	"AT	BM	num"
ClickLeft	:	click	left	mouse	button
Corresponding	FABI	command	is	:	"AT	CL"
ClickRight	:	click	right	mouse	button
Corresponding	FABI	command	is	:	"AT	CR"
ClickDoubleLeft	:	click	double	with	left	mouse	button
Corresponding	FABI	command	is	:	"AT	CD"
ClickMiddle	:	click	middle	mouse	button
Corresponding	FABI	command	is	:	"AT	CM"
PressLeft	:	press/hold	the	left	mouse	button
Corresponding	FABI	command	is	:	"AT	PL"
PressRight	:	press/hold	the	right	mouse	button
Corresponding	FABI	command	is	:	"AT	PR"
PressMiddle	:	press/hold	the	middle	mouse	button
Corresponding	FABI	command	is	:	"AT	PM"
ReleaseLeft	:	release	the	left	mouse	button
Corresponding	FABI	command	is	:	"AT	RL"
ReleaseRight	:	release	the	right	mouse	button
Corresponding	FABI	command	is	:	"AT	RR"
ReleaseMiddle	:	release	the	middle	mouse	button
Corresponding	FABI	command	is	:	"AT	RM"
WheelUp	:	move	mouse	wheel	up
Corresponding	FABI	command	is	:	"AT	WU"
WheelDown	:	move	mouse	wheel	down
Corresponding	FABI	command	is	:	"AT	WD"
MoveMouseX	:	move	mouse	in	x	direction	(e.g.	AT	X	4	moves	4
pixels	to	the	right)
Corresponding	FABI	command	is	:	"AT	MX	num"
MoveMouseY	:	move	mouse	in	y	direction	(e.g.	AT	Y	-10	moves	10
pixels	up)
Corresponding	FABI	command	is	:	"AT	MY	num"



KeyWrite	:	keyboard	write	text	(e.g.	AT	KW	Hello!	writes	"Hello!")
Corresponding	FABI	command	is	:	"AT	KW	text"
KeyPress	:	key	press:	press/hold	all	keys	identified	in	text	(e.g.	AT
KP	KEY_UP	presses	the	"Cursor-Up"	key,	AT	KP	KEY_CTRL
KEY_ALT	KEY_DELETE	presses	all	three	keys)	The	possible
KeyPress	commands	are	described	in	detail	at	the	input	port	"key"!
Corresponding	FABI	command	is	:	"AT	KP	text"
KeyRelease	:	key	release:	releases	all	keys	identified	in	text
Corresponding	FABI	command	is	:	"AT	KR	text"
KeyReleaseAll	:	release	all:	releases	all	currently	pressed	keys	and
buttons	
Corresponding	FABI	command	is	:	"AT	RA"
Save	:	save	settings	and	current	button	modes	to	next	free	eeprom
slot	under	given	name	(e.g.	AT	SAVE	mouse1)
Corresponding	FABI	command	is	:	"AT	SAVE	text"
Load	:	load	button	modes	from	eeprom	slot	(e.g.	AT	LOAD	mouse1	-
>	loads	profile	named	"mouse1")
Corresponding	FABI	command	is	:	"AT	LOAD	text"
List	:	list	all	saved	mode	names	
Corresponding	FABI	command	is	:	"AT	LIST"
Next	:	next	mode	will	be	loaded	(wrap	around	after	last	slot)
Corresponding	FABI	command	is	:	"AT	NEXT"
Clear	:	clear	EEPROM	content	(delete	all	stored	slots)
Corresponding	FABI	command	is	:	"AT	CLEAR"
Idle	:	idle	command	(no	operation)
Corresponding	FABI	command	is	:	"AT	IDLE"



Properties
Stepsize	[integer]:	set	mouse	wheel	stepsize	(e.g.	AT	WS	3	sets
the	wheel	stepsize	to	3	rows)
The	stepsize	is	set	when	the	plugin	is	started
COMPort	[integer]:	COM	Port	of	FABI.



FabiCronusMax
Component	Type:	Processor	(Subcategory:	Microcontroller
Interface)

This	component	provides	an	interface	for	the	FABI	controller	and	the
CronsuMax	USB	stick.	It	enables	the	programming	process	of	the	FABI
as	well	as	the	configuration	for	all	supported	gaming	consoles.	It	is
possible	to	configure	the	buttons	which	are	connected	to	the	FABI
controller	and	store	the	set	to	the	built-in	EEPROM.	Via	the	plugin	the
CronusMax	stick	controls	the	selected	gaming	device	through	the
external	buttons	connected	to	the	FABI.	The	set	of	buttons	can	be
defined	in	a	configuration	file	and	modified	for	each	game	and	console.

FabiCronusMax	plugin



CronusMax	USB	Stick



Requirements
The	Plugin	requires	a	FABI2.0	compatible	Version	as	well	as	the	right
COM	Port.	The	Baudrate	for	the	FABI	controller	is	predefined	at	9600
Baud.	Additionally	a	CronusMax	device	is	necessary	as	well	as	the
software	GTuner	(GTuner	download)

http://controllermax.com/downloads/


Input	Port	Description
InConsole	[string]:	Input	of	the	selected	Console	(e.g.	PS3)
InGame	[string]:	Input	of	the	selected	Game	(e.g.	Need	For	Speed)
InMode	[Integer]:	Input	of	the	selected	Mode	(e.g.	1)



Output	Port	Description
OutConsole	[string]:	Output	of	the	selected	Console	(e.g.	PS3)
OutGame	[string]:	Output	of	the	selected	Game	(e.g.	Need	For
Speed)
OutMode	[Integer]:	Output	of	the	selected	Mode	(e.g.	1)
OutModel	[string]:	Output	for	the	next	model	to	be	started
OutButtons	[string]:	Output	for	the	buttons	in	current	mode,
separated	through	a	comma	','



Event	Listener	Description
ModeSwitcher:	Switch	between	the	modes.
GameSwitcher:	Switch	between	the	Games.
ConsoleSwitcher:	Switch	between	the	consoles.



Event	Trigger	Description
Busy:	Triggered	if	Fabi	is	busy.
Ready:	Triggered	if	Fabi	is	ready.
loadModel:	Triggered	to	load	new	model.



Properties
ComPort	[integer]:	COM	Port	of	FABI.
ModeFilePath	[string]:	Path	to	the	file	with	the	configuration.



Configuration	file
The	configuration	file	has	to	be	a	*.CSV	file	and	the	data	has	to	be
separated	with	','.	The	following	two	lines	show	the	structure	of	a
configuration	file:

XBOXONE,	BattleField,	Mode,	KEY_A,	KEY_B,	Mode,	KEY_1,	KEY_2
XBOX360,	Formel1,	Mode,	KEY_A,	KEY_B,	KEY_C,	KEY_D,	KEY_E

The	first	field	defines	the	console	and	the	second	one	defines	the	game.
"Mode"	signals	that	the	following	fields	are	the	keycodes	which	are
connected	to	the	buttons	in	the	right	order.	There	can	be	up	to	10	modes
per	game	and	up	to	6	buttons	per	mode.



Filter
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	plugin	implements	a	FIR	Filter

Filter	plugin



Input	Port	Description
Input	[double]:	The	signal	to	be	filtered.



Output	Port	Description
Output	[double]:	The	filtered	signal.
SignalPower	[double]:	Signal	Power	on	the	band	pass.



Properties
Order	[integer]:	Order	of	the	filter.	It	is	recommended	to	use	orders
around	the	sampling	rate.
CutoffFreq1	[double]:	Cutoff	frequecy	for	low	and	high	pass	filter
types.	In	case	of	band	pass	filters	it	is	the	low	cutoff	frequency	of	the
band.
CutoffFreq2	[double]:	In	case	of	band	pass	filters	it	is	the	high
cutoff	frequency	of	the	band.
SamplingRate	[integer]:	Sampling	rate	of	the	input	signal.
Type	[integer]:	Type	of	filter	(low,	high	or	band	pass	filter).
SignalPowerUpdateRate	[integer]:	Update	ratio	for	the
SignalPower	output	port.	The	SignalPower	output	port	provides	a
new	value	every	time	the	Output	port	has	provided	N	values,	where
N	is	the	value	of	this	property.
SignalPowerBufferSize	[integer]:	Length	of	the	buffer	that	keeps
the	filtered	signal	that	is	used	to	compute	the	power	of	the	signal.



FS20	Command	Interpreter
Component	Type:	Processor	(Subcategory:	Home	Control)

The	FS20CommandInterpreter	receives	strings	containing	commands	of
the	home	automation	system	FS20	for	ELV	Electronics.	Depending	on
the	received	commands,	events	will	be	fired.

	FS20
Command	Interpreter	Plugin



Input	Port	Description
command	[string]:	The	command	string	containing	the	FS20
Command.	The	data	must	have	the	following	format:
housecode_sendaddress_command,	e.g.	11111111_3343_17



Event	Trigger	Description
Each	received	command	triggers	an	event,	being	mapped	to	this
command.	The	following	table	will	describe	this	events:

Command	Mapping
Event Command

Off 0
Level1 1
Level2 2
Level3 3
Level4 4
Level5 5
Level6 6
Level7 7
Level8 8
Level9 9
Level10 10
Level11 11
Level12 12
Level13 13
Level14 14
Level15 15
Level16 16
OnOldLevel 17
Toggle 18
Dim	Up 19
Dim	Down 20
Dim	Up	and	Down 21
Program	internal	timer 22
Off	for	timer	then	old	brightness	level 24



On	for	timer	then	off 25
On	old	brightness	level	for	timer	then	off 26
On	for	timer	then	old	brightness	level 30
On	for	old	level	then	previous	state 31



Properties
housecode	[integer]	The	housecode,	the	plugin	should	react	on.
The	housecode	has	8	digits,	each	from	1	to	4.
sendaddress	[integer]	The	sendaddress,	the	plugin	should	react
on.	The	sendaddress	has	4	digits,	each	from	1	to	4.



HRVAnalysis
Component	Type:	Processor	(Subcategory:	DSP	and
feature	extraction)

This	component	calculates	various	Heart	Rate	Variability	(HRV)
parameters	from	an	incoming	signal	of	raw	ECG-data.	For	a	detailed
description	of	the	HRV	parameters	and	a	guide	how	to	use	optical	and
electrical	heart	rate	sensors	see	the	work	of	Andreas	Schreiber	(in
/documentation/DIYGuides/HRVAnalysis_Schreiber.pdf	and
/documentation/OpticalPulseSensor_Schreiber.pdf)

HRVAnalysis	plugin



Input	Port	Description
HRVInput	[double]:	Input	port	for	the	raw	signal



Output	Port	description
runtime	[double]:	the	current	time,	since	the	first	sample,	in
seconds
pulserate	[double]:	the	current	calculated	pulserate
SDNN	[double]:	the	standard	deviation	of	all	RR-intervals
rMSSD	[double]:	the	square-root	of	the	average	sum	of	the
quadratic	differences	between	neighboring	RR-intervals
SDSD	[double]:	the	current	standard	deviation	of	successive
differences	between	neighbouring	RR-intervals
pNN50	[double]:	the	numer	of	successive	RR-intervales	that	differ
by	more	than	50ms	(expressed	as	percentage	of	all	RR-intervals)
pNN20	[double]:	the	numer	of	successive	RR-intervales	that	differ
by	more	than	20ms	(expressed	as	percentage	of	all	RR-intervals)
DD	[double]:	the	deviation	of	2	succesive	RR-intervals



Event	Listener	Description
start:	An	incoming	event	starts	the	HRV	analysis



Properties
samplerate	[double]:	specifies	the	sample	rate	of	the	incoming
signal.
outlierRange	[double]:	Defines	factor	of	the	mean	R-amplitudes
which	is	used	as	a	threshold	to	detect	spikes	/	signal	artefacts.



IIRFilter
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	plugin	provides	adjustable	Infinite	Impulse	Response	Filters,	based
on	the	Java	DSP	Library:	http://www.source-code.biz/dsp/java	

IIRFilter	plugin

http://www.source-code.biz/dsp/java/


Input	Port	Description
in	[double]:	The	signal	to	be	filtered



Input	Port	Description
out	[double]:	The	filtered	signal
magnitude	[double]:	the	magnitude	of	the	filtered	signal	in	the
selected	passband	(only	calculated	if	the	passType	=	bandpass	!)



Properties
passType	[integer]	(combobox	selection):	can	be	lowpass,
highpass,	bandpass	or	bandstop
characteristicType	[integer]	(combobox	selection):	can	be
butterworth,	bessel	or	chebyshev
order	[integer]:	the	filter	order	(values	from	1	to	12	recommended)
samplingFrequency	[integer]:	the	sampling	rate	of	the	input	signal
fc1	[double]:	corner	frequency	(lower	corner	frequency	for
bandpass	filter)
fc2	[double]:	higher	corner	frequency	(ignored	in	case	of	highpass
or	lowpass	types)
ripple	[double]:	the	passband	ripple	supression,	must	be	a	negative
value	(only	for	chebyshev	types,	ignored	for	other	types)



Int	To	String
Component	Type:	Processor	(Subcategory:	Data
Converters)

This	component	converts	the	incoming	integer	values	to	the	string	values
at	the	output	port.

IntToString	plugin



Input	Port	Description
input	[integer]:	Input	port	for	the	integer	values	to	be	converted.



Output	Port	Description
output	[string]:	Output	port	for	the	converted	string	values.



Properties
hexadecimalOutput	[boolean]:	If	this	property	is	set,	the	integer	is
converted	into	a	hexadecimal	string.



Integrate
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	integrate	component	performs	successive	addition	of	incoming
signal	values.	This	is	useful	for	transforming	relative	movement
information	coming	from	a	sensor	into	absolute	position	values.

Integrate	plugin



Input	Port	Description
in	[double]:	The	input	port	for	signal	values.



Output	Port	Description
out	[double]:	Output	of	the	integrated	values.



Event	Listener	Description
reset:	An	incoming	event	at	this	port	sets	the	current	accumulator
value	to	the	rest	value	(specified	in	the	rest	property	field).



Properties
resetValue	[double]:	The	initial	value	of	the	accumulator,	which	is
set	when	starting	the	model	or	when	an	event	comes	in	at	the
elp_rest	event	listener	port.
upperLimit	[double]:	The	maximum	accumulator	value	(the
integration	sum	will	stay	at	this	value	and	not	get	higher	even	if
positive	values	come	in	at	the	input	port).
lowerLimit	[double]:	The	minimum	accumulator	value	(the
integration	sum	will	stay	at	this	value	and	not	get	lower	even	if
negative	values	come	in	at	the	input	port)	Upper	and	lower	limit	are
useful	e.g.	to	set	bounds	for	mouse	movement	etc.
wrapAround	[boolean]:	If	this	property	is	set	to	true,	the
accumulator	value	is	set	to	the	lower_limit	if	it	gets	greater	than	the
upper_limit	(overflow),	and	to	the	upper_limit	if	it	would	get	lower
than	the	lower_limit	(underflow).



Math	Evaluator
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	math	evaluator	is	a	component	with	four	inputs.	These	inputs	can	be
combined	in	a	mathematical	expression	which	is	entered	via	a	property	of
the	component.	The	expression	parser	used	is	JEPlite2	which	supports
arithmetic	as	well	as	numerous	mathematical	expressions.

The	list	of	supported	mathematical	functions	is	sin(),	cos(),	tan(),	asin(),
,acos(),	atan(),	sqrt(),	log(),	ln(),	angle(),	abs(),	mod(),	sum(),	rand(),
umin(),	add().

MathEvaluator	plugin

http://sourceforge.net/projects/jeplite/


Requirements
The	component	depends	on	the	JEPlite	library	which	is	included	in	the
component's	JAR	file.



Input	Port	Description
inA	to	inD	[double]:	The	inputs	which	can	be	accessed	in	the
mathematical	expression	via	a	to	d.	These	4	input	ports	support
synchronization



Output	Port	Description
out	[double]:	the	result	of	the	expression.



Properties
expression	[string]:	Mathematical	expression	to	be	evaluated.



MinMax
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	stores	maximum	and	minimum	of	an	incoming	signal
and	provides	these	values	at	the	output	ports.	Together	with	the
signaltranslation	component,	the	minmax	component	can	be	used	to
auto-scale	input	values	to	a	desired	signal	range.

	MinMax
plugin



Input	Port	Description
in	[double]:	Input	signal	for	min/max	calculation.



Output	Port	Description
outMax	[double]:	The	current	maximum	value	found	in	the	signal.
outMin	[double]:	The	current	minimum	value	found	in	the	signal.



Event	Listener	Description
reset:	An	incoming	event	sets	the	current	minimum	and	maximum	to
the	values	defined	in	the	associated	property	fields	defaultMin	and
defaultMax.



Properties
defaultMin	[double]:	This	is	the	default	minimum	value	which	is	set
when	the	model	is	started	or	if	an	event	comes	in	at	the	rest	event
listener	port.
defaultMax	[double]:	This	is	the	default	maximum	value	which	is
set	when	the	model	is	started	or	if	an	event	comes	in	at	the	reset
event	listener	port.



MotionAnalysis
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

The	MotionAnalysis	Plugin	procides	a	visual	feedback	for	one	or	more
channels.	With	this	Plugin	it	is	able	to	save	a	movement	and	compare	it
to	later	movements.	To	test	this	plugin	MotionAnalysis_Example.acs	can
be	used.

Save

To	save	an	exercise	the	save	button	has	to	be	pressed.	A	new	file	with
the	name	of	the	filename	properity	is	created.	To	start	the	start	button	has
to	be	pressed.	The	save	funktion	can	be	paused	when	the	stop	button	is
pressed.	To	restart	the	start	button	has	to	be	pressed.	To	stop	the	save
funktion	the	stopsave	button	has	to	be	pressed.

Load

To	load	a	file	the	load	button	has	to	be	pressed.	Then	the	explorer	is
opened	an	a	file	can	be	choosen.	If	a	file	is	selected	it	is	atomatically
loaded	in	the	graph.	To	start	an	exercise	the	start	button	has	to	be
pressed.	The	exercies	stops	automatically	when	it	is	finished	and	a	result
is	sent	to	the	result	output	port.



MotionAnalysis	plugin

Screenshot:	MotionAnalysis	plugin



Input	Port	Description
channel1	[double]:	The	input	signal	for	channel	one.
channel2	[double]:	The	input	signal	for	channel	two.
channel2	[double]:	The	input	signal	for	channel	three.
channel2	[double]:	The	input	signal	for	channel	four.



Output	Port	Description
result	[string]:	Sends	the	match	between	the	loaded	movement	and
the	aktual	movement.
percent	[double]:	Sends	the	actual	position	in	percent	of	time.



Properties
displayBuffer	[integer]:	This	property	value	specifies	how	often	the
oscilloscope	window	is	drawn.	For	example	if	the	display	buffer	size
is	0,	the	oscilloscope	traces	are	redrawn	at	every	incoming	value.	If
the	display	buffer	size	is	set	to	10,	10	values	are	stored	in	a	buffer
and	drawn	at	once	as	the	tenth	value	is	received.	This	significantly
reduces	the	computational	resources	spent	for	drawing	the
oscilloscope,	which	is	useful	especially	at	high	update	rates.
drawingMode	[integer]:	Declares	whether	the	y	axis	is	adapting	to
mininum	and	maximum	values	automatically	or	to	stay	in	preset
bounds.	This	only	affects	the	drawchannel	not	the	loadchannel	or	the
save	option.
displayMode	[integer]:	Affects	the	time	when	oscilloscope	is
redrawn.	Can	be	set	to	the	values	"redraw	on	incoming	samples"	or
"redraw	periodically".
drawInterval	[integer]:	Redraw	interval	in	milliseconds	(if	periodic
drawing	is	used).
min	[integer]:	Preset	minimum	value	for	y	axis	of	oscilloscope.
max	[integer]:	Preset	maximum	value	for	y	axis	of	oscilloscope.
gridColor	[integer]:	The	colour	of	the	value-grid.
loadchannelColor	[integer]:	The	colour	of	the	signal	trace	for	the
loaded	value.
drawchannelColor	[integer]:	The	colour	of	the	signal	trace	for	the
actual	value.
backgroundColor	[integer]:	The	colour	of	the	background	of	the
oscilloscope	window.
fontSize	[integer]:	The	size	of	the	oscilloscope's	caption.
caption	[string]:	The	caption	to	be	displayed	on	the	oscilloscope.
filename	[string]:	The	name	of	the	saved	file.	There	is	added	a	time
and	date	to	not	overwrite	a	file.
filepath	[string]:	The	path	in	wich	the	files	are	saved.
diviation	[integer]:	The	allowed	diviation	of	the	loaded	value	and
the	actual	value	in	one	point	of	time.
limitation	[integer]:	The	limitation	of	how	much	percent	of	match
must	be	reached	to	raise	an	event.



EventListener
Start:	Starts	a	movement.
Stop:	Stops	a	movement.
Save:	Starts	to	save	a	movement.
Stopsave:	Stops	to	save	a	movement.
Load:	Loads	a	movement.



EventTrigger
Inrange:	Raises	a	event	when	the	result	is	higher	than	the	limitation.



MultiSource
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

This	plugin	passes	signals	from	up	to	four	input	ports	to	one	output	port.

MultiSource	plugin



Input	Port	Description
input1...input4	[double]:	Input	ports	1	to	4



Output	Port	Description
output	[double]:	The	output	port	where	all	input	signals	are	routed.



MultiSourceString
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

This	plugin	passes	string	inputs	from	up	to	four	input	ports	to	one	output
port.

MultiSourceString	plugin



Input	Port	Description
input1...input4	[string]:	Input	ports	1	to	4.



Output	Port	Description
output	[string]:	Output	port.



Neural	Network	Loader
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

This	plugin	uses	the	Encog	framework	(version:	3.0.1).	The	plugin	can
load	a	neural	network	configuration	stored	in	the	Encog	EG	file.	The
neural	network‘s	output	is	calculated	for	the	input	data.

NeuralNetworkLoader	plugin

http://www.heatonresearch.com/encog


Input	Port	Description
input1...input32	[double]:	The	Neural	network	inputs.



Output	Port	Description
output1...output32	[double]:	The	Neural	network	outputs.



Properties
filePath	[string]:	The	EG	file	path.

How	to	prepare	example	EG	file	for	the	Neural	Network	Loader	plugin.



Create	Encog	EG	file
This	document	describe	how	to	create	sample	Encog	framework	EG	file
that	store	neural	network.	The	example	shown	how	to	create	the	basic
neural	network	that	performs	XOR	operation.

1.	 Download	the	encog-workbench-3.0.1-release.zip	package	from	the
Encog	page,	unzip	it	and	run	the	Encog	Workbench	using	command:
"java	-jar	encog-workbench-3.0.1-executable.jar".	Create	new	folder
for	the	project.

2.	 To	create	Neural	network,	select	"File	>	New	file...".	Select:	the
"Machine	Learning	Method	(*.eg)"	and	enter	name	of	the	EG	file.
Then,	select	the	"Feedforward	Neural	Network"	and	click	OK.	On	the
next	window,	enter	2	into	the	"Input	Neuron	Count"	text	box.	Click
Add	and	enter	4	neurons	for	the	hidden	layer.	enter	1	into	the
"Output	Neuron	Count"	text	box.	Change	the	Activation	Function
Hidden	and	Activation	Function	Output	to	the	Activation	Sigmoid.
Then,	click	OK.

The	structure	of	the	neural	network

3.	 Next	step	is	to	create	the	Training	File.	Select	"File	>	New	file...".
Select:	"Training	File	(*.egb)"	and	enter	name	of	the	EGB	file.	Click

http://www.heatonresearch.com/encog
http://www.heatonresearch.com/encog


OK.	On	the	next	window,	enter	4	into	the	the	"Training	Set	Elements"
text	box,	enter	2	into	the	"Input	Field	Count"	text	box,	enter	1	into	the
"Output	Field	Count"	text	box.	Click	OK.	Click	on	the	file	and	fill	the
table	for	the	XOR	operation.

The	training	set

4.	 When	the	training	set	is	ready,	the	neural	network	can	be	trained.
Click	on	the	neural	network	file	and	choose	the	"Train"	option.	In	the
Training	Set	select	the	training	file,	in	the	Neural	Network	select	the
neural	network	file	and	click	OK.	Select	the	Propagation	-	Resilient
(RPROP)	training	method	and	click	OK.	Enter	0.01	into	the
Maximum	Error	Percent(0-100)	box,	choose	the	RPROP	type:
"RPROP+	(classic)"	and	click	OK.	Click	the	Start	button	to	Train	the
network.	When	the	Max	Error	is	reached	click	Close.

The	neural	network	file	can	be	loaded	by	the	Neural	Network	Loader
plugin.To	load	the	neural	network,	enter	the	EG	file	path	into	the	filePath
plugin	property.	For	this	example,	the	input1	input	port	and	the	input2
input	port	will	send	the	input	data	for	the	neural	network	and	the	output1
output	port	will	give	the	XOR	operation	result.



One	Event	Many	Actions
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	component	allows	the	user	to	control	up	to	10	actions	using	just	one
or	two	input	events.	In	the	first	step,	the	event	actions	are	scanned	so
that	the	user	can	choose	the	action,	in	the	next	step	the	selected	action
event	is	triggered.	The	detailed	functionality	depends	upon	the	selected
mode.

OneEventManyActions	plugin



Event	Listener	Description
input:	The	control	event.
inputOff:	Control	event	used	in	mode	2	for	selecting	the	action	by
scanning.



Event	Trigger	Description
action1...action10:	The	event	triggers	for	the	actions	selected	by
user.
actionShown11...actionShown110:	These	events	are	used	in	the
scanning	process	to	highlight	the	currently	selected	action	via	a	GUI
element	(e.g.	the	CellBoard).



Properties
actionsNumber	[integer]:	Number	of	action	used.
mode	[integer]:	The	component's	working	mode:	

mode	1:	The	input	event	starts	the	scanning,	the	inputOff	event
selects	the	action.
mode	2:	The	first	input	event	starts	the	scanning,	the	second
input	event	selects	the	action.
mode	3:	The	first	input	event	starts	the	scanning	and	highlights
the	first	action,	the	next	input	events	highlight	the	next	actions.	If
there	is	no	input	event	for	the	selected	delay	time,	the	currently
highlighted	action	is	selected.

delay	[integer]:	Delay	used	for	the	scanning	process	(in
milliseconds).



openHAB
Component	Type:	Processors	(Subcategory:	Home
Control)

The	openHAB	component	interfaces	to	an	openHAB	instance,	which	is
used	to	configure	and	use	a	home	control	environment.	Usually,
openHAB	is	stand-alone.	Therefore	it	has	its	own	GUI,	many	many
possible	interfacing	solutions	(called	bindings)	and	a	configuration	tool
(based	on	Eclipse).	More	information	is	available	here:	openHAB	wiki.

This	component	uses	the	provided	REST	API	of	openHAB	to	read	and
write	the	state	of	different	nodes	(called	items)	within	the	openHAB
system.

openHAB	demo	with	different	options	(light,	heating,	temperature,	...)

https://github.com/openhab/openhab/wiki


Requirements
A	functional	openHAB	installation,	which	is	accessible	via	the	web
interface	(the	plugin	connects	via	HTTP	REST	API).	You	can	run	either
HTTP	or	HTTPS,	in	order	to	fulfill	any	security	requirements.	In	addition,
it	is	also	possible	to	provide	HTTP	basic	authentication	with
username/password.	Please	note,	that	any	saved	password	in	the
AsTeRICS	model	is	stored	in	the	model	file	in	PLAINTEXT!
To	run	openHAB	without	password	authentication,	start	openHAB	with
this	command:
bash	./start_debug.sh	
To	start	with	password	authentication,	use	following	command:
bash	./start_debug.sh	-Djava.security.auth.login.config=./etc/login.conf	
The	user	configuration	is	handled	via	this	file:
openHAB_runtime/configurations/users.cfg	Please	note,	that	the	first	line
is	necessary,	so	do	not	remove	it!
Further	information	on	configuration	and	usage	of	openHAB	is	available
on	the	openHAB	GitHub	page	(openHAB	wiki).

https://github.com/openhab/openhab/wiki


Input	Port	Description
item1in	[string]:	New	state	for	item1	(the	corresponding	name	is	set
in	the	property	item1in).	For	example:	set	the	property	item1in	to
Light_GF_Bed_Ceiling	and	send	"ON"	to	the	input	port	to	switch	on
the	light	which	is	connected	to	this	item.
item2in	[string]:	New	state	for	item2	(the	corresponding	name	is	set
in	the	property	item2in).	Example:	see	input	port	item1in
item3in	[string]:	New	state	for	item3	(the	corresponding	name	is	set
in	the	property	item3in).	Example:	see	input	port	item1in
item4in	[string]:	New	state	for	item4	(the	corresponding	name	is	set
in	the	property	item4in).	Example:	see	input	port	item1in
item5in	[string]:	New	state	for	item5	(the	corresponding	name	is	set
in	the	property	item5in).	Example:	see	input	port	item1in
item6in	[string]:	New	state	for	item6	(the	corresponding	name	is	set
in	the	property	item6in).	Example:	see	input	port	item1in
actionString	[string]:	NOT	IMPLEMENTED	YET:	more	flexible
input,	where	a	random	item	(referenced	by	the	name)	can	be	set.



Output	Port	Description
item1	[string]	-	item6	[string]:	The	current	state	of	the	items1	to
items6,	corresponding	to	the	item	names	of	properties	item1out	to
item6out



Event	Trigger	Description
item1change	-	item6change:	This	event	is	triggered	if	the
corresponding	item	(set	by	the	properties	item1event	to	item6event)
changes	its	state.	The	initial	value	is	NOT	raising	an	event.



Properties
updaterate	[integer]:	Time	in	milliseconds,	which	will	ellapse
between	each	status	update.	Default:	1s	(1000ms)
hostname	[string]:	Hostname	to	connect	to.	It	is	possible	to	use	a
hostname,	an	IP	adress	or	a	FQDN
port	[string]:	Port	of	the	openHAB	installation.	Defaults:	8080	for
HTTP,	8443	for	HTTPS.	Please	take	care	of	any	blocking	firewall.
protocol	[string]:	Protocol	to	connect	to	openHAB.	Either	http	or
https	may	be	used	(recommended:	https).
lazyCertificates	[boolean]:	If	this	property	is	set,	any	SSL	related
certificate	check	will	be	removed	for	the	given	hostname.	This	affects
the	hole	ARE.
username	[string]:	This	property	is	used,	if	the	HTTP	basic
authentication	of	openHAB	is	used.	Provide	the	username	here.
password	[string]:	This	property	is	used,	if	the	HTTP	basic
authentication	of	openHAB	is	used.	Provide	the	password	here.
item1in	[string]:	Item	name,	which	is	used	for	the	input	port	1	(set
an	openHAB	item)
item2in	[string]:	Item	name,	which	is	used	for	the	input	port	2	(set
an	openHAB	item)
item3in	[string]:	Item	name,	which	is	used	for	the	input	port	3	(set
an	openHAB	item)
item4in	[string]:	Item	name,	which	is	used	for	the	input	port	4	(set
an	openHAB	item)
item5in	[string]:	Item	name,	which	is	used	for	the	input	port	5	(set
an	openHAB	item)
item6in	[string]:	Item	name,	which	is	used	for	the	input	port	6	(set
an	openHAB	item)
item1out	[string]:	Item	name,	which	is	used	for	the	output	port	1
(fetch	an	openHAB	item	with	the	given	updaterate)
item2out	[string]:	Item	name,	which	is	used	for	the	output	port	2
(fetch	an	openHAB	item	with	the	given	updaterate)
item3out	[string]:	Item	name,	which	is	used	for	the	output	port	3
(fetch	an	openHAB	item	with	the	given	updaterate)
item4out	[string]:	Item	name,	which	is	used	for	the	output	port	4
(fetch	an	openHAB	item	with	the	given	updaterate)



item5out	[string]:	Item	name,	which	is	used	for	the	output	port	5
(fetch	an	openHAB	item	with	the	given	updaterate)
item6out	[string]:	Item	name,	which	is	used	for	the	output	port	6
(fetch	an	openHAB	item	with	the	given	updaterate)
item1event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item1change)
item2event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item2change)
item3event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item3change)
item4event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item4change)
item5event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item5change)
item6event	[string]:	Item	name,	which	is	used	to	raise	an	event	if
the	state	is	changed	(item6change)



Additional	hints
The	model	will	stop	with	an	error	message,	if	one	of	the	item	names
in	the	properties	is	not	found.
There	is	no	feedback	for	checking	a	successful	state	change.	E.g.:	if
your	write	to	a	read-only	item	(temperature	sensor),	nothing	will
happen
Use	the	lazyCertificates	property	with	care,	it	will	disable	a	major	part
of	the	SSL	handshaking	for	the	whole	Java	session.	It	should	be
limited	to	the	given	hostname	only,	but	without	warranty.
The	username/password	combination	from	the	properties	is	saved	in
PLAINTEXT	in	the	model	file,	so	handle	it	with	care.



Osc	Gesture	Follower
Component	Type:	Processor	(Subcategory:	DSP	and
Feature	Detection)

The	OscGestureFollower	component	copules	the	ARE	with	the	external
gesture	recognition	software	GestureFollower.	The	program	is
copyrighted	by	IRCAM.	GestureFollower	is	stored	in	the	ARE	subfolder
tools/GestureFollower.	Gesture	data	can	be	stored	and	loaded	from	files
in	this	subdirectory,	these	files	have	the	extension	".mubu".	The
communication	between	GestureFollower	and	the	ARE	is	based	on	the
OpenSoundControl	(OSC)	protocol.	This	plugin	utilizes	the	NetUtil	java
library	(http://www.sciss.de/netutil/)	for	the	OSC	implementation,	it	is
(C)opyrighted	2004-2011	by	Hanns	Holger	Rutz	and	released	under	the
GNU	Lesser	General	Public	License.



OscGestureFollower	howto



Requirements
The	plugin	requires	the	gfOSC_v1.exe	in	subfolder
tools/GestureFollower,	which	implements	the	actual	gesture	follower
algorithms.
Check	your	firewall	configuration	and	network	settings	to	ensure	that
OSC	messages	are	not	blocked.



Functional	Principle
Input	data	is	received	through	CH1	to	CH4	e.g.	from	sensors	like	the
acceleration	measurement	unit.	Not	all	inputs	must	be	connected,	but	the
synchronized	checkboxes	have	to	be	checked	correct.	The	events	must
be	connected	like	illustrated	in	the	picture.	First	the	gestures	must	be
teached	in.	To	teach	in	the	first	gesture,	send	an	event	into	the	'learn1'
eventListener.	After	finishing	the	first	gesture,	send	an	event	to	'learn2'	to
teach	in	the	second	gesture,	and	so	on.	After	all	gestures	are	teached	in,
send	the	'stoplearn'	event.	To	clear	all	gestures	send	the	'clear'	event.	To
start	the	gesture	recognition	process,	send	the	'follow'	event.	To	stop	the
gesture	following	process,	send	the	'stop'	event.	The	'load'	and	'save'
events	can	be	used	to	load	or	store	the	learned	gesture	data	into	the
given	filename.



Input	Port	Description
CH1	-	CH4	[double]:	The	input	port	which	receive	data	values.
These	4	input	ports	support	synchronization



Output	Port	Description
likeliest	[double]:	While	the	gesturefollower	is	in	'follwing	mode'	the
most	likeliest	gesture	is	indicated	on	the	likeliest	output	port.	Before
it	can	sample	the	input	data	and	recognize	a	gesture,	some	data
must	be	teached	in.



Properties
InPort	[integer]:	This	value	specifies	the	Port	where	OscMessages
form	the	gesture	follower	are	received.
OutPort	[integer]:	This	value	specifies	the	Port	where
OscMessages	are	send	to.
filename	[string]:	Filename	for	the	gesture	data	(load	or	save,
.mubu	file	stored	in	the	ARE	subfoler	tools/GestureFollower/).
Supports	value	suggestions	from	ARE	(dynamic	property).



Event	Listener	Ports
stop:	this	event	stops	the	gesture	following
stoplearn:	this	event	stops	the	gesture	learning	process
learn1	-	learn5:	these	events	select	gestures	1	-	5	for	learning
learn1	-	learn5:	these	events	select	gestures	1	-	5	for	learning
clear:	this	event	clears	learned	gestures
follow:	this	event	starts	the	gesture	recognition	phase
load:	this	event	loads	gesture	data	from	file
save:	this	event	saves	gesture	data	to	file



Referred	Plugins
OscOutClient
OpenVibe
OscServer



OskaExternalScanning1D
Component	Type:	Processor	(Subcategory:	OSKA)

This	component	interacts	with	the	On	Screen	Keyboard	Application
(OSKA)	and	forwards	key	selections	and	command	(action-)	strings	to
other	ARE	plugins.	The	scanning	function	of	OSKA	can	be	controlled	via
this	plugin,	allowing	1-dimensional	input	values	to	be	used	for	direct
scanning	position	selection.	This	is	done	in	a	two-step	fashion	where	first
the	columns	are	highlighted	and	then	keys	of	a	column	are	highlighted.
Selection	of	columns	and	cells	is	performed	upon	incoming	events.	The
event	input	ports	allow	switching	from	row-	to	column	scanning,	moving
the	cell	highlighter	and	selecting	a	cell.

OskaExternalScanning1D	plugin



Requirements
This	component	requires	Sensory	Software's	OSKA	keyboard.	OSKA	is
automatically	started	by	the	plugin	if	it	is	located	in	the	expected	path
("../OSKA/Start	Keyboard.exe").



Input	Port	Description
posKey	[double]:	This	port	takes	values	for	the	selection	of	keys
(respectively	columns).	Depending	on	the	value	of	the	property
"inputRange",	the	incoming	values	are	expected	to	be	in	a	range
from	0	to	1	(where	0	represents	the	first	selection	and	1	the	last)	or
they	identifiy	the	absolute	key/column	position	as	integer	values.	The
input	moves	either	the	highlighted	column	or	the	highlighted	key	in
the	selected	column	to	the	corresponding	position.	A	selection	of	the
currently	highlighted	item	can	be	triggered	by	incoming	events.



Output	Port	Description
action	[string]:	This	output	sends	the	action	strings	(which	have
been	added	to	a	key	in	the	OSKA	editor)	when	this	key	is	pressed.
keycodes	[string]:	If	a	key	is	selected	which	contains	the	"@KDB:
..."	action	string,	the	key	codes	are	extracted	from	the	action	string
and	sent	via	this	port,	e.g.	to	the	remoteKeyboard	plugin's
corresponding	input	port	for	keyboard	input	emulation.



Event	Listener	Description
switch:	Incoming	events	will	trigger	a	state	change	in	the	scanning
state	machine.	On	the	first	press	highlighting	will	switch	from	column
highlighting	to	cell	highlighting.	On	the	second	press,	the	currently
highlighted	OSKA	cell	will	be	selected.
highlightNext:	Incoming	events	highlight	the	next	column	(or	cell	in
a	column).
highlightPrev:	Incoming	events	highlight	the	previous	column	(or
cell	in	a	column).



Event	Trigger	Description
eventOut1-eventOut10:	These	events	can	be	triggered	by	selecting
a	cell	which	contains	an	@OSKA,event	..	action	string,	(for	example
@OSKA,event	3).



Properties
port	[integer]:	This	property	defines	the	TCP	port	that	the
component	listens	on	for	connections	of	the	OSKA.
title	[string]:	This	property	defines	the	caption	to	be	displayed	in
OSKA?s	title	bar.
oskaPath	[string]:	The	absolute	path	to	the	OSKA	player	as	well	as
the	program	name	is	needed	in	order	for	the	component	to	start
OSKA	by	itself.
keyboardPath	[string]:	If	this	property	does	not	hold	an	empty
string,	the	component	will	ask	OSKA	to	load	the	keyboard	referred	to
by	this	property.	When	the	ACS	is	synchronized	with	the	ARE
(connected	and	model	deployed)	available	keyboards	can	be
selected	from	a	drop-down	listbox.	(dynamic	property)
highlightStyle	[integer]:	This	property	selects	the	style	of
highlighting	used	in	OSKA,	the	value	range	is	from	0	to	2.
settingsFile	[string]:	if	this	property	is	not	empty	OSKA	will	be
started	with	this	settings	file	as	a	command	line	parameter.	When	the
ACS	is	synchronized	with	the	ARE	(connected	and	model	deployed)
available	settings	files	can	be	selected	from	a	drop-down	listbox
Supports	value	suggestions	from	ARE	(dynamic	property)
windowDecorated	[boolean]:	if	true,	Oska	will	display	a	decorated
window	frame,	otherwise	only	a	lightweight	frame.
eventScanningEnabled	[boolean]:	if	true,	incoming	events	can
move	the	highlighter.
valueScanningEnabled	[boolean]:	if	true,	incoming	values	can
move	the	highlighter.
inputRange	[boolean]	(combobox):	the	range	of	the	incoming
input	port	values:	either	float	values	between	0	and	1,	or	integer
values	or	integer	values	from	0	to	the	maximum	element	(number	of
cells	in	a	respective	row	or	column	of	the	grid).
resizeEnabled	[boolean]:	if	true,	the	Oska	will	be	resized	to	the
dimensions	specified	in	the	GUI	designer	(slower).



Oska	External	Scanning2D
Component	Type:	Processor	(Subcategory:	OSKA)

This	component	interacts	with	the	On	Screen	Keyboard	Application
(OSKA)	and	forwards	key	selections	and	command	(action-)	strings	to
other	ARE	plugins.	The	scanning	function	of	OSKA	can	be	controlled	via
this	plugin,	allowing	1-dimensional	input	values	to	be	used	for	direct
scanning	position	selection.	Scanning	is	operated	using	two	float	inputs
which	take	inputs	in	a	range	defined	by	the	according	property	(between
0.0	and	1.0.	or	integer	values).	The	two	inputs	control	the	position	of	the
highlighted	cell	in	a	grid	with	values	being	mapped	to	a	corresponding
position	in	the	grid.	An	event	input	allows	pressing	selected	cells	in	the
grid.

OskaExternalScanning2D	plugin



Requirements
This	component	requires	Sensory	Software's	OSKA	keyboard.	OSKA	is
automatically	started	by	the	plugin	if	it	is	located	in	the	expected	path
("../OSKA/Start	Keyboard.exe").



Input	Port	Description
posColumn	[double]:	This	port	takes	values	for	the	selection	of	the
X-position	(column	selection).	Depending	on	the	value	of	the
property	"inputRange",	the	incoming	values	are	expected	to	be	in	a
range	from	0	to	1	(where	0	represents	the	first	column	and	1	the	last)
or	they	identifiy	the	absolute	column	position	as	integer	values.	This
input	port	supports	synchronization
posRow	[double]:	This	port	takes	values	for	the	selection	of	the	Y-
position	(row	selection).	Depending	on	the	value	of	the	property
"inputRange",	the	incoming	values	are	expected	to	be	in	a	range
from	0	to	1	(where	0	represents	the	first	row	and	1	the	last)	or	they
identifiy	the	absolute	row	position	as	integer	values.	This	input	port
supports	synchronization



Output	Port	Description
action	[string]:	This	output	sends	the	action	strings	(which	have
been	added	to	a	key	in	the	OSKA	editor)	when	this	key	is	pressed.
keycodes	[string]:	If	a	key	is	selected	which	contains	the	"@KDB:
..."	action	string,	the	key	codes	are	extracted	from	the	action	string
and	sent	via	this	port,	e.g.	to	the	remoteKeyboard	plugin's
corresponding	input	port	for	keyboard	input	emulation.



Event	Listener	Description
press:	Incoming	events	will	trigger	a	press	action	on	the	selected
key	in	OSKA.
highlightNextX:	Incoming	events	will	highlight	the	next	cell	in	the
selected	row.
highlightPrevX:	Incoming	events	will	highlight	the	previous	cell	in
the	selected	row.
highlightNextY:	Incoming	events	will	highlight	the	next	cell	in	the
selected	column.
highlightPrevY:	Incoming	events	will	highlight	the	previous	cell	in
the	selected	column.



Event	Trigger	Description
eventOut1-eventOut10:	These	events	can	be	triggered	by	selecting
a	cell	which	contains	an	@OSKA,event	..	action	string,	(for	example
@OSKA,event	3).



Properties
port	[integer]:	This	property	defines	the	TCP	port	that	the
component	listens	on	for	connections	of	the	OSKA.
title	[string]:	This	property	defines	the	caption	to	be	displayed	in
OSKA?s	title	bar.
oskaPath	[string]:	The	absolute	path	to	the	OSKA	player	as	well	as
the	program	name	is	needed	in	order	for	the	component	to	start
OSKA	by	itself.
keyboardPath	[string]:	If	this	property	does	not	hold	an	empty
string,	the	component	will	ask	OSKA	to	load	the	keyboard	referred	to
by	this	property.	When	the	ACS	is	synchronized	with	the	ARE
(connected	and	model	deployed)	available	keyboards	can	be
selected	from	a	drop-down	listbox.	(dynamic	property)
highlightStyle	[integer]:	This	property	selects	the	style	of
highlighting	used	in	OSKA,	the	value	range	is	from	0	to	2.
highlightResetPosition	[integer]:	This	property	selects	the
behaviour	of	the	highlighter	after	a	key	has	been	pressed	(do	nothing
/	got	to	top	left	/	got	to	center	/	got	to	bottom	right).
settingsFile	[string]:	if	this	property	is	not	empty	OSKA	will	be
started	with	this	settings	file	as	a	command	line	parameter.	When	the
ACS	is	synchronized	with	the	ARE	(connected	and	model	deployed)
available	settings	files	can	be	selected	from	a	drop-down	listbox.
(dynamic	property)
windowDecorated	[boolean]:	if	true	Oska	will	display	a	decorated
window	frame,	otherwise	only	a	lightweight	frame.
eventScanningEnabled	[boolean]:	if	true,	incoming	events	can
move	the	highlighter.
valueScanningEnabled	[boolean]:	if	true,	incoming	values	can
move	the	highlighter.
inputRange	[boolean]	(combobox):	the	range	of	the	incoming
input	port	values:	either	float	values	between	0	and	1,	or	integer
values	or	integer	values	from	0	to	the	maximum	element	(number	of
cells	in	a	respective	row	or	column	of	the	grid).
resizeEnabled	[boolean]:	if	true,	the	Oska	will	be	resized	to	the
dimensions	specified	in	the	GUI	designer	(slower).



Oska	Internal	Scanning
Component	Type:	Processor	(Subcategory:	OSKA)

This	component	interacts	with	the	On	Screen	Keyboard	Application
(OSKA)	and	forwards	key	selections	and	command	(action-)	strings	to
other	ARE	plugins.	OSKA	is	set	to	use	its	internal	scanning	methods	and
the	component	exposes	the	two	button	input	events	that	Oska	can	work
with.

OskaInternalScanning	plugin



Requirements
This	component	requires	Sensory	Software's	OSKA	keyboard.	OSKA	is
automatically	started	by	the	plugin	if	it	is	located	in	the	expected	path
("../OSKA/Start	Keyboard.exe").



Output	Port	Description
action	[string]:	This	output	sends	the	action	string	which	is	attached
to	a	specific	key	on	the	keyboard	to	connected	components.
keycodes	[string]:	This	output	sends	the	key	codes	which	are
attached	to	a	key	via	the	@KDB	command.



Event	Listener	Description
increaseScanspeed:	Incoming	events	will	increase	the	internal
scanning	speed	of	OSKA.
decreaseScanspeed:	Incoming	events	will	decrease	the	internal
scanning	speed	of	OSKA.
pressSwitch1:	Incoming	events	start	the	automatic	scanning	or
switch	to	the	next	selection	(to	speed	up	the	scanning).
pressSwitch2:	Incoming	events	switch	from	column-	to	row
scanning	(or	in	the	next	step	select	the	cell).	If	the	scanning	is
stopped,	it	will	be	started.



Event	Trigger	Description
eventOut1-eventOut10:	These	events	can	be	triggered	by	selecting
a	cell	which	contains	an	@OSKA,event	..	action	string,	(for	example
@OSKA,event	3).



Properties
port	[integer]:	This	property	defines	the	TCP	port	that	the
component	listens	on	for	connections	of	the	OSKA.
title	[string]:	This	property	defines	the	caption	to	be	displayed	in
OSKA?s	title	bar.
oskaPath	[string]:	The	absolute	path	to	the	OSKA	player	as	well	as
the	program	name	is	needed	in	order	for	the	component	to	start
OSKA	by	itself.
keyboardPath	[string]:	If	this	property	does	not	hold	an	empty
string,	the	component	will	ask	OSKA	to	load	the	keyboard	referred	to
by	this	property.	When	the	ACS	is	synchronized	with	the	ARE
(connected	and	model	deployed)	available	keyboards	can	be
selected	from	a	drop-down	listbox.	(dynamic	property)
scanSpeed	[integer]:	This	property	relates	to	the	internal	row
column	scanning	method	of	OSKA	and	sets	the	speed	of	scanning,
the	value	range	is	between	1	and	10.
highlightStyle	[integer]:	This	property	selects	the	style	of
highlighting	used	in	OSKA,	the	value	range	is	from	0	to	2.
settingsFile	[string]:	if	this	property	is	not	empty	OSKA	will	be
started	with	this	settings	file	as	a	command	line	parameter.	When	the
ACS	is	synchronized	with	the	ARE	(connected	and	model	deployed)
available	settings	files	can	be	selected	from	a	drop-down	listbox.
(dynamic	property)
windowDecorated	[boolean]:	if	true,	Oska	will	display	a	decorated
window	frame,	otherwise	only	a	lightweight	frame.
resizeEnabled	[boolean]:	if	true,	the	Oska	will	be	resized	to	the
dimensions	specified	in	the	GUI	designer	(slower).



Path	Multiplexer
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

The	Path	Multiplexer	component	forwards	signal	from	the	selected	input
port	to	the	output	port.

PathMultiplexer	plugin



Input	Port	Description
input1	to	input4	[double]:	The	input	ports	for	signals	to	be
multiplexed	1..4.



Output	Port	Description
output	[double]:	The	output	port.



Event	Listener	Description
passPort1	to	passPort4:	The	event	send	to	this	port	sets	the
forwarding	signal	from	the	appropriate	input	port:1...4	to	the	output
port.
passNextPort:	The	event	send	to	this	port	sets	the	forwarding	signal
from	the	next	input	port.	If	the	current	used	is	the	port	defined	by	the
number	property,	the	signal	will	be	forward	from	the	input	port	1.
passPreviousPort:	The	event	send	to	this	port	sets	the	forwarding
signal	from	the	previous	input	port.	If	the	current	used	is	the	port	1,
the	signal	will	be	forward	from	the	input	port	defined	by	the	number
property.



Properties
number	[integer]:	The	maximum	port	number	in	use	(can	be	1	to	4).



Pathselector
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

The	pathselector	component	allows	routing	of	an	incoming	numerical
signal	between	up	to	4	output	ports.	The	desired	output	port	can	be
directly	selected	by	a	dedicated	event	listener	port,	or	the	signal	can	be
switched	to	the	next	or	previous	output	port.	This	component	can	be	used
to	utilize	one	particular	signal	for	different	purposes,	e.g.	controlling
different	actuators	within	a	single	model	by	sequentially	switching
between	them.

PathSelector	plugin



Input	Port	Description
in	[double]:	The	incoming	signal	to	be	routed.



Output	Port	Description
out1	to	out4:	Four	output	ports	where	the	incoming	signal	can	be
routed	to.



Event	Listener	Description
select1	to	select4:	An	incoming	event	at	these	ports	directly
activates	the	associated	output	path	(e.g.	as	an	event	comes	in	at
select	3,	the	input	signal	will	be	routed	to	out3.
selectNext:	The	next	output	port	is	selected	for	signal	output.	The
maximum	number	of	active	ports	is	set	via	the	active	ports	property.
If	the	current	number	of	active	ports	is	already	the	maximum	one,	the
select	next	event	will	wrap	around	the	active	port	number	and	one
port	will	be	selected.
selectPrevious:	The	previous	output	port	is	selected	for	signal
output.	If	the	current	port	is	out1,	the	select	previous	event	will	switch
to	the	port	with	the	maximum	number	given	by	the	active	ports
property.



Properties
activePorts	[integer]:	The	maximum	port	number	in	use	(can	be	2
to	4).



PeakDetector
Component	Type:	Processor	(Subcategory:	Basic	Math)

The	Peakdetector	component	can	be	used	to	detect	peaks	(top	values	of
the	signal)	and	valleys	(bottom	values)	in	a	signal.	Additionally	it	can
calculate	the	time	between	two	peaks	or	two	valleys	or	between	a	peak
and	a	valley.	Optionally,	top	and	bottom	values	can	be	compared	with	an
average	of	the	most	recent	top	/	bottom	values	-	this	allows	to	detect	only
peaks	which	are	for	example	greater	than	150%	of	the	last	5	averaged
peak	values.

	PeakDetector	plugin



Input	Port	Description
in	[double]:	The	incoming	signal.



Output	Port	Description
top:	The	peak	value	of	the	signal.
bottom:	The	bottom	value	of	the	signal.
time:	The	time	in	ms	or	beats	per	minute	(BPM)	(depending	on	the
property	timeMode)	between	two	peaks	(Mode=detect	tops),	two
valleys	(Mode=detect	bottoms)	or	a	valley	and	a	peak	(Mode=detect
both)	depending	on	the	selected	mode	in	the	properties.



Event	Trigger	Description
topDetected:	The	event	gets	fired	if	a	new	top	value	was	detected	in
the	input	signal.
bottomDetected:	The	event	gets	fired	if	a	new	bottom	value	was
detected	in	the	input	signal.



Properties
mode:	Determines	which	time	frame	will	be	used	for	the	time	output
signal	(see	description	of	the	output	port	time).
comparePeaks:the	number	of	top	/	bottom	values	which	are	taken
into	account	for	averaging	(0	=	disable)
validTopPercentage:the	percentage	of	the	recent	averaged	top
values	which	constitutes	a	valid	top	value	(0	=	all	top	values	are
valid)
validBottomPercentage:the	percentage	of	the	recent	averaged
bottom	values	which	constitutes	a	valid	bottom	value	(0	=	all	bottom
values	are	valid)
timeMode:	Determines	the	unit	for	the	measured	time	frame
between	top/bottom	values.	Options	are	beats	per	minute	(BPM)	or
milliseconds.



Protocol	SSVEP	Train
Component	Type:	Processor	(Subcategory:	DSP	and
Feauture	extraction)

This	component	is	in	charge	of	managing	and	configuring	the	SSVEP
training	recording	protocol.	It	sends	out	the	corresponding	SSVEP
stimulation	frequencies.

ProtocolSSVEPTrain	plugin



Requirements
This	plugins	must	be	connected	to	the	FlickeringLightStimulator	plugin
(which	triggers	the	external	SSVEP	stimulation	panels)	or	to	the
SSVEPStiumlator	plugin.



Output	Port	Description
StimFrequency	[integer]:	Current	stimulation	frequency	in	Hz
under	test.
Freq2	[integer]:	Background	stimulation	frequency	in	Hz	for	panel	2.
Freq3	[integer]:	Background	Stimulation	frequency	in	Hz	for	panel
3.
Freq4	[integer]:	Background	Stimulation	frequency	in	Hz	for	panel
4.



Event	Listener	Description
StartProt:	Start	protocol	request.
StopProt:	Stop	protocol	request.
Continue:	Next	Stimulation	trial	request
Repeat:	Repeat	last	stimulation	trial	request.
Stop:	Abort	current	stimulation	trial	request.



Event	Trigger	Description
StartTrial:	Event	sent	when	a	stimulation	trial	starts.
StopTrial:	Event	sent	when	a	stimulation	trial	ends.
StartStim:	Event	sent	when	a	stimulation	period	starts.
StopStim:	Event	sent	when	a	stimulation	period	ends.
ReadyStim:	EEvent	sent	1	second	befor	the	stimulation	periods
starts.
UpdatePanelConfig:	Event	sent	requesting	a	stimulation	panels	re-
configuration.



Properties
NumRepetitions	[integer]:	Number	of	stimulation	periods	per	trial.
RepStimDuration	[integer]:	Stimulation	period	duration	in	seconds.
RepNonStimDuration	[integer]:	Non-Stimulation	period	duration	in
seconds.
freqStim1	[integer]:	Stimulation	frequency	number	1	in	Hz.
freqStim2	[integer]:	Stimulation	frequency	number	2	in	Hz.
freqStim3	[integer]:	Stimulation	frequency	number	3	in	Hz.
freqStim4	[integer]:	Stimulation	frequency	number	4	in	Hz.
freqStim5	[integer]:	Stimulation	frequency	number	5	in	Hz.
freqStim6	[integer]:	Stimulation	frequency	number	6	in	Hz.
freqStim7	[integer]:	Stimulation	frequency	number	7	in	Hz.
freqStim8	[integer]:	Stimulation	frequency	number	8	in	Hz.
freqStim9	[integer]:	Stimulation	frequency	number	9	in	Hz.
freqStim10	[integer]:	Stimulation	frequency	number	10	in	Hz.
RandomizeFreq	[boolean]:	Randomize	stimulation	frequencies
order.



Quantizer
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	plugin	performs	a	quantization	of	the	input	signal.	The	value	of	the
output	signal	is	the	input	value	rounded	to	the	nearest	multiple	of	the
quantizationStep	property	value.

Quantizer	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	values	to	be	quantized.



Output	Port	Description
output	[double]:	Output	port	for	the	quantized	values.



Properties
quantizationStep	[double]:	The	quantization	step.



Regular	Expression
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	component	processes	strings	with	regular	expressions.	It	can	work
in	two	modes:	match	strings	with	the	pattern	or	replace	string	parts	which
match	the	pattern	with	another	string.

RegularExpression	plugin



Input	Port	Description
input	[string]:	Input	port	for	strings.



Output	Port	Description
output	[string]:	The	port	for	strings	which	match	the	pattern	or
which	were	changed.



Event	Trigger	Description
match	:	This	event	is	sent	if	the	string	matches	the	pattern.
notMatch	:	This	event	is	sent	if	the	string	doesn't	match	the	pattern.
replace	:	This	event	is	sent	if	parts	of	the	string	where	replaced	by
the	replaceString.
notReplace	:	This	event	is	sent	if	no	replacement	occurred.



Properties
pattern	[string]:	Regular	expression	pattern.
replace	[boolean]:	If	the	property	is	set	to	true,	the	component	will
search	parts	of	the	string	which	match	the	pattern	and	replace	these
parts	with	the	replaceString,	otherwise	the	component	will	match	the
whole	string	with	the	pattern.
replaceString	[string]:	The	string	which	replaces	expressions	which
matching	the	pattern.



Relative	Move	Sampler
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	plugin	was	developed	for	models	where	a	constant	rate	of	value
updates	is	needed.	The	plugin	sums	incoming	relative	position	packages
for	three	coordinates.	The	sums	are	sent	to	the	output	ports	according	to
sampling	rate.	When	the	sums	are	sent,	the	accumulation	values	are
reset	to	zero.

Relative	Move	Sampler



Input	Port	Description
inputX	[integer]:	Input	X	position.
inputY	[integer]:	Input	Y	position.
inputZ	[integer]:	Input	Z	position.



Output	Port	Description
outputX	[integer]:	Output	X	position.
outputY	[integer]:	Output	Y	position.
outputZ	[integer]:	Output	Z	position.



Properties
samplingRate	[integer]:	Defines	the	rate	of	the	sampling	(in	Hz).



Sample	and	Hold
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	provides	a	sample-and-hold	function	for	up	to	4	input
signals.	This	can	be	useful	for	storing	a	particular	sensor	values	(e.g.	for
sensor	calibration	purpose).

SampleAndHold	plugin



Input	Port	Description
in1	-	in4	[double]:	four	input	ports	for	double	values	to	be	captured
on	demand.



Output	Port	Description
out1	-	out4	[double]:	last	captured	values.



Event	Listener	Description
sampleNow:	When	an	event	comes	in,	the	signal	values	of	the	input
ports	are	captured	and	sent	to	the	output	ports.



Sampler
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	plugin	generates	a	constant	rate	of	sampling	for	the	input	port
signal.

Sampler	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	signal.



Output	Port	Description
output	[double]:	Output	port	for	signal	with	constant	rate	of	the
sampling.



Properties
samplingRate	[double]:	The	rate	of	sampling,	which	defines	the
data	generation	frequency	at	the	output	port.
responseTime	[integer]:	Response	time	in	milliseconds.	If	the	time
from	arrival	of	the	last	input	data	exceeds	the	response	time,	the
plugin	stops	sending	the	output	data.	If	the	responseTime	is	set	to	0,
it	is	not	used.
sendNullSamples	[boolean]:	If	this	property	is	set	to	true	and	there
is	no	input	data	or	the	response	time	is	exceeded	the	plugin	sends
samples	equal	to	zero.



Signal	Translation
Component	Type:	Processor	(Subcategory:	Signal
Shaping)

The	signal	translation	component	is	used	to	translate	an	input	value
which	resides	in	a	certain	value	range	to	a	given	output	range.
Interpolation	of	the	position	in	the	output	range	is	done	linearly.	The
component	provides	two	inputs	which	allow	other	components	to	set	the
minimum	and	maximum	value	of	the	input	range.

SignalTranslation	plugin



Input	Port	Description
in	[double]:	This	port	receives	the	input	values	which	will	be
translated	to	the	new	range.
setMax	[double]:	This	port	sets	the	value	of	the	maximum	property
in	the	component.
setMin	[double]:	This	port	sets	the	value	of	the	minimum	property	in
the	component.



Output	Port	Description
out	[double]:	This	port	sends	the	translated	values	corresponding	to
the	output	range.



Properties
inMin	[double]:	Sets	the	minimum	value	of	the	input	range,	input
values	below	this	value	will	be	clipped	to	the	minimum.
inMax	[double]:	Sets	the	maximum	value	of	the	input	range,	input
values	above	this	value	will	be	clipped	to	the	maximum.
outMin	[double]:	Sets	the	minimum	value	of	the	output	range.
outMax	[double]:	Sets	the	maximum	value	of	the	output	range.



Speech	Processor
Component	Type:	Processor	(Subcategory:	Audio	and
Voice)

The	SpeechProcessor	component	provides	methods	to	use	a	speech
recognition	engine	and	a	speech	synthesizer,	provided	via	the	Microsoft
Speech	Platform	Server	version	11	(see	http://www.microsoft.com/en-
us/download/details.aspx?id=27225).	The	Microsoft	Speech	Platform
provides	enables	recognition	of	spoken	words	and	generation	of
synthesized	speech	(text-to-speech,	TTS).	Engines	and	language	packs
for	26	languages	can	be	downloaded	for	free	(see	above	link).	The
language	(culture)	of	speech	recognition	and	synthesis	can	be	adjusted
as	a	plugin	property	(currently	English,	German,	Spanish	and	Polish	are
supported	by	the	plugin,	if	the	language	packs	are	installed.)	The
supported	voice	commands	can	be	set	by	the	plugin	properties.
Recognized	commands	trigger	events	and	are	put	to	an	output	port	as
stings.	Moreover,	the	component	can	receive	strings	which	are	spoken
via	the	selected	speech	synthesizer.	The	component	features	special
commands	for	activation,	deactivation	and	speaking	all	supported
commands

SpeechProcessor	plugin

http://www.microsoft.com/en-us/download/details.aspx?id=27225


Requirements
This	component	requires	Microsoft’s	Speech	Platform	version	11
Runtime	and	the	desired	language	packs	to	be	installed	on	the
platform	running	the	plugin.



Input	Port	Description
speak	[string]:	This	port	receives	strings	containing	sentences	or
words	that	should	be	spoken	via	a	speech	synthesizer	which	fits	the
selected	language	(text-to-speech).



Output	Port	Description
command	[string]:	This	output	sends	strings	which	have	been
recognized	by	the	speech	recognition	engine	(matching	one	of	the
commands	defined	by	property	values).



Event	Listener	Description:
help:	and	incoming	event	starts	the	help	mode	where	all	supported
voice	commands	will	be	spoken.



Event	Triggerer	Description:
activated:	triggered	when	the	recognition	is	activated	via	the	defined
activation	command.
deActivated:	triggered	when	the	recognition	is	deactivated	via	the
defined	command.
recognizedCommand1	–	recognizedCommand10:	If	an	incoming
word	matches	a	command	defined	in	the	plugin	properties,	the
corresponding	event	will	fire.



Properties
language	[integer]	(combobox	selection):	A	combobox	which
defines	which	speech	pack	is	to	be	used	(currently:	English,
German,	Spanish,	Polish)	–	these	language	packs	need	to	be
installed	!
recognitionConfidence	[double]:	This	value	defines	the	needed
confidence	for	a	valid	recognition.	The	value	can	range	from	0	to	1.	A
higher	value	results	in	a	more	precise	pronunciation	needed	to
detect	a	command,	a	lower	level	could	lead	to	more	false-positive
recognition	results.
speechLoopDelay	[integer]:	This	value	defines	the	minimal	time
between	two	speech	commands.	It	is	used	to	avoid	recognition-loops
activationCommand	[string]:	a	speech	command	to	start	the
recognition	of	the	other	commands.
deactivationCommand	[string]:	a	speech	command	to	stop	the
recognition	of	the	other	commands.
helpCommand	[string]:	a	speech	command	to	speak	out	all
supported	voice	commands.
mode	[integer]	(combobox	selection):	This	property	selects	one
out	of	three	operating	modes	for	the	speech	recognition:

“always	active”:	the	command	recognition	is	always	running
“voice-triggered	activation	and	deactivation”:	the	command
recognition	is	started	by	the	recognition	of	the	activation
command	and	stopped	by	the	deactivation	command	(these
commands	are	defined	in	the	according	properties).
“automatic	deactivation	after	command	recognition”:	after	a
recognized	command,	the	speech	recognition	will	be	bypassed
until	another	activation	command	has	been	recognized.
“speech	recognition	disabled	(TTS	only)”:	In	this	mode,	the
speech	recognition	engine	is	not	used	whichs	saved	CPU	power
in	text-to-speech-only	applications.

command1	to	command10:	The	command	strings	which	are
checked	by	the	speech	recognition	engines	(these	build	the
recognition	grammar).



SSVEP	Detect
This	component	is	in	charge	of	evaluating	the	SSVEP	response	(up	to	4
different	frequencies)	among	the	frequencies	defined	by	the	user.	It	also
calculates	the	config	file	based	on	previously	recorded	training	files	that
will	be	used	to	evaluate	the	detection,	and	is	also	in	charge	of	updating
its	parameters	according	to	the	config	file

Component	Type:	Processor	(Subcategory:	DSP	and
Feauture	extraction)

SSVEPDetect	plugin



Requirements
SSVEPTrainFunction.exe	and	Matlab	2008B	runtime	engine



Input	Port	Description
O1	[double]:	Input	port	for	the	EEG	channel	O1.	This	input	port
supports	synchronization
Oz	[double]:	Input	port	for	the	EEG	channel	Oz.	This	input	port
supports	synchronization
O2	[double]:	Input	port	for	the	EEG	channel	O2.	This	input	port
supports	synchronization
UserName	[string]:	Name	Identifying	current	the	user.
NumberOfPanels	[string]:	Number	of	stimulation	panels.
FreqP1	[string]:	Stimulation	frequency	of	panel	1.
FreqP2	[string]:	Stimulation	frequency	of	panel	2.
FreqP3	[string]:	Stimulation	frequency	of	panel	3.
FreqP4	[string]:	Stimulation	frequency	of	panel	4.



Output	Port	Description
FreqP1	[integer]:	Stimulation	frequency	of	panel	1.
FreqP2	[integer]:	Stimulation	frequency	of	panel	2.
FreqP3	[integer]:	Stimulation	frequency	of	panel	3.
FreqP4	[integer]:	Stimulation	frequency	of	panel	4.



Event	Listener	Description
StartStim:	Event	Informing	that	the	stimulation	period	has	started.
StopStim:	Event	Informing	that	the	stimulation	period	has	finished.
CalculateConfigFile:	Event	requesting	the	calculation	of	the
configuration	file
UpdateFromConfigFile:	Event	requested	an	update	of	the
properties	according	to	the	configuration	file.
UpdatePanelsConfig:	Event	reporting	the	stimulation	panels	plugin
to	update	the	stimulation	frequencies.



Event	Trigger	Description
UpdatePanelsConfig:	Event	reporting	the	stimulation	panels	plugin
to	update	the	stimulation	frequencies.
NonStimFreqD:	Event	reporting	that	none	stimulation	frequency
could	be	detected.
StimFreq1D:	Event	reporting	that	stimulation	frequency	number	1
was	detected.
StimFreq2D:	Event	reporting	that	stimulation	frequency	number	2
was	detected.
StimFreq3D:	Event	reporting	that	stimulation	frequency	number	3
was	detected.
StimFreq4D:	Event	reporting	that	stimulation	frequency	number	4
was	detected.



Properties
SF1GO1	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
1	and	electrode	O1.
SF1GOz	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
1	and	electrode	Oz.
SF1GO2	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
1	and	electrode	O2.
SF2GO1	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
2	and	electrode	O1.
SF2GOz	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
2	and	electrode	Oz.
SF2GO2	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
2	and	electrode	O2.
SF3GO1	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
3	and	electrode	O1.
SF3GOz	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
3	and	electrode	Oz.
SF3GO2	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
3	and	electrode	O2.
SF4GO1	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
4	and	electrode	O1.
SF4GOz	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
4	and	electrode	Oz.
SF4GO2	[double]:	Spatial	filter	coefficient	for	stimulation	frequency
4	and	electrode	O2.
StimFreq1	[integer]:	Stimulation	frequency	number	2	in	Hz.	If	its
value	is	0	it	will	not	be	evaluated	in	the	SSVEP	detection..
StimFreq2	[integer]:	Stimulation	frequency	number	2	in	Hz.	If	its
value	is	0	it	will	not	be	evaluated	in	the	SSVEP	detection.
StimFreq3	[integer]:	Stimulation	frequency	number	3	in	Hz.	If	its
value	is	0	it	will	not	be	evaluated	in	the	SSVEP	detection.
StimFreq4	[integer]:	Stimulation	frequency	number	4	in	Hz.	If	its
value	is	0	it	will	not	be	evaluated	in	the	SSVEP	detection.
BestHarm1	[integer]:	Best	harmonic	to	detect	stimulation	frequency
1.
BestHarm2	[integer]:	Best	harmonic	to	detect	stimulation	frequency



2.
BestHarm3	[integer]:	Best	harmonic	to	detect	stimulation	frequency
3.
BestHarm4	[integer]:	Best	harmonic	to	detect	stimulation	frequency
4.



String	Append
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

Appends	an	incoming	string	or	ASCII	character	to	a	stringbuffer,	the
updated	stringbuffer	is	sent	to	an	output	port.	Incoming	events	are
available	to	send	the	final	string	to	a	dedicated	output	port	and	to	clear
the	stringbuffer	(or	set	it	to	a	default	value	respectively).

StringAppend	plugin



Input	Port	Description
inStr	[string]:	String	input	port.
inChar	[integer]:	ASCII	code	input	port.



Output	Port	Description
actResult	[string]:	String	output	port	for	current	stringbuffer	content.
finalResult	[string]:	String	output	port	for	final	stringbuffer	content
(triggered	by	event	or	enter).



Event	Listener	Ports
sendNow:	sends	the	current	content	of	the	stringbuffer	to	the
"finalResult"	output	port.
sendNowAndClear:	sends	the	current	content	of	the	stringbuffer	to
the	"finalResult"	output	port	and	sets	the	stringbuffer	to	the	default
value.
deleteCharacter:	deletes	the	last	character	of	the	stringbuffer.
clear:	sets	the	stringbuffer	to	the	default	value.



Properties
autoSendAtEnter	[boolean]:	If	true,	the	stringbuffer	is	sent	and
cleared	when	the	ASCII	value	for	Enter/Return	is	received	by	the
inChar	input	port.
defaultValue	[string]:	An	optional	string	text	which	is	used	a	initial
value	for	the	stringbuffer.



StringDelay
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	plugin	passes	received	string	values	after	a	defined	delay.	

StringDelay	plugin



Input	Port	Description
in	(string):	Input	port	for	the	incoming	string.



Output	Port	Description
out	(string):	Output	port	for	the	delayed	string.



Properties
delay	[integer]:	Delay	between	input	and	output	of	the	string	(in
milliseconds).



String	Dispatcher
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	component	has	twenty	slots	for	text	strings.	These	strings	can	be
sent	to	the	output	port	via	incoming	events	or	by	directly	addressing	a
slot	number	using	the	input	port.

StringDispatcher	plugin



Input	Port	Description
slotDispatch	[integer]:	Sends	the	string	from	the	slot	defined	by
number.



Output	Port	Description
output	[string]:	String	output	port.



Event	Listener	Description
dispatchSlot1...dispatchSlot20:	These	events	cause	text	from	the
slot:	1..20	to	be	sent.
dispatchNextSlot:	This	event	causes	text	from	the	next	(not	empty)
slot	to	be	sent.
dispatchCurrentSlot:	This	event	causes	text	from	the	current	slot	to
be	sent.
dispatchPreviousSlot:	This	event	causes	text	from	the	previous
(not	empty)	slot	to	be	sent.
resetToFirstSlot:	This	event	resets	the	internal	slot	counter	(for
next/previous)	to	the	first	slot.
dispatchSlotSeries:	This	event	causes	text	in	sequence	from	all	not
empty	slots	to	be	sent,	with	a	delay	defined	by	the	delay	property.



Properties
delay	[integer]:	The	interval	(in	milliseconds)	which	will	be	used	for
sending	strings	sequentially	from	all	slots.
slot1...slot20	[string]:	20	slots	which	contains	the	text	to	be	sent



String	Expander
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

Adds	the	preString	and	postString	strings	to	the	incoming	string	and
sends	the	new	string	to	the	output	port.

StringExpander	plugin



Input	Port	Description
input	[string]:	String	input	port.
preString	[string]:	String	which	will	be	placed	before	the	input	string
(as	leading	string).
postString	[string]:	String	which	will	be	placed	after	the	input	string
(as	trailing	string).



Output	Port	Description
output	[string]:	String	output	port.



Properties
preString	[string]:	default	leading	String.
postString	[string]:	default	trailing	String.
trim	[boolean]:	if	selected,	all	leading	and	trailing	white-space
characters	will	be	removed	from	the	input	string.



String	Filter
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

Applies	a	given	filter	text	to	the	incoming	string.	It	can	be	selected	if	only
strings	that	contain	the	filter	text	are	passed	to	the	output	port,	and/or	if
the	filter	text	shall	be	removed	from	the	incoming	string.	Please	note	that
the	filter	text	is	applied	case	sensitive.

StringFilter	plugin



Input	Port	Description
in	[string]:	String	input	port.



Output	Port	Description
out	[string]:	String	output	port	for	processed/filtered	string.



Properties
filterText	[string]:	The	filter	text.
passOnlyIfContains	[boolean]:	If	selected,	only	strings	containing
the	filter	text	will	be	passed.
cropFilterText	[boolean]:	If	selected,	the	filter	will	be	removed
before	the	input	string	is	passed	to	the	output	port.



String	Path	Multiplexer
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

The	String	Path	Multiplexer	component	forwards	strings	from	the
selected	input	port	to	the	output	port.

StringPathMultiplexer	plugin



Input	Port	Description
input1	to	input4	[string]:	The	input	ports	for	strings	to	be
multiplexed.



Output	Port	Description
output	[string]:	The	string	output,	which	sends	data	of	the	selected
input	port.



Event	Listener	Description
passPort1	to	passPort4:	The	string	output,	which	sends	data	of	the
selected	input	port.
passNextPort:	selets	the	next	input	port.	If	the	currently	used	port	is
the	maximum	port	(defined	by	the	number	property),	input	port	1	will
be	selected.
passPreviousPort:	selects	the	previous	input	port.	If	the	currently
used	port	is	port	1,	the	maximum	port	(defined	by	the	number
property)	will	be	selected.



Properties
number	[integer]:	The	maximum	port	number	(can	be	1	to	4).



String	Path	Selector
Component	Type:	Processor	(Subcategory:	Signal
Pathways)

The	StringPathSelector	component	allows	routing	of	incoming	strings
between	up	to	4	output	ports.	The	desired	output	port	can	be	directly
selected	by	a	dedicated	event	listener	port,	or	the	strings	can	be	switched
to	the	next	or	previous	output	port.	

StringPathSelector	plugin



Input	Port	Description
in	[string]:	The	incoming	string	port	to	be	routed.



Output	Port	Description
out1	to	out4:	Four	output	ports	where	the	incoming	strings	can	be
routed	to.



Event	Listener	Description
select1	to	select4:	An	incoming	event	at	these	ports	directly
activates	the	associated	output	path	(e.g.	as	an	event	comes	in	at
select	3,	the	input	string	port	will	be	routed	to	out3.
selectNext:	The	next	output	port	is	selected	for	string	output.	The
maximum	number	of	active	ports	is	set	via	the	activePorts	property.
If	the	current	number	is	already	the	maximum	one,	the	select	next
event	will	wrap	around	the	active	port	number	and	port	1	will	be
selected.
selectPrevious:	The	previous	output	port	is	selected	for	string
output.	If	the	current	port	is	out1,	the	maximum	port	number	(given
by	the	activePorts	property)	will	be	selected.



Properties
activePorts	[integer]:	The	maximum	port	number	in	use	(can	be	1
to	4).



String	Splitter
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

Splits	a	string	with	seperators	in	up	to	16	outputports.

StringSplitter	plugin



Input	Port	Description
input	[string]:	String	input	port.	The	string	which	has	to	be	splitted.



Output	Port	Description
output	1	to	16[string]:	String	output	ports.	Sending	the	seperated
Data.



Properties
Seperator	[string]:	Defines	the	seperator.



String	To	Double
Component	Type:	Processor	(Subcategory:	Data
Converters)

This	component	converts	the	incoming	string	values	into	the	integer
values	at	the	output	port.

StringToDouble	plugin



Input	Port	Description
input	[string]:	Input	port	for	the	string	values	to	be	converted.



Output	Port	Description
output	[double]:	Output	port	for	the	converted	double	values.



String	To	Int
Component	Type:	Processor	(Subcategory:	Data
Converters)

This	component	converts	the	incoming	string	values	into	the	integer
values	at	the	output	port.

StringToInt	plugin



Input	Port	Description
input	[string]:	Input	port	for	the	string	values	to	be	converted.



Output	Port	Description
output	[integer]:	Output	port	for	the	converted	integer	values.



Properties
hexadecimalInput	[boolean]:	If	this	property	is	set,	the	input	string
data	are	regarded	as	the	hexadecimal	data	string.



Text	Sender
Component	Type:	Processor	(Subcategory:	Event	and
String	Processing)

This	component	sends	the	string	data	through	the	output	port	when	it
receives	the	trigger	event.

TextSender	plugin



Input	Port	Description
setText	[string]:	Updates	the	text	with	the	incoming	string.



Output	Port	Description
output	[string]:	String	output	port.



Event	Listener	Description
sendText:	This	event	causes	text	to	be	sent.



Properties
text	[string]:	The	default	text	to	be	sent.



Threshold
Component	Type:	Processor	(Subcategory:	Basic	Math)

This	component	takes	an	input	and	compares	it	to	a	given	threshold	and
generates	an	according	output	value	dependent	on	the	operation	mode.
The	component	allows	three	operation	modes:	binary,	deadzone	and	cut
off	which	are	described	in	the	property	section.	The	component	allows
operating	with	a	hysteresis	by	setting	the	thresholds	for	transition	from
below	to	above	and	vice	versa	differently.	Transitions	over	the	thresholds
are	always	evaluated	arithmetically	thus	a	below	threshold	to	above
transition	always	happens	when	the	new	value	is	mathematically	greater
than	the	threshold	while	the	last	input	was	less	than	threshold.
Respectively	the	transition	from	above	to	below	happens	when	the	last
value	was	greater	than	the	threshold	value	and	the	new	value	is	less	than
it.	This	statement	also	holds	for	negative	values	in	the	threshold.	The
component	provides	the	possibility	to	raise	events	on	threshold
transitions	either	on	below	to	above,	above	to	below	or	on	both.

Threshold	plugin



Input	Port	Description
in	[double]:	the	input	to	be	evaluated.



Output	Port	Description
out[double]:	the	value	that	the	threshold	passes	on	for	the	given
input.



Event	Port	Description
eventPosEdge:	This	event	port	will	trigger	an	event	when	the	value
crosses	the	thresholdHigh	property	from	below.
eventNegEdge:	This	event	port	will	trigger	an	event	when	the	value
crosses	the	thresholdLow	property	from	above.



Properties
thresholdHigh	[double]:	The	threshold	that	is	checked	for
transitions	from	below	the	threshold	to	above.
thresholdLow	[double]:	The	threshold	that	is	checked	for
transitions	from	above	the	threshold	to	below.	Setting	it	to	the	same
value	as	threshold_high	will	remove	the	hysteresis	from	the
threshold	system.
outputHigh	[double]:	The	value	to	be	sent	to	the	output	if	the	input
is	above	the	threshold	in	certain	operation	modes.
outputLow	[double]:	The	value	to	be	sent	to	the	output	if	the	input
is	below	the	threshold	in	certain	operation	modes	(see	below).
operationMode	[integer]:	There	are	three	operation	modes	for	the
threshold	component:

binary:	the	output	will	only	generate	two	different	values,	the
value	of	output_high	if	the	input	is	in	the	range	above	the
threshold	and	the	value	of	output_low	if	the	input	is	below	the
threshold.
cutoff:	the	input	value	will	be	passed	through	to	the	output	as
long	as	the	value	is	below	the	threshold.	If	the	input	passes	the
threshold	the	output	will	take	on	the	value	set	in	output_high.v
deadzone:	the	input	value	will	be	passed	through	to	the	output
as	long	as	the	value	is	above	the	threshold.	If	the	input	falls
below	the	threshold	the	output	will	take	on	the	value	set	in
output_low.

eventCondition	[integer]:	This	property	declares	on	which	types	of
transitions	an	event	will	be	raised:

Below->above:	only	transitions	from	below	to	above	threshold
raise	events.
Above->below:	only	transitions	from	above	to	below	threshold
raise	events.
Both:	both	types	of	transitions	raise	events.



Universal	Remote	Control
Component	Type:	Processor	(Subcategory:Microcontroller
Interfaces)

The	Universal	Remote	Control	(RC)	enables	the	possibility	to	control	all
electronic	devices	in	a	household	which	are	controlled	remotely	through
infrared	(IR)	commands.	THe	necessary	IR	codes	can	be	recorded	with
the	RC	itself	and	stored	on	a	database	on	the	computer.	By	choosing	the
manufacturer,	name	and	function	the	IR	code	is	deposed	in	this	database
and	can	be	selected	in	order	to	send	the	code	to	the	universal	RC	and
therefore	control	electronic	devices.	The	universal	RC	can	also	be	used
as	a	handheld	gadget	due	to	its	built	in	battery	and	user	interface.	THe	IR
code	database	can	be	stored	on	an	SD	card.

	the
Universal	Remote	Control	sensor	plugin



Requirements
For	the	use	of	the	universal	RC	with	a	computer,	it	has	to	be	be
connected	to	a	USB	port.	The	firmware	of	the	universal	RC	can	be	found
in	the	AsTeRICS	folder	under	/CIMs/UniversalInfraredRemoteControl/.	A
database	will	be	automatically	generated	if	there	is	not	found	one.	For	the
usage	of	the	universal	RC	as	a	handheld	gadget,	the	SD	card	has	to	be
formatted	as	a	FAT16	volume	and	contain	a	database	as	well	as	the
configuration	file.



Input	Port	Description
DeviceType	[string]:	Type	of	the	device	to	be	controlled	via	IR	(e.g.:
TV)
DeviceName	[string]:	Name	of	the	device	to	be	controlled	via	IR
(e.g.:	Sony,	Samsung,	etc.)
DeviceFunction	[string]:	Name	of	function	of	the	device	(e.g.:	On,
Off,	VolumeUp,	etc.)



Event	Listener	Description
SendIRCode:	Send	an	IR	Code	to	the	Universal	Remote	Control
RecordIRCode:	Record	an	IR	Code	through	the	Universal	Remote
Control



Event	Triggerer	Description
StartRecord:	will	be	triggered	when	Universal	Remote	Control	is
recording
StopRecord:	will	be	triggered	when	Universal	Remote	Control	has
finished	recording



Properties
IRCodeFilePath	[string]:	Filepath	to	the	file,	where	the	IR	Codes
are	stored.



IR	Code	Database
The	database	which	contains	the	IR	codes	as	well	as	the	information
about	the	type	and	name	of	the	device	and	the	specific	function	is	a
comma	separated	value	file.	The	first	value	is	the	type,	the	second	one	is
the	name	and	the	third	one	is	the	function.	The	following	512	values	are
the	IR	code.	This	database	is	automatically	generated	and	maintained	if
new	IR	codes	are	recorded	with	the	Universal	Remote	Control	with	IR
functions.



Configuration	File
The	settings	of	the	universal	RC	can	be	stored	in	the	config.csv	file.	This
is	a	comma	separated	value	file	and	contains	configurations	such	as	the
speed	and	sensibility	of	the	rotary	encoder	and	external	buttons	as	well
as	the	name	of	the	file	that	contains	the	IR	codes.	The	content	of	the
default	config.csv	file	is:	

JoystickSpeed,120
JoystickSensibility,3
File,IRCODES.CSV
Sort,2



WebSocket
Component	Type:	Processor	(Subcategory:	Web)

This	is	just	a	demo	plugin	and	is	not	yet	fully	functional.

The	websocket	component	takes	an	input	stream	and	forwards	the	data
to	a	websocket	(http://localhost:8082/ws/astericsData).	A	demo	webpage
that	connects	to	the	websocket	and	visualizes	the	data	can	be	accessed
at	http://localhost:8082/.

The	websocket	plugin	can	only	be	used	if	the	the	ARE	was	started	with
the	following	command:

start_debug.bat	--webservice

http://localhost:8082/ws/astericsData
http://localhost:8082/


Input	Port	Description
InA	[double]:	This	port	reads	the	input	to	be	forwarded.
InB	[double]:	Not	yet	supported
InC	[double]:	Not	yet	supported
InD	[double]:	Not	yet	supported
InE	[double]:	Not	yet	supported
InF	[double]:	Not	yet	supported



Output	Port	Description
OutA	[double]:	Not	yet	supported
OutB	[double]:	Not	yet	supported
OutC	[double]:	Not	yet	supported
OutD	[double]:	Not	yet	supported
OutE	[double]:	Not	yet	supported
OutF	[double]:	Not	yet	supported



Properties
host	[string]:	Not	yet	supported
port	[integer]:	Not	yet	supported



Yaak
Component	Type:	Processor

Yaak	is	a	flexible	on-screen-keyboard	for	the	Android	operating	system.
More	information	can	be	found	in	the	pdf	documentation	in	the
Android/Yaak	folder	within	the	release	package.



Requirements
The	Android	based	mobile	device	running	Yaak	must	be	connected
to	the	AsTeRICS	system	over	a	TCP/IP	connection	and	the	used
port	must	not	be	blocked	by	a	firewall



Output	Port	Description
action	[string]:	gives	the	action	string	whenever	a	button	of	the
keyboard	gets	triggered.	The	string	for	each	button	can	be	stored	in
the	xml	layout	for	the	keyboards.



Properties
hostname	[string]:	The	hostname	of	the	mobile	device	(IP	or
hostname	is	valid)
port	[integer]:	The	port	Yaak	listens	for	incoming	messages.	This
can	be	set	in	the	xml	file	of	a	keyboard.



Actuators
Actuators	are	components	which	take	input	data	and	control	external
processes	with	it.	These	processes	can	either	control	hardware
peripherals	(such	as	DACs	or	digital	output	ports)	or	make	data	visible
(like	in	an	oscilloscope).	Actuators	only	have	input	ports	since	they	are
data	sinks	in	the	ARE.



Analog	Out
Component	Type:	Actuator	(Subcategory:	Generic	Control
Output)

This	plugin	communicates	with	the	DAC	CIM	and	operates	the	analog
outputs	of	the	module.	The	plugin	provides	four	input	ports	which
correspond	to	the	four	DAC	outputs	of	the	CIM.

AnalogOut	plugin



Requirements
This	software	component	requires	an	DAC	CIM	(CIM	ID:	0x0401)
connected	to	an	USB	port.

ADC/DAC	CIM



Input	port	Description
out1	to	out4	[integer]:	these	input	ports	correspond	to	the	DAC
output	of	the	same	number	on	the	CIM.	The	input	is	an	integer	and
has	a	valid	range	between	0	and	240.	The	values	represent	the
output	voltage	in	100mv	steps,	e.g.	a	value	of	10	represents	1.0V,
143	represents	14.3V.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.



Application	Launcher
Component	Type:	Actuator	(Subcategory:	File	System)

The	ApplicationLauncher	component	can	be	used	to	run	an	external
executable	application.	The	application	name	is	given	to	the	plugin	via	an
input	port.	A	default	application	can	be	started	via	an	incoming	event.
Togehter	with	the	Keyboard-	or	RemoteKeyboard	components,	the
ApplicationLauncher	plugin	can	perform	complex	automation	tasks,	for
example	open	Skype,	choose	a	contact	and	make	a	call.

ApplicationLauncher	plugin



Input	Port	Description
filename	[integer]:	The	filename	of	the	application	to	be	started
(including	path).



Event	Listener	Description
launchNow:	An	incoming	event	on	this	port	will	start	the	(default	or
lastest	received)	application
closeNow:	An	incoming	event	on	this	port	will	close	the	current
application



Properties
defaultApplication	[string]:	Full	path	and	filename	of	the	default
application
arguments	[string]:	the	commandline	arguments	for	the	application
workingDirectory	[string]:	the	working	directory	for	the	application
(.	is	used	for	home	directory	of	the	application)
closeCmd	[string]:Optional	close	cmd,	e.g.	if	started	cmd	has
forked	processes	(e.g.	OSKA)	use:	taskkill.exe	/IM	"OSKA
Keyboard.exe"	/T
autoLaunch	[boolean]:	Defines	if	the	default	application	is
automatically	launched	at	startup
autoClose	[boolean]:	Defines	if	the	current	application	is	closed
when	the	model	is	stopped
onlyByEvent	[boolean]:	If	this	property	is	set	to	true,	incoming
application	files	names	will	not	be	started	immediately	(only	the
launchNow	event	will	start	the	application)



Preparation	of	the	connection
with	Android	Phone

Android	Server	Application

This	document	describes	how	to	prepare	connection	between	the
AndroidPhoneControl	component	and	the	AsTeRICSPhoneServer
application:

1.	 The	connection	between	the	AndroidPhoneControl	component	and
the	AsTeRICSPhoneServer	application	is	made	via	TCP/IP
connection.	One	of	these	components	should	work	as	a	server,
second	as	the	client.	The	server	should	have	the	public	IP	or	it
should	be	in	the	same	network	where	the	client	is.

2.	 In	the	model,	select	the	connection	mode	in	the	connetionType
property	of	the	AndroidPhoneControl	component.	If	the	component
should	work	as	a	server,	put	into	the	port	property,	the	port	which
server	will	be	use	for	its	service.	If	the	component	should	work	as	a
client,	put	into	the	IP	property	IP	of	the	server	and	into	the	port



property	the	server	port.

3.	 Run	the	Android	Server	application	on	the	Android	phone.	Select	the
connection	mode	from	the	Connection	type	property.	If	the
application	should	work	as	a	server	put	into	the	port	number	property
the	port	which	server	will	be	use	for	its	service.	If	the	application
should	work	as	a	client	put	into	the	Server	IP	property	IP	of	the
server	and	into	the	Port	Number	property	the	server	port.

4.	 If	the	AndroidPhoneControl	component	is	set	to	work	as	the	server
and	Android	Server	application	is	set	to	work	as	client.	First	run	the
model,	then,	enable	Android	application	using	Enable	server
property.	If	Android	Server	application	is	set	to	work	as	a	server	and
the	AndroidPhoneControl	component	is	set	to	work	as	a	client	first
enable	the	Android	application	then	run	the	model.



AndroidPhoneControl
Component	Type:	Actuator	(Subcategory:	Phone	Interface)

This	component	controls	a	mobile	phone	with	Android	operating	system
through	the	TCP/IP	connection.	Currently	this	component	is	able	to
perform	such	action	as:	call	a	remote	phone,	drop	a	phone	call,	send	and
receive	SMS	message.	

AndroidPhoneControl	plugin



Requirements
Android	phone	running	AsTeRICSPhoneServer	application.



Input	Port	Description
phoneID	[string]:	The	phone	number	used	for	outgoing	SMS	and
make	phone	calls.
SMSContent	[string]:	The	SMS	content	which	will	be	used	for	the
send	SMS	action.
command	[string]:	String	command	that	can	be	sent	to	this
component	from	other	plugins	to	trigger	phone	actions.	Currently
supported	commands	are:

@PHONE:	SMS:Phone_ID,	"Message_content"
@PHONE:	SMS
@PHONE:	CALL:	Phone_ID
@PHONE:	CALL
@PHONE:	ACCEPT
@PHONE:	DROP
@PHONE:	SET_ID:	Phone_ID
@PHONE:	SET_SMS:	"Message_content"



Output	Port	Description
remotePhoneID	[string]:	This	is	a	phone	number	of	the	caller	or
SMS	sender.
receivedSMS	[string]:	This	is	the	content	of	the	incoming	SMS.
errorNumber	[integer]:	The	number	of	the	error.



Event	Listener	Description
sendSMS:	Sends	the	SMS	message.
makePhoneCall:	Makes	the	phone	call.
acceptPhoneCall:	Accepts	the	incoming	phone	call.
dropPhoneCall:	Drops	the	phone	call.



Event	Trigger	Description
idleState:	Phone	is	in	the	idle	state.
ringState:	Phone	is	in	the	ring	state.
connectedState:	Phone	is	connected	with	the	remote	phone.
newSMS:	There	is	a	new	SMS.
error:	An	error	occurred.



Properties
connectionType	[integer]:	Defines	connection	type	for	the	plugin:
client	or	server.
IP	[string]:	IP	of	the	remote	server	used	in	the	client	mode.
port	[integer]:	TCP/IP	port	of	the	service.
defaultPhoneID	[string]:	Default	phone	number	for	outgoing	SMS
and	phone	calls.

Preparation	of	the	connection	with	Android	Phone.	



AREWindow
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

This	component	allows	moving	the	ARE	window	to	desired	locations	on
the	screen	and	setting	its	state	and	modification	options.	Several	default
locations	can	be	selected	via	incoming	events	(top,	left,	bottom,	right	or
center	of	the	screen).	X-	and	Y-	offset	values	can	be	defined	-	thus	it
becomes	possible	to	set	the	ARE	window	e.g	to	a	second	screen	(which
is	currently	not	supported	in	the	ACS	GUI	designer).

AREWindow	plugin



Input	Port	Description
xPos	[integer]:	The	x	offest	value	for	positioning	the	ARE	window
yPos	[integer]:	The	y	offest	value	for	positioning	the	ARE	window



Event	Listener	Description
moveToTop:	moves	the	ARE	window	to	the	top	of	the	screen	(y
offset	will	be	applied).	The	x	position	will	not	be	changed.
moveToBottom:	moves	the	ARE	window	to	the	bottom	of	the
screen	(y	offset	will	be	applied).	The	x	position	will	not	be	changed.
moveToLeft:	moves	the	ARE	window	to	the	left	side	of	the	screen	(x
offset	will	be	applied).	The	y	position	will	not	be	changed.
moveToRight:	moves	the	ARE	window	to	the	right	side	of	the
screen	(x	offset	will	be	applied).	The	y	position	will	not	be	changed.
moveToCenter:	moves	the	ARE	window	to	the	center	of	the	screen
(x	and	y	offsets	will	be	applied).
minimize:	minimizes	the	ARE	window	to	the	taskbar
restore:	restores	the	ARE	window	from	the	taskbar
bringToFront:	places	the	ARE	window	on	top	of	other	windows



Properties
xPos	[integer]:	default	value	for	the	x	offset
yPos	[integer]:	default	value	for	the	y	offset
autoSetPosition	[boolean]:	if	selected,	the	ARE	window	position
will	be	modified	at	startup	of	the	model	according	to	the	xPos	and
yPos	properties.	Furthermore,	incoming	values	at	the	xPos	or	yPos
ports	will	automatically	position	the	ARE	window.
allowWindowModification	[boolean]:	If	selected,	the	user	can
change	the	ARE	window	decoration	and	control	panel	by	double-	or
right-clicking	into	the	ARE	window.	These	functions	will	be	disabled
when	the	property	is	not	selected.



Bar	Display
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	Bar	display	generates	a	coloured	bar	graph	to	visualise	a	current
signal	value	in	the	ARE	environment	(of	course	the	LC	-	display	or	a
computer	monitor	have	to	be	connected	to	the	platform).	The	Bar	display
features	auto-scale	of	value	range,	display	of	a	threshold	value	and
selectable	update	rate	and	foreground	/	background	colours.

BarDisplay	plugin



Requirements
Computer	Monitor	or	LC-Display	available	for	graphics	output.



Input	Port	Description
input	[double]:	The	input	port	for	the	signal	to	be	displayed.



Properties
displayBuffer	[integer]:	This	number	specifies	how	often	an	update
of	the	bar	graph	is	performed.	For	example	if	the	display	buffer	is	set
to	10,	ten	values	are	accumulated	and	the	average	value	is
displayed	after	the	tenth	incoming	value.
min	[double]:	The	default	minimum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	lower	values	come	in).
max	[double]:	The	default	maximum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	higher	values	come	in).
threshold	[double]:	This	value	will	be	displayed	with	a	marker	in	the
bar	graph	(if	enabled).
displayThreshold	[boolean]:	This	property	enables	(true)	or
disables	(false)	the	threshold	marker	in	the	bar	graph.
integerDisplay	[boolean]:	This	property	selects	if	double	values	are
rounded	to	integral	values	before	being	displayed	in	the	bar	graph.
mode	[integer]:	Via	this	property	the	way	how	values	which	exceed
the	current	min/max	range	of	the	bar	graph	component	are	handled:
"clip	to	min	and	max"	crops	incoming	values	to	the	min/max	range,
"autoupdate	min	and	max"	scales	the	bar	graph	window	and	updates
the	min/max	values	to	cover	the	incoming	value.
gridColor	[integer]:	The	colour	of	the	bar	graph	grid	and
descriptions.
barColor	[integer]:	The	colour	of	the	bar	display.
backgroundColour	[integer]:	The	colour	of	the	window
background.
fontSize	[integer]:	The	font	size	of	the	display's	caption.
caption	[string]:	The	text	of	the	display's	caption.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Digital	Out
Component	Type:	Actuator	(Subcategory:	Generic	Control
Output)

The	DigitalOut	plugin	operates	the	output	ports	of	the	GPIO	CIM.	The
output	ports	1-2	are	relais	outputs	where	loads	can	be	connected	via	a
galvanic	isolation	barrier.	The	output	ports	3-5	are	open-collector	outputs,
where	a	pull-up	resistor	can	be	activated	or	deactivated	using	the	plugin's
properties.	The	plugin	provides	event	listener	ports	which	serve	the
activation	or	deactivation	of	an	output	channel,	and	a	command	port
which	accepts	string	parameters	to	set,	clear	and	toggle	particular	output
channels.

DigitalOut	plugin



Requirements
This	component	requires	the	GPIO	CIM	(CIM	Id:	0x0801)	to	be
connected	to	an	USB	port.



Input	port	Description
action	[string]:	The	plugin	reacts	to	incoming	action	strings	starting
with	"@GPIO:"	and	a	command.	Valid	commands	are	"set",	"clear",
"toggle"	and	"press".	The	command	has	to	be	followed	by	a	comma
and	the	port	number,	for	example:	"@GPIO:set,1"	or
"@GPIO:toggle,2".	The	"press"-command	toggles	the	given	output
port	two	times	with	a	delay	of	500	milliseconds.	The	following
examples	illustrate	the	available	action	strings:

"@DIGITALOUT:set,1":	Pin	1	of	the	GPIO	CIM	will	be	set
"@DIGITALOUT:clear,2":Pin	2	of	the	GPIO	CIM	will	be	cleared
"@DIGITALOUT:toggle,1":	Pin	1	of	the	GPIO	CIM	will	be
changed
"@DIGITALOUT:press,4":	Pin	4	of	the	GPIO	CIM	will	be	cleared
and	after	500ms	it	will	be	set	again



Event	Listener	Description
setOutput1	to	setOutput5:	an	incoming	event	on	these	ports	will
cause	the	corresponding	output	port	on	the	CIM	to	go	to	the	high
level.
clearOutput1	to	clearOutput5:	an	incoming	event	on	these	ports
will	cause	the	corresponding	output	port	on	the	CIM	to	go	to	the	low
level.
toggleOutput1	to	toggleOutput5:Toggles	the	state	of	the	output
port.
pressOutput1	to	pressOutput5:Presses	the	output	port:	Clears	the
state	and	after	500ms	sets	the	state	to	high.



Properties
pullupStateOut3	to	pullupStateOut5	[boolean]:	These	properties
specify	if	the	internal	pullup	resistor	shall	be	activated	on	the
respective	open	collector	output	channels.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



Dot	Meter
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	Dot	Meter	generates	a	graphical	representation	of	a	2-dimensional
signal	(for	example	x/y-coordinates)	using	a	colored	dot.

DotMeter	plugin



DotMeter	example



Requirements
Computer	Monitor	or	LC-Display	available	for	graphics	output.



Input	Port	Description
x	[double]:	The	x-input	port	for	the	signal	to	be	displayed.	This
input	port	supports	synchronization
y	[double]:	The	y-input	port	for	the	signal	to	be	displayed.	This
input	port	supports	synchronization



Event	Listener	Description:
dotOn:	fill	the	dot	with	color.
dotOff:	show	only	outline	of	the	dot	(can	be	used	to	create	a	led
indicator).



Properties
xMin	[double]:	The	default	x-minimum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	lower	values	come	in).
xMax	[double]:	The	default	x-maximum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	higher	values	come	in).
yMin	[double]:	The	default	y-minimum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	lower	values	come	in).
yMax	[double]:	The	default	y-maximum	of	the	signal	range	at	model
start	(this	value	is	automatically	updated	as	higher	values	come	in).
mode	[integer]:	Via	this	property	the	way	how	values	which	exceed
the	current	min/max	range	of	the	bar	graph	component	are	handled:
"clip	to	min	and	max"	crops	incoming	values	to	the	min/max	range,
"autoupdate	min	and	max"	scales	the	bar	graph	window	and	updates
the	min/max	values	to	cover	the	incoming	value.
dotSize	[integer]:	The	radius	of	the	dot.
centerLine	[boolean]:	defines	if	a	line	to	the	window	center	is
shown	or	not.
displayDot	[boolean]:	defines	if	the	dot	is	filled	or	not.
displayCaptions	[boolean]:	defines	if	the	value	/	captions	are
shown	or	not.
gridColor	[integer]:	The	colour	of	the	graph	grid	and	descriptions.
dotColor	[integer]:	The	colour	of	the	dot.
backgroundColour	[integer]:	The	colour	of	the	window
background.
fontSize	[integer]:	The	font	size	of	the	display's	caption.
caption	[string]:	The	text	of	the	display's	caption.
displayGUI	[boolean]:	if	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



EasyHomeControl
Component	Type:	Actuator	(Subcategory:	Home	Control)

With	the	EasyHomeControl,	commands	for	the	EasyHome	house
automation	system	can	be	sent	over	the	PCS	device	sold	by	ELV
electronics.	See	the	EasyHome	homepage	for	details.

http://www.elro.eu/de/produkte/cat/home-automation/home-easy-next


Requirements
The	EasyHome	sender	must	be	attached	to	the	system!

Picture	of	the	EasyHome
sender

Picture	of	the	EasyHome
switch

Picture	of	the	EasyHome
dimmer



Troubleshooting	problems	under	Win8/Win8.1
Under	Windows	8	and	Windows	8.1,	there	can	be	problems	concering
the	operation	of	the	EasyHome	device:	If	the	red	control	led	stays	stays
dark	eaven	if	a	command	is	send	and	the	EasyHome	sender	cannot	be
used,	the	reason	could	be	that	the	power	management	settings	on
Win8/8.1	switch	the	device	off	per	default	-	this	can	be	changed	by
applying	the	following	steps:

Open	the	Device	Manager	(usually	can	be	selected	by	right-clicking
at	the	bottom	left	corner	of	your	windows	desktop)
Open	the	device	group	"Human	Interface	Devices"
Locate	the	device	which	pops	up	when	you	insert	or	remove	the
EasyHome	module	to/from	an	USB	port	It	should	be	a	"HID
compliant	supplier	defined	device".	You	can	distinguish	different
devices	by	right-clicking	a	device	and	looking	into	rider	"details"	and
"properites"	-	there	you	can	find	the	VID	and	PID	values,	e.g.	under
property	"last	known	parent"
Note	the	VID	and	PID	values.	For	example	if	you	see	a	line	like
"USB\VID_1B1F&PID;_C00F\EEE0000473"	the	values	are
VID:1B1F	and	PID:C00F
Press	the	Windows-Key	and	"R"	to	open	the	command	window.	Type
"regedit"	and	press	enter
Select	the	entry	"HKEY_LOCAL_MACHINE"	>	"SYSTEM"	>
"CurrentControlSet"	>	"Enum"	>	"USB".
In	this	list,	select	the	entry	for	the	EasyHome	device	(given	by	VID
und	PID	you	noted)
Open	the	Subfolder	"Device	Paramteters"	and	double	click	the
property	"EnhancedPowerManagementEnabled"	which	appears	in
the	right	window	section
Change	the	property	value	from	1	to	0	and	commit	by	clicking	"OK"
Restart	you	PC	-	now	hopefully	the	EasyHome	works	as	intended.



Event	Listener	Description
See	table	below	for	a	list	of	all	commands	that	can	be	triggered

Command
Mapping

Command ID
OffDevice1-15 0
OnDevice1-15 1
To	dim	the	light	you	have	to	sent	an	on	signal	when	the	light	is	already
turned	on.



Properties
nameDevice	[string]:	Set	the	device	name.
numberDevice	[integer]:	Set	the	number	of	the	device.	The	number
must	be	the	same	if	the	shwitches	shoud	akt	synchronized



EDF	Writer
Component	Type:	Actuator	(Subcategory:	File	System)

This	plugin	writes	the	incoming	data	into	an	.edf	file
(http://www.edfplus.info/specs/edf.html)

The	data	gets	live	recorded,	so	it	can	be	viewed	simulaneously	in	the
EDF-Browser	(	http://www.teuniz.net/edfbrowser/	)



WriteEDF



Input	port	Description
CH1	-	CH8[double]:	these	ports	get	the	data,	which	will	be
recorded.



Properties
PatientID[string]:	specifies	the	name	of	the	subject.	Maximum
number	of	characters:	80
FileName[string]:	specifies	the	name	of	the	file	(without	extension	),
in	which	the	data	will	be	recorded
reSampling[boolean]:	If	this	box	is	checked,	the	incoming	data	will
be	resampled	with	the	chosen	frequency	of	the	properties
samplingRateCH1	-	CH8.	This	could	be	neccessary,	if	the	incoming
data	frequency	is	not	known
SamplingRateCH1	-	CH8[integer]:	specifies	the	frequency	of	the
incoming	data.	Values	smaller	than	1	will	deactivate	the
corresponding	channel
PhysicalMinimum	CH1	-	CH8	[integer]:	specifies	the	minimum
values	of	the	incoming	data
PhysicalMaximum	CH1	-	CH8	[integer]:	specifies	the	maximum
values	of	the	incoming	data
DigitalMinimum	CH1	-	CH8	[integer]:	specifies	the	minimum
values	of	the	stored	data
DigitalMaximum	CH1	-	CH8	[integer]:	specifies	the	maximum
values	of	the	stored	data



EmulateFaultyPlugin
Component	Type:	Actuator	(Subcategory:	Test)

The	component	emulates	a	faulty	plugin	-	which	is	a	plugin	that	throws
unexpected	exceptions	during	start/pause/stop	methods,	or	a	plugin	that
has	very	long	lasting	method	calls	or	even	method	calls	hanging	forever.
The	plugin	is	used	to	test	the	stability	of	the	ARE	in	error	situations.	It
supports	the	configuration	of	the	duration	of	a	method	call	including	an
endless	method	call.



Requirements
No	special	hardware	or	software	required.



Input	Port	Description
inA	[double]:	Input	data	of	type	double.
inB	[double]:	Input	data	of	type	double.
inC	[string]:	Input	data	of	type	string.
inA	[integer]:	Input	data	of	type	integer.



Event	Listener	Description
eventA:	An	incmonig	event	A.
eventB:	An	incoming	event	B.
eventC:	An	incoming	event	C.



Properties
startException	[boolean]:	Throw	an	exception	when	the	plugin
start	method	is	called.
pauseException	[boolean]:	Throw	an	exception	when	the	plugin
pause	method	is	called.
stopException	[boolean]:	Throw	an	exception	when	the	plugin	stop
method	is	called.
resumeException	[boolean]:	Throw	an	exception	when	the	plugin
resume	method	is	called.
startDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1
is	specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
pauseDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If
-1	is	specified	the	method	hangs	forever	and	produces	a	thread
dead	lock.
resumeDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If
-1	is	specified	the	method	hangs	forever	and	produces	a	thread
dead	lock.
stopDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1
is	specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
inADuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1	is
specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
inBDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1	is
specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
inCDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1	is
specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
inDDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If	-1	is
specified	the	method	hangs	forever	and	produces	a	thread	dead
lock.
eventADuration	[integer]:	The	duration	in	ms	of	the	method	call.	If
-1	is	specified	the	method	hangs	forever	and	produces	a	thread
dead	lock.



eventBDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If
-1	is	specified	the	method	hangs	forever	and	produces	a	thread
dead	lock.
eventCDuration	[integer]:	The	duration	in	ms	of	the	method	call.	If
-1	is	specified	the	method	hangs	forever	and	produces	a	thread
dead	lock.



Enobio	Display
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

This	component	displays	the	electrophysiological	signals	recorded	by	the
Enobio	device,	so	a	user	can	check	that	the	signals	are	being	received
and	are	correctly	calibrated.	The	4	Enobio	channels	are	plotted	with	three
different	colours.	When	the	signal	is	plotted	in	red	it	means	that	the
channel	is	not	being	calibrated	due	to	the	configuration	of	the	Enobio
component.	If	the	signal	is	plotted	in	yellow	then	this	signal	is	in	process
of	calibration.	If	the	signals	are	plotted	in	green	it	indicates	that	the	signal
is	correctly	calibrated.

	Enobio
Display	plugin



Requirements
This	software	component	requires	an	Enobio	receiver	connected	to	the
platform,	the	Enobio	device	switched	on	and	the	electrodes	correctly
placed	on	the	user.	In	addition,	the	component	expects	an	Enobio
component	connected	to	its	inputs.



Input	Port	Description
Channel1	to	Channel4	[double]:	Input	ports	for	the	corresponding
output	ports	of	the	Enobio	component.
Status	[double]:	Input	port	to	be	connected	to	the	status	output	port
of	the	Enobio	component.



EnOcean
Component	Type:	actuator	(Subcategory:	Home	Control)

The	EnOcean	plugin	enables	the	ARE	to	interface	to	EnOcean	wireless
sensors.	This	plugin	utilizes	the	Priscilla	java	library	for	the	EnOcean
implementation	,	it	is	(C)opyrighted	by	UAS	FH	Technikum	Wien	and
released	under	the	GNU	General	Public	License	(FSF	v2).	The	EnOcean
plugin	provides	an	interface	to	the	EnOcean	sensors	over	an	USB	stick
(EnOcean	USB300)	or	an	IP	gateway.	Interfacing	to	EnOcean	devices	is
possible	either	by	sending	different	data	to	actuators	or	receiving	different
types	of	values.	This	allows	control	of	lightning,	heat	and	ventilation
devices	and	many	more	via	the	AsTeRICS	platform.

EnOcean	plugin



Requirements
An	EnOcean	gateway	(either	USB	or	IP)
Basic	knowledge	on	EnOcean	device	IDs



Functional	Description
By	starting	the	model,	the	EnOcean	plugin	establishes	a	connection	to
the	EnOcean	gateway	specified	by	the	plugin	properties	(defined	by
gatewayIP	and	USB	checkbox).	The	gatewayIP	is	either	the	IP	adress	of
the	gateway	or	the	COM	port	name	(e.g.	COM1	or	/dev/ttyUSB0).	There
are	3	different	ways	of	sending	data	to	EnOcean	devices.	The	first	one	is
done	by	the	6	input	slider	ports.	Each	of	them	has	properties	for	the
source	device	ID	(range:	0-127)	and	a	data	type	(binary,	temperature,
illumination,	humidity,	temperature	set	point	and	fan	level).	On	every
update	of	the	input	data,	an	EnOcean	data	frame	is	generated	and	sent.
The	second	method	is	done	over	the	event	input	ports.	There	are	3
properties	to	define.	The	device	ID	and	the	data	type	have	equal	possible
values	as	with	the	slider	input.	The	third	property	defines	the	value	to	be
sent.	The	first	method	is	the	most	flexible	one,	by	sending	a	command
string	to	the	command	input	port.	It	expects	a	special	formatted	string
and	parses	the	dedicated	keywords	and	format	to	an	EnOcean
command.	The	string	can	be	assembled	individually	with	other	string
formatting	plugins.	Receiving	sensor	data	is	done	by	combining	event
and	output	ports.	There	are	2	properties,	one	for	the	type	of	input	data
(the	data	type	are	the	same	as	stated	before)	and	one	for	the	source
device	ID	(this	property	is	a	hexadecimal	string,	containing	the	full	32bit
ID,	printed	on	the	sensor).	The	event	ports	are	triggered	each	time,	an
event	with	the	defined	type	and	device	ID	is	received.	If	an	event	is
raised,	at	the	same	time	the	corresponding	data	value	is	available	at	the
output	ports.



Input	Port	Description
command	[string]:	This	port	receives	string	commands	for	the
EnOcean	devices.	The	commands	have	to	be	in	the	format
"@ENOCEAN:device_id#type#value".	An	example	for	a	valid
command	is"@ENOCEAN:25#binary#true".	As	a	valid	command	is
received	by	the	input	port,	the	value	and	data	type	is	broadcasted	to
the	devices	with	the	given	device	ID	offset	(range:	0-127)
slider[1-6]	[double]:	Input	port	for	a	double	value	which	is
converted	to	an	integer	(or	another	type,	depends	on	the	datatype)
and	broadcasted	to	all	EnOcean	devices	in	range



Properties
localIP	[string]:	The	local	IP	address	of	the	interface	which	can
reach	the	IP	gateway.
gatewayIP	[string]:	The	destination	IP	address	of	the	EnOcean
gateway	or	the	device	name	of	the	USB	gateway	(emulates	a	serial
interface,	e.g.	COM1	or	/dev/ttyUSB0)
USB	[boolean]:	If	checked,	then	the	connection	will	be	established
through	a	serial	interface,	otherwise	through	an	IP	gateway
id[1-6]	[integer]:
Source	ID	for	input	event[n].	The	range	is	from	0	to	127.
sendType[1-6]	[string]:
Send	type	for	input	event[n].	Following	data	types	are	allowed	global
(for	every	datatype	property,	port	and	event):

"binary":	e.g.	used	for	switching	light	actuators	on	or	off.
"temperature":	e.g.	used	to	transmit	a	temperature	value.
"illumination":	e.g.	used	to	transmit	illumination	values.
"humidity":	e.g.	used	to	transmit	humidity	values.
"setpoint":	e.g.	used	to	send	set	point	value	(+10K	or	-5%
humidity)
"fan":	e.g.	used	to	set	or	simulate	a	defined	fan	level

dataValue[1-6]	[string]:	The	transmitted	value	for	the	input	event	[n]
with	the	given	id[n]	and	type	(sendType[n])
IDSlider[1-6]	[string]:	Source	ID	for	slider[n].	The	range	is	from	0	to
127.
sendTypeSlider[1-6]	[string]:	The	data	type	for	sending	slider[n]
data	with	IDSLider[n].	The	possible	data	types	are	stated	above
IDTrigger[1-6]	[string]:	Source	ID	for	event	trigger[n].	This	is	a	full
id,	as	printed	on	the	device	as	6	character	string(e.g.	FFEFA01C)
TypeTrigger[1-6]	[string]:	The	data	type	for	the	listening	event[n].	If
an	incoming	frame	from	the	give	ID	(IDTrigger[n])	contains	this	data
type,	an	event	on	event	port	[n]	is	raised.	The	possible	data	types
are	stated	above



Event	Listener
send[1-6]:	Each	time	a	event	is	triggered,	the	coresponding
EnOcean	frame	which	is	specified	in	the	plugin	properties,	is
transmitted.



Event	Trigger
event_out_[1-6]:	Each	time	a	frame	is	received	with	the	given
parameters	(from	properties	IDTrigger[n]	and	TypeTrigger[n]),	this
event	is	raised



Event	Visualizer
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

This	plugin	provides	a	graphical	feedback	for	events.	It	can	be	used	to
monitor	event	activities	and	is	mainly	targeted	for	testing	of	configurations
during	setup	time.	The	plugin	offers	a	GUI	(simple	window	with	text
output)	where	event	names	are	displayed.

EventVisualizer	plugin



Requirements
No	special	hardware	or	software	required.



Port	Description
This	plugin	does	not	provide	input	or	output	ports.



Event	Trigger	Description
event_in_1:	incoming	events	will	be	displayed	in	the	GUI.



Properties
displayGUI	[boolean]:	if	selected,	the	GUI	of	this	component	will	be

displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



File	Writer
Component	Type:	Actuator	(Subcategory:	File	System)

This	component	writes	the	input	values	that	are	received	in	the	input	port
to	a	text	file,	so	these	values	can	be	analysed	and	processed	off-line.

	File
Writer	plugin



Input	Port	Description
input	[double]:	Input	port	for	the	values	to	be	written	to	the	text	file.



Properties
FileName	[string]:	Defines	the	name	for	the	file	where	the	input
values	are	written.	A	timestamp	indicating	year,	month,	day,	hour,
minute	and	second	of	when	the	file	is	created	is	appended	to	the	file
name	in	order	to	identify	different	recordings.



Flickering	Light	Stimulator
Component	Type:	Actuator	(Subcategory:	Brain	Computer
Interface)

This	plug-in	allows	the	user	to	interact	with	the	Flickering	Light	Stimulator
panels	by	configuring	their	properties	(stimulation	frequency,	duty	cycle,
intensity	and	colour)	and	start/stop	the	light	stimulation.	The	stimulation
frequency	of	the	panels	can	be	modified	while	the	stimulation	is	running.

Flickering	Light	Stimulator	plugin



Requirements
This	software	component	requires	at	least	one	of	the	four	Flickering	Light
Stimulator	panels	to	be	connected	to	any	available	COM	port.	The	COM
port	number	to	which	the	panels	are	connected	must	be	configured	in	the
properties	before	starting	the	plugin.

Flickering	Panels	setup



Input	Port	Description
panel1	to	panel4	[integer]:	input	ports	for	the	stimulation	frequency
of	each	panel	in	Hertz.	Their	value	ranges	from	1	to	50	Hertz.



Event	Listener	Description
startStim:	starts	the	stimulation	of	the	flickering	light	panels	when
receiving	an	event.
stopStim:	stops	the	stimulation	of	the	flickering	light	panels	when
receiving	an	event.
updateConfiguration:	updates	the	configuration	of	the	panels
(stimulation	frequency,	duty	cycle,	intensity	and	colour)	when
receiving	an	event.
startStimPeriod:	starts	a	stimulation	of	N	miliseconds.



Event	Trigger	Description
stimPeriodFinished:	an	event	is	emitted	through	this	port	when	the
stimulation	period	of	N	miliseconds	has	finished.



Properties
frequencyPanel1	[integer]:	stimulation	frequency	of	panel	1	in
Hertz.	This	property	ranges	from	1	to	50	Hertz.
frequencyPanel2	[integer]:	stimulation	frequency	of	panel	2	in
Hertz.	This	property	ranges	from	1	to	50	Hertz.
frequencyPanel3	[integer]:	stimulation	frequency	of	panel	3	in
Hertz.	This	property	ranges	from	1	to	50	Hertz.
frequencyPanel4	[integer]:	stimulation	frequency	of	panel	4	in
Hertz.	This	property	ranges	from	1	to	50	Hertz.
dcPanel1	[integer]:	duty	cycle	of	panel	1.	This	property	ranges	from
1	(short	cycle)	to	100	(large	cycle).
dcPanel2	[integer]:	duty	cycle	of	panel	2.	This	property	ranges	from
1	(short	cycle)	to	100	(large	cycle).
dcPanel3	[integer]:	duty	cycle	of	panel	3.	This	property	ranges	from
1	(short	cycle)	to	100	(large	cycle).
dcPanel4	[integer]:	duty	cycle	of	panel	4.	This	property	ranges	from
1	(short	cycle)	to	100	(large	cycle).
intPanel1	[integer]:	light	intensity	of	panel	1.	This	property	ranges
from	1	(low	intensity)	to	100	(high	intensity).
intPanel2	[integer]:	light	intensity	of	panel	2.	This	property	ranges
from	1	(low	intensity)	to	100	(high	intensity).
intPanel3	[integer]:	light	intensity	of	panel	3.	This	property	ranges
from	1	(low	intensity)	to	100	(high	intensity).
intPanel4	[integer]:	light	intensity	of	panel	4.	This	property	ranges
from	1	(low	intensity)	to	100	(high	intensity).
red	[boolean]:	presence	of	red	colour	in	all	the	panels.
blue	[boolean]:	presence	of	blue	colour	in	all	the	panels.
green	[boolean]:	presence	of	green	colour	in	all	the	panels.
comPort	[string]:	COM	port	number	to	which	the	panels	are
connected.	The	string	must	be	expressed	as	"COMx",	where	x	is	the
COM	port	number.
N	[integer]:	duration	in	miliseconds	of	the	stimulation	started	by	the
startStimPeriod	event.



FS20	Sender
Component	Type:	Actuator	(Subcategory:	Home	Control)

With	the	FS20	Sender	commands	for	the	FS20	house	automation	system
can	be	sent	over	the	PCS	device	sold	by	ELV	electronics.	See	the	ELV
FS20	homepage	for	details.

http://www.elv.de/output/controller.aspx?cid=74&detail=10&detail2=29530&flv=1&bereich=&amp:marke=


Requirements
The	PCS	sender	must	be	attached	to	the	system!

	Picture
of	the	PCS	FS20	sender



Troubleshooting	problems	under	Win8/Win8.1
Under	Windows	8	and	Windows	8.1,	there	can	be	problems	concering
the	operation	of	the	FS20	PCS	device:	If	the	red	control	led	stays	on	just
a	few	seconds	after	plugging	in	the	device,	and	then	goes	dark	and	teh
PCS	sender	cannot	be	used,	the	reason	could	be	that	the	power
management	settings	on	Win8/8.1	switch	the	device	off	per	default	-	this
can	be	changed	by	applying	the	following	steps:

Open	the	Device	Manager	(usually	can	be	selected	by	right-clicking
at	the	bottom	left	corner	of	your	windows	desktop)
Open	the	device	group	"Human	Interface	Devices"
Locate	the	device	which	pops	up	when	you	insert	or	remove	the
FS20	PCS	module	to/from	an	USB	port	It	should	be	a	"HID
compliant	supplier	defined	device".	You	can	distinguish	different
devices	by	right-clicking	a	device	and	looking	into	rider	"details"	and
"properites"	-	there	you	can	find	the	VID	and	PID	values,	e.g.	under
property	"last	known	parent"
Note	the	VID	and	PID	values.	For	example	if	you	see	a	line	like
"USB\VID_1B1F&PID;_C00F\EEE0000473"	the	values	are
VID:1B1F	and	PID:C00F
Press	the	Windows-Key	and	"R"	to	open	the	command	window.	Type
"regedit"	and	press	enter
Select	the	entry	"HKEY_LOCAL_MACHINE"	>	"SYSTEM"	>
"CurrentControlSet"	>	"Enum"	>	"USB".
In	this	list,	select	the	entry	for	the	FS20	PCS	(given	by	VID	und	PID
you	noted)
Open	the	Subfolder	"Device	Paramteters"	and	double	click	the
property	"EnhancedPowerManagementEnabled"	which	appears	in
the	right	window	section
Change	the	property	value	from	1	to	0	and	commit	by	clicking	"OK"
Restart	you	PC	-	now	hopefully	the	FS20	PCS	works	as	intended.



Input	Port	Description
houseCode	[int]:	The	houseCode	to	which	the	command	should	be
sent.	Overrides	the	houseCode	set	in	the	properties
address	[int]:	The	address	of	the	target	device.	Overrides	the
houseCode	set	in	the	properties.
action	[string]:	Action	input	to	send	commands	from	other
components	which	output	a	variable	string,	for	example	OSKA.	The
string	format	is	as	follows:	@FS20:houseCode,address,command;
e.g.@FS20:11111111,1234,18	to	send	the	toggle	command	to	the
device	with	housecode	11111111	and	address	1234.	The	delimiters
',',	'_'	and	'	'	are	allowed.	For	the	indices	of	the	commands	see	the
table	below.



Event	Listener	Description
See	table	below	for	a	list	of	all	commands	that	can	be	triggered

Command	Mapping
Command ID

Off 0
Level1 1
Leve2 2
Leve3 3
Leve4 4
Leve5 5
Leve6 6
Leve7 7
Leve8 8
Leve9 9
Level10 10
Level11 11
Level12 12
Level13 13
Level14 14
Level15 15
Level16 16
OnOldLevel 17
Toggle 18
Dim	Up 19
Dim	Down 20
Dim	Up	and	Down 21
Program	internal	timer 22
Off	for	timer	then	old	brightness	level 24
On	for	timer	then	off 25



On	old	brightness	level	for	timer	then	off 26
On	for	timer	then	old	brightness	level 30
On	for	old	level	then	previous	state 31



Properties
houseCode	[integer]:	The	default	housecode	for	the	component	if
there	is	no	on	the	input	port.
address	[integer]:	The	default	address	for	the	component	if	there	is
no	on	the	input	port.



GSM	Modem
Component	Type:	Actuator	(Subcategory:	Communication)

This	component	can	perform	send	and	receive	SMS	action	through	the
GSM	modem.

GSMModem	plugin



Requirements
A	GSM	modem	with	SMS	option	connected	to	the	platform.



Input	Port	Description
phoneID	[string]:	Phone	number	which	will	be	used	for	the	send
SMS	action.
SMSContent	[string]:	SMS	content	which	will	be	used	for	the	send
SMS	action.



Output	Port	Description
remotePhoneID	[string]:	This	is	a	phone	number	of	the	SMS
sender.
receivedSMS	[string]:	This	is	the	content	of	the	incoming	SMS.
errorNumber	[integer]:	The	number	of	the	error.



Event	Listener	Description
sendSMS:	Sends	the	SMS	message.



Event	Trigger	Description
newSMS:	There	is	a	new	message.
error:	An	error	occurred.



Properties
serialPort	[string]:	The	modem	COM	port.	If	this	parameter	is
empty,	the	component	uses	the	port	of	the	first	modem	found.
pin	[string]:The	PIN	code	for	the	SIM	card.	If	the	PIN	is	not	needed
this	property	should	be	empty.
smsCenterID	[string]:	SMS	Center	ID.	If	the	Center	ID	is	not
needed	this	property	should	be	empty.
defaultPhoneID	[string]:	This	is	a	default	phone	number,	which	will
be	used	for	the	send	SMS	actions.



Image	Box
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	Image	Box	is	a	GUI	component	which	displays	images	loaded	from
image	files.

ImageBox	plugin



Input	Port	Description
input	[string]:	The	path	of	the	image	file,	which	will	be	displayed.



Event	Listener	Description
clear:	Removes	the	image	from	the	component.



Event	Trigger	Description
clicked:	The	event	is	triggered	when	the	user	clicks	on	the
component.



Properties
caption	[string]:	Caption	of	the	component.
default	[string]:	The	path	of	the	image	file,	which	is	displayed	after
start.
backgroundColor	[integer]:	Defines	background	color.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



IR	Trans
Component	Type:	Actuator	(Subcategory:	Home	Control)

This	component	sends	transmission	commands	to	an	infrared-
transmitter.	The	different	commands	can	be	selected	by	the	different
events.	The	commands	must	be	programmed	into	the	IR-transmitter,
before	this	component	can	be	used.	Furthermore,	commands	can	also	be
sent	to	this	component's	input	port	("action").

Action	String	example:	The	action	string	starts	with	"@IRTRANS:"	and
contains	the	remote	control	name	and	the	command	name.	For	example,
if	the	IR-Transmitter	is	programmed	with	a	database	called	"LG-TV"	and
the	desired	command	is	called	"TvOn",	the	action	string	to	play	the	IR-
code	is	"@IRTRANS:	snd	LG-TV,TvOn".	
Using	the	event	based	option,	the	property	"prestring"	is	set	to	"snd	LG-
TV",	and	at	property	"send1"	is	set	to	"TvOn".

IRTrans	plugin



Requirements
The	IRTrans	module	(USB,	LAN	or	WiFi	version)	is	required.	It	can	be
purchased	from	http://www.irtrans.de.

IRTrans	universal	IR	remote	module

http://www.irtrans.de


Input	Port	Description
action[string]:	A	string,	which	will	be	sent	to	the	IRTrans	module,
must	start	with	"@IRTRANS".



Output	Port	Description
output[string]:	The	IRTrans	can	also	receive	IR-Commands.	With
the	IRTrans	Configuration	tool	string	commands	can	be	defined	for
every	received	IR-Command	which	will	be	sent	to	a	custom	UDP
server.	If	the	target	is	the	computer	where	the	ARE	runs	on,	the
given	string	will	be	received	by	this	output	port.



Event	Listener	Description
sendprop1:	sends	the	command,	stored	in	the	property	send1	to	the
IRTrans	(including	the	prestring).
...
sendprop24:	sends	the	command,	stored	in	the	property	send24	to
the	IRTrans	(including	the	prestring).



Properties
hostname[string]:	The	hostname/IP-address	of	the	IRTrans.	Use
"localhost"	if	you	have	the	IRTrans	USB	Version	(IRTrans	server	tool
must	be	running),	or	use	the	IP	address	of	your	IRTrans	LAN	or	WiFi
module.
port[string]:	The	port	of	the	IRTrans	(default	is	21000).
prestring[string]:	A	string,	being	added	before	the	strings	of
properties	send1	to	send24.	Typically	snd	or	snd	,	should	be	used.
Send1[string]:	This	string	(including	the	prestring)	will	be	sent,	if	the
event	EventProp1	will	be	triggered.
…
Send24[string]:	This	string	(including	the	prestring)	will	be	sent,	if
the	event	EventProp24	will	be	triggered.

Comment:	This	component	is	exactly	tailored	to	the	IRTrans	module	and
needs	expert	knowledge	to	be	configured.



Keyboard
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	Keyboard	component	generates	local	keyboard	input	on	the
computer	that	the	ARE	is	running	on	(per	software	emulation).	The
component	supports	key	press/release	actions	and	sending	key
sequences	and	special	keycodes.	Multiple	instances	of	the	Keyboard
component	can	be	used	to	provide	different	key	actions.

Keyboard	plugin



Requirements
No	special	hardware	or	software	required.



Input	Port	Description
keyCodes	[string]:	An	incoming	string	which	consists	of
alphanumeric	characters	and	special	key	codes.	The	keys	are
sequentially	generated	as	local	keystrokes	as	the	string	is	received,
and	as	the	sendKeys	and	other	input	related	events	of	the
component	are	being	triggered.



Event	Listener	Description
sendKeys:	An	incoming	event	at	this	port	generates	all	keycodes	of
the	keycode	string	(sequentially).
pressKey:	An	incoming	event	at	this	port	generates	a	press	(hold
and	release)	event	on	the	next	keycode	of	the	keycode	string.	After
the	last	character,	the	send	position	will	be	reset	to	the	first
character.
holdKey:	An	incoming	event	at	this	port	generates	a	hold	event	on
the	next	key	of	the	keycode	string	(the	key	is	pressed	but	not
released).	The	holdKey	listener	can	be	used	together	with	the
releaseKey	feature	to	create	long	key	presses	of	single	keys	(e.g.	of
the	cursor	keys)	to	allow	game	control	etc.
releaseKey:	An	incoming	event	at	this	port	releases	the	current	key
of	the	keycode	string.



Properties
keyCodeString	[string]:	A	string	containing	keys	and	keycodes.
Please	note	that	this	string	will	be	replaced	by	an	incoming	string	at
the	keycodes	input	port.	The	keyCodeString	can	contain
alphanumeric	characters	and	special	characters.	Special	characters
are	written	in	parentheses,	for	example	{SHIFT},	{CTRL},	{ALT},
{BACKSPACE},	{ENTER}	etc.	Modifier	keys	like	{SHIFT}	or	{ALT}
are	combined	as	they	appear	consecutively	in	the	keystring,	and	are
generated	with	the	next	printable	character.	For	example,	the
keystrings	"{SHIFT}"	or	"{CTRL}{ALT}{DEL}"	are	sent	as	single	key
values	to	the	target	computer.	For	a	description	of	the	currently
supported	special	key	codes	please	refer	to	Appendix	B	of	the	user
manual.
inputMethod	[integer]:	Declares	whether	to	use	sending	window
messages	or	system-wide	SendInput	API	function	as	the	way	how
keyboard	input	is	injected.
waitTime	[integer]:	Defines	a	number	of	milliseconds	for	a	pause
which	shall	occur	when	{WAIT}	appears	in	the	keycode	string.



KNX
Component	Type:	actuator	(Subcategory:	Home	Control)

The	KNX	plugin	enables	the	ARE	to	interface	a	KNX	installation.	This
plugin	utilizes	the	calimero	java	library	(http://calimero.sourceforge.net/)
for	the	KNX	implementation,	it	is	(C)opyrighted	2006-2008	by	W.	Kastner
and	released	under	the	GNU	General	Public	License	(FSF	v2	or	later).
The	KNX	plugin	provides	an	interface	to	the	KNX	home	automation	bus
via	a	KNXnet/IP	router.	KNX	actuators	with	specific	group	addresses	can
be	switched	on	or	off,	or	a	specific	value	can	be	sent	to	the	KNX
actuators.	This	allows	control	of	lightning,	heat	and	ventilation,	blend
control	or	other	utilization	of	other	home	automation	facilities	via	the
AsTeRICS	platform.

	KNX
plugin



Requirements
A	KNX	infrastructure
A	little	knowledge	on	KNX



Functional	Description
By	starting	the	model,	the	KNX	plugin	establishes	a	connection	to	the
KNX	gateway	specified	by	the	plugin	properties.	Currently,	this	plugin
supports	only	IP	connection	(due	to	the	limitation	of	the	underlaying
calimero	library,	USB	interfaces	will	be	supported	with	Java8).	The	plugin
has	three	different	possibilities	to	interface	KNX	datapoints:

Transmitting:	Input	ports	(slider):	Intended	for	dimming	actuators
Transmitting:	Event	Listeners:	Used	to	send	a	defined	value	(with	a
given	type)	to	a	KNX	group	address.
Transmitting:	Action	string:	The	most	flexible	way	to	send	something
to	KNX.	The	command	structure	is:	@KNX:
group_address,datapoint_type,value.	It	is	possible	to	use	either	a
space,	a	comma	or	a	number	sign	as	separation	tokens.	The
datapoint	type	is	described	later.
Receiving:	Event	Triggers:	An	event	trigger	can	be	used	to	listen	to	a
defined	KNX	group	address.	If	there	is	ANYTHING	happening	on
this	dedicated	group	address,	an	event	will	be	raised.
Receiving:	Output	ports:	The	received	value	of	a	KNX	group	address
will	be	interpreted	by	the	given	data	point	type,	parsed	to	a	string
and	sent	out	to	the	output	ports



KNX	datapoint	types
KNX	itself	doesn't	provide	any	possibilty	to	get	information	on	how	to
interpret	received	data.	This	is	the	point	where	you	need	the	datapoint
types.	There	are	a	few	main	types	and	some	sub	types.	For	example:
1.001	is	the	datapoint	type	for	a	simple	switch	actuator/sensor.	The	input
values	are	varying	on	the	different	datapoint	types.	For	the	switch
example,	the	valid	values	are	on	and	off.	The	full	list	of	all	datatypes	is
provided	by	the	ARE.	If	you	want	to	receive	a	full	list,	you	have	to	place
the	plugin	in	your	ACS	model,	connect	to	the	ARE	and	upload	the	model
(even	without	any	functionality).	Afterwards,	the	full	list	of	all	currently
supported	datapoint	types	is	available.	Every	list	entry	contains	following
information:

Description
[Minimum,Maximum	value]
(Datapoint	ID)

The	example	of	the	light	switch:
Switch[off,on]	(1.001)	The	literal	name	for	this	datapoint	type	is	"Switch"
and	its	ID	is	1.001.	Because	this	is	a	boolean	value,	off	and	on	are	the
only	valid	values.	For	float	values,	these	given	values	are	representing
the	minimum	and	the	maximum	value.



Input	Port	Description
actionString	[string]:	This	port	receives	string	commands	for	the
KNX	component.	The	commands	have	to	be	in	the	format	"@KNX:
group_address,datapoint_type,value".	The	delimiters	',',	'#'	and	'	'	are
allowed.	An	example	for	a	valid	command	is"@KNX:1/1/1,1.001,on".
As	a	valid	command	is	received	by	the	input	port,	the	value	is	sent	to
the	KNX	group	address.	The	group	addresses	comply	to	the	setup	of
the	KNX	network	which	can	be	configured	with	the	ETS	software.
slider[1-6]	[double]:	Input	port	for	a	double	value	which	is
converted	to	a	given	datapoint	(Property:	DPTSlider[1-6])	and	sent	to
the	given	KNX	group	address	(Property:	groupAddressSlider[1-6]



Output	Port	Description
data	[1-6]	[string]:	These	output	ports	are	sending	received	data
from	the	group	addresses	(Property:	groupAddressOutput[1-6]).	The
data	interpretation	is	controlled	by	the	DPT	(datapoint	type,	property:
DPTOutput[1-6])



Properties
localIP	[string]:	The	local	IP	address	of	the	interface	which	can
reach	the	KNXnetIP.
KNXNetIP	[string]:	The	destination	IP	address	of	the	KNX	gateway.
NAT	[boolean]:	Enable	NAT

groupAddress[1-6]	[string]:	(Event	Listener)	Specifies	KNX	group
addresses	for	the	[n]	Event	Listener	e.g.	"1/1/1".
dataValue[1-6]	[string]:	(Event	Listener)	Date	value,	which	should
be	sent	(triggered	by	the	input	event).	The	possible	values	are
determined	by	the	used	DPT	property	(see	the	chapter	on	datapoint
types)
DPTEvent[1-6]	[string/dropdown]:	(Event	Listener)	Specifies	the
DPT	(datapoint	type)	of	the	dataValue[1-6]	which	is	sent	to	the	KNX
group	address,	triggered	by	the	input	event.

groupAddressSlider[1-6]	[string]:	(Input	port)	Specifies	KNX	group
addresses	for	the	Slider[n].
DPTSlider[1-6]	[string/dropdown]:	(Input	port)	Determines	the
datapoint	type	corresponding	to	the	sliders	[1-6].

groupAddressTrigger[1-6]	[string]:	(Event	Trigger)	Specifies	KNX
group	addresses	for	the	Event	Trigger	[n].	The	event	is	triggered	if
ANY	action	is	happening	on	the	given	group	address.	If	you	need
additional	data	processing,	please	use	the	output	ports	and	process
the	received	data	values.

groupAddressOutput[1-6]	[string]:	(Output	port)	Specifies	the
KNX	group	adresses,	which	are	sent	to	the	output	ports.	If	there	is
anything	happening	on	the	given	group	adresses,	the	corresponding
data	is	sent	to	the	output	ports.
DPTOutput[1-6]	[string/dropdown]:	(Output	port)	Determines	the
datapoint	type	for	the	output	port.	The	received	data	interpretation	is
defined	by	the	DPTOutput	property.



Event	Listener
send[1-6]:	Each	time	an	event	is	triggered,	the	corresponding	KNX
command	which	is	specified	in	the	plugin	properties
(groupAddress[1-6],dataValue[1-6],DPTEvent[1-6]),	is	issued.
read[1-6]:	Trigger	a	read	command	on	the	output	port.	The	settings
for	the	group	address	and	the	DPT	are	the	same	as	for	the	output
ports	(groupAddressOutput[1-6],	DPTOutput[1-6]).



Event	Trigger
event_out_[1-6]:	When	there	is	any	activity	on	the	given	KNX	group
address,	set	by	the	properties	(groupAddressTrigger[1-6])	an	event
is	raised	by	this	plugin.



Legacy	Digital	Out
Component	Type:	Actuator	(Subcategory:	Generic	Control
Output)

The	DigitalOut	plugin	operates	the	output	ports	of	the	legacy	GPIO	CIM
(CIM	Id:	0x0201).	The	output	ports	1-4	are	open-collector	outputs,	where
a	pull-up	resistor	can	be	activated	or	deactivated	using	the	plugin's
properties.	The	output	ports	5-8	are	relais	outputs	where	loads	can	be
connected	via	a	galvanic	isolation	barrier.	The	plugin	provides	event
listener	ports	which	serve	the	activation	or	deactivation	of	an	output
channel,	and	a	command	port	which	accepts	string	parameters	to	set,
clear	and	toggle	particular	output	channels.

	Legacy
DigitalOut	plugin



Requirements
This	component	requires	the	GPIO	CIM	(CIM	Id:	0x0201)	to	be
connected	to	an	USB	port.

Legacy	GPIO	CIM



Input	port	Description
action	[string]:	The	plugin	reacts	to	incoming	action	strings	starting
with	"@GPIO:"	and	a	command.	Valid	commands	are	"set",	"clear",
"toggle"	and	"press".	The	command	has	to	be	followed	by	a	comma
and	the	port	number,	for	example:	"@GPIO:set,1"	or
"@GPIO:toggle,2".	The	"press"-command	toggles	the	given	output
port	two	times	with	a	delay	of	500	milliseconds.	The	following
examples	illustrate	the	available	action	strings:

"@DIGITALOUT:set,1":	Pin	1	of	the	GPIO	CIM	will	be	set
"@DIGITALOUT:clear,2":Pin	2	of	the	GPIO	CIM	will	be	cleared
"@DIGITALOUT:toggle,1":	Pin	1	of	the	GPIO	CIM	will	be
changed
"@DIGITALOUT:press,4":	Pin	4	of	the	GPIO	CIM	will	be	cleared
and	after	500ms	it	will	be	set	again



Event	Listener	Description
setOutput1	to	setOutput8:	an	incoming	event	on	these	ports	will
cause	the	corresponding	output	port	on	the	CIM	to	go	to	the	high
level.
clearOutput1	to	clearOutput8:	an	incoming	event	on	these	ports
will	cause	the	corresponding	output	port	on	the	CIM	to	go	to	the	low
level.



Properties
pullupStateOut1	to	pullupStateOut4	[boolean]:	These	properties
specify	if	the	internal	pullup	resistor	shall	be	activated	on	the
respective	open	collector	output	channels.



LineWriter
Component	Type:	Actuator	(Subcategory:	File	System)

This	component	writes	lines	from	an	input	port	to	a	text	file.

ButtonGrid	plugin



Input	port	Description
actLine	(string):	an	incoming	string	is	stored	into	the	text	file.



Properties
fileName	[string]:	The	full	path	and	file	name	of	the	text	file	to	be
written.	The	path	can	be	given	as	absolute	path	or	relative	to	the
ARE	executable's	directory
addTimeToFileName	[boolean]:	If	selected,	a	timestamp	will	be
added	to	the	filename,	to	avoid	overwriting	files
titleCaption	[string]:	if	not	empty,	this	string	parameter	will	be	used
as	first	line	in	the	file	(e.g.	to	create	table	caption	in	a	csv	file)
timestamp	[integer,	combobox	selection]:	The	type	of	timestamp
which	will	be	added	befor	each	line	(currently	either	"no	timestamp"
or	"milliseconds"	can	be	chosen).
lineEndMark	[integer,	combobox	selection]:	The	type	of	line	end
marker	which	will	be	added	to	each	line	(currently	either
"systemDefault",	"newline"	or	"carriage-return	+	newline"	can	be
chosen).
append	[boolean]:	if	selected,	the	lines	will	be	appended	to	an
existing	file.



MediaPlayer
Component	Type:	Actuator	(Subcategory:	File	System)

This	component	allows	to	play	media	files	supported	by	the	local	system.
The	supported	file	type	depends	on	the	installed	media	CODEC,	but
generally	all	media	formats	supported	by	the	VLC	player	should	work.
Please	note	that	the	VLC	player	(32	bit	version)	should	be	installed	in	the
default	location:	C:/Program	Files/VideoLan	or	C:/Program	Files
(x86)/VideoLan

MediaPlayer	plugin



Input	Port	Description
filename	[string]:	Input	port	for	the	mediafile	name.	The	file	must	be
present	in	the	filesystem	of	the	ARE.	Sending	to	this	port	will	change
the	media	file.
position	[double]:	Position	in	the	media	file	(0-100%)	-	Sending	to
this	port	will	set	the	position	in	the	media	file.
rate	[double]:	The	playback	speed	of	the	media	file	(0-500%)	-
Sending	to	this	port	will	change	the	playback	speed.



Output	Port	Description
pos	[double]:	The	current	playback	position	in	percent.



Event	Listener	Description
play:	Triggering	this	event	will	start	(or	resume)	the	mediafile
playback.
pause:	Triggering	this	event	will	pause	the	mediafile	playback.
stop:	Triggering	this	event	will	stop	the	mediafile	playback.
reset:	Triggering	this	event	will	reset	the	mediafile	playback	to
position	0.



Properties
filename	[string]:	Initial	mediafile	name.	The	file	must	be	present	in
the	filesystem	the	ARE.	This	is	a	dynamic	property:	a	synchronized
ARE	can	suggest	available	files	which	are	located	in	the	data/videos
and	data/music	subfolders	of	the	ARE.
autoplay	[boolean]:	if	selected,	the	file	will	play	automatically.
displayGUI	[boolean]:	if	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.
pathToVLC	[string]:	path	to	the	VLC	installation	(32-bit	version
needed).



Midi	Player
Component	Type:	Actuator	(Subcategory:	Audio	and	Voice)

The	MidiPlayer	component	can	generate	midi	tone	output	on	the	default
midi	device	of	the	system.	This	can	be	used	for	audio	feedback	(e.g.	for	a
selection	or	click)	or	for	creation	of	musical	instruments.	The	MidiPlayer
Plugin	features	an	optional	GUI	where	the	currently	played	tone	can	be
seen.

MidiPlayer	GUI

MidiPlayer	plugin



Input	Port	Description
trigger	[integer]:	The	input	strength	(tone	trigger).
pitch	[integer]:	The	tone	height	input.
instrument	[string]:	accepts	a	string	which	contains	a	valid
instrument	name	to	select	this	instrument
scale	[string]:	accepts	a	string	which	contains	a	tone	scale	name	to
select	this	tone	scale



Properties
midiDevice	[combobox]:	The	Midi	Output	device.	This	combobox
allows	selection	of	an	installed	Midi	device	for	tone	output.	Supports
value	suggestions	from	ARE	(dynamic	property)
channel	[combobox]:	The	midi	channel	(1-16,	10	usually	is	the
drum	channel).
instrument	[combobox]:	The	midi	instrument	or	controller	(the	first
127	selections	are	instruments,	then	127	controllers	are	available.	if
a	controller	is	selected,	the	incoming	pitch	value	is	use	as	control
change	value).	Supports	value	suggestions	from	ARE	(dynamic
property)
triggerThreshold	[integer]:	The	value	of	the	trigger	input	threshold.
Tones	will	only	be	generated	if	the	trigger	input	is	bigger	than	this
value.	If	the	trigger	inptu	is	not	used,	all	tone	heights	received	at	the
pitch	input	port	are	played	with	full	volume.
triggerMax	[integer]:	The	maximum	value	of	the	trigger	input.	This
value	influences	the	volume	of	the	played	tones:	Tones	will	get
louder	as	the	trigger	input	value	approaches	the	triggerMax	value.
pitchMin	[integer]:	The	minimum	value	for	pitch	input.	Defines	the
pitch	input	value	for	the	lowest	tone	output.
pitchMax	[integer]:	The	maximum	value	for	pitch	input	Defines	the
pitch	input	value	for	the	highest	tone	output.
toneScale	[integer]:	One	of	several	tone	scales	can	be	selected.
The	tonscales	are	stored	in	the	plugin's	subfolder	in	the	ARE.
Supports	value	suggestions	from	ARE	(dynamic	property)
playOnlyChangingNotes	[boolean]:	If	selected,	only	different	note
values	are	triggered	(else,	same	note	values	can	be	played	multiple
times)
displayGUI	[boolean]:	If	this	property	value	is	set	to	true,	the	GUI
window	for	the	MidiPlugin	will	be	displayed.	The	GUI	window	shows
the	current	tone	height	and	the	available	feedback	tone	scale.



Model	Switcher
Component	Type:	Actuator	(Subcategory:	File	System)

The	ModelSwitcher	component	allows	to	switch	from	the	running	model
to	another	model	which	will	be	deployed	and	started.	This	makes	it
possible	to	build	menus	for	different	use-cases	or	switch	from	one	use-
case	to	another.

ModelSwitcher	plugin



Input	Port	Description
modelName	[string]:	The	name	of	the	model	(including	extension,
for	example	"CameraMouse_sensitive.acs".	The	switch	is	performed
as	soon	as	the	model	name	is	received.	The	model	must	exist	in	the
ARE/models	folder	of	the	runtime	environment.



Event	Listener	Description
switchModel:	An	incoming	event	on	this	port	will	switch	to	the
default	model.



Properties
model[string]:	A	fixed	model	name	can	be	give	here.	This	model
must	exist	in	the	ARE/models	folder	of	the	runtime	environment.	The
model	switch	is	performed	when	the	switchModel	event	is	received.



Mouse
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	Mouse	component	allows	mouse	cursor	positioning	and	clicking	on
the	computer	the	ARE	is	running	on	(by	software	emulation).	The	mouse
x-position,	y-position,	press/release	actions	of	three	mouse	buttons	and
mouse-wheel	movements	can	be	controlled	via	desired	input	values	and
event	triggers.

	Mouse
plugin

Please	Note:	Mouse	emulation	on	Windows	7

The	mouse	emulation	on	Windows	7	does	not	always	work	as	expected
due	to	User	Account	Control	(UAC)	settings.	Especially	when	you	want	to
use	the	Windows	7	On-Screen-Keyboard	dragging	the	keyboard	does	not
work.	To	troubleshoot	turn	off	the	User	Account	Control	(UAC)	–	change
the	level	to	"Never	notify"

http://windows.microsoft.com/en-au/windows/turn-user-account-control-on-off#1TC=windows-7


Input	Port	Description
mouseX	[double]:	The	desired	X-Position	of	the	mouse.	This	input
port	supports	synchronization
mouseY	[double]:	The	desired	Y-Position	of	the	mouse.	This	input
port	supports	synchronization
action	[string]:	Input	port	for	a	command	string.	This	command
string	allows	to	modify	the	action	of	the	next	left	mouse	click	-	it	can
be	set	to	trigger	other	types	of	mouse	clicks.	A	command	string	may
be	composed	of	several	items	that	are	delimited	by	','	or	'	'.	Following
command	strings	are	accepted:

"@MOUSE:nextclick,right":	next	left	click	event	will	create	a	right
mouse	button	click.
"@MOUSE:nextclick,double":	next	left	click	event	will	create	a
double	click.
"@MOUSE:nextclick,middle":	next	left	click	event	will	create	a
middle	button	click
"@MOUSE:nextclick,drag":	next	left	click	event	will	hold	the	left
mouse	button.
"@MOUSE:nextclick,release":	next	left	click	event	will	release
the	left	mouse	button.
"@MOUSE:action,enable":	enables	all	mouse	actions.
"@MOUSE:action,disable":	disables	all	mouse	actions.
"@MOUSE:action,toggle:	enables	/	disables	all	mouse	actions.



Event	Listener	Description
leftClick:	An	incoming	event	at	this	port	creates	a	mouse	button
click.	A	left	mouse	button	click	will	be	generated,	unless	a	valid
"nextclick..."	command	has	been	received	at	the	cmd	input	which
changed	the	click	type	(see	above).
middleClick:	A	click	with	the	middle	mouse	button	is	generated.
rightClick:	A	click	with	the	right	mouse	button	is	generated.
doubleClick:	A	double	click	with	the	left	mouse	button	is	generated.
dragPress:	The	left	mouse	button	is	pressed	(but	not	released
again).
dragRelease:	The	left	mouse	button	is	released.
wheelUp:	The	mouse	wheel	is	turned	one	position	from	the	user.
wheelDown:	The	mouse	wheel	is	turned	one	position	to	the	user.
activate:	enables	all	mouse	actions.
deactivate:	disables	all	mouse	actions.
toggle:	enables	/	disables	all	mouse	actions.
absolutePosition:after	this	event	is	triggered	the	incoming	values
for	mouseX	and	mouseY	are	interpreted	as	absolute	movement
information
relativePosition:after	this	event	is	triggered	the	incoming	values	for
mouseX	and	mouseY	are	interpreted	as	relative	movement
information
nextClickRight	next	left	click	event	will	create	a	right	mouse	button
click.
nextClickDouble	next	left	click	event	will	create	a	double	click.
nextClickMiddlenext	left	click	event	will	create	a	middle	button	click
nextClickDrag	next	left	click	event	will	hold	the	left	mouse	button.
nextClickRelease	next	left	click	event	will	release	the	left	mouse
button.



Properties
enableMouse	[boolean]:	The	value	of	this	property	specifies	if	all
mouse	actions	are	bypassed	(false)	or	enabled	(true).
absolutePosition	[boolean]:	If	this	property	value	is	set	to	false,
incoming	values	at	the	mouseX	and	mouseY	input	ports	are
interpreted	as	relative	movement	information.	The	values	are
summed	up	(integrated)	to	calculate	the	absolute	position.	If	the
property	value	is	set	to	true,	the	values	of	the	input	ports	are	treated
as	absolute	x/y	positions.
xMin	[integer]:	The	minimum	value	for	the	X-coordinate	(the	mouse
will	not	move	farther	to	the	left).
xMax	[integer]:	The	maximum	value	for	the	X-coordinate	(the
mouse	will	not	move	farther	to	the	right).	If	the	xMax	property	is	set
to	0,	the	horizontal	screen	resoltion	will	be	assumed	as
maximum	x-position	for	the	mouse	cursor.
yMin	[integer]:	The	minimum	value	for	the	Y-coordinate	(the	mouse
will	not	move	farther	up).
yMax	[integer]:	The	maximum	value	for	the	Y-coordinate	(the
mouse	will	not	move	farther	down)	If	the	yMax	property	is	set	to	0,
the	vertical	screen	resoltion	will	be	assumed	as	maximum	y-
position	for	the	mouse	cursor..



Mousecursor	Icon
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	MousecursorIcon	plugin	can	be	used	to	modifiy	the	current	default
system	mouse	cursor	icon.	A	number	of	icon	file	names	can	be	given	as
properties	and	activated	by	corresponding	event	listener	ports.	Currently,
only	the	default	system	cursor	can	be	modified.	The	cursor	is	restored	to
the	default	arrow	when	the	model	is	stopped.

MousecursorIcon	plugin



Input	Port	Description
iconName	[strig]:	This	input	port	accepts	a	filename,	the	plugin	tries
to	load	a	cursor	file	with	this	name	from	the	local	plugin	working
directory.



Event	Listener	Description:
setIcon1	-	setIcon9:	an	incoming	events	sets	the	given	cursor	as
new	system	cursor.



Properties
iconName1	-	iconName9	[string]:	9	slots	for	cursor	file	names.



Net	Connection
Component	Type:	Actuator	(Subcategory:	Communication)

This	component	provides	interface	to	pass	the	data	through	the	network.
It	allows	to	pass	data	to	the	another	NetConnection	component	or	to	the
application	which	uses	the	NetConnection	Native	ASAPI	library.

NetConnection	plugin



Input	Port	Description
integerInputPort1...integerInputPort5	[integer]:	The	integer
values	which	are	passed	to	these	ports	are	sent	to	the	remote
receiver.
doubleInputPort1...doubleInputPort5	[double]:	The	double	values
which	are	passed	to	these	ports	are	sent	to	the	remote	receiver.
stringInputPort1...stringInputPort5	[string]:	The	text	values	which
are	passed	to	these	ports	are	sent	to	the	remote	receiver.



Output	Port	Description
integerOutputPort1...integerOutputPort5	[integer]:	The	output
ports	for	the	integer	values	received	from	the	remote	sender.
doubleOutputPort1...doubleOutputPort5	[double]:	The	output
ports	for	the	double	values	received	from	the	remote	sender.
stringOutputPort1...stringOutputPort5	[string]:	The	output	ports
for	the	text	values	received	from	the	remote	sender.



Event	Listener	Description
inputEvent1...inputEvent10:	The	events	which	are	sent	to	the
remote	receiver.



Event	Trigger	Description
outputEvent1...outputEvent10:	The	events	received	from	the
remote	sender.



Properties
connectionType	[integer]:	Describes	connection	mode:	client	or
server.
IP	[string]:	The	IP	address	of	the	remote	server.
port	[integer]:	Port	used	in	IP/TCP	connection.
multisession	[boolean]:	If	the	plugin	is	set	to	work	as	the	server
and	this	property	is	set,	the	plugin	can	connect	to	more	than	one
client.



Osc	Out	Client
Component	Type:	actuator	(Subcategory:	Communication)

The	OscOutClient	plugin	enables	the	ARE	to	broadcast	messages	using
the	OpenSoundControl	(OSC)	protocol.	This	plugin	utilizes	the	NetUtil
java	library	(http://www.sciss.de/netutil/)	for	the	OSC	implementation,	it	is
(C)opyrighted	2004-2011	by	Hanns	Holger	Rutz	and	released	under	the
GNU	Lesser	General	Public	License.

OscOutClient	plugin



Requirements
Nothing,	works	sand-alone	within	ARE
Check	your	firewall	configuration	and	network	settings	to	ensure	that
OSC	messages	are	not	blocked.



Functional	Description
The	OscOutClient	collects	data	form	the	inputs	CH1-4	and	assamble	it	to
one	OSC	message	with	4	arguments.	The	address	for	the	OSC	channel
is	set	by	the	property	AddressCh1.	Furthermore	the	plugin	has	a	StringIN
input	port.	If	the	plugin	receives	a	string	it	broadcast	one	OSC	message
with	one	string	argument.	The	address	for	the	string	OSC	channel	is	set
by	the	property	AddressStringCh.



Input	Port	Description
CH[1-4]	[double]:	Input	port	for	the	data,	eg.	a	oszilloscope	or	any
other	double	value.



Properties
Port	[integer]:	This	value	specifies	the	OscOutClient	port.
PeerAddress	[string]:	Specifies	the	IP	where	the	OSC	server	is
listening.
AddressCH1	[string]:	This	value	specifies	the	OSC	data	output
address	e.g.	"/path/to/receiver/accxyz".
AddressStringCh	[string]:	This	value	specifies	the	OSC	string
output	address.



Referred	Plugins
OscServer
OpenVibe
OscGestureFollower



Oscilloscope
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	Oscilloscope	provides	graphical	output	of	one	or	two	signal	values.	It
is	a	very	basic	implementation	but	useful	to	visualize	sensor	values,
changes	in	values	and	value	history.	The	trace	colours	and	update	speed
can	be	configured	via	component	parameters.

Oscilloscope	plugin



Input	Port	Description
in	[double]:	The	input	signal	for	the	oscilloscope.



Properties
displayBuffer	[integer]:	This	property	value	specifies	how	often	the
oscilloscope	window	is	drawn.	For	example	if	the	display	buffer	size
is	0,	the	oscilloscope	traces	are	redrawn	at	every	incoming	value.	If
the	display	buffer	size	is	set	to	10,	10	values	are	stored	in	a	buffer
and	drawn	at	once	as	the	tenth	value	is	received.	This	significantly
reduces	the	computational	resources	spent	for	drawing	the
oscilloscope,	which	is	useful	especially	at	high	update	rates.
drawingMode	[integer]:	Declares	whether	the	y	axis	is	adapting	to
mininum	and	maximum	values	automatically	or	to	stay	in	preset
bounds.
displayMode	[integer]:	Affects	the	time	when	oscilloscope	is
redrawn.	Can	be	set	to	the	values	"redraw	on	incoming	samples"	or
"redraw	periodically".
drawInterval	[integer]:	Redraw	interval	in	milliseconds	(if	periodic
drawing	is	used).
min	[integer]:	Preset	minimum	value	for	y	axis	of	oscilloscope.
max	[integer]:	Preset	maximum	value	for	y	axis	of	oscilloscope.
gridColor	[integer]:	The	colour	of	the	value-grid.
channelColor	[integer]:	The	colour	of	the	signal	trace	for	the
channel.
backgroundColor	[integer]:	The	colour	of	the	background	of	the
oscilloscope	window.
fontSize	[integer]:	The	size	of	the	oscilloscope's	caption.
caption	[string]:	The	caption	to	be	displayed	on	the	oscilloscope.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Phone	Control
Component	Type:	Actuator	(Subcategory:	Phone	Interface)

This	component	controls	a	mobile	phone	with	Windows	Mobile	operating
system	(v.	5.0	and	above)	through	a	Bluetooth	connection.	Currently
supported	functions	are:	Calling	a	phone	number	and	accepting	an
incoming	call,	sending	and	receiving	SMS	messages.	These	functions
can	either	be	triggered	by	incoming	events	or	by	sending	string
commands	to	the	phone	plugin.

PhoneControl	plugin



Requirements
A	Phone	running	Windows	Mobile,	a	Bluetooth	dongle	or	Bluetooth	HW
support,	Microsoft	Bluetooth	stack	active.	AsTeRICS	Phone	server
application	running	on	the	mobile	phone.



Input	Port	Description
phoneID	[string]:	This	is	the	phone	number	which	will	be	used	for
actions	like:	send	SMS,	make	phone	call.
SMSContent	[string]:	This	is	the	SMS	content	which	will	be	used
for	sending	SMS	action.
command	[string]:	String	command	that	can	be	sent	to	this
component	from	other	plugins	to	trigger	phone	actions.	Currently
supported	commands	are:

@PHONE:	SMS:Phone_ID,	"Message_content"
@PHONE:	CALL:	Phone_ID
@PHONE:	ACCEPT
@PHONE:	DROP



Output	Port	Description
remotePhoneID	[string]:	This	is	a	phone	number	of	the	caller	or
SMS	sender.
receivedSMS	[string]:	This	is	the	content	of	the	incoming	SMS.
errorNumber	[integer]:	The	number	of	the	error.



Event	Listener	Description
sendSMS:	Sends	SMS.
makePhoneCall:	Makes	the	phone	call.
acceptPhoneCall:	Accepts	the	incoming	phone	call.
dropPhoneCall:	Drops	the	phone	call.
reconnect:	Reconnects	the	phone.



Event	Trigger	Description
idleState:	Phone	is	in	the	idle	state.
ringState:	Phone	is	in	the	ring	state.
connectedState:	Phone	is	connected	with	the	remote	phone.
newSMS:	There	is	a	new	SMS.
error:	The	error	occurs.



Properties
defaultPhoneID	[string]:	This	is	a	default	phone	number,	which	will
be	used	for	send	SMS	and	make	phone	call	actions.
bluetoothPhoneName	[string]:	This	is	a	Bluetooth	name	of	the
phone	which	the	component	will	connect.
port	[integer]:	This	is	a	Bluetooth	port	number.



Platform	Digital	Out
Component	Type:	Actuator	(Subcategory:	Personal
Platform)

The	PlatformDigitalOut	plugin	operates	the	output	ports	of	the	AsTeRICS
Personal	Platform.	The	output	ports	1-2	are	open-collector	outputs	with	a
deactivated	pull-up	resistor.

PlatformDigitalOut	plugin



Requirements
This	component	requires	the	Core	CIM	(CIM	Id:	0x0602)	of	the
AsTeRICS	Personal	Platform.

The	AsteRICS	Personal	Platform



Input	Port	Description
command	[string]:	The	plugin	reacts	to	incoming	action	strings
starting	with	"@GPIO:"	and	a	command.	Valid	commands	are	"set",
"clear",	"toggle"	and	"press".	The	command	has	to	be	followed	by	a
comma	and	the	port	number,	for	example:	"@GPIO:set,1"	or
"@GPIO:toggle,2".	The	following	examples	illustrate	the	available
action	strings:

"@DIGITALOUT:set,1":Output	port	1	of	the	Personal	Platform
will	be	set	(5	Volt)
"@DIGITALOUT:clear,2":Output	port	2	of	the	Personal	Platform
will	be	cleared	(0	Volt)
"@DIGITALOUT:toggle,1":Output	port	1	of	the	Personal
Platform	will	be	changed



Event	Listener	Description
setOutput1	to	setOutput2:	an	incoming	event	on	these	ports	will
cause	the	corresponding	output	port	to	go	to	the	high	level.
clearOutput1	to	clearOutput2:	an	incoming	event	on	these	ports
will	cause	the	corresponding	output	port	to	go	to	the	low	level.



Platform	LCD
Component	Type:	Actuator	(Subcategory:	Personal
Platform)

The	PlatformLCD	component	handles	interaction	with	the	display	and	the
input	buttons	of	the	AsTeRICS	Personal	Platform.	The	component	allows
other	components	to	send	messages	to	the	display.

PlatformLCD	plugin



Requirements
This	component	requires	the	Core	CIM	(CIM	Id:	0x0601)	of	the
AsTeRICS	Personal	Platform.

The	AsteRICS	Personal	Platform



Input	Port	Description
input	[string]:	The	Input	of	the	port	will	be	displayed	on	the	Core
CIM's	display



Pong
Component	Type:	Actuator	(Subcategory:	Others)

The	Pong	component	is	an	implementation	of	the	classic	"pong"-game,
where	two	players	control	their	paddles	and	try	to	hit	a	moving	ball.	The
Pong	component	offers	different	input	modalities	(speed	or	event-based)
so	that	the	game	can	be	played	via	a	wide	range	(and	combination	of)
sensors.	Two	users	can	play	the	game	using	different	sensors.	Several
game	options	can	be	controlled	by	the	plugin	properties.

	Pong
plugin



Pong	game	screen



Application
A	special	"bike-Pong"	interface	has	been	developed	at	UAS	Technikum
Wien,	which	allows	playing	the	game	via	bicycle	ergometers.	For	this
purpose,	the	Arduino	microcontroller	(and	corresponding	plugin)	are
utilized	to	measure	the	user	interactions	and	deliver	the	data	to	the	Pong
plugin.	The	energy	created	by	the	pong-players	can	be	calculated	in
calories	(this	mode	makes	only	sense	when	the	bike-ergonometers	are
connected,	see	properties)	Please	note	that	the	bike	mode	only	works
well	with	a	screen	resolution	of	1920x1090	because	of	the	utilized
background	graphics.

bike-ergomenter	controlled	pong	game



Input	Port	Description
playerOnePos	[integer]:	This	input	port	defines	the	position	of
player	one's	paddle	(0	to	300)
playerTwoPos	[integer]:	This	input	port	defines	the	position	of
player	two's	paddle	(0	to	300)
playerOneSpeed	[integer]:	This	input	port	defines	the	speed	of
player	one's	paddle	(-10	to	10)
playerTwoSpeed	[integer]:	This	input	port	defines	the	speed	of
player	two's	paddle	(-10	to	10)



Event	Listener	Description
startGame:	An	incoming	event	starts/restarts	the	game
playerOneToggleDirection:	An	incoming	event	changes	the
direction	of	player	one's	paddle	(only	relevant	for	event-based
paddle	control	mode).
playerTwoToggleDirection:	An	incoming	event	changes	the
direction	of	player	two's	paddle	(only	relevant	for	event-based	paddle
control	mode).
playerOneMovement:	An	incoming	event	moves	player	one's
paddle	one	step	(only	relevant	for	event-based	paddle	control
mode).	This	input	is	also	used	for	the	calculation	of	the	total	amount
of	engery.
playerTwoMovement:	An	incoming	event	moves	player	two's
paddle	one	step	(only	relevant	for	event-based	paddle	control
mode).	This	input	is	also	used	for	the	calculation	of	the	total	amount
of	engery.



Properties
controlMode	[combobox	selection]:	selects	the	mode	for
controlling	the	paddle	positions.	possible	selections	are:	absolute
position	(via	input	port),	speed	(via	input	port)	or	single	events.
speedStep	[double]:	defines	the	amount	of	movement	caused	by
one	event.
goalsToWin	[double]:	number	of	goals	to	win	a	game	(player	lives).
eventsToCaloryMultiplier	[double]:	factor	to	calculate	energy	(in
calories)	from	incoming	events	(especially	for	the	bike	ergometer
application)	Setting	this	property	value	to	0	deactivates	the	energy
calculation	and	the	respective	game	report	screens	(default).
goalScoreBase	[integer]:	game	points	for	one	goal.
touchScoreBase	[integer]:	game	points	for	one	ball	hit.
resetWaitTime	[integer]:	time	to	wait	before	resetting	game	screen.
maxSpeed	[double]:	the	maximum	speed	of	the	ball.
minXSpeed	[double]:	the	minimum	X	speed	of	the	ball	(to	avoid
deadlocks	of	the	gameplay).
reflectionYImpulse	[double]:	speed	impluse	gained	from	a	vertical
reflection	of	the	ball.
soundFilePaddleTouch	[string]:	a	wav	file	which	is	played	when
the	ball	touches	a	paddle.
soundFileBoundsTouch	[string]:	a	wav	file	which	is	played	when
the	ball	touches	the	vertical	bounds.
soundFileGoal	[string]:	a	wav	file	which	is	played	when	a	player
missed	a	ball.
soundFileEndGame	[string]:	a	wav	file	which	is	played	when	the
game	is	over.



Remote	Joystick
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	RemoteJoystick	component	interfaces	the	AsTeRICS	Personal
Platform	to	a	second	computer	via	the	HID	actuator	CIM	(USB	dongle,
plugged	into	the	target	computer).	The	HID	actuator	emulates	a	standard
HID	Joystick	device	on	the	target	computer	(no	special	driver	software	is
needed).	The	Joystick	controller	is	compatible	to	the	Playstation3	SixAxis
controller	and	can	be	used	for	PS3	game	interfacing.	The	X/Y	axis
represent	the	left	stick,	the	Z/R	axis	represent	the	right	sick.	The	button
numbers	correspond	to	the	PS3-controller	buttons	as	labeled	in	the	event
port	descriptions.	The	Joystick	analog	positions,	the	Point-Of-View	angle
and	up	to	13	Buttons	can	be	emulated	via	desired	input	values	and	event
triggers.	Note	that	multiple	instances	of	the	Remote-components
(RemoteJoystick,	RemoteKeyboard	and	RemoteMouse)	can	be	used
concurrently	with	one	HID	actuator	USB	dongle,	e.g.	to	provide	different
actions	from	up	to	three	different	input	devices	on	the	target	computer.

RemoteJoystick	plugin



Requirements
The	HID	Actuator	CIM	(CIM	ID	0x0101)	has	to	be	plugged	into	a	free
USB	port	of	the	target	computer	and	the	cable	has	to	be	connected	to	the
AsTeRICS	platform.

the	HID	Actuator	plugs	into	the	target	computer	and	connects	via	Bluetooth	wirelessly	to
the	ARE



Input	Port	Description
joystickX	[integer]:	The	desired	X-Position	of	the	Joystick.
joystickY	[integer]:	The	desired	Y-Position	of	the	Joystick.
joystickZ	[integer]:	The	desired	Z-Position	of	the	Joystick.
joystickR	[integer]:	The	desired	R-Position	of	the	Joystick.
joystickPov	[integer]:	The	desired	POV-angle	of	the	Joystick.



Event	Listener	Description
pressButton1	-	pressButton13:	An	incoming	event	at	this	port
causes	the	corresponding	button	of	the	Joystick	to	be	pressed.
releaseButton1	-	releaseButton13:	An	incoming	event	at	this	port
causes	the	corresponding	button	of	the	Joystick	to	be	released.



Properties
refreshInterval	[integer]:	This	property	value	sets	a	minimum	time
(in	milliseconds)	between	two	updates	of	the	remote	joystick	device.
If	set	to	0,	no	limit	is	given	to	the	update	rate	-	which	should	be	okay
unless	very	high	update	rates	(>100	Hz)	of	the	joystick	angles	are
performed.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



Remote	Keyboard
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	RemoteKeyboard	component	interfaces	the	AsTeRICS	Personal
Platform	to	a	second	computer	via	the	HID	actuator	CIM	(USB	dongle,
plugged	into	the	target	computer).	The	HID	actuator	emulates	a	standard
USB	keyboard	device	on	the	target	computer	(no	special	driver	software
is	needed).	The	component	supports	key	press/release	actions	and
sending	key	sequences	and	special	keycodes.	Note	that	multiple
instances	of	the	Remote-components	(RemoteJoystick,
RemoteKeyboard	and	RemoteMouse)	can	be	used	concurrently	with	one
HID	actuator	USB	dongle,	e.g.	to	provide	different	actions	for	up	to	three
different	input	devices	on	the	target	computer.

RemoteKeyboard	plugin



Requirements
The	HID	Actuator	CIM	(CIM	ID	0x0101)	has	to	be	plugged	into	a	free
USB	port	of	the	target	computer	and	the	cable	has	to	be	connected	to	the
AsTeRICS	platform.

the	HID	Actuator	plugs	into	the	target	computer	and	connects	via	Bluetooth	wirelessly	to
the	ARE



Input	Port	Description
keyCodes	[string]:	An	incoming	string	which	consists	of
alphanumeric	characters	and	special	key	codes.	The	keys	are
sequentially	sent	to	the	target	computer	via	the	HID	actuator	as	the
string	is	received	and	as	the	elp_sendkey(s)	events	of	the
component	are	being	triggered.



Event	Listener	Description
sendKeys:	An	incoming	event	at	this	port	sends	the	whole	keycodes
string	to	the	target	computer.	The	key	will	be	released	immediately
after	it	has	been	pressed.
pressKey:	An	incoming	event	at	this	port	sends	the	next	keycode	of
the	keycode	string	to	the	target	computer.	After	the	last	character,
the	send	position	will	be	reset	to	the	first	character.
holdKey:	An	incoming	event	at	this	port	holds	the	current	key	of	the
keycode	string	on	the	target	computer	(the	key	is	pressed	but	not
released).	The	holdKey	function	can	be	used	together	with	the
releaseKey	function	to	create	long	key	presses	of	single	keys	(e.g.	of
the	cursor	keys)	to	allow	game	control	etc.
releaseKey:	An	incoming	event	at	this	port	releases	the	current	key
of	the	keycode	string	on	the	target	computer.



Properties
keyCodeString	[string]:	A	string	containing	keys	and	keycodes.
Please	note	that	this	string	will	be	replaced	by	an	incoming	string	at
the	keycodes	input	port.	The	keycode-string	can	contain
alphanumeric	characters	and	special	characters.	Special	characters
are	written	in	parentheses,	for	example	{SHIFT},	{CTRL},	{ALT},
{BACKSPACE},	{ENTER}	etc.	Modifier	keys	like	{SHIFT}	or	{ALT}
are	combined	as	they	appear	consecutively	in	the	keystring,	and	are
sent	with	the	next	a	printable	character.	For	example,	the	keystrings
"{SHIFT}a"	or	"{CTRL}{ALT}{DEL}"	are	sent	as	single	key-values	to
the	target	computer.
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



Remote	Mouse
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	RemoteMouse	component	interfaces	the	AsTeRICS	Personal
Platform	to	a	second	computer	via	the	HID	actuator	CIM	(USB	dongle,
plugged	into	the	target	computer).	The	HID	actuator	emulates	a	standard
USB	mouse	on	the	target	computer	(no	special	driver	software	is
needed).	The	mouse	x-position,	y-position,	press/release	actions	of	three
mouse	buttons	and	mouse-wheel	movements	can	be	controlled	via
desired	input	values	and	event	triggers.	Note	that	multiple	instances	of
the	Remote	components	(RemoteJoystick,	RemoteKeyboard	and
RemoteMouse)	can	be	used	concurrently	with	one	HID	actuator	USB
dongle,	e.g.	to	provide	different	key	actions	for	up	to	three	different	input
devices	on	the	target	computer.

RemoteMouse	plugin



Requirements
The	HID	Actuator	CIM	(CIM	ID	0x0101)	has	to	be	plugged	into	a	free
USB	port	of	the	target	computer	and	the	cable	has	to	be	connected	to	the
AsTeRICS	platform.

the	HID	Actuator	plugs	into	the	target	computer	and	connects	via	Bluetooth	wirelessly	to
the	ARE



Input	Port	Description
mouseX	[integer]:	The	desired	X-Position	of	the	mouse.	This	input
port	supports	synchronization
mouseY	[integer]:	The	desired	Y-Position	of	the	mouse.	This	input
port	supports	synchronization
action	[string]:	Input	port	for	a	command	string.	This	command
string	allows	to	modify	the	action	of	the	next	left	mouse	click.	It	can
be	set	to	trigger	other	types	of	mouse	clicks.	A	command	string	may
be	composed	of	several	items	that	are	delimited	by	','	or	'	'.	Following
command	strings	are	accepted:

"@MOUSE:	nextclick,	right":	next	left	click	event	will	create	a
right	mouse	button	click.
"@MOUSE:	nextclick,	double":	next	left	click	event	will	create	a
double	click.
"@MOUSE:	nextclick,	middle":	next	left	click	event	will	create	a
middle	button	click.
"@MOUSE:	nextclick,	drag":	next	left	click	event	will	hold	the	left
mouse	button.
"@MOUSE:	nextclick,	release":	next	left	click	event	will	release
the	left	mouse	button.
"@MOUSE:	action,	enable":	enables	all	mouse	actions.
"@MOUSE:	action,	disable":	disables	all	mouse	actions.
"@MOUSE:	action,	toggle":	enables	/	disables	all	mouse
actions.



Event	Listener	Description
leftClick:	An	incoming	event	at	this	port	creates	a	mouse	button
click.	A	left	click	will	be	generated,	unless	a	valid	"nextclick	…"
command	has	been	received	at	the	cmd	input	which	changed	the
type	of	the	click	(see	above).
middleClick:	A	click	with	the	middle	mouse	button	is	generated.
rightClick:	A	click	with	the	right	mouse	button	is	generated.
doubleClick:	A	double	click	with	the	left	mouse	button	is	generated.
dragPress:	The	left	mouse	button	is	pressed	(but	not	released
again).
dragRelease:	The	left	mouse	button	is	released.
wheelUp:	The	mouse	wheel	is	turned	one	position	from	the	user.
wheelDown:	The	mouse	wheel	is	turned	one	position	to	the	user.
nextClickRight	next	left	click	event	will	create	a	right	mouse	button
click.
nextClickDouble	next	left	click	event	will	create	a	double	click.
nextClickMiddlenext	left	click	event	will	create	a	middle	button	click
nextClickDrag	next	left	click	event	will	hold	the	left	mouse	button.
nextClickRelease	next	left	click	event	will	release	the	left	mouse
button.



Properties
absolutePosition	[boolean]:	Currently	not	supported.	All	mouse
position	input	values	are	interpreted	as	relative	changes	of	the
position	(X-	and	Y-movement).
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



Remote	Tablet
Component	Type:	Actuator	(Subcategory:	Input	Device
Emulation)

The	RemoteTablet	component	interfaces	the	AsTeRICS	Personal
Platform	to	a	second	computer	via	the	HID	actuator	CIM	(USB	dongle,
plugged	into	the	target	computer).	This	plugins	performs	similar	like	the
RemoteMouse	plugin,	with	the	difference	that	the	coorindates	are	set
absolutely	via	the	table	devie,	not	relatively	like	a	mouse	device	works.
The	HID	actuator	emulates	a	standard	USB	Tablet	on	the	target
computer	(no	special	driver	software	is	needed).	The	Tablet	x-position,	y-
position,	press/release	actions	of	Tablet	buttons	and	wheel	movements
can	be	controlled	via	desired	input	values	and	event	triggers.	Note	that
multiple	instances	of	the	Remote	components	(RemoteJoystick,
RemoteKeyboard,	RemoteMouse	and	RemoteTablet)	can	be	used
concurrently	with	one	HID	actuator	USB	dongle,	e.g.	to	provide	different
key	actions	for	up	to	four	different	input	devices	on	the	target	computer.

RemoteTablet	plugin



Requirements
The	HID	Actuator	CIM	(CIM	ID	0x0101)	has	to	be	plugged	into	a	free
USB	port	of	the	target	computer	and	the	cable	has	to	be	connected	to	the
AsTeRICS	platform.

the	HID	Actuator	plugs	into	the	target	computer	and	connects	via	Bluetooth	wirelessly	to
the	ARE



Input	Port	Description
mouseX	[integer]:	The	desired	X-Position	of	the	cursor.	This	input
port	supports	synchronization
mouseY	[integer]:	The	desired	Y-Position	of	the	cursor.	This	input
port	supports	synchronization
action	[string]:	Input	port	for	a	command	string.	This	command
string	allows	to	modify	the	action	of	the	next	left	Tablet	click	¡V	it	can
be	set	to	trigger	other	types	of	Tablet	clicks.	Following	command
strings	are	accepted:

"@Mouse:	nextclick,	right":	next	left	click	event	will	create	a	right
Mouse	button	click.
"@Mouse:	nextclick,	double":	next	left	click	event	will	create	a
double	click.
"@Mouse:	nextclick,	middle":	next	left	click	event	will	create	a
middle	button	click.
"@Mouse:	nextclick,	drag":	next	left	click	event	will	hold	the	left
Mouse	button.
"@Mouse:	nextclick,	release":	next	left	click	event	will	release
the	left	Mouse	button.
"@Mouse:	action,	enable":	enables	all	Mouse	actions.
"@Mouse:	action,	disable":	disables	all	Mouse	actions.
"@Mouse:	action,	toggle":	enables	/	disables	all	Mouse	actions.



Event	Listener	Description
leftClick:	An	incoming	event	at	this	port	creates	a	Mouse	button
click.	A	left	click	will	be	generated,	unless	a	valid	"nextclick	…"
command	has	been	received	at	the	cmd	input	which	changed	the
type	of	the	click	(see	above).
middleClick:	A	click	with	the	middle	Mouse	button	is	generated.
rightClick:	A	click	with	the	right	Mouse	button	is	generated.
doubleClick:	A	double	click	with	the	left	Mouse	button	is	generated.
dragPress:	The	left	Mouse	button	is	pressed	(but	not	released
again).
dragRelease:	The	left	Mouse	button	is	released.
wheelUp:	The	Mouse	wheel	is	turned	one	position	from	the	user.
wheelDown:	The	Mouse	wheel	is	turned	one	position	to	the	user.
nextClickRight	next	left	click	event	will	create	a	right	mouse	button
click.
nextClickDouble	next	left	click	event	will	create	a	double	click.
nextClickMiddlenext	left	click	event	will	create	a	middle	button	click
nextClickDrag	next	left	click	event	will	hold	the	left	mouse	button.
nextClickRelease	next	left	click	event	will	release	the	left	mouse
button.



Properties
absolutePosition	[boolean]:	Currently	not	supported.	All	Mouse
position	input	values	are	interpreted	as	relative	changes	of	the
position	(X-	and	Y-movement).
uniqueId:	unique	number	of	the	CIM	-	if	more	than	one	CIMs	of	the
same	type	are	used.	The	module	flashes	a	LED	for	identification
when	the	ID	is	selected.	Supports	value	suggestions	from	ARE
(dynamic	property)



RemoteWindow
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

This	component	allows	moving	or	setting	the	state	of	a	specific	window
(which	is	active	and	can	be	identified	via	the	window	title)	to	desired
locations	on	the	screen.	Several	default	locations	can	be	selected	via
incoming	events	(top,	left,	bottom,	right	or	center	of	the	screen).	X-	and	Y-
offset	values	can	be	defined	-	thus	it	becomes	possible	to	move	the
remote	window	e.g	to	a	second	screen.

RemoteWindow	plugin



Input	Port	Description
xPos	[integer]:	The	x	offest	value	for	positioning	the	window
yPos	[integer]:	The	y	offest	value	for	positioning	the	window



Event	Listener	Description
moveToTop:	moves	the	window	to	the	top	of	the	screen	(y	offset	will
be	applied).	The	x	position	will	not	be	changed.
moveToBottom:	moves	the	window	to	the	bottom	of	the	screen	(y
offset	will	be	applied).	The	x	position	will	not	be	changed.
moveToLeft:	moves	the	window	to	the	left	side	of	the	screen	(x
offset	will	be	applied).	The	y	position	will	not	be	changed.
moveToRight:	moves	the	window	to	the	right	side	of	the	screen	(x
offset	will	be	applied).	The	y	position	will	not	be	changed.
moveToCenter:	moves	the	window	to	the	center	of	the	screen	(x
and	y	offsets	will	be	applied).
minimize:	minimizes	the	window	to	the	taskbar
restore:	restores	the	window	from	the	taskbar
bringToFront:	places	the	window	on	top	of	other	windows
moveNow:	moves	the	window	to	the	selected	xPos	and	yPos
positions



Properties
windowName	[string]:	the	window	title	/	name
mode	[integer,	combobox	selection]:	the	search	mode	for	finding
the	window.	If	"exact	match"	is	selected,	the	window	title	must	be
exactly	the	same	as	the	given	name.	If	"contains	text"	is	selected,
the	any	window	title	which	contains	the	given	text	will	be	found.	Note
that	both	modes	are	case-sensitive	!
xPos	[integer]:	default	value	for	the	x	offset
yPos	[integer]:	default	value	for	the	y	offset
autoSetPosition	[boolean]:	if	selected,	the	position	of	the	window
will	be	set	to	xPos/yPos	at	startup



SerialSender
Component	Type:	Actuator	(Subcategory:	Serial
Communication)

The	Serialsender	can	be	used	to	send	structured	data	to	Serial	devices.
It	has	16	data	slots.	Whenever	a	send	event	occurs	the	plugin	sends
every	slot	which	is	active	to	the	device,	beginning	with	slot0

SerialSender	plugin



Input	Port	Description
slot0	-	slot15	[int]:	Input	data	for	each	slot.	The	lower	8	Bit	of	the
input	will	be	sent	when	the	slot	is	set	Active	and	a	send	event	occurs



Properties
COMPort	[string]:	Defines	the	COM	Port	of	the	target	serial	device.
e.g.	COM0
BaudRate	[integer]:	Defines	the	Baudrate	for	the	communication.	It
must	match	the	baudrate	of	the	target	device
Slot[0-15]	[int]:Defines	the	default	value	of	a	slot.	This	value	will	be
overridden	if	there	is	data	available	at	the	corresponding	input	slot
Slot[0-15]Active	[boolean]:Activate	a	Slot.	Whenever	a	send	event
occurs	the	SerialSender	will	iterate	over	all	Slots	beginning	with	slot
0	and	send	the	data	of	every	Active	Slot
Slot[0-15]Delay	[int]:Defines	the	delay	the	plugin	should	wait	before
sending	data	to	a	slot.



Synthetic	Voice
Component	Type:	Actuator	(Subcategory:	Audio	and	Voice)

The	Synthetic	Voice	component	uses	the	SAPI	5	technology	to	generate
synthetic	voice.

SyntheticVoice	plugin



Requirements
The	appropriate	voice	shold	be	installed	on	the	platform.



Input	Port	Description
input	[string]:	The	text	sentence,	which	will	be	converted	into
speech.



Properties
volume	[integer]:	Defines	the	volume	of	the	voice.	The	volume
propety	values	should	be	in	range	from	0	to	100.
speed	[integer]:	Defines	the	speed	of	the	voice.	The	speed	propety
values	should	be	in	range	from	-10	to	10.
voice	[string]:	Specifies	the	voice	used	for	the	speech	synthesis.
xmlTags	[boolean]:	Defines	if	the	XML	tags	in	the	input	text	will	be
suported.



SkyWatcherMount
Component	Type:	Actuator	(Subcategory:	Others)

The	SkyWatcher	plugin	can	be	used	to	control	telescope	mounts	using
the	Nexstar	5	protocol,	e.g.	Skywatcher	AllView,	Skywatcher	Merlin	via
Synscan	hand	control.

SkyWatcherMount	plugin



Requirements
A	Nexstar5	compatible	telescope	mount	connected	to	the	target
computer	via	a	serial	connection



Input	Port	Description
speed	[integer]:	defines	the	movement	speed	of	the	mount	(range:
0-9)
panPosition	[integer]:	defines	the	target	position	in	steps	for	the
pan	axis	for	the	goto	command
tiltPosition	[integer]:	defines	the	target	position	in	steps	for	the	tilt
axis	for	the	goto	command
endPointLeft	[integer]:	defines	the	maximum	position	the	pan	axis
can	move	to	the	left
endPointRight	[integer]:	defines	the	maximum	position	the	pan
axis	can	move	to	the	right
endPointUp	[integer]:	defines	the	maximum	position	the	tilt	axis
can	move	up
endPointDown	[integer]:	defines	the	maximum	position	the	tilt	axis
can	move	down



Output	Port	Description
posX	[integer]:	the	actual	position	of	the	pan	axis	in	steps
posY	[integer]:	the	actual	position	of	the	tilt	axis	in	steps



Event	Listener	Description
goLeft:	moves	the	mount	endless	to	the	left
goRight:	moves	the	mount	endless	to	the	right
goUp:	moves	the	mount	endless	upwards
goDown:	moves	the	mount	endless	downwards
stopPan:	stops	the	movement	of	the	pan	axis
stopTilt:	stops	the	movement	of	the	tilt	axis
stop:	stops	the	movement	of	the	pan	and	tilt	axis
goToPanPosition:	move	the	pan	axis	to	the	step	position	specified	by

the	panPosition	input	port
goToTiltPosition:	move	the	tilt	axis	to	the	step	position	specified	by

the	tiltPosition	input	port
triggerOn:	if	the	mount	has	a	shutter	for	a	digital	camera,	the	shutter	is

set	to	1
triggerOff:	if	the	mount	has	a	shutter	for	a	digital	camera,	the	shutter	is

set	to	0



Properties
SerialPort	[string]:	The	serial	port	of	the	mount,	e.g.	COM1
EndPointsActive	[boolean]:	defines	if	the	movement	boundaries
set	by	the	endpoints	are	active	or	not.



SSVEP	File	Writer
Component	Type:	Actuator	(Subcategory:	Brain	Computer
Interface)

This	plugin	writes	to	a	text	file	the	4	EEG	channels	along	with	a	software
trigger	received	through	the	event	listener	ports.	This	file	is	lately
analyzed	by	the	ProtocolSSVEPTrain	plugin	to	obtain	the	optimus
frequencies	to	be	used	on	the	SSVEP	detection.

SSVEPFileWriter	plugin



Input	Port	Description
filename	[string]:	Name	of	the	file	to	be	saved.
channel1	to	channel4	[integer]:	Input	EEG	signal	from	channels	1
to	4.
StimulationFrequency	[integer]:	If	a	stimulation	frequency	value	is
received	before	the	StarStimulation	Event	the	stimulation	freqeuncy
is	appended	to	the	name	of	the	output	file	to	be	saved.



Event	Listener	Description
StartTrial:	An	incoming	event	at	this	port	starts	the	file	writer
process.
StopTrial:	An	incoming	event	at	this	port	stops	the	file	writer
process.
StartStimulation:	An	incoming	event	at	this	port	sets	the	trigger
channel	to	the	corresponding	stimulation	frequency	value	in	Hz.
StopStimulation:	An	incoming	event	at	this	port	sets	the	trigger
channel	to	zeros.



Properties
DefaultFileName	[string]:	The	default	file	name.



SSVEP	Stimulator
Component	Type:	Actuator	(Subcategory:	Brain	Computer
Interface)

This	plug-in	allows	the	user	to	interact	with	the	SW-generated	flickering
surfaces	(panels)	for	SSVEP	stimulation.	The	stimulation	frequency	of
the	panels	can	be	modified	before	the	stimulation	is	started.

SSVEPStimulator	application



Requirements
A	recent	version	of	DirectX	has	to	be	installed.



Input	Port	Description
frequency	[integer]:	the	stimulation	frequency	the	SW-generated
panel	in	Hertz.	The	value	ranges	from	1	to	20	Hertz.



Event	Listener	Description
startStim:	starts	the	stimulation	of	the	SW-generated	flickering
panels	when	receiving	an	event.
stopStim:	stops	the	stimulation	of	the	SW-generated	flickering
panels	when	receiving	an	event.



Event	Trigger	Description
stimPeriodFinished:	an	event	is	emitted	through	this	port	when	the
stimulation	period	of	N	miliseconds	has	finished.



Properties
onBitmapFile	[string]:	filename	of	a	bitmap	file	which	is	used	in	the
on-phase	of	the	stimulation.	The	file	is	expected	in	the
data/SSVEPStimulator	subfolder	of	the	ARE.	The	filename	is	given
without	extenstion	(e.g.	"arrow_up"	for	the	file
"ARE/data/SSVEPStimulator/arrow_up.bmp")
offBitmapFile	[string]:	filename	of	a	bitmap	file	which	is	used	in	the
off-phase	of	the	stimulation.	(same	filname	format	as	above)
xPosition	[integer]:	x-position	of	the	flickering	surface	on	the
desktop/screen.
yPosition	[integer]:	y-position	of	the	flickering	surface	on	the
desktop/screen.
frequency	[integer]:	default	stimulation	frequency	of	in	Hertz.	This
property	ranges	from	1	to	20	Hertz.
msec	[integer]:	duration	in	miliseconds	of	the	stimulation	started	by
the	startStimPeriod	event.



TeensyRCprototype
Component	Type:	Actuator	(Subcategory:	Others)

The	TeensyRCprototype	component	allows	to	use	radio-controlled	toys
from	within	the	AsTeRICS	framework.	As	a	prerequisite,	the
Teensy_RC_CIM.hex	firmware	(see	/CIMS/Teensy_RC_CIM)	must	be
installed	on	a	teensy	microcontroller	(see	http://www.pjrc.com),	and	the
teensy	must	be	connected	to	a	Walkera	MTC-01	"MagicCube"	or	a
similar	remote	control	unit	with	PPM-signal	input,	which	allows	sending
up	to	8	channel	values	to	a	connected	RC-receiver:

TeensyRC	plugin

TeensyRC	Remot	control	gear

http://www.pjrc.com


Application
The	channel	values	which	are	sent	into	the	plugin	are	transformed	into
so-called	"PPM-signals"	which	are	supported	by	several	toy	remote
controls.	For	example	to	use	a	RC-model	car,	only	2	channels	are
needed.	For	more	information	about	the	firmware,	the	needed	modules
and	their	application,	please	refer	to	the	Bachelor-thesis	by	Alexander
Frimmel	in	the	documentation	section
(/Documenation/DIYGuides/RC_ToyControl_Frimmel.pdf).

remote	control	of	a	toy	car



Input	Port	Description
channel1	[integer]:	This	input	port	accepts	the	level	for	channel1	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel2	[integer]:	This	input	port	accepts	the	level	for	channel2	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel3	[integer]:	This	input	port	accepts	the	level	for	channel3	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel4	[integer]:	This	input	port	accepts	the	level	for	channel4	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel5	[integer]:	This	input	port	accepts	the	level	for	channel5	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel6	[integer]:	This	input	port	accepts	the	level	for	channel6	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel7	[integer]:	This	input	port	accepts	the	level	for	channel7	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)
channel8	[integer]:	This	input	port	accepts	the	level	for	channel8	of
the	RC	remote	control	(values	0-1000	are	allowed,	center:500)



Properties
currently,	this	plugin	does	not	have	any	properties



TextArea
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	TextArea	is	a	GUI	component	which	displays	(optionally	user-
editable)	text	information.	It	features	multiple	rows	and	a	scrollbar,	and
event	for	appending	string	text,	deleting	characters	or	sending	the	text
content

TextArea	plugin



Input	Port	Description
setText	[string]:	The	text	which	will	be	displayed.	It	replaces	the
prior	content	of	the	Text	Area.
appendText	[string]:	This	string	input	will	be	appended	to	te	current
content	of	the	Text	Area.



Output	Port	Description
text	[string]:	The	current	content	of	the	text	area.	Sent	on	incoming
events	at	the	"send"	or	"sendAndClear"	event	listener	ports



Event	Listener	Description
delete:	Removes	the	last	charater	from	the	text	area	content.
clear:	Clears	the	text	area	content.
send:	Sends	the	text	area	content	to	te	output	port.
sendAndClear:	Sends	the	text	area	content	to	te	output	port	and
clears	the	text	area.



Event	Trigger	Description
clicked:	The	event	is	trigger	when	the	user	click	on	the	component.



Properties
caption	[string]:	Caption	of	the	component.
default	[string]:	Default	content	of	the	text	area.
editable	[bolean]:	Defines	if	the	text	area	can	be	edited	by	the	user.
fontSize	[integer]:	The	font	size	in	pixels.
textColor	[integer]:	Defines	color	of	the	text.
backgroundColor	[integer]:	Defines	background	color.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



Text	Display
Component	Type:	Actuator	(Subcategory:	Graphical	User
Interface)

The	Text	Display	is	the	GUI	component,	which	displays	the	text
information.

TextDisplay	plugin



Input	Port	Description
input	[string]:	The	text	which	will	be	displayed.	This	input	port
supports	synchronization



Event	Listener	Description
clear:	Removes	the	text	from	the	component.



Event	Trigger	Description
clicked:	The	event	is	trigger	when	the	user	click	on	the	component.



Properties
caption	[string]:	Caption	of	the	component.
default	[string]:	The	text,	which	is	in	the	box	after	start.
textPosition	[integer]:	Position	of	the	text	in	the	component:	left,
center	or	right.
textColor	[integer]:	Defines	color	of	the	text.
backgroundColor	[integer]:	Defines	background	color.
displayGUI	[boolean]:	If	selected,	the	GUI	of	this	component	will	be
displayed	-	if	not,	the	GUI	will	be	hidden	and	disabled.



ToneGenerator
Component	Type:	Actuator	(Subcategory:	Audio	and	Voice)

This	plugin	generates	a	stereo	sound.	The	frequency	of	the	tone	for	the
left	and	right	channel	can	be	set	individually.

ToneGenerator	plugin



Requirements
This	software	component	requires	an	audio	output	device	to	percept	the
sound



Input	port	Description
frequencyLeft[double]:	specifies	the	frequency	of	the	tone	on	the
left	channel
frequencyRight[double]:	specifies	the	frequency	of	the	tone	on	the
right	channel



Properties
sampleRate[integer]:	sets	the	sampleRate	of	the	tonegenerator



Eventlistener	Description
start:	starts	the	playback	of	the	tones
stop:	stops	the	playback	of	the	tones



Wavefile	Player
Component	Type:	Actuator	(Subcategory:	Audio	and	Voice)

This	plugin	plays	a	wave	file	specified	in	the	properties	on	the	platforms
sound	output.

WavefilePlayer	plugin



Input	port	Description
wavefileName[string]:	this	port	will	change	the	property	filename	to
the	string	on	the	input.	Thus	it	is	possible	to	have	other	plugins
change	the	file	to	be	played.



Event	Listener	Description
Start:	An	incoming	event	at	this	port	initiates	the	playback	of	the
wave	file	indicated	in	the	property	filename.
Stop:	An	incoming	event	at	this	port	stops	the	playback	of	the	wave
file	indicated	in	the	property	filename.
VolumeUp:	An	incoming	event	increases	the	volume	of	the	current
playback.
VolumeDown:	An	incoming	event	decreases	the	volume	of	the
current	playback.



Properties
filename[string]:	The	value	of	this	property	specifies	the	file	name
of	the	wave	file	to	be	played.	Supports	value	suggestions	from
ARE	(dynamic	property)



CSV	Writer
Component	Type:	Actuator	(Subcategory:	File	System)

This	plugin	writes	incoming	strings	into	an	.csv	file.

The	data	gets	live	recorded,	so	it	can	be	viewed	simultaneously	in	an
oscilloscope.

WriteCSV



Event	Listener	Description
StartWriting:	Creates	a	new	file	to	save	the	data.
StopWriting:	Stops	a	saving	process.



Input	port	Description
Input[string]:	The	string	contains	the	data.	Example	of	one	string:
"data1;data2;data3".	To	get	data	values	and	separators	into	this
string,	the	StringExpander	plugin	can	be	used.	After	each	string,	a
line	separator	(newline)	is	appended.



Properties
FileName[string]:	Specifies	the	name	of	the	file	(without	extension),
in	which	the	data	will	be	recorded.	Current	date	and	time	information
are	added	to	the	filename.
FilePath[string]:	Defines	the	Path	were	the	File	shoud	be	saved
(relative	from	the	ARE	folder).	If	not	existing,	the	path	will	be	created.


	ACS Help
	ACS Basic Functions
	Create and Edit a Model
	The Edit Tab
	Component Context Menu
	Channels
	Events
	Setting the Properties

	Tooltips
	Open and Save Models
	Control the ARE
	GUI Designer
	Miscellaneous
	Status Reporting and Error Logging
	Component Collection Manager

	Print
	Options
	General Settings
	Dialogs Settings
	Colours Settings

	Modes
	Disconnected
	Connected
	Synchronized
	Running
	Pause

	Keyboard Control

	Plugins
	Sensors
	Acceleration
	Analog In
	Autostart Event
	Button Grid
	Cell Board
	Digital In
	EDF Reader
	Edit Box
	Enobio
	EOG
	eShoe
	Event Generator
	Eyetracker
	Eye Tribe
	Facetracker CLM
	Eye X
	Facetracker LK
	FS20 Receiver
	Head Position HC
	Hover Panel
	Joystick Capture
	Key Capture
	Keyboard Capture
	Kinect
	KinectJ4K
	Legacy Analog In
	Legacy Digital In
	Line Reader
	Lipmouse
	Lipmouse IR
	Mic GPI
	Mouse Capture
	OpenBCI
	Open Vibe
	Osc Server
	P2 Parser
	Platform Analog In
	Platform Digital In
	Proximity
	Razor IMU
	ReadCSV
	RFID Reader
	Sensorboard
	Signal Generator
	Signal Shaper
	Slider
	Space Navigator 3D Mouse
	Textfield Reader
	Timer
	Tobi TiC
	Tuio Reactivision
	WiiMote
	XFacetrackerLK

	Processors
	Adjustment Curve
	Amplifier
	Arduino
	Audio Selector
	Averager
	Basic Tremor Reduction Algorithms
	Benchmark
	Blink Detection
	Blink Detector
	Blink Detector Trainer
	Comparator
	Compute Bandpower
	Constant Dispatcher
	Data Type
	Deadzone
	Decimation
	Delay
	Derivative
	Differentiate
	Dissimilarity
	Double To String
	ECMAScriptInterpreter
	Event Block
	Event Cascade
	Event Counter
	Event Delay
	Event Dispatcher
	Event Flip Flop
	Event Router
	Event State Machine
	FABI
	FabiCronusMax
	Filter
	FS20 Command Interpreter
	HRVAnalysis
	IIR Filter
	Int To String
	Integrate
	Math Evaluator
	MinMax
	Motion Analysis
	Multi Source
	Multi Source String
	Neural Network Loader
	EG Example

	One Event Many Actions
	OpenHAB
	Osc Gesture Follower
	OSKA External Scanning 1D
	OSKA External Scanning 2D
	OSKA Internal Scanning
	Path Multiplexer
	Pathselector
	Peak-Detector
	Protocol SSVEP Train
	Quantizer
	Regular Expression
	Relative Move Sampler
	Sample and Hold
	Sampler
	Signal Translation
	Speech Processor
	SSVEP Detect
	String Append
	String Delay
	String Dispatcher
	String Expander
	String Filter
	String Path Multiplexer
	String Path Selector
	String Splitter
	String To Double
	String To Int
	Text Sender
	Threshold
	Universal Remote Control
	Web Socket
	Yaak

	Actuators
	Analog Out
	Application Launcher
	Android Connection
	Android Phone Control
	ARE Window
	Bar Display
	Digital Out
	Dot Meter
	EasyHomeControl
	EDF Writer
	EmulateFaultyPlugin
	Enobio Display
	EnOcean
	Event Visualizer
	File Writer
	Flickering Light Stimulator
	FS20 Sender
	GSM Modem
	Image Box
	IR Trans
	Keyboard
	KNX
	Legacy Digital Out
	LineWriter
	Media Player
	Midi Player
	Model Switcher
	Mouse
	Mousecursor Icon
	Net Connection
	Osc Out Client
	Oscilloscope
	Phone Control
	Platform Digital Out
	Platform LCD
	Pong Game
	Remote Joystick
	Remote Keyboard
	Remote Mouse
	Remote Tablet
	Remote Window
	Serial Sender
	Simple Speech
	Sky Watcher Mount
	SSVEP File Writer
	SSVEP Stimulator
	Synthetic Voice
	Teensy RC
	Text Area
	Text Display
	Tone Generator
	Wavefile Player
	WriteCSV




