
	

ABCpdf	.NET	Documentation 	 	

	

ABCpdf	.NET	lets	you	dynamically	create	Adobe®	PDF	documents
on	the	fly.	Because	it	doesn't	use	any	print	drivers	and	goes	Direct
to	PDF,	it's	incredibly	fast.	WebSupergoo	-	sticking	the	web
together.

©	2015	WebSupergoo

Every	effort	has	been	made	to	ensure	that	the	information	in	this	manual	is	accurate.	However,	WebSupergoo
makes	no	guarantees	about	the	accuracy	or	quality	of	this	manual	or	any	software	it	describes.

Apple®,	Mac®,	Macintosh®,	QuickDraw®,	and	QuickTime®	are	trademarks	of	Apple	Computer,	Inc.	Windows®,
Windows	NT®,	Visual	Basic®	and	Visual	Studio®	are	either	registered	trademarks	or	trademarks	of	Microsoft
Corporation	in	the	United	States	and/or	other	countries.	Adobe®,	Acrobat®,	Adobe	PDF®,	PostScript®	and
Photoshop®	are	trademarks	of	Adobe	Systems	Incorporated	or	its	subsidiaries.	Macromedia®,	Flash	and
Macromedia	Flash	are	trademarks	or	registered	trademarks	of	Macromedia,	Inc.	in	the	United	States	and/or
other	countries.	The	use	of	these	trademarks	does	not	imply	any	sponsorship	or	endorsement	by	the	owners	of
these	trademarks.

	

	 	

	

	

What	is	ABCpdf	.NET? 	 	

	

Use	ABCpdf	.NET	to	dynamically	create	Adobe	PDF
documents	on	the	fly.	You	won't	believe	how	simple	-
yet	how	powerful	this	tool	truly	is!

You	can	use	ABCpdf	.NET	from	languages	like	C#	or
Visual	Basic	.NET.

ABCpdf	.NET	runs	on	Windows	2000,	Windows	XP,
Windows	Server	2003,	Windows	Vista,	and	Windows
Server	2008.

	

	 	

	

	

Who	is	this	document	for? 	 	

	

This	document	is	written	as	a	guide	to	and	reference
material	for	ABCpdf	.NET.	It	assumes	basic
knowledge	of	ASP.NET	and	either	Visual	Basic	or	C#.
It	also	assumes	you	know	how	to	set	up	and
configure	Microsoft's	Internet	Information	Services	-
IIS.

	

	 	

	

	

What	do	I	need	to	use	it? 	 	

	

You	can	run	ABCpdf	.NET	on	all	Windows	versions
since	Windows	XP.

You	need	.NET	4.0.	We	recommend	your	host
machine	has	Internet	Explorer	9	or	later	installed.

If	you're	rendering	3D	PDFs,	you	will	need	OpenGL
version	3.1	compliant	graphics	drivers.

Finally,	you'll	need	ABCpdf	.NET	itself.

What	happened	to	ABCpdf	ASP?	Well,	ABCpdf	.NET
includes	a	COM	layer	over	the	native	.NET	base	-	a
layer	which	exactly	mimics	the	interface	of	ABCpdf
ASP.	This	means	you	can	use	one	product	for	your
.NET	deployment	and	also	for	any	legacy	COM
deployment.	Think	of	it	as	double	value	-	ABCpdf
.NET	and	ABCpdf	ASP	both	in	one	package.	Plus,
you	get	the	advantages	of	the	.NET	architecture
behind	a	COM	front	end	-	advantages	like	native	x64
support	and	features	like	SVG	import.

	

	 	

	

	

How	does	it	work? 	 	

	

ABCpdf	.NET	gets	up	close	and	personal!	Because	it
doesn't	use	any	print	drivers	and	goes	Direct	to
PDF™	it's	incredibly	fast.

Because	it's	fully	multithreaded	you	can	use	it	flexibly
within	any	.NET	environment	from	ASP.NET	to	COM+
to	straight	Windows	applications..

In	other	products	you	should	look	out	for	external
libraries.	Threading	make	no	difference	at	all	if	further
down	the	line	a	third-party	piece	of	software	pipelines
every	request.

Because	ABCpdf	.NET	doesn't	rely	on	any	other
software	it	can	be	completely	multithreaded	without
any	unpleasant	bottlenecks.	

	

	 	

	

What's	Cool? 	 	

	

ABCpdf	gets	up	close	and	personal!	Because	it	goes
Direct	to	PDF™	it's	incredibly	fast.	Because	ABCpdf
doesn't	rely	on	any	other	software	it	can	be
completely	multithreaded	without	any	unpleasant
bottlenecks.

ABCpdf	is	simple	yet	powerful.	It's	designed	so	you
can	get	up	to	speed	and	productive	within	ten
minutes.	Yet	if	you	want	fine	low-level	control	you	can
have	that	too	with	ABCpdf.

Create	PDF	documents	from	scratch	or	read	and
modify	existing	PDF	documents.	Add	pages	from
other	documents	for	seamless	joining,	insertion	and
stitching	of	multiple	documents.	Stream	your
documents	direct	to	your	client	web	browser	without
going	via	the	disk.	All	up	into	the	GB	range	and
beyond.

Render	your	PDF	documents	in	a	variety	of	formats.
Output	your	pages	in	raster	formats	like	JPEG,	GIF,
TIFF,	PSD	or	JPEG	2000	in	any	of	a	variety	of	color
spaces	and	bit	depths.	Alternatively	choose	vector
formats	like	EMF,	EPS,	XPS,	SVG	and	SWF	(Flash)
for	specialist	areas	such	as	high	resolution	print	work.
Control	advanced	rendering	settings	such	as	alpha,
compression	type,	multiple	pages	and	different
horizontal	and	vertical	resolutions.

Add	virtually	any	graphic	into	your	PDFs.	ABCpdf
supports	JPEG,	GIF,	TIFF,	BMP,	PNG,	PSD,	PSB,
EXIF,	WMF,	EMF,	JPEG	2000,	PS,	EPS,	XPS,	WPF,
SVG	and	SWF	(Flash)	amongst	others.	Additionally
you	can	reference	image	data	from	multiple	locations

in	your	document	-	great	for	inserting	watermarks	and
other	frequently	used	graphics.	ABCpdf	is	fully
PostScript	compatible.

Full	support	for	the	XML	Paper	Specification	(XPS),
Open	XML	Paper	Specification	(OXPS)	and	for
Encapsulated	PostScript	(EPS).	Microsoft	XPS
provides	an	alternative	for	page	description	and
document	storage	but	it	is	not	compatible	with	the	de-
facto	PDF	standard.	EPS	is	widely	used	in	printing	but
often	provides	compatibility	headaches	when	it	comes
to	interoperability	with	PDF.	ABCpdf	supports	full
interoperability	between	Adobe	PDF	and	Microsoft
XPS	and	EPS.	Convert	your	PDF	documents	to	XPS
or	EPS.	Convert	your	XPS	or	EPS	documents	to	PDF.
And	our	conversion	routines	are	carefully	written	to
preserve	the	natural	structure	of	your	source
documents	wherever	possible.	So	this	means	the
preservation	of	color	spaces	and	the	preservation	or
conversion	of	embedded	fonts.	Unless	of	course	you
want	to	change	the	format	in	which	case	you	can
render	directly	to	Grayscale,	RGB	or	CMYK	EPS.

Output,	validation	and	conversion	to	PDF/A
standards.	Conversion	is	made	to	work	the	way	it
should	-	it	operates	on	practically	all	documents	-
even	documents	provided	by	third	parties.	A	partner	in
this	is	transparency	flattening	which	is	a	technology
which	allows	you	to	remove	transparency	from	your
documents	while	leaving	the	vector	nature	of	the
format	intact.

Full	support	for	the	Windows	Presentation	Foundation
(WPF).	Microsoft	WPF	is	the	new	graphics	sub-
system	developed	for	.NET	3.0.	It	comes	in	both	the
standard	flavor	seen	on	platforms	like	Windows	Vista
and	also	in	a	lightweight	web	based	system	-
Silverlight.	Of	course	with	a	new	graphics	API	drawing
to	screen	a	new	PDF	export	facility	is	needed	too.	As

such	ABCpdf	comes	with	full	WPF	import	capability.
See	our	WPFTable	example	project	for	details	and
examples.

Native	support	for	Flash.	Yes	we	wrote	our	own	SWF
rendering	engine!	That	means	that	those	lovely
smooth	graphs	you	see	in	Flash	stay	smooth	and
resolution	independent	when	you	import	them	into	a
PDF.	And	while	we	were	about	it	we	wrote	our	own
Flash	export	engine	so	you	can	convert	your	PDF
documents	to	native	vector	Flash.

Not	only	does	ABCpdf	support	PDF,	HTML	and	Rich
Text	Format	(RTF)	natively	but	it	also	supports	a	wide
range	of	other	document	formats.	Formats	like
Microsoft	Word	(.doc),	Microsoft	Excel	(.xls),
PowerPoint	(.ppt),	WordPerfect	(.wpd),	Lotus	1-2-3
(.wk1)	and	AutoCAD	(.dxf).	All	you	need	to	do	is	read
them	in!	*

ABCpdf	allows	you	precise	control	over	the	way	that
your	text	is	laid	out.	Paragraph	indent,	kerning	and
tracking,	word	spacing,	line	spacing,	paragraph
spacing	and	horizontal	justification	are	just	some	of
the	settings	available.	ABCpdf	supports	synthesized
bold	and	italic	typeface	styles	for	situations	in	which
you	do	not	want	to	reference	multiple	typefaces.

ABCpdf	supports	Unicode	and	foreign	languages.
Reference	fonts	from	the	relevant	foreign	language
pack	or	embed	Unicode	fonts	for	guaranteed	fidelity
of	reproduction	on	any	platform.	Draw	text	horizontally
or	vertically	and	quickly	subset	large	CJK	fonts	with
minimal	use	of	memory	and	impact	on	server	load.
Work	with	bidirectional	script	such	as	Hebrew	and
contextual	ligatures	in	languages	such	as	Arabic

Import	HTML	/	CSS	pages	from	local	or	remote	web
sites.	Placed	HTML	support	means	your	HTML	can

	

be	treated	just	like	any	other	media	-	placed	wherever
you	like	on	the	page.	Paged	HTML	support	allows	you
to	flow	your	HTML	from	one	area	to	another	-	across
pages	or	columns	or	both.	Select	between	the
FireFox	and	Internet	Explorer	HTML	rendering
engines.	A	vast	range	of	options	gives	you	full	control
over	the	HTML	rendering	process	and	DOM.

HTML	styled	text	allows	easy	creation	and	layout	of
multi-styled	text;	supporting	text	box	chaining	to	allow
you	to	easily	and	automatically	flow	text	through	from
one	area	to	another,	around	images	and	other
irregular	objects.	More	complex	options	like	text	on	a
curve	or	drop	shadows	are	simple	to	implement	using
our	example	code.

Apply	advanced	transformations	like	rotation,
magnification,	skew	and	translation.	This	means	you
can	draw	rotated	text,	images	and	graphics	all	with
only	a	few	simple	commands.

ABCpdf	allows	multiple	different	approaches	to	layout
and	document	structure.	The	Table	project	shows	how
to	use	programmatic	table	based	layout.	The	WPF
Table	project	shows	how	to	take	WPF	based	content
and	convert	it	to	PDF.	The	ABCpdf10.Drawing
wrapper	namespace	exists	for	easy	porting	of
System.Drawing	code	for	PDF	output.	Or	if	you're
more	interested	in	XML	to	PDF	or	tagged	PDF	output
there	are	the	Tagged	PDF	Example	projects.

ABCpdf	supports	sophisticated	color	spaces.	Mix	and
match	RGB,	CMYK,	Grayscale,	Lab,	calibrated	color
spaces	and	spot	colors.	Any	kind	of	graphic	from	text
to	lines	to	blocks	of	color	can	be	drawn	in	any	of
these	color	spaces.	You	can	even	perform	complex
operations	like	colorizing	grayscale	images	using	spot
colors	or	converting	from	one	color	space	to	another.

	 	

	

ABCpdf	supports	direct	import	of	ICC	based	RGB,
CMYK	and	Lab	images	from	TIFF,	PSD	and	PSB.	Full
TIFF	and	PSD	support	for	all	color	spaces,
compression	models	and	bit	depths	up	to	HDR	(High-
dynamic-range).	This	means	you	can	produce	high-
quality,	print-ready	PDFs	directly	from	your
applications.

ABCpdf	supports	transparency	everywhere.	Any	kind
of	graphic	from	text	to	lines	to	blocks	of	color	can	be
drawn	transparently	using	a	simple	alpha	value	to
control	levels	of	opacity.	You	can	apply	soft	masks	or
chromakey	style	masks	to	images	for	selective
transparency.	Or	you	can	draw	transparent	images
such	as	GIF	using	simple	calls.

Create	encrypted	or	signed	PDFs	for	secure	storage
of	PDF	documents.	Apply	user	permissions	and
secure	these	permissions	with	encryption	keys	from
40	to	128	bits	in	size.	Check	signed	documents	for
validity.	Examine	different	revisions	of	documents	to
find	changes	between	them.	Revert	back	to	any
previously	saved	revision	for	comparison.

ABCpdf	supports	Fields	and	Forms.	Use	placeholder
fields	in	your	template	documents	to	position	and	lay
out	dynamically	created	elements	or	assign	field
values	directly.	Stamp	fields	directly	into	the	PDF	to
prevent	them	being	modified.	Create	new
annotations,	anything	from	simple	text	fields	through
to	multiple	incrementally	updated	signatures.	With
advanced	support	for	exotic	types	of	field	structure
such	as	combs.

ABCpdf	now	supports	conversion	of	PDF	content	into
annotated	SVG.	This	allows	you	to	identify	individual
elements	on	a	page	and	map	them	back	to	the

operators	in	the	original	PDF	file.	So	it	lets	you
perform	operations	like	search	and	replace	on	PDF
text	or	identify	individual	images	on	a	page.

PDF	optimization	and	size	reduction	provides	whole
document	optimization	using	a	variety	of	options	to
reduce	font	sizes,	remove	embedded	fonts,	to
resample	and	recompress	images,	to	flatten	wherever
possible	for	the	smallest	possible	output.

PDF	analysis	has	been	extended	into	easy-to-use
operations	for	text	and	images.	Simple	on	the	surface
but	sophisticated	underneath,	they	allow	you	to
extract	common-sense,	de-hyphenated	and	de-
ligatured	text	from	PDFs.	Then	select	items	of	that
text	within	the	PDF	and	perform	operations	on	those
selections.

PDF	accessibility	is	now	something	that	can	be
supported,	even	for	PDFs	which	were	never	designed
to	do	so.	Standards	such	as	PDF/UA	and	Section	508
compliance	require	that	PDFs	be	accessible.	Our
accessibility	operation	performs	a	sophisticated
semantic	analysis	of	the	document	content	and	adds
appropriate	tagging	information	to	produce	an
accessible	Tagged	PDF	output.

Our	ABCpdfView	sample	application	now
demonstrates	this	and	a	whole	host	of	other	ABCpdf
features.	It	allows	you	to	open,	view	and	print	PDF
documents.	It	lets	you	edit	text	and	text	styles	within
the	PDF.	It	allows	you	to	insert,	delete	and	re-order
pages.	It	allows	you	to	watermark	documents.
PDFView	comes	with	full	source	code.

ABCpdf	offers	great	control	over	images	in	PDFs.	You
can	resize	them	using	a	variety	of	sophisticated	and
high	quality	resampling	algorithms.	You	can	assign
new	color	spaces	or	convert	them	from	one	color

space	to	another.	You	can	compress	them	in	CCITT,
JPEG,	Flate	or	JPEG	2000	format.	You	can	resample
them	from	one	bit	depth	to	another.	Determine	size,
resolution	and	placements	using	sophisticated
analysis	operations.

ABCpdf	is	fully	floating	point	for	precise	positioning	of
text,	line	and	other	objects	at	a	fractional	point	level.

	

ABCpdf	allows	even	more	advanced	control	over	any
PDF	object	in	your	document.	If	you	can't	see	how	to
accomplish	a	task	using	our	simple	to	use	methods
then	you	can	always	access	the	raw	PDF	structure
directly.	This	is	true	both	for	the	structure	of	the
document	itself	and	also	for	any	content	streams	held
within	that	structure.

If	you	think	there's	something	missing	please	do	mail
us.

	

	

*	Requires	helper	applications	such	as	WordGlue
.NET,	Microsoft	Office	or	OpenOffice.org	to	be
installed.	WordGlue	.NET	is	available	on	our	site.
OpenOffice.org	is	freely	distributed	under	the	GNU
Lesser	General	Public	License	(LGPL).	For	full	details
of	the	OpenOffice.org	project	see
http://www.openoffice.org/.

	

	

	

http://www.openoffice.org/licenses/lgpl_license.html
http://www.openoffice.org/

	

	

What's	New? 	 	

	

	
	 	

Docs	&	
Images

	

ABCpdf	now	contains	a	host	of	image	effects	for
common	operations	like	sharpen,	auto-levels,
contrast	and	color	adjustments;	morphs	such	as	twirl
and	wave.	See	the	effects	section	of	the
documentation	for	full	details.

Our	new	Photoshop	read	module	supports	the
standard	PSD	and	also	the	large	image	PDB	file
types.	It	allows	the	direct	import	of	RGB,	Grayscale,
CMYK,	Lab,	Indexed	and	Duotone	images	in	1,	8	,
16	and	32	bits	per	component	color	depth.	The	PDF
format	does	not	support	32	bits	per	component	HDR
images	so	these	are	scaled	down	to	16	bits	per
component.	It	also	supports	the	import	of	different
layers	if	you	need	to	extract	these	individually.

The	new	TIFF	import	module	is	much	more	efficient
and	reliable	than	the	old	one.	In	particular	it	has	been
tested	extensively	with	unusual	multi-page	TIFF
formats	containing	unusual	compression	schemes.	It
is	a	fully	comprehensive	module	which	will	cope
brilliantly	with	any	TIFF	you	throw	at	it.	It	is	difficult	to
describe	reliability	as	a	feature	but	most	solutions	will
not	cope	with	unusual	TIFFs	and	this	reliability	is
invaluable.	In	terms	of	more	traditional	new	features,
TIFF	images	may	contain	rotation	flags	to	indicate
orientation.	In	the	past	ABCpdf	would	ignore	many	of
these	flags.	The	effect	was	that	images	such	as
scans,	which	should	have	been	one	way	up,	may
have	appeared	upside	down.	ABCpdf	now	supports

	 	

all	these	flags	so	your	tagged	images	will
automatically	appear	in	an	appropriate	orientation
when	they	are	imported	by	ABCpdf.

The	new	RTF	import	module	is	a	native	Rich	Text
Format	import	module	which	allows	RTF	to	be
imported	quickly	and	easily	without	the	need	for	any
helper	applications.

PDF	reading	now	supports	Portfolios	(also	known	as
PDF	Collections),	controllable	using	the	new
XReadOptions.OpenPortfolios	property.	This
property	allows	you	to	select	between	treating	the
Portfolio	as	one	document	or	as	a	set	of	documents.
The	former	is	what	a	user	sees	when	they	open	a
Portfolio	using	Acrobat,	so	it	is	what	you	will	want
most	of	the	time.	The	latter	is	what	is	appropriate	if
you	want	to	manipulate	the	contents	of	the	PDF
Portfolio	using	methods	like
Catalog.GetEmbeddedFiles.

As	well	as	manipulating	PDF	Portfolios	you	can	also
create	them	using	the	example	code	that	goes	with
the	new	EmbeddedFile	and	FileSpecification	classes
available	in	the	new	release.

	

Rendering 	

The	PDF	format	has	long	supported	3D	objects	as
well	as	standard	2D	ones.	We	believe	we	are	the	first
in	the	world	outside	of	Adobe	to	support	rendering	of
these	3D	elements.	At	present	ABCpdf	Version	10
supports	U3D	(Universal	3D)	elements	but	we	expect
to	extend	this	to	include	the	PRC	(Product
Representation	Compact)	3D	format	and	also	to	the
live	manipulation	of	these	3D	models.

	

	 	

Colors 	

PDF	supports	a	variety	of	color	spaces	and	past
versions	of	ABCpdf	have	been	very	good	at	allowing
you	to	handle	RGB,	Grayscale	and	CMYK	colors.
Spot	colors	have	been	implemented	using	a	variant
of	grayscale	but	other	color	spaces	such	as	Lab,
Calibrated	RGB,	Calibrated	Grayscale,	Multichannel
and	Pattern	have	been	impossible	to	represent	using
the	standard	ABCpdf	objects.

In	ABCpdf	Version	10	the	XColor	object	has	been
extended	to	allow	these	types	of	colors	to	be
represented.	An	XColor	can	be	any	of	the	more
normal	color	spaces	or	it	can	be	a	generic,
unconstrained	set	of	color	components	defined	in	the
context	of	the	current	color	space.	The	new
XColor.ColorSpace	enumeration	provides	detail	of
the	type	of	color	space	to	which	the	XColor	belongs,
the	new	XColor.Components	collection	allows	you
access	to	the	raw	PDF	color	and	the	XColor.Name
property	provides	access	to	any	pattern	name.

This	new	structure	brings	benefits	in	terms	of
generating	new	PDFs	but	also	in	terms	of	analyzing
and	modifying	the	content	of	existing	PDF
documents.	In	terms	of	creation,	there	are	new
examples	showing	how	to	generate	PDF	documents
using	the	Calibrated	RGB,	Calibrated	Grayscale	and
Lab	color	spaces.	In	terms	of	analysis	it	is	easy	to
create	a	color	from	a	set	of	parameters	in	a	content
stream	using	the	XColor.FromContentStream
method.

	

	 	

Text	functionality	is	much	improved	and	contains	a
number	of	new	and	frequently	requested	features.

Text 	

ABCpdf	now	supports	proper	kerning.	It	reads	the
kerning	tables	from	TrueType	fonts	and	automatically
adjusts	the	spacing	between	letters	to	make	them
look	just	right.	You	don't	need	to	do	anything	to	take
advantage	of	this	-	just	recompile	your	code	against
the	new	namespace	and	it	will	all	just	happen.

ABCpdf	now	fully	supports	bidirectional,	contextual
ligatures	for	languages	such	as	Arabic.	These	can	be
enabled	using	the	TextStyle.Direction	property.

Another	frequently	requested	feature	was	the	ability
to	flow	text	around	shapes	such	as	images.	Now	we
make	it	easy	to	create	a	variable	shaped	area	into
which	your	text	can	be	inserted.

Use	HTML	styled	text	to	create	tables	of	contents
with	leaders.	Leaders	are	the	dotted	lines	you	see	in
tables	of	contents,	between	the	heading	on	the	left
and	the	page	number	on	the	right.	Previously
creating	these	was	complex	and	error	prone.	Now	it's
just	one	tag.

There	are	a	variety	of	new	text	measurement	and
positioning	options.	The	Doc.FitText	and	Doc.FitHtml
methods	allow	you	to	add	text	scaled	to	fit	a
particular	area	on	the	page.	The	Doc.MeasureText
method	allows	you	to	measure	the	length	of	a	string
of	text	without	adding	it	to	the	document.	Or	if	you
want	a	more	fine	grained	approach	you	can	use	the
TextLayer.TextFragments	property	to	find	the
individual	locations	and	styles	of	each	of	the	text
items	that	have	been	added.

The	FontObject	has	a	new	EmbedFont	method	to
allow	a	font	to	be	embedded	or	re-embedded	into	an
existing	PDF	document.	It	also	has	new	and	useful
properties	such	as	Flags,	FontBBox,	FontAscender,
FontDescender,	FontAscent,	FontDescent,

	 	

FontLineSpacing	and	FontLineGap.	This	allows	new
and	useful	example	code	such	as	drawing	text	on	a
curve.

	

Forms	&
Fields

	

In	previous	version	of	ABCpdf,	Fields	and
Annotations	were	largely	static.	You	could	change
their	value	but	not	much	else.	In	this	release	they
become	much	more	dynamic	allowing	interactive
access	to	locations	and	styles.

You	can	now	set	the	Field.Rect	or	Annotation.Rect	to
move	them	around	on	the	page.	You	can	set	the
Field.Page	or	Annotation.Page	to	move	them
between	pages.	For	Annotations	you	can	get	and	set
the	Border,	FieldBackgroundColor,	FieldBorderColor
and	FieldRotation.	For	Fields	you	can	now	get	and
set	the	TextAlignment,	TextFont,	TextSize	and
TextColor.	For	more	complicated	styles	you	can
directly	access	the	DefaultAppearance	which
provides	control	over	all	other	field	styles.

Fields	and	Annotations	are	intimately	linked	but	in
the	past	ABCpdf	has	represented	them	as	somewhat
separate.	In	the	new	release	these	objects	have
been	rationalized	to	make	them	coordinate	better.
There	is	a	Field.GetAnnotations	method	to	find	all	the
Annotations	referenced	by	a	field.	There	are	new
Annotation.Stamp	and	Annotation.Focus	methods	to
mimic	those	offered	by	the	Field	class.	There	are
Annotation.Flags	and	Field.Flags	properties	to	allow
common	flags	such	as	Hidden	and	Print	to	be
queried,	set	or	cleared.

	

	 	

Analysis 	

New	features	allow	the	simple	and	efficient	analysis
and	deconstruction	of	PDF	documents.	Disassemble,
modify,	reassemble.	Used	to	be	complex.	Now	it's
easy.

At	a	low	level,	a	range	of	new	Atom	operations	have
been	introduced	for	fast	and	robust	handling	of	PDF
content	streams.	At	the	core	of	these	changes	are
the	new	OpAtom	class	and	the
ArrayAtom.FromContentStream	static	constructor.
The	former	represents	a	PDF	operator	in	a	drawing
stream	and	the	latter	allows	a	content	stream	to	be
deconstructed	into	an	ArrayAtom.

Once	the	stream	has	been	deconstructed	in	this	way
you	can	use	the	OpAtom.Find	method	for	a	fast	and
memory	efficient	way	of	selecting	various	operators
out	of	the	array.	The	parameters	for	the	operators
can	be	established	using	the
OpAtom.GetParameters	method	and	the	operator
and	parameters	can	be	modified	as	required.

Finally	the	content	stream	can	be	reassembled	using
the	Atom.GetData	method	and	then	the	raw	data
inserted	back	into	the	original	PDF.

This	sequence	allows	fast,	complex,	content	stream
deconstruction	and	manipulation	using	a	memory
efficient	model.	For	example	it	can	be	used	to	search
a	PDF	page	for	particular	types	of	color	operators
and	replace	them	with	different	ones.	PDF	color
replacement	until	now	has	been	difficult	and	error
prone.	This	new	functionality	makes	the	process
easy.

Along	with	the	new	functionality	for	the	manipulation
of	PDF	content	streams	we	also	have	a	new	and
useful	set	of	low	level	functionality	to	allow	the

	 	

manipulation	of	text	in	existing	PDFs.	The
StringAtom	has	new	Decode	and	DecodeDoubleByte
methods	to	allow	text	operator	parameters	to	be
decoded	into	the	base	text	encoding.	These	can	then
be	passed	through	the	FontObject	EncodingToChar
and	EncodingToString	properties	to	allow	mapping
from	the	text	encoding	through	to	Unicode	values.

Going	the	other	way	you	can	use	the	FontObject
CharToEncoding	to	map	Unicode	values	to	the	font
encoding	and	then	StringAtom	Encode	or
EncodeDoubleByte	to	put	the	text	into	a	format	which
can	be	inserted	into	a	content	stream.

	

There	are	lots	of	things	to	make	your	life	a	bit	easier.
Functions	like	Doc.AddRect	to	better	reflect	similar
functions	such	as	AddPie	and	AddOval.	A	new
FormXObject	and	methods	to	convert	from	objects
such	as	a	Page	into	a	FormXObject	-	useful	if	you
need	to	perform	operations	such	as	scaling	an
existing	page.	An	AddXObject	method	to	draw	a
PixMap	or	FormXObject	onto	the	current	page.

The	Page	object	now	implements	useful	properties
like	the	MediaBox,	CropBox,	BleedBox,	TrimBox	and
ArtBox	properties.	Previously	only	some	of	these
were	available	and	those	were	read	only.	Now	they
work	in	a	much	more	intuitive	way.	There	is	a	new
Thumbnail	property	for	accessing	or	setting	a
thumbnail	for	the	page	and	there	are	examples
showing	how	to	insert	or	extract	them.	The	new
Page.GetBitmap	method	allows	you	to	render	one	or
more	layers	on	the	page	and	is	ideal	for	generating
drop	shadows.

There	is	a	new	document	state	property	to	enable

Ease	of
Use

	

features	like	a	graphics	state	stack,	with	push	and
pop	operators,	to	be	simply	and	easily	implemented.

The	PixMap	object	now	allows	construction	from	an
XImage	object	which	means	you	can	add	an	image
to	a	document	without	adding	it	to	a	specific	page.
The	PixMap	class	contains	Mask	and	SMask
properties	so	that	you	can	access	or	assign	new
masks	or	soft	masks.	There	are	useful	functions	like
Flip	and	Rotate	for	commonly	requested	bitmap
operation.	There	is	a	SetBitmap	method	to	go	with
the	existing	GetBitmap	one	and	there	is	a	new	Save
function	to	allow	the	PixMap	to	be	saved	in	its	native
color	space.

The	AccessibilityOperation	example	code	includes
new	functionality	for	enhanced	compatibility	with
common	screen	readers	such	as	NVDA	(NonVisual
Desktop	Access).

The	TextOperation	now	allows	the	color	space	of	the
text	color	to	be	determined.	This	allows	you	to	detect
text	drawn	using	specific	spot	colors.

Encryption	includes	automatic	support	for	the	new
Adobe	AES	revision	/	version	5	algorithm.	This
provides	extra	security	and	is	now	the	standard	for
new	releases	of	Acrobat.

Render	quality	is	enhanced	in	a	number	of	areas
most	notably	line	stroking	and	anti-aliased	clipping.

	

	 	

	

	

Acknowledgements 	 	

	

ABCpdf	incorporates	a	variety	of	freely	available	and
open	source	software.	Many	thanks	to	the	authors
and	contributors.

If	you	are	planning	to	redistribute	ABCpdf	you	should
reproduce	these	acknowledgments	in	your
documentation.

Portable	Document	Format

Adobe	Systems	Incorporated	owns	the	copyright	for	the	particular	data
structures	and	operators	and	the	written	specification	constituting	the
interchange	format	called	the	Portable	Document	Format	(PDF).

Adobe	gives	copyright	permission	for	this	material	to	be	used	for
generating,	viewing,	printing	and	otherwise	manipulating	PDF
documents.	This	is	subject	to	certain	conditions	which	are	designed	to
maintain	the	integrity	of	the	PDF	standard.

For	definitive	details	see	the	Adobe	PDF	Reference	5th	Edition.

SWF

Adobe	Systems	Incorporated	owns	the	copyright	for	the	particular	data
structures	and	the	written	specification	constituting	the	interchange
format	called	the	SWF	File	Format.

Adobe	gives	copyright	permission	for	this	material	to	be	used	for
generating	and	manipulating	SWF	files.	This	is	subject	to	certain
conditions	which	are	designed	to	maintain	the	integrity	of	the	SWF
standard.

For	definitive	details	see	the	Adobe	SWF	File	Format	Specification
Version	9.

jpeg

This	software	is	based	in	part	on	the	work	of	the	Independent	JPEG
Group.	Find	out	more	at	http://www.ijg.org/.

libtiff

A	library	for	processing	and	manipulating	TIFF	images.	Find	out	more	at
http://www.libtiff.org/.

Copyright	(c)	1988-1997	Sam	Leffler
Copyright	(c)	1991-1997	Silicon	Graphics,	Inc.

Permission	to	use,	copy,	modify,	distribute,	and	sell	this	software	and	its	documentation	for	any	purpose	is	hereby
granted	without	fee,	provided	that	(i)	the	above	copyright	notices	and	this	permission	notice	appear	in	all	copies	of	the
software	and	related	documentation,	and	(ii)	the	names	of	Sam	Leffler	and	Silicon	Graphics	may	not	be	used	in	any
advertising	or	publicity	relating	to	the	software	without	the	specific,	prior	written	permission	of	Sam	Leffler	and	Silicon
Graphics.

THE	SOFTWARE	IS	PROVIDED	"AS-IS"	AND	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS,	IMPLIED	OR
OTHERWISE,	INCLUDING	WITHOUT	LIMITATION,	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	A
PARTICULAR	PURPOSE.

IN	NO	EVENT	SHALL	SAM	LEFFLER	OR	SILICON	GRAPHICS	BE	LIABLE	FOR	ANY	SPECIAL,	INCIDENTAL,
INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OF	ANY	KIND,	OR	ANY	DAMAGES	WHATSOEVER	RESULTING
FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	OR	NOT	ADVISED	OF	THE	POSSIBILITY	OF	DAMAGE,	AND
ON	ANY	THEORY	OF	LIABILITY,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF
THIS	SOFTWARE.

zlib

A	free,	general-purpose,	legally	unencumbered	-	that	is,	not	covered	by
any	patents	-	lossless	data-compression	library.	Find	out	more	at
http://www.gzip.org/zlib/.

Copyright	(C)	1995-2002	Jean-loup	Gailly	and	Mark	Adler

FreeType

Portions	of	this	software	are	copyright	©	1996-2002	The	FreeType
Project	(www.freetype.org).	All	rights	reserved.

Little	cms

Little	cms	is	a	fast	and	efficient	color	management	engine.	Find	out
more	at	http://www.littlecms.com/.	Little	cms	is	distributed	under	the
following	license.

Copyright	(C)	1998-2004	Marti	Maria

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE
LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR
OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

The	Legion	Of	The	Bouncy	Castle

The	Legion	of	the	Bouncy	Castle	provide	a	comprehensive
cryptography	package.	Find	out	more	at	http://www.bouncycastle.org/.
The	software	is	distributed	under	the	following	license.

The	Bouncy	Castle	License

Copyright	(c)	2000-2004	The	Legion	Of	The	Bouncy	Castle	(http://www.bouncycastle.org)

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE
LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR
OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

OpenOffice.org

ABCpdf	is	designed	to	integrate	with	OpenOffice.org	if	it	is	installed	on
your	system.

OpenOffice.org	is	a	fully-featured	open-source	office	productivity	suite
available	as	a	free	download	for	major	platforms	in	over	45	supported
languages.	It	is	compatible	with	competing	office	suites.	OpenOffice.org
is	developed,	supported,	and	promoted	by	an	international	community
operating	from	the	http://www.openoffice.org/	website.	Beginning	with
the	upcoming	2.0	release,	OpenOffice.org	will	store	data	in	the	open
XML	file	format	adopted	by	the	international	standards	body	OASIS.

Fonts

Selected	fonts	and	glyphs	created	by	BenJamin	P.	Johnson.

Xerces

This	product	uses	Xerces	which	is	licensed	under	the	Apache	License
as	detailed	below.	It	is	not	a	Derivative	Work	as	it	merely	links	to	the
interfaces	of	Xerces.

Apache	License
Version	2.0,	January	2004
http://www.apache.org/licenses/

TERMS	AND	CONDITIONS	FOR	USE,	REPRODUCTION,	AND	DISTRIBUTION

1.	Definitions.

"License"	shall	mean	the	terms	and	conditions	for	use,	reproduction,	and	distribution	as	defined	by	Sections	1	through	9
of	this	document.

"Licensor"	shall	mean	the	copyright	owner	or	entity	authorized	by	the	copyright	owner	that	is	granting	the	License.

"Legal	Entity"	shall	mean	the	union	of	the	acting	entity	and	all	other	entities	that	control,	are	controlled	by,	or	are	under
common	control	with	that	entity.	For	the	purposes	of	this	definition,	"control"	means	(i)	the	power,	direct	or	indirect,	to
cause	the	direction	or	management	of	such	entity,	whether	by	contract	or	otherwise,	or	(ii)	ownership	of	fifty	percent
(50%)	or	more	of	the	outstanding	shares,	or	(iii)	beneficial	ownership	of	such	entity.

"You"	(or	"Your")	shall	mean	an	individual	or	Legal	Entity	exercising	permissions	granted	by	this	License.

"Source"	form	shall	mean	the	preferred	form	for	making	modifications,	including	but	not	limited	to	software	source	code,
documentation	source,	and	configuration	files.

"Object"	form	shall	mean	any	form	resulting	from	mechanical	transformation	or	translation	of	a	Source	form,	including
but	not	limited	to	compiled	object	code,	generated	documentation,	and	conversions	to	other	media	types.

"Work"	shall	mean	the	work	of	authorship,	whether	in	Source	or	Object	form,	made	available	under	the	License,	as
indicated	by	a	copyright	notice	that	is	included	in	or	attached	to	the	work	(an	example	is	provided	in	the	Appendix
below).

"Derivative	Works"	shall	mean	any	work,	whether	in	Source	or	Object	form,	that	is	based	on	(or	derived	from)	the	Work
and	for	which	the	editorial	revisions,	annotations,	elaborations,	or	other	modifications	represent,	as	a	whole,	an	original
work	of	authorship.	For	the	purposes	of	this	License,	Derivative	Works	shall	not	include	works	that	remain	separable
from,	or	merely	link	(or	bind	by	name)	to	the	interfaces	of,	the	Work	and	Derivative	Works	thereof.

"Contribution"	shall	mean	any	work	of	authorship,	including	the	original	version	of	the	Work	and	any	modifications	or
additions	to	that	Work	or	Derivative	Works	thereof,	that	is	intentionally	submitted	to	Licensor	for	inclusion	in	the	Work	by
the	copyright	owner	or	by	an	individual	or	Legal	Entity	authorized	to	submit	on	behalf	of	the	copyright	owner.	For	the
purposes	of	this	definition,	"submitted"	means	any	form	of	electronic,	verbal,	or	written	communication	sent	to	the
Licensor	or	its	representatives,	including	but	not	limited	to	communication	on	electronic	mailing	lists,	source	code	control
systems,	and	issue	tracking	systems	that	are	managed	by,	or	on	behalf	of,	the	Licensor	for	the	purpose	of	discussing
and	improving	the	Work,	but	excluding	communication	that	is	conspicuously	marked	or	otherwise	designated	in	writing
by	the	copyright	owner	as	"Not	a	Contribution."

"Contributor"	shall	mean	Licensor	and	any	individual	or	Legal	Entity	on	behalf	of	whom	a	Contribution	has	been	received
by	Licensor	and	subsequently	incorporated	within	the	Work.

2.	Grant	of	Copyright	License.	Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to
You	a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable	copyright	license	to	reproduce,	prepare
Derivative	Works	of,	publicly	display,	publicly	perform,	sublicense,	and	distribute	the	Work	and	such	Derivative	Works	in
Source	or	Object	form.

3.	Grant	of	Patent	License.	Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to	You	a
perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable	(except	as	stated	in	this	section)	patent	license
to	make,	have	made,	use,	offer	to	sell,	sell,	import,	and	otherwise	transfer	the	Work,	where	such	license	applies	only	to
those	patent	claims	licensable	by	such	Contributor	that	are	necessarily	infringed	by	their	Contribution(s)	alone	or	by
combination	of	their	Contribution(s)	with	the	Work	to	which	such	Contribution(s)	was	submitted.	If	You	institute	patent
litigation	against	any	entity	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that	the	Work	or	a	Contribution
incorporated	within	the	Work	constitutes	direct	or	contributory	patent	infringement,	then	any	patent	licenses	granted	to
You	under	this	License	for	that	Work	shall	terminate	as	of	the	date	such	litigation	is	filed.

4.	Redistribution.	You	may	reproduce	and	distribute	copies	of	the	Work	or	Derivative	Works	thereof	in	any	medium,	with
or	without	modifications,	and	in	Source	or	Object	form,	provided	that	You	meet	the	following	conditions:

1.	 You	must	give	any	other	recipients	of	the	Work	or	Derivative	Works	a	copy	of	this	License;	and

2.	 You	must	cause	any	modified	files	to	carry	prominent	notices	stating	that	You	changed	the	files;	and
3.	 You	must	retain,	in	the	Source	form	of	any	Derivative	Works	that	You	distribute,	all	copyright,	patent,	trademark,

and	attribution	notices	from	the	Source	form	of	the	Work,	excluding	those	notices	that	do	not	pertain	to	any	part

of	the	Derivative	Works;	and

4.	 If	the	Work	includes	a	"NOTICE"	text	file	as	part	of	its	distribution,	then	any	Derivative	Works	that	You	distribute

must	include	a	readable	copy	of	the	attribution	notices	contained	within	such	NOTICE	file,	excluding	those

notices	that	do	not	pertain	to	any	part	of	the	Derivative	Works,	in	at	least	one	of	the	following	places:	within	a

NOTICE	text	file	distributed	as	part	of	the	Derivative	Works;	within	the	Source	form	or	documentation,	if	provided

along	with	the	Derivative	Works;	or,	within	a	display	generated	by	the	Derivative	Works,	if	and	wherever	such

third-party	notices	normally	appear.	The	contents	of	the	NOTICE	file	are	for	informational	purposes	only	and	do

not	modify	the	License.	You	may	add	Your	own	attribution	notices	within	Derivative	Works	that	You	distribute,

alongside	or	as	an	addendum	to	the	NOTICE	text	from	the	Work,	provided	that	such	additional	attribution	notices

cannot	be	construed	as	modifying	the	License.

You	may	add	Your	own	copyright	statement	to	Your	modifications	and	may	provide	additional	or	different	license	terms
and	conditions	for	use,	reproduction,	or	distribution	of	Your	modifications,	or	for	any	such	Derivative	Works	as	a	whole,
provided	Your	use,	reproduction,	and	distribution	of	the	Work	otherwise	complies	with	the	conditions	stated	in	this
License.

5.	Submission	of	Contributions.	Unless	You	explicitly	state	otherwise,	any	Contribution	intentionally	submitted	for
inclusion	in	the	Work	by	You	to	the	Licensor	shall	be	under	the	terms	and	conditions	of	this	License,	without	any
additional	terms	or	conditions.	Notwithstanding	the	above,	nothing	herein	shall	supersede	or	modify	the	terms	of	any
separate	license	agreement	you	may	have	executed	with	Licensor	regarding	such	Contributions.

6.	Trademarks.	This	License	does	not	grant	permission	to	use	the	trade	names,	trademarks,	service	marks,	or	product
names	of	the	Licensor,	except	as	required	for	reasonable	and	customary	use	in	describing	the	origin	of	the	Work	and
reproducing	the	content	of	the	NOTICE	file.

7.	Disclaimer	of	Warranty.	Unless	required	by	applicable	law	or	agreed	to	in	writing,	Licensor	provides	the	Work	(and
each	Contributor	provides	its	Contributions)	on	an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY
KIND,	either	express	or	implied,	including,	without	limitation,	any	warranties	or	conditions	of	TITLE,	NON-
INFRINGEMENT,	MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	You	are	solely	responsible	for
determining	the	appropriateness	of	using	or	redistributing	the	Work	and	assume	any	risks	associated	with	Your	exercise

of	permissions	under	this	License.

8.	Limitation	of	Liability.	In	no	event	and	under	no	legal	theory,	whether	in	tort	(including	negligence),	contract,	or
otherwise,	unless	required	by	applicable	law	(such	as	deliberate	and	grossly	negligent	acts)	or	agreed	to	in	writing,	shall
any	Contributor	be	liable	to	You	for	damages,	including	any	direct,	indirect,	special,	incidental,	or	consequential
damages	of	any	character	arising	as	a	result	of	this	License	or	out	of	the	use	or	inability	to	use	the	Work	(including	but
not	limited	to	damages	for	loss	of	goodwill,	work	stoppage,	computer	failure	or	malfunction,	or	any	and	all	other
commercial	damages	or	losses),	even	if	such	Contributor	has	been	advised	of	the	possibility	of	such	damages.

9.	Accepting	Warranty	or	Additional	Liability.	While	redistributing	the	Work	or	Derivative	Works	thereof,	You	may	choose
to	offer,	and	charge	a	fee	for,	acceptance	of	support,	warranty,	indemnity,	or	other	liability	obligations	and/or	rights
consistent	with	this	License.	However,	in	accepting	such	obligations,	You	may	act	only	on	Your	own	behalf	and	on	Your
sole	responsibility,	not	on	behalf	of	any	other	Contributor,	and	only	if	You	agree	to	indemnify,	defend,	and	hold	each
Contributor	harmless	for	any	liability	incurred	by,	or	claims	asserted	against,	such	Contributor	by	reason	of	your
accepting	any	such	warranty	or	additional	liability.

XPS

This	product	may	incorporate	intellectual	property	owned	by	Microsoft
Corporation.	The	terms	and	conditions	upon	which	Microsoft	is	licensing
such	intellectual	property	may	be	found	at
http://go.microsoft.com/fwlink/?LinkId=52369.

XML	schemas

Portions	of	this	software	may	use	XML	schemas	Copyright	(c)	2006
DCMI,	the	Dublin	Core	Metadata	Initiative.	These	are	licensed	under
the	Creative	Commons	3.0	Attribution	license.

http://dublincore.org/
http://creativecommons.org/licenses/by/3.0/

:[diStorm64}:

diStorm64	is	an	open-source	disassembler	library	for	x64,	licensed
under	the	BSD	License.

:[diStorm64}:
The	ultimate	disassembler	library.
Copyright	(c)	2003,2004,2005,2006,2007,2008,	Gil	Dabah
All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following

disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following

disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	the	diStorm	nor	the	names	of	its	contributors	may	be	used	to	endorse	or	promote	products

derived	from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,
EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR
TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Boost

Boost	provides	free	peer-reviewed	portable	C++	source	libraries.

:Boost	Software	License	-	Version	1.0	-	August	17th,	2003	

Permission	is	hereby	granted,	free	of	charge,	to	any	person	or	organization	obtaining	a	copy	of	the	software	and
accompanying	documentation	covered	by	this	license	(the	"Software")	to	use,	reproduce,	display,	distribute,	execute,
and	transmit	the	Software,	and	to	prepare	derivative	works	of	the	Software,	and	to	permit	third-parties	to	whom	the
Software	is	furnished	to	do	so,	all	subject	to	the	following:	

The	copyright	notices	in	the	Software	and	this	entire	statement,	including	the	above	license	grant,	this	restriction	and	the
following	disclaimer,	must	be	included	in	all	copies	of	the	Software,	in	whole	or	in	part,	and	all	derivative	works	of	the
Software,	unless	such	copies	or	derivative	works	are	solely	in	the	form	of	machine-executable	object	code	generated	by
a	source	language	processor.	

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE,	TITLE	AND	NON-INFRINGEMENT.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	HOLDERS	OR	ANYONE
DISTRIBUTING	THE	SOFTWARE	BE	LIABLE	FOR	ANY	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR
THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE..

JasPer

This	software	is	based	in	part	on	JasPer.

JasPer	License	Version	2.0

Copyright	(c)	2001-2006	Michael	David	Adams
Copyright	(c)	1999-2000	Image	Power,	Inc.
Copyright	(c)	1999-2000	The	University	of	British	Columbia

All	rights	reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	(the	"User")	obtaining	a	copy	of	this	software	and
associated	documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation
the	rights	to	use,	copy,	modify,	merge,	publish,	distribute,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

1.		The	above	copyright	notices	and	this	permission	notice	(which	includes	the	disclaimer	below)	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

2.		The	name	of	a	copyright	holder	shall	not	be	used	to	endorse	or	promote	products	derived	from	the	Software	without
specific	prior	written	permission.

THIS	DISCLAIMER	OF	WARRANTY	CONSTITUTES	AN	ESSENTIAL	PART	OF	THIS	LICENSE.	NO	USE	OF	THE
SOFTWARE	IS	AUTHORIZED	HEREUNDER	EXCEPT	UNDER	THIS	DISCLAIMER.	THE	SOFTWARE	IS	PROVIDED
BY	THE	COPYRIGHT	HOLDERS	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT	OF	THIRD	PARTY	RIGHTS.	IN	NO	EVENT	SHALL	THE	COPYRIGHT
HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,	OR	ANY	SPECIAL	INDIRECT	OR	CONSEQUENTIAL	DAMAGES,	OR	ANY
DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE
USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.	NO	ASSURANCES	ARE	PROVIDED	BY	THE	COPYRIGHT
HOLDERS	THAT	THE	SOFTWARE	DOES	NOT	INFRINGE	THE	PATENT	OR	OTHER	INTELLECTUAL	PROPERTY
RIGHTS	OF	ANY	OTHER	ENTITY.	EACH	COPYRIGHT	HOLDER	DISCLAIMS	ANY	LIABILITY	TO	THE	USER	FOR
CLAIMS	BROUGHT	BY	ANY	OTHER	ENTITY	BASED	ON	INFRINGEMENT	OF	INTELLECTUAL	PROPERTY	RIGHTS
OR	OTHERWISE.	AS	A	CONDITION	TO	EXERCISING	THE	RIGHTS	GRANTED	HEREUNDER,	EACH	USER
HEREBY	ASSUMES	SOLE	RESPONSIBILITY	TO	SECURE	ANY	OTHER	INTELLECTUAL	PROPERTY	RIGHTS
NEEDED,	IF	ANY.	THE	SOFTWARE	IS	NOT	FAULT-TOLERANT	AND	IS	NOT	INTENDED	FOR	USE	IN	MISSION-
CRITICAL	SYSTEMS,	SUCH	AS	THOSE	USED	IN	THE	OPERATION	OF	NUCLEAR	FACILITIES,	AIRCRAFT
NAVIGATION	OR	COMMUNICATION	SYSTEMS,	AIR	TRAFFIC	CONTROL	SYSTEMS,	DIRECT	LIFE	SUPPORT
MACHINES,	OR	WEAPONS	SYSTEMS,	IN	WHICH	THE	FAILURE	OF	THE	SOFTWARE	OR	SYSTEM	COULD	LEAD
DIRECTLY	TO	DEATH,	PERSONAL	INJURY,	OR	SEVERE	PHYSICAL	OR	ENVIRONMENTAL	DAMAGE	("HIGH	RISK
ACTIVITIES").	THE	COPYRIGHT	HOLDERS	SPECIFICALLY	DISCLAIM	ANY	EXPRESS	OR	IMPLIED	WARRANTY
OF	FITNESS	FOR	HIGH	RISK	ACTIVITIES.

libxml

This	software	is	based	in	part	on	libxml.

Except	where	otherwise	noted	in	the	source	code	(trio	files,	hash.c	and	list.c)	covered	by	a	similar	licence	but	with
different	Copyright	notices:

	Copyright	(C)	1998-2002	Daniel	Veillard.	All	Rights	Reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	DANIEL	VEILLARD	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING
FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE
SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	Daniel	Veillard	shall	not	be	used	in	advertising	or	otherwise	to	promote
the	sale,	use	or	other	deal-	ings	in	this	Software	without	prior	written	authorization	from	him.

Trio	Files

*	Copyright	(C)	1998	Bjorn	Reese	and	Daniel	Stenberg.
*
*	Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any
*	purpose	with	or	without	fee	is	hereby	granted,	provided	that	the	above
*	copyright	notice	and	this	permission	notice	appear	in	all	copies.
*
*	THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY	EXPRESS	OR	IMPLIED
*	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED	WARRANTIES	OF
*	MERCHANTIBILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	AUTHORS	AND
*	CONTRIBUTORS	ACCEPT	NO	RESPONSIBILITY	IN	ANY	CONCEIVABLE	MANNER.

Hash.c

*	Copyright	(C)	2000	Bjorn	Reese	and	Daniel	Veillard.
*
*	Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any
*	purpose	with	or	without	fee	is	hereby	granted,	provided	that	the	above
*	copyright	notice	and	this	permission	notice	appear	in	all	copies.
*
*	THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY	EXPRESS	OR	IMPLIED
*	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED	WARRANTIES	OF
*	MERCHANTIBILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	AUTHORS	AND
*	CONTRIBUTORS	ACCEPT	NO	RESPONSIBILITY	IN	ANY	CONCEIVABLE	MANNER.

List.c

*	Copyright	(C)	2000	Gary	Pennington	and	Daniel	Veillard.
*
*	Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any
*	purpose	with	or	without	fee	is	hereby	granted,	provided	that	the	above
*	copyright	notice	and	this	permission	notice	appear	in	all	copies.
*
*	THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY	EXPRESS	OR	IMPLIED
*	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED	WARRANTIES	OF
*	MERCHANTIBILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	AUTHORS	AND
*	CONTRIBUTORS	ACCEPT	NO	RESPONSIBILITY	IN	ANY	CONCEIVABLE	MANNER.

ImageMagick

This	product	uses	ImageMagick	(http://www.imagemagick.org/),	which
is	available	under	the	following	license:

The	legally	binding	and	authoritative	terms	and	conditions	for	use,	reproduction,	and	distribution	of	ImageMagick	follow:

Copyright	1999-2009	ImageMagick	Studio	LLC,	a	non-profit	organization	dedicated	to	making	software	imaging
solutions	freely	available.

1.	Definitions.

"License"	shall	mean	the	terms	and	conditions	for	use,	reproduction,	and	distribution	as	defined	by	Sections	1	through	9
of	this	document.

"Licensor"	shall	mean	the	copyright	owner	or	entity	authorized	by	the	copyright	owner	that	is	granting	the	License.

"Legal	Entity"	shall	mean	the	union	of	the	acting	entity	and	all	other	entities	that	control,	are	controlled	by,	or	are	under
common	control	with	that	entity.	For	the	purposes	of	this	definition,	"control"	means	(i)	the	power,	direct	or	indirect,	to
cause	the	direction	or	management	of	such	entity,	whether	by	contract	or	otherwise,	or	(ii)	ownership	of	fifty	percent
(50%)	or	more	of	the	outstanding	shares,	or	(iii)	beneficial	ownership	of	such	entity.

"You"	(or	"Your")	shall	mean	an	individual	or	Legal	Entity	exercising	permissions	granted	by	this	License.

"Source"	form	shall	mean	the	preferred	form	for	making	modifications,	including	but	not	limited	to	software	source	code,
documentation	source,	and	configuration	files.

"Object"	form	shall	mean	any	form	resulting	from	mechanical	transformation	or	translation	of	a	Source	form,	including
but	not	limited	to	compiled	object	code,	generated	documentation,	and	conversions	to	other	media	types.

"Work"	shall	mean	the	work	of	authorship,	whether	in	Source	or	Object	form,	made	available	under	the	License,	as
indicated	by	a	copyright	notice	that	is	included	in	or	attached	to	the	work	(an	example	is	provided	in	the	Appendix
below).

"Derivative	Works"	shall	mean	any	work,	whether	in	Source	or	Object	form,	that	is	based	on	(or	derived	from)	the	Work
and	for	which	the	editorial	revisions,	annotations,	elaborations,	or	other	modifications	represent,	as	a	whole,	an	original
work	of	authorship.	For	the	purposes	of	this	License,	Derivative	Works	shall	not	include	works	that	remain	separable
from,	or	merely	link	(or	bind	by	name)	to	the	interfaces	of,	the	Work	and	Derivative	Works	thereof.

"Contribution"	shall	mean	any	work	of	authorship,	including	the	original	version	of	the	Work	and	any	modifications	or
additions	to	that	Work	or	Derivative	Works	thereof,	that	is	intentionally	submitted	to	Licensor	for	inclusion	in	the	Work	by
the	copyright	owner	or	by	an	individual	or	Legal	Entity	authorized	to	submit	on	behalf	of	the	copyright	owner.	For	the
purposes	of	this	definition,	"submitted"	means	any	form	of	electronic,	verbal,	or	written	communication	intentionally	sent
to	the	Licensor	by	its	copyright	holder	or	its	representatives,	including	but	not	limited	to	communication	on	electronic
mailing	lists,	source	code	control	systems,	and	issue	tracking	systems	that	are	managed	by,	or	on	behalf	of,	the
Licensor	for	the	purpose	of	discussing	and	improving	the	Work,	but	excluding	communication	that	is	conspicuously
marked	or	otherwise	designated	in	writing	by	the	copyright	owner	as	"Not	a	Contribution."

"Contributor"	shall	mean	Licensor	and	any	individual	or	Legal	Entity	on	behalf	of	whom	a	Contribution	has	been	received
by	Licensor	and	subsequently	incorporated	within	the	Work.

2.	Grant	of	Copyright	License.	Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to
You	a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable	copyright	license	to	reproduce,	prepare
Derivative	Works	of,	publicly	display,	publicly	perform,	sublicense,	and	distribute	the	Work	and	such	Derivative	Works	in
Source	or	Object	form.

3.	Grant	of	Patent	License.	Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to	You	a
perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable	patent	license	to	make,	have	made,	use,	offer
to	sell,	sell,	import,	and	otherwise	transfer	the	Work,	where	such	license	applies	only	to	those	patent	claims	licensable
by	such	Contributor	that	are	necessarily	infringed	by	their	Contribution(s)	alone	or	by	combination	of	their	Contribution(s)
with	the	Work	to	which	such	Contribution(s)	was	submitted.

4.	Redistribution.	You	may	reproduce	and	distribute	copies	of	the	Work	or	Derivative	Works	thereof	in	any	medium,	with
or	without	modifications,	and	in	Source	or	Object	form,	provided	that	You	meet	the	following	conditions:

1.	 You	must	give	any	other	recipients	of	the	Work	or	Derivative	Works	a	copy	of	this	License;	and

2.	 You	must	cause	any	modified	files	to	carry	prominent	notices	stating	that	You	changed	the	files;	and
3.	 You	must	retain,	in	the	Source	form	of	any	Derivative	Works	that	You	distribute,	all	copyright,	patent,	trademark,

and	attribution	notices	from	the	Source	form	of	the	Work,	excluding	those	notices	that	do	not	pertain	to	any	part

of	the	Derivative	Works;	and

4.	 If	the	Work	includes	a	"NOTICE"	text	file	as	part	of	its	distribution,	then	any	Derivative	Works	that	You	distribute

must	include	a	readable	copy	of	the	attribution	notices	contained	within	such	NOTICE	file,	excluding	those

notices	that	do	not	pertain	to	any	part	of	the	Derivative	Works,	in	at	least	one	of	the	following	places:	within	a

NOTICE	text	file	distributed	as	part	of	the	Derivative	Works;	within	the	Source	form	or	documentation,	if	provided

along	with	the	Derivative	Works;	or,	within	a	display	generated	by	the	Derivative	Works,	if	and	wherever	such

third-party	notices	normally	appear.	The	contents	of	the	NOTICE	file	are	for	informational	purposes	only	and	do

not	modify	the	License.	You	may	add	Your	own	attribution	notices	within	Derivative	Works	that	You	distribute,

alongside	or	as	an	addendum	to	the	NOTICE	text	from	the	Work,	provided	that	such	additional	attribution	notices

cannot	be	construed	as	modifying	the	License.

You	may	add	Your	own	copyright	statement	to	Your	modifications	and	may	provide	additional	or	different	license	terms
and	conditions	for	use,	reproduction,	or	distribution	of	Your	modifications,	or	for	any	such	Derivative	Works	as	a	whole,
provided	Your	use,	reproduction,	and	distribution	of	the	Work	otherwise	complies	with	the	conditions	stated	in	this
License.

5.	Submission	of	Contributions.	Unless	You	explicitly	state	otherwise,	any	Contribution	intentionally	submitted	for
inclusion	in	the	Work	by	You	to	the	Licensor	shall	be	under	the	terms	and	conditions	of	this	License,	without	any
additional	terms	or	conditions.	Notwithstanding	the	above,	nothing	herein	shall	supersede	or	modify	the	terms	of	any
separate	license	agreement	you	may	have	executed	with	Licensor	regarding	such	Contributions.

6.	Trademarks.	This	License	does	not	grant	permission	to	use	the	trade	names,	trademarks,	service	marks,	or	product
names	of	the	Licensor,	except	as	required	for	reasonable	and	customary	use	in	describing	the	origin	of	the	Work	and
reproducing	the	content	of	the	NOTICE	file.

7.	Disclaimer	of	Warranty.	Unless	required	by	applicable	law	or	agreed	to	in	writing,	Licensor	provides	the	Work	(and
each	Contributor	provides	its	Contributions)	on	an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY
KIND,	either	express	or	implied,	including,	without	limitation,	any	warranties	or	conditions	of	TITLE,	NON-
INFRINGEMENT,	MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	You	are	solely	responsible	for
determining	the	appropriateness	of	using	or	redistributing	the	Work	and	assume	any	risks	associated	with	Your	exercise
of	permissions	under	this	License.

8.	Limitation	of	Liability.	In	no	event	and	under	no	legal	theory,	whether	in	tort	(including	negligence),	contract,	or
otherwise,	unless	required	by	applicable	law	(such	as	deliberate	and	grossly	negligent	acts)	or	agreed	to	in	writing,	shall
any	Contributor	be	liable	to	You	for	damages,	including	any	direct,	indirect,	special,	incidental,	or	consequential
damages	of	any	character	arising	as	a	result	of	this	License	or	out	of	the	use	or	inability	to	use	the	Work	(including	but
not	limited	to	damages	for	loss	of	goodwill,	work	stoppage,	computer	failure	or	malfunction,	or	any	and	all	other
commercial	damages	or	losses),	even	if	such	Contributor	has	been	advised	of	the	possibility	of	such	damages.

9.	Accepting	Warranty	or	Additional	Liability.	While	redistributing	the	Work	or	Derivative	Works	thereof,	You	may	choose
to	offer,	and	charge	a	fee	for,	acceptance	of	support,	warranty,	indemnity,	or	other	liability	obligations	and/or	rights
consistent	with	this	License.

APPENDIX:	How	to	apply	the	ImageMagick	License	to	your	work	
To	apply	the	ImageMagick	License	to	your	work,	attach	the	following	boilerplate	notice,	with	the	fields	enclosed	by
brackets	"[]"	replaced	with	your	own	identifying	information.	(Don't	include	the	brackets!)	The	text	should	be	enclosed	in
the	appropriate	comment	syntax	for	the	file	format.

Copyright	[yyyy]	[name	of	copyright	owner]
Licensed	under	the	ImageMagick	License	(the	"License");	you	may	not	use	this	file	except	in	compliance	with	the
License.	You	may	obtain	a	copy	of	the	License	at

		http://www.imagemagick.org/script/license.php

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software	distributed	under	the	License	is	distributed	on
an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.	See
the	License	for	the	specific	language	governing	permissions	and	limitations	under	the	License.

In	addition	the	following	Notice	is	required	to	be	included	by	the
ImageMagick	license:

The	ImageMagick	logo	is	copyright	Pineapple	USA	Inc.	It	is	freely	distributable,	however,	modifications	(other	than
resizing)	to	the	logo	are	not	permitted.

ImageMagick	incorporated	a	small	portion	of	code	from	the	gsview	package	to	locate	Ghostscript	under	Windows	in
magick/nt_base.c.	The	source	code	is	distributed	under	the	following	license:

Copyright	(C)	2000-2002,	Ghostgum	Software	Pty	Ltd.	All	rights	reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	file	("Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,	distribute,
sublicense,	and/or	sell	copies	of	this	Software,	and	to	permit	persons	to	whom	this	file	is	furnished	to	do	so,	subject	to
the	following	conditions:

This	Software	is	distributed	with	NO	WARRANTY	OF	ANY	KIND.	No	author	or	distributor	accepts	any	responsibility	for
the	consequences	of	using	it,	or	for	whether	it	serves	any	particular	purpose	or	works	at	all,	unless	he	or	she	says	so	in
writing.

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

The	Base64Decode()	and	Base64Encode()	methods	in	magick/utility.c	is	based	on	source	code	obtained	from
OpenSSH.	The	source	code	is	distributed	under	the	following	license:

Copyright	(c)	2000	Markus	Friedl.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following

disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR
BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,
STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

ImageMagick	includes	patterns	in	coders/pattern.c	which	are	derived	from	XFig	and	is	distributed	under	the	following
license:

FIG	:	Facility	for	Interactive	Generation	of	figures	Copyright	(c)	1985-1988	by	Supoj	Sutanthavibul	Parts	Copyright	(c)
1989-2000	by	Brian	V.	Smith	Parts	Copyright	(c)	1991	by	Paul	King

Any	party	obtaining	a	copy	of	these	files	is	granted,	free	of	charge,	a	full	and	unrestricted	irrevocable,	world-wide,	paid
up,	royalty-free,	nonexclusive	right	and	license	to	deal	in	this	software	and	documentation	files	(the	"Software"),
including	without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the
Software,	and	to	permit	persons	who	receive	copies	from	any	such	party	to	do	so,	with	the	only	requirement	being	that
this	copyright	notice	remain	intact.

In	November	2002,	the	GraphicsMagick	Group	created	GraphicsMagick	from	ImageMagick	Studio's	ImageMagick
source.	ImageMagick	adopted	some	of	their	improvements	to	existing	programs	and	scripts	under	the	following	license:

Copyright	(C)	2002	GraphicsMagick	Group,	an	organization	dedicated	to	making	software	imaging	solutions	freely
available.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	("GraphicsMagick"),	to	deal	in	GraphicsMagick	without	restriction,	including	without	limitation	the
rights	to	use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	GraphicsMagick,	and	to	permit
persons	to	whom	GraphicsMagick	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of
GraphicsMagick.

The	software	is	provided	"as	is",	without	warranty	of	any	kind,	express	or	implied,	including	but	not	limited	to	the
warranties	of	merchantability,	fitness	for	a	particular	purpose	and	noninfringement.	In	no	event	shall	GraphicsMagick
Group	be	liable	for	any	claim,	damages	or	other	liability,	whether	in	an	action	of	contract,	tort	or	otherwise,	arising	from,
out	of	or	in	connection	with	GraphicsMagick	or	the	use	or	other	dealings	in	GraphicsMagick.

Except	as	contained	in	this	notice,	the	name	of	the	GraphicsMagick	Group	shall	not	be	used	in	advertising	or	otherwise
to	promote	the	sale,	use	or	other	dealings	in	GraphicsMagick	without	prior	written	authorization	from	the
GraphicsMagick	Group.

ImageMagick	makes	use	of	third-party	"delegate"	libraries	to	support	certain	optional	features.	These	libraries	bear	their
own	copyrights	and	licenses,	which	may	be	more	or	less	restrictive	than	the	ImageMagick	license.

Mozilla	XULRunner

This	product	uses	a	modified	version	of	Mozilla	XULRunner	available
under	the	Mozilla	Public	License	(http://www.mozilla.org/MPL/).

In	compliance	with	the	license,	the	source	code	required	to	produce	the
modified	version	of	Mozilla	Firefox	binaries	used	in	this	product	can	be
obtained	from	bitbucket.org.

Full	license	details	can	be	found	in	the	source	code	for	the	specific
release	associated	with	the	product.

http://www.mozilla.org/MPL/

ExplorerCanvas

Modern	browsers	like	Firefox,	Safari,	Chrome	and	Opera	support	the	HTML5	canvas
tag	to	allow	2D	command-based	drawing.	ExplorerCanvas	brings	the	same
functionality	to	Internet	Explorer.	ExplorerCanvas	is	available	under	the	Apache
License	detailed	below.

Apache	License
Version	2.0,	January	2004
http://www.apache.org/licenses/

TERMS	AND	CONDITIONS	FOR	USE,	REPRODUCTION,	AND	DISTRIBUTION

1.	Definitions.

"License"	shall	mean	the	terms	and	conditions	for	use,	reproduction,	and	distribution	as	defined	by	Sections	1	through	9	of	this
document.

"Licensor"	shall	mean	the	copyright	owner	or	entity	authorized	by	the	copyright	owner	that	is	granting	the	License.

"Legal	Entity"	shall	mean	the	union	of	the	acting	entity	and	all	other	entities	that	control,	are	controlled	by,	or	are	under	common	control
with	that	entity.	For	the	purposes	of	this	definition,	"control"	means	(i)	the	power,	direct	or	indirect,	to	cause	the	direction	or	management
of	such	entity,	whether	by	contract	or	otherwise,	or	(ii)	ownership	of	fifty	percent	(50%)	or	more	of	the	outstanding	shares,	or	(iii)
beneficial	ownership	of	such	entity.

"You"	(or	"Your")	shall	mean	an	individual	or	Legal	Entity	exercising	permissions	granted	by	this	License.

"Source"	form	shall	mean	the	preferred	form	for	making	modifications,	including	but	not	limited	to	software	source	code,	documentation
source,	and	configuration	files.

"Object"	form	shall	mean	any	form	resulting	from	mechanical	transformation	or	translation	of	a	Source	form,	including	but	not	limited	to
compiled	object	code,	generated	documentation,	and	conversions	to	other	media	types.

"Work"	shall	mean	the	work	of	authorship,	whether	in	Source	or	Object	form,	made	available	under	the	License,	as	indicated	by	a
copyright	notice	that	is	included	in	or	attached	to	the	work	(an	example	is	provided	in	the	Appendix	below).

"Derivative	Works"	shall	mean	any	work,	whether	in	Source	or	Object	form,	that	is	based	on	(or	derived	from)	the	Work	and	for	which
the	editorial	revisions,	annotations,	elaborations,	or	other	modifications	represent,	as	a	whole,	an	original	work	of	authorship.	For	the
purposes	of	this	License,	Derivative	Works	shall	not	include	works	that	remain	separable	from,	or	merely	link	(or	bind	by	name)	to	the
interfaces	of,	the	Work	and	Derivative	Works	thereof.

"Contribution"	shall	mean	any	work	of	authorship,	including	the	original	version	of	the	Work	and	any	modifications	or	additions	to	that
Work	or	Derivative	Works	thereof,	that	is	intentionally	submitted	to	Licensor	for	inclusion	in	the	Work	by	the	copyright	owner	or	by	an
individual	or	Legal	Entity	authorized	to	submit	on	behalf	of	the	copyright	owner.	For	the	purposes	of	this	definition,	"submitted"	means
any	form	of	electronic,	verbal,	or	written	communication	sent	to	the	Licensor	or	its	representatives,	including	but	not	limited	to
communication	on	electronic	mailing	lists,	source	code	control	systems,	and	issue	tracking	systems	that	are	managed	by,	or	on	behalf
of,	the	Licensor	for	the	purpose	of	discussing	and	improving	the	Work,	but	excluding	communication	that	is	conspicuously	marked	or
otherwise	designated	in	writing	by	the	copyright	owner	as	"Not	a	Contribution."

"Contributor"	shall	mean	Licensor	and	any	individual	or	Legal	Entity	on	behalf	of	whom	a	Contribution	has	been	received	by	Licensor
and	subsequently	incorporated	within	the	Work.

2.	Grant	of	Copyright	License.

Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to	You	a	perpetual,	worldwide,	non-exclusive,	no-

charge,	royalty-free,	irrevocable	copyright	license	to	reproduce,	prepare	Derivative	Works	of,	publicly	display,	publicly	perform,

sublicense,	and	distribute	the	Work	and	such	Derivative	Works	in	Source	or	Object	form.

3.	Grant	of	Patent	License.

Subject	to	the	terms	and	conditions	of	this	License,	each	Contributor	hereby	grants	to	You	a	perpetual,	worldwide,	non-exclusive,	no-

charge,	royalty-free,	irrevocable	(except	as	stated	in	this	section)	patent	license	to	make,	have	made,	use,	offer	to	sell,	sell,	import,	and

otherwise	transfer	the	Work,	where	such	license	applies	only	to	those	patent	claims	licensable	by	such	Contributor	that	are	necessarily

infringed	by	their	Contribution(s)	alone	or	by	combination	of	their	Contribution(s)	with	the	Work	to	which	such	Contribution(s)	was

submitted.	If	You	institute	patent	litigation	against	any	entity	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that	the	Work

or	a	Contribution	incorporated	within	the	Work	constitutes	direct	or	contributory	patent	infringement,	then	any	patent	licenses	granted	to

You	under	this	License	for	that	Work	shall	terminate	as	of	the	date	such	litigation	is	filed.

4.	Redistribution.
You	may	reproduce	and	distribute	copies	of	the	Work	or	Derivative	Works	thereof	in	any	medium,	with	or	without	modifications,	and	in	Source
or	Object	form,	provided	that	You	meet	the	following	conditions:

1.	 You	must	give	any	other	recipients	of	the	Work	or	Derivative	Works	a	copy	of	this	License;	and

2.	 You	must	cause	any	modified	files	to	carry	prominent	notices	stating	that	You	changed	the	files;	and
3.	 You	must	retain,	in	the	Source	form	of	any	Derivative	Works	that	You	distribute,	all	copyright,	patent,	trademark,	and	attribution	notices

from	the	Source	form	of	the	Work,	excluding	those	notices	that	do	not	pertain	to	any	part	of	the	Derivative	Works;	and

4.	 If	the	Work	includes	a	"NOTICE"	text	file	as	part	of	its	distribution,	then	any	Derivative	Works	that	You	distribute	must	include	a	readable

copy	of	the	attribution	notices	contained	within	such	NOTICE	file,	excluding	those	notices	that	do	not	pertain	to	any	part	of	the

Derivative	Works,	in	at	least	one	of	the	following	places:	within	a	NOTICE	text	file	distributed	as	part	of	the	Derivative	Works;	within	the

Source	form	or	documentation,	if	provided	along	with	the	Derivative	Works;	or,	within	a	display	generated	by	the	Derivative	Works,	if

and	wherever	such	third-party	notices	normally	appear.	The	contents	of	the	NOTICE	file	are	for	informational	purposes	only	and	do	not

modify	the	License.	You	may	add	Your	own	attribution	notices	within	Derivative	Works	that	You	distribute,	alongside	or	as	an	addendum

to	the	NOTICE	text	from	the	Work,	provided	that	such	additional	attribution	notices	cannot	be	construed	as	modifying	the	License.	You

may	add	Your	own	copyright	statement	to	Your	modifications	and	may	provide	additional	or	different	license	terms	and	conditions	for

use,	reproduction,	or	distribution	of	Your	modifications,	or	for	any	such	Derivative	Works	as	a	whole,	provided	Your	use,	reproduction,

and	distribution	of	the	Work	otherwise	complies	with	the	conditions	stated	in	this	License.

5.	Submission	of	Contributions.

Unless	You	explicitly	state	otherwise,	any	Contribution	intentionally	submitted	for	inclusion	in	the	Work	by	You	to	the	Licensor	shall	be

under	the	terms	and	conditions	of	this	License,	without	any	additional	terms	or	conditions.	Notwithstanding	the	above,	nothing	herein

shall	supersede	or	modify	the	terms	of	any	separate	license	agreement	you	may	have	executed	with	Licensor	regarding	such

Contributions.

6.	Trademarks.

This	License	does	not	grant	permission	to	use	the	trade	names,	trademarks,	service	marks,	or	product	names	of	the	Licensor,	except

as	required	for	reasonable	and	customary	use	in	describing	the	origin	of	the	Work	and	reproducing	the	content	of	the	NOTICE	file.

7.	Disclaimer	of	Warranty.

Unless	required	by	applicable	law	or	agreed	to	in	writing,	Licensor	provides	the	Work	(and	each	Contributor	provides	its	Contributions)

on	an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied,	including,	without

limitation,	any	warranties	or	conditions	of	TITLE,	NON-INFRINGEMENT,	MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR

PURPOSE.	You	are	solely	responsible	for	determining	the	appropriateness	of	using	or	redistributing	the	Work	and	assume	any	risks

associated	with	Your	exercise	of	permissions	under	this	License.

8.	Limitation	of	Liability.

In	no	event	and	under	no	legal	theory,	whether	in	tort	(including	negligence),	contract,	or	otherwise,	unless	required	by	applicable	law

(such	as	deliberate	and	grossly	negligent	acts)	or	agreed	to	in	writing,	shall	any	Contributor	be	liable	to	You	for	damages,	including	any

direct,	indirect,	special,	incidental,	or	consequential	damages	of	any	character	arising	as	a	result	of	this	License	or	out	of	the	use	or

inability	to	use	the	Work	(including	but	not	limited	to	damages	for	loss	of	goodwill,	work	stoppage,	computer	failure	or	malfunction,	or

any	and	all	other	commercial	damages	or	losses),	even	if	such	Contributor	has	been	advised	of	the	possibility	of	such	damages.

9.	Accepting	Warranty	or	Additional	Liability.

While	redistributing	the	Work	or	Derivative	Works	thereof,	You	may	choose	to	offer,	and	charge	a	fee	for,	acceptance	of	support,

warranty,	indemnity,	or	other	liability	obligations	and/or	rights	consistent	with	this	License.	However,	in	accepting	such	obligations,	You

may	act	only	on	Your	own	behalf	and	on	Your	sole	responsibility,	not	on	behalf	of	any	other	Contributor,	and	only	if	You	agree	to

indemnify,	defend,	and	hold	each	Contributor	harmless	for	any	liability	incurred	by,	or	claims	asserted	against,	such	Contributor	by

reason	of	your	accepting	any	such	warranty	or	additional	liability.

END	OF	TERMS	AND	CONDITIONS

APPENDIX:	How	to	apply	the	Apache	License	to	your	work.

To	apply	the	Apache	License	to	your	work,	attach	the	following	boilerplate	notice,
with	the	fields	enclosed	by	brackets	"[]"	replaced	with	your	own	identifying
information.	(Don't	include	the	brackets!)	The	text	should	be	enclosed	in	the
appropriate	comment	syntax	for	the	file	format.	We	also	recommend	that	a	file	or
class	name	and	description	of	purpose	be	included	on	the	same	"printed	page"
as	the	copyright	notice	for	easier	identification	within	third-party	archives.

			Copyright	[yyyy]	[name	of	copyright	owner]

			Licensed	under	the	Apache	License,	Version	2.0	(the	"License");

			you	may	not	use	this	file	except	in	compliance	with	the	License.

			You	may	obtain	a	copy	of	the	License	at

							http://www.apache.org/licenses/LICENSE-2.0

			Unless	required	by	applicable	law	or	agreed	to	in	writing,	software

			distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,

			WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.

			See	the	License	for	the	specific	language	governing	permissions	and

			limitations	under	the	License.

Mhook

Part	of	this	software	uses	the	Mhook	library.

Copyright	(c)	2007-2008,	Marton	Anka	Portions	Copyright	(c)	2007,	Matt	Conover

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE
LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR
OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

HarfBuzz

Copyright	©	2010,2011,2012		Google,	Inc.
Copyright	©	2012		Mozilla	Foundation
Copyright	©	2011		Codethink	Limited
Copyright	©	2008,2010		Nokia	Corporation	and/or	its	subsidiary(-ies)
Copyright	©	2009		Keith	Stribley
Copyright	©	2009		Martin	Hosken	and	SIL	International
Copyright	©	2007		Chris	Wilson
Copyright	©	2006		Behdad	Esfahbod
Copyright	©	2005		David	Turner
Copyright	©	2004,2007,2008,2009,2010		Red	Hat,	Inc.
Copyright	©	1998-2004		David	Turner	and	Werner	Lemberg

This	is	part	of	HarfBuzz,	a	text	shaping	library.

Permission	is	hereby	granted,	without	written	agreement	and	without	license	or	royalty	fees,	to	use,	copy,	modify,	and
distribute	this	software	and	its	documentation	for	any	purpose,	provided	that	the	above	copyright	notice	and	the
following	two	paragraphs	appear	in	all	copies	of	this	software.

IN	NO	EVENT	SHALL	THE	COPYRIGHT	HOLDER	BE	LIABLE	TO	ANY	PARTY	FOR	DIRECT,	INDIRECT,	SPECIAL,
INCIDENTAL,	OR	CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OF	THIS	SOFTWARE	AND	ITS
DOCUMENTATION,	EVEN	IF	THE	COPYRIGHT	HOLDER	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

THE	COPYRIGHT	HOLDER	SPECIFICALLY	DISCLAIMS	ANY	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,
THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.		THE
SOFTWARE	PROVIDED	HEREUNDER	IS	ON	AN	"AS	IS"	BASIS,	AND	THE	COPYRIGHT	HOLDER	HAS	NO
OBLIGATION	TO	PROVIDE	MAINTENANCE,	SUPPORT,	UPDATES,	ENHANCEMENTS,	OR	MODIFICATIONS.

UCDN

Copyright	(C)	2012	Grigori	Goronzy	<greg@kinoho.net>

Permission	to	use,	copy,	modify,	and/or	distribute	this	software	for	any	purpose	with	or	without	fee	is	hereby	granted,
provided	that	the	above	copyright	notice	and	this	permission	notice	appear	in	all	copies.

THE	SOFTWARE	IS	PROVIDED	"AS	IS"	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO
THIS	SOFTWARE	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS.	IN	NO	EVENT
SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	SPECIAL,	DIRECT,	INDIRECT,	OR	CONSEQUENTIAL	DAMAGES	OR
ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION
OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE
USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

LZW

The	LZW	code	is	covered	by	the	following	licenses.

/*
*	Copyright	(c)	1988-1997	Sam	Leffler
*	Copyright	(c)	1991-1997	Silicon	Graphics,	Inc.
*
*	Permission	to	use,	copy,	modify,	distribute,	and	sell	this	software	and	
*	its	documentation	for	any	purpose	is	hereby	granted	without	fee,	provided
*	that	(i)	the	above	copyright	notices	and	this	permission	notice	appear	in
*	all	copies	of	the	software	and	related	documentation,	and	(ii)	the	names	of
*	Sam	Leffler	and	Silicon	Graphics	may	not	be	used	in	any	advertising	or
*	publicity	relating	to	the	software	without	the	specific,	prior	written
*	permission	of	Sam	Leffler	and	Silicon	Graphics.
*	
*	THE	SOFTWARE	IS	PROVIDED	"AS-IS"	AND	WITHOUT	WARRANTY	OF	ANY	KIND,	
*	EXPRESS,	IMPLIED	OR	OTHERWISE,	INCLUDING	WITHOUT	LIMITATION,	ANY	
*	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	
*	
*	IN	NO	EVENT	SHALL	SAM	LEFFLER	OR	SILICON	GRAPHICS	BE	LIABLE	FOR
*	ANY	SPECIAL,	INCIDENTAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OF	ANY	KIND,
*	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,
*	WHETHER	OR	NOT	ADVISED	OF	THE	POSSIBILITY	OF	DAMAGE,	AND	ON	ANY	THEORY	OF	
*	LIABILITY,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	
*	OF	THIS	SOFTWARE.
*/

/*
*	TIFF	Library.
*	Rev	5.0	Lempel-Ziv	&	Welch	Compression	Support
*
*	This	code	is	derived	from	the	compress	program	whose	code	is
*	derived	from	software	contributed	to	Berkeley	by	James	A.	Woods,
*	derived	from	original	work	by	Spencer	Thomas	and	Joseph	Orost.
*
*	The	original	Berkeley	copyright	notice	appears	below	in	its	entirety.
*/

/*
*	Copyright	(c)	1985,	1986	The	Regents	of	the	University	of	California.
*	All	rights	reserved.
*
*	This	code	is	derived	from	software	contributed	to	Berkeley	by
*	James	A.	Woods,	derived	from	original	work	by	Spencer	Thomas
*	and	Joseph	Orost.
*
*	Redistribution	and	use	in	source	and	binary	forms	are	permitted
*	provided	that	the	above	copyright	notice	and	this	paragraph	are
*	duplicated	in	all	such	forms	and	that	any	documentation,
*	advertising	materials,	and	other	materials	related	to	such
*	distribution	and	use	acknowledge	that	the	software	was	developed
*	by	the	University	of	California,	Berkeley.	The	name	of	the
*	University	may	not	be	used	to	endorse	or	promote	products	derived
*	from	this	software	without	specific	prior	written	permission.
*	THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY	EXPRESS	OR
*	IMPLIED	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED
*	WARRANTIES	OF	MERCHANTIBILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
*/

Random	Numbers

One	of	the	random	number	generators	we	use	is	covered	by	the
following	license.

//*
*	Copyright	(c)	1983	Regents	of	the	University	of	California.
*	All	rights	reserved.
*
*	Redistribution	and	use	in	source	and	binary	forms	are	permitted
*	provided	that	the	above	copyright	notice	and	this	paragraph	are
*	duplicated	in	all	such	forms	and	that	any	documentation,
*	advertising	materials,	and	other	materials	related	to	such
*	distribution	and	use	acknowledge	that	the	software	was	developed
*	by	the	University	of	California,	Berkeley.	The	name	of	the
*	University	may	not	be	used	to	endorse	or	promote	products	derived
*	from	this	software	without	specific	prior	written	permission.
*	THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY	EXPRESS	OR
*	IMPLIED	WARRANTIES,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED
*	WARRANTIES	OF	MERCHANTIBILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
*/

jemalloc

We	make	use	of	jemalloc	for	some	memory	management.

Unless	otherwise	specified,	files	in	the	jemalloc	source	distribution	are
subject	to	the	following	license:
--
Copyright	(C)	2002-2014	Jason	Evans	<jasone@canonware.com>.
All	rights	reserved.
Copyright	(C)	2007-2012	Mozilla	Foundation.	All	rights	reserved.
Copyright	(C)	2009-2014	Facebook,	Inc.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions	are	met:
1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice(s),
this	list	of	conditions	and	the	following	disclaimer.
2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice(s),
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDER(S)	``AS	IS''	AND	ANY	EXPRESS
OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO
EVENT	SHALL	THE	COPYRIGHT	HOLDER(S)	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF
LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.
--

	

	 	

	

	

Legal	Requirements 	 	

	

Adobe	claims	Intellectual	Property	rights	over	the
Adobe	PDF	specification	and	we	aim	to	ensure	that
those	rights	are	upheld.

When	you	install	ABCpdf	you	accept	the	ABCpdf
license	agreement.	Part	of	the	agreement	specifies
that	you	must	abide	by	the	conditions	of	use	for	PDF
set	down	by	Adobe	and	detailed	in	the	Adobe	PDF
Specification.

For	full	details	you	should	see	the	specification.
However	in	summary,	Adobe	permits	you	to	write
software	to	create,	display	and	manipulate	PDF
documents.

This	permission	is	conditional	on	the	basis	that	your
software	should	respect	the	permissions	and
permission	controls	embedded	within	existing	PDF
documents.

These	permissions	do	not	necessarily	make	sense
within	the	ABCpdf	framework.	For	example	the
concept	of	an	encrypted	document	which	bars	the
user	from	filling	in	form	fields	makes	sense	if	there	is
a	user.	However	ABCpdf	is	a	component	and	so	is
removed	from	the	final	user.

You	should	ensure	that	when	you	create	software
which	an	end	user	may	operate	that	your	software
respects	these	types	of	permissions.	You	are	legally
bound	to	do	this	both	by	the	ABCpdf	license
agreement	and	also	by	the	Adobe	conditions	of	use.

	

	 	

	

	

.NET	Essentials 	

	 	

DLLs
	

ABCpdf	.NET	is	made	up	of	the	following	components.

ABCpdf.dll	is	the	main	.NET	assembly.	When	the
assembly	is	loaded,	it	locates	and	loads	an	appropriate
core	engine	establishing	a	direct	high	speed	link	between
the	two	components.

ABCpdf10-32.dll	and	ABCpdf10-64.dll	are	the	core
engines	for	32-	and	64-bit	processes.	They	incorporate
our	proprietary	Direct	to	PDF	technology	and	are
designed	for	high	performance	PDF	manipulation	in	a
multithreaded	environment.

PrintHook32.dll	and	PrintHook64.dll	are	print	hooks	for
32-	and	64-bit	processes.	These	DLLs	intercept	the
Microsoft	XPS	Document	Writer	to	allow	ABCpdf	to
import	an	extended	range	of	documents.

ABCpdf	supports	the	import	of	more	image	formats
through	the	separate	ABCImageMagick	COM+
Application,	which	is	not	automatically	installed	and	you
can	manually	install	with	ABCImageMagick.msi.

The	.NET	tier	is	placed	in	the	GAC	so	that	you	can
reference	ABCpdf	.NET	from	any	of	your	projects.
However,	should	you	require,	you	can	always	copy	both
DLLs	to	the	bin	directory	of	your	application.

	

Copied	DLLs.	Visual	Studio	copies	PresentationCore.dll
and	System.Printing.dll,	which	are	referenced	from

ABCpdf,	to	your	application/bin	directory	because	they	are
platform-specific	(32-bit	vs	64-bit).	This	causes	problems
when	your	application	is	published	or	copied	to	a	machine
with	a	different	platform.

To	prevent	the	copying,	you	can	directly	reference	the	files
and	set	Copy	Local	and	Specific	Version	to	False	by
adding	the	following	lines	to	your	project	file
(.csproj/.vbproj)	under	<ItemGroup>	with	other	Reference
elements:

<Reference	Include="PresentationCore">
		<SpecificVersion>False</SpecificVersion>
		<Private>False</Private>
</Reference>
<Reference	Include="System.Printing">
		<SpecificVersion>False</SpecificVersion>
		<Private>False</Private>
</Reference>

	

Refs 	

You	need	to	add	a	reference	to	ABCpdf	from	your	Visual
Studio	Project.

This	tells	Visual	Studio	to	link	the	ABCpdf	assembly	into
the	build.

If	you	are	not	using	Visual	Studio,	you	will	need	to
consult	the	documentation	for	your	chosen	development
environment.

	

	

There	are	four	public	namespaces	in	ABCpdf.	You	can
reference	these	using	the	following	directives.

Names 	

[C#]
using	WebSupergoo.ABCpdf10;
using	WebSupergoo.ABCpdf10.Objects;
using	WebSupergoo.ABCpdf10.Atoms;
using	WebSupergoo.ABCpdf10.Operations;	

[Visual	Basic]
Imports	WebSupergoo.ABCpdf10
Imports	WebSupergoo.ABCpdf10.Objects
Imports	WebSupergoo.ABCpdf10.Atoms
Imports	WebSupergoo.ABCpdf10.Operations

The	ABCpdf10	namespace	contains	the	objects	you	will
use	for	page	layout.	Most	of	the	time,	it	is	the	only
namespace	you	will	need.

The	Objects	namespace	allows	you	to	access	and
manipulate	content	you've	already	added.	You	may	use
this	namespace	for	complex	operations	in	which	the
standard	page	layout	functionality	requires	some
modification.

The	Atoms	namespace	allows	you	low	level	access	to
the	raw	PDF	data	structures.	You	are	unlikely	to	use
objects	from	this	namespace	unless	you	are	writing	very
low	level	code.

The	Operations	namespace	allows	you	to	perform
complex	operations	with	multiple	parameters	and
callbacks.

	

	

This	is	some	simple	example	code.	All	it	does	is	create	a
simple	'Hello	World'	PDF	in	the	current	working	directory.

Example 	

[C#]
Doc	doc	=	new	Doc();
doc.AddText("Hello	World!");
doc.Save("output.pdf");	

[Visual	Basic]
Dim	doc	As	New	Doc()
doc.AddText("Hello	World!")
doc.Save("output.pdf")

	

	

Security 	

ASP.NET	operates	under	a	restricted	set	of	security
permissions.	It	is	quite	common	for	the	ASPNET	user	not
to	be	able	to	create	or	write	files.

So,	if	you	want	to	save	a	PDF	file	from	your	ASP.NET
code,	it	is	quite	likely	that	you	will	need	to	adjust	the
permissions	on	your	destination	directory	to	allow	write
access	for	the	ASPNET	user.

	

	

	

	

Simple	Example 	 	

	 	 	

Intro 	

Creating	a	PDF	document	is	a	simple	process.	First
you	create	an	ABCpdf	Document	object	and	then
you	add	your	content	to	it.	You	can	add	text,	images
and	other	kinds	of	graphics.

All	content	addition	is	done	on	the	current	Page	and
within	the	current	Rect	on	that	page.	You	can
change	the	Page	to	draw	on	different	pages	and	the
Rect	to	draw	in	different	areas.	The	default	page	is
the	first	page	and	the	default	drawing	area	is	the
entire	page.

You	may	find	it	useful	to	use	the	FrameRect	method
during	development.	This	frames	the	current
rectangle	on	the	current	page	so	that	the	area	you
are	about	to	draw	on	is	outlined.

Every	time	you	add	an	item	of	content	you	will	get
an	Object	ID	returned.	You	may	wish	to	save	these
IDs	and	use	them	to	query	or	change	object
properties	at	a	later	date.

	

	 	

First	we	create	an	ABCpdf	Doc	object.	Next	we	set	the	font
size	and	add	some	text	to	it.	Finally	we	save	at	a	specified
location	and	clear	our	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;

Code
	

theDoc.AddText("Hello	World");
theDoc.Save(Server.MapPath("simple.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Hello	World")
theDoc.Save(Server.MapPath("simple.pdf"))
theDoc.Clear()

	

	

Results 	

simple.pdf

	

	 	

	

	

Coordinate	Spaces

	

General 	

ABCpdf	uses	the	standard	Adobe	PDF	coordinate	space.
The	origin	of	this	space	is	at	the	bottom	left	of	the
document.	Distances	are	measured	up	and	to	the	right	in
points.	Points	are	a	traditional	measure	for	print	work	-
there	are	72	points	in	an	inch.

Please	note	that	the	bottom-up	PDF	coordinate	space
is	different	from	the	top-down	coordinate	system	often
used	in	Windows.	It	means	that	everything	is	based
around	the	bottom	left	of	objects	-	not	the	top	left.	If
you	wish	to	use	a	different	coordinate	system	you	can	use
the	document	Units,	TopDown	or	Transform	to	accomplish
this.

ABCpdf	uses	the	XPoint	object	to	represent	positions	in
space.	It	uses	the	XRect	object	to	represent	areas	like	the
current	drawing	area	or	the	size	of	a	page.

The	Doc.Rect	property	is	probably	the	most	important
property	to	be	aware	of.	Virtually	everything	happens
within	the	Doc.Rect.	If	you	add	text	to	a	document	it	is
added	within	the	Doc.Rect.	If	you	paint	or	frame	a
rectangle	it	is	done	within	the	Doc.Rect.	If	you	add	an
image	it	is	scaled	to	fit	exactly	within	the	Doc.Rect.

The	default	document	size	for	ABCpdf	is	612	by	792.	This
equates	to	a	physical	page	size	of	8.5	by	11	inches.

	

The	following	example	draws	a	rectangle	with	the	bottom	left
corner	positioned	100	points	from	the	left	of	the	page	and	200

Example

	

points	up	from	the	bottom.	The	width	of	the	rectangle	is	400
points	and	the	height	is	500	points.	We	add	a	grid	to	show	the
positioning	of	the	rectangle.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.AddGrid();
theDoc.Color.String	=	"255	0	0";
theDoc.Width	=	10;
theDoc.Rect.Position(100,	200);
theDoc.Rect.Width	=	400;
theDoc.Rect.Height	=	500;
theDoc.FrameRect();
theDoc.Save(Server.MapPath("coordinates.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.AddGrid()
theDoc.Color.String	=	"255	0	0"
theDoc.Width	=	10
theDoc.Rect.Position(100,	200)
theDoc.Rect.Width	=	400
theDoc.Rect.Height	=	500
theDoc.FrameRect()
theDoc.Save(Server.MapPath("coordinates.pdf"))

	

coordinates.pdf

	

	

	

Examples 	 	

	 	 	

	

There	are	many	code	examples	in	the	documentation.
These	cover	common	tasks	like	adding	text,	flowing
text	and	adding	images.

Every	major	object	method	or	property	has	an
accompanying	code	sample.	So	if	you	want	to	know
how	to	use	a	method	like	AddText	or	AddImageFile
just	look	at	the	code	sample.

Code	samples	also	cover	operations	like	rendering
HTML	pages,	paged	HTML	renders,	watermarking,
appending	PDF	documents	and	drawing	pages	from
one	PDF	document	into	another.

For	in-situ	examples	you	should	look	at	the	example
web	site	that	comes	installed	with	ABCpdf.

	

	 	

	

	

Upgrading 	 	

	 	 	

Basics 	

ABCpdf	10	is	a	new	version	completely	independent
of	the	old.	It	incorporates	the	ABCpdf2,	ABCpdf3,
ABCpdf4,	ABCpdf5,	ABCpdf6,	ABCpdf7,	ABCpdf8
and	ABCpdf9	namespaces	so	that	you	can	upgrade
with	minimal	changes	to	your	code.	When	you	want
to	take	advantage	of	the	new	features,	simply
reference	the	new	name.

Simply	replace...

[C#]
using	WebSupergoo.ABCpdf9;

[Visual	Basic]
Imports	WebSupergoo.ABCpdf9

with...

[C#]
using	WebSupergoo.ABCpdf10;

[Visual	Basic]
Imports	WebSupergoo.ABCpdf10

Unless	you	have	side-by-side	versioning	(available	in
Windows	XP),	you	will	not	be	able	to	have	multiple
versions	of	ABCpdf	installed	in	the	GAC.	In	this	case,
you	should	install	the	relevant	assemblies	in	the	bin
directories	of	your	application.

	 	

	

ABCpdf	is	fully	backward	compatible.	Although
extensive	changes	have	been	made	to	the	core
engine,	we	check	that	these	changes	produce	results
that	are	compatible	with	previous	versions.

There	are	some	minor	differences	in	types	between
the	ABCpdf9	and	ABCpdf10	namespaces.

The	XColor.ColorSpace	property	has	been	changed
from	an	integer	to	an	enum.	However	since	the	new
enum	values	are	the	same	as	the	old	integer	values
you	can	just	cast	between	the	two.	See	the
XColor.ColorSpace	property	for	details	and
examples.

There	are	some	minor	stylistic	differences	between
best	practice	in	the	old	and	new	namespaces.	Any
detected	issues	will	result	in	a	compile	time	warning
and	a	suggestion	for	a	substitute	line	of	code.	We
would	recommend	that	you	make	these	changes	but
you	are	safe	to	ignore	the	warnings	if	you	do	not
have	time	to	do	so.

There	are	some	minor	differences	in	behavior
between	the	ABCpdf9	and	ABCpdf10	namespaces.
These	differences	are	improvements	but	if	you	have
been	relying	on	the	old	behavior	you	may	wish	to
disable	them.

Kerning	is	enabled	for	higher	quality	text	output.
However	it	does	mean	that	the	positioning	of	letters
in	text	inserted	using	methods	like	AddText	and
AddHtml,	may	be	slightly	different.	If	you	have	been
relying	on	exactly	the	same	positioning	you	will	want
to	use	the	following	line	of	code	after	creating	any
Doc	object.

Changes 	

doc.TextStyle.Kerning	=
KerningType.None;

Images	are	now	always	inserted	at	the	size	that	is
specified.	In	earlier	versions	of	ABCpdf,	if	the	width
or	height	of	the	destination	rectangle	was	zero,	the
rectangle	was	expanded	to	insert	them	at	72	DPI.
This	was	not	logical	or	intuitive	behavior	but	if	you
have	been	relying	on	it	you	will	want	to	use	the
following	line	of	code	after	creating	any	Doc	object.

doc.SetInfo(0,	"AutosizeImages",	1);

TIFF	orientation	tags	are	supported.	This	means	that
images	with	these	tags	will	automatically	be
presented	the	right	way	up.	However	if	you	have
been	processing	these	tags	yourself	you	may	wish	to
disable	this	behavior.	Simply	use	the	following	line	of
code	after	creating	any	Doc	object.

doc.SetInfo(0,
"AutorotateTIFFImages",	0);

PDF	Portfolios	are	now,	by	default,	opened	the	way	a
user	would	see	them	when	opening	them	in	Acrobat.
If	you	have	written	custom	code	to	extract	individual
PDFs	from	a	portfolio	you	will	need	to	set	the
XReadOptions.OpenPortfolios	property	to	false
before	reading	them	in.	You	will	probably	just	need	to
use	the	following	line	of	code	after	creating	any	Doc
object.

doc.ReadOptions.OpenPortfolios	=
false;

Color	components	in	the	XColor	object	used	not	to

	 	

accept	values	outside	the	legal	limits.	In	line	with
Microsoft	best	practice,	this	has	been	changed	so
that	you	can	store	values	outside	the	legal	range.
The	advantage	of	this	is	that,	say,	you	might	want	to
store	values	between	0	and	65535	and	then	later
scale	them	down	to	0	to	255	before	using	them	for
PDF	drawing.	If	your	code	results	in	illegal	color
values	at	the	point	of	drawing,	then	this	change	may
result	in	a	change	in	behavior.	In	the	past	illegal
values	would	be	likely	to	result	in	randomly	colored
objects.	In	the	ABCpdf10	namespace	illegal	values
are	likely	to	result	in	black,	white	or	invisible	objects.
If	you	see	this	type	of	symptom	you	should	be
looking	for	a	bug	in	the	way	you	assign	color	values
in	your	code.	Alternatively	you	can	just	change	your
code	to	use	the	behavior	in	the	old	namespace.	To
do	this	for	grayscale	and	RGB	values	you	need	to
modulus	your	values	with	256	at	the	point	of
assignment.	For	CMYK	values	you	need	to	pin	them
from	0	to	100	at	the	point	of	assignment.

The	TextStyle.String	property	has	been	updated	to
reflect	various	state	properties	which	had	been	left
out	in	earlier	versions.	If	you	are	using	the
TextStyle.String	to	store	state,	this	should	mean	that
your	code	will	now	store	all	TextStyle	state	rather
than	just	a	part	of	it.

	

	

	

Object	Paths 	 	

	

Adobe	Portable	Document	Format	(PDF)	files	are
made	of	a	number	of	objects.	Objects	may	describe	a
page,	a	resource,	a	sequence	of	drawing	operations
an	image	or	many	other	components	as	required	by
the	document.

Every	object	has	a	unique	Object	ID	numbered	from
one	upwards.	The	ID	zero	refers	to	the	Empty	Object
which	is	an	object	required	internally	within	ABCpdf.
ID	-1	refers	to	the	document	trailer.	The	root	of	the
document	hierarchy	can	be	accessed	using	the
Doc.Root	property	or	the	ObjectSoup.Catalog.

You	can	use	the	GetInfo	and	SetInfo	methods	to
directly	manipulate	any	PDF	object	in	your	document.
However,	this	is	not	advisable	unless	you	are
reasonably	familiar	with	the	Adobe	PDF	Specification.

Under	normal	situations,	ABCpdf	ensures	that	your
documents	are	internally	consistent.	Using	the	SetInfo
method	with	Dictionaries,	Values	or	Paths	allows
great	flexibility	in	modifying	documents	but	also	allows
you	to	create	invalid	or	corrupt	documents.

Dictionaries

If	your	object	is	a	dictionary,	you	can	specify	a	particular	dictionary	entry
for	replacement	or	insertion	(dictionary	entries	always	begin	with	a	slash
'/'	character).	So	if	you	wanted	to	change	the	type	of	an	annotation,	you
might	use	the	following	code:

theDoc.SetInfo(theID,	"/Subtype",	"(Stamp)")

Values

Alternatively,	you	can	use	the	'Value'	selector	to	specify	a	replacement
for	the	entire	object.	However,	if	you	do	this,	you	must	ensure	that	the
type	of	your	new	object	is	the	same	as	the	type	of	your	old	one	-	you
cannot	replace	a	number	with	a	string.	For	example.

theDoc.SetInfo(theID,	"Value",	"<</Font	/Helvetica
/Size	10>>")

Paths

Specifications	can	be	chained	together	to	form	complete	paths.
Dictionary	entries	are	specified	by	preceding	the	entry	name	with	a
slash.	Array	items	are	specified	using	square	brackets	containing	the
index	of	the	item	you	wish	to	reference	(starting	at	zero).

For	example,	the	code	below	would	return	the	first	item	in	the	MediaBox
array.

theDoc.GetInfo(theID,	"/MediaBox[0]")

And	the	code	below	would	return	the	count	entry	of	the	parent	of	the
object.

theDoc.GetInfo(theID,	"/Parent/Count")

References

Sometimes,	you	may	wish	to	find	a	reference	to	a	particular	object.
Sometimes,	you	may	wish	to	skip	through	the	reference	and	jump
straight	into	the	object	itself.

You	can	do	this	using	an	asterisk	to	de-reference	an	object	within	a
path.	If	the	object	is	a	reference,	it	will	be	de-referenced;	if	it	is	not,	then
the	operator	will	be	ignored.

For	example,	the	code	below	might	be	used	to	return	the	content
stream	of	the	first	page	of	a	document.

theDoc.GetInfo(theDoc.Root,	"/Pages*/Kids*
[0]*/Contents")

SetInfo

You	can	use	SetInfo	to	insert	values	specified	by	paths.	You	can	specify
the	type	of	object	to	be	inserted	by	appending	an	identifier	to	the	path.

Object	Type Description

:Bool A	Boolean	value.

:Name A	name	value.

:Num A	numeric	value

:Text A	string	value.

:Ref An	indirect	reference	to	an	object.

:Rect
A	rectangle.	Internally,	rectangles	are	held	as
arrays	of	numbers,	but	this	provides	a	convenient
shortcut.

:Del
This	is	a	special	entry.	It	does	not	insert	an
object.	Instead,	it	ensures	that	the	object
specified	by	the	path	is	deleted.

The	asterisk	is	a	delimiter.	Each	of	'Hex',
'NoBreak',	and	'Byte'	is	optional.	For	example,
you	can	specify	"/MyEntry:Text[Hex]".

The	'Hex'	specifier	indicates	that	the	text	should

:Text[Hex*NoBreak] be	hex-encoded.	The	'NoBreak'	specifier
indicates	that	there	should	be	no	line	breaks.
Also	available	is	the	'Byte'	specifier,	which
indicates	that	characters	should	be	interpreted	as
a	string	of	bytes	rather	than	a	Unicode	string.
These	settings	are	used	infrequently,	and	in
general,	you	will	not	need	them.

:String

This	only	works	for	string	atoms.

If	the	string	atom	contains	a	value	it	returns	that
value.

If	there	is	no	value,	or	the	atom	is	of	the	wrong
type,	it	returns	the	special	string.

"string_is_null\0ABCpdf"

Suppose	you	wanted	to	insert	an	annotation	into	the	page	annotations
array.	The	following	code	will	find	the	page	entry	named	"/Annots"	(or	it
will	create	it	if	it	doesn't	exist).	It	will	then	ensure	that	this	entry
references	an	array,	and	it	will	insert	a	reference	Atom	at	the	beginning
(item	zero)	of	the	array.

theDoc.SetInfo(theDoc.Page,	"/Annots[0]:Ref",
theID)

Alternatively,	if	you	want	to	insert	your	annotation	at	the	end	of	the
array,	just	leave	out	the	array	index:

theDoc.SetInfo(theDoc.Page,	"/Annots[]:Ref",	theID)

You	can	also	locate	items	in	an	array	from	the	end.	Use	-1	for	the	last
item,	-2	for	the	second	last	item,	and	so	on.

theDoc.GetInfo(theDoc.Page,	"/Annots[-1]:Ref")

Insertions	can	be	complex.	The	next	example	gets	the	entry	called
"/Font",	which	contains	a	dictionary.	This	dictionary	includes	an	element
called	"/Names",	which	contains	an	array.	The	call	inserts	the	Name
object	"/Helvetica"	at	the	start	of	this	array.

theDoc.SetInfo(theID,	"/Font/Names[0]:Name",
"Helvetica")

GetInfo

You	can	use	GetInfo	to	query	values	specified	by	paths.	The
format	of	the	return	value	is	exactly	the	same	as	would	be
output	to	your	PDF	file.	You	can	specify	an	alternative	format	by
appending	an	identifier	to	the	string.

Format
Name Description

:ID

The	Object	ID	associated	with	an	object
reference.

Normally,	object	references	are	returned	in	an
extended	format	(e.g.	23	0	R).	However,	if	you
are	only	interested	in	the	Object	ID,	then	you	use
this	format	specifier	to	get	only	the	Object	ID	(e.g.	
23).

:Obj

The	object	value.

This	is	used	to	ensure	that	all	indirect	references
are	resolved	before	the	value	of	the	object	is
returned.	This	ensures	you	always	get	an	object
value	rather	than	an	object	reference.

:Text

The	text	of	a	name	or	string.

Names	and	strings	may	be	encoded	in	a	number
of	ways	before	output	to	PDF.	The	text	format
specifier	ensures	that	the	unencoded	value	is
returned.

The	value	of	a	number.

:Num If	the	object	referred	to	is	not	a	number,	then	no
value	is	returned.

:Rect

The	rect	string	for	a	rectangle	object.

Rects	are	typically	represented	as	an	array.	By
specifying	the	rect	format,	you	will	get	a	string
value	you	can	place	directly	into	the	XRect	object.

:Count

The	number	of	items	in	an	array.

The	count	specifier	is	a	special	directive	which
returns	the	number	of	items	in	an	array	rather
than	an	item	from	that	array.

:KeyCount

The	number	of	items	in	a	dictionary.

The	keycount	specifier	is	a	special	directive	which
returns	the	number	of	items	in	a	dictionary	rather
than	an	item	from	that	dictionary.

:Keys

The	keys	for	a	dictionary.

The	keys	specifier	is	a	special	directive	which
returns	a	comma	delimited	list	of	the	names	of	the
entries	in	the	dictionary.

For	example,	the	code	below	could	return	the	rect	of	the	page
CropBox.

theDoc.GetInfo(theID,	"/CropBox:Rect")

	

	 	

	

	

XML	to	PDF 	 	

	

When	ABCpdf	was	designed	a	conscious	design
decision	was	made	not	to	make	it	XML	based.	While
XML	templates	might	be	an	obvious	route	to	take
there	are	problems	with	this	approach.

The	key	factor	is	that	the	creation	of	a	PDF	document
is	an	interactive	one.	Often	you	don't	know	how	much
text	you're	going	to	be	adding	until	you're	given	the
text.	You	may	need	to	flow	the	text	from	one	column
to	another,	you	may	need	to	create	a	new	page	to
hold	any	extra	text	or	you	may	choose	to	reduce	the
font	size	so	that	all	your	text	fits.	These	are	the	kinds
of	decision	that	are	very	difficult	to	describe	in	terms
of	XML.

Although	it	is	easy	to	create	an	XML	based	PDF
generator	using	a	product	like	ABCpdf	it	is	not
possible	to	work	the	other	way	round.	So	you	can
produce	template	based	documents	using	ABCpdf.	If
you	were	to	want	to	implement	interactive	code	using
an	XML	based	solution	this	would	be	impossible.

For	an	example	of	how	to	convert	XML	content	to
PDF	using	ABCpdf	see	the	Tagged	PDF	Example
project	under	the	ABCpdf	menu	item.	As	well	as
demonstrating	how	to	convert	XML	to	PDF	it	also
demonstrates	how	to	add	semantic	tags	to	the
document	at	the	same	time.

	

	

	 	

	

Manual	Installation

	

Under	most	circumstances,	you	will	want	to	install	ABCpdf	.NET	using	the	standard	installer	and	register	it	using	the	PDFSettings	control	panel.

Occasionally,	you	may	wish	to	install	ABCpdf	manually.	To	do	this,	you	will	need	the	files	listed	below.

File	Name Notes

ABCpdf.dll

The	Assembly	used	by	.NET.

The	installer	places	this	Assembly	in	the	GAC	to	allow	global	access	from	any	.NET	application.	It	installs	a	second	reference
copy	at	the	following	location:

%ProgramFiles%\WebSupergoo\ABCpdf10	.NET\Common\

However,	if	you	are	installing	manually,	you	can	just	place	this	file	in	the	bin	directory	of	your	application.

ABCpdf10-32.dll

The	ABCpdf	core	engine.

This	DLL	contains	the	core	engine.	It	incorporates	our	proprietary	Direct	to	PDF	technology	and	is	designed	for	high
performance	PDF	manipulation	in	a	multithreaded	environment.	This	DLL	is	placed	into	the	System32	directory	typically	at:

%SystemRoot%\System32\

However,	if	you	are	installing	manually,	you	can	just	place	this	file	in	the	bin	directory	of	your	application.

ABCpdf10-64.dll

Same	as	ABCpdf10-32.dll	but	for	64-bit	operating	systems.

Please	note	that	the	32	bit	version	of	this	DLL	is	required	for	32-bit	processes	running	under	WOW64	on	64-bit	operating
systems.

This	is	an	optional	component	required	for	use	of	the	PDF	3D	rendering.

3DGlue10-32.dll This	DLL	is	normally	located	in	the	same	
systems.

3DGlue10-64.dll

This	is	an	optional	component	required	for	use	of	the	PDF	3D	rendering.

Same	as	3DGlue10-32.dll	but	for	64-bit	operating	systems.	This	DLL	is	required	for	

Please	note	that	the	32-bit	version	of	this	
systems.

PrintHook32.dll

This	is	an	optional	component	required	for	use	of	the	XpsAny	

It	intercepts	the	Microsoft	XPS	Document	Writer	and	enables	ABCpdf	to	import	an	extended	range	of	file	types	via	XPS.

This	DLL	is	normally	located	in	the	same	
systems.

PrintHook64.dll

This	is	an	optional	component	required	for	use	of	the	XpsAny	

Same	as	PrintHook32.dll	but	for	64-bit	operating	systems.	This	DLL	is	required	for	

Please	note	that	the	32-bit	version	of	this	DLL	is	required	for	32-bit	processes	running	under	WOW64	on	64-bit	operating
systems.

ABCGeckoWP.exe,
XULRunner38_0

(directory)

This	is	an	optional	component	required	for	use	of	the	

This	EXE	should	be	placed	in	the	bin	directory	(next	to	ABCpdf.dll).

This	EXE	is	the	interface	ABCpdf	uses	to	access	the	Gecko	HTML	engine.	However,	it	is	not	the	engine	itself.	The	engine	is
held	in	the	XULRunner38_0	folder,	which	must	be	located	in	the	same	directory	as	ABCGeckoWP.exe.

ABCGecko	cannot	function	without	the	XULRunner38_0	folder	in	the	same	directory	as	ABCGeckoWP.exe.	On	x64	Windows,
even	if	ABCGeckoWP.exe	is	found	only	in	%SystemRoot%\System32	(though	it	should	be	placed	only	in
%SystemRoot%\SysWOW64	for	being	32-bit),	it	never	looks	up	XULRunner38_0	folder	in	%SystemRoot%\System32	(but	in
%SystemRoot%\SysWOW64)	because	of	File	System	Redirection.

	

TaskGardener.exe

This	is	an	optional	component	required	for	out-of-process	execution	under	restricted	environment.

The	Gecko	HTML	engine	runs	in	separate	worker	processes.	In	a	restricted	environment,	such	as	IIS,	
specify	the	user	account	to	directly	start	a	process.	
Doc.HtmlOptions.ProcessOptions.UserName
for	ABCpdf.

Run	it	with	-install	to	install	it	as	a	Windows	Service	

ABCImageMagick.msi

This	is	an	optional	component.

ABCpdf	supports	the	import	of	more	image	formats	through	the	separate	ABCImageMagick	COM+	Application,	which	is	not
automatically	installed	and	you	can	manually	install	with	ABCImageMagick.msi.

If	you	are	deploying	manually	to	a	restricted	permission	environment	such	as	IIS	and	also	you	are	using	the	MSHtml	engine	for	converting	HTML
content,	then	you	may	need	to	check	the	registry	for	certain	structures.	The	registry	key	HKEY_USERS\.DEFAULT\Software\Microsoft\Windows
NT\CurrentVersion\Devices	should	contain	printer	entries.	The	Microsoft	XPS	Document	Writer	that	comes	with	Windows	suffices	to	satisfy	this
requirement.	If	there	are	no	entries	in	this	key,	you	can	copy	them	from	HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Devices.	Absence	of	entries	in	this	registry	key	may	result	in	errors	from	the	MSHtml	engine	when	using	ABCpdf	in	IIS.

Background.	Why	XULRunner?

Well,	XUL	(pronounced	zool)	is	a	kind	of	enhanced	XHTML	designed	for	cross	platform	user	interface	development.	The	name	XUL	is	both	an
acronym	and	also	a	reference	to	the	scene	in	Ghostbusters	in	which	an	ancient	god	called	Zuul	possesses	Dana	and	tells	Dr	Venkman,

"There	is	no	Dana,	only	Zuul!"

Since	XUL	incorporates	everything	needed	for	an	application	in	a	completely	self-contained	manner,	the	developers	adopted	the	catchphrase,

"There	is	no	data,	only	XUL."

Other	references	to	the	Ghostbusters	movie	are	scattered	throughout	the	development	of	Mozilla,	Gecko	and	Firefox.

Most	calls	to	ABCpdf	will	result	in	a	trial	license	being	installed	if	it	is	found	that	no	license	has	yet	been	installed.	At	minimum,	all	that	is	required	is	to
query	the	value	of	the	XSettings.LicenseDescription	property.	Write	access	to	the	registry	is	required	for	a	trial	to	be	inserted.

[C#]
using	WebSupergoo.ABCpdf10;
MessageBox.Show("New	License:	"	+	XSettings.LicenseDescription);

[Visual	Basic]
Imports	WebSupergoo.ABCpdf10
MessageBox.Show("New	License:	"	+	XSettings.LicenseDescription)

You	can	use	a	full	license	key	as	provided	to	you	when	you	purchase,	or	you	can	use	a	trial	license	key	copied	from	the	PDFSettings	application.	To
enter	a	license	key,	call	XSettings.InstallLicense	or	at	application	startup	before	any	ABCpdf	objects	have	been	created.	If	you	have	purchased	a
Redistribution	license,	you	may	prefer	to	call	XSettings.InstallRedistributionLicense
unloads.

[C#]
using	WebSupergoo.ABCpdf10;
//	here	we	use	a	trial	license	key	as	copied	from	the	PDFSettings	application
if
(XSettings.InstallLicense("cd9b5c07db69df2bf57c0a04d9bca58b10c44889c9fb197984e592f49addfce5ec5fe85d7b9205bc"))
		MessageBox.Show("License	Installed	Successfully:	"	+	XSettings.LicenseDescription);
else
		MessageBox.Show("License	Installation	Failed");

[Visual	Basic]
Imports	WebSupergoo.ABCpdf10
'	here	we	use	a	trial	license	key	as	copied	from	the	PDFSettings	application
If
XSettings.InstallLicense("cd9b5c07db69df2bf57c0a04d9bca58b10c44889c9fb197984e592f49addfce5ec5fe85d7b9205bc")
Then
		MessageBox.Show("License	Installed	Successfully:	"	+	XSettings.LicenseDescription)
Else
		MessageBox.Show("License	Installation	Failed")
End	If

Shared	Hosts.	Most	installations	of	ABCpdf	.NET	on	shared	servers	are	seamless.	However,	you	need	to	be	aware	that	you	are	a	guest	on	the
server	and	your	host	may	have	locked	down	permissions	in	ways	which	will	make	your	life	difficult.	If	this	occurs,	there	is	typically	little	that	either
you	or	we	can	do	about	it.

This	is	why	we	recommend	deployment	on	a	dedicated	server.	Dedicated	servers	are	cheaper	than	you	might	think,	and	the	level	of	control	they
allow	is	only	one	of	the	very	significant	advantages	they	afford.	It	is	one	of	the	best	decisions	you	can	make.

If	you	are	intending	to	install	on	a	shared	server,	the	essential	thing	to	do	is	to	deploy	early	and	discover	any	issues	before	they	become	major
problems.

	

	

	

Fonts	and	Languages 	 	

	 	 	

Base 	

The	base	fonts	are	guaranteed	to	be	available	on	all
systems.

Using	the	base	fonts	in	your	PDF	results	in	a	small
document	which	is	guaranteed	to	render	in	the	same
way	on	all	systems.	However	the	base	fonts	do	not
support	complex	languages	such	as	Chinese	and
Japanese	and	they	do	not	support	some	characters
used	in	Eastern	Europe.

The	following	are	the	names	of	the	base	fonts.

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

Use	the	AddFont	method,	with	the	"Latin"	language,
to	reference	these	fonts.

	

	 	

Embed 	

Embedded	TrueType	or	OpenTypeUnicode	fonts	are
generally	the	most	efficient	and	reliable	way	of
adding	complex	language	support	to	your	PDF
documents.	However	you	need	to	ensure	that	you
have	permission	to	embed	and	redistribute	your
chosen	font.

ABCpdf	includes	options	to	try	and	protect	you	from
inadvertently	embedding	copyrighted	fonts.	However
you	should	not	rely	on	this	protection.	If	you	wish	to
embed	fonts	It	is	vitally	important	that	you	think	about
the	way	these	fonts	will	be	used	and	that	you
understand	the	operations	permitted	by	the	copyright
holder.	Ultimately	you	need	to	take	responsibility	for
any	fonts	you	embed	in	your	PDF	documents.

When	embedding	large	fonts	you	should	generally
choose	to	subset	them.	Not	only	does	it	produce
smaller	PDF	documents	but	It	is	also	generally	faster
to	embed	a	subset	of	a	large	font	than	to	embed	the
entire	font.

Use	the	Doc.EmbedFont	method	to	embed	fonts.

The	table	below	shows	the	valid	combinations	of
language	and	horizontal	and	vertical	writing
directions.

Language Horizontal Vertical Notes

"Latin" 	

The	default	and
most	efficient
encoding	for
Western
languages.

"Unicode"

The	setting	you
will	most	often
want	to	use	when
embedding

	 	

foreign	character
sets.

"Korean" 	 	 	
"Japanese" 	 	 	
"ChineseS" 	 	 Simple	Chinese

"ChineseT" 	 	 Traditional
Chinese

	

Refs 	

Referenced	TrueType	or	OpenType	fonts	produce	a
smaller	PDF	document.	However	for	complex
languages	you	will	need	a	recent	version	of	Adobe
Acrobat	and	you	will	need	to	install	the	relevant
language	pack.	Without	these	you	will	not	be	able	to
view	your	documents	and	your	viewer	may	report
errors.

Use	the	Doc.AddFont	method	to	reference	fonts.

The	table	below	shows	the	valid	combinations	of
language	and	horizontal	and	vertical	writing
directions.

Language Horizontal Vertical Notes

"Latin" 	

The	default	and
most	efficient
encoding	for
Western
languages.

"Unicode" 	 	

This	selector
requires	that	the
font	be
embedded	-	it
cannot	be	used
for	referencing

	 	

fonts.

"Korean"

Requires	the
relevant	Adobe
Acrobat
Language	Pack

"Japanese"

Requires	the
relevant	Adobe
Acrobat
Language	Pack

"ChineseS"

Simple	Chinese
requires	the
relevant	Adobe
Acrobat
Language	Pack

"ChineseT"

Traditional
Chinese	requires
the	relevant
Adobe	Acrobat
Language	Pack

	

Sometimes,	typically	when	dealing	with	the	Mac
platform,	you	may	need	to	add	or	embed	Type	1
fonts.	You	can	do	this	using	Doc.EmbedFont	or
Doc.AddFont	in	exactly	the	same	way	as	you	would
for	any	other	font.

Type	1	fonts	contain	a	limited	set	of	characters.	As
such	the	only	language	which	is	available	is	the
"Latin"	language.

Unlike	TrueType	fonts	you	can	reuse	Type	1	fonts,
previously	been	embedded	in	a	PDF	and	read	using
the	Doc.Read	method.

Type	1 	
To	access	a	font	which	has	been	previously
embedded	in	the	document	search	through	the
objects	looking	for	objects	of	type	'font'.	Assign	the	ID
of	the	object	to	the	Doc.Font	property.	Note	that	only
standard	(WinAnsiEncoding)	Type	1	fonts	are
available	in	this	way.

If	you	need	to	obtain	the	name	of	the	font	embedded
in	a	PDF	use	the	following	code	to	get	the	PostScript
name	of	the	font.

theDoc.GetInfo(theID,
"/BaseFont:Name")

	

	

	 	

Issues 	

ABCpdf	will	allow	you	to	use	any	valid	TrueType	or
Type	1	(PostScript)	font.

If	you	are	having	problems	accessing	a	particular
font	try	disabling	the	ABCpdf	font	protection
functionality.	However	note	that	you	should	not
embed	and	redistribute	fonts	unless	you	have
permission	to	do	so.

ABCpdf	maintains	a	font	cache.	This	means	that	for
ABCpdf	to	pick	up	on	a	newly	installed	font	you	will
need	to	restart	any	processes	that	are	using	ABCpdf.

Alternatively	you	can	pass	the	path	to	your	font	file	to
the	AddFont	or	EmbedFont	method.	This	will
automatically	load	the	font	file.	Do	not	move	the	font
file	after	doing	this	-	ABCpdf	relies	on	fonts	staying	in
place.

Sometimes	permissions	are	placed	on	individual	font
	 	

files	which	may	restrict	access	from	restricted
permission	accounts	such	as	ASP	or	ASP.NET.

Occasionally	TrueType	fonts	are	corrupt	or	non-
standard.	This	can	cause	problems	for	ABCpdf
(which	will	refuse	to	recognize	them)	or	Acrobat
(which	will	refuse	to	use	a	font	embedded	in	the
PDF).	However	this	type	of	problem	is	relatively
infrequent	and	tends	to	be	restricted	to	unusual	fonts
such	as	bar-codes.

If	you	hit	a	problem	you	think	is	related	to	a	corrupt	or
nonstandard	font	please	mail	us	the	font	and	we'll
see	what	we	can	suggest.

	

	

	

	

Fields	and	Forms 	 	

	 	 	

Basics 	

PDF	allows	the	creation	of	interactive	forms.
Sometimes	you	will	hear	these	types	of	PDF	referred
to	as	electronic	forms,	eForms	or	AcroForms.

To	a	client	an	eForm	simply	looks	like	a	normal	PDF
containing	text	boxes,	buttons	and	other	interactive
elements	of	the	type	you	typically	see	on	the	web.

Indeed	eForms	support	elements	almost	identical	to
HTML	forms.	They	also	support	mechanisms	very
similar	or	identical	to	HTML	forms	for	content
submission	to	a	web	server.

For	more	details	see	the	Adobe	Web	Site.

	

	 	

Most	people	coming	to	eForms	will	be	coming	from
an	HTML	background.	There	are	subtle	differences
between	the	PDF	form	model	and	the	HTML	form
model	that	can	cause	confusion.

In	HTML	a	form	is	part	of	a	web	page.	Each	field	in
the	HTML	form	has	a	visible	appearance	on	the	page
(with	the	exception	of	hidden	fields).	So	the	concept
of	a	field	and	what	it	looks	like	on	the	page	is	pretty
much	identical.

eForms	separate	the	idea	of	a	field	from	its	visible
representation.

Each	page	of	the	document	owns	a	set	of	visible

http://partners.adobe.com/

Fields
	

annotations.	There	are	lots	of	different	types	of
annotation	but	the	ones	that	are	used	in	eForm	fields
are	called	widgets.	A	widget	contains	properties	that
allow	a	PDF	reader	to	display	it	appropriately	on	the
page.

Each	document	owns	a	tree	structure	of	fields	which
spans	the	entire	document.	Each	field	has	a	name
and	also	a	full	name	(like	a	file	path)	which	tells	you
how	to	get	to	that	field	from	the	top	level	of	the	tree.
The	leaves	of	the	tree	contain	the	visible	widgets	that
you	see	on	the	pages.	Note	that	PDF	does	not
require	that	full	names	are	unique.

So	there	are	two	independent	sets	of	entities	each
with	its	own	features.	The	bits	you	see	and	which
people	normally	call	fields	are	in	fact	widgets.

Widgets	don't	have	a	name	or	identity	as	such	-	it's
just	that	they	may	be	associated	with	a	field	which
has	an	identity.	Similarly	a	field	doesn't	exist	at	a
location	or	on	a	page	it	is	just	that	it	is	associated
with	a	widget	that	exists	at	a	particular	location	on	a
particular	page.

ABCpdf	hides	these	distinctions	from	you.	When	you
ask	for	a	field	by	name	it	will	return	you	the	widget
associated	with	that	field.	Given	the	widget	you	can
find	out	where	it	is	physically	located	in	terms	of	page
numbers	and	page	rectangles.	Similarly	if	you	have	a
widget	you	can	ask	it	for	a	field	name.	Behind	the
scenes	ABCpdf	finds	the	field	associated	with	the
widget	and	returns	you	the	field	name.

	

	 	

So	why	are	eForms	useful?	There	are	a	range	of
purposes	to	which	eForms	can	be	put.	However

Why?
	

probably	the	most	common	purpose	is	to	provide
placeholders	in	template	PDFs.

Suppose	you	have	a	template	document	you	want	to
use	within	ABCpdf.	Using	Acrobat	you	can	insert
form	fields	into	the	PDF	at	locations	you	want	content
to	be	inserted.	Using	ABCpdf	you	can	automatically
detect	the	locations	of	those	fields	and	enter	content
at	those	locations.

If	later	you	want	to	shift	your	content	a	little	it's	a
simple	matter	to	open	the	PDF	in	Acrobat	and	move
the	fields	around.

See	the	eForm	Example	for	details.

	

	 	

You	can	use	Acrobat	to	edit	forms	using	the
Advanced	Editing	tools	available	under	the	Tools
menu.

However	if	you	choose	items	from	the	Forms	menu
or	toolbar	then	you	will	probably	find	that	you	end	up
editing	your	form	in	Adobe	LifeCycle	Designer	rather
than	Acrobat.

Adobe	Designer	is	an	application	which	comes	with
Acrobat	Pro.	It	uses	PDF	as	an	output	medium.
However	the	way	that	Designer	operates	means	that
forms	created	by	Designer	are	fundamentally
different	from	forms	created	by	Acrobat.

For	example	an	Acrobat	created	form	typically
contains	a	background	and	then	a	set	of	fields.	The
fields	operate	separately	from	the	background.

Adobe	Designer	created	forms	do	not	make	this
distinction.	They	use	a	separate	data	store	to	specify

Creation 	

the	fields.	The	PDF	content	is	merely	the	visible
rendition	of	this	field	specification.	The	underlying
field	specification	is	made	up	of	chunks	of	XML
embedded	in	the	PDF.	This	XML	format	is	known	as
XFA	-	Adobe	XML	Forms	Architecture.

XFA	is	referenced	in,	but	is	not	part	of,	the	ISO
standard	for	PDF.

Because	Designer	documents	are	PDF	documents
you	can	add	content	to	them	using	standard	ABCpdf
methods	of	adding	PDF	content.	However	if	you	then
open	them	then	in	Designer	the	content	will	most
likely	be	deleted	because	Designer	will	recreate	the
PDF	appearance	using	the	separate	field
specification.

Equally	because	the	PDF	output	is	merely	the	visible
rendition	of	a	separate	field	specification	the	fields
and	background	may	be	tied	to	each	other.	So	you
might	use	ABCpdf	to	delete	a	field	and	find	that	the
border	has	been	left	behind.

In	extreme	cases	the	LifeCycle	documents	may	not
even	contain	any	useful	PDF	content.	Instead	the
PDF	becomes	a	placeholder	which	contains	an	XFA
document.	The	document	is	only	really	a	thin	PDF
wrapper	around	XFA	data.	You	will	find	that	many
PDF	viewers	(including	Acrobat	Reader	X	and
earlier)	cannot	display	this	type	of	PDF	properly.

If	you	have	input	to	the	document	creation	process,
using	LifeCycle	to	save	the	file	as	"Adobe	Static	PDF
Form"	may	help.

If	you	want	to	modify	forms	you	will	generally	find	it
easier	to	work	with	Acrobat	created	forms	than
Designer	created	ones.

	

	 	

	

	

Image	Handling 	 	

	 	 	

Basics 	

ABCpdf	embeds	images	into	the	PDF	at	their
original	resolution.	Images	may	be	displayed	at
different	sizes	but	the	underlying	image	is
exactly	the	same.	If	your	image	looks	grainy
when	you	print	you'll	need	to	find	a	higher
resolution	(bigger)	image.

Suppose	you	have	an	image	300	pixels	wide	by
600	pixels	high.	If	you	wanted	this	image	to	print
well	at	300	dpi	then	you	would	need	to	add	it
into	a	rectangle	no	larger	than	1	inch	by	2
inches.	If	you	wanted	to	view	it	at	a	screen
resolution	of	75	dpi	you	could	place	it	into	a
rectangle	up	to	4	inches	by	8	inches.

	

	 	

You	can	present	images	to	ABCpdf	in	one	of
two	ways.

You	can	operate	in	pass-through	mode	and	add
an	image	directly	into	your	Doc	object.	The
Doc.AddImageFile,	Doc.AddImageData	operate
in	pass-through	mode.

Alternatively	you	can	operate	in	indirect	mode
and	draw	your	data	into	an	Image	object	before
adding	the	Image	object	to	your	document.	The
Doc.AddImageObject	method	defaults	to
indirect	mode.

Indirect	mode	has	a	number	of	advantages	over

Modes 	

pass-through	mode.

Because	each	image	is	fully	decoded	when	it	is
presented	to	the	Image	object,	image	corruption
can	be	caught	at	this	stage.	Corrupt	images	are
not	uncommon	and	if	you	don't	detect	the
corruption	before	the	data	is	inserted	you	may
end	up	with	a	corrupt	PDF.

Images	are	color	corrected	which	means	that
color	profiles	do	not	need	to	be	embedded	and
file	size	may	be	reduced.

Pass-through	mode	has	advantages	for	some
types	of	images.

Because	the	image	may	not	have	to	be
decompressed	and	re-compressed,	using	pass-
through	mode	can	be	much	faster	than	indirect
mode.	This	is	particularly	true	for	scanned	TIFF
images.

Because	the	original	image	compression	is
maintained	there	is	no	possibility	of	expansion
due	to	re-compression.

Images	are	inserted	in	their	native	color	space
together	with	any	color	profiles	-	this	guarantees
fidelity	of	color	reproduction.

	

	 	

Colors	can	be	specified	in	a	number	of	ways	-
most	commonly	in	terms	of	RGB	or	CMYK
values.	These	values	are	literal	-	RGB	values
relate	directly	to	the	brightness	of	the	red,	green
and	blue	phosphors	on	a	display	-	CMYK	values
relate	directly	to	the	amounts	of	Cyan,	Magenta,

Colors 	

Yellow	and	Black	inks	applied	to	a	piece	of
paper.

These	literal	values	do	not	always	equate	to	the
same	perceived	color.	Monitors	vary	and	an
image	displayed	on	one	may	look	quite	different
to	the	same	image	displayed	on	another.
Similarly	a	CMYK	value	applied	with	one	printer
to	one	type	of	paper	may	look	quite	different	to
a	CMYK	value	applied	with	a	different	printer	to
a	different	type	of	paper.

The	International	Color	Consortium	(ICC)
provides	specifications	to	allow	an	independent
definition	of	color.	An	ICC	color	profile	is
designed	to	complement	your	raw	color	data.
So	if	you	have	a	CMYK	image	you	also	specify
an	color	profile	which	tells	you	more	about	the
intended	destination	of	the	image.	This	allows
you	to	adjust	the	colors	for	your	intended	output
medium.

In	order	to	maintain	flexibility	and	color	fidelity	it
is	important	to	preserve	both	the	raw	image
data	and	the	ICC	profile	associated	with	it.	This
can	only	be	done	if	you	provide	images	in	pass-
through	rather	than	direct	mode.

ABCpdf	will	accept	RGB	TIFF,	CMYK	TIFF,	LAB
TIFF,	Grayscale	JPEG,	RGB	JPEG	and	CMYK
JPEG	direct.	This	means	whatever	colors	you
pass	into	ABCpdf	will	go	direct	into	the	PDF
without	any	modification.	Additionally	any	ICC
profile	will	be	preserved	and	inserted
appropriately	so	that	the	colors	can	be	adjusted
accurately	for	any	output.

	

	 	

http://www.color.org/

Comp 	

So	what	types	of	compression	does	the	Image
object	use?

The	Image	object	generally	uses	Flate
compression.	This	is	the	same	compression
type	as	is	used	for	PNG	images.	It	is	a	lossless
method	which	ensures	that	the	quality	of	your
original	image	is	maintained.

However	if	your	source	image	is	black	and
white	then	ABCpdf	will	use	CCITT	G4	fax
compression	as	this	typically	results	in	reduced
file	sizes	for	this	type	of	image.

	

	 	

	

	

HTML	Styled	Text 	 	

	 	 	

Basics 	

ABCpdf	allows	a	range	of	HTML	support	for	use
when	inserting	multi-styled	text.	This	can	make
it	much	easier	to	design	documents	and	it	can
reduce	the	quantity	of	code	required.

The	HTML	support	offered	here	does	not	cover
the	entire	HTML	specification.	It	covers	a	limited
range	of	the	HTML	specification	as	is	required
for	styled	text.	It	also	extends	the	HTML
specification	to	allow	you	to	precisely	control
elements	of	style	not	covered	by	HTML.

	

	 	

Chars 	

ABCpdf	lets	you	use	Unicode	text.	So	you	can
use	HTML	Styled	Text	with	any	language	from
English	to	Korean	to	Japanese.

Normal	character	entities	are	standard	HTML
and	hence	use	the	Latin	1	character	set.	For
example	'™'	equates	to	the	trademark
sign.

For	convenience	you	can	also	specify	hex	and
octal	character	entities.	For	example	'A',
'A'	and	'&#o0101;'	all	equate	to	lower
case	'a'.	Hex	and	octal	character	entities	are
assumed	to	be	expressed	in	the	Unicode
character	set.

For	most	situations	this	will	make	no	difference.
However	you	should	note	that,	above	character

	 	

127,	there	are	differences	between	the	Latin	1
and	the	Unicode	character	set.	For	example	the
trademark	symbol	which	is	character	153	in
Latin	1	is	8482	in	Unicode.

If	you	require	fine	control	over	hyphenation	you
can	make	use	of	the	soft	hyphen	character	–
'­'.	This	character	is	invisible	and	indicates
a	point	at	which	a	chunk	of	text	may	reasonably
be	broken.

	

Tags 	 	

You	can	add	HTML	to	your	documents	using	the
AddHtml	method.	ABCpdf	supports	the	following	HTML
tags	and	Attributes.

<Head>
<Body>

<P>
<H1>	to	<H6>
<List>

<A>

<I>
<U>
<Strike>
<Sup>
<Sub>

<StyleRun>
<BlockQuote>
<Pre>

<Leader>

<Head>

This	tag	is	used	to	delimit	the	head	of	an	HTML	document.	All	content	in
the	head	is	ignored.

This	tag	does	not	accept	any	attributes.

<Body>

This	tag	is	used	to	mark	the	body	of	an	HTML	document.	The	body	is	a
type	of	stylerun	and	so	it	accepts	the	same	attributes	as	a	stylerun	tag.
It	also	accepts	the	following	additional	attributes.

Attribute Notes

link

The	color	for	links	(anchors)	in	subsequent	content.

Colors	are	generally	specified	as	RGB	in	hexadecimal
notation	(e.g.	color="#FF0000")	or	as	one	of	the	sixteen
standard	color	names	(e.g.	color=red").

You	can	specify	grayscale	colors	by	supplying	only	one
component	(e.g.	color="#80")	and	CMYK	colors	by
supplying	four	(e.g.	color="#10203040").	CMYK	component
ranges	between	0	and	100	inclusively	so	the	hexadecimal
representation	is	between	00	and	64.

You	can	specify	high	precision	colors	by	passing	an	array	of
floating	point	numbers	prepended	by	an	at	sign.	Each
number	represents	a	component	intensity	in	the	range	zero
to	one	(e.g.	color="@	0.244	0.122	0.342").	The	number	of
components	indicates	whether	the	color	space	is	grayscale,
RGB	or	CMYK	(e.g.	color="@	0.123	0.246	0.999	0.025"
would	be	CMYK).	An	alpha	value	can	be	indicated	by
prepending	an	'a'	to	one	of	the	components.

The	default	link	color	is	RGB	blue.

This	tag	is	used	to	force	a	line	break.

This	tag	does	not	accept	any	attributes.

<P>

This	tag	is	used	to	mark	up	paragraphs.	Paragraphs	are	types	of
styleruns	and	so	they	accept	the	same	attributes	as	stylerun	tags.	They
also	accept	the	following	additional	attributes.

Attribute Notes

align

The	text	alignment	for	the	paragraph.	If	no	value	is
specified	it	is	assumed	that	the	text	should	be	left
aligned.

You	can	specify	left	aligned	text	(e.g.	align=left),	right
aligned	text	(e.g.	align=right),	centered	text	(e.g.
align=center)	or	justified	text	(e.g.	align=justify).

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.HPos	or	XTextStyle.Justification	properties.

break

The	line	breaking	style	for	the	paragraph.	This	attribute
takes	a	comma	delimited	list	of	hints	used	to	control	how
lines	are	broken	when	chaining	from	one	text	area	to
another.

You	can	specify	that	a	paragraph	should	be	kept	with	the
next	one	by	assigning	the	keepwithnext	hint	(e.g.
break=keepwithnext).	You	can	specify	that	there	should
be	a	break	before	a	paragraph	by	specifying	the
breakbefore	hint	(e.g.	break=breakbefore).

For	details	on	chaining	see	the	AddHtml	function.

spacebefore

Normally	paragraphs	have	vertical	space	before	and
after	the	body	text.

By	setting	this	attribute	to	zero	you	can	remove	vertical
space	before	the	paragraph.

spaceafter

Normally	paragraphs	have	vertical	space	before	and
after	the	body	text.

By	setting	this	attribute	to	zero	you	can	remove	vertical
space	after	the	paragraph.

<H1>	to	<H6>

This	tag	is	used	to	mark	header	sections.	Headers	are	types	of
paragraphs	and	so	they	accept	the	same	attributes	as	paragraph	tags.

<List>

This	tag	is	used	to	indicate	a	list	of	items.	Each	list	item	consists	of	a
marker	and	some	text.	Markers	may	be	bullet	points,	numbers	or	letters.

Lists	are	types	of	paragraphs	and	so	they	accept	the	same	attributes	as
paragraph	tags.	They	also	accept	the	following	additional	attributes.

Attribute Notes

itemindent

The	indent	of	the	item	text	from	the	left	of	the	marker.
This	value	is	measured	in	the	current	units.

By	altering	this	property	you	can	change	the	distance
between	the	marker	and	the	text.

The	default	is	dynamically	determined	based	on	the
type	of	marker	and	the	size	of	the	text.

markerindent

The	indent	of	the	left	of	the	marker	from	the	current	left
of	the	surrounding	text.	This	value	is	measured	in	the
current	units.

By	altering	this	property	you	can	alter	the	indent
distance	for	the	markers	in	the	list.

The	default	is	dynamically	determined	based	on	the
type	of	marker	and	the	size	of	the	text.

start

Specifies	the	starting	number	for	the	first	item	in	the	list.

This	is	only	used	when	ordered	markers	are	specified.

The	default	is	one.

type

Specifies	the	type	of	marker	to	use.	You	can	use	either
ordered	markers	or	unordered	markers.

Ordered	markers	increment	for	each	item	in	the	list.	You
can	use	numbers	(type=1),	lower	case	roman	numerals
(type=i),	upper	case	roman	numerals	(type=I),	lower
case	letters	(type='a'),	upper	case	letters	(type=A)	or
none	(type=none).

Unordered	markers	are	the	same	for	each	item	in	the
list.	You	can	specify	bullet	points	(type=disk),	hollow
bullets	(type=circle)	or	squares	(type=square).

The	default	type	is	'disk'.

The	UL	tag	is	used	to	indicate	an	unordered	list.	Unordered	lists	are
types	of	lists	and	so	they	accept	the	same	attributes	as	list	tags.	The
default	marker	is	the	bullet	point	but	the	marker	will	change	as	lists	are
nested	within	each	other.

The	OL	tag	is	used	to	indicate	an	ordered	list.	Ordered	lists	are	types	of
lists	and	so	they	accept	the	same	attributes	as	list	tags.	The	default
marker	type	is	numeric.

This	tag	is	used	to	indicate	an	item	within	a	list.	It	accepts	the	following
attributes.

Attribute Notes

value

Specifies	the	number	for	this	list	item.

Subsequent	items	are	numbered	incrementally	from	this
new	value.

type

Specifies	the	type	of	marker	to	use.

You	can	use	the	same	types	as	you	find	in	the	type	attribute
of	the	list	tag.

<A>

The	anchor	tag	is	used	to	mark	subsequent	content	as	a	hyperlink.
Anchors	are	types	of	styleruns	and	so	they	accept	the	same	attributes
as	stylerun	tags.	They	also	accept	the	following	additional	attributes.

Attribute Notes

href The	URL	of	the	destination.

Hyperlinks	normally	appear	as	blue	underlined	text.	You	can	override
this	style	using	the	body	link	attribute	or	by	using	stylerun	attributes	in
the	body	of	your	anchor	tag.

This	tag	is	used	to	apply	a	bold	text	style	to	subsequent	content.

ABCpdf	will	attempt	to	reference	an	appropriate	bold	font.	If	it	cannot
locate	one	it	will	generate	a	synthetic	bold	style	using	the
XTextStyle.Bold	property.

This	tag	does	not	accept	any	attributes.

<I>

This	tag	is	used	to	apply	an	italic	text	style	to	subsequent	content.

ABCpdf	will	attempt	to	reference	an	appropriate	italic	font.	If	it	cannot
locate	one	it	will	generate	a	synthetic	italic	style	using	the
XTextStyle.Italic	property.

This	tag	does	not	accept	any	attributes.

<U>

This	tag	is	used	to	apply	an	underline	text	style	to	subsequent	content.
The	effect	is	identical	to	changing	the	XTextStyle.Underline	property.

This	tag	does	not	accept	any	attributes.

<Strike>

This	tag	is	used	to	apply	an	strike-through	text	style	to	subsequent
content.	The	effect	is	identical	to	changing	the	XTextStyle.Strike
property.

This	tag	does	not	accept	any	attributes.

<Sup>

This	tag	is	used	to	indicate	text	to	be	rendered	as	superscript.

This	tag	does	not	accept	any	attributes.

<Sub>

This	tag	is	used	to	indicate	text	to	be	rendered	as	subscript.

This	tag	does	not	accept	any	attributes.

The	font	tag	is	used	to	change	the	current	font	style.	Fonts	are	types	of
styleruns	and	so	they	accept	the	same	attributes	as	stylerun	tags.	They
also	accept	the	following	additional	attributes.

Attribute Notes

size

The	font	size	for	subsequent	content.

You	can	set	absolute	font	size	by	specifying	an	integer
ranging	from	one	to	seven	(e.g.	size=6).	Or	you	can
specify	a	font	size	relative	to	the	current	base	font	size
(e.g.	size="+1").

For	greater	control	over	the	size	of	text	you	should	use	the
fontsize	attribute.

color

The	color	for	subsequent	content.

Colors	are	generally	specified	as	RGB	in	hexadecimal
notation	(e.g.	color="#FF0000")	or	as	one	of	the	sixteen
standard	color	names	(e.g.	color=red").

You	can	specify	grayscale	colors	by	supplying	only	one
component	(e.g.	color="#80")	and	CMYK	colors	by
supplying	four	(e.g.	color="#10203040").	CMYK
component	ranges	between	0	and	100	inclusively	so	the
hexadecimal	representation	is	between	00	and	64.

You	can	specify	an	alpha	value	for	your	color	by
appending	a	slash	and	a	hex	value	to	the	end	of	your	color
string	(e.g.	color="#10203040/C0").

You	can	specify	that	no	color	should	be	applied	by	using
the	special	'none'	keyword	(e.g.	color="none").	This	can	be

useful	if	you	wish	to	specify	your	own	color	operators	in
your	own	low	level	code.

You	can	specify	high	precision	colors	by	passing	an	array
of	floating	point	numbers	prepended	by	an	at	sign.	Each
number	represents	a	component	intensity	in	the	range
zero	to	one	(e.g.	color="@	0.244	0.122	0.342").	The
number	of	components	indicates	whether	the	color	space
is	grayscale,	RGB	or	CMYK	(e.g.	color="@	0.123	0.246
0.999	0.025"	would	be	CMYK).	An	alpha	value	can	be
indicated	by	prepending	an	'a'	to	one	of	the	components.

This	attribute	sets	both	the	stroke	and	fill	colors.

color-
stroke

The	stroke	color	for	subsequent	content.

This	attribute	allows	you	to	specify	the	stroke	color
independently	from	the	fill	color.

color-fill

The	fill	color	for	subsequent	content.

This	attribute	allows	you	to	specify	the	fill	color
independently	from	the	stroke	color.

csid

The	color	space	for	subsequent	content.

This	attribute	takes	an	Object	ID	obtained	from	a	previous
call	to	AddColorSpaceFile	or	AddColorSpaceSpot.

This	attribute	sets	both	the	stroke	and	fill	color	space.

csid-
stroke

The	stroke	color	space	for	subsequent	content.

This	attribute	allows	you	to	specify	the	stroke	color	space
independently	from	the	fill	color	space.

csid-fill

The	fill	color	space	for	subsequent	content.

This	attribute	allows	you	to	specify	the	fill	color	space
independently	from	the	stroke	color	space.

face

The	font	typeface	for	subsequent	content.

This	value	takes	a	comma	delimited	list	of	typeface	names,
listed	in	order	of	preference.	Fonts	are	referenced	rather
than	embedded.

For	greater	control	over	the	way	that	fonts	are	added	to
your	document	you	should	use	the	pid	attribute.

embed

Whether	to	embed	or	reference	fonts	added	via	the	face
attribute.

For	details	see	the	EmbedFont	method.	The	default	is
false.

language

What	language	to	use	when	embedding	fonts	added	via
the	face	attribute.

For	details	see	the	EmbedFont	method.	The	default	is
Latin.

protection

Whether	to	apply	font	protection	when	embedding	fonts
added	via	the	face	attribute.

For	details	see	the	EmbedFont	method.	The	default	is	true.

font-
family

The	font	family	for	subsequent	content.

This	value	operates	in	the	same	way	as	the	face	attribute

detailed	above.

font-style

The	font	style.

This	attribute	can	take	the	values	oblique,	italic	or	normal.
Normal	is	the	default.

NB.	ABCpdf	does	not	currently	make	a	distinction	between
oblique	and	italic	styles.

font-
weight

The	font	weight.

This	attribute	can	take	the	a	value	between	100	(lightest)
and	900	(heaviest).

It	can	also	take	the	following	pre-defined	values	–	normal,
bold,	bolder	and	lighter.

The	default	is	normal	–	400.

NB.	ABCpdf	cannot	currently	synthesize	font	weights	of
less	than	400.

rendering-
mode

The	text	rendering	mode.	Possible	values	are:

0	Fill	text	(default)
1	Stroke	text.
2	Fill,	then	stroke	text.
3	Neither	fill	nor	stroke	text	(invisible).
4	Fill	text	and	add	to	path	for	clipping.
5	Stroke	text	and	add	to	path	for	clipping.
6	Fill,	then	stroke	text	and	add	to	path	for	clipping.
7	Add	text	to	path	for	clipping.

NB.	The	outline	style	is	a	more	commonly	used	alternative
to	the	rendering-mode.

<StyleRun>

The	stylerun	tag	is	used	to	change	the	current	style.	It	accepts	the
following	attributes.

Attribute Notes

pid

The	font	typeface	for	subsequent	content.

This	attribute	take	an	Object	ID	obtained	from	a
previous	call	to	AddFont	or	EmbedFont.

fontsize

The	font	size	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Size	property.

charspacing

The	character	spacing	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.CharSpacing	property.

wordspacing

The	word	spacing	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.WordSpacing	property.

justification

The	justification	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Justification	property.

hpos
The	horizontal	positioning	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.HPos	property.

bold

Whether	to	apply	a	synthetic	bold	style	to	subsequent
content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Bold	property.

italic

Whether	to	apply	a	synthetic	italic	style	subsequent
content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Italic	property.

underline

Whether	to	underline	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Underline	property.

strike

Whether	to	apply	a	strike-through	effect	to	subsequent
content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Strike	property.

strike2

Whether	to	apply	a	double	strike-through	effect	to
subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Strike2	property.

outline

Whether	to	outline	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Outline	property.

linespacing

The	line	spacing	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.LineSpacing	property.

paraspacing

The	paragraph	spacing	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.ParaSpacing	property.

leftmargin

The	left	margin	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.LeftMargin	property.

leftmargins

Variable	left	margins	for	subsequent	content.

The	leftmargin	property	applies	one	margin	to	all	text	in
the	range.	The	leftmargins	property	allows	you	to	apply
variable	margins	depending	on	how	far	down	the	page
the	text	is	being	positioned.	This	can	be	used	to	flow
text	around	objects	such	as	pictures.

This	tag	takes	a	an	array	of	floating	point	numbers.	The
array	must	be	a	multiple	of	three	long	and	each	triplet
defines	a	margin	for	a	particular	vertical	range	within	the
Doc.Rect.	The	values	are	[yMin	yMax	Margin]	where
the	y	values	are	measured	downwards	from	the	top	of
the	Doc.Rect.

For	typical	code	see	the	Text	Flow	Round	Image
example.

rightmargin

The	right	margin	for	subsequent	content.

This	property	is	similar	to	the	leftmargin	attribute	but
allows	you	to	specify	a	margin	on	the	right	hand	side	of
the	text	block.

rightmargins

Variable	right	margins	for	subsequent	content.

This	property	is	similar	to	the	leftmargins	attribute	but
allows	you	to	specify	margins	on	the	right	hand	side	of
the	text	block.

indent

The	indent	for	subsequent	content.

Changing	this	attribute	is	identical	to	changing	the
XTextStyle.Indent	property.

fixedwidth

A	fixed	with	for	the	style	run.

Each	style	run	has	a	width.	The	width	is	normally
determined	by	the	size	of	the	characters	in	the	text.

Under	some	situations	it	can	be	useful	to	assign	a	fixed
width	to	the	entire	style	run.	This	can	be	used	for
aligning	text	and	for	bullet	pointed	lists.

textrise

The	text	rise	for	subsequent	content.

Positive	values	shift	the	text	upwards.	Negative	values
shift	it	downwards.	The	textrise	distance	is	measured	in
the	current	units.

annots

Annotations	associated	with	subsequent	content.

You	can	use	a	link	annotation	to	insert	a	hyperlink	(e.g.
annots='link:http://www.google.com/').

You	can	use	a	goto	annotation	to	insert	a	link	to	another
page	in	the	document	(e.g.	annots='goto:3').	The
number	indicates	the	page	number.	Note	that	the
destination	page	must	exist	at	the	point	at	which	the	text
is	inserted.

You	can	use	a	text	annotation	to	insert	a	textual	note
(e.g.	annots='text:A	note	to	be	inserted').

You	can	use	highlight,	squiggly,	underline,	and	strikeout
annotations	for	text	markup	(e.g.
annots='highlight:some	contents').

While	other	types	of	annotations	have	textual	contents
(that	are	specified	after	colon),	link	and	goto
annotations	do	not.	However,	you	can	still	mark	link	and
goto	annotations	with	(non-displayed)	textual	contents
using	"contents:"	so	that	you	can	later	identify	them
easily	with	Doc.GetInfo	or	Annotation.Contents	(e.g.
annots='link:http://www.google.com/;contents:alternative
description').

The	default	reading	direction.

Bi-directional	text	such	as	Hebrew	or	Arabic	is	laid	out
in	the	context	of	the	default	reading	direction.

You	can	specify	left	to	right	paragraph	direction	(e.g.
dir=ltr),	right	to	left	paragraph	direction	(e.g.	dir=rtl),	or
use	the	default	of	none	(e.g.	dir=none).

When	none	is	specified	the	original	ABCpdf	left	to	right
layout	is	preserved	for	compatibility	with	previous

dir versions.

Arabic	requires	special	text	shaping	for	contextual
ligatures	and	combining	characters.	This	is	because
each	character	has	different	forms	depending	on
placement	within	a	string.	Each	character	can	be
independent,	initial,	medial	or	final.	This	text	shaping	is
only	performed	if	a	reading	direction	is	set.	So	for
Arabic	support	you	should	always	specify	a	default
reading	direction.

canbreakafter

Characters	at	which	lines	may	be	broken.

Normally	ABCpdf	will	only	break	lines	after	certain
characters	like	spaces.	You	can	indicate	additional
characters	after	which	a	break	is	acceptable	using	this
parameter.

For	example	to	allow	a	break	after	hyphens	or
underscores	you	might	use	canbreakafter='-_'.

breakengine

The	default	line	breaking	engine.

The	line	breaking	engine	determines	at	which	points
lines	can	be	broken.

You	can	specify	the	Uniscribe	line	breaking	engine	(e.g.
breakengine=uniscribe),	the	Unicode	line	breaking
engine	(e.g.	breakengine=unicode),	or	use	the	default	of
auto	(e.g.	breakengine=auto).

When	auto	is	specified	the	Uniscribe	engine	is	used	for
installations	on	Windows	XP	and	2003	and	the	Unicode
engine	is	used	for	installations	on	Windows	NT	and
2000.

wrap

Whether	lines	should	wrap	or	not.	The	default	is	true.

If	wrapping	is	turned	off	(ie	by	setting	this	value	to	false)
then	lines	of	text	extending	outside	the	drawing	area	will
be	truncated.

transform

The	transformation	for	text.

The	format	of	this	value	is	the	same	as	that	of
XTransform.String.	The	default	value	is	the	identity.	This
attribute	takes	precedence	over	the	rotate	attribute.	The
numeric	values	can	optionally	be	preceded	by	'fixed'
(e.g.	transform='fixed	2	0	0	2	0	0'),	which	fixes	the
transformation	origin.

The	direction	to	which	the	rightward	direction	(the
default	primary	advancement	direction)	is	mapped	is	the
primary	advancement	direction.	The	direction	in	which	a
new	line	is	offset	(i.e.	the	direction	of	the	offset	caused
by	starting	a	new	line)	is	the	secondary	advancement
direction.

When	the	origin	is	not	fixed	and	the	StyleRun	is	broken
into	pieces	(because	of	nested	tags	or	line	breaks,	for
example),	the	transformation	is	applied	to	each	piece
individually.	When	the	primary	advancement	direction	is
not	horizontal,	the	effect	is	observably	different	as	each
piece	starts	at	the	original	baseline.

When	the	origin	is	fixed,	each	piece	(without	its	own
transformation)	appears	as	if	it	starts	at	where	the
previous	piece	ends	because	the	transformation	origin
is	fixed	at	the	beginning	of	the	StyleRun.

The	secondary	advancement	direction	is	always
perpendicular	to	the	primary	advancement	direction
regardless	of	skews	in	the	transformation.	(This	is
meaningful	only	in	the	context	of	multiple	lines	within	a

StyleRun	with	a	fixed	transformation.)	In	which	of	the
two	opposite	directions	the	secondary	advancement	is
depends	on	the	direction	to	which	the	downward
direction	(the	default	secondary	advancement	direction)
is	mapped.	This	allows	artificial	styles	that	simulate
oblique/italic	without	affecting	the	secondary
advancement.

Decorations	(underline	and	strike-through)	are	placed	at
the	correct	locations	without	distortion	so	they	remain
rectangular.

rotate

The	rotation	for	text.

This	value	is	measured	in	degrees	anticlockwise.	The
default	is	zero.	This	attribute	is	ignored	if	the	transform
attribute	is	present.	The	numeric	value	can	be	preceded
by	'fixed'	(e.g.	rotate='fixed	30'),	which	fixes	the
transformation	origin	as	explained	in	the	transform
attribute.

ascender

The	default	size	of	the	ascender.

The	PDF	specification	defines	text	as	drawn	from	a
point	anchored	at	the	baseline	of	a	letter.	So	to	place	a
chunk	of	text	inside	a	box	the	text	needs	to	be	shifted
downwards	by	the	distance	between	the	baseline	and
the	top	of	the	letter.	This	distance	is	typically	known	as
the	ascender	height.

ABCpdf	uses	its	own	methods	to	determine	the
ascender	height	for	fonts.	However	using	this	attribute
you	can	override	these	methods	and	specify	your	own
values.	This	can	be	useful	for	situations	in	which	you
are	drawing	text	anchored	at	the	baseline	rather	than
the	top	of	the	glyphs.

The	ascender	value	is	measured	in	1000ths	of	the	font
height.	A	typical	value	might	be	800.

<BlockQuote>

This	tag	is	used	to	indicate	quotations.	Block	quotes	are	indented	on	the
left	and	right	relative	to	the	surrounding	text.	The	tag	accepts	the
following	attributes.

Attribute Notes

leftindent

The	left	indent	for	the	block	of	text.

Distances	are	measured	in	the	current	units.	The	default	is
36	points.

rightindent

The	right	indent	for	the	block	of	text.

Distances	are	measured	in	the	current	units.	The	default	is
36	points.

<Pre>

This	tag	is	used	to	indicate	preformatted	text.	Spaces	and	line	breaks
are	preserved.

<Leader>

This	tag	is	used	to	create	leaders	for	structures	like	a	table	of
contents.	A	leader	is	a	repeated	character	-	most	normally	a
period	-	which	runs	across	the	page	from	the	heading	on	the
left	to	the	page	number	on	the	right.

The	item	to	be	repeated	is	placed	between	the	start	and	end
tag	of	the	leaders	element.	For	example	code	see	the
XTextStyle.Kerning	property.

The	tag	accepts	the	following	attributes.

Attribute Notes

align

Specifies	whether	the	leaders	should	be
horizontally	aligned	with	each	other.

If	the	tag	value	is	set	to	true	then	the	individual
items	in	the	leader	(typically	period	characters)	will
be	aligned	so	that	leaders	on	one	line	are
horizontally	aligned	with	the	leaders	on	the	next.

If	the	tag	value	is	set	to	false	then	the	alignment	of
the	leaders	on	a	particular	line	will	be	determined
by	the	width	of	the	text	which	precedes	the
leaders..

The	default	align	is	'true'.

Specifies	the	alignment	for	the	leaders.

The	align	and	hpos	tags	are	mutually	incompatible.
As	such,	specifying	an	hpos	will	automatically	set
the	align	to	false.

A	block	of	leaders	may	not	exactly	fill	the	gap

	 	

hpos between	the	item	of	text	on	the	left	and	the	item	of
text	on	the	right.	This	setting	controls	how	the
block	is	aligned	within	this	gap.	It	works	in	the
same	way	as	the	XTextStyle.HPos	property.	So	to
center	your	block	of	leaders	between	the	two	items
of	text	you	would	set	the	value	to	0.5.

By	default	the	hpos	is	blank.

	

	

	

	

Other	Coordinate	Spaces 	 	

	 	 	

Basics 	

ABCpdf	uses	the	standard	PDF	coordinate
space.

The	origin	of	this	space	is	at	the	bottom	left	of
the	document.	Distances	are	measured	up	and
to	the	right	in	points.

Windows	often	uses	a	top-down	coordinate
space.	The	difference	between	the	bottom-up
nature	of	PDF	and	the	top-down	nature	of
Windows	can	result	in	confusion.	Using	the
AddGrid	method	in	your	code	can	be	very
helpful	in	resolving	this	type	of	issue.

Abstracting	the	coordinate	space	can	make
layout	easier	but	removes	you	from	the
underlying	page	layout	embedded	into	your
PDF.	For	this	reason	we	would	suggest	you
stick	to	the	standard	PDF	coordinate	space
where	practical.

If	you	wish	to	use	a	different	coordinate	system
you	can	use	the	document	Units	and	TopDown
properties	or	a	Transform	to	accomplish	this.
There	are	subtle	differences	between	these
approaches.

	

	 	

	 	 	 	

The	document	Units	and	TopDown	properties

Units 	 	

allow	you	to	use	units	of	measurement	like	mm
or	cm.	They	also	allow	you	to	invert	the
coordinate	system	so	that	distances	are
measured	down	from	the	top	rather	than	up
from	the	bottom.

These	properties	enable	an	abstraction
designed	to	make	layout	easier.	However	the
underlying	units	of	measurement	and	page
layout	remain	the	same.

When	you	call	a	page	layout	operation	like
AddText	or	FrameRect	your	abstracted
coordinates	are	translated	into	PDF
coordinates	before	the	object	is	inserted	into
the	document.

For	most	layout	tasks	you	can	ignore	the
translation.	However	if	you	are	using	low-level
access	to	the	PDF	structure	or	if	you	are	using
Transforms	then	you	need	to	be	aware	of	it.

Suppose	you	call	FrameRect	and	then	extract
the	raw	content	stream	from	the	returned
object.	You	must	be	aware	that	the	base
coordinates	included	in	the	stream	are
measured	in	the	PDF	coordinate	space	and
not	in	your	current	coordinate	system.

Document	Transforms	operate	on	the	native
PDF	coordinate	space.	So	when	you	specify	a
rotation	around	the	origin	-	the	origin	specified
is	at	the	bottom	left	of	the	document	-	not	the
top.

	

	 	

	 	 	 	

Transform 	
	

Transforms	are	an	inherent	part	of	the	PDF
specification.	They	are	not	an	abstraction
imposed	by	ABCpdf	but	a	set	of	drawing
instructions	inserted	into	the	PDF	document	to
modify	the	PDF	drawing	space.	The	fact	that
there	is	no	abstraction	can	be	very	useful.

For	example	suppose	you	impose	a	scale
transform	so	you	can	specify	your	page	layout
in	mm	rather	than	points.	You	then	call
FrameRect	and	get	the	raw	content	stream
from	the	returned	object.	The	coordinates
included	in	the	stream	are	measured	in	mm
rather	than	points.

However	transforms	can	be	difficult	to
understand	and	they	are	extremely	literal.

Suppose	you	impose	a	transform	to	flip,	scale
and	translate	your	coordinate	space	so	that
distances	are	measured	in	mm	from	the	top
left	rather	than	points	from	the	bottom	left.

Many	graphical	objects	-	lines	and	rectangles	-
will	appear	correctly.	However	the	transform	is
literal	and	the	flip	aspect	means	that	any
images	and	text	you	add	will	appear	upside
down.

	

	 	

	

Registry	Keys

	

Some	aspects	of	ABCpdf	can	be	controlled	on	a	global	level	using	

In	general,	you	will	not	need	to	use	these,	and	you	should	take	the	relevant	precautions	if	you
decide	to	insert	them.

Registry	settings	are	held	at:

HKEY_LOCAL_MACHINE\SOFTWARE\WebSupergoo\ABCpdfNET\10

Except	those	listed	as	"registry	only",	they	can	also	be	specified	in	app.config	or	web.config.
Please	see	XSettings.SetConfigSection	for	the	syntax.

Name Type Default Overridable

TempDirectory STRING "" 	

V3Compatible DWORD 0	[false] 	

V4Compatible DWORD 0	[false] 	

V5Compatible DWORD 0	[false] 	

MemoryManager DWORD 1 	

DisableCCITT DWORD 0	[false] 	

InsertJPEGsDirect DWORD 1	[true]

InsertTIFFsDirect DWORD 1	[true]

LogEvents DWORD 1	[true] 	

LogErrors DWORD 0	[false] 	

AutoRecover DWORD 0	[false] 	

LogOperations DWORD 0	[false] 	
MaxOperationTime DWORD 1,000 	

LogDirectory STRING "%SystemRoot%\Temp\" 	
LogMaxFileSize DWORD 0xFFFF 	

LogAsserts DWORD 1	[true] 	

LogAssertsMax DWORD 5 	

ClearoutSize DWORD 1,000 	

LoadType1Fonts DWORD 1	[true] 	

WriteVersionNumber DWORD 1	[true] 	

SetInfoProps DWORD 1	[true] 	

CheckSaveRestore DWORD 1	[true]

	

Preflight DWORD 1

http://partners.adobe.com/

Refactor DWORD 1

PagesMaxKids DWORD 20

FontInheritsStyles DWORD 0	[false]

SVGDrawInvisible DWORD 0	[false]

AutorotateTIFFImages DWORD 1	[true]

AutosizeImages DWORD 0	[false]

KerningType DWORD 1 	

EncryptCompat DWORD 0

Annotation	and	Field
Name Type Default Overridable Description

AnnotBorder DWORD 0 SetInfo	only

The	default	width	of
borders	on
Annotations	added
to	PDF	documents.

This	property	is
only	accessible
using	the
Doc.SetInfo
method.	The
default	cannot	be
overridden	using	a
registry	key.

NeverClipAppearances DWORD 1	[true]

This	parameter
allows	control	over
the	way	that	text
field	appearances
are	generated.

Some	documents
contain	text	fields
which	are	not	tall
enough	for	the	text
that	they	contain.
There	are	two
choices	here.	You
can	preserve	the
requested	text	size
and	let	the	text	be
clipped.
Alternatively,	you
can	reduce	the	text
size	so	that	it	fits

the	height	of	the
field.

The	default
behavior	is	to
reduce	the	text
size.	However,	
some	cases	you
may	want	to
override	this
behavior	by	altering
this	setting.

In	general	ABCpdf
will	try	to	avoid
updating	field
appearances.	This
is	because	different
applications	have
different	ways	of
generating	field
appearances	and
so	any	update	is
likely	to	cause
changes.

These	changes	are
likely	to	be	pretty
subtle	-	involving
pixel	level
movements	and
perhaps	changes	in
text	wrapping.
However	because
there	is	no
specification
relating	to	how	field
appearances

ForceUpdateAppearances DWORD 0
[false]

should	be
generated	these
kind	of	subtle	shifts
are	inevitable	if	you
regenerate
appearance
streams.

Acrobat	will	always
regenerate	field
appearance
streams	for	any
documents	in	which
the
NeedsAppearances
flag	is	set.	This
comes	at	the	cost
of	the	kind	of	subtle
shifts	detailed
above.	However
because	this	is
done	interactively
this	doesn't	tend	to
matter	very	much.

Some	PDF
producers	create
PDF	documents
containing	incorrect
appearance
streams.	Because
Acrobat
regenerates	the
field	appearance
streams	it	will
display	these
correctly.	ABCpdf
will	assume	that
because	they	are

there	they	are
correct	and	will	not.

In	this	case	you
may	wish	to	mimic
the	behavior	of
Acrobat	force	the
update	of	the
appearance
streams.	This	flag
allows	you	to
specify	that	this
should	be	the	case.

SignatureSizeMultiplier DWORD 2

This	can	affect	the
size	of	buffers
ABCpdf	will
allocate	for	the
/Contents	field	in
signatures.

This	is	a	low	level
setting.	If	ABCpdf
encounters	error
related	to	buffer
size	not	big	enough
to	hold	signed
messages,	you	can
manually	increase
this	multiplier.

HTML/EMF	Rendering
Name Type Default Overridable Description

RenderDelay DWORD 0

HTML	rendering	sometimes	requires	two
stages:	an	information	gathering	stage	and
a	render	stage.

For	backwards	compatibility	reasons,	you
can	insert	a	delay	
stages.	This	value	is	measured	in
milliseconds.

AutoDeleteHTML DWORD 1	[true] 	

Certain	HTML	temp	files	are	automatically
deleted	by	ABCpdf	

You	are	unlikely	to	want	to	change	the
value	of	this	key.

OneStageRender DWORD 1	[true] This	property	is	included	for	backwards
compatibility	

LargeDocumentSize DWORD 2,000

The	size	at	which	a	binary	search	tree	is
constructed	for	

For	larger	documents,	a	binary	search	tree
is	a	much	more	
rendering	than	is	a	linear	search	

For	smaller	documents,	the	time	taken	to
build	the	tree	can	
advantages	so	a	linear	search	tree	is
better.

This	property	determines	the	point	at	which
ABCpdf	shifts	

binary	searches.	The	number	
number	of	object	fragments	in	the	HTML.
The	number	of	object	fragments	is
extremely	dependent	on	the	
the	page,	but	a	couple	of	hundred	object
fragments	per	PDF	page	would	not	be
atypical.

DisableFilters DWORD 1	[true] SetInfo	only

Whether	to	automatically	disable	HTML
filters.

HTML	filters	can	interfere	with	the	HTML	to
PDF	conversion	
raster	rather	than	vector	based.	For	
reason,	we	try	to	disable	them.

This	property	is	only	accessible	using	the
Doc.SetInfo	method.	
overridden	using	a	registry	

JPEGThreshold DWORD 256
SetInfo	only

The	threshold	at	which	images	are	JPEG
compressed.

When	an	uncompressed	image	is	added	to
a	document	ABCpdf	
to	use	JPEG	(lossy)	compression	or
lossless	compression	based	on	an	analysis
of	the	image.

ABCpdf	counts	the	number	of	colors	used
in	the	image	and	if	
than	this	threshold	ABCpdf	assumes	that
the	image	is	continuous	tone	and	thus
eligible	for	JPEG	
threshold	for	grayscale	images	is	half	that
for	color	images.

This	property	is	only	accessible	using	the
Doc.SetInfo	method.	
overridden	using	a	registry	

UnloadInterval DWORD 0 SetInfo	only

Whether	we	allow	MSHTML	to	be	unloaded
when	the	screen	

Appropriate	values	are	0	(MSHTML	is
never	unloaded)	and	10	
little	while	after	the	screen	properties
change).

The	number	actually	refers	to	the	number
of	calls	that	ABCpdf	makes	(once	a	monitor
change	has	occurred)	without	
MSHTML	force	loaded.	We	assume	that	at
some	point	during	this	period,	Windows	will
unload	the	DLL.

This	property	is	only	accessible	using	the
Doc.SetInfo	method.	
overridden	using	a	registry	

MakeURLsUnique DWORD 1	[true]

Whether	to	make	URLs	unique	when	the
page	cache	is	
with	a	7-random-uppercase-letter	
and	a	7-random-uppercase-letter	value	is
added	to	the	
that	contain	queries	or	have	paths	
not	end	with	a	slash.

Sometimes	caching	can	occur	outside	of
ABCpdf.	Making	the	
provide	an	effective	way	of	forcing	the	page
to	be	refreshed.

BgImageVertProximity DWORD 480

ABCpdf	treats	background	and	foreground
images	differently.	For	example,	it	is
generally	acceptable	to	
image	across	pages	while	it	is	much	less
acceptable	to	split	a	foreground	image	in
this	way.

For	this	reason,	ABCpdf	tries	to	determine
whether	images	
background	using	a	variety	of	methods.

If	the	same	image	appears	a	number	of
times	within	a	
ABCpdf	will	assume	it	is	a	
image.

This	property	represents	the	vertical
distance	(in	pixels)	
image	in	which	ABCpdf	looks	for	repeated
images.

BgImageMinRepeat DWORD 5

ABCpdf	treats	background	and	foreground
images	differently.	For	example,	it	is
generally	acceptable	to	
image	across	pages	while	it	is	much	less
acceptable	to	split	a	foreground	image	in
this	way.

For	this	reason,	ABCpdf	tries	to	determine
whether	images	
background	using	a	variety	of	methods.

If	the	same	image	appears	a	number	of
times	within	a	
ABCpdf	will	assume	it	is	a	
image.

This	property	represents	the	number	of

repeats	above	which	
that	the	image	is	background.

NarrowBgImageMaxWidth DWORD 80

ABCpdf	treats	background	and	foreground
images	differently.	For	example,	it	is
generally	acceptable	to	
image	across	pages	while	it	is	much	less
acceptable	to	split	a	foreground	image	in
this	way.

For	this	reason,	ABCpdf	tries	to	determine
whether	images	
background	using	a	variety	of	methods.

If	an	image	is	very	tall	and	thin,	ABCpdf	will
assume	it	is	a	background	image.

This	property	represents	the	maximum
width	for	this	

NarrowBgImageMinHeight DWORD 480

ABCpdf	treats	background	and	foreground
images	differently.	For	example,	it	is
generally	acceptable	to	
image	across	pages	while	it	is	much	less
acceptable	to	split	a	foreground	image	in
this	way.

For	this	reason,	ABCpdf	tries	to	determine
whether	images	
background	using	a	variety	of	methods.

If	an	image	is	very	tall	and	thin,	ABCpdf	will
assume	it	is	a	background	image.

This	property	represents	the	minimum
height	for	this	

CheckBgImages DWORD 0	[false]

Sometimes,	Windows	can	tell	ABCpdf	that
an	HTML	page	is	complete	even	though
background	images	have	
loading.

This	option	allows	you	to	specify	that
ABCpdf	should	
images.

HTMLBottomExtraMargin DWORD 30

Change	this	value	to	change	the	extra
margin	that	ABCpdf	adds	at	the	bottom
when	rendering	HTML	
rendering	issues	in	Internet	Explorer,	it	is
necessary	to	make	the	HTML	page	a	bit
taller.	This	extra	
so	it	does	not	alter	the	final	PDF	

However,	if	the	page	contains	objects
positioned	relatively	
page,	the	objects	may	be	clipped/shifted.
Set	this	property	to	zero	or	to	a	smaller
value	in	order	to	

HostWebBrowser DWORD 1	[true] The	initial	value	of
XHtmlOptions.HostWebBrowser

URLPolicies STRING "0x1608 	

This	setting	allows	you	to	override	the
default	URL	security	policies	in	place	on
your	machine.	You	
down	security	settings	using	this	registry
key.

The	string	is	a	sequence	of	URL	Actions
(such	as
URLACTION_HTML_META_REFRESH)
and	policies	(e.g.

0x03" URLPOLICY_DISALLOW)	in	a	space
delimited	list.	Appropriate	
type	of	actions	and	policies	can	be	found
on	the	Microsoft	web	site.	The	default
value	for	this	setting	
tags.

Treat	with	caution	as	existing	security
settings	are	there	for	a	reason.

TrustedSites STRING "" 	

Cross	domain	operations	are	not	normally
permitted	when	accessing	the	HTML	DOM.
This	means	that	if	you	
one	domain	and	frames	in	another	ABCpdf
will	be	unable	to	determine	appropriate
widths	and	heights	for	

Ideally	to	resolve	this	type	of	issue	you
should	move	the	pages	to	the	same
domain	or	reference	the	
frameset	to	ensure	that	MSHTML	will	allow
this	type	of	cross	domain	scripting.	In
situations	where	this	
can	specify	sites	which	should	be	trusted.
Any	page	URLs	which	start	with	one	of	the
trusted	site	URLs	
trusted	status.

URL	lists	are	space	delimited.	For
example:

http://www.google.com/
http://www.microsoft.com/
http://www.yahoo.com/

Treat	with	caution	as	existing	security
settings	are	there	for	a	reason.

CharWidthRatioMin DWORD 700

When	importing	EMF	or	HTML	content
using	the	MSHTML	engine,	this	
specifies	the	minimum	EMF-to-PDF
character-width	ratio	in	1000ths.

Characters	whose	(EMF	and	PDF)	widths
form	ratios	between	
and	CharWidthRatioMax	(exclusively)
assume	the	PDF	character	widths	as	font
substitution	may	
widths	form	ratios	outside	the	
placed	as	specified	because	the	text	is
placed	in	an	unusual	way.

CharWidthRatioMax DWORD 1,400

When	importing	EMF	or	HTML	content
using	the	MSHTML	engine,	this	
specifies	the	maximum	EMF-to-PDF
character-width	ratio	in	1000ths.

Characters	whose	(EMF	and	PDF)	widths
form	ratios	between	
and	the	specified	maximum	(exclusively)
assume	the	PDF	character	widths	as	font
substitution	may	
widths	form	ratios	outside	the	
placed	as	specified	because	the	text	is
placed	in	an	unusual	way.

When	HTML	contained	Flash	(SWF)
movies	are	added	to	a	PDF	
ABCpdf	will	make	a	preview	image	for	the
movie.

The	preview	is	what	you	will	see	if	you
don't	have	Flash	
when	printing	PDFs.	In	general,	

FlashPreviewTime DWORD 0

you	will	see	if	you	open	your	PDF	using	a
viewer	other	than	Acrobat.

This	value	is	used	for	SWF	raster	import	in
previous	versions	of	ABCpdf	and	has	the
same	meaning	as	
for	SWF	vector	import.

When	the	movie	is	intialized,	you	can
specify	a	time	(in	
movie	will	be	started.

Note	that	many	movies	contain	script	which
can	alter	the	
For	example,	a	script	might	
current	frame	to	the	start	after	five	seconds
of	content	have	been	played.	So	the
content	you	get	by	setting	
to	ten	seconds	may	be	very	different	to	the
content	a	user	will	see	after	watching	the
movie	for	ten	

FlashPreviewWaitTime DWORD 2,000

When	HTML	contained	Flash	(SWF)
movies	are	added	to	a	PDF	
ABCpdf	will	make	a	preview	image	for	the
movie.

The	preview	is	what	you	will	see	if	you
don't	have	Flash	
when	printing	PDFs.	In	general,	
you	will	see	if	you	open	your	PDF	using	a
viewer	other	than	Acrobat.

This	property	determines	the	time	(in
milliseconds)	that	
play	before	the	preview	will	be	

Note	that	many	movies	contain	script	which

can	alter	the	
For	example,	a	movie	might	reset	
current	frame	to	the	start	after	five	seconds
of	content	have	been	played.	So	the
content	you	get	by	setting	
to	ten	seconds	may	be	very	different	to	the
content	a	user	will	see	after	watching	the
movie	for	ten	

FlashPreviewDPI DWORD 96

When	HTML	contained	Flash	(SWF)
movies	are	added	to	a	PDF	
ABCpdf	will	make	a	preview	image	for	the
movie.

The	preview	is	what	you	will	see	if	you
don't	have	Flash	
when	printing	PDFs.	In	general,	
you	will	see	if	you	open	your	PDF	using	a
viewer	other	than	Acrobat.

This	value	is	used	for	SWF	raster	import	in
previous	versions	of	ABCpdf	and	is	not
used	for	SWF	vector	

This	property	determines	the	resolution	(in
dots	per	inch)	
made.

Changing	the	screen	resolution	while	a
process	is	running	
versions	of	MSHTML	to	become	confused.
If	the	screen	size	is	reduced	then	portions
of	the	output	HTML	may	be	
right	hand	side.

It	is	unusual	for	this	to	be	a	problem
because	changing	the	

CheckDisplaySettings DWORD 0

not	a	normal	event.	However	some	remote
access	applications	can	change	screen
settings	in	an	
means	that	someone	logging	onto	a	
remotely	can	sometimes	trigger	this	kind	of
event	in	a	long	running	process	such	as	a
web	application.

This	registry	key	allows	you	to	control	what
ABCpdf	does	
detected.	The	possible	options	

0	-	Ignore	any	screen	changes.
1	-	Raise	an	exception	"Display
settings	changed.".	This	
as	a	trigger	for	recycling	the	current
package	
2	-	Attempt	to	revert	screen	to
previous	settings,	
only	if	this	could	not	be	done.

HtmlProcessPoolSize DWORD 10 	

When	using	the	out-of-process	HTML
rendering,	such	as	the	
engine	or	MSHtml	with	MSHtmlBootstrap
specifying	out-of-process,	ABCpdf
maintains	a	pool	
value	specifies	the	maximum	number	
such	processes	that	ABCpdf	can	spawn.

The	default	value	is	optimized	for	multi-
threaded	environments	such	as	a	
server.	If	your	application	does	not	use
multiple	threads	
rendering,	you	can	reduce	this	value	to
save	system	resources.

This	setting	determines	the	method

MSHtmlBootstrap DWORD 0

ABCpdf	uses	to	bootstrap	MSHTML.

0	-	This	is	the	same	as	3	(writing	to	the
registry)	if	IE9	or	above	is	
IE9	or	above	is	not	installed,	this	is	the
same	as	5	
1	-	MSHTML	will	be	hosted	out-of-
process,	and	ABCpdf	will	attempt	to
load	IE8	DLLs,	which	allows	you	to
achieve	better	compatibility.	This
requires	certain	IE8	DLLs	to	be
present	in	the	system.
2	-	ABCpdf	will	attempt	to	perform	the
required	registry-based	
without	writing	to	the	registry.	This	can
be	used	
User	Profile"	or	have	no	access	to	the
registry.
3	-	ABCpdf	will	write	the	required
configuration	to	the	HKCU	
hive	if	equivalent	registry	values	are
not	in	effect.	For	
requires	"Load	User	Profile"	to	be
enabled.
4	-	ABCpdf	will	attempt	to	load	IE8
DLLs	in-process,	which	allows	
achieve	better	compatibility.	This
requires	certain	IE8	DLLs	to	
present	in	the	system,	and	your
application	should	not	have	accessed
MSHTML	(e.g.	using	the	WebBrowser
control)	before	ABCpdf	loads	the
DLLs.
5	-	ABCpdf	will	not	do	additional
bootstrap	for	MSHTML.

AddLinksToIDs DWORD 1	[true]

This	is	a	setting	that	may	be	used	to	speed
up	HTML	rendering	of	documents	when
AddLinks	is	set	to	true.

Fragment	links	within	an	HTML	page	may
refer	to	anchor	names	or	to	element	IDs.
So	to	use	the	LinkPages	method	
to	keep	track	of	all	the	IDs	in	the	page.	This
can	add	a	significant	overhead	for	pages
which	contain	many	elements	

If	you	are	not	going	to	use	the	LinkPages
method	you	can	
false.	Indeed	even	if	you	set	it	
ABCpdf	will	still	keep	track	of	names	and
IDs	in	anchor	elements	as	there	is	little
overhead	associated	with	
elements.

AddImagePolicy DWORD 0
[default]

This	is	a	setting	that	determines	how
images	in	HTML	are	

The	default	behavior	is	to	add	all	
directly	as	long	as	an	ImageQuality	has	not
been	specified.	This	ensures	that	the
quality	and	size	of	JPEG	
maintained,	that	transparent	PNG	images
are	inserted	using	correct
transparency	and	that	memory	use	
minimized.

By	setting	this	property	to	one	you	can
force	images	to	be	
HTML	rendering	engine	will	be	used	to
decompress	any	images	and	then	they	will
be	recompressed	for	

MSHtmlOverrideKeyPath STRING "" 	

The	registry	key	path	in
HKEY_CURRENT_USER	for	overriding
MSHTML	options.	This	is	the	value
returned	through
IDocHostUIHandler2::GetOverrideKeyPath.

You	can	place	keys/values	in	the	specified
key	in	HKEY_CURRENT_USER	
override	values	in
"Software\Microsoft\Internet	Explorer".
While	MSHTML	queries
"Software\Microsoft\Internet	Explorer"	
both	HKEY_CURRENT_USER	and
HKEY_LOCAL_MACHINE,	the	path
specified	by	this	setting	is	only	queried	in
HKEY_CURRENT_USER.

If	this	setting	is	specified	and	valid,	ABCpdf
will	write	in	the	
"Software\Microsoft\Internet	Explorer"
when	bootstrapping	MSHTML.

XULRunnerDirectory STRING "" 	
The	path	to	the	parent	directory	containing
the	XULRunner38_0	folder	
engine.

GeckoPrefFile STRING "" 	
The	path	to	the	JavaScript	file	that	sets	the
preferences	for	the	Gecko	engine.	
XHtmlOptions.Engine

UseCSSClassToAddTags DWORD 1	[true] 	

When	the	Gecko	engine	is	used,	this
setting	specifies	whether	
'abcpdf-tag-visible'	is	used	for	adding	tags
(XHtmlOptions.AddTags
is	deprecated.	Use	CSS	style	
visible:	true',	instead.

StopSMILAnimation DWORD 1	[true]

When	the	Gecko	engine	is	used,	this
setting	specifies	whether	SMIL	
stopped.	When	the	animation	is	stopped,
the	first	frame/sample	is	used.

RelCharShiftTolerance DWORD 60

This	value	is	in	1000ths	of	the	font	size.
When	the	Gecko	engine	
specifies	the	maximum	relative	horizontal
shift	between	adjacent	glyphs	to	consider
the	glyphs	to	be	in	a	continuous	
text.	Because	of	font	hinting,	character
widths	and	positions	
may	be	different	from	those	in	the	fonts.
Glyphs	in	a	continuous	flow	are	evenly
spaced	in	the	text	area.

AbsCharShiftTolerance DWORD 500

This	value	is	in	1000ths	of	a	point.	(A	point
is	1/72	of	an	inch.)	
is	used,	this	specifies	the	maximum
absolute	horizontal	
glyphs	to	consider	the	glyphs	to	be	in	a
continuous	flow	of	text.	Because	of	font
hinting,	character	widths	and	positions
reported	by	Gecko	may	be	different	from
those	in	the	fonts.	Glyphs	in	
flow	are	evenly	spaced	in	the	text	area.

Rendering
Name Type Default Overridable Description

RenderNoBitmap DWORD 0
[false] SetInfo	only

This	parameter
allows	low-level
control	over	the
way	that	documents
are	rendered	to
vector	formats	like
EMF	and	EPS.

During	the
generation	of	an
EMF	or	EPS	file,
bitmap	generation
due	to	transparency
detection	will	be
suppressed.	This
can	cause	some
unexpected	results
as	neither	EMF	nor
EPS	format
supports
transparency	and
non-default
blending	modes	to
the	extent	that	PDF
does.

This	property	is
only	accessible
using	the
Doc.SetInfo
method.	The	default
cannot	be
overridden	using	a
registry	key.

RenderNoDisplayList DWORD 0
[false] SetInfo	only

This	parameter
allows	low-level
control	over	the
way	that	documents
are	rendered	to
bitmap	outputs.

During	the
generation	of	a
high-resolution	or
scene-antialiased
bitmap,	the
renderer	stores
PDF	rendering
objects	in	a	display
list.	The	bitmap	is
broken	into	sections
and	the	display	list
is	rendered	to	each
section.

For	some	very
complex	PDF	files,
this	display	list	can
become	rather
large	and	consume
a	lot	of	memory.	In
these	cases,	it	is
better	to	allocate	a
complete	image
and	render	the	PDF
objects	directly	to
the	image	than	it	is
to	try	and	store	the
individual	PDF
objects.

This	property	is
only	accessible

using	the
Doc.SetInfo
method.	The	default
cannot	be
overridden	using	a
registry	key.

RenderTextAsText DWORD 1	[true] SetInfo	only

This	parameter
allows	low-level
control	over	the
way	that	text	is
rendered	into	vector
formats	like	EPS.

If	the	value	is	true,
the	text	is	placed
directly	into	the
output	file	when
possible.	If	it	is
false,	the	text	is
converted	to
vectors,	which	are
then	output	to	the
file.

The	former	method
results	in	smaller
files.	The	latter
results	in	larger	but
font-independent
output	files.	It	is
important	to	note
that	not	everything
that	looks	like	text
is	actually	text	or
can	be	extracted	as
text.

This	property	is
only	accessible
using	the
Doc.SetInfo
method.	The	default
cannot	be
overridden	using	a
registry	key.

RenderEmfType DWORD 1 SetInfo	only

This	parameter
allows	low-level
control	over	the
way	that	documents
are	rendered	to
EMF.

This	setting	controls
the	type	of	EMF
output.	Possible
values	are:

0	-	EmfOnly
1	-
EmfPlusOnly
2	-
EmfPlusDual.

You	may	want	to
change	the	setting
to	EmfPlusDual,
which	means	that
both	EMF	and
EMF+	entries	are
included	in	the
output.	This
produces	greater
compatibility	but	at
the	cost	of	a

doubling	in	file	size.

This	property	is
only	accessible
using	the
Doc.SetInfo
method.	The	default
cannot	be
overridden	using	a
registry	key.

This	registry	key
allows	you	to
control	the
installation	of
embedded	fonts
when	rendering	to
EMF.

By	default,	when
you	use
Rendering.GetData
to	render	to	EMF,
fonts	will	be
installed	in	memory
and	will	remain
available	to	the
ABCpdf	process
until	Doc.Clear	is
called.	This	means
that	the	EMF	can
be	spooled	to	a
printer	and	the	fonts
will	appear
correctly.

By	default,	when
you	use

RenderInstallFonts DWORD 0

Rendering.Save	to
render	to	EMF,
embedded	fonts	are
not	installed	and
text	will	be
rendered	as
polygons	for	any
fonts	that	are	not
available	on	the
system.	This	is
because	when	an
EMF	file	is	viewed
outside	the	ABCpdf
process,	memory-
resident	fonts	are
not	available.	Thus
any	text	using	those
fonts	would	be
subject	to	font
substitution	by
Windows.

Set	this	value	to
0xFFFFFFFF	to
disable	the
installation	of
embedded	fonts	in
memory,	even
when	calling
Rendering.GetData.
This	results	in	text
rendered	with
polygons	for
embedded	fonts.
Hence,	the
rendering	is	slower
and	the	output	is
bigger.

Set	this	value	to	1
to	always	install
fonts,	even	when
calling
Rendering.Save.
This	results	in
faster	rendering
and	smaller
outputs.	However,
viewing	emf	files
outside	the	ABCpdf
process	may	not
display	embedded
fonts	correctly.

RenderBypassDeviceIcc DWORD 0 	

Some	PDFs	contain
color	profiles	which
do	not	handle	black
objects	correctly.

This	option	allows
you	to	bypass	the
profile
transformation	if	the
input	colorspace	is
CMYK	ICC	and	
output	is	device
CMYK,	or	if	the
input	is	Gray	ICC
based	and	the
output	is	device
CMYK.

When	an	EMF	is
created	the
standard	settings
are	taken	from	the

EmfDeviceName STRING "" SetInfo	only

default	screen.

Under	some
circumstances	it
can	be	desirable	to
allow	these	settings
to	be	taken	from	a
different	screen	or
indeed	a	device
such	as	a	printer.

This	property	allows
you	to	specify	the
name	of	the	device
to	be	used	for	the
default	EMF
settings.

This	property	is
only	accessible
using	the
Doc.SetInfo
method.	The	default
cannot	be
overridden	using	a
registry	key.

RenderNoAAClipping DWORD 1 	

Disabled	by	default.
Certain	non-
rectangular	clipping
paths	currently
require	that	we
keep	these	as	8	bit
alpha	masks.	For
large	files	or	large
images	to	be
generated,	this	can
result	in	increased

memory	usage	and
slower	rendering
speeds.	Set	this	to
'0'	to	enable	the	8
bit	clipping	masks.
Otherwise	the
clipping	masks	will
be	represented	as	1
bit	masks	(no
antialiasing).

RenderCurveFlatness STRING "1" 	

When	rendering
stroked	curves,	the
curve	is	broken	into
a	series	of	line
segments.	The
flatness	value	is	the
default	value	for
this	tesselation,
default	is	'1'	which
means	that	when
the	curve	has
deviated	by	1	pixel,
it	is	broken	into	a
line	segment.	Note
that	even	though	its
registry
representation	is
type	'STRING',	it
will	be	converted
into	a	DOUBLE
numerical	value.

XPS/HTML	Export
Name Type Default Overridable Description

This	hint	flag
controls
ABCpdf	policy
regarding	the
use	of
Windows
Media	Photo
(WMP/JPEG
XR)	images	in
converted
XPS
documents.	If
this	flag	is
set,	ABCpdf
would	prefer
to	use	WMP
over	PNG	in
some
situations.

WMP	is	a
versatile
format	that
can	handle
lossless	and
lossy
compression
as	well	as
transparency.
It	can	often
reduce	the	file
size	of
produced
XPS
documents.

http://wikipedia.org/wiki/JPEG_XR

XPSExportWMPImages DWORD 1	[true]

However,
some
compact
.NET	runtime
environments,
such	as
Silverlight,	do
not	support
decoding
WMP	images.
If	your	XPS
documents
need	to	be
used	in	those
environments,
you	may	want
to	turn	this
flag	off.

Images	in
color-spaces
such	as
CMYK	must
always	be
represented
as	WMP	in
XPS
documents.
As	such,	if
you	wish	to
ensure	that
your
documents
never	use
WMP,	they
must	be
converted	to
RGB	or
Grayscale

before	export.

XpsAny	Import
Name Type Default Overridable Description

PrintHookLog
DWORD

or
STRING

0 registry	only

Set	this	value	to	1	to
enable	the	logging	of
the	PrintHook	library
using
%SystemRoot%\Temp
or	set	it	to	a	path	to	a
folder	to	enable	the
logging	using	that
folder.

The	PrintHook	library	is
used	to	print	files	to
XPS,	which	are	then
converted	to	PDF	in
ImportAny	operations.
We	may	ask	you	to
enable	the	logging	and
send	us	the	log	files	for
debugging	purposes	if
you	request	us	to	solve
related	problems.

Log	files	are	named
spy_<PID>.txt.

On	64-bit	machines,
you	will	need	to	set	this
value	in	the	32-bit
registry	section
(Wow6432Node)	as
well	for	intercepting	32-
bit	processes.

Set	this	value	to	1	for

PrintHookShow DWORD 0 	

viewing	applications
that	are	launched	by
Operations.ImportAny(),
typically	Office
applications.	Set	it	to	0
or	remove	it	to	hide
them.

We	use	Office
applications	to	print
their	documents	to	XPS
files,	which	we	then
convert	to	PDF.
Sometimes	these
applications	get	stuck
on	pop-ups	of	various
types,	so	it	may	be
useful	to	see	what	they
are	doing.

Please	note	that	there
are	limitations	with	this
feature—it	may	not	be
possible	to	view
applications	that	run
under	a	different	user
account.	This	is
normally	the	case	when
running	Office
Applications	in	a	web
server	process.

MSOffice	Import
Name Type Default Overridable Description

MSOfficeShow DWORD 0
[false] 	

Setting	this	to
true	will	cause
MSOffice
application
windows	to	be
displayed	when
using	the
MSOffice	read
module.	This	can
be	useful	for
troubleshooting
purposes.

PreferDCOMLaunch DWORD 0
[false] 	

This	is	a	setting
for	the	MSOffice
read	module.

Set	to	true	to
prefer	using
Windows'
DCOMLaunch
service	to	create
MSOffice
application
processes.	This
is	mainly	needed
for	using	the
MSOffice	read
module	in
Classic	ASP.
Please	refer	to
our	support	page
for	more
instructions	to
prepare	the

system	for	the
MSOffice	read
module	in
Classic	ASP.

WordGlue	Import
Name Type Default Overridable Description

WordGlueAssemblyPath STRING "" 	

If	WordGlue
.NET	is
installed,
then
ABCpdf	will
use	it	for
importing
DOC	and
DOCX
content.

ABCpdf	will
look	in
standard
locations	for
WordGlue.
However,	if
you	have
WordGlue
installed	in
an	unusual
location,
you	may
wish	to	let
ABCpdf
know	where
to	look
using	this
setting.

	

	 	

	

	

Troubleshooting 	 	

	 	 	

Intro 	

We	don't	expect	you	to	have	any	problems	with	our
software	but	if	you	do	we	offer	a	full	level	of	support
as	standard.	If	you	need	an	extra	level	of	security	we
offer	a	Platinum	Level	Support	program	offering	a
priority	channel	through	to	our	engineers.

Your	first	port	of	call	should	be	to	check	out	the	FAQ
on	our	website.	If	it	doesn't	cover	your	particular
query	you	can	mail	us	via	the	email	addresses	listed
there.	We	prefer	queries	via	email	as	technical	issues
are	often	complicated	and	require	some	thought	on
our	side	as	well	as	yours.	However	if	you	need	to
telephone	then	numbers	are	listed	on	our	web	site.

	

	 	

Common 	 	

Most	bug	reports	relate	to	misunderstandings	so	if
you're	reporting	a	bug	please	do	first	check	the
documentation	carefully.	If	you	feel	that	an	issue
hasn't	been	explained	well	please	do	tell	us	so	we
can	correct	it.

Most	configuration	problems	relate	to	security
settings.	If	you	are	operating	under	a	restricted
security	account	please	try	running	your	code	in	a
standard	application	while	logged	on	as
Administrator.	It	will	only	take	you	a	few	minutes	to
do	this	and	it	will	instantly	tell	you	if	you	have	a
security	problem	or	not.

Because	ABCpdf	typically	renders	URLs	from	the

	 	

http://www.websupergoo.com/purchase.htm
http://www.websupergoo.com/support.htm

server-side	the	server	itself	may	impose	limits.	For
example	if	your	server	has	a	video	card	with	a
limited	range	of	colors	then	certain	graphics
operations	may	be	limited	to	that	number	of	colors.

If	you	find	anything	that	doesn't	seem	right	please
say.	We	don't	know	unless	you	tell	us.

	

Basics 	 	

Remember	to	tell	us	what	Operating	System	you're
on	and	what	version	of	ABCpdf	you're	using.	You
can	get	the	exact	version	of	ABCpdf	from	the
PDFSettings	control	panel.	If	you're	using	an	older
version	of	ABCpdf	we	will	be	asking	you	if	the
problem	occurs	using	the	current	download	so	you
may	wish	to	check	our	downloads	page.

If	the	problem	involves	URL	rendering	please	tell	us
exactly	what	version	of	Internet	Explorer	you	have
installed	on	your	server.	You	can	get	the	exact
version	of	Internet	Explorer	from	the	About	Internet
Explorer	menu	item.	If	you're	using	an	older	version
of	Internet	Explorer	we	will	be	asking	you	if	the
problem	occurs	using	the	current	version.

Please	give	us	a	precise	description	of	what's	gone
wrong.	We	like	to	see	examples	so	if	you	have
reasonably	sized	input	or	output	documents	which
illustrate	your	point	please	do	feel	welcome	to	mail
them	to	us.

If	the	problem	relates	to	a	particular	resource	which
we	may	not	have	access	to	-	maybe	a	font	or	an
image	-	please	do	send	these	to	us	so	we	can	find
out	what	may	be	unusual	about	them.	If	you	think
we	might	like	to	see	your	code	please	show	it	to	us
(but	please	don't	send	your	entire	project).

	 	

If	something's	working	partially	please	tell	us	what
parts	are	working	and	what	parts	are	not.	If	you
have	any	theories	or	suspicions	about	what's	going
on	please	do	tell	us.	Also	tell	us	about	any	unusual
software	or	configuration	that	might	be	relevant.

	

Ideally 	 	

The	fastest	and	most	reliable	way	to	resolve	an
issue	is	to	provide	a	standalone	code	sample	which
demonstrates	a	problem.	Please	provide	input	and
output	resources	and	tell	us	what	you	think	is	wrong
with	your	output.

A	code	sample	should	be	small	and	should	illustrate
one	particular	problem.	Please	do	not	send	us	your
entire	project	and	please	do	not	send	us	code	we
can't	run	because	it's	tied	to	your	particular	setup.

Please	put	a	little	bit	of	effort	into	defining	exactly
what	the	problem	is.	In	the	long	run	this	will	save
you	time.

Once	we	have	a	standalone	code	example	we	can
tell	you	exactly	why	your	code	isn't	doing	what	you
think	it	should.	If	it's	a	problem	with	our	software
we'll	fix	it	or	suggest	a	workaround.	Even	if	the
problem	is	outside	our	software	we	are	often	able	to
suggest	workarounds.

	

	 	

	

	

Corrupt	Documents 	 	

	 	 	

Intro 	

Occasionally	people	may	supply	you	with	corrupt	or
non-standard	PDF	documents.

When	you	write	code	to	draw	on	these	supplied
documents	the	drawing	may	appear	in	the	wrong
place	or	the	wrong	size	or	even	not	at	all.

The	most	common	cause	of	this	type	of	issue	is	that
the	document	MediaBox	is	non-standard.	For
example	designers	using	Adobe	Illustrator	can	easily
manipulate	the	page	MediaBox	to	produce	legal	-	but
unusual	-	documents.

You	should	start	by	using	AddGrid	as	this	should
give	you	an	idea	of	the	way	in	which	your	drawing	is
failing.

	

	 	

MediaBox 	 	

Most	PDFs	define	page	size	using	a	MediaBox
anchored	at	the	origin.	For	example	"0	0	612	792".

However	it	is	not	required	that	you	do	this	and
some	PDF	documents	define	a	MediaBox	that	is
correct	but	unusual.	For	example	"-612	-792	0	0".

You	can	check	if	this	is	the	case	by	reporting	the
MediaBox	property	after	the	Read	method	has	been
called.

If	you	find	this	kind	of	non-standard	MediaBox	you
are	probably	drawing	your	content	off	the	edge	of

	 	

the	page.

You	will	need	to	adjust	your	drawing	so	that	it
occurs	within	the	bounds	of	the	document
MediaBox.

	

CropBox 	 	

The	MediaBox	defines	the	area	of	a	page	-	the
actual	media	size.	However	there	are	other
measures	as	well.

The	CropBox	defines	"the	visible	region	of	default
user	space.	When	the	page	is	displayed	or	printed,
its	contents	are	to	be	clipped	(cropped)	to	this
rectangle	and	then	imposed	on	the	output	medium".

When	you	display	your	PDF	in	Acrobat	what	you
see	is	the	area	of	the	page	defined	by	the	CropBox
rather	than	the	MediaBox.

Normally	CropBoxes	and	MediaBoxes	are	identical
or	practically	identical.	However	occasionally	you
may	find	that	they're	not.

This	may	cause	your	output	to	appear	in	a	different
location	from	the	one	you	are	expecting.

Indeed	your	PDF	may	also	impose	a	TrimBox	or	a
BleedBox.	If	you're	curious	about	these	there	are
full	details	in	the	Adobe	PDF	Specification.

	

	 	

	

http://partners.adobe.com/

	

HTML	/	CSS	Rendering 	 	

	 	 	

Intro 	

ABCpdf	fully	supports	HTML	and	CSS.

You	can	render	individual	pages	of	HTML	using	the
AddImageUrl	method.

You	can	page	HTML	over	multiple	PDF	pages	using
the	AddImageUrl	method	in	combination	with	the
AddImageToChain	method.

ABCpdf	allows	you	to	treat	HTML	like	any	other
media	so	you	can	even	page	your	HTML	across
multiple	columns	of	multiple	pages	of	your	PDF.

	

	 	

Method 	

HTML	was	designed	to	specify	the	meaning	of
document	content	and	leave	the	precise	rendering
and	layout	up	to	the	browser.	PDF	was	designed	to
specify	the	appearance	of	a	document	and	ignore	the
meaning	of	the	document	content.	HTML	and	PDF
are	fundamentally	different.

HTML	is	being	changed	to	allow	greater	control	over
the	appearance	of	a	document	and	PDF	is	being
changed	to	allow	the	meaning	of	a	document	to	be
better	represented.	However,	the	fact	that	the	two
specifications	are	based	on	diametrically	opposed
concepts	does	mean	that	it	can	be	difficult	to	convert
between	the	two.

ABCpdf	can	use	the	MSHTML	engine	(used	in
Microsoft	Internet	Explorer)	or	the	Gecko	engine

	 	

(used	in	Mozilla	Firefox)	to	parse	and	preprocess	the
HTML	for	insertion	into	your	PDF.	This	provides	an
extremely	accurate	rendition	of	the	HTML.	Due	to	the
differences	in	behavior	and	capabilities	of	the
underlying	rendering	engine,	you	should	expect
differences	in	the	rendered	output	when	switching
HTML	engine.	Please	refer	to	Engine,	ForMSHtml,
and	ForGecko	for	further	elaborations	on	the
engines'	distinct	characteristics.

	

Cache 	

ABCpdf	holds	a	cache	of	recently	requested	URLs
and	it's	only	after	five	minutes	or	so	that	these	pages
expire	from	the	cache.

This	results	in	a	considerable	degree	of	optimization
for	many	common	operations.	However,	if	you	wish
to	bypass	the	cache,	you	can	do	so	by	setting	the
DisableCache	parameter	to	true	when	you	call
AddImageUrl	or	AddImageHtml.

Occasionally,	you	may	find	that	your	page	is	being
cached	elsewhere.	There	are	all	kinds	of	places	this
can	happen.	For	example,	Windows	sometimes
caches	individual	page	resources.	Proxy	servers	may
cache	entire	pages.

The	standard	reason	that	content	gets	cached	is	that
pages	are	sending	HTTP	header	information	which
indicates	that	it	is	acceptable	to	cache	this	content.	If
you	are	using	the	Internet	Explorer	HTML	engine,
sometimes	it	will	insist	to	cache	certain	Web	pages.
In	that	case,	your	first	step	should	be	to	use	a	tool
like	IEWatch	to	view	the	content	expiration	headers.
Indeed,	you	may	find	that	simply	adjusting	the
content	expiration	settings	found	in	the	IIS
Management	Console	will	resolve	the	issue.

	 	

If	you	want	to	be	totally	sure	that	your	URLs	are
rendered	afresh	each	time,	you	need	to	vary	the
URL.	For	example:

http://www.microsoft.com/?dummy=1
http://www.microsoft.com/?dummy=2
http://www.microsoft.com/?dummy=3

These	will	all	render	the	same	page
(www.microsoft.com)	but	because	the	URL	is
varying,	you	can	be	sure	that	they	will	be	rendered
afresh	each	time.

	

Obvious	things	will	impact	the	speed	of	HTML
conversion.	So	if	you	want	to	optimize	the	process
look	at	retrieval	times	for	your	http	requests,	the
size	of	your	HTML	and	any	related	resources,	the
complexity	of	HTML,	the	speed	of	your	computer.
Tweaking	these	can	make	a	big	difference.

However	there	are	also	some	small	and	simple
things	you	may	be	able	to	do	without	getting	into	the
complexity	of	system	wide	optimization.

The	MSHTML	rendering	engine	is,	by	default,	set	up
for	accuracy	and	quality.	In	order	to	ensure	that	the
output	is	always	good	we	have	to	enable	every
setting	that	might	ever	affect	the	output	quality.	This
is	the	case	even	for	situations	in	which	you	are	not
using	those	features.

So	if	your	HTML	does	not	contain	features	which
require	these	settings	then	you	can	disable	them.
Doing	so	can	result	in	significant	speed
improvements.

Speed
	 	 The	setting	which	typically	makes	the	biggest

difference	is	HostWebBrowser	but	DoMarkup	and
AdjustLayout	are	also	worth	looking	at.	The	actual
speed	increases	depend	very	much	on	the	input
HTML,	but	in	our	tests,	disabling	these	features	for
simple	HTML,	increased	the	speed	of	processing	by
about	30%	for	HostWebBrowser,	another	10%	for
the	DoMarkup	property	and	another	7%	for	the
AdjustLayout	property.

Another	property	which	needs	examination	is	the
UseScript	one.	By	default	this	is	set	to	false	but
many	people	enable	it	in	their	ABCpdf	code.	As	long
as	your	JavaScript	is	good	and	sensible	then	there
is	no	problem.	However	JavaScript	is	often	coded
poorly	and	as	such	it	may	have	an	unpredictable
effect	on	speed.	Consider	disabling	this	feature	if
you	do	not	actively	need	it.

Setting	the	BrowserWidth	to	a	predefined	value
means	that	ABCpdf	does	not	have	to	compute	one.
This	can	result	in	an	increase	of	speed	or	perhaps
10%	or	so.

	

	 	

You	can	render	any	page	you	can	supply	a	URL	for.

When	you	render	a	page	the	page	has	to	be
reloaded	by	ABCpdf.	This	is	because	you	-	as	a
client	-	are	looking	at	the	page	from	your	current
machine.	ABCpdf	lives	on	the	server	and	so	it	exists
in	a	different	session.

So,	you	cannot	generally	rely	on	cookies,	session
state	or	form	submission	in	your	page.	The	page
must	be	reliant	only	on	the	URL	you	supply.

Caveats
	 	 If	you	have	to	rely	on	session	state,	you	could	use

cookie-less	sessions	(which	will	give	you	a	URL	for
your	session)	or	you	could	save	the	session
information	under	a	specific	unique	ID	then	pass	the
ID	via	the	URL	and	pick	up	the	information	via	your
server-side	code.

Problems	which	appear	to	be	related	to	SSL	or
HTTPS	connections	are	often	authentication	issues
simply	solved	by	providing	a	user	name	and
password.	See	the	LogonName	property	for	details.

	

	 	

Size 	 	

Screen	resolution	is	typically	96	DPI.	So,	when	you
view	an	HTML	page	on	your	monitor,	Windows	will
display	it	at	96	DPI.

The	disparity	between	the	screen	resolution	and	the
PDF	72	DPI	resolution	means	that	HTML	appears
larger	in	print	documents	than	it	does	on	screen.

You	will	need	to	apply	a	scale	of	72/96	(0.75)	to
compensate	for	this	if	you	want	both	to	appear	the
same	size.

For	example,	if	you	are	rendering	a	web	page
supplying	a	value	of	800	for	the	Width	parameter,
you	will	need	to	set	the	width	of	your	Rect	to	600	if
you	want	both	to	appear	the	same	size.

	

	 	

PDF	documents	are	predominantly	vector	based.
As	such,	they	do	not	really	have	a	DPI	because
they	are	resolution	independent.	The	only	portions
of	PDFs	which	are	raster	based	are	images.

DPI 	 	

Most	elements	of	HTML	-	text,	lines	-	are	vector
based.	So,	they	are	resolution	independent.

The	resolution	at	which	images	in	your	web	pages
are	rendered	is	complicated.	Suppose	you	have	a
300	square	image	referenced	by	an	image	tag.	If
the	width	of	your	Doc.Rect	is	the	same	as	the	width
you	pass	to	AddImageUrl,	this	will	be	rendered	at
72	DPI.	However,	by	changing	the	ratios	between
these	two	values,	the	image	will	be	scaled	and
hence	the	resolution	will	be	changed.

And...	if	your	300	square	is	in	an	img	tag	with	a
width	and	height	of	150,	the	default	resolution	will
be	doubled.

	

	 	

ABCpdf	uses	a	sophisticated	set	of	heuristics	to
determine	where	to	break	pages.	For	greater	control
over	page	breaking,	you	can	use	the	page-break-
before,	page-break-after	and	page-break-inside
CSS	styles.

You	must	ensure	that	the	element	to	which	you
apply	your	page	breaking	style	is	visible.	For
example:

<div	style="page-break-
before:always"> </div>

...	will	break	but	...

<div	style="page-break-
before:always"></div>

Breaks
	 	

...	will	not.

Useful	Tip.	Debugging	page	break	styles.

Sometimes,	your	page	breaks	don't	work	in
they	way	you	think	they	should.	Because
these	kinds	of	tags	are	invisible,	it's	very
difficult	for	you	to	know	whether	you've	applied
them	correctly	or	not.	One	simple	solution	is	to
debug	your	HTML	using	a	visible	style.

For	example,	when	you	apply	your	"page-
break-inside:	avoid"	style,	apply	a	right	border
style	at	the	same	time.	That	way,	you	can	see
exactly	where	your	elements	are.	If	the
borders	don't	appear	in	the	right	places,	then
you	know	there's	something	wrong	with	your
HTML.

The	page	break	styles	in	the	Gecko	engine	are	not
always	applied	as	intuitively	as	they	are	in
MSHTML.	The	root	of	this	is	the	CSS	specification
that	which	says	that	break	styles	must	be	applicable
to	block-level	elements	within	the	"normal	flow	of
the	root	element".	It	allows	for	these	styles	to	be
applied	to	other	elements	but	does	not	mandate	it.

The	upshot	of	this,	within	the	Gecko	engine,	is	that
page	break	styles	cannot	be	applied	within	tables,
to	elements	such	as	table	rows.	If	you	are	unsure
about	whether	something	is	likely	to	work	just	try
Print	Preview	from	within	Firefox	38.0	as	a	simple
sanity	check.

	

	 	

Snapshot 	 	

You	may	wish	to	take	a	snapshot	of	the	current
URL.

In	many	circumstances,	you	should	be	able	to
derive	a	URL	for	the	current	page	using	the	value	of
the	SERVER_NAME,	URL	and	QUERY_STRING
Server	Variables.	You	should	be	able	to	derive	a
URL	for	the	previous	page	using	the
HTTP_REFERER	(sic)	Server	Variable.

Alternatively,	you	can	obtain	the	HTML	of	the
current	page	using	the	HttpResponse.Filter	property
or	by	overriding	the	Render	method	of	the	page.
You	can	then	present	this	HTML	to	ABCpdf	using
AddImageHtml.	If	your	HTML	references	resources
using	relative	references,	you	may	wish	to	insert	a
<BASE>	tag	into	the	HTML	before	presentation	to
ABCpdf.

When	you	perform	this	kind	of	operation,	be	careful
not	to	recursively	call	ABCpdf.	If	you	do	this,	you	will
get	into	a	hall-of-mirrors	type	situation	and	the
software	will	not	be	able	to	return	you	a	sensible
image.

	

	 	

	

	

SVG	to	PDF	Import 	 	

	 	 	

Intro 	

When	you	use	Doc.Read	to	import	SVG	content,
ABCpdf	uses	its	own	native	SVG	import	functionality.
This	is	very	fast	and	controllable	and	produces	a
very	direct	rendition	of	the	SVG	structures	in	terms	of
the	PDF	output.	For	SVG	Tiny	compliant	input	it	is
the	best	option.

The	alternative	is	to	use	AddImageUrl/Html	with	the
Gecko	engine.	Because	this	uses	the	Firefox	SVG
rendering	engine	is	extremely	full	featured.	For
complex	SVG	content	including	features	outside	the
SVG	Tiny	specification	it	is	the	best	option.

	

	 	

SVG	Tiny 	

ABCpdf	supports	a	subset	of	SVG	based	around	the
SVG	Tiny	specification.

It	does	not	support	all	the	features	of	SVG	Tiny
because	some	features	do	not	easily	map	through	to
equivalents	in	the	PDF	format.	However	it	supports
some	features	outside	SVG	Tiny	to	cover	common
usage	in	real	world	(non	SVG	Tiny)	documents.

So	what	are	the	key	differences	between	ABCpdf
SVG	and	SVG	Tiny?

	

	 	

PDF	is	essentially	a	static	medium.

Content 	

ABCpdf	supports	the	import	of	static	content.

However	it	does	not	import	dynamic	SVG	content
such	as	animations,	videos	and	scripts.

	

	 	

Text 	

ABCpdf	supports	external	fonts	referenced	in	SVG.

However	it	is	also	possible	to	embed	fonts	in	an	SVG
file	using	a	set	of	tags	defining	the	path	for	each
glyph.	ABCpdf	does	not	support	this	type	of
embedded	font.

Some	text	styles	such	as	light	weights	and	font
variants	are	not	easily	represented	in	PDF.	For	this
reason	ABCpdf	may	approximate	them	if	they	are
used.

ABCpdf	does	not	support	the	display-align	property
of	the	textarea	element.	However	this	is	an	element
which	is	very	rarely	used	(it	is	part	of	the	new	SVG
1.2	draft	specification)	and	is	not	widely	supported.

SVG	Basic	allows	text	in	individual	tspan	blocks	to
be	individually	positioned	attributes	using	x,	y,	dx	and
dy	attributes.	Because	this	is	not	part	of	SVG	Tiny
ABCpdf	does	not	support	it.	However	it	is	worth
noting	that	this	is	perhaps	the	most	commonly	used
text	construct	outside	the	specification.

	

	 	

	 	

Links	are	only	supported	for	text	elements	within
anchor	elements.

	 	

Links Internal	document	links	are	not	currently	supported.

	

Gradients 	 	

In	SVG	it	is	possible	to	specify	opacity	values	for
the	stop-colors	of	gradients.

Unfortunately	this	is	not	possible	in	PDF.

As	such	ABCpdf	substitutes	transparent	stop-colors
with	brighter	solid	stop-colors.

	

	 	

CSS 	 	

Although	it	is	not	a	part	of	SVG	Tiny,	ABCpdf
supports	a	simplified	CSS	system.

This	is	useful	because	a	large	number	of	real	world
SVG	documents	use	simple	CSS	selectors.

ABCpdf	supports	simple	type	selectors	in	internal
style	sheets.	ABCpdf	supports	external	style	sheets
as	long	as	they	are	on	the	local	file	system.

However	ABCpdf	skips	"import"	and	"media"	CSS
directives	when	parsing	the	style	sheet	itself.

	

	 	

	

	

PDF	to	SVG	Export 	

	 	

Intro 	

When	you	use	Doc.Rendering.Save	to	convert	your	PDF	to
SVG,	ABCpdf	produces	a	faithful	rendition	of	the	document.
However	for	a	variety	of	reasons	the	faithful	rendition	may	not
appear	exactly	as	you	expect.	Here	we	explain	why	this	is
and	how	you	can	adapt	the	output	to	your	needs.

	

	

Text 	

PDF	allows	a	complex	set	of	options	for	sophisticated	control	over
text	display.	While	SVG	contains	many	options	for	text	layout,	it	does
not	support	as	wide	a	range	as	PDF.

PDF	viewers	are	generally	pretty	good	at	supporting	the	text	layout
options	supported	by	the	PDF	specification.	Unfortunately	the	same
cannot	be	said	of	SVG.	Many	SVG	viewers	ignore	or	misrepresent
the	more	sophisticated	text	layout	attributes	supported	by	SVG.

The	PDF	format	supports	embedded	fonts	for	high	fidelity	text
reproduction.	However	the	types	of	embedded	fonts	it	supports	are
not	the	same	as	those	supported	by	SVG	and	indeed	subsetting
may	remove	aspects	that	are	crucial	in	the	SVG	representation.

For	these	reasons,	if	you	require	precise	control	over	the	way	that
your	text	appears	when	exporting	to	SVG,	you	should	vectorize	the
page	in	question	to	convert	any	text	into	paths.

You	can	do	this	to	the	current	page	using	the	following	code.

[C#]
((Page)doc.ObjectSoup[doc.Page]).VectorizeText();

[Visual	Basic]
DirectCast(doc.ObjectSoup(doc.Page),
Page).VectorizeText()

	

Rendering	to	SVG	produces	placeholder	tags	for	bitmap
images	in	the	SVG.

If	you	require	that	the	images	be	exported,	you	should	do	so
using	code	of	the	following	form.

[C#]
static	void	SaveAsSvg(Doc	pdf,	string	file)
{
		pdf.Rendering.Save(file);
		string	svg	=	File.ReadAllText(file);
		HashSet<string>	hrefs	=	new
HashSet<string>();
		string	pattern	=	"<image
xlink:href\\s*=\\s*(?:[\"'](?<1>[^\"']*)
[\"']|(?<1>\\S+))";
		MatchCollection	matches	=
Regex.Matches(svg,	pattern);
		foreach	(Match	match	in	matches)
				hrefs.Add(match.Groups[1].Value);
		string	folder	=
Path.GetDirectoryName(file);
		foreach	(string	href	in	hrefs)	{
				string	image	=	Path.Combine(folder,
href);
				if	(!File.Exists(image))	{
						//	href	is	of	form	"imageXX.png"
where	XX	is	the	PixMap	ID
						int	id	=	int.Parse(href.Substring(5,
href.Length	-	9));

Images
	 	

						PixMap	pm	=	pdf.ObjectSoup[id]	as
PixMap;
						using	(Bitmap	bm	=	pm.GetBitmap())
						bm.Save(image);
				}
		}
}

[Visual	Basic]
Private	Shared	Sub	SaveAsSvg(pdf	As	Doc,
file	As	String)
		pdf.Rendering.Save(file)
		Dim	svg	As	String	=
File.ReadAllText(file)
		Dim	hrefs	As	New	HashSet(Of	String)()
		Dim	pattern	As	String	=	"<image
xlink:href\s*=\s*(?:[""'](?<1>[^""']*)
[""']|(?<1>\S+))"
		Dim	matches	As	MatchCollection	=
Regex.Matches(svg,	pattern)
		For	Each	match	As	Match	In	matches
				hrefs.Add(match.Groups(1).Value)
		Next
		Dim	folder	As	String	=
Path.GetDirectoryName(file)
		For	Each	href	As	String	In	hrefs
				Dim	image	As	String	=
Path.Combine(folder,	href)
				If	Not	File.Exists(image)	Then
						'	href	is	of	form	"imageXX.png"	where
XX	is	the	PixMap	ID
						Dim	id	As	Integer	=
Integer.Parse(href.Substring(5,	href.Length
-	9))
						Dim	pm	As	PixMap	=
TryCast(pdf.ObjectSoup(id),	PixMap)

	

						Using	bm	As	Bitmap	=	pm.GetBitmap()
								bm.Save(image)
						End	Using
				End	If
		Next
End	Sub

Note	that	in	the	above	code	the	images	are	all	exported	as
PNG.	This	is	a	good	general	purpose	lossless	export	format.
However	for	continuous	tone	images	such	as	photographs
you	may	wish	to	export	as	JPG	as	this	will	produce	a	smaller
file	size.

It	is	worth	nothing	that	one	of	the	internal	compression
formats	within	PDF	streams	is	JPEG.	So	in	cases	where	the
Stream.Compressions	has	length	one	and	the
Stream.Compression	is	CompressionType.Jpeg,	it	is	often
possible	to	use	Stream.GetData	save	the	raw	data	directly	to
a	JPEG	file.

However	you	need	to	be	aware	that	there	are	differences.
So	while	often	possible,	it	is	not	always	possible.	In	most
situations	for	most	images	in	the	RGB	color	space	it	will
work.	However	for	other	color	spaces	such	as	CMYK	it	will
not	and	even	in	the	case	of	RGB	the	output	may	be	missing
secondary	data	such	as	any	related	ICC	color	profile.

	

	

	

Common	Tasks 	 	

	 	 	

	

There	are	many	code	examples	in	the	documentation.
These	cover	common	tasks	like	adding	text,	flowing
text	and	adding	images.

Every	major	object	method	or	property	has	an
accompanying	code	sample.	So	if	you	want	to	know
how	to	use	a	method	like	AddText	or	AddImageFile
just	look	at	the	code	sample.

Code	samples	also	cover	operations	like	rendering
HTML	pages,	paged	HTML	renders,	watermarking,
appending	PDF	documents	and	drawing	pages	from
one	PDF	document	into	another.

For	in-situ	examples	you	should	look	at	the	example
web	site	that	comes	installed	with	ABCpdf.

	

	 	

	

	

Text	Flow	Example 	

This	example	shows	how	to	flow	text	from	one	area	to
another.	The	techniques	shown	here	are	used	to	flow
text	between	pages	but	they	could	equally	well	be
applied	to	flowing	text	between	areas	-	such	as
columns	-	on	the	same	page.

	

	

Setup 	

First	we'll	set	up	some	convenient	variables.	One	will
determine	the	gap	between	our	columns	and	the	other
will	contain	the	text	we	want	to	display.

[C#]
int	theID	=	0;
string	theText	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam
incolunt	Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes...";
//	truncated	for	clarity	

[Visual	Basic]
Dim	theID	As	Integer	=	0
Dim	theText	As	String	=	"Gallia	est
omnis	divisa	in	partes	tres,	quarum
unam	incolunt	Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes..."
'	truncated	for	clarity	

	

Doc	Obj 	

Next	we	create	an	ABCpdf	Doc	object	and	give	it	our
basic	settings.

We	enlarge	the	line	width,	increase	the	font	size,
enable	justification	and	inset	the	drawing	rectangle
from	the	edges	of	the	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	4;
theDoc.FontSize	=	32;
theDoc.TextStyle.Justification	=	1;	
theDoc.Rect.Inset(20,	20);

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Width	=	4
theDoc.FontSize	=	32
theDoc.TextStyle.Justification	=	1	
theDoc.Rect.Inset(20,	20)

	

	

We	add	our	base	text	to	the	current	page	of	the
document.	We	then	enter	a	loop,	adding	pages	and
chaining	HTML	boxes	together	until	we	run	out	of	text
to	display.

[C#]
theDoc.FrameRect();
theID	=	theDoc.AddHtml(theText);
while	(theDoc.Chainable(theID))	{
		theDoc.Page	=	theDoc.AddPage();
		theDoc.FrameRect();
		theID	=	theDoc.AddHtml("",	theID);

Adding
	 }

[Visual	Basic]
theDoc.FrameRect()
theID	=	theDoc.AddHtml(theText)
While	theDoc.Chainable(theID)
		theDoc.Page	=	theDoc.AddPage()
		theDoc.FrameRect()
		theID	=	theDoc.AddHtml("",	theID)
End	While

	

	

Save 	

After	adding	all	our	text	we	save	the	document	to	a	specified
location	and	clear	our	document.

[C#]
theDoc.Save(Server.MapPath("textflow.pdf"));
theDoc.Clear();

[Visual	Basic]
theDoc.Save(Server.MapPath("textflow.pdf"))
theDoc.Clear()

	

Results

	

textflow.pdf	[Page	1]

textflow.pdf	[Page	2]

	

textflow.pdf	[Page	3]

	

	

	

	

Text	Flow	Round	Image
Example

	 	

This	example	shows	how	to	flow	text	around	an
image.	The	techniques	shown	here	may	be	used
in	conjunction	with	the	Text	Flow	example	which
shows	how	to	flow	text	between	areas	on	the
same	or	different	pages.

	

	 	

Setup 	

First	we'll	set	up	a	convenient	variable	to	contain
the	text	we	want	to	display.

[C#]
string	text	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam
incolunt	Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi
omnes...";	//	truncated	for
clarity	

[Visual	Basic]
Dim	text	As	String	=	"Gallia	est
omnis	divisa	in	partes	tres,
quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli
appellantur.	Hi	omnes..."	'
truncated	for	clarity	

	 	

Doc	Obj 	

Next	we	create	an	ABCpdf	Doc	object	and	give	it
our	basic	settings.

We	enlarge	the	line	width,	increase	the	font	size,
enable	justification	and	inset	the	drawing
rectangle	from	the	edges	of	the	document.

[C#]
Doc	doc	=	new	Doc();
doc.Width	=	4;
doc.FontSize	=	32;
doc.TextStyle.Justification	=	1;
doc.Rect.Inset(20,	20);

[Visual	Basic]
Dim	doc	As	Doc	=	New	Doc()
doc.Width	=	4
doc.FontSize	=	32
doc.TextStyle.Justification	=	1
doc.Rect.Inset(20,	20)

	

	 	

We	save	the	rect	since	we're	going	to	need	it
later.	Then	we	add	an	image	to	the	left	hand	side
of	the	page.	This	is	the	image	we	are	going	to
flow	around.

[C#]
string	saveRect	=	doc.Rect.String;
using	(XImage	xi	=
XImage.FromFile("pic.jpg",	null))
{
		doc.Rect.Resize(xi.Width	/	2,

Image 	

xi.Height	/	2,
XRect.Corner.TopLeft);
		doc.AddImage(xi);
}

[Visual	Basic]
Dim	saveRect	As	String	=	doc.Rect.
[String]
Using	xi	As	XImage	=
XImage.FromFile("pic.jpg",
Nothing)
		doc.Rect.Resize(xi.Width	/	2,
xi.Height	/	2,
XRect.Corner.TopLeft)
		doc.AddImage(xi)
End	Using

	

	 	

	

The	crucial	part	occurs	here	which	is	where	we
set	up	the	variable	left	margins	to	ensure	that
our	text	is	shifted	away	from	the	image.	If	we
had	images	on	the	right	we	would	want	to	use
variable	right	margins	too.	But	here	it	is	not
necessary.

[C#]
double	padX	=	doc.FontSize;
double	padY	=	doc.FontSize	/	3;
string	format	=	"<stylerun
justification=\"1.0\"
leftmargins=\"0	{0}	{1}\">";
string	style	=
string.Format(format,
doc.Rect.Height	+	padY, 	 	

Text doc.Rect.Width	+	padX);

[Visual	Basic]
Dim	padX	As	Double	=	doc.FontSize
Dim	padY	As	Double	=	doc.FontSize
/	3
Dim	format	As	String	=	"<stylerun
justification=""1.0""
leftmargins=""0	{0}	{1}"">"
Dim	style	As	String	=
String.Format(format,
doc.Rect.Height	+	padY,
doc.Rect.Width	+	padX)

	

Save 	

After	adding	and	framing	our	text	we	save	the
document	to	a	specified	location	and	clear	our
document.

[C#]
doc.Rect.String	=	saveRect;
doc.FrameRect();
int	id	=	doc.AddHtml(style	+	text	+
"</stylerun>");
doc.Save("textflowroundimage.pdf");

[Visual	Basic]
doc.Rect.[String]	=	saveRect
doc.FrameRect()
Dim	id	As	Integer	=
doc.AddHtml((style	&	text)	+	"
</stylerun>")
doc.Save("textflowroundimage.pdf")

	 	

	

Results 	

textflowroundimage.pdf

	

	 	

	

	

Multistyle	Example 	

This	example	shows	how	to	create	multistyled	text.

	
	

Setup 	

We	want	to	display	all	our	proper	names	in	bold	so
we	enclose	them	in	bold	tags.

[C#]
string	theText	=	"Gallia	est
omnis	divisa	in	partes	tres,	quarum
unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra
Galli	appellantur.";

[Visual	Basic]
Dim	theText	As	String	=	"
Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua
Celtae,	nostra	Galli
appellantur."

	

Next	we	create	an	ABCpdf	Doc	object	and	give	it
some	basic	settings.	Although	we	could	pass	our
HTML	styled	text	directly	to	the	AddHtml	function,
we	can	take	more	control	over	the	way	that	fonts	are
added	to	the	PDF	if	we	specify	font	IDs.

Doc	Obj 	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	72;
theDoc.Rect.Inset(10,	10);
theDoc.FrameRect();
int	theFont1	=
theDoc.EmbedFont("Verdana",
LanguageType.Latin,	false,	true);
int	theFont2	=
theDoc.EmbedFont("Verdana	Bold",
LanguageType.Latin,	false,	true);

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	72
theDoc.Rect.Inset(10,	10)
theDoc.FrameRect()
Dim	theFont1	As	Integer	=
theDoc.EmbedFont("Verdana",
LanguageType.Latin,	False,	True)
Dim	theFont2	As	Integer	=
theDoc.EmbedFont("Verdana	Bold",
LanguageType.Latin,	False,	True)

	

	

We	replace	the	bold	tags	with	font	tags	that	directly
reference	our	chosen	fonts	and	then	add	the	HTML
styled	text	to	the	current	rectangle.

[C#]
theText	=	"<font	pid="	+
theFont1.ToString()	+	">"	+	theText	+
"";

Adding
	

theText	=	theText.Replace("",	"
<font	pid="	+	theFont2.ToString()	+
">");
theText	=	theText.Replace("",	"
");
theDoc.AddHtml(theText);	

[Visual	Basic]
theText	=	"<font	pid="	+
theFont1.ToString()	+	">"	+	theText	+
""
theText	=	theText.Replace("",	"
<font	pid="	+	theFont2.ToString()	+
">")
theText	=	theText.Replace("",	"
")
theDoc.AddHtml(theText)	

	

	

Save 	

Finally	we	save	and	clear	the	document.

[C#]
theDoc.Save(Server.MapPath("styles.pdf"));
theDoc.Clear();

[Visual	Basic]
theDoc.Save(Server.MapPath("styles.pdf"))
theDoc.Clear()

	

	

Results
	

styles.pdf

	

	

	

	

Image	Example

This	example	shows	how	to	create	a	simple	PDF	displaying	an
image.

	

Image 	

First	we	create	an	ABCpdf	Image	object	and	we	assign	our	image	

[C#]
XImage	theImg	=	new	XImage();
theImg.SetFile(Server.MapPath("../mypics/pic.jpg"));

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
theImg.SetFile(Server.MapPath("../mypics/pic.jpg"))

	

Next	we	create	an	ABCpdf	Doc	object.

When	we	add	our	image	it	will	be	scaled	to	fit	the	current	rect	so	it
is	important	that	we	adjust	the	rect	to	reflect	the	dimensions	of	our
image.	Here	we	assume	a	one	to	one	ratio	between	pixels	and
points	which	will	give	us	a	72	dpi	result	when	printed.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Left	=	100;
theDoc.Rect.Bottom	=	100;
theDoc.Rect.Width	=	theImg.Width;
theDoc.Rect.Height	=	theImg.Height;	
theDoc.AddImageObject(theImg,	false);

Doc
	 theDoc.Save(Server.MapPath("image.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Left	=	100
theDoc.Rect.Bottom	=	100
theDoc.Rect.Width	=	theImg.Width
theDoc.Rect.Height	=	theImg.Height
theDoc.AddImageObject(theImg,	false)
theDoc.Save(Server.MapPath("image.pdf"))
theDoc.Clear()

	

Results 	

image.pdf

	

	

	

Deletion	Example

This	example	shows	how	to	delete	pages	from	a	PDF	document.

	

Setup 	

First	we	create	an	ABCpdf	Doc	object	and	read	our	source	document.
We	store	the	number	of	pages	we're	going	to	delete	-	we're	going	
delete	all	but	one.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
int	theCount	=	theDoc.PageCount	-	1;

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
Dim	theCount	As	Integer	=	theDoc.PageCount	-	1

	

Delete
	

We	go	round	a	loop	deleting	the	second	page	each	time.

[C#]
for	(int	i	=	0;	i	<	theCount;	i++)	{
		theDoc.PageNumber	=	2;
		theDoc.Delete(theDoc.Page);
}

[Visual	Basic]
For	i	As	Integer	=	1	to	theCount

		theDoc.PageNumber	=	2
		theDoc.Delete(theDoc.Page)
Next

	

Save 	

We	add	some	text	to	the	PDF	so	that	we	know	how	many	pages
we've	deleted.	Finally	we	save	the	PDF.

[C#]
theDoc.FontSize	=	500;
theDoc.Color.String	=	"255	0	0";
theDoc.TextStyle.HPos	=	0.5;
theDoc.TextStyle.VPos	=	0.3;
theDoc.AddText(theCount.ToString());
theDoc.Save(Server.MapPath("deletion.pdf"));
theDoc.Clear();

[Visual	Basic]
theDoc.FontSize	=	500
theDoc.Color.String	=	"255	0	0"
theDoc.TextStyle.HPos	=	0.5
theDoc.TextStyle.VPos	=	0.3
theDoc.AddText(theCount.ToString())
theDoc.Save(Server.MapPath("deletion.pdf"))
theDoc.Clear()

	

Results

	

deletion.pdf

	

	

	

Headers	and	Footers	Example 	

This	example	shows	one	method	of	adding	headers	and
footers.

	

	

Setup 	

First	we	create	an	ABCpdf	Doc	object	and	define	the	content
we're	going	to	be	adding.

[C#]
Doc	theDoc	=	new	Doc();
int	theID,	theCount;
string	theText	=	"Gallia	est	omnis	divisa
in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.	Hi
omnes...";	//	truncated	for	clarity

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theID,	theCount	As	Integer
Dim	theText	As	String	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.	Hi
omnes..."	'	truncated	for	clarity

	

	

We	set	up	the	style	for	our	content.

We	need	to	specify	the	Rect	defining	the	area	in	which

Content
	

content	will	be	inserted,	a	color	(red)	and	a	font	size.

We	add	the	text	using	the	same	method	as	employed	in	the
Text	Flow	Example.	We	draw	a	frame	round	our	content
area	each	time	so	we	can	see	how	the	text	has	been
positioned.

[C#]
theDoc.Rect.String	=	"100	200	500	600";
theDoc.Color.String	=	"255	0	0";
theDoc.FontSize	=	24;
theID	=	theDoc.AddHtml(theText);
theDoc.FrameRect();
while	(theDoc.Chainable(theID))	{	
		theDoc.Page	=	theDoc.AddPage();
		theID	=	theDoc.AddHtml("",	theID);
		theDoc.FrameRect();
}
theCount	=	theDoc.PageCount;

[Visual	Basic]
theDoc.Rect.String	=	"100	200	500	600"
theDoc.Color.String	=	"255	0	0"
theDoc.FontSize	=	24
theID	=	theDoc.AddHtml(theText)
theDoc.FrameRect()
While	theDoc.Chainable(theID)
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddHtml("",	theID)
		theDoc.FrameRect()
End	While
theCount	=	theDoc.PageCount

	

	

Header
	

We	set	up	the	style	for	our	header.

We	need	to	specify	the	Rect	defining	the	area	in	which	the
header	will	be	inserted,	a	color	(green)	and	a	font	size.	We
use	the	HPos	and	VPos	parameters	to	center	the	text	both
horizontally	and	vertically.

We	then	iterate	through	the	pages	in	the	document	adding
headers	as	we	go.	We	frame	our	headers	so	we	can	see	the
header	area.

[C#]
theDoc.Rect.String	=	"100	650	500	750";
theDoc.TextStyle.HPos	=	0.5;
theDoc.TextStyle.VPos	=	0.5;
theDoc.Color.String	=	"0	255	0";
theDoc.FontSize	=	36;
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.AddText("De	Bello	Gallico");
		theDoc.FrameRect();
}

[Visual	Basic]
theDoc.Rect.String	=	"100	650	500	750"
theDoc.TextStyle.HPos	=	0.5
theDoc.TextStyle.VPos	=	0.5
theDoc.Color.String	=	"0	255	0"
theDoc.FontSize	=	36
For	i	As	Integer	=	1	To	theCount
		theDoc.PageNumber	=	i
		theDoc.AddText("De	Bello	Gallico")
		theDoc.FrameRect()
Next

	

	

Footer 	

We	set	up	the	style	for	our	footer.

We	need	to	specify	the	Rect	defining	the	area	in	which	the
footer	will	be	inserted,	a	color	(blue)	and	a	font	size.	We	use
the	HPos	and	VPos	parameters	to	center	the	text	vertically
and	align	it	to	the	right.

We	then	iterate	through	the	pages	in	the	document	adding
footers	as	we	go.	We	frame	our	footers	so	we	can	see	the
footer	area.

[C#]
theDoc.Rect.String	=	"100	50	500	150";
theDoc.TextStyle.HPos	=	1.0;
theDoc.TextStyle.VPos	=	0.5;
theDoc.Color.String	=	"0	0	255";
theDoc.FontSize	=	36;
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.AddText("Page	"	+	i.ToString()	+	"
of	"	+	theCount.ToString());
		theDoc.FrameRect();
}

[Visual	Basic]
theDoc.Rect.String	=	"100	50	500	150"
theDoc.TextStyle.HPos	=	1.0
theDoc.TextStyle.VPos	=	0.5
theDoc.Color.String	=	"0	0	255"
theDoc.FontSize	=	36
For	i	As	Integer	=	1	To	theCount
		theDoc.PageNumber	=	i
		theDoc.AddText("Page	"	+	i.ToString()	+	"
of	"	+	theCount.ToString())
		theDoc.FrameRect()
Next

	

	

Save 	

Finally	we	save	the	PDF.

[C#]
theDoc.Save(Server.MapPath("headerfooter.pdf"));
theDoc.Clear();

[Visual	Basic]
theDoc.Save(Server.MapPath("headerfooter.pdf"))
theDoc.Clear()

	

Results 	

headerfooter.pdf	[Page	1] headerfooter.pdf	[Page	2]

headerfooter.pdf	[Page	3] headerfooter.pdf	[Page	4]

	

	

	

	

	

	

Landscape	Example 	

This	example	shows	how	to	create	a	PDF	document
rotated	by	90	degrees	for	a	landscape	rather	than
portrait	view.

	

	

Setup
	

We	start	by	creating	a	PDF	document.	We	use	two
transforms	to	apply	a	generic	90	degree	rotation	around
the	center	of	the	document	and	rotate	the	drawing
rectangle	by	the	same	amount.	After	applying	our
rotation	we	add	some	text	to	the	page.

[C#]
Doc	theDoc	=	new	Doc();
//	apply	a	rotation	transform
double	w	=	theDoc.MediaBox.Width;
double	h	=	theDoc.MediaBox.Height;
double	l	=	theDoc.MediaBox.Left;
double	b	=	theDoc.MediaBox.Bottom;	
theDoc.Transform.Rotate(90,	l,	b);
theDoc.Transform.Translate(w,	0);	

//	rotate	our	rectangle
theDoc.Rect.Width	=	h;
theDoc.Rect.Height	=	w;

//	add	some	text
theDoc.Rect.Inset(50,	50);
theDoc.FontSize	=	96;
theDoc.AddText("Landscape	Orientation");

[Visual	Basic]

	

Dim	theDoc	As	Doc	=	New	Doc()	
'	apply	a	rotation	transform
Dim	w	As	Double	=	theDoc.MediaBox.Width	
Dim	h	As	Double	=	theDoc.MediaBox.Height
Dim	l	As	Double	=	theDoc.MediaBox.Left
Dim	b	As	Double	=	theDoc.MediaBox.Bottom
theDoc.Transform.Rotate(90,	l,	b)
theDoc.Transform.Translate(w,	0)	

'	rotate	our	rectangle
theDoc.Rect.Width	=	h
theDoc.Rect.Height	=	w

'	add	some	text
theDoc.Rect.Inset(50,	50)
theDoc.FontSize	=	96
theDoc.AddText("Landscape	Orientation")

	

Rotate 	

Drawing	the	text	rotated	does	not	rotate	the	page	itself.	To
change	the	default	orientation	of	the	document	we	need	to
apply	a	rotation	to	the	root	page	object.	By	doing	this	we
ensure	that	every	page	in	the	document	is	viewed	rotated.

[C#]
//	adjust	the	default	rotation	and	save
int	theID	=	theDoc.GetInfoInt(theDoc.Root,
"Pages");
theDoc.SetInfo(theID,	"/Rotate",	"90");
theDoc.Save(Server.MapPath("landscape.pdf"));
theDoc.Clear();

[Visual	Basic]
'	adjust	the	default	rotation	and	save

Dim	theID	As	Integer	=
theDoc.GetInfoInt(theDoc.Root,"Pages")	
theDoc.SetInfo(theID,	"/Rotate",	"90")
theDoc.Save(Server.MapPath("landscape.pdf"))
theDoc.Clear()

	

Results 	

landscape.pdf

	

	

	

	

	

	

Small	Table	Example 	

This	example	shows	how	to	draw	a	single	page
table.	ABCpdf	does	not	provide	table	drawing
routines	itself	so	this	example	uses	a	Table	Class	to
position	the	table	elements.

You	can	find	the	full	project	and	classes	under	the
ABCpdf	menu	item.	The	project	includes	code	for
laying	out	a	small	table,	a	large	table	spreading	over
more	than	one	page,	an	invoice	and	a	product	list.

	

	

Setup 	

We	start	by	creating	our	document	object	and
reading	the	data	for	our	table.	For	the	purposes	of
this	example	we'll	assume	that	our	data	is	in	a
standard	tab	delimited	format.

[C#]
string	theText	=
ReadDataFromFile(theRez	+
"text6.txt");
Doc	theDoc	=	new	Doc();
//	set	up	document
theDoc.FontSize	=	16;
theDoc.Rect.Inset(20,	20);

[Visual	Basic]
Dim	theText	As	String	=
ReadDataFromFile(theRez	+
"text6.txt")
Dim	theDoc	As	Doc	=	New	Doc()	
'	set	up	document
theDoc.FontSize	=	16

	

theDoc.Rect.Inset(20,	20)

	

Rotate 	

We	create	a	new	table	object	passing	in	values	to
tell	it	what	rectangle	it	can	occupy	(it	takes	the
current	document	rectangle)	and	how	many
columns	of	data	it	should	be	prepared	for.

Columns	are	assigned	relative	widths	and	expand
horizontally	to	fit	the	table	rectangle.	Here	we're
specifying	five	columns.

Most	of	our	columns	will	be	right	aligned	so	we	set
the	default	horizontal	alignment	to	1.

[C#]
PDFTable	theTable	=	new
PDFTable(theDoc,	5);
theTable.CellPadding	=	5;
theTable.HorizontalAlignment	=	1;	

[Visual	Basic]
Dim	theTable	As	PDFTable	=	New
PDFTable(theDoc,	5)	
theTable.CellPadding	=	5
theTable.HorizontalAlignment	=	1;	

	

	

We	iterate	through	the	table	data	adding	rows	as	we	go.
We	override	the	right	alignment	for	the	first	column	and	we
shade	alternating	rows	using	a	light	gray	color.	Finally	we
frame	the	table	and	save	the	document.

Add
	

[C#]
theText	=	theText.Trim();
theText	=	theText.Replace("\r\n",	"\r");
string[]	theRows	=	theText.Split(new
char[]	{'\r'});

for	(int	i	=	0;	i	<	theRows.Length;	i++)	{
		theTable.NextRow();
		string[]	theCols	=	theRows[i].Split(new
char[]	{'\t'});
		theCols[0]	=	"<stylerun	hpos=0>"	+
theCols[0]	+	"</stylerun>";	
		theTable.AddHtml(theCols);
		if	((i	%	2)	==	1)	
				theTable.FillRow("220	220	220",	i);
}
theTable.Frame();

theDoc.Flatten();
theDoc.Save(Server.MapPath("table1.pdf"));
theDoc.Clear();

[Visual	Basic]
theText	=	theText.Trim()
theText	=	theText.Replace(vbCrLf,	vbCr)
Dim	theRows()	As	String
theRows	=	theText.Split(New	Char()	{vbCr})

For	i	As	Integer	=	0	To	theRows.Length	-	1
		theTable.NextRow()
		Dim	theCols	As	String()	=
theRows(i).Split(New	Char()	{vbTab})
		theCols(0)	=	"<stylerun	hpos=0>"	+
theCols(0)	+	"</stylerun>"
		theTable.AddHtml(theCols)
		If	(i	Mod	2)	=	1	Then

	

				theTable.FillRow("220	220	220",	i)
		End	If
Next	
theTable.Frame()

theDoc.Flatten()
theDoc.Save(Server.MapPath("table1.pdf"))
theDoc.Clear()	

	

	

Using	the	following	input	data:

Planet	Distance	From	Sun	(miles)	Diameter

(miles)	Year	Length	(days)	Day	Length	(days)

Mercury	36,000,000	3,030	88	58.00

Venus	67,000,000	7,520	225	225.00

Earth	93,000,000	7,925	365	1.00

Mars	142,000,000	4,210	687	1.00

Jupiter	484,000,000	88,730	4,344	0.40

Saturn	888,000,000	74,975	10,768	0.40

Uranus	1,800,000,000	31,760	30,660	0.70

Neptune	2,800,000,000	30,600	60,150	0.65

Pluto	3,600,000,000	1,410	90,520	0.25

We	get	the	following	output.

	

Results

table1.pdf

	

	

	

	

	

Large	Table	Example 	

This	example	shows	how	to	draw	a	multi-page	table.
ABCpdf	does	not	provide	table	drawing	routines
itself	so	this	example	uses	a	Table	Class	to	position
the	table	elements.

You	can	find	the	full	project	and	classes	under	the
ABCpdf	menu	item.	The	project	includes	code	for
laying	out	a	small	table,	a	large	table	spreading	over
more	than	one	page,	an	invoice	and	a	product	list.

	

	

Setup 	

We	start	by	creating	our	document	object	and
reading	the	data	for	our	table.	For	the	purposes	of
this	example	we'll	assume	that	our	data	is	in	a
standard	tab	delimited	format.

[C#]
string	theText	=
ReadDataFromFile(theRez	+
"text7.txt");
Doc	theDoc	=	new	Doc();
//	set	up	document
theDoc.FontSize	=	12;
theDoc.Rect.Inset(20,	20);

[Visual	Basic]
Dim	theText	As	String	=
ReadDataFromFile(theRez	+
"text7.txt")
Dim	theDoc	As	Doc	=	New	Doc()	
'	set	up	document
theDoc.FontSize	=	12

	

theDoc.Rect.Inset(20,	20)

	

Rotate 	

We	create	a	new	table	object	passing	in	values	to
tell	it	what	rectangle	it	can	occupy	(it	takes	the
current	document	rectangle)	and	how	many
columns	of	data	it	should	be	prepared	for.

Columns	are	assigned	relative	widths	and	expand
horizontally	to	fit	the	table	rectangle.	Here	we're
specifying	six	columns	and	a	number	of	relative
widths.	We're	padding	the	cells	so	there	are	gaps
between	the	rows	and	columns.	Finally	we	specify	a
header	which	repeats	as	new	pages	are	added.

[C#]
PDFTable	theTable	=	new
PDFTable(theDoc,	6);
//	some	columns	extra	width
theTable.SetColumnWidths(new	double
[]	{2,	1,	3	,	2,	1,	4});
theTable.CellPadding	=	5;
theTable.RepeatHeader	=	true;	

[Visual	Basic]
Dim	theTable	As	PDFTable	=	New
PDFTable(theDoc,	6)	
'	some	columns	extra	width
theTable.SetColumnWidths(New	Double()
{2,	1,	3	,	2,	1,	4})
theTable.CellPadding	=	5
theTable.RepeatHeader	=	True

	

	

Add
	

We	iterate	through	the	table	data	adding	rows	and	columns
as	we	go.	Every	time	we	add	a	row	we	check	to	see	if	the
page	number	has	changed	and	restart	the	shading	if	it	has.
This	ensures	the	header	is	always	unshaded.	Finally	we
save	the	document.

[C#]
theText	=	theText.Replace("\r\n",	"\r");
string[]	theRows	=	theText.Split(new
char[]	{'\r'});
int	thePage	=	1;
bool	theShade	=	false;
for	(int	i	=	0;	i	<	theRows.Length;	i++)	{
		theTable.NextRow();
		string[]	theCols	=	theRows[i].Split(new
char[]	{'\t'});
		theTable.AddHtml(theCols);
		if	(theDoc.PageNumber	>	thePage)	{
				thePage	=	theDoc.PageNumber;
				theShade	=	true;
		}
		if	(theShade)
				theTable.FillRow("200	200	200",
theTable.Row);
		theShade	=	!	theShade;
}
theDoc.Flatten();
theDoc.Save(Server.MapPath("table2.pdf"));
theDoc.Clear();

[Visual	Basic]
theText	=	theText.Replace(vbCrLf,	vbCr)
Dim	theRows()	As	String	=
theText.Split(New	Char()	{vbCr})
Dim	thePage	As	Integer	=	1

	

Dim	theShade	As	Boolean	=	False
For	i	As	Integer	=	0	To	theRows.Length	-	1
		theTable.NextRow()
		Dim	theCols	As	String()	=
theRows(i).Split(New	Char()	{vbTab})
		theTable.AddHtml(theCols)
		If	theDoc.PageNumber	>	thePage	Then
				thePage	=	theDoc.PageNumber
				theShade	=	true
		End	If
		If	theShade	Then
				theTable.FillRow("200	200	200",
theTable.Row)
		End	If
		theShade	=	Not	theShade
Next	
theDoc.Flatten()
theDoc.Save(Server.MapPath("table2.pdf"))
theDoc.Clear()

	

Using	a	large	quantity	of	input	data.	We	get	the
following	output.

Results

	

table2.pdf	-	[Page	1]

table2.pdf	-	[Page	2] table2.pdf	-	[Page	3]

	

table2.pdf	-	[Page	4] table2.pdf	-	[Page	5]

	

	

	

	

	

Unicode	Example 	

This	example	shows	how	to	add	complex	scripts	such
as	Chinese,	Japanese	and	Korean.	Here	we	choose
to	embed	and	subset	our	font	to	ensure	our	document
renders	correctly	on	all	platforms.

	

	

Setup 	

First	we	create	an	ABCpdf	Doc	object	and	set	the	font
size.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	32;

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.FontSize	=	32

	

	

Read
	

We	read	in	our	Japanese	text	from	a	Unicode	text	file.

[C#]
string	thePath	=
Server.MapPath("../Rez/Japanese2.txt");
//	Utilities.ReadString	is	an	external
function	not	defined	here	
string	theText	=
Utilities.ReadString(thePath);

	

[Visual	Basic]
Dim	thePath	As	String	=
Server.MapPath("../Rez/Japanese2.txt")
'	Utilities.ReadString	is	an	external
function	not	defined	here	
Dim	theText	As	String	=
Utilities.ReadString(thePath)

	

Add 	

Because	we	want	to	ensure	that	our	document
renders	correctly	on	all	platforms	we're	going	to
embed	our	font	in	Unicode	format.	We	specify	a	left-
to-right	writing	direction	and	we	choose	to	subset	our
font.

Please	note	when	embedding	fonts	you	must	ensure
you	have	permission	to	embed	and	redistribute	the
embedded	font	as	part	of	your	PDF.

[C#]
theDoc.Page	=	theDoc.AddPage();
theDoc.Font	=	theDoc.EmbedFont("MS
PGothic",	LanguageType.Unicode,	false,
true);
theDoc.AddText("Japanese"	+	theText);

[Visual	Basic]
theDoc.Page	=	theDoc.AddPage()
theDoc.Font	=	theDoc.EmbedFont("MS
PGothic",	LanguageType.Unicode,	False,
True)
theDoc.AddText("Japanese"	+	theText)

	

	

Add 	

Just	to	show	how	it	works	we'll	also	render	a	page	in
vertical	writing	mode.

[C#]
theDoc.Page	=	theDoc.AddPage();
theDoc.Font	=	theDoc.EmbedFont("MS
PGothic",	LanguageType.Unicode,	true,
true);
theDoc.AddText("Japanese"	+	theText);

[Visual	Basic]
theDoc.Page	=	theDoc.AddPage()
theDoc.Font	=	theDoc.EmbedFont("MS
PGothic",	LanguageType.Unicode,	True,
True)
theDoc.AddText("Japanese"	+	theText)

	

	

Save 	

Finally	we	save	at	a	specified	location.

[C#]
theDoc.Save(Server.MapPath("unicode.pdf"));
//	finished

[Visual	Basic]
theDoc.Save(Server.MapPath("unicode.pdf"))
'	finished

	

Results
	

We	get	the	following	output.

unicode.pdf	-	[Page	1] unicode.pdf	-	[Page	2]

	

	

	

	

	

	

	

	

Paged	HTML	Example 	

This	example	shows	how	to	import	an	HTML	page	into	a
multi-page	PDF	document.

	

	

Setup 	

We	first	create	a	Doc	object	and	inset	the	edges	a	little
so	that	the	HTML	will	appear	in	the	middle	of	the	page.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(72,	144);
theDoc.HtmlOptions.UseScript	=	false;	//
set	to	true	if	your	layout	is	JavaScript
dependent

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(72,	144)
theDoc.HtmlOptions.UseScript	=	False	'
set	to	true	if	your	layout	is	JavaScript
dependent

	

	

We	add	the	first	page	of	HTML.	We	save	the	returned	ID	as
this	will	be	used	to	add	subsequent	pages.

[C#]
theDoc.Page	=	theDoc.AddPage();
int	theID;
theID	=

Page 	
theDoc.AddImageUrl("http://www.yahoo.com/");

[Visual	Basic]
theDoc.Page	=	theDoc.AddPage()
Dim	theID	As	Integer
theID	=
theDoc.AddImageUrl("http://www.yahoo.com/")

	

Chain
	

We	now	chain	subsequent	pages	together.	We	stop
when	we	reach	a	page	which	wasn't	truncated.

[C#]
while	(true)	{
		theDoc.FrameRect();	//	add	a	black
border
		if	(!theDoc.Chainable(theID))
				break;
		theDoc.Page	=	theDoc.AddPage();
		theID	=	theDoc.AddImageToChain(theID);
}	

[Visual	Basic]
While	True
		theDoc.FrameRect()	'	add	a	black
border
		If	Not	theDoc.Chainable(theID)	Then
				Exit	While
		End	If
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddImageToChain(theID)
End	While

	

	

Flatten 	

After	adding	the	pages	we	can	flatten	them.	We	can't	do
this	until	after	the	pages	have	been	added	because
flattening	will	invalidate	our	previous	ID	and	break	the
chain.

[C#]
for	(int	i	=	1;	i	<=	theDoc.PageCount;
i++)	{
		theDoc.PageNumber	=	i;
		theDoc.Flatten();
}

[Visual	Basic]
For	i	As	Integer	=	1	To	theDoc.PageCount
		theDoc.PageNumber	=	i
		theDoc.Flatten()
Next

	

	

Save
	

Finally	we	save.

[C#]

theDoc.Save(Server.MapPath("pagedhtml.pdf"));
theDoc.Clear();	

[Visual	Basic]
theDoc.Save(Server.MapPath("pagedhtml.pdf"))
theDoc.Clear()

	

Results 	

We	get	the	following	output.

pagedhtml.pdf	[Page	1] pagedhtml.pdf	[Page	2]

	

	

	

	

	

	

Doc	Properties	Example 	

This	example	shows	how	to	insert	document
properties.	Document	properties	can	be	viewed	from
Acrobat	Reader	and	most	commonly	provide
information	on	the	document	Title	and	Author.

This	example	requires	some	knowledge	of	the	Adobe
PDF	Specification.	Section	9.2.1	of	the	document
details	the	way	in	which	document	properties	are
stored.	Section	3.8.2	of	the	document	details	the	way
that	dates	are	specified	within	PDF	documents.

	

	

Src 	

First	we	create	an	ABCpdf	Doc	object	and	add	some
simple	content.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Page	=	theDoc.AddPage();
theDoc.AddText("My	first	document...");

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Page	=	theDoc.AddPage()
theDoc.AddText("My	first	document...")

	

	

Looking	at	the	Adobe	PDF	Specification	we	can	see
that	the	document	properties	we	want	to	change	are
referenced	from	an	entry	called	"/Info"	in	the	document
trailer.	So	our	first	step	is	to	create	a	new	PDF

http://partners.adobe.com/

Dest 	

dictionary	and	reference	it	from	the	this	entry.

[C#]
int	theID	=	theDoc.AddObject("<<	>>");
theDoc.SetInfo(-1,	"/Info:Ref",
theID.ToString());

[Visual	Basic]
Dim	theID	As	Integer	=
theDoc.AddObject("<<	>>")	
theDoc.SetInfo(-1,	"/Info:Ref",
theID.ToString())

	

	

Now	we	have	to	insert	our	summary	information	into
the	object	we've	just	added.

[C#]
theDoc.SetInfo(theID,	"/Title:Text",
"ABCpdf");
theDoc.SetInfo(theID,	"/Author:Text",
"WebSupergoo");
theDoc.SetInfo(theID,	"/Subject:Text",
"ABCpdf	Documentation");
theDoc.SetInfo(theID,	"/Keywords:Text",
"ABCpdf,PDF,Docs");
theDoc.SetInfo(theID,	"/Creator:Text",
"WebSupergoo");
DateTime	theDate	=	DateTime.Now;
theDoc.SetInfo(theID,
"/CreationDate:Text",	theDate);
theDoc.SetInfo(theID,	"/ModDate:Text",
theDate);
theDoc.SetInfo(theID,	"/Trapped:Name",

Add 	
"False");

[Visual	Basic]
theDoc.SetInfo(theID,	"/Title:Text",
"ABCpdf")
theDoc.SetInfo(theID,	"/Author:Text",
"WebSupergoo")
theDoc.SetInfo(theID,	"/Subject:Text",
"ABCpdf	Documentation")
theDoc.SetInfo(theID,	"/Keywords:Text",
"ABCpdf,PDF,Docs")
theDoc.SetInfo(theID,	"/Creator:Text",
"WebSupergoo")
Dim	theDate	As	DateTime	=	DateTime.Now
theDoc.SetInfo(theID,
"/CreationDate:Text",	theDate)
theDoc.SetInfo(theID,	"/ModDate:Text",
theDate)
theDoc.SetInfo(theID,	"/Trapped:Name",
"False")

	

	

Save 	

Finally	we	save.

[C#]
theDoc.Save(Server.MapPath("docprops.pdf"));
//	finished

[Visual	Basic]
theDoc.Save(Server.MapPath("docprops.pdf"))
'	finished

	

	

	

	

eForm	Fields	Example 	

This	example	shows	how	to	change	the	values	of	eForm	fields.
In	this	example	we	simply	replace	each	of	the	fields	in	a	form
with	the	name	of	that	field.

	

	

Src 	

First	we	create	an	ABCpdf	Doc	object	and	read	in	our	template	form.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/form.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/form.pdf"))

	

Add
	

We	iterate	through	each	of	the	top	level	fields.	For	each	field
we	set	the	value	of	the	field	to	be	equal	to	the	value	of	the
name.

[C#]
string[]	theNames	=
theDoc.Form.GetFieldNames();
foreach	(string	theName	in	theNames)	{
		Field	theField	=	theDoc.Form[theName];
		theField.Value	=	theField.Name;
}	

	

[Visual	Basic]
Dim	theNames	As	String()	=
theDoc.Form.GetFieldNames()
Dim	theName	As	String
For	Each	theName	In	theNames
		Dim	theField	As	Field	=
theDoc.Form(theName)
		theField.Value	=	theField.Name
Next

	

Save 	

Finally	we	save.

[C#]
theDoc.Save(Server.MapPath("eformfields.pdf"));

[Visual	Basic]
theDoc.Save(Server.MapPath("eformfields.pdf"))

	

Given	the	following	document.

Results

	

form.pdf

This	is	the	kind	of	output	you	might	expect.

	

eformfields.pdf

	

	

	

eForm	Placeholder	Example 	

This	example	shows	how	to	use	eForm	fields	as	placeholders
for	the	insertion	of	text.	In	this	example	we	simply	replace	each
of	the	fields	in	a	form	with	the	name	of	that	field.

	

	

Src 	

First	we	create	an	ABCpdf	Doc	object	and	read	in	our	template	form.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/form.pdf"));
theDoc.Font	=	theDoc.AddFont("Helvetica-Bold");
theDoc.FontSize	=	16;
theDoc.Rect.Pin	=	(int)XRect.Corner.TopLeft;

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/form.pdf"))
theDoc.Font	=	theDoc.AddFont("Helvetica-Bold")
theDoc.FontSize	=	16
theDoc.Rect.Pin	=	XRect.Corner.TopLeft

	

We	iterate	through	each	of	the	fields.	For	each	field	we	focus
on	the	field.	We	then	color	the	rectangle	light	gray	and	draw	the
name	of	the	field	in	dark	red.

[C#]
string[]	theNames	=
theDoc.Form.GetFieldNames();

Add 	

foreach	(string	theName	in	theNames)	{
		Field	theField	=	theDoc.Form[theName];
		theField.Focus();
		theDoc.Color.String	=	"240	240	255";
		theDoc.FillRect();
		theDoc.Rect.Height	=	16;
		theDoc.Color.String	=	"220	0	0";
		theDoc.AddText(theField.Name);
		theDoc.Delete(theField.ID);
}	

[Visual	Basic]
Dim	theNames	As	String()	=
theDoc.Form.GetFieldNames()
Dim	theName	As	String
For	Each	theName	In	theNames
		Dim	theField	As	Field	=
theDoc.Form(theName)
		theField.Focus()
		theDoc.Color.String	=	"240	240	255"
		theDoc.FillRect()
		theDoc.Rect.Height	=	16
		theDoc.Color.String	=	"220	0	0"
		theDoc.AddText(theField.Name)
		theDoc.Delete(theField.ID)
Next

	

	

Save 	

Finally	we	save.

[C#]
theDoc.Save(Server.MapPath("eform.pdf"));	

[Visual	Basic]
	

theDoc.Save(Server.MapPath("eform.pdf"))

	

Results

	

Given	the	following	document.

form.pdf

This	is	the	kind	of	output	you	might	expect. 	

eform.pdf

	

	

	

eForm	Stamp	Example 	

This	example	shows	how	to	stamp	eForm	fields	into	a
document	so	that	the	values	are	indelibly	marked

	

	

Src 	

First	we	create	an	ABCpdf	Doc	object	and	read	in	our	template	form.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/form.pdf"));
theDoc.Font	=	theDoc.AddFont("Helvetica-Bold");

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/form.pdf"))
theDoc.Font	=	theDoc.AddFont("Helvetica-Bold")

	

Add
	

We	set	the	values	of	selected	fields	and	then	we	stamp	all	field
values	into	the	document.

[C#]
theDoc.Form["Day"].Value	=	"23";
theDoc.Form["Month"].Value	=	"February";
theDoc.Form["Year"].Value	=	"2005";
theDoc.Form["State"].Value	=	"Arizona";
theDoc.Form.Stamp();

[Visual	Basic]

	

theDoc.Form("Day").Value	=	"23"	
theDoc.Form("Month").Value	=	"February"	
theDoc.Form("Year").Value	=	"2005"	
theDoc.Form("State").Value	=	"Arizona"	
theDoc.Form.Stamp()

	

Save 	

Finally	we	save.

[C#]
theDoc.Save(Server.MapPath("eformstamp.pdf"));

[Visual	Basic]
theDoc.Save(Server.MapPath("eformstamp.pdf"))

	

Given	the	following	document.

Results

	

form.pdf

This	is	the	kind	of	output	you	might	expect.

	

eformstamp.pdf

	

	

	

eForm	FDF	Example 	

This	example	shows	how	to	extract	Unicode	annotation
values	from	an	eForm	FDF	file.

	

	

Src 	

First	we	create	an	ABCpdf	Doc	object	and	read	in	our	FDF	file.

[C#]
Doc	theFDF	=	new	Doc();
theFDF.Read(Server.MapPath("../Rez/form.fdf"));

[Visual	Basic]
Dim	theFDF	As	Doc	=	New	Doc()	
theFDF.Read(Server.MapPath("../Rez/form.fdf"))

	

Dest
	

We	find	out	how	many	items	there	are	in	the	FDF	file	and
prepare	to	iterate	through	them.

[C#]
string	theValues	=	"";
int	theLastID	=
Convert.ToInt32(theFDF.GetInfo(0,
"Count"));

[Visual	Basic]
Dim	theValues	As	String	=	""
Dim	theLastID	As	Integer	=
Convert.ToInt32(theFDF.GetInfo(0,

	

"Count"))

	

We	go	through	each	item.	We	check	to	see	if	it	is	an
annotation.	If	it	is	we	check	to	see	if	the	annotation	type	is
text.	If	we	have	found	a	text	annotation	we	extract	the
content	and	add	the	value	to	our	list.

[C#]
//	extract	annotation	values	(for
insertion	into	PDF)
for	(int	i	=	0;	i	<=	theLastID;	i++)	{
		string	theType	=	theFDF.GetInfo(i,
"Type");
		if	(theType	==	"anno")	{
				if	(theFDF.GetInfo(i,	"SubType")	==
"Text")	{
						string	theCont;
						theCont	=	theFDF.GetInfo(i,
"Contents");
						theValues	=	theValues	+	theCont	+
"\r\n\r\n";
				}
		}
}
//	extract	field	values	(for	demonstration
purposes)
for	(int	i	=	0;	i	<=	theLastID;	i++)	{
		int	theN	=	theFDF.GetInfoInt(i,
"/FDF*/Fields*:Count");
		for	(int	j	=	0;	j	<	theN;	j++)	{
				string	theName	=	theFDF.GetInfo(i,
"/FDF*/Fields*["	+	j	+	"]*/T:Text");
				string	theValue	=	theFDF.GetInfo(i,
"/FDF*/Fields*["	+	j	+	"]*/V:Text");

Add
	

				//	here	we	would	do	something	with	the
field	value	we've	found
		}
}

[Visual	Basic]
For	i	As	Integer	=	0	To	theLastID
		Dim	theType	As	String
		theType	=	theFDF.GetInfo(i,	"Type")
		If	theType	=	"anno"	Then
				If	theFDF.GetInfo(i,	"SubType")	=
"Text"	Then
						Dim	theCont	As	String
						theCont	=	theFDF.GetInfo(i,
"Contents")
						theValues	=	theValues	+	theCont	+
vbCrLf	+	vbCrLf
				End	If
		End	If
Next
'	extract	field	values	(for	demonstration
purposes)
For	i	As	Integer	=	0	To	theLastID
		Dim	theN	As	Integer
		theN	=	theFDF.GetInfoInt(i,
"/FDF*/Fields*:Count")
		Dim	j	As	Integer
		For	j	=	0	To	[theN]	-	1
				Dim	theName	As	String	=
theFDF.GetInfo(i,	"/FDF*/Fields*["	+	j	+
"]*/T:Text")
				Dim	theValue	As	String	=
theFDF.GetInfo(i,	"/FDF*/Fields*["	+	j	+
"]*/V:Text")
				'	here	we	would	do	something	with	the
field	value	we've	found	

	

		Next	j	
Next	i

	

Save 	

Finally	we	add	the	Unicode	text	to	a	new	document	and
save	it.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Font	=	theDoc.EmbedFont("Arial",
LanguageType.Unicode,	false,	true);
theDoc.FontSize	=	96;
theDoc.Rect.Inset(10,	10);
theDoc.AddText(theValues);
theDoc.Save(Server.MapPath("fdf.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Font	=	theDoc.EmbedFont("Arial",
LanguageType.Unicode,	False,	True)
theDoc.FontSize	=	96
theDoc.Rect.Inset(10,	10)
theDoc.AddText(theValues)
theDoc.Save(Server.MapPath("fdf.pdf"))

	

	

This	is	the	kind	of	PDF	you	might	expect	to	produce.

Results

	

fdf.pdf

	

	

	

	

Advanced	Graphics	Example 	

	 	

Intro 	

Virtually	all	the	drawing	operations	you	will	require	are
achievable	using	methods	such	as	FrameRect,	FillRect,
AddLine	and	AddArc.

However	occasionally	you	may	require	more	sophisticated
control	over	your	drawing	operations.	In	these	situations	you
need	direct	access	to	the	PDF	Content	Stream.

	

	

Content 	

Page	content	is	defined	by	the	page	Content	Stream.	The
Content	Stream	is	a	sequence	of	descriptions	of	graphics
objects	to	be	placed	on	the	page.	ABCpdf	allows	you	to
create	or	modify	these	content	streams	allowing	you	access
to	the	full	power	of	PDF	drawing	operators.

It	was	intentionally	decided	not	to	encapsulate	this	type	of
drawing	within	a	closed	API.	Instead	these	examples	are
provided	as	source	code.	This	allows	you	to	adapt	the
classes	to	your	needs.

You	can	find	the	full	project	and	classes	under	the	ABCpdf
menu	item.

Here	we	describe	how	to	perform	common	tasks.	We	do	not
cover	the	entire	range	of	possible	operators	and	functions.
For	full	details	you	should	see	the	Adobe	PDF	Specification.

	

	

A	path	object	is	a	shape	made	up	of	straight	lines,

http://partners.adobe.com/

Paths 	 	

rectangles	and	Bézier	curves.	It	may	intersect	itself	and
may	have	disconnected	sections	and	holes.	After	the	path
has	been	defined	it	may	be	painted,	filled,	used	for	clipping
or	a	combination	of	these	operations.

Each	path	is	constructed	of	one	or	more	subpaths.	Each
subpath	is	constructed	of	one	or	more	connected
segments.	Subpaths	may	be	open	or	closed.	When	a
subpath	is	closed	the	start	of	the	path	is	connected	to	the
end.

All	paths	are	located	in	the	standard	Adobe	PDF
coordinate	space.	The	following	is	a	list	of	standard	path
construction	operators.

Name Parameters Operator Description

Move x	y m
Begin	a	new	subpath	by
moving	to	the
coordinates	specified.

Line x	y l

Add	a	straight	line	from
the	current	location	to
the	coordinates
specified.

Rect x	y	w	h re

Add	a	rectangular
subpath	with	the	lower
left	corner	at	(x,	y)	with
width	w	and	height	h.

Bézier x1	y1	x2	y2
x3	y3 c

Add	a	Bézier	curve	from
the	current	location	to
the	coordinates
specified	(x3,	y3)	using
the	other	coordinates
(x1,	y1)	and	(x2,	y2)	as
control	points.

Close 	 h
Close	the	current
subpath	joining	the	start

	

to	the	end.

Stroke 	 S
Paint	a	line	along	the
current	path	using	the
current	stroke	color.

Fill 	 f

Fill	the	current	path
using	the	current	fill
color.

This	fill	method	uses
the	nonzero	winding
number	rule.	There	are
other	PDF	operators	to
allow	the	use	of	the
even-odd	rule	but	these
are	not	generally	useful.

Clip 	 W	n

Intersect	the	path	with
the	current	clipping	path
to	establish	a	new
clipping	path.

This	actually	comprises
two	operators	rather
than	one	but	they	are
almost	invariably	used
in	this	combination.

	

The	graphics	state	defines	the	parameters	within	which	the	PDF
operators	work.	For	example	the	graphics	state	defines	the	current
line	width	which	will	be	used	whenever	a	line	is	drawn.	It	also
defines	the	current	non-stroking	color	which	will	be	used	whenever
a	path	is	filled.

You	can	push	copies	of	the	graphics	state	onto	a	stack	and	then
restore	them	later.	This	can	be	very	useful	for	doing	and	undoing
graphics	state	operations.

Name Parameters Operator Description

Save	State 	 q

Push	a	copy	of
the	current
graphics	state
onto	the	stack.

Restore	State 	 Q

Restore	the
current	graphics
state	from	the
top	of	the	stack.

SetLineWidth v w
Set	the	width	to
be	used	when
stroking	lines.

SetGrayStrokeColor w G

Set	the	gray
level	to	use	for
stroking
operations.The
component
ranges	between
0.0	and	1.0
(black	and
white
respectively).

SetGrayNonStrokeColor w g

The	same	as	G
but	for	non-
stroking
operations.

SetRGBStrokeColor r	g	b RG

Set	the	RGB
color	to	use	for
stroking
operations.
Each

component
ranges	between
0.0	and	1.0.

SetRGBNonStrokeColor r	g	b rg

The	same	as
RG	but	for	non-
stroking
operations.

SetCMYKStrokeColor c	m	y	k K

Set	the	CMYK
color	to	use	for
stroking
operations.
Each
component
ranges	between
0.0	and	1.0.

SetCMYKNonStrokeColor c	m	y	k k

The	same	as	K
but	for	non-
stroking
operations.

Concatenate
matrix	with	the
current
transform
matrix.
Common
transforms
include:

Translation:
A	matrix	of
the	form	[1
0	0	1	tx	ty]
shifts	the
coordinate
system	by
tx

Transform a	b	c	d	e	f cm

horizontally
and	ty
vertically.
Scaling:	A
matrix	of
the	form
[sx	0	0	sy	0
0]	scales
the
coordinate
system	by
a	factor	of
sx
horizontally
and	sy
vertically
pinned	at
the	origin.
Rotation:	A
matrix	of
the	form
[cos(ra)
sin(ra)	-
sin(ra)
cos(ra)	0	0]
rotates	the
coordinate
system	by
the	angle
ra	anti-
clockwise
around	the
origin.
Skew:	A
matrix	of
the	form	[1
tan(ra)

State

	 	

tan(ra)	1	0
0]	skews
the	x	and	y
axes	by	the
angle	ra.

SetLineCap v J

The	line	cap	for
the	ends	of	any
lines	to	be
stroked.
Possible	values
are:

0.	 Butt.	The
stroke	is
square	at
the	end	of
the	path
and	does
not	project
beyond	the
end	of	the
path.

1.	 Round.	A
semicircle
is	added	at
the	end	of
the	path
projecting
beyond	the
endpoints.

2.	 Projecting
Square.
The	stroke
is	square
but	projects
a	distance

of	half	the
line	width
beyond	the
ends	of	the
path.

SetLineJoin v j

The	line	join	for
the	shape	of
joints	between
connected
segments	of	a
path.	Possible
values	are:

0.	 Miter.	The
outer
edges	for
the	two
segments
are
extended
until	they
meet.	This
is	the	same
way	that
wooden
segments
are	joined
to	make	a
picture
frame.	If
the
segments
meet	at	an
overly
steep	angle
a	bevel	join

is	used
instead.
The
precise	cut-
off	point	is
called	the
Miter	Limit
(see
below).

1.	 Round.	A
pie	slice	is
added	to
the	junction
of	the	two
segments
to	produce
a	rounded
corner.

2.	 Bevel.	The
two
segments
are	finished
with	butt
caps	and
any	notch
between
the	two	is
filled	in.

The	maximum
length	of
mitered	line
joins	for	paths.

The	miter	limit
is	expressed	in
terms	of	the

SetMiterLimit v M

ratio	of	the
thickness	of	the
line	to	the
thickness	of	the
join.

For	example	a
value	of	1.5	will
allow	the	width
of	the	line	at	the
join	to	be	up	to
one	and	a	half
times	the
thickness	of	the
width	of	an
individual	line
segment.

LineDash a	p d

The	dash
pattern	to	use
for	stroked
lines.	The
parameters
include	a	-	an
array	for	the
pattern	and	p	-
the	phase	of	the
dash.

	 	 	

Stroke 	 	

Paths	can	be	stroked	(drawn)	using	the	current
stroking	color.

For	example	you	might	wish	to	draw	a	star.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(30);
theContent.SetLineJoin(2);
theContent.Move(124,	158);
theContent.Line(300,	700);
theContent.Line(476,	158);
theContent.Line(15,	493);
theContent.Line(585,	493);
theContent.Close();
theContent.Stroke();
theContent.RestoreState();
theContent.AddToDoc();

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(30)
theContent.SetLineJoin(2)
theContent.Move(124,	158)
theContent.Line(300,	700)
theContent.Line(476,	158)
theContent.Line(15,	493)
theContent.Line(585,	493)

	 	

theContent.Close()
theContent.Stroke()
theContent.RestoreState()
theContent.AddToDoc()

	

Paths	can	be	filled	with	the	current	non-stroking
color.

For	example	you	might	wish	to	construct	a	filled
star.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(30);
theContent.SetLineJoin(2);

Fill 	 	

theContent.Move(124,	158);
theContent.Line(300,	700);
theContent.Line(476,	158);
theContent.Line(15,	493);
theContent.Line(585,	493);
theContent.Close();
theContent.Fill();
theContent.RestoreState();
theContent.AddToDoc();

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(30)
theContent.SetLineJoin(2)
theContent.Move(124,	158)
theContent.Line(300,	700)
theContent.Line(476,	158)
theContent.Line(15,	493)
theContent.Line(585,	493)
theContent.Close()
theContent.Fill()
theContent.RestoreState()
theContent.AddToDoc()

	 	

	

Paths	can	contain	curved	segments.

Curved	segments	are	specified	as	cubic	Bézier
curves.	These	provide	a	flexible	and	practical	way
to	draw	curves	and	curved	paths.

Each	segment	is	defined	by	four	points.	The	first
point	and	the	final	point	define	the	ends	of	the
segment.	The	second	and	third	points	define	the
control	points.	The	line	is	pulled	towards	the	first
control	point	as	it	leaves	the	start	and	it	is	pulled
towards	the	second	control	point	as	it	arrives	at	the
end.

The	easiest	way	to	illustrate	this	is	with	an	example.
Note	that	in	this	example	the	Bézier	curve	takes
relatively	little	code	to	define.	Most	of	the	code	is
related	to	illustrating	how	the	control	points	affect

the	shape	of	the	curve.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(30);
theContent.Move(100,	50);
theContent.Bezier(200,	650,	400,
550,	500,	250);
theContent.Stroke();
theContent.RestoreState();

//	annotate	Bezier	curve	in	red
theDoc.Color.String	=	"255	0	0";
theDoc.Width	=	20;
theDoc.FontSize	=	30;
theDoc.Pos.String	=	"100	50";
theDoc.AddText("p0	(current
point)");
theDoc.Pos.String	=	"200	650";
theDoc.Pos.Y	=	theDoc.Pos.Y	+
theDoc.FontSize;
theDoc.AddText("p1	(x1,	y1)");
theDoc.Pos.String	=	"400	550";
theDoc.Pos.Y	=	theDoc.Pos.Y	+
theDoc.FontSize;
theDoc.AddText("p2	(x2,	y2)");
theDoc.Pos.String	=	"500	250";
theDoc.Pos.X	=	theDoc.Pos.X	-
theDoc.FontSize;
theDoc.AddText("p3	(x3,	y3)");
theDoc.AddLine(100,	50,	200,	650);
theDoc.AddLine(400,	550,	500,	250);
theContent.AddToDoc();

Bézier 	 	 [Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(30)
theContent.Move(100,	50)
theContent.Bezier(200,	650,	400,
550,	500,	250)
theContent.Stroke()
theContent.RestoreState()

'	annotate	Bezier	curve	in	red
theDoc.Color.String	=	"255	0	0"
theDoc.Width	=	20
theDoc.FontSize	=	30
theDoc.Pos.String	=	"100	50"
theDoc.AddText("p0	(current	point)")
theDoc.Pos.String	=	"200	650"
theDoc.Pos.Y	=	theDoc.Pos.Y	+
theDoc.FontSize
theDoc.AddText("p1	(x1,	y1)")
theDoc.Pos.String	=	"400	550"
theDoc.Pos.Y	=	theDoc.Pos.Y	+
theDoc.FontSize
theDoc.AddText("p2	(x2,	y2)")
theDoc.Pos.String	=	"500	250"
theDoc.Pos.X	=	theDoc.Pos.X	-
theDoc.FontSize
theDoc.AddText("p3	(x3,	y3)")
theDoc.AddLine(100,	50,	200,	650)
theDoc.AddLine(400,	550,	500,	250)
theContent.AddToDoc()

	 	

	

You	can	use	a	path	to	define	a	clipping	area.

The	graphics	state	holds	a	clipping	path	that
restricts	the	areas	on	the	page	which	can	be
painted	on.	Marks	falling	within	the	clipping	area	will
be	displayed	and	those	falling	outside	will	not.

The	default	clipping	path	is	the	entire	page.	You	can
intersect	the	current	clipping	path	with	a	new	path
using	the	clipping	path	operators.

You	cannot	expand	a	clipping	path.	Instead	you
must	save	the	graphics	state	before	applying	your
clipping	path	and	then	restore	the	graphics	state
after	you	have	finished	using	it.

Here	we	fill	a	rectangle	clipped	by	our	star	shape.

Clip

	 	

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(30);
theContent.SetLineJoin(2);
theContent.Move(124,	158);
theContent.Line(300,	700);
theContent.Line(476,	158);
theContent.Line(15,	493);
theContent.Line(585,	493);
theContent.Clip();
theContent.Rect(100,	200,	400,	400);
theContent.Fill();
theContent.RestoreState();
theContent.AddToDoc();	

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(30)
theContent.SetLineJoin(2)
theContent.Move(124,	158)
theContent.Line(300,	700)
theContent.Line(476,	158)
theContent.Line(15,	493)
theContent.Line(585,	493)
theContent.Clip()
theContent.Rect(100,	200,	400,	400)
theContent.Fill()
theContent.RestoreState()
theContent.AddToDoc()

	 	

	

You	can	define	the	way	that	the	end	points	of	your
paths	are	capped.

The	following	options	are	available:

Butt.	The	stroke	is	square	at	the	end	of	the	path	and
does	not	project	beyond	the	end	of	the	path.

Round.	A	semicircle	is	added	at	the	end	of	the	path
projecting	beyond	the	endpoints.

Projecting	Square.	The	stroke	is	square	but	projects
a	distance	of	half	the	line	width	beyond	the	ends	of
the	path.

This	example	shows	how	different	line	caps	are
drawn.	Note	that	the	line	cap	themselves	take
relatively	little	code	to	define.	Most	of	the	code	is

related	to	annotating	the	drawing	so	that	you	can
see	how	the	caps	relate	to	the	end	points.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(100);
theContent.SetLineCap(0);
theContent.Move(100,	600);
theContent.Line(500,	600);	//	line
theContent.Stroke();

theContent.SetLineCap(1);	//	round
cap
theContent.Move(100,	400);
theContent.Line(500,	400);
theContent.Stroke();

theContent.SetLineCap(2);
theContent.Move(100,	200);
theContent.Line(500,	200);
theContent.Stroke();

//	add	capped	lines
theContent.AddToDoc();

//	annotate	capped	lines
theDoc.FontSize	=	48;
theDoc.Pos.String	=	"50	720";
theDoc.AddText("0	-	Butt	Cap");
theDoc.Pos.String	=	"50	520";
theDoc.AddText("1	-	Round	Cap");
theDoc.Pos.String	=	"50	320";
int	id	=	theDoc.AddText("2	-
Projecting	Square	Cap");
theDoc.Width	=	20;

Caps
	 	

theDoc.Color.String	=	"255	255	255";
theDoc.AddLine(100,	200,	500,	200);
theDoc.Rect.String	=	"80	180	120
220";
theDoc.FillRect(20,	20);
theDoc.Rect.String	=	"480	180	520
220";
theDoc.FillRect(20,	20);
theDoc.AddLine(100,	400,	500,	400);
theDoc.Rect.String	=	"80	380	120
420";
theDoc.FillRect(20,	20);
theDoc.Rect.String	=	"480	380	520
420";
theDoc.FillRect(20,	20);
theDoc.AddLine(100,	600,	500,	600);
theDoc.Rect.String	=	"80	580	120
620";
theDoc.FillRect(20,	20);
theDoc.Rect.String	=	"480	580	520
620";
theDoc.FillRect(20,	20);
theDoc.Color.String	=	"0	0	0";

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(100)
theContent.SetLineCap(0)
theContent.Move(100,	600)
theContent.Line(500,	600)	'	line
theContent.Stroke()

theContent.SetLineCap(1)	'	round	cap

	 	

theContent.Move(100,	400)
theContent.Line(500,	400)
theContent.Stroke()

theContent.SetLineCap(2)
theContent.Move(100,	200)
theContent.Line(500,	200)
theContent.Stroke()

'	add	capped	lines
theContent.AddToDoc()

'	annotate	capped	lines
theDoc.FontSize	=	48
theDoc.Pos.String	=	"50	720"
theDoc.AddText("0	-	Butt	Cap")
theDoc.Pos.String	=	"50	520"
theDoc.AddText("1	-	Round	Cap")
theDoc.Pos.String	=	"50	320"
int	id	=	theDoc.AddText("2	-
Projecting	Square	Cap")
theDoc.Width	=	20

theDoc.Color.String	=	"255	255	255"
theDoc.AddLine(100,	200,	500,	200)
theDoc.Rect.String	=	"80	180	120
220"
theDoc.FillRect(20,	20)
theDoc.Rect.String	=	"480	180	520
220"
theDoc.FillRect(20,	20)
theDoc.AddLine(100,	400,	500,	400)
theDoc.Rect.String	=	"80	380	120
420"
theDoc.FillRect(20,	20)
theDoc.Rect.String	=	"480	380	520
420"

theDoc.FillRect(20,	20)
theDoc.AddLine(100,	600,	500,	600)
theDoc.Rect.String	=	"80	580	120
620"
theDoc.FillRect(20,	20)
theDoc.Rect.String	=	"480	580	520
620"
theDoc.FillRect(20,	20)
theDoc.Color.String	=	"0	0	0"

	

You	can	define	the	way	that	your	line	segments	are
joined.

The	following	options	are	available:

Miter.	The	outer	edges	for	the	two	segments	are
extended	until	they	meet.	This	is	the	same	way	that

wooden	segments	are	joined	to	make	a	picture
frame.	If	the	segments	meet	at	an	overly	steep
angle	a	bevel	join	is	used	instead.	The	precise	cut-
off	point	is	called	the	Miter	Limit.

Round.	A	pie	slice	is	added	to	the	junction	of	the
two	segments	to	produce	a	rounded	corner.

Bevel.	The	two	segments	are	finished	with	butt	caps
and	any	notch	between	the	two	is	filled	in.

This	example	shows	how	different	line	joins	are
drawn.	Note	that	the	line	joins	themselves	take
relatively	little	code	to	define.	Most	of	the	code	is
related	to	annotating	the	drawing.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SetLineWidth(50);
theContent.SetLineJoin(0);
theContent.Move(300,	500);
theContent.Line(400,	700);
theContent.Line(500,	500);
theContent.Stroke();

theContent.SetLineJoin(1);
theContent.Move(300,	300);
theContent.Line(400,	500);
theContent.Line(500,	300);
theContent.Stroke();

theContent.SetLineJoin(2);
theContent.Move(300,	100);
theContent.Line(400,	300);
theContent.Line(500,	100);
theContent.Stroke();
theContent.AddToDoc();

Joins 	 	

theDoc.FontSize	=	48;
theDoc.Pos.String	=	"50	700";
theDoc.AddText("0	-	Miter");
theDoc.Pos.String	=	"50	500";
theDoc.AddText("1	-	Round	");
theDoc.Pos.String	=	"50	300";
theDoc.AddText("2	-	Bevel");
theDoc.Width	=	10;
theDoc.Color.String	=	"255	255	255";
theDoc.AddLine(300,	500,	400,	700);
theDoc.AddLine(400,	700,	500,	500);
theDoc.Rect.String	=	"390	690	410
710";
theDoc.FillRect(10,	10);
theDoc.AddLine(300,	300,	400,	500);
theDoc.AddLine(400,	500,	500,	300);
theDoc.Rect.String	=	"390	490	410
510";
theDoc.FillRect(10,	10);
theDoc.AddLine(300,	100,	400,	300);
theDoc.AddLine(400,	300,	500,	100);
theDoc.Rect.String	=	"390	290	410
310";
theDoc.FillRect(10,	10);
theDoc.Color.String	=	"0	0	0";	

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SetLineWidth(50)
theContent.SetLineJoin(0)
theContent.Move(300,	500)
theContent.Line(400,	700)
theContent.Line(500,	500)
theContent.Stroke()

	 	

theContent.SetLineJoin(1)
theContent.Move(300,	300)
theContent.Line(400,	500)
theContent.Line(500,	300)
theContent.Stroke()

theContent.SetLineJoin(2)
theContent.Move(300,	100)
theContent.Line(400,	300)
theContent.Line(500,	100)
theContent.Stroke()
theContent.AddToDoc()

theDoc.FontSize	=	48
theDoc.Pos.String	=	"50	700"
theDoc.AddText("0	-	Miter")
theDoc.Pos.String	=	"50	500"
theDoc.AddText("1	-	Round	")
theDoc.Pos.String	=	"50	300"
theDoc.AddText("2	-	Bevel")
theDoc.Width	=	10
theDoc.Color.String	=	"255	255	255"
theDoc.AddLine(300,	500,	400,	700)
theDoc.AddLine(400,	700,	500,	500)
theDoc.Rect.String	=	"390	690	410
710"
theDoc.FillRect(10,	10)
theDoc.AddLine(300,	300,	400,	500)
theDoc.AddLine(400,	500,	500,	300)
theDoc.Rect.String	=	"390	490	410
510"
theDoc.FillRect(10,	10)
theDoc.AddLine(300,	100,	400,	300)
theDoc.AddLine(400,	300,	500,	100)
theDoc.Rect.String	=	"390	290	410
310"

theDoc.FillRect(10,	10)
theDoc.Color.String	=	"0	0	0"

	

You	can	define	dashed	lines.

The	dash	pattern	is	specified	by	a	dash	array	and	a
dash	phase.	The	dash	array	specifies	the	length	of
dashes	and	gaps.	The	dash	phase	specifies	the
distance	into	the	array	at	which	the	line	dashes
should	start.

When	the	lengths	in	the	array	are	exhausted	the
dash	pattern	starts	again	at	the	beginning.	You	can
use	an	empty	array	and	zero	phase	to	specify	a
solid	line

Dashed	lines	can	be	applied	to	any	kind	of	path
including	straight	lines	and	curves.	Each	subpath	in

a	path	is	treated	separately	-	the	dash	phase	starts
at	the	beginning	again.

This	example	shows	how	different	line	dash
patterns	are	drawn.

[C#]
PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(20);
theContent.LineDash("[]	0");
theContent.Move(100,	650);
theContent.Line(500,	650);
theContent.Stroke();

theContent.LineDash("[90]	0");
theContent.Move(100,	500);
theContent.Line(500,	500);
theContent.Stroke();

theContent.LineDash("[60]	30");
theContent.Move(100,	350);
theContent.Line(500,	350);
theContent.Stroke();

theContent.LineDash("[60	30]	0");
theContent.Move(100,	200);
theContent.Line(500,	200);
theContent.Stroke();
theContent.RestoreState();

//	annotate	dashed	lines
theDoc.Color.String	=	"0	0	0";
theDoc.FontSize	=	36;
theDoc.Pos.String	=	"50	710";
theDoc.AddText("[]	0	-	no	dashes");

Dash

	 	

theDoc.Pos.String	=	"50	560";
theDoc.AddText("[90]	0	-	90	on,	90
off...");
theDoc.Pos.String	=	"50	410";
theDoc.AddText("[60]	30	-	30	on,
60	off,	60	on...");
theDoc.Pos.String	=	"50	260";
theDoc.AddText("[60	30]	0	-	60	on,
30	off,	60	on...");

//	add	dashed	lines
theContent.AddToDoc();	

[Visual	Basic]
Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(20)
theContent.LineDash("[]	0")
theContent.Move(100,	650)
theContent.Line(500,	650)
theContent.Stroke()

theContent.LineDash("[90]	0")
theContent.Move(100,	500)
theContent.Line(500,	500)
theContent.Stroke()

theContent.LineDash("[60]	30")
theContent.Move(100,	350)
theContent.Line(500,	350)
theContent.Stroke()

theContent.LineDash("[60	30]	0")
theContent.Move(100,	200)
theContent.Line(500,	200)

	 	

theContent.Stroke()
theContent.RestoreState()

'	annotate	dashed	lines
theDoc.Color.String	=	"0	0	0"
theDoc.FontSize	=	36
theDoc.Pos.String	=	"50	710"
theDoc.AddText("[]	0	-	no	dashes")
theDoc.Pos.String	=	"50	560"
theDoc.AddText("[90]	0	-	90	on,	90
off...")
theDoc.Pos.String	=	"50	410"
theDoc.AddText("[60]	30	-	30	on,
60	off,	60	on...")
theDoc.Pos.String	=	"50	260"
theDoc.AddText("[60	30]	0	-	60	on,
30	off,	60	on...")

'	add	dashed	lines
theContent.AddToDoc()

	

You	can	define	transforms	which	affect	the	world
space.

A	transform	allows	you	to	translate,	scale,	rotate,	or
skew	objects.	Multiple	transforms	can	be
concatenated	so	that	you	can	perform	a
combination	of	these	operations.

A	transform	is	defined	by	six	numbers.	Common
transforms	include:

Translation:	A	matrix	of	the	form	[1	0	0	1	tx	ty]	shifts
the	coordinate	system	by	tx	horizontally	and	ty
vertically.

Scaling:	A	matrix	of	the	form	[sx	0	0	sy	0	0]	scales
the	coordinate	system	by	a	factor	of	sx	horizontally
and	sy	vertically	pinned	at	the	origin.

Rotation:	A	matrix	of	the	form	[cos(ra)	sin(ra)	-sin(ra)
cos(ra)	0	0]	rotates	the	coordinate	system	by	the
angle	ra	anticlockwise	around	the	origin.

Skew:	A	matrix	of	the	form	[1	tan(ra)	tan(ra)	1	0	0]
skews	the	x	and	y	axes	by	the	angle	ra.

This	example	shows	how	to	apply	a	45	degree
rotation	to	a	drawing	of	a	star.

[C#]
PDFContent	star	=	new
PDFContent(theDoc);
star.Move(124,	108);
star.Line(300,	650);
star.Line(476,	108);
star.Line(15,	443);

XForms

	 	

star.Line(585,	443);
star.Close();
star.Stroke();

PDFContent	theContent	=	new
PDFContent(theDoc);
theContent.SaveState();
theContent.SetLineWidth(30);
theContent.SetLineJoin(2);
theContent.AddContent(star);
theContent.SetRGBStrokeColor(1,	0,
0);
theContent.Transform(0.7,	0.7,	-0.7,
0.7,	0,	0);
theContent.AddContent(star);
theContent.RestoreState();
theContent.AddToDoc();

[Visual	Basic]
Dim	star	As	PDFContent	=	New
PDFContent(theDoc)
star.Move(124,	108)
star.Line(300,	650)
star.Line(476,	108)
star.Line(15,	443)
star.Line(585,	443)
star.Close()
star.Stroke()

Dim	theContent	As	PDFContent	=	New
PDFContent(theDoc)
theContent.SaveState()
theContent.SetLineWidth(30)
theContent.SetLineJoin(2)
theContent.AddContent(star)
theContent.SetRGBStrokeColor(1,	0,

	 	

0)
theContent.Transform(0.7,	0.7,	-0.7,
0.7,	0,	0)
theContent.AddContent(star)
theContent.RestoreState()
theContent.AddToDoc()

	

Other
	 	

Other	examples	including	text	operators,
transparency	modes	and	blend	modes	can	be	found
in	the	example	project.

You	can	find	the	full	project	and	classes	under	the
ABCpdf	menu	item.

	

	 	

	

	

Fields,	Markup	and	Movies	Example

	

Intro 	

In	general	you	will	use	PDF	templates	containing	Fields	and	Annotations
created	by	a	designer.

However	occasionally	you	may	need	to	create	Fields	and	Annotations	at
run-time.	You	can	perform	this	kind	of	operation	using	the	low	level
functionality	within	ABCpdf.

	

Types 	

Annotations	are	a	generic	class	of	objects	which	exist	outside	
Content	Stream.	Because	they	are	independent	of	the	PDF	Content
Stream	they	operate	independently	of	the	page.	They	float	over	it	rather
than	being	embedded	in	it.

Movie	Annotations,	Note	Annotations,	Stamp	Annotations,	Line
Annotations	and	Polygon	Annotations	are	just	a	few	of	the	many
Annotation	types	which	exist.

Fields	are	a	specific	type	of	Annotation	combined	with	a	named	
is	the	fact	that	the	Field	is	an	Annotation	which	allows	you	to	see	it	and
interact	with	it.	It	is	the	fact	that	the	Annotation	is	linked	into	the	Field
hierarchy	which	allows	it	to	take	a	value	and	be	located	by	name.

Movies	are	a	specific	type	of	Annotation.	You	can	embed	a	variety	
movie	formats	including	Flash	and	WMV.

Creating	these	types	of	objects	on	the	fly	is	complex.	For	this	
examples	here	are	simple	summaries.	You	can	find	a	full	project	and
classes	under	the	ABCpdf	menu	item.

For	full	details	of	the	way	that	Annotations	work	you	should	see	
Adobe	PDF	Specification.

http://partners.adobe.com/

	

You	may	wish	to	generate	a	PDF	document	with	Fields	created
dynamically	at	run-time.

The	code	below	creates	a	set	of	Fields	including	text	boxes,	
buttons,	checkboxes	and	signatures.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Font	=	theDoc.AddFont("Helvetica");
theDoc.FontSize	=	36;

//Create	interactive	form
InteractiveForm	form	=	new	InteractiveForm
(theDoc);
theDoc.Pos.X	=	40;
theDoc.Pos.Y	=	theDoc.MediaBox.Top	-	40;
theDoc.AddText("Interactive	Form	annotations");

//Radio	button	items
form.AddRadioButtonGroup(new	string[2]{"40	610	80
650",	"40	660	80	700"},	"RadioGroupField",	0);
theDoc.Pos.String	=	"100	696";
theDoc.AddText("RadioButton	1");
theDoc.Pos.String	=	"100	646";
theDoc.AddText("RadioButton	2");

//Text	field	1
FormField	text	=	form.AddTextField("40	530	300
580",	"TextField1",	"Hello	World!");
text.DefaultAppearance	=	"/TimesRoman	36	Tf	0	0	1
rg";
text.BorderColor	=	"0	0	0";
text.FillColor	=	"220	220	220";
text.TextAlign	=	"Left";

Fields
	 	

//Text	field	2
text	=	form.AddTextField("40	460	300	510",
"TextField2",	"Text	Field");
text.BorderColor	=	"0	0	0";
text.DefaultAppearance	=	"/TimesRoman	36	Tf	0	0	1
rg";
text.TextAlign	=	"Left";
text.SetFlag(FormField.FieldFlag.Password);

//Text	field	3
text	=	form.AddTextField("320	460	370	580",
"TextField3",	"Vertical");
text.BorderColor	=	"0	0	0";
text.DefaultAppearance	=	"/TimesRoman	36	Tf	0	0	0
rg";
text.Rotate	=	90;

//Combobox	field
FormField	combo	=	form.AddChoiceField("ComboBox",
"40	390	300	440",	"ComboBoxField");
combo.DefaultAppearance	=	"/TimesRoman	24	Tf	0	
rg";
combo.AddOptions(new	string[]	{"ComboBox	Item	1",
"ComboBox	Item	2",	"ComboBox	Item	3"});

//Listbox	field
FormField	listbox	=	form.AddChoiceField("ListBox",
"40	280	300	370",	"ListBoxField");
listbox.DefaultAppearance	=	"/TimesRoman	24	Tf	0	0
0	rg";
listbox.AddOptions(new	string[]	{"ListBox	Item	1",
"ListBox	Item	2",	"ListBox	Item	3"});

//Checkbox	field
form.AddCheckbox("40	220	80	260",	"CheckBoxField",
true);

theDoc.Pos.String	=	"100	256";
theDoc.AddText("Check	Box");

//Pushbutton	field
FormField	button	=	form.AddButton("40	160	200	200",
"ButtonField",	"Button");
button.BorderColor	=	"0	0	0";
button.BorderStyle	=	"Beveled";

//Signature	field
FormField	signature	=	form.AddSignature("40	100	200
140",	"Signature");
signature.BorderColor	=	"0	0	0";

	

You	may	wish	to	generate	a	PDF	document	with	markup	created
dynamically	at	run-time.

The	code	below	creates	a	set	of	markup	Annotations	including
squares,	lines,	text	effects,	circles	and	polygons.

[C#]
//Markup	annotations
theDoc.Page	=	theDoc.AddPage();
theDoc.Pos.X	=	40;
theDoc.Pos.Y	=	theDoc.MediaBox.Top	-	40;
theDoc.AddText("Markup	annotations");

SquareAnnotation	square	=	new
SquareAnnotation(theDoc,	"40	560	300	670",	"255	0
0",	"0	0	255");
square.BorderWidth	=	8;	

LineAnnotation	line	=	new	LineAnnotation(theDoc,
"100	565	220	665",	"255	0	0");
line.BorderWidth	=	12;
line.RichTextCaption	=	"<span	style=	\"font-
size:36pt;	color:#FF0000\">Line";

theDoc.FontSize	=	24;
theDoc.Pos.String	=	"400	670";
int	id	=	theDoc.AddText("Underline");
TextMarkupAnnotation	markup	=	new
TextMarkupAnnotation(theDoc,	id,	"Underline",	"0
255	0");
theDoc.Pos.String	=	"400	640";
id	=	theDoc.AddText("Highlight");

markup	=	new	TextMarkupAnnotation(theDoc,	id,
"Highlight",	"255	255	0");
theDoc.Pos.String	=	"400	610";
id	=	theDoc.AddText("StrikeOut");

markup	=	new	TextMarkupAnnotation(theDoc,	id,
"StrikeOut",	"255	0	0");

Markup

	 	

theDoc.Pos.String	=	"400	580";
id	=	theDoc.AddText("Squiggly");

markup	=	new	TextMarkupAnnotation(theDoc,	id,
"Squiggly",	"0	0	255");
theDoc.FontSize	=	36;

CircleAnnotation	circle	=	new
CircleAnnotation(theDoc,	"80	320	285	525",	"255	255
0",	"255	128	0");
circle.BorderWidth	=	20;
circle.BorderStyle	=	"Dashed";
circle.BorderDash	=	"[3	2]";

LineAnnotation	arrowLine	=	new
LineAnnotation(theDoc,	"385	330	540	520",	"255	0
0");
arrowLine.LineEndingsStyle	=	"ClosedArrow
ClosedArrow";
arrowLine.BorderWidth	=	6;
arrowLine.FillColor	=	"255	0	0";

PolygonAnnotation	polygon	=	new
PolygonAnnotation(theDoc,	"100	70	50	120	50	220	100
270	200	270	250	220	250	120	200	70",	"255	0	0",	"0
255	0");
PolygonAnnotation	cloudyPolygon	=	new
PolygonAnnotation(theDoc,	"400	70	350	120	350	
400	270	500	270	550	220	550	120	500	70",	"255	0	0",
"64	85	255");
cloudyPolygon.CloudyEffect	=	1;

	

You	may	wish	to	generate	a	PDF	document	with	movies	inserted	
at	run-time.

The	code	below	inserts	a	Flash	movie	and	a	WMV	movie.

[C#]
//Movie	annotations
//WMV	is	courtesy	of	NASA	-
http://www.nasa.gov/wmv/30873main_cardiovascular_300.wmv
theDoc.Page	=	theDoc.AddPage();
theDoc.Pos.X	=	40;
theDoc.Pos.Y	=	theDoc.MediaBox.Top	-	40;
theDoc.AddText("Multimedia	features");

theDoc.FontSize	=	24;

theDoc.Pos.String	=	"40	690";

Movies
	 	

theDoc.AddText("Flash	movie:");
MovieAnnotation	movie1	=	new	MovieAnnotation(theDoc,	"80
420	520	650",	Server.MapPath("ABCpdf.swf"));

theDoc.Pos.String	=	"40	400";
theDoc.AddText("Video	File:");
MovieAnnotation	movie2	=	new	MovieAnnotation(theDoc,	"80
40	520	360",	Server.MapPath("video.wmv"));

	

You	may	wish	to	generate	a	PDF	document	with	other	types	of
Annotation	inserted	dynamically	at	run-time.

The	code	below	adds	a	sticky	note,	a	file	attachment	and	some	
stamps.

[C#]

Other

	 	

theDoc.Page	=	theDoc.AddPage();
theDoc.FontSize	=	36;
theDoc.Pos.X	=	40;
theDoc.Pos.Y	=	theDoc.MediaBox.Top	-	40;
theDoc.AddText("Other	types	of	annotations");

//Sticky	note	annotation
theDoc.FontSize	=	24;
theDoc.Pos.String	=	"40	680";
theDoc.AddText("Text	annotation");
TextAnnotation	textAnnotation	=	new
TextAnnotation(theDoc,	"340	660	340	675",	"550	
600	750",	"6	sets	of	13	pages.	Trim	to	5X7.");

//File	attachment	annotation
theDoc.Pos.String	=	"40	640";
theDoc.AddText("File	Attachment	annotation");
FileAttachmentAnnotation	fileAttachMent	=	new
FileAttachmentAnnotation(theDoc,	"340	625	340	640",
Server.MapPath("video.WMV"));

//StampAnnotations
theDoc.Pos.String	=	"40	600";
theDoc.AddText("Stamp	annotations");
StampAnnotation	stamp1	=	new
StampAnnotation(theDoc,	"340	560	540	600",	"DRAFT",
"0	0	128");
StampAnnotation	stamp2	=	new
StampAnnotation(theDoc,	"340	505	540	545",	"FINAL",
"	0	128	0");
StampAnnotation	stamp3	=	new
StampAnnotation(theDoc,	"340	450	540	490",	"NOT
APPROVED",	"128	0	0");

	

	

	

PDF	Rendering	Example

This	example	shows	how	to	render	a	PDF	document.

For	an	example	of	how	to	render	a	PDF	direct	to	screen	and	how	
print	a	PDF	see	the	ABCpdfView	project	and	classes	under	the
ABCpdf	menu	item.

	

Read 	

We	create	an	ABCpdf	Doc	object	and	read	our	source	PDF.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"))

	

Prefs 	

We	specify	our	base	rendering	settings.

[C#]
theDoc.Rendering.DotsPerInch	=	36;

[Visual	Basic]
theDoc.Rendering.DotsPerInch	=	36

	

Save 	

Finally	we	save	the	first	four	pages	of	the	document	in	png	format.

[C#]
for	(int	i	=	1;	i	<=	4;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.Rect.String	=	theDoc.CropBox.String;
		theDoc.Rendering.Save(Server.MapPath("shuttle_p"
+	i.ToString()	+".png"));
}	

[Visual	Basic]
For	i	As	Integer	=	1	To	4
		theDoc.PageNumber	=	i
		theDoc.Rect.String	=	theDoc.CropBox.String
		theDoc.Rendering.Save(Server.MapPath("shuttle_p"
+	i.ToString()	+	".png"))
Next

	

Results

	

shuttle_p1.gif

shuttle_p2.png

shuttle_p3.png

shuttle_p4.png

	

	

	

System.Drawing	Example

	

Intro 	

This	example	shows	how	to	port	System.Drawing	code	for	output	to	

You	may	have	System.Drawing	code	which	writes	output	to	the	
may	wish	to	modify	this	code	to	write	to	a	PDF.	ABCpdf	comes	with	wrapper	code	which	can
significantly	ease	this	process.

You	can	find	a	full	example	project	including	the	wrapper	classes	

	

Basics
	

The	wrapper	contains	the	following	namespaces:

WebSupergoo.ABCpdf10.Drawing;
WebSupergoo.ABCpdf10.Drawing.Drawing2D;
WebSupergoo.ABCpdf10.Drawing.Text;	

These	contain	classes	which	are	direct	analogues	for	the	classes	
namespaces.	For	example,	a	System.Drawing.Pen	maps	to	a	WebSupergoo.ABCpdf10.Drawing.Pen
and	a	System.Drawing.Bitmap	maps	to	a	WebSupergoo.ABCpdf10.Drawing.Bitmap.

The	procedure	for	porting	your	System.Drawing	code	is	simple:

1.	 Change	namespaces	from	those	in	System.Drawing	to	the	
ABCpdf10.Drawing	(Drawing,	Drawing.Text,	Drawing.Drawing2D	etc.)

2.	 Change	all	types	from	those	in	System.Drawing	to	the	corresponding	types	in	ABCpdf10.Drawing
(Pen,	Brush,	Color	etc.)

3.	 Remove	any	code	which	does	not	have	an	analogues	in	

In	general,	the	number	of	calls	which	do	not	have	analogues	in	
However,	we	provide	the	full	source	code	for	System.Drawing	so	extending	the	assembly	is	simple.

As	well	as	the	standard	functions	analogous	to	those	in	System.Drawing,	the	ABCpdf10.Drawing
namespace	also	contains	similar	functions	aimed	at	greater	control	over	the	PDF	production	process.
For	example,	the	ABCpdf	Color	class	contains	a	FromCmyk	function	to	
colors	as	well	as	RGB	ones.

	

We	start	with	our	source	System.Drawing	code.

[C#]
using	System;
using	System.IO;
using	System.Reflection;

using	System.Drawing;
using	System.Drawing.Drawing2D;
using	System.Drawing.Text;

...	

//	create	a	canvas	for	painting	on
Bitmap	pg	=	new	Bitmap((int)(8.5	*	72),	(int)(11	*	
Graphics	gr	=	Graphics.FromImage(pg);

//	clear	the	canvas	to	white
Rectangle	pgRect	=	new	Rectangle(0,	0,	pg.Width,	
SolidBrush	solidWhite	=	new	SolidBrush(Color.White);
gr.FillRectangle(solidWhite,	pgRect);
//	load	a	new	image	and	draw	it	centered	on	our	
Stream	stm	=
Assembly.GetExecutingAssembly().GetManifestResourceStream("Examples.pic1.jpg");
Image	img	=	Image.FromStream(stm);
int	w	=	img.Width	*	2;
int	h	=	img.Height	*	2;
Rectangle	rc	=	new	Rectangle((pg.Width	-	w)	/	2,	
gr.DrawImage(img,	rc);

Original
	

img.Dispose();
stm.Close();
//	frame	the	image	with	a	black	border
gr.DrawRectangle(new	Pen(Color.Black,	4),	rc);
//	add	some	text	at	the	top	left	of	the	canvas
Font	fn	=	new	Font("Comic	Sans	MS",	72);
SolidBrush	solidBlack	=	new	SolidBrush(Color.Black);
gr.DrawString("My	Picture",	fn,	solidBlack,	(int)(pg.Width	*	0.1),	(int)
(pg.Height	*	0.1));

//	save	the	output
pg.Save("../../abcpdf.drawing.gif",	System.Drawing.Imaging.ImageFormat.Gif);	

[Visual	Basic]
Imports	System.IO
Imports	System.Reflection

Imports	System.Drawing
Imports	System.Drawing.Drawing2D
Imports	System.Drawing.Text

...	

'	create	a	canvas	for	painting	on
Dim	pg	As	Bitmap	=	New	Bitmap(CType((8.5	*	72),(Integer)(11	*	72),	Integer))	
Dim	gr	As	Graphics	=	Graphics.FromImage(pg)	

'	clear	the	canvas	to	white
Dim	pgRect	As	Rectangle	=	New	Rectangle(0,0,pg.Width,pg.Height)	
Dim	solidWhite	As	SolidBrush	=	New	SolidBrush(Color.White)	
gr.FillRectangle(solidWhite,	pgRect)
'	load	a	new	image	and	draw	it	centered	on	our	
Dim	stm	As	Stream	=
Assembly.GetExecutingAssembly().GetManifestResourceStream("Examples.pic1.jpg")	
Dim	img	As	Image	=	Image.FromStream(stm)	
Dim	w	As	Integer	=	img.Width	*	2	

Dim	h	As	Integer	=	img.Height	*	2	
Dim	rc	As	Rectangle	=	New	Rectangle((pg.Width	-	w)	/	2,(pg.Height	-	h)	/	
gr.DrawImage(img,	rc)
img.Dispose()
stm.Close()
'	frame	the	image	with	a	black	border
gr.DrawRectangle(New	Pen(Color.Black,4),rc)
'	add	some	text	at	the	top	left	of	the	canvas
Dim	fn	As	Font	=	New	Font("Comic	Sans	MS",72)	
Dim	solidBlack	As	SolidBrush	=	New	SolidBrush(Color.Black)	
gr.DrawString("My	Picture",	fn,	solidBlack,	CType((pg.Width	*	0.1),	(Integer)
(pg.Height	*	0.1),	Integer))

'	save	the	output
pg.Save("../../abcpdf.drawing.gif",	System.Drawing.Imaging.ImageFormat.Gif)

	

Names
	

First,	we	swap	out	the	old	System.Drawing	namespaces	and	insert	
Note	that	ABCpdf.Drawing	uses	structures	like	rectangles	and	points	which	are	defined	in
System.Drawing.	So,	we	create	aliases	to	make	it	easy	to	reference	

[C#]
using	System;
using	System.IO;
using	System.Reflection;

using	WebSupergoo.ABCpdf10.Drawing;
using	WebSupergoo.ABCpdf10.Drawing.Drawing2D;
using	WebSupergoo.ABCpdf10.Drawing.Text;
using	Rectangle	=	System.Drawing.Rectangle;
using	RectangleF	=	System.Drawing.RectangleF;
using	Point	=	System.Drawing.Point;
using	PointF	=	System.Drawing.PointF;	

[Visual	Basic]
Imports	System
Imports	System.IO
Imports	System.Reflection

Imports	WebSupergoo.ABCpdf10.Drawing
Imports	WebSupergoo.ABCpdf10.Drawing.Drawing2D
Imports	WebSupergoo.ABCpdf10.Drawing.Text
Imports	Rectangle	=	System.Drawing.Rectangle
Imports	RectangleF	=	System.Drawing.RectangleF
Imports	Point	=	System.Drawing.Point
Imports	PointF	=	System.Drawing.PointF

	

Create 	

Because	we're	drawing	on	a	page	of	a	PDF	document	rather	than	on	
few	modifications	to	the	first	lines	of	code.

[C#]
//	create	a	canvas	for	painting	on
PDFDocument	doc	=	new	PDFDocument();
Page	pg	=	doc.AddPage((int)(8.5	*	72),	(int)(11	*	72));
Graphics	gr	=	pg.Graphics;	

[Visual	Basic]
'	create	a	canvas	for	painting	on
Dim	doc	As	PDFDocument	=	New	PDFDocument()	
Dim	pg	As	Page	=	doc.AddPage(8.5	*	72,	11	*	72)	
Dim	gr	As	Graphics	=	pg.Graphics

	

The	drawing	code	remains	completely	unchanged.

Draw
	

[C#]
//	clear	the	canvas	to	white
Rectangle	pgRect	=	new	Rectangle(0,	0,	pg.Width,	
SolidBrush	solidWhite	=	new	SolidBrush(Color.White);
gr.FillRectangle(solidWhite,	pgRect);
//	load	a	new	image	and	draw	it	centered	on	our	
Stream	stm	=
Assembly.GetExecutingAssembly().GetManifestResourceStream("Examples.pic1.jpg");
Image	img	=	Image.FromStream(stm);
int	w	=	img.Width	*	2;
int	h	=	img.Height	*	2;
Rectangle	rc	=	new	Rectangle((pg.Width	-	w)	/	2,	
gr.DrawImage(img,	rc);
img.Dispose();
stm.Close();
//	frame	the	image	with	a	black	border
gr.DrawRectangle(new	Pen(Color.Black,	4),	rc);
//	add	some	text	at	the	top	left	of	the	canvas
Font	fn	=	new	Font("Comic	Sans	MS",	72);
SolidBrush	solidBlack	=	new	SolidBrush(Color.Black);
gr.DrawString("My	Picture",	fn,	solidBlack,	(int)(pg.Width	*	0.1),	(int)
(pg.Height	*	0.1));	

[Visual	Basic]
'	clear	the	canvas	to	white
Dim	pgRect	As	Rectangle	=	New	Rectangle(0,0,pg.Width,pg.Height)	
Dim	solidWhite	As	SolidBrush	=	New	SolidBrush(Color.White)	
gr.FillRectangle(solidWhite,	pgRect)
'	load	a	new	image	and	draw	it	centered	on	our	canvas
Dim	stm	As	Stream	=
Assembly.GetExecutingAssembly().GetManifestResourceStream("Examples.pic1.jpg")	
Dim	img	As	Image	=	Image.FromStream(stm)	
Dim	w	As	Integer	=	img.Width	*	2	
Dim	h	As	Integer	=	img.Height	*	2	
Dim	rc	As	Rectangle	=	New	Rectangle((pg.Width	-	w)	/	2,(pg.Height	-	h)	/	
gr.DrawImage(img,	rc)

img.Dispose()
stm.Close()
'	frame	the	image	with	a	black	border
gr.DrawRectangle(New	Pen(Color.Black,4),rc)
'	add	some	text	at	the	top	left	of	the	canvas
Dim	fn	As	Font	=	New	Font("Comic	Sans	MS",72)	
Dim	solidBlack	As	SolidBrush	=	New	SolidBrush(Color.Black)	
gr.DrawString("My	Picture",	fn,	solidBlack,	CType((pg.Width	*	0.1),	(Integer)
(pg.Height	*	0.1),	Integer))

	

Save 	

Because	we're	saving	to	a	PDF	document,	we	need	to	make	a	few	
code.

[C#]
//	save	the	output
doc.Save(Server.MapPath("abcpdf.drawing.pdf"));	

[Visual	Basic]
'	save	the	output
doc.Save(Server.MapPath("abcpdf.drawing.pdf"))

	

Results

	

abcpdf.drawing.png

abcpdf.drawing.pdf

	

	

	

WPF	Tables	Example

This	example	shows	how	to	import	Windows	Presentation	Foundation	
Extensible	Application	Markup	Language	(XAML)	tables	into	a	PDF	document.
Each	table	has	been	specified	in	a	XAML	file.

You	can	find	the	full	project	and	classes	under	the	ABCpdf	menu	
project	includes	code	for	laying	out	four	different	types	of	tables.	Two	get	their
input	data	from	text	files	and	two	from	XML	files.

The	tables	are	intentionally	very	similar	to	those	in	the	Small	Table	Example
and	Large	Table	Example	to	allow	you	to	compare	the	two	different	layout
methods.

Note	that	the	code	samples	here	are	in	C#	only	because	the	example	
is	written	in	C#.

WPF	Limitations.	The	WPF	Table	component	does	not	support	the
following	features:

WPF	supports	row	and	column	backgrounds	and	table	and	cell	
However,	it	does	not	support	row	or	column	borders.

WPF	does	not	support	automatic	header	and	footer	repetition	
table	is	split	across	pages.	Some	people	appear	to	have	extended	the
DocumentPaginator	class	to	add	headers	manually	in	code	during	the
XPS	serialization	process.	However,	our	code	does	not	demonstrate	this
technique.

WPF	does	not	directly	support	list	data	binding.	By	this,	we	mean	that
there	is	no	way	to	define	a	row	template	and	then	have	the	table
automatically	add	a	row	for	each	data	item	in	the	data	provider.	We
achieve	this	functionality	by	manipulating	the	XAML	code	in	memory	to
add	additional	rows.

	

First,	we	define	the	table	structure.

Our	Small	and	Large	tables	have	a	fairly	simple	structure.	For	example,	the
small	table	structure	is	defined	in	a	XAML	design	file	-	SmallTable.xaml.

<Table	Name="ItemsTable"	CellSpacing="10"
BorderBrush="Black"	BorderThickness="2"
TextAlignment="Justify">
		<Table.Columns>
				<TableColumn	Width="120"/>
				<TableColumn	Width="180"/>
				<TableColumn	Width="120"/>
				<TableColumn	Width="140"/>
				<TableColumn	Width="140"/>
		</Table.Columns>
		<TableRowGroup	Background="White"	DataContext="
{Binding	Source={StaticResource	InputData},	Path=[0]}">
				<TableRow>
						<TableCell>
								<Paragraph>
										<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[0]}"/>
								</Paragraph>
						</TableCell>
						<TableCell>
								<Paragraph>
										<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[1]}"/>
								</Paragraph>
						</TableCell>
						<TableCell>
								<Paragraph>
										<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[2]}"/>

XAML
	

								</Paragraph>
						</TableCell>
						<TableCell>
								<Paragraph>
										<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[3]}"/>
								</Paragraph>
						</TableCell>
						<TableCell>
								<Paragraph>
										<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[4]}"/>
								</Paragraph>
						</TableCell>
				</TableRow>
		</TableRowGroup>
</Table>;

Refer	to	the	MSDN	WPF	Table	Overview	for	more	information	on	how	to
define	WPF	tables.	Note	that	we	are	using	Table	and	not	Grid	because	we
need	to	place	our	table	in	a	Flow	Document.	Although	Grid	can	be	wrapped	
a	UI	container	so	as	to	appear	in	a	flow	document,	it	cannot	be	split	over
multiple	pages.

Our	table	definition	contains	a	single	row	with	five	columns.	We	will	see	later
on	how	to	duplicate	this	row	so	that	there	is	one	for	every	item	in	the	data
source	so	as	to	achieve	list	binding	in	code.	Our	data	source	is	defined	as
follows:

<c:TextDataProvider	x:Key="InputData"
FileName="text6.txt"/>

Our	TextDataProvider	is	a	custom-written	class	that	extracts	text	
separated	input	file.	It	supplies	this	text	to	the	targets	via	the	binding	indicated
by	the	DataContext	and	Binding	attributes:

<TableRowGroup	Background="White"	DataContext="{Binding

http://msdn2.microsoft.com/en-us/library/ms747133.aspx

Source={StaticResource	InputData},	Path=[0]}">

...	indicates	that	this	row	group	is	bound	to	the	first	line	of	the	file.

<TextBlock	TextWrapping="Wrap"	Text="{Binding
Path=Columns[0]}"/>

...	indicates	that	the	text	block	in	this	cell	is	bound	to	the	first	column	of	the
line.

The	large	table	structure	is	almost	identical	to	the	small	table	structure.	It	is
defined	in	LargeTable.xaml.	Because	the	pagination	is	done	automatically	by
the	flow	document	paginator,	the	implementation	of	the	two	tables	is	identical
apart	from	the	small	differences	in	the	XAML	table	definitions.	The	difference
between	the	table	definitions	is	that	they	bind	to	different	input	files	and	have
different	numbers	of	columns.

	

Next,	we	add	the	table	rows

Because	Table	does	not	support	binding	to	a	collection	of	Items	(unlike	for	example
other	WPF	UI	controls	such	as	ListBox	or	ItemsControl)	-	also	known	as	list	binding,
we	manually	add	table	rows	in	code.

To	do	so,	we	load	the	XAML	design	file	at	runtime.	We	then	use	XML	
duplicate	rows	and	bind	them	to	different	data	items.	To	load	XAML	design	files	at
runtime,	we	must	set	their	type	as	"Content"	in	the	Visual	Studio	file	properties.	It
may	also	help	to	copy	them	into	the	binary	location.

[C#]
private	MemoryStream	ModifyXamlUsingTextProvider()
{
		TextDataProvider	dataProvider	=	new
TextDataProvider(mDataProvider);
		XmlDocument	xamlDoc	=	new	XmlDocument();
		FileStream	xamlFile	=	new	FileStream(mXamlFile,

Bind
	

FileMode.Open);
		xamlDoc.Load(xamlFile);

		XmlNamespaceManager	nsmgr	=	new
XmlNamespaceManager(xamlDoc.NameTable);
		nsmgr.AddNamespace("x",
"http://schemas.microsoft.com/winfx/2006/xaml/presentation");

		XmlNode	itemsTable	=
xamlDoc.DocumentElement.SelectSingleNode(mTableXamlLocation	
"[@Name='"	+	mTableName	+	"']",	nsmgr);

		for	(int	i	=	1;	i	<	dataProvider.Count;	i++)	{
				XmlNode	rowGroup	=	itemsTable.LastChild;
				XmlNode	newRowGroup	=	rowGroup.Clone();
				string	bindingText	=
newRowGroup.Attributes["DataContext"].Value;
				bindingText	=
bindingText.Remove(bindingText.LastIndexOf('['))	
"]	}";
				newRowGroup.Attributes["DataContext"].Value	
bindingText;
				newRowGroup.Attributes["Background"].Value	
?	"White"	:	"LightGray";
				itemsTable.InsertAfter(newRowGroup,	rowGroup);
		}

		MemoryStream	memStream	=	new	MemoryStream();
		xamlDoc.Save(memStream);
		xamlFile.Close();
		return	memStream;
}

The	data	provider	is	loaded	directly	from	code	so	we	know	how	many	
(text	file	lines)	are	available.	The	XAML	design	document	is	loaded	as	a
XmlDocument.	We	retrieve	the	XML	node	that	corresponds	to	our	table	via	the	Xpath
query	passed	to	SelectSingleNode()	in	the	document	element.	For	this,	we	need	to

load	the	WPF	namespace	else	the	query	will	fail.

Once	we	have	our	items	table,	we	get	hold	of	the	row	group.	The	
last	child	of	the	table.	We	duplicate	the	row	group	by	using	the	XmlNode.Clone()
method	and	then	change	the	data	binding	to	point	to	the	next	row.	We	also	alternate
the	row	background	colors.	After	all	items	have	been	added,	we	save	the	XML
document	into	a	memory	stream.

[C#]
Page	page	=	XamlReader.Load(memStream)	as	Page;
FlowDocumentPageViewer	docViewer	=
LogicalTreeHelper.FindLogicalNode(page,	"DocViewer")	as
FlowDocumentPageViewer;
page.Content	=	null;
memStream.Close();
return	docViewer;

We	use	XamlReader.Load()	to	load	the	root	object	specified	in	the	
(stored	in	the	memory	stream).	This	is	not	the	Table,	or	the	FlowDocument	(so	as	to
then	convert	it	directly	to	XPS	and	PDF	as	shown	below);	it	is	a	Page.	This	is
because	it	is	convenient	to	view	the	Table	in	the	Visual	Studio	XAML	designer	
chose	to	have	a	Page	as	the	root	element.	This	page	contains	a	flow	document
viewer	and	this	allows	the	designer	to	show	the	table	as	we	type	XML	tags.	We	then
simply	discard	the	page	and	keep	the	document	viewer	if	we	want	to	show	the
document	in	a	window	or	we	just	keep	the	document	if	we	only	want	to	convert	it	to
XPS.	The	page	content	must	be	set	to	null;	otherwise,	the	child	elements	
document	viewer	and	document)	cannot	be	attached	to	a	different	
window	or	the	XPS	document).

	

The	table	is	saved	as	XPS	first	and	then	converted	into	PDF.

[C#]
private	void	SaveToXps(Stream	fileStream)
{

Save
	

		Package	package	=	Package.Open(fileStream,
FileMode.Create,	FileAccess.ReadWrite);
		XpsDocument	doc	=	new	XpsDocument(package);
		XpsDocumentWriter	writer	=
XpsDocument.CreateXpsDocumentWriter(doc);
		IDocumentPaginatorSource	document	=
CreateDocViewer().Document;
		writer.Write(document.DocumentPaginator);
		doc.Close();
		package.Close();
}

public	void	SaveToPdf(string	pdfFileName)
{
		MemoryStream	memStream	=	new	MemoryStream();
		SaveToXps(memStream);
		WebSupergoo.ABCpdf10.Doc	pdfDoc	=	new
WebSupergoo.ABCpdf10.Doc();
		pdfDoc.Read(memStream,	null,	"xps");
		pdfDoc.Save(pdfFileName);
		pdfDoc.Clear();
		memStream.Close();
}

We	create	an	XPS	file	in	memory	using	MemoryStream.	We	then	pass	
document	paginator	to	the	XPS	writer.	The	document	paginator	splits	the	flow
document	into	a	set	of	pages	and	writes	them	to	the	XPS	document.	The	PDF
document	Read()	method	accepts	a	Stream	containing	the	XPS	document
and	a	type.	After	the	XPS	document	has	been	loaded	into	the	PDF	document,
this	can	be	saved	to	file.

	

The	Invoice	and	Space	table	examples	bind	to	an	XML	data	source	
a	more	complex	structure.

XML
	

As	such,	please	see	the	XAML	design	files,	InvoiceTable.xaml	and
SpaceTable.xml,	for	the	full	table	structure.

Because	the	table	input	data	is	specified	as	XML,	we	can	use	the	
standard	data	provider,	XmlDataProvider,	instead	of	our	own	custom
TextDataProvider.

Because	the	data	provider	is	XML,	we	can	use	the	XmlDocument	for	
files	as	well	as	XAML	design	files.

Each	table	item	is	mapped	to	an	XML	item	so	we	can	count	the	XML	
and	add	a	new	row	group	for	each	one	of	them	(bar	of	course	the	first	one	as
defined	in	the	design	file).	Note	that	the	XmlDataProvider	indexing	is	one
rather	than	zero	based.

	

We	get	output	very	similar	to	that	from	the	Tables	Example	project.	
example.

Results

	

table2.pdf	-	[Page	1]

table2.pdf	-	[Page	2] table2.pdf	-	[Page	3]

table2.pdf	-	[Page	4] table2.pdf	-	[Page	5]

	

	

	

	

	

AddArc	Function 	

Adds	an	arc	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddArc(double	as,	double	ae,	double
cx,	double	cy,	double	rx,	double	ry)
int	AddArc(double	as,	double	ae,	double
cx,	double	cy,	double	rx,	double	ry,
bool	filled)

[Visual	Basic]
Function	AddArc(as	As	Double,	ae	As
Double,	cx	As	Double,	cy	As	Double,	rx
As	Double,	ry	As	Double)	As	Integer
Function	AddArc(as	As	Double,	ae	As
Double,	cx	As	Double,	cy	As	Double,	rx
As	Double,	ry	As	Double,	filled	As
Boolean)	As	Integer

	

	

Name Description

as The	start	angle	of	the	arc	in	degrees.

ae The	end	angle	of	the	arc	in	degrees.

cx The	horizontal	center	of	the	arc.

Params 	
cy The	vertical	center	of	the	arc.

rx The	horizontal	radius	of	the	arc.

ry The	vertical	radius	of	the	arc.

filled Whether	to	fill	the	arc	rather	than	simply
drawing	it.

return The	Object	ID	of	the	newly	added	Graphic
Object.

	

	

Notes 	

Adds	an	arc	to	the	current	page.	The	arc	is	drawn	in	the
current	color	at	the	current	width	and	with	the	current
options.

The	arc	is	fixed	at	the	center	coordinate	and	can	have
different	horizontal	and	vertical	radii.	Drawing	starts	at
the	start	angle	and	the	arc	is	swept	out	until	the	end
angle	is	reached.	Angles	are	measured	anti-clockwise
with	zero	at	three	o'clock.

The	AddArc	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

	

The	following	code	adds	an	arc	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	24;
theDoc.Color.String	=	"120	0	0";

Example
	

theDoc.AddArc(0,	270,	300,	400,	200,	300);
theDoc.Save(Server.MapPath("docaddarc.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	24
theDoc.Color.String	=	"120	0	0"
theDoc.AddArc(0,	270,	300,	400,	200,	300)
theDoc.Save(Server.MapPath("docaddarc.pdf"))
theDoc.Clear()	

docaddarc.pdf

	

	

	

AddBookmark	Function

Adds	a	bookmark	pointing	to	the	current	page.

	

Syntax 	

[C#]
int	AddBookmark(string	path,	bool	open)

[Visual	Basic]
Function	AddBookmark(path	As	String,	open	As
Boolean)	As	Integer

	

Params 	

Name Description

path The	path	to	the	bookmark.

open Whether	the	bookmark	should	be	displayed	open
(expanded)	or	closed	(collapsed).

return The	Object	ID	of	the	newly	added	Bookmark	Object.

	

Adds	a	bookmark	which	points	to	the	current	page.

Bookmarks	are	specified	as	paths	in	much	the	same	way	as
file	paths.	Headings	and	subheadings	are	separated	by	a
backslash	character.	For	example:

"1.	Introduction\1.1	Aim	and	Methods\1.1.3	Diagrams"

Notes 	

When	a	bookmark	is	added,	intermediate	headings	and
subheadings	will	be	created	if	they	do	not	already	exist.

To	add	multiple	bookmarks	all	referring	to	the	same	page
simply	call	the	AddBookmark	function	multiple	times.

This	function	returns	the	Object	ID	of	the	newly	added
Bookmark	Object.

Hyperlinks.	Sometimes	you	may	wish	to	insert
bookmarks	which	link	to	an	external	web	page	specified
using	a	URI	or	URL.	You	can	do	this	using	code	of	the
following	form.

static	int	AddBookmarkToUri(Doc	doc,
string	bookmark,	string	uri)	{
		int	id	=	doc.AddBookmark(bookmark,
true);
		doc.SetInfo(id,	"/Dest:Del",	"");	//
remove	link	to	page	and	add	link	to	url
		doc.SetInfo(id,	"/A",	"<<	/Type
/Action	/S	/URI	/URI	()	>>");
		doc.SetInfo(id,	"/A/URI:Text",	uri);
		return	id;
}

	

The	following	code	adds	a	sequence	of	pages	with	a	nested
sequence	of	bookmarks.	The	image	shows	the	appearance	of	the
document	outline.	Note	that	none	of	the	subject	pages	are	visible
because	the	chapter	pages	were	added	in	a	collapsed	state.

Example
	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	64;
string	theSection,	theChapter,	theSubject;
for	(int	i	=	1;	i	<	3;	i++)	{
		theDoc.Page	=	theDoc.AddPage();
		theSection	=	i.ToString()	+	"	Section";
		theDoc.AddText(theSection);
		theDoc.AddBookmark(theSection,	true);
		for	(int	j	=	1;	j	<	5;	j++)	{
				theDoc.Page	=	theDoc.AddPage();
				theChapter	=	theSection	+	"\\"	+	j.ToString()
+	"	Chapter";
				theDoc.AddText(theChapter);
				theDoc.AddBookmark(theChapter,	false);
				for	(int	k	=	1;	k	<	6;	k++)	{
						theDoc.Page	=	theDoc.AddPage();
						theSubject	=	theChapter	+	"\\"	+
k.ToString()	+	"	Subject";
						theDoc.AddText(theSubject);
						theDoc.AddBookmark(theSubject,	true);
				}
		}
}
theDoc.Save(Server.MapPath("docaddbookmark.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	64
Dim	theSection,	theChapter,	theSubject	As	String
For	i	As	Integer	=	1	To	2
		theDoc.Page	=	theDoc.AddPage()
		theSection	=	i.ToString()	+	"	Section"
		theDoc.AddText(theSection)
		theDoc.AddBookmark(theSection,	True)

		For	j	As	Integer	=	1	To	4
				theDoc.Page	=	theDoc.AddPage()
				theChapter	=	theSection	+	"\"	+	j.ToString()	+
"	Chapter"
				theDoc.AddText(theChapter)
				theDoc.AddBookmark(theChapter,	False)
				For	k	As	Integer	=	1	To	5
						theDoc.Page	=	theDoc.AddPage()
						theSubject	=	theChapter	+	"\"	+	k.ToString()
+	"	Subject"
						theDoc.AddText(theSubject)
						theDoc.AddBookmark(theSubject,	True)
				Next
		Next
Next
theDoc.Save(Server.MapPath("docaddbookmark.pdf"))
theDoc.Clear()	

docaddbookmark.pdf

	

	

	

AddColorSpaceFile	Function

Adds	an	ICC	based	color	space	to	the	document.

	

Syntax 	

[C#]
int	AddColorSpaceFile(string	path)

[Visual	Basic]
Function	AddColorSpaceFile(path	As	String)	As
Integer

	may	throw	Exception()

	

Params 	

Name Description

path The	path	to	the	ICC	color	space	file.

return The	Object	ID	of	the	newly	added	ColorSpace	Object.

	

Adds	an	ICC	based	color	space	to	the	document	returning	the	ID	of	
newly	added	object.

ICC	Color	Spaces	allow	the	precise	representation	of	colors	in	a	
independent	way.	The	ICC	format	is	defined	by	the	International	Color
Consortium	(http://www.color.org/).

http://www.color.org/

Notes 	

ABCpdf	will	allow	you	to	add	ICC	profiles	in	the	Gray,	RGB,	CMYK	
Lab	color	spaces.	This	method	will	throw	an	error	if	the	file	is
inaccessible	or	invalid.

The	current	color	space	is	defined	by	the	ColorSpace	property.	The
current	color	is	defined	by	the	Color	property.	The	ColorSpace	
when	the	Color	is	of	a	matching	type.	If	the	color	type	does	
then	the	default	-	device	-	color	space	is	used.

For	example	you	add	a	CMYK	color	space	and	assign	it	to	the
ColorSpace	property.	All	CMYK	Colors	you	use	will	be	defined	in	
of	this	color	space.	However	RGB	and	Grayscale	colors	will	
be	defined	in	terms	of	the	default	-	device	-	color	spaces.

	

In	this	example	we	add	some	CMYK	text	defined	in	an	ICC	based	
space.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua	Celtae,	nostra	Galli
appellantur.";
theDoc.Rect.Inset(20,	40);
theDoc.FontSize	=	96;
string	thePath	=	Server.MapPath("../mypics/cmyk.icc");
theDoc.ColorSpace	=	theDoc.AddColorSpaceFile(thePath);	
theDoc.Color.String	=	"200	20	20	20";
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("docaddcolorspacefile.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	

Example
	

Dim	theText	As	String	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,	nostra
Galli	appellantur."
theDoc.Rect.Inset(20,	40)
theDoc.FontSize	=	96
Dim	thePath	As	String	=
Server.MapPath("../mypics/cmyk.icc")	
theDoc.ColorSpace	=	theDoc.AddColorSpaceFile(thePath)
theDoc.Color.String	=	"200	20	20	20"
theDoc.AddText(theText)	
theDoc.Save(Server.MapPath("docaddcolorspacefile.pdf"))
theDoc.Clear()	

docaddcolorspacefile.pdf

	

	

	

AddColorSpaceSpot	Function

Adds	a	separation	color	space	to	the	document.

	

Syntax 	

[C#]
int	AddColorSpaceSpot(string	name,	string	color)

[Visual	Basic]
Function	AddColorSpaceSpot(name	As	String,	color	As
String)	As	Integer

	

Params 	

Name Description

name The	name	of	the	color.

color The	display	representation	of	the	color.	This	should	be
supplied	in	the	same	format	as	the	XColor.String	uses.

return The	Object	ID	of	the	newly	added	ColorSpace	Object.

	

Adds	a	separation	color	space	to	the	document	returning	the	ID	of	
newly	added	object.

Separation	color	spaces	allow	you	to	add	spot	colors	or	isolate	
of	individual	colorants.	A	separation	color	space	represents	

Notes
	

colorant	and	allows	you	to	specify	the	amount	of	that	colorant	that	is
applied.

For	example	you	might	define	a	separation	color	space	called	Gold	
a	display	representation	of	CMYK	yellow.	You	might	then	draw	
text	with	different	amounts	of	Gold.	When	viewing	the	output	on	
standard	monitor	the	display	representation	of	the	color	would	be	
However	when	printed	-	using	appropriate	software	and	an	
printer	-	the	name	of	the	color	might	be	used	to	select	a	gold	colored
ink.

The	current	color	space	is	defined	by	the	ColorSpace	property.	The
current	color	is	defined	by	the	Color	property.	Because	separations
represent	a	single	value	property	you	should	use	single	component	-
grayscale	-	colors	to	specify	the	amount	of	spot	colorant	to	use.

There	are	two	special	color	spaces:

'All'	refers	collectively	to	all	colorants	on	an	output	device.	It	can	be
useful	for	printing	registration	marks.

'None'	indicates	no	colorant	and	will	never	produce	any	visible	

	

In	this	example	we	define	a	colorant	called	Gold	and	add	some	
varying	amounts	of	our	colorant.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(20,	20);
theDoc.FontSize	=	300;
theDoc.ColorSpace	=	theDoc.AddColorSpaceSpot("GOLD",	"0
0	100	0");
for	(int	i	=	1;	i	<=	10;	i++)	{
		theDoc.Color.Gray	=	255	/	i;
		theDoc.AddText(theDoc.Color.Gray.ToString());
		theDoc.Rect.Move(25,	-50);

Example 	

}
theDoc.Save(Server.MapPath("docaddcolorspacespot.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,	20)
theDoc.FontSize	=	300
theDoc.ColorSpace	=	theDoc.AddColorSpaceSpot("GOLD",	"0
0	100	0")
For	i	As	Integer	=	1	To	10
		theDoc.Color.Gray	=	255	/	i
		theDoc.AddText(theDoc.Color.Gray.ToString())
		theDoc.Rect.Move(25,	-50)
Next	
theDoc.Save(Server.MapPath("docaddcolorspacespot.pdf"))
theDoc.Clear()	

docaddcolorspacespot.pdf

	

	

	

AddFont	Function 	

Adds	a	font	reference	to	the	document.

	
	

Syntax 	

[C#]
int	AddFont(string	name)
int	AddFont(string	name,	LanguageType
language)
int	AddFont(string	name,	LanguageType
language,	bool	vertical)

[Visual	Basic]
Function	AddFont(name	As	String)	As
Integer
Function	AddFont(name	As	String,	language
As	LanguageType)	As	Integer
Function	AddFont(name	As	String,	language
As	LanguageType,	vertical	As	Boolean)	As
Integer

	

	

Name Description
name The	name	of	the	font	typeface.

The	language	type	to	use.	The
LanguageType	enumeration	may	take	the
following	values:

Latin
Unicode	-	NB:	This	requires	that	the	font

Params
	

language
be	embedded.	If	you	wish	to	use	this
selector	use	the	EmbedFont	call.
Korean
Japanese
ChineseS
ChineseT

See	the	Fonts	and	Languages	section	for
details	on	language	types.	The	default
language	type	is	Latin.

vertical

Whether	the	text	direction	should	be	vertical.

See	the	Fonts	and	Languages	section	for
details	on	writing	directions.	The	default	is
false	to	indicate	standard	left	to	right	layout.

return The	Object	ID	of	the	newly	added	Font
Object.

	

	

Adds	a	font	to	the	document.

The	font	name	and	a	description	of	the	font	style	is	held
within	the	document.	However	the	actual	font	itself	is	not
added	to	the	document	unless	the	language	is	Unicode.
(When	Unicode	is	specified,	this	method	will	embed	the
font	without	subsetting.)	If	you	wish	to	embed	a	font	or
use	the	Unicode	language,	you	should	use	the
EmbedFont	method.

When	a	client	opens	the	PDF	Acrobat	will	attempt	to	find
the	exact	same	font	on	the	client	system.	If	the	exact	font
is	not	available	then	a	substitute	font	will	be	chosen	using
the	font	description	to	determine	the	best	match.

Notes
	

The	following	fonts	are	guaranteed	to	be	available	on
every	system.

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

Additionally	you	can	add	any	TrueType,	OpenType	or
Type	1	font	that	you	have	installed	on	your	system.	The
name	you	should	use	is	the	one	referenced	in	your	fonts
folder.	For	example.

Arial
Arial	Black
Arial	Black	Italic
...
Book	Antiqua
Book	Antiqua	Bold
Book	Antiqua	Bold	Italic
Book	Antiqua	Italic
...
Venetian301BT
Venetian301BT	Bold
...

The	AddFont	function	returns	the	Object	ID	of	the	newly
added	Font	Object.	Typically	you	will	want	to	assign	this

	

return	value	to	the	document	Font	property	using	code	of
the	form.

theDoc.Font	=	theDoc.AddFont("Courier")

If	the	specified	font	could	not	be	found	then	you	will	get
an	Object	ID	of	zero	returned.	You	may	wish	to	check	for
this	possibility	otherwise	a	default	font	will	be	used.

Fonts	are	cached	so	newly	added	fonts	will	not	be
available	to	ABCpdf	until	the	application	is	restarted.	If
you	need	to	dynamically	load	a	font	you	can	pass	this
method	a	path	to	your	font	file.	This	will	add	the	font	to	the
cache	and	make	it	available	for	use.	You	should	not
move,	rename	or	delete	a	font	file	which	has	been
dynamically	loaded	using	this	technique.

Why	is	my	language	a	string?

In	older	versions	of	ABCpdf	the	language	parameter
was	a	string.	So	you	might	find	code	of	this	form.

theDoc.AddFont("Courier",	"Latin")

In	more	recent	releases	the	language	parameter
has	been	changed	to	a	true	enumeration.	This	is	a
safer	way	of	coding	as	it	allows	the	compiler	to
ensure	that	the	values	you	are	using	are	valid.	Your
new	code	should	look	like	this.

theDoc.AddFont("Courier",
LanguageType.Latin)

The	names	of	the	items	in	the	LanguageType
enumeration	are	the	same	as	the	values	of	the

strings	used	in	previous	versions.	So	changing	your
code	should	be	a	simple	search	and	replace
operation.	If	you	see	a	language	of	""	this	equates	to
LanguageType.Latin.

	

	

Example 	

The	following	code	adds	two	pieces	of	text	to	a	document.	The
first	piece	is	in	Times-Roman	and	the	second	in	Helvetica-Bold.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	48;
string	theFont	=	"Times-Roman	";
theDoc.Font	=	theDoc.AddFont(theFont);
theDoc.AddText(theFont);
theFont	=	"Helvetica-Bold";
theDoc.Font	=	theDoc.AddFont(theFont);
theDoc.AddText(theFont);
theDoc.Save(Server.MapPath("docaddfont.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	48
Dim	theFont	As	String	=	"Times-Roman	"	
theDoc.Font	=	theDoc.AddFont(theFont)
theDoc.AddText(theFont)
theFont	=	"Helvetica-Bold"
theDoc.Font	=	theDoc.AddFont(theFont)
theDoc.AddText(theFont)
theDoc.Save(Server.MapPath("docaddfont.pdf"))

theDoc.Clear()

docaddfont.pdf

	

	

AddGrid	Function 	

Adds	a	visible	grid	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddGrid()

[Visual	Basic]
Function	AddGrid()	As	Integer

	

	

Params 	

Name Description
return The	Object	ID	of	the	newly	added	Grid	Object.

	

	

Notes 	

Adds	a	visible	grid	to	the	current	page.	The	grid	shows
locations	on	the	page	and	the	effect	of	the	current
transform.	It	is	designed	to	help	with	object	positioning
during	development.

	

	

The	following	code	modifies	the	page	transform	and	then	adds	a
grid	to	show	how	the	transform	has	affected	the	page.

[C#]
Doc	theDoc	=	new	Doc();

Example 	

theDoc.Page	=	theDoc.AddPage();
theDoc.Transform.Rotate(20,	100,	100);
theDoc.AddGrid();
theDoc.Save(Server.MapPath("docaddgrid.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Page	=	theDoc.AddPage()
theDoc.Transform.Rotate(20,	100,	100)
theDoc.AddGrid()
theDoc.Save(Server.MapPath("docaddgrid.pdf"))
theDoc.Clear()

docaddgrid.pdf

	

	

	

AddHtml	Function 	

Adds	a	block	of	HTML	styled	text	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddHtml(string	text)
int	AddHtml(string	dummy,	int	chainid)

[Visual	Basic]
Function	AddHtml(text	As	String)	As
Integer
Function	AddHtml(dummy	As	String,	chainid
As	Integer)	As	Integer

	

	

Params 	

Name Description
text The	HTML	to	be	added	to	the	page.

dummy A	dummy	parameter.	The	contents	are	notused.
chainid The	Object	ID	of	a	previously	added	text	block.
return The	Object	ID	of	the	newly	added	Text	Object.

	

	

Adds	a	block	of	HTML	styled	text	to	the	current	page.

This	function	works	in	a	similar	manner	to	the	AddText
function	but	it	allows	you	to	add	multi-styled	text	by

Notes 	

inserting	simple	HTML	tags.	A	listing	of	supported	tags	is
given	in	the	HTML	Styled	Text	section	of	the
documentation.	Please	see	Pos	for	details	on	positioning
when	using	vertical	fonts.

You	can	chain	together	multiple	text/HTML	blocks	so	that
text	flows	from	one	to	the	next.	To	do	this	you	need	to	first
add	a	block	of	text/HTML	using	AddText	or	AddHtml.
Then	add	multiple	new	text/HTML	blocks	using
Doc.AddHtml	each	time	passing	in	the	ID	obtained	from
the	previous	call	after	adjusting	the	target	location	(such
as	the	rectangle	or	the	page).

When	no	more	text	is	available	the	AddHtml	function	will
return	zero.	Alternatively	you	can	query	the
TextLayer.Truncated	property	of	the	returned	object
before	adding	a	new	item	to	the	chain.

This	function	returns	the	Object	ID	of	the	newly	added
Text	Object.	If	no	text	could	be	added	then	zero	is
returned.	This	will	happen	if	a	zero	length	string	was
supplied	or	if	the	rectangle	was	too	small	for	even	one
character	to	be	displayed.

Typically	you	will	get	a	return	value	of	zero	if	your	text
was	too	large	to	fit	in	your	Rect	or	if	the	Pos	was	at	the
end	of	the	Rect.

Text	styles	for	the	entire	HTML	content	are	determined	at
the	point	at	which	the	first	item	in	a	text	chain	is	created.
This	means	that	varying	document	styles	will	not	affect
the	way	in	which	subsequent	items	in	the	chain	are
displayed.

For	an	example	of	chaining	see	the	Text	Flow	Example.

Note	that	there	is	no	requirement	that	blocks	be
organized	in	a	linear	chain.	If	you	wish	you	can	create
trees	of	HTML	blocks,	flowing	text	from	a	chain	head
through	multiple	display	areas	on	your	document.

	

	

Example

	

The	following	code	adds	some	HTML	styled	text	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	72;
theDoc.AddHtml("Gallia	est	omnis	divisa
in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam
qui	ipsorum	lingua	Celtae,	nostra
Galli	appellantur.");
theDoc.Save(Server.MapPath("docaddhtml.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	72
theDoc.AddHtml("Gallia	est	omnis	divisa
in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam
qui	ipsorum	lingua	Celtae,	nostra
Galli	appellantur.")
theDoc.Save(Server.MapPath("docaddhtml.pdf"))
theDoc.Clear()

docaddhtml.pdf

	

	

AddImage	Function 	 	

Adds	an	image	to	the	current	page.

	
	 	

Syntax 	

[C#]
int	AddImage(XImage	image)
int	AddImage(string	path)
int	AddImage(byte[]	data)
int	AddImage(string	path,	int
page)
int	AddImage(byte[]	data,	int
page)
int	AddImage(int	id)
int
AddImage(System.Drawing.Bitmap
bm)
int	AddImage(Doc	doc,	int	page)
int	AddImage(Doc	doc,	int	page,
XRect	src)

[Visual	Basic]
Function	AddImage(image	As
XImage)	As	Integer
Function	AddImage(path	As	String)
As	Integer
Function	AddImage(data()	As	Byte)
As	Integer
Function	AddImage(path	As	String,
page	As	Integer)	As	Integer
Function	AddImage(data()	As	Byte,
page	As	Integer)	As	Integer
Function	AddImage(id	As	Integer)

	 	

As	Integer
Function	AddImage(bm	As
System.Drawing.Bitmap)	As	Integer
Function	AddImage(doc	As	Doc,
page	As	Integer)	As	Integer
Function	AddImage(doc	As	Doc,
page	As	Integer,	src	As	XRect)	As
Integer

	may	throw	Exception()

	

Params
	

Name Description

image An	XImage	containing	the	image	to	be
added	to	the	page.

path A	file	path,	URL	or	html	string	to	be
added	to	the	page.

data The	raw	JPEG	data	to	be	added	to	the
page.

id An	existing	image	object	ID	to	be
copied	to	the	page	again.

bm A	.NET	Bitmap	to	be	added	to	the
page.

doc A	PDF	document	page	to	be	added	to
the	page.

	 	

page The	page	of	the	document	to	be
added.

src The	source	area	of	the	document	page
to	be	added.

return The	ID	of	the	newly	added	Image
Object.

	

Notes 	

Adds	an	image	to	the	current	page	returning	the
ID	of	the	newly	added	object.

This	method	attempts	to	make	a	sensible
decision	as	to	which	of	the	following	methods	to
call	dependent	on	the	content	of	the
ImageSpec.

AddImageFile
AddImageData
AddImageCopy
AddImageUrl
AddImageHtml
AddImageToChain
AddImageDoc
AddImageObject
AddImageBitmap

This	function	is	provided	for	backwards
compatibility	purposes.	You	should	call	the
appropriate	method	directly	rather	than	working
via	this	method.

	 	

	

Example 	
None.

	
	 	

	

	

AddImageBitmap	Function

Adds	a	System.Drawing.Bitmap	to	the	current	page.

	

Syntax 	

[C#]
int	AddImageBitmap(System.Drawing.Bitmap	bm,
bool	transparent)

[Visual	Basic]
Function	AddImageBitmap(bm	As
System.Drawing.Bitmap,	transparent	As	Boolean)
As	Integer

	may	throw	Exception()

	

Params 	

Name Description

bm A	.NET	Bitmap	to	be	added	to	the	page.

transparent Whether	transparency	information	should	be
preserved.

return The	ID	of	the	newly	added	Image	Object.

	

Notes
	

Adds	a	System.Drawing.Bitmap	to	the	current	page.

If	the	Transparent	parameter	is	set	to	true	then	any	transparency
information	will	be	preserved.	This	allows	you	to	add	formats	such
as	transparent	GIF	and	PNG	with	alpha	channel.

The	image	is	scaled	to	fill	the	current	Rect.	It	is	transformed	using
the	current	Transform.

	

Example 	

The	following	code	adds	a	transparent	PNG	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
string	thePath	=
Server.MapPath("../mypics/mypic.png");
Bitmap	bm	=	new	Bitmap(thePath);
theDoc.Rect.Inset(20,	20);
theDoc.Color.String	=	"0	0	200";
theDoc.FillRect();
theDoc.AddImageBitmap(bm,	true);
bm.Dispose();	
theDoc.Save(Server.MapPath("docaddimagebitmap.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.png")	
Dim	bm	As	Bitmap	=	New	Bitmap(thePath)	
theDoc.Rect.Inset(20,	20)
theDoc.Color.String	=	"0	0	200"
theDoc.FillRect()
theDoc.AddImageBitmap(bm,	True)
bm.Dispose()	

theDoc.Save(Server.MapPath("docaddimagebitmap.pdf"))
theDoc.Clear()

docaddimagebitmap.pdf

	

	

	

	

AddImageCopy	Function

Adds	a	copy	of	an	existing	image	in	the	Doc,	to	the	current	page.

	

Syntax 	

[C#]
int	AddImageCopy(int	id)

[Visual	Basic]
Function	AddImageCopy(id	As	Integer)	As	Integer

	may	throw	Exception()

	

Params 	

Name Description

id An	existing	image	object	ID	to	be	copied	to	the	page
again.

return The	ID	of	the	newly	added	Image	Object.

	

Adds	a	copy	of	an	image	which	has	already	been	inserted
elsewhere	in	the	document.

You	can	use	this	facility	to	add	commonly	used	graphics	such	as
watermarks.	The	raw	image	data	is	inserted	only	once	which
means	that	PDF	size	is	greatly	reduced.

Notes
	 This	method	only	works	with	raster	or	bitmap	images.	So	your	ID
must	have	been	obtained	from	a	previous	call	to	AddImageFile
AddImageData	or	AddImageObject.

The	image	is	scaled	to	fill	the	current	Rect.	It	is	transformed	using
the	current	Transform.

	

This	example	shows	how	to	read	an	existing	PDF	document	and	
background	image	into	every	page.

We	start	by	reading	our	template	PDF	document	and	finding	out	
information	we	will	need	to	reference	each	page.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
int	theCount	=	theDoc.PageCount;

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
Dim	theCount	As	Integer	=	theDoc.PageCount

We	cycle	through	the	pages	inserting	images	as	we	go.

We	set	the	layer	property	to	ensure	that	the	image	gets	added	in	
background	rather	than	on	top	of	existing	content.

The	first	time	we	add	an	image	file.	Subsequent	times	we	reference	the
image	ID.	This	means	that	we	embed	only	one	copy	of	the	image	data
and	simply	reference	that	data	from	each	page.

Finally	we	save	the	modified	PDF.

[C#]

Example

	

int	theID	=	0;
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.Layer	=	theDoc.LayerCount	+	1;
		if	(i	==	1)	{
				string	thePath	=
Server.MapPath("../mypics/light.jpg");
				theID	=	theDoc.AddImageFile(thePath,	1);
		}
		else
				theDoc.AddImageCopy(theID);
}
theDoc.Save(Server.MapPath("watermark.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theID	As	Integer	=	0	
For	i	As	Integer	=	1	To	theCount
		theDoc.PageNumber	=	i
		theDoc.Layer	=	theDoc.LayerCount	+	1
		If	i	=	1	Then
				Dim	thePath	As	String	=
Server.MapPath("../mypics/light.jpg")	
				theID	=	theDoc.AddImageFile(thePath,	1)
		Else	
				theDoc.AddImageCopy(theID)
		End	If
Next
theDoc.Save(Server.MapPath("watermark.pdf"))
theDoc.Clear()

Given	the	following	document.

sample.pdf	-	[Page	1] sample.pdf	-	[Page	2]

sample.pdf	-	[Page	3] sample.pdf	-	[Page	4]

And	the	following	image.

This	is	the	kind	of	output	you	might	expect.

watermark.pdf	-	[Page	1] watermark.pdf	-	[Page	2]

watermark.pdf	-	[Page	3] watermark.pdf	-	[Page	4]

	

	

	

	

	

AddImageData	Function 	 	

Extract	an	image	from	data	and	add	it	to	the
current	page.

	

	 	

Syntax 	

[C#]
int	AddImageData(byte[]	data)
int	AddImageData(byte[]	data,	int
frame)

[Visual	Basic]
Function	AddImageData(data()	As
Byte)	As	Integer
Function	AddImageData(data()	As
Byte,	frame	As	Integer)	As
Integer

	may	throw	Exception()

	

	 	

Params 	

Name Description

data The	data	containing	the	image	in	a
format	such	as	JPEG	or	TIFF.

frame

Some	image	types	support	multiple
frames	or	pages.	This	is	the	one	based
index	specifying	the	required	frame
(default	one).

	 	

return The	ID	of	the	newly	added	Image
Object.

	

Notes 	

Extract	an	image	from	a	chunk	of	data	and	add
it	to	the	current	page	returning	the	ID	of	the
newly	added	object.

This	method	is	essentially	the	same	as
AddImageFile	but	it	allows	you	add	images
specified	as	raw	data	rather	than	as	a	file	path

	

	 	

Example 	
None.

	
	 	

	

	

AddImageDoc	Function

Draw	a	page	from	one	PDF	document	onto	the	current	page	of	this
document.

	

Syntax 	

[C#]
int	AddImageDoc(Doc	doc,	int	page,	XRect	rect)
int	AddImageDoc(Doc	doc,	int	page,	XRect	rect,
bool	copyAnnotations)
int	AddImageDoc(Doc	doc,	int	page,	XRect	rect,
double	alpha)

[Visual	Basic]
Function	AddImageDoc(doc	As	Doc,	page	As	Integer,
rect	As	XRect)	As	Integer
Function	AddImageDoc(doc	As	Doc,	page	As	Integer,
rect	As	XRect,	copyAnnotations	As	Boolean)	As
Integer
Function	AddImageDoc(doc	As	Doc,	page	As	Integer,
rect	As	XRect,	copyAnnotations	As	Boolean,	alpha
As	Double)	As	Integer

	

Name Description

doc The	document	to	be	used	as	the	source.

page The	page	you	want	drawn.	Use	one	to	indicate	the
first	page.

Params 	 rect

The	portion	of	the	page	you	want	drawn.	Pass	null
to	specify	the	entire	page.

The	format	of	this	string	should	be	the	same	as
that	obtained	via	the	XRect.String	property.

copyAnnotations Whether	to	copy	fields	and	annotations	-	default
false.

alpha The	level	of	alpha	to	apply	to	the	drawn	page	from
transparent	through	to	fully	opaque	(0	to	255).

return The	ID	of	the	newly	added	Image	Object.

	

Notes
	

Draw	a	page	from	one	PDF	document	onto	the	current	page	of	this
document	returning	the	ID	of	the	newly	added	object.

The	page	is	scaled	to	fill	the	current	Rect.	It	is	transformed	using	
current	Transform.

Many	field	and	annotation	types	can	only	exist	as	a	simple	rectangle
with	sides	parallel	to	the	page	borders.	For	this	reason	you	should	be
cautious	about	the	transforms	you	use	when	specifying	that
annotations	should	be	copied.	A	transform	which	involves	scale	and
translation	will	be	fine	but	one	involving	rotation	and	skew	factors	may
result	in	unusual	output	if	the	field	or	annotation	does	not	support	this
combination.

The	Refactor	setting	determines	whether	new/modified	redundant
objects	are	eliminated.	The	Preflight	setting	determines	whether
objects	in	the	destination	document	are	validated	before	this	operation
is	performed.	Unless	the	document	and	the	pages	are	big	in	terms	of
memory	use	and	have	many	common	objects,	it	is	faster	to	disable
refactor	and	preflight	for	adding	the	pages	and	enable	them	for	saving
the	document.	You	can	use	SetInfo	to	change	these	settings.

Pages	may	be	rotated.	As	such,	when	drawing	one	page	onto
another,	you	may	wish	to	copy	the	Page.Rotation	from	the	source
page	to	the	destination	page.	More	complex	example	code	to	de-
rotate	a	page	may	be	found	under	the	documentation	for	the
Page.Rotation.

	

This	example	shows	how	to	draw	one	PDF	into	another.	It	takes	a	
document	and	creates	a	'four-up'	summary	document	by	drawing	
on	each	page	of	the	new	document.

First	we	create	an	ABCpdf	Doc	object	and	read	in	our	source	

[C#]
Doc	theSrc	=	new	Doc();
theSrc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"));
int	theCount	=	theSrc.PageCount;

[Visual	Basic]
Dim	theSrc	As	Doc	=	New	Doc()	
theSrc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"))
Dim	theCount	As	Integer	=	theSrc.PageCount

Next	we	create	a	destination	Doc	object	and	set	the	MediaBox
page	size	will	match	that	of	the	source	document.	We	change	the	rect	so
that	it	occupies	a	quarter	of	the	page	with	room	to	accomodate	a	
margin.

[C#]
Doc	theDst	=	new	Doc();
theDst.MediaBox.String	=	theSrc.MediaBox.String;
theDst.Rect.String	=	theDst.MediaBox.String;
theDst.Rect.Magnify(0.5,	0.5);
theDst.Rect.Inset(10,	10);
double	theX,	theY;

Example

	

theX	=	theDst.MediaBox.Width	/	2;
theY	=	theDst.MediaBox.Height	/	2;

[Visual	Basic]
Dim	theDst	As	Doc	=	New	Doc()	
theDst.MediaBox.String	=	theSrc.MediaBox.String
theDst.Rect.String	=	theDst.MediaBox.String
theDst.Rect.Magnify(0.5,	0.5)
theDst.Rect.Inset(10,	10)
Dim	theX	As	Double,theY	As	Double
theX	=	theDst.MediaBox.Width	/	2
theY	=	theDst.MediaBox.Height	/	2

We	go	through	every	page	in	the	source	document	drawing	a	framed	
each	page	at	a	different	position	on	our	four-up	document.	Every	fourth	page
we	add	a	new	page	into	our	destination	document.

[C#]
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		switch	(i	%	4)	{
				case	1:
						theDst.Page	=	theDst.AddPage();
						theDst.Rect.Position(10,	theY	+	10);
						break;
				case	2:
						theDst.Rect.Position(theX	+	10,	theY	+	10);
						break;	
				case	3:
						theDst.Rect.Position(10,	10);
						break;	
				case	0:
						theDst.Rect.Position(theX	+	10,	10);
						break;	
		}
		theDst.AddImageDoc(theSrc,	i,	null);
		theDst.FrameRect();

}	

[Visual	Basic]
For	i	As	Integer	=	1	To	theCount
		Select	Case	i	Mod	4
				Case	1
						theDst.Page	=	theDst.AddPage()
						theDst.Rect.Position(10,	theY	+	10)
				Case	2
						theDst.Rect.Position(theX	+	10,	theY	+	10)
				Case	3
						theDst.Rect.Position(10,	10)
				Case	0
						theDst.Rect.Position(theX	+	10,	10)
		End	Select
		theDst.AddImageDoc(theSrc,	i,	Nothing)
		theDst.FrameRect()
Next

Finally	we	save.

[C#]
theDst.Save(Server.MapPath("fourup.pdf"));
//	finished

[Visual	Basic]
theDst.Save(Server.MapPath("fourup.pdf"))
'	finished

We	get	the	following	output.

fourup.pdf	-	[Page	1] fourup.pdf	-	[Page	2]

	

	

	

	

AddImageFile	Function

Extract	an	image	from	a	file	and	add	it	to	the	current	page.

	

Syntax 	

[C#]
int	AddImageFile(string	path)
int	AddImageFile(string	path,	int	frame)

[Visual	Basic]
Function	AddImageFile(path	As	String)	As
Integer
Function	AddImageFile(path	As	String,
frame	As	Integer)	As	Integer

	may	throw	Exception()

	

Params 	

Name Description

path A	file	path,	URL	or	html	string	to	be	added	to	the
page.

frame
Some	image	types	support	multiple	frames	or
pages.	This	is	the	one	based	index	specifying	the
required	frame	(default	one).

return The	Object	ID	of	the	newly	added	Image	Object.

	

Notes 	

Adds	an	image	to	the	current	page	returning	the	ID	of	the
newly	added	object.

Images	embedded	using	this	method	are	always	inserted
using	pass-through	mode.	Pass-through	mode	is	faster	than
indirect	mode.	It	allows	the	preservation	of	compression
settings,	native	color	spaces	and	ICC	color	profiles.	It	allows
vector	graphics	to	be	maintained	in	vector	format.	However	it
supports	a	limited	range	of	image	formats	-	JPEG,	JPEG	2000,
TIFF,	EMF,	WMF,	PS	(PostScript)	or	EPS	(Encapsulated
PostScript).	JPEG	images	may	be	grayscale,	RGB	or	CMYK.
TIFF	images	may	be	black	and	white,	grayscale,	RGB,	CMYK,
TIFF	or	Lab	in	a	range	of	bit	depths	and	with	out	without	alpha.
Because	PDF	does	not	support	32	bit	High	Dynamic	Range
(HDR)	encodings,	TIFFs	in	this	format	will	be	downsampled	to
16	bits	per	component.

Note	that	not	all	EMF	or	WMF	files	can	be	directly	imported
this	way.	If	this	is	the	case	you	should	look	at	using	the
XImage	object.	Using	the	XImage	object	with	the	default
ReadModule	is	fast	but	will	result	in	the	image	being
rasterized.	Using	the	XpsAny	ReadModule	will	not	be	as	fast
but	will	preserve	the	vector	nature	of	practically	all	such	files.

The	image	is	scaled	to	fill	the	current	Rect.	It	is	transformed
using	the	current	Transform.

Transparency.	Occasionally	you	may	find	that	you	need
to	invert	the	transparency	of	your	image.	To	do	this	you
can	assign	a	decode	array	using	the	ID	returned	from
this	function.

To	invert	the	transparency:

theDoc.SetInfo(theDoc.GetInfoInt(theID,

"XObject"),	"/SMask*/Decode",	"[1	0]")

A	similar	technique	can	be	used	for	inverting	or	altering
color	levels	on	the	image	itself.

To	invert	an	RGB	image:

theDoc.SetInfo(theDoc.GetInfoInt(theID,
"XObject"),	"/Decode",	"[1	0	1	0	1	0]")

	

Example
	

The	following	code	adds	an	image	to	the	current	page	positioned
at	the	bottom	left.	The	width	and	height	of	the	image	are
automatically	inferred	from	the	file	supplied.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.String	=	"0	0	0	0";
string	thePath	=
Server.MapPath("../mypics/pic.jpg");
theDoc.AddImageFile(thePath,	1);
theDoc.Save(Server.MapPath("docaddimage.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.String	=	"0	0	0	0"
Dim	thePath	As	String	=
Server.MapPath("../mypics/pic.jpg")	
theDoc.AddImageFile(thePath,	1)
theDoc.Save(Server.MapPath("docaddimage.pdf"))

theDoc.Clear()

docaddimage.pdf

	

	

	

AddImageHtml	Function 	 	

Renders	a	web	page	specified	as	HTML.

	
	 	

Syntax 	

[C#]
int	AddImageHtml(string	html)
int	AddImageHtml(string	html,
bool	paged,	int	width,	bool
disableCache)

[Visual	Basic]
Function	AddImageHtml(html	As
String)	As	Integer
Function	AddImageHtml(html	As
String,	paged	As	Boolean,	width
As	Integer,	disableCache	As
Boolean)	As	Integer

	may	throw	Exception()

	

	 	

Name Description

html The	HTML	to	be	rendered.

paged Allows	you	to	override	the	default
XHtmlOptions.Paged	property.

Allows	you	to	override	the	default

Params 	

width XHtmlOptions.BrowserWidth
property.

disableCache

Allows	you	to	override	and	disable
the	page	cache.

See	the
XHtmlOptions.PageCacheEnabled
property	for	details.

return The	ID	of	the	newly	added	object.

	

	 	

Notes 	

This	method	is	essentially	the	same	as	the
AddImageUrl	method	but	it	allows	you	to	use
raw	HTML	rather	than	having	to	specify	a	URL.

ABCpdf	saves	this	HTML	into	a	temporary	file
and	renders	the	file	using	a	'file://'	protocol
specifier.	So	this	is	a	convenience	function	-	it
doesn't	offer	any	performance	enhancements.

Sometimes	the	IIS	users	don't	have	full	access
to	the	temp	directory.	This	is	determined	by	the
system	setup	you	have	on	your	machine.	If	this
is	the	case	you	will	get	errors	returned.

So	if	you	are	working	from	ASP	you	may	find
that	you	need	to	enable	access	to	the	temp
directory	for	the	ASPNET	user,	the
IUSR_MACHINENAME	user	or	the
IWAM_MACHINENAME	user.

Styles	and	Images.	HTML	does	not	exist
within	a	file	and	so	it	does	not	have	a 	 	

location.

External	stylesheets	and	images	are	often
referenced	via	relative	URLs.	Because	the
HTML	has	no	location	it	is	impossible	to
resolve	these	relative	reference.

So	you	need	to	provide	your	stylesheet
and	image	links	as	absolute	references.
Or	you	may	be	able	to	use	the	HTML
BASE	element	to	specify	an	appropriate
base	location.	Or	you	can	save	your
HTML	to	file	in	an	appropriate	location	and
then	use	AddImageUrl.

Note	that	the	HTML	BASE	tag	must
appear	in	the	HEAD	and	it	must	appear
before	other	references.

	

Example 	
None.

	
	 	

	

	

AddImageObject	Function

Adds	an	XImage	based	image	to	the	current	page.

	

Syntax 	

[C#]
int	AddImageObject(XImage	image)
int	AddImageObject(XImage	image,	bool
transparent)

[Visual	Basic]
Function	AddImageObject(image	As	XImage)	As
Integer
Function	AddImageObject(image	As	XImage,
transparent	As	Boolean)	As	Integer

	may	throw	Exception()

	

	

Name Description

image An	XImage	containing	the	image	to	be	added	to	the
page.

transparent

Whether	transparency	information	should	be
preserved.	This	parameter	overrides	the
PreserveTransparency	property	of	the	XReadOptions
used	to	create	the	XImage.	If	this	parameter	is	not
specified	and	the	XImage	has	been	created	without	a
XReadOptions,	this	parameter	is	defaulted	to	false.

Params

return

The	ID	of	the	newly	added	Image	Object.	If	the	image
is	added	as	multiple	objects,	such	as	if	it	has	been
created	with	an	XReadOptions	with	ReadModule
SwfVector	(with	a	non-null	Operation),	Xps,	or
XpsAny,	the	ID	is	zero.	If	XReadOptions.Operation
has	been	null,	the	temporary	SwfImportOperation
allows	this	method	to	return	the	ID	of	the
GraphicLayer	for	the	frame	of	XReadOptions.Frame

	

If	the	XImage	has	been	created	with	an	XReadOptions	with
ReadModule	that	uses	an	Operation,	the	operation	will	be	invoked
and	the	result	depends	on	the	operation.	Otherwise,	this	method
gets	an	image	from	the	Image	object	and	adds	it	to	the	current	page
returning	the	ID	of	the	newly	added	object.

Adds	the	Selection	of	the	current	Frame	returning	the	ID	of	the	newly
added	object.

Images	embedded	using	this	method	are	always	inserted	using
indirect	mode.	Indirect	mode	is	not	as	fast	as	pass-through	mode.
However	it	allows	greater	flexibility	and	the	use	of	many	different
image	formats.

If	the	Transparent	parameter	is	set	to	true	then	any	transparency
information	will	be	preserved.	This	allows	you	to	add	formats	such
as	transparent	GIF,	PNG	with	alpha	channel,	or	images	with	masks
set	using	the	Image.SetMask	method.

The	image	is	scaled	to	fill	the	current	Rect.	It	is	transformed	using
the	current	Transform.

Hyperlinks.	Sometimes	you	may	wish	to	insert	annotations
such	as	links	to	an	external	web	page	specified	using	a	URI	or

Notes 	

URL.	The	AddHtml	method	allows	you	to	specify	links	but	only
on	text.	If,	for	example,	you	want	to	insert	a	link	over	content
such	as	an	image	you	need	to	add	it	separately.	You	can	do
this	using	code	of	the	following	form.

static	int	AddLinkToUri(Doc	doc,	XRect	rect,
string	uri)	{
		int	id	=	doc.AddObject("<<	/Type	/Annot
/Subtype	/Link	/A	<<	/Type	/Action	/S	/URI
/URI	()	>>	/Border	[0	0	0]	>>");
		doc.SetInfo(doc.Page,	"/Annots*[]:Ref",
id);
		doc.SetInfo(id,	"/Rect:Rect",
doc.Rect.String);
		doc.SetInfo(id,	"/A/URI:Text",	uri);
		return	id;
}

If	you	wish	to	link	to	a	particular	page	specified	by	page	ID	you
can	use	code	of	the	following	form.

static	int	AddLinkToPage(Doc	doc,	XRect
rect,	int	pageID)	{
		int	id	=	doc.AddObject("<<	/Type	/Annot
/Subtype	/Link	/Border	[0	0	0]	/A	<<	/Type
/Action	/S	/GoTo	/D	[/XYZ	null	null	0]	>>
>>");
		doc.SetInfo(doc.Page,	"/Annots*[]:Ref",
id);
		doc.SetInfo(id,	"/Rect:Rect",
doc.Rect.String);
		doc.SetInfo(id,	"/A/D[0]:Ref",
pageID.ToString());
		return	id;
}

	

Example

	

The	following	code	adds	a	transparent	GIF	against	a	gray	background.

[C#]
XImage	theImg	=	new	XImage();	
theImg.SetFile(Server.MapPath("../mypics/mypic.gif"));
Doc	theDoc	=	new	Doc();
theDoc.Color.String	=	"200	200	200";
theDoc.FillRect();
theDoc.Rect.String	=	"0	0	0	0";
theDoc.AddImageObject(theImg,	true);
theImg.Clear();
theDoc.Save(Server.MapPath("docaddimageobject.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
theImg.SetFile(Server.MapPath("../mypics/mypic.gif"))
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Color.String	=	"200	200	200"
theDoc.FillRect()
theDoc.Rect.String	=	"0	0	0	0"
theDoc.AddImageObject(theImg,	True)
theImg.Clear()
theDoc.Save(Server.MapPath("docaddimageobject.pdf"))
theDoc.Clear()

docaddimageobject.pdf

	

	

	

AddImageToChain	Function 	

Adds	a	new	page	from	a	paged	HTML	or	PostScript
render.

	

	

Syntax 	

[C#]
int	AddImageToChain(int	id)

[Visual	Basic]
Function	AddImageToChain(id	As	Integer)
As	Integer

	may	throw	Exception()

	

	

Params 	

Name Description

id The	ID	of	the	previous	object	in	the	chain.

return The	ID	of	the	newly	added	object.

	

	

Some	web	pages	are	too	large	to	fit	on	one	PDF	page.

To	split	a	web	page	across	multiple	PDF	pages	you
need	to	call	AddImageUrl	or	AddImageHtml	to	render
the	first	page.	The	ID	returned	from	these	calls
represents	the	head	of	the	chain.

Notes 	

To	add	subsequent	pages	to	the	chain	you	need	to
make	calls	to	AddImageToChain	passing	in	the	previous
image	from	the	chain	each	time.

As	well	as	using	chaining	to	split	web	pages	across
multiple	PDF	pages	you	can	also	use	it	to	split	your	web
pages	across	multiple	columns	within	a	page.	You	can
even	split	your	chain	to	generate	multiple	copies	of	the
same	page.

More	information	can	be	found	in	the	HTML	/	CSS
Rendering	section	of	the	documentation.

Similarly	some	PostScript	(PS)	files	contain	more	than
one	page	of	content.

To	split	a	PS	file	across	multiple	PDF	pages	you	need	to
call	AddImageFile	or	AddImageData	to	render	the	first
page.	The	ID	returned	from	these	calls	represents	the
head	of	the	chain.

To	add	subsequent	pages	to	the	chain	you	need	to
make	calls	to	AddImageToChain	passing	in	the	previous
image	from	the	chain	each	time.

	

	

This	example	shows	how	to	import	an	HTML	page	into	a	multi-
page	PDF	document.

We	first	create	a	Doc	object	and	inset	the	edges	a	little	so	that
the	HTML	will	appear	in	the	middle	of	the	page.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(72,	144);

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(72,	144)

We	add	the	first	page	of	HTML.	We	save	the	returned	ID	as
this	will	be	used	to	add	subsequent	pages.

[C#]
int	theID;
theID	=
theDoc.AddImageUrl("http://www.yahoo.com/");	

[Visual	Basic]
Dim	theID	As	Integer
theID	=
theDoc.AddImageUrl("http://www.yahoo.com/")

We	now	chain	subsequent	pages	together.	We	stop	when	we
reach	a	page	which	wasn't	truncated.

[C#]
while	(true)	{
		theDoc.FrameRect();
		if	(!theDoc.Chainable(theID))
				break;
		theDoc.Page	=	theDoc.AddPage();
		theID	=	theDoc.AddImageToChain(theID);
}	

[Visual	Basic]
While	True
		theDoc.FrameRect()
		If	Not	theDoc.Chainable(theID)	Then
				Exit	While
		End	If

Example

	
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddImageToChain(theID)
End	While

After	adding	the	pages	we	can	flatten	them.	We	can't	do	this
until	after	the	pages	have	been	added	because	flattening	will
invalidate	our	previous	ID	and	break	the	chain.

[C#]
for	(int	i	=	1;	i	<=	theDoc.PageCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.Flatten();
}

[Visual	Basic]
For	i	As	Integer	=	1	To	theDoc.PageCount
		theDoc.PageNumber	=	i
		theDoc.Flatten()
Next

Finally	we	save.

[C#]

theDoc.Save(Server.MapPath("pagedhtml.pdf"));
theDoc.Clear();	

[Visual	Basic]
theDoc.Save(Server.MapPath("pagedhtml.pdf"))
theDoc.Clear()

We	get	the	following	output.

pagedhtml.pdf	[Page	1] pagedhtml.pdf	[Page	2]

	

	

	

	

AddImageUrl	Function

Renders	a	web	page	specified	by	URL.

	

Syntax 	

[C#]
int	AddImageUrl(string	url)
int	AddImageUrl(string	url,	bool	paged,
int	width,	bool	disableCache)

[Visual	Basic]
Function	AddImageUrl(url	As	String)	As
Integer
Function	AddImageUrl(url	As	String,	paged
As	Boolean,	width	As	Integer,	disableCache
As	Boolean)	As	Integer

	may	throw	Exception()

	

Name Description

url
The	URL	for	the	page	to	be	rendered.	The	actual
value	may	be	modified	depending	on	the	value	of
disableCache/XHtmlOptions.PageCacheEnabled

paged Allows	you	to	override	the	default
XHtmlOptions.Paged	property.

Allows	you	to	override	the	default

Params
	 width XHtmlOptions.BrowserWidth	property.

disableCache

Allows	you	to	override	and	disable	the	page
cache.

See	the	XHtmlOptions.PageCacheEnabled
property	for	details.

return The	ID	of	the	newly	added	object.

	

This	method	adds	a	web	page	to	a	document.

The	page	is	added	in	accordance	with	the	current
XHtmlOptions	settings.	As	a	convenience	you	can	override
the	more	commonly	used	settings	as	detailed	above.

Only	the	first	page	of	the	document	is	drawn.	Subsequent
pages	can	be	drawn	using	the	AddImageToChain	method.

The	web	page	is	scaled	to	fill	the	current	Rect.	It	is
transformed	using	the	current	Transform.

Caching.	Sometimes	you	may	find	that	pages	appear
to	be	cached.

If	you	are	using	AddImageUrl	it	is	possible	that	the
URL	is	in	some	way	being	cached.	So	the	PDF	may
be	changing	but	the	content	within	it	may	be	staying
the	same.	See	the	HTML	/	CSS	Rendering	section	of
the	documentation	for	details.

Alternatively	it	is	possible	that	the	PDF	itself	is	being
cached.	Most	commonly	this	can	happen	if	you're

Notes
	

streaming	the	PDF	direct	to	the	browser	and	you
have	certain	IIS	settings	(like	Expire	Content)
disabled.

Your	first	step	should	be	to	narrow	down	the	problem.
Why	not	save	the	PDF	to	disk	at	the	same	time	as
sending	it	to	the	client?	That	way	you	can	establish
whether	the	PDF	itself	is	being	cached	or	whether	the
content	is	in	some	way	being	cached	(resulting	in	the
same	PDF	being	created	again	and	again).

If	the	PDF	is	being	cached	you	will	need	to	look	at
your	IIS	settings.	ABCpdf	is	not	doing	the	caching
(and	indeed	it	cannot	cache	the	PDF	in	this	way)	it
will	be	something	which	is	happening	either	in
IIS/ASP	or	on	an	intervening	proxy	server	or	on	the
client.

In	addition	to	accepting	URLs	to	web	pages,	this	method
also	accepts	file	based	URLs	to	MHT	(MIME	HTML)	files.

MHT	files	contain	a	web	page	and	any	associated
resources	(such	as	images	and	style	sheets)	in	one
compact	archive.	You	can	save	web	pages	in	MHT	format
using	IE.

Note	that	MHT	files	saved	from	more	complex	web	pages
sometimes	omit	some	required	resources.	In	this	situation
ABCpdf	will	attempt	to	download	missing	items	from	the
original	URL	on	the	web.	However	if	these	items	are	no
longer	available	then	ABCpdf	may	not	be	able	to	produce	a
perfect	output.

	

We	create	an	ABCpdf	Doc	object,	add	our	URL	and	save.	That's

Example
	

it!

[C#]
Doc	theDoc	=	new	Doc();
theDoc.AddImageUrl("http://www.google.com/");
theDoc.Save(Server.MapPath("htmlimport.pdf"));
theDoc.Clear();	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.AddImageUrl("http://www.google.com/")
theDoc.Save(Server.MapPath("htmlimport.pdf"))
theDoc.Clear()

htmlimport.pdf

For	an	example	of	how	to	use	paged	HTML	see	the
AddImageToChain	method.

	

	

	

AddLine	Function 	

Adds	a	line	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddLine(double	x1,	double	y1,	double
x2,	double	y2)

[Visual	Basic]
Function	AddLine(x1	As	Double,	y1	As
Double,	x2	As	Double,	y2	As	Double)	As
Integer

	

	

Params 	

Name Description
x1 The	horizontal	offset	of	the	start	point.
x2 The	horizontal	offset	of	the	end	point.
y1 The	vertical	offset	of	the	start	point.
y2 The	vertical	offset	of	the	end	point.

return The	Object	ID	of	the	newly	added	Graphic
Object.

	

	

	

Adds	a	line	to	the	current	page.	The	line	is	drawn	in	the
current	color	at	the	current	width	and	with	the	current
options.

	

Notes The	AddLine	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

Example

	

The	following	code	adds	two	horizontal	lines	to	a	document.	The
first	is	blue	and	the	second	is	green.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	24;
theDoc.Color.String	=	"0	0	255";
theDoc.AddLine(-50,	100,	999,	100);
theDoc.Color.String	=	"0	255	0";
theDoc.AddLine(-50,	400,	999,	400);
theDoc.Save(Server.MapPath("docaddline.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	24
theDoc.Color.String	=	"0	0	255"
theDoc.AddLine(-50,	100,	999,	100)
theDoc.Color.String	=	"0	255	0"
theDoc.AddLine(-50,	400,	999,	400)
theDoc.Save(Server.MapPath("docaddline.pdf"))
theDoc.Clear()

docaddline.pdf

	

	

	

AddObject	Function

Adds	a	native	PDF	object	to	the	document.

	

Syntax 	

[C#]
int	AddObject(string	text)

[Visual	Basic]
Function	AddObject(text	As	String)	As	Integer

	

Params 	

Name Description
text The	raw	native	object	to	be	added.
return The	Object	ID	of	the	newly	added	Object.

	

Notes
	

You	will	not	normally	need	to	use	this	feature.	However	it	can	be
useful	if	you	wish	to	add	objects	which	are	defined	in	the	PDF
specification	but	not	supported	by	ABCpdf	.NET.

Be	aware	that	the	text	you	pass	this	function	must	be	in	native
PDF	format.	This	means	that	unusual	characters	in	text	strings
must	be	appropriately	escaped.	For	full	details	of	the	way	that
PDF	objects	are	represented	you	should	see	the	Adobe	PDF
Specification.

Your	newly	added	object	needs	to	be	referenced	from	somewhere
in	the	PDF	document.	If	you	do	not	reference	your	object	it	will	be

orphaned	and	will	be	deleted	when	the	document	is	saved.

	

Example
	

The	following	code	adds	a	document	information	section	to	an	
PDF	document.	First	it	adds	an	empty	dictionary	and	references	it	from
the	document	trailer.	Then	it	adds	an	Author,	Title	and	Subject	before
saving.

There	are	multiple	places	that	metadata	can	be	put	into	a	PDF.	
commonly	used	are	the	Info	entry	of	the	Trailer	and	the	Metadata	entry
of	the	Catalog.	The	Info	entry	is	the	older	and	most	widely	recognized
location.	The	Metadata	entry	is	a	more	recent	XML	based	store.	It	is
important	that	information	within	these	stores	is	consistent.	If	the
information	is	inconsistent	then	you'll	find	that	the	metadata	reported	by
different	applications	is	different.	To	ensure	that	the	data	is	consistent
we're	going	to	delete	any	XML	Metadata	entry	that	may	be	present.	That
way	we	force	applications	to	report	the	Info	store.	However	it	wouldn't	be
a	difficult	matter	to	load	up	any	XML	in	the	Metadata	entry	and	modify
that	as	well	as	the	Info	entry.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
if	(theDoc.GetInfo(-1,	"/Info")	==	"")
		theDoc.SetInfo(-1,	"/Info:Ref",	theDoc.AddObject("
<<	>>").ToString());
theDoc.SetInfo(-1,	"/Info*/Author:Text",	"Arthur
Dent");
theDoc.SetInfo(-1,	"/Info*/Title:Text",	"Musings	
Life");
theDoc.SetInfo(-1,	"/Info*/Subject:Text",
"Philosophy");
theDoc.SetInfo(theDoc.Root,	"/Metadata:Del",	
theDoc.Save(Server.MapPath("docaddobject.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
If	theDoc.GetInfo(-	1,	"/Info")	=	""	Then
		theDoc.SetInfo(-	1,	"/Info:Ref",
theDoc.AddObject("<<	>>").ToString())
End	If
theDoc.SetInfo(-	1,	"/Info*/Author:Text",	"Arthur
Dent")
theDoc.SetInfo(-	1,	"/Info*/Title:Text",	"Musings	on
Life")
theDoc.SetInfo(-	1,	"/Info*/Subject:Text",
"Philosophy")
theDoc.SetInfo(theDoc.Root,	"/Metadata:Del",	
theDoc.Save(Server.MapPath("docaddobject.pdf"))
theDoc.Clear()

	

	

	

AddOval	Function 	

Adds	an	oval	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddOval(bool	filled)

[Visual	Basic]
Function	AddOval(filled	As	Boolean)	As
Integer

	

	

Params 	

Name Description

filled Whether	to	fill	the	oval	rather	than	simply	outline
it.

return The	Object	ID	of	the	newly	added	Graphic
Object.

	

	

Notes 	

Adds	an	oval	to	the	current	page.	The	oval	is	drawn	in	the
current	color	at	the	current	width	and	with	the	current
options.	It	is	scaled	to	fill	the	current	rectangle.	The	oval
may	be	outlined	or	filled.

The	AddOval	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

	

Example

	

The	following	code	adds	two	ovals	to	a	document.	The	outline
oval	is	semi-transparent.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	80;
theDoc.Rect.Inset(50,	50);
theDoc.Color.String	=	"255	0	0";
theDoc.AddOval(true);
theDoc.Color.String	=	"0	255	0	a128";
theDoc.AddOval(false);
theDoc.Save(Server.MapPath("docaddoval.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	80
theDoc.Rect.Inset(50,	50)
theDoc.Color.String	=	"255	0	0"
theDoc.AddOval(True)
theDoc.Color.String	=	"0	255	0	a128"
theDoc.AddOval(False)
theDoc.Save(Server.MapPath("docaddoval.pdf"))
theDoc.Clear()

docaddoval.pdf

	

	

	

AddPage	Function 	

Adds	a	page	to	the	current	document.

	
	

Syntax 	

[C#]
int	AddPage()
int	AddPage(int	page)

[Visual	Basic]
Function	AddPage()	As	Integer
Function	AddPage(page	As	Integer)	As
Integer

	

	

Params 	

Name Description

page

The	page	insertion	location.

By	default	pages	are	added	at	the	end	of	the
document.

return The	Object	ID	of	the	newly	added	Page	Object.

	

	

Adds	a	page	to	the	current	document.

The	AddPage	function	returns	the	Object	ID	of	the	newly

Notes
	

added	Page	Object.	Typically	you	will	want	to	assign	this
return	value	to	the	document	Page	property	using	code	of
the	form.

theDoc.Page	=	theDoc.AddPage()

Pages	are	added	at	the	end	of	the	document.	However
you	can	use	the	PageNum	parameter	to	insert	pages	at
other	locations.	The	following	code	inserts	a	page	at	the
start	of	a	document.

theDoc.Page	=	theDoc.AddPage(1)

Any	existing	page	and	all	subsequent	pages	will	be
shifted	towards	the	end	of	the	document	to	make	room	for
the	insertion.

	

	

The	following	code	adds	three	pages	to	a	document.	Each	page
is	marked	with	the	page	number	and	page	Object	ID.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;	//	big	text
theDoc.TextStyle.HPos	=	0.5;	//	centered
theDoc.TextStyle.VPos	=	0.5;	//	...
for	(int	i	=	1;	i	<=	3;	i++)	{
		theDoc.Page	=	theDoc.AddPage();
		string	txt;
		txt	=	"Page	"	+	i.ToString()	+	",	ID=";
		txt	=	txt	+	theDoc.Page.ToString();
		theDoc.AddText(txt);
}

Example

	

theDoc.Save(Server.MapPath("docaddpage.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96	'	big	text
theDoc.TextStyle.HPos	=	0.5	'	centered
theDoc.TextStyle.VPos	=	0.5	'	...
For	i	As	Integer	=	1	To	3
		theDoc.Page	=	theDoc.AddPage()
		Dim	txt	As	String
		txt	=	"Page	"	+	i.ToString()	+	",	ID="
		txt	=	txt	+	theDoc.Page.ToString()
		theDoc.AddText(txt)
Next
theDoc.Save(Server.MapPath("docaddpage.pdf"))
theDoc.Clear()

docaddpage.pdf

	

	

AddPie	Function 	

Adds	a	pie	slice	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddPie(double	angleStart,	double
angleEnd,	bool	filled)

[Visual	Basic]
Function	AddPie(angleStart	As	Double,
angleEnd	As	Double,	filled	As	Boolean)
As	Integer

	

	

Params 	

Name Description
angleStart The	start	angle	of	the	pie	slice	in	degrees.
angleEnd The	end	angle	of	the	pie	slice	in	degrees.

filled Whether	to	fill	the	pie	slice	rather	than
simply	outline	it.

return The	Object	ID	of	the	newly	added	Graphic
Object.

	

	

Adds	a	pie	slice	to	the	current	page.	The	slice	is	drawn
in	the	current	color	at	the	current	width	and	with	the
current	options.

Notes
	

The	pie	slice	represents	a	segment	of	the	oval	which
would	fill	the	current	rectangle.	Drawing	starts	at	the
start	angle	and	the	arc	is	swept	out	until	the	end	angle	is
reached.	Angles	are	measured	anti-clockwise	with	zero
at	three	o'clock.	The	slice	may	be	outlined	or	filled
depending	on	the	values	passed	to	the	function.

The	AddPie	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

	

Example 	

The	following	code	adds	two	pie	slices	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	80;
theDoc.Rect.Inset(50,	50);
theDoc.Color.String	=	"255	0	0";
theDoc.AddPie(0,	90,	true);
theDoc.Color.String	=	"0	255	0";
theDoc.AddPie(180,	270,	false);
theDoc.Save(Server.MapPath("docaddpie.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	80
theDoc.Rect.Inset(50,	50)
theDoc.Color.String	=	"255	0	0"
theDoc.AddPie(0,	90,	True)
theDoc.Color.String	=	"0	255	0"
theDoc.AddPie(180,	270,	False)
theDoc.Save(Server.MapPath("docaddpie.pdf"))
theDoc.Clear()

docaddpie.pdf

	

	

	

AddPoly	Function 	

Adds	a	polygon	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddPoly(string	points,	bool	filled)
int	AddPoly(double[]	points,	bool	filled)
int	AddPoly(double[]	points,	int	index,
int	count,	bool	filled)

[Visual	Basic]
Function	AddPoly(points	As	String,	filled
As	Boolean)	As	Integer
Function	AddPoly(points()	As	Double,
filled	As	Boolean)	As	Integer
Function	AddPoly(points()	As	Double,
index	As	Integer,	count	As	Integer,
filled	As	Boolean)	As	Integer

	

	

Params
	

Name Description
points The	coordinates	of	the	vertices	of	the	polygon.

index The	index	of	the	first	coordinate	into	the	array
points.

count The	number	of	coordinates	in	the	array	points	to
use.

filled Whether	to	fill	the	polygon	rather	than	simply
outline	it.

return The	Object	ID	of	the	newly	added	Graphic

	

Object.

	

Notes 	

Adds	a	polygon	to	the	current	page.	The	polygon	is	drawn
in	the	current	color	at	the	current	width	and	with	the
current	options.	The	polygon	may	be	outlined	or	filled.

The	points	string	is	a	sequence	of	numbers	representing
the	coordinates	of	the	polygon.	The	string	should	be	of
the	format	"x1	y1	x2	y2	...	xN	yN".	The	numbers	may	be
delimited	with	spaces,	commas	or	semicolons.	If	the	first
point	is	equal	to	the	last	then	the	path	is	closed	before
outlining.

The	AddPoly	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

	

The	following	code	adds	a	transparent	green	outlined	star	over
the	top	of	a	red	filled	star.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	80;
theDoc.Color.String	=	"255	0	0";
theDoc.AddPoly("124	158	300	700	476	158	15	493
585	493	124	158",	true);
theDoc.Color.String	=	"0	255	0	a128";
theDoc.AddPoly("124	158	300	700	476	158	15	493
585	493	124	158",	false);
theDoc.Save(Server.MapPath("docaddpoly.pdf"));
theDoc.Clear();

Example
	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	80
theDoc.Color.String	=	"255	0	0"
theDoc.AddPoly("124	158	300	700	476	158	15	493
585	493	124	158",	True)
theDoc.Color.String	=	"0	255	0	a128"
theDoc.AddPoly("124	158	300	700	476	158	15	493
585	493	124	158",	False)
theDoc.Save(Server.MapPath("docaddpoly.pdf"))
theDoc.Clear()

docaddpoly.pdf

	

	

	

AddRect	Function 	 	

Add	a	rectangle	to	the	current	page.

	
	 	

Syntax 	

[C#]
int	AddRect(bool	filled)

[Visual	Basic]
Function	AddRect(filled	As
Boolean)	As	Integer

	

	 	

Params 	

Name Description

filled Whether	to	fill	the	rectangle	rather	than
simply	outline	it.

return The	Object	ID	of	the	newly	added
Graphic	Object.

	

	 	

Notes 	

Add	a	rectangle	drawn	in	the	current	color	at	the
current	width	and	with	the	current	options.	The
rectangle	may	be	outlined	or	filled.

Note	that	this	is	subtly	different	from	the	way
that	FrameRect	works.	When	a	rectangle	is
framed	the	line	goes	around	the	outside	of	the
rectangle.	When	a	rectangle	is	added	the	line	is
centered	on	the	rectangle	-	so	half	is	inside	and

	 	

half	is	outside.

	

Example 	
None.

	
	 	

	

	

AddText	Function 	

Adds	a	block	of	text	to	the	current	page.

	
	

Syntax 	

[C#]
int	AddText(string	text)

[Visual	Basic]
Function	AddText(text	As	String)	As
Integer

	

	

Params 	

Name Description
text The	text	to	be	added	to	the	page.
return The	Object	ID	of	the	newly	added	Text	Object.

	

	

Adds	a	block	of	single	styled	text	to	the	current	page.

For	adding	multi-styled	text	or	for	chaining	text	from	one
page	to	another	you	should	use	the	AddHtml	method
which	is	used	for	adding	HTML	styled	text.

The	text	is	in	the	current	style,	size	and	color	and	starts	at
the	location	specified	in	the	current	position.	If	the	text	is
long	it	will	will	wrap	and	extend	downwards	until	it	fills	the
current	rectangle.	Text	positioning	in	the	rectangle	is
determined	by	the	horizontal	and	vertical	positioning.

Notes 	

You	can	chain	together	multiple	text	blocks	so	that	text
flows	from	one	to	the	next.	To	do	this	you	need	to	first	add
a	block	of	text	using	AddText.	Then	add	multiple	new	text
blocks	using	AddHtml	each	time	passing	in	the	ID
obtained	from	the	previous	call	after	adjusting	the	target
location	(such	as	the	rectangle	or	the	page).

The	AddText	function	returns	the	Object	ID	of	the	newly
added	Text	Object.	If	no	text	could	be	added	then	zero	is
returned.	This	will	happen	if	a	zero	length	string	was
supplied	or	if	the	rectangle	was	too	small	for	even	one
character	to	be	displayed.

Typically	you	will	get	a	return	value	of	zero	if	your	text
was	too	large	to	fit	in	your	Rect	or	if	the	Pos	was	at	the
end	of	the	Rect.	So	if	you	are	expecting	text	to	be
displayed	and	are	seeing	a	return	value	of	zero,	check
your	text	size,	check	your	Rect	is	where	you	think	it	is	by
framing	it	using	FrameRect	and	ensure	your	Pos	is	set	at
the	top	left	of	the	Rect.

Text	is	drawn	word-wrapped	within	the	current	rectangle
with	the	first	character	at	the	location	specified	by	the	Pos
property.	Normally	the	Pos	property	reflects	the	top	left
position	of	the	current	rectangle.	However	if	you	need	to
alter	the	position	at	which	text	drawing	starts	you	can
modify	the	Pos	property	after	changing	the	Rect.	When
the	text	has	been	drawn	the	Pos	will	be	updated	to	reflect
the	next	text	insertion	point.

Character	positioning	is	specified	from	the	top	left	of	the
character.	Please	see	Pos	for	details	on	positioning	when
using	vertical	fonts.	The	FontSize	determines	the	total
line	height	and	the	character	baseline	is	80%	of	the	way
down	from	the	top	of	the	line.

	

	

Example
	

The	following	code	adds	a	number	of	chunks	of	text	to	a
document.	Each	chunk	is	in	a	different	style.	This	sample	makes
use	of	the	fact	that	the	Pos	is	updated	to	point	to	the	next	text
insertion	point	after	adding	a	piece	of	text.	However	note	that
when	inserting	muti-styled	text	it	is	generally	more	efficient	to
use	the	AddHtml	method.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Page	=	theDoc.AddPage();
theDoc.FontSize	=	48;
int	theF1	=	theDoc.AddFont("Times-Roman");
int	theF2	=	theDoc.AddFont("Times-Bold");
theDoc.Font	=	theF1;
theDoc.AddText("Gallia	est	omnis	");
theDoc.Font	=	theF2;
theDoc.AddText("tertiam	Galli	appellantur	");
theDoc.Font	=	theF1;
theDoc.AddText("divisa	in	partes	tres,	");
theDoc.Font	=	theF2;
theDoc.AddText("quarum	unam	incolunt	");
theDoc.Font	=	theF1;
theDoc.AddText("Belgae,	aliam	Aquitani.	");
theDoc.Font	=	theF2;
theDoc.AddText("tertiam	Galli	appellantur");
theDoc.Save(Server.MapPath("docaddtext.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Page	=	theDoc.AddPage()
theDoc.FontSize	=	48
Dim	theF1	As	Integer	=	theDoc.AddFont("Times-
Roman")	
Dim	theF2	As	Integer	=	theDoc.AddFont("Times-
Bold")	

theDoc.Font	=	theF1
theDoc.AddText("Gallia	est	omnis	")
theDoc.Font	=	theF2
theDoc.AddText("tertiam	Galli	appellantur	")
theDoc.Font	=	theF1
theDoc.AddText("divisa	in	partes	tres,	")
theDoc.Font	=	theF2
theDoc.AddText("quarum	unam	incolunt	")
theDoc.Font	=	theF1
theDoc.AddText("Belgae,	aliam	Aquitani.	")
theDoc.Font	=	theF2
theDoc.AddText("tertiam	Galli	appellantur")
theDoc.Save(Server.MapPath("docaddtext.pdf"))
theDoc.Clear()

docaddtext.pdf

	

	

AddXObject	Function 	 	

Add	a	Form	or	Image	XObject	to	the	current
page.

	

	 	

Syntax 	

[C#]
int	AddXObject(Objects.PixMap	pm)
int	AddXObject(Objects.FormXObject
pm)

[Visual	Basic]
Function	AddXObject(pm	As
Objects.PixMap)	As	Integer
Function	AddXObject(pm	As
Objects.FormXObject)	As	Integer

	

	 	

Params 	

Name Description
pm The	image	to	be	added	to	the	page.

return The	Object	ID	of	the	newly	added
Image	Object.

	

	 	

Add	a	Form	or	Image	XObject	into	the	current
rectangle	on	the	current	page.

Form	and	Image	XObjects	represent	a	drawing
sequence	external	to	the	main	content	stream	of

Notes 	

the	page.	Image	XObjects	represent	a	raster
bitmap	in	one	of	a	variety	of	color	spaces.	Form
XObjects	represent	a	separate	content	stream
with	a	separate	sequence	of	drawing
commands.

For	example	a	Form	XObject	might	be	used	to
represent	a	"Draft"	stamp	which	might	then	be
applied	on	various	pages	at	various	locations.
The	fact	that	this	stamp	is	an	external	object
allows	the	viewing	application	to	cache	the
representation	and	also	allows	changes	to	the
stamp	to	affect	the	appearance	of	multiple
instances.

	

	 	

This	example	shows	how	to	load	an	image	into	a
PixMap	and	then	draw	it	on	the	current	page	using	the
AddXObject	method.

[C#]
using	(Doc	doc	=	new	Doc())	{
		doc.Rect.Inset(50,	50);
		doc.Transform.Rotate(20,	200,	200);
		doc.Color.SetRgb(200,	200,	255);
		doc.FillRect();
		PixMap	pm	=	new
PixMap(doc.ObjectSoup);
		Image	img	=
Image.FromFile("mypic.png");
		pm.SetBitmap(img	as	Bitmap,	true);
		doc.AddXObject(pm);
		doc.Save("examplePixMapBitmap.pdf");
}

Example
	

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				doc.Rect.Inset(50,	50)
				doc.Transform.Rotate(20,	200,	200)
				doc.Color.SetRgb(200,	200,	255)
				doc.FillRect()
				Dim	pm	As	New
PixMap(doc.ObjectSoup)
				Dim	img	As	Image	=
Image.FromFile("mypic.png")
				pm.SetBitmap(TryCast(img,	Bitmap),
True)
				doc.AddXObject(pm)
				doc.Save("examplePixMapBitmap.pdf")
		End	Using
End	Sub

examplePixMapBitmap.pdf

	 	

	

	

	

Append	Function 	

Appends	a	PDF	to	the	end	of	the	document.

	
	

Syntax 	

[C#]
void	Append(Doc	doc)

[Visual	Basic]
Sub	Append(doc	As	Doc)

	

	

Params 	

Name Description

doc The	document	to	add	to	the	end	of	this	one.

	

	

Use	this	method	to	append	one	PDF	to	the	end	of
another	one.

Individual	pages	from	one	PDF	can	be	drawn	into
another	using	the	AddImageDoc	method.

If	you	are	inserting	a	number	of	pages	it	is	much	faster
to	use	the	Append	method	than	to	draw	pages
individually.	It	also	has	the	advantage	of	maintaining
other	information	such	as	bookmarks.

If	you	are	inserting	pages	that	contain	form	fields,	you

Notes 	
may	want	to	call	MakeFieldsUnique	to	avoid	sharing
fields	across	pages.

The	Refactor	setting	determines	whether	new/modified
redundant	objects	are	eliminated.	The	Preflight	setting
determines	whether	objects	in	the	destination
document	are	validated	before	this	operation	is
performed.	Unless	the	document	and	the	pages	are	big
in	terms	of	memory	use	and	have	many	common
objects,	it	is	faster	to	disable	refactor	and	preflight	for
adding	the	pages	and	enable	them	for	saving	the
document.	You	can	use	SetInfo	to	change	these
settings.

	

	

The	following	code	snippet	illustrates	how	one	might	join	two
PDF	documents	together.

[C#]
Doc	theDoc1	=	new	Doc();
theDoc1.FontSize	=	192;
theDoc1.TextStyle.HPos	=	0.5;
theDoc1.TextStyle.VPos	=	0.5;
theDoc1.AddText("Hello");
Doc	theDoc2	=	new	Doc();
theDoc2.FontSize	=	192;
theDoc2.TextStyle.HPos	=	0.5;
theDoc2.TextStyle.VPos	=	0.5;
theDoc2.AddText("World");
theDoc1.Append(theDoc2);
theDoc1.Save(Server.MapPath("docjoin.pdf"));
theDoc1.Clear();
theDoc2.Clear();

[Visual	Basic]

Example

	

Dim	theDoc1	As	Doc	=	New	Doc()	
theDoc1.FontSize	=	192
theDoc1.TextStyle.HPos	=	0.5
theDoc1.TextStyle.VPos	=	0.5
theDoc1.AddText("Hello")
Dim	theDoc2	As	Doc	=	New	Doc()	
theDoc2.FontSize	=	192
theDoc2.TextStyle.HPos	=	0.5
theDoc2.TextStyle.VPos	=	0.5
theDoc2.AddText("World")
theDoc1.Append(theDoc2)
theDoc1.Save(Server.MapPath("docjoin.pdf"))
theDoc1.Clear()
theDoc2.Clear()

docjoin.pdf	[Page	1]

docjoin.pdf	[Page	2]

	

	

	

Chainable	Function 	 	

Determines	if	an	object	is	chainable.

	
	 	

Syntax 	

[C#]
bool	Chainable(int	id)

[Visual	Basic]
Function	Chainable(id	As	Integer)
As	Boolean

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be
tested.

return Whether	the	object	is	chainable	or	not.

	

	 	

Use	this	method	to	determine	if	an	object	is
chainable.

Some	objects	can	be	chained.	A	chunk	of	text
may	be	chained	from	page	to	page	on	the
output	PDF.	Similarly	a	web	page	may	be
chained	from	page	to	page.

Notes
	 This	method	allows	you	to	determine	if	the
object	you	have	added	is	chainable	or	whether
it	is	at	the	end	of	the	chain.

Only	text,	PostScript	images	and	web	pages
can	be	chainable.	So	your	ID	should	have	been
obtained	from	a	previous	call	to	one	of	the
AddImage	family	of	calls	or	from	AddHtml.

	

	 	

Example 	
See	the	AddImageToChain	method.

	
	 	

	

	

Clear	Function 	 	

Clears	the	document.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Use	this	method	to	release	resources	and
return	the	document	to	a	just-created	state.

	

	 	

Example 	
None.

	
	 	

	

	

ClearCachedDecompressedStreams
Function

Clears	the	cached,	decompressed	data	for	stream	objects.

	

Syntax 	

[C#]
void	ClearCachedDecompressedStreams()
void
ClearCachedDecompressedStreams(StreamObjectTypes
types)

[Visual	Basic]
Sub	ClearCachedDecompressedStreams()
Sub	ClearCachedDecompressedStreams(types	As
StreamObjectTypes)

	

Params 	

Name Description

types
The	types	of	stream	objects	whose	cached,
decompressed	data	are	discarded.	The	default
value	is	All.

	

Use	this	method	to	discards	the	cached,	decompressed	data
for	multiple	stream	objects.

Notes
	

The	StreamObjectTypes	enumeration	may	take	a
combination	of	the	following	values:

None	–	no	stream	object.
All	–	all	stream	objects.
Others	–	stream	objects	not	of	the	below	types.
PixMap
FormXObject	–	Form	XObject.
TilingPattern	–	tiling	pattern	object.
StreamShadingObject	–	shading	objects	that	are
streams.
StreamFunction	–	function	objects	that	are	streams.

You	can	apply	the	effect	to	a	single	stream	object	using
StreamObject.ClearCachedDecompressed.

	

Example 	
None.

	

	

	

Delete	Function 	

Deletes	an	object	previously	added	to	the	document.

	
	

Syntax 	

[C#]
void	Delete(int	id)

[Visual	Basic]
Sub	Delete(id	As	Integer)

	

	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be	deleted.

	

	

Notes 	

Use	this	method	to	delete	an	object	previously	added	to
the	document.

Deletion	is	most	commonly	applied	to	pages	to	remove
them	from	the	document.	For	example	to	delete	the
current	page	you	might	use	the	following	code:

theDoc.Delete	theDoc.Page

	

	

Example

	

The	following	code	snippet	illustrates	how	one	might	add	an
image	and	then	delete	it	if	the	image	color	space	is	CMYK.

[C#]
Doc	theDoc	=	new	Doc();
string	thePath	=
Server.MapPath("../mypics/mypic.jpg");
int	theID1	=	theDoc.AddImageFile(thePath,	1);
int	theID2	=	theDoc.GetInfoInt(theID1,
"XObject");
int	theComps	=	theDoc.GetInfoInt(theID2,
"Components");
if	(theComps	==	4)	theDoc.Delete(theID1);
theDoc.Save(Server.MapPath("docdelete.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.jpg")	
Dim	theID1	As	Integer	=
theDoc.AddImageFile(thePath,	1)	
Dim	theID2	As	Integer	=
theDoc.GetInfoInt(theID1,"XObject")	
Dim	theComps	As	Integer	=
theDoc.GetInfoInt(theID2,"Components")	
If	theComps	=	4	Then	theDoc.Delete(theID1)
theDoc.Save(Server.MapPath("docdelete.pdf"))
theDoc.Clear()

docdelete.pdf

	

	

EmbedFont	Function

Embeds	a	font	into	the	document.

	

Syntax 	

[C#]
int	EmbedFont(string	name)
int	EmbedFont(string	name,	LanguageType
language)
int	EmbedFont(string	name,	LanguageType
language,	bool	vertical)
int	EmbedFont(string	name,	LanguageType
language,	bool	vertical,	bool	subset)
int	EmbedFont(string	name,	LanguageType
language,	bool	vertical,	bool	subset,	bool
force)

[Visual	Basic]
Function	EmbedFont(name	As	String)	As
Integer
Function	EmbedFont(name	As	String,	language
As	LanguageType)	As	Integer
Function	EmbedFont(name	As	String,	language
As	LanguageType,	vertical	As	Boolean)	As
Integer
Function	EmbedFont(name	As	String,	language
As	LanguageType,	vertical	As	Boolean,
subset	As	Boolean)	As	Integer
Function	EmbedFont(name	As	String,	language
As	LanguageType,	vertical	As	Boolean,
subset	As	Boolean,	force	As	Boolean)	As
Integer

	

Params
	

Name Description
name The	name	of	the	font	typeface.

language

The	language	type	to	use.	The	LanguageType
enumeration	may	take	the	following	values:

Latin
Unicode
Korean
Japanese
ChineseS
ChineseT

See	the	Fonts	and	Languages	section	for	details
on	language	types.	The	default	language	type	is
LanguageType.Latin.

vertical

Whether	the	text	direction	should	be	vertical.

See	the	Fonts	and	Languages	section	for	details
on	writing	directions.	The	default	is	false	to
indicate	standard	left	to	right	layout.

subset

Whether	to	subset	the	font.

See	the	Fonts	and	Languages	section	for	details
on	subsetting.	The	default	is	false	to	indicate
that	the	font	should	not	be	subsetted.

Whether	to	override	permissions	on	the	font.

Fonts	often	contain	embedded	licensing

force information.	By	default	ABCpdf	will	prevent	you
from	embedding	fonts	which	indicate	that
embedding	is	not	permitted.

You	can	force	the	font	to	be	embedded	by
passing	true	for	this	value.

return The	Object	ID	of	the	newly	embedded	Font
Object.

	

Embeds	a	font	into	the	document.

The	font	name,	a	description	of	the	font	style	and	the	the
font	glyph	descriptions	themselves	are	placed	into	the
document.	This	ensures	that	the	document	will	always
display	perfectly	on	every	system	and	that	font	substitutions
will	never	need	to	be	made.

There	are	a	number	of	reasons	you	may	not	wish	to	embed
fonts	and	instead	use	the	AddFont	method.	Embedding
fonts	can	increase	the	size	of	your	PDF	considerably.
Additionally	by	distributing	a	PDF	with	an	embedded	font
you	are	actually	redistributing	the	font	itself.	You	should
check	with	your	font	supplier	or	legal	department	that	you
have	permission	to	do	this.

For	information	on	how	to	specify	font	names	see	the
AddFont	method.

The	EmbedFont	function	returns	the	Object	ID	of	the	newly
added	Font	Object.	Typically	you	will	want	to	assign	this
return	value	to	the	document	Font	property	using	code	of	the
form.

theDoc.Font	=	theDoc.AddFont("Courier");

Notes 	

If	the	specified	font	could	not	be	found	then	you	will	get	an
Object	ID	of	zero	returned.	You	may	wish	to	check	for	this
possibility	otherwise	a	default	font	will	be	used.

Fonts	are	cached	so	newly	added	fonts	will	not	be	available
to	ABCpdf	until	the	application	is	restarted.	If	you	need	to
dynamically	load	a	font	you	can	pass	this	method	a	path	to
your	font	file.	This	will	add	the	font	to	the	cache	and	make	it
available	for	use.	You	should	not	move,	rename	or	delete	a
font	file	which	has	been	dynamically	loaded	using	this
technique.

Why	is	my	language	a	string?

In	older	versions	of	ABCpdf	the	language	parameter
was	a	string.	So	you	might	find	code	of	this	form.

theDoc.EmbedFont("Courier",	"Unicode")

In	more	recent	releases	the	language	parameter	has
been	changed	to	a	true	enumeration.	This	is	a	safer
way	of	coding	as	it	allows	the	compiler	to	ensure	that
the	values	you	are	using	are	valid.	Your	new	code
should	look	like	this.

theDoc.EmbedFont("Courier",
LanguageType.Unicode)

The	names	of	the	items	in	the	LanguageType
enumeration	are	the	same	as	the	values	of	the	strings
used	in	previous	versions.	So	changing	your	code
should	be	a	simple	search	and	replace	operation.	If
you	see	a	language	of	""	this	equates	to
LanguageType.Latin.

	

	

Example

	

The	following	code	embeds	the	font	'Comic	Sans	MS'	into	the
document	and	then	adds	some	text.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	216;
string	theFont	=	"Comic	Sans	MS";
theDoc.Font	=	theDoc.EmbedFont(theFont);
theDoc.AddText(theFont);
theDoc.Save(Server.MapPath("docembedfont.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	216
Dim	theFont	As	String	=	"Comic	Sans	MS"	
theDoc.Font	=	theDoc.EmbedFont(theFont)
theDoc.AddText(theFont)
theDoc.Save(Server.MapPath("docembedfont.pdf"))
theDoc.Clear()

docembedfont.pdf

	

	

FillRect	Function

Adds	a	painted	rectangle	to	the	current	page.

	

Syntax 	

[C#]
int	FillRect()
int	FillRect(double	radiusX,	double
radiusY)

[Visual	Basic]
Function	FillRect()	As	Integer
Function	FillRect(radiusX	As	Double,
radiusY	As	Double)	As	Integer

	

Params 	

Name Description
radiusX The	horizontal	radius	to	use	for	rounded	corners.
radiusY The	vertical	radius	to	use	for	rounded	corners.

return The	Object	ID	of	the	newly	added	Graphic
Object.

	

Adds	a	painted	rectangle	to	the	current	page.	The
rectangle	location	and	size	is	determined	by	the	current
rectangle,	the	fill	color	is	determined	by	the	current	color
and	any	options	are	determined	by	the	current	options.

By	specifying	values	for	the	horizontal	and	vertical	radius

Notes 	

parameters	you	can	draw	rectangles	with	rounded	corners.
The	values	refer	to	the	radii	of	the	ellipse	used	to	draw	the
corners.

By	setting	the	horizontal	radius	parameter	to	half	the	width
of	the	rect	and	the	vertical	radius	parameter	to	half	the
height	of	the	rect	you	can	draw	filled	ovals	and	circles.

The	FillRect	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

Example

	

The	following	code	adds	a	blue	filled	rectangle	to	a	document.
The	frame	is	inset	from	the	edges	of	the	document	by	200	points
horizontally	and	100	points	vertically.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(200,	100);
theDoc.Color.Blue	=	255;
theDoc.FillRect();
theDoc.Save(Server.MapPath("docfillrect.pdf"));
theDoc.Clear();	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(200,	100)
theDoc.Color.Blue	=	255
theDoc.FillRect()
theDoc.Save(Server.MapPath("docfillrect.pdf"))
theDoc.Clear()

docfillrect.pdf

	

	

FitHtml	Function 	 	

Fit	a	block	of	HTML	styled	text	into	the	current
rectangle.

	

	 	

Syntax 	

[C#]
int	FitHtml(string	text)

[Visual	Basic]
Function	FitHtml(text	As	String)
As	Integer

	

	 	

Params 	

Name Description
text The	HTML	to	be	added	to	the	page.

return The	Object	ID	of	the	newly	added	Text
Object.

	

	 	

Notes 	

Fit	a	block	of	HTML	styled	text	into	the	current
rectangle	on	the	current	page.

This	function	is	similar	to	AddHtml	but	can	be
used	in	situations	in	which	you	have	a	set	area
into	which	you	know	your	text	should	be	fitted.
The	call	will	take	the	base	text	supplied	and
scale	it	appropriately	until	it	fits	as	exactly	as
possible	into	the	current	Rect.

	 	

	

Example 	
None.

	
	 	

	

	

FitText	Function 	 	

Fit	a	block	of	text	into	the	current	rectangle	on
the	current	page.

	

	 	

Syntax 	

[C#]
int	FitText(string	text)

[Visual	Basic]
Function	FitText(text	As	String)
As	Integer

	

	 	

Params 	

Name Description
text The	text	to	be	added	to	the	page.

return The	Object	ID	of	the	newly	added	Text
Object.

	

	 	

Notes 	

Fit	a	block	of	text	into	the	current	rectangle	on
the	current	page.

This	function	is	similar	to	AddText	but	can	be
used	in	situations	in	which	you	have	a	set	area
into	which	you	know	your	text	should	be	fitted.
The	call	will	take	the	base	text	supplied	and
scale	it	appropriately	until	it	fits	as	exactly	as
possible	into	the	current	Rect.

	 	

For	fitting	multi-styled	text	you	should	use	the
FitHtml	method	which	is	used	for	adding	HTML
styled	text.

	

Example 	
None.

	
	 	

	

	

Flatten	Function 	 	

Flattens	and	compresses	the	current	page.

	
	 	

Syntax 	

[C#]
int	Flatten()

[Visual	Basic]
Function	Flatten()	As	Integer

	

	 	

Params 	

Name Description
return n/a.

	

	 	

Notes 	

Objects	added	to	a	page	are	stored	as
individual	layers.	Calling	this	method	combines
all	the	layers	on	the	current	page	and	then	re-
compresses	the	layer	data.

For	pages	that	contain	only	a	few	layers	the
reduction	in	size	will	be	minimal.	However	for
pages	which	contain	complex	tables	with	many
items,	flattening	can	reduce	the	size	of	the
output	PDF	by	a	factor	of	five	or	more. 	 	

Note	that	flattening	will	delete	all	the	items
currently	on	the	page	and	replace	them	with	a
new	compressed	item.	This	means	that	Object
IDs	previously	obtained	from	calls	such	as
AddText	or	FrameRect	will	no	longer	be	valid.

	

Example 	

See	the	Small	Table	Example	and	Large	Table
Example.

	

	 	

	

	

FrameRect	Function

Adds	a	rectangular	frame	to	the	current	page.

	

Syntax 	

[C#]
int	FrameRect()
int	FrameRect(bool	inside)	
int	FrameRect(double	radiusX,	double
radiusY)
int	FrameRect(double	radiusX,	double
radiusY,	bool	inside)

[Visual	Basic]
Function	FrameRect()	As	Integer
Function	FrameRect(inside	As	Boolean)	As
Integer	
Function	FrameRect(radiusX	As	Double,
radiusY	As	Double)	As	Integer
Function	FrameRect(radiusX	As	Double,
radiusY	As	Double,	inside	As	Boolean)	As
Integer

	

Params
	

Name Description
radiusX The	horizontal	radius	to	use	for	rounded	corners.
radiusY The	vertical	radius	to	use	for	rounded	corners.
inside Whether	to	draw	the	frame	inside	the	rectangle.
return The	Object	ID	of	the	newly	added	Graphic	Object.

	

Notes 	

Adds	a	rectangular	frame	to	the	current	page.	The	frame
location	and	size	is	determined	by	the	current	rectangle,	the
line	color	is	determined	by	the	current	color,	the	line	width	is
determined	by	the	current	width	and	any	options	are
determined	by	the	current	options.

By	specifying	values	for	the	horizontal	and	vertical	radius
parameters	you	can	draw	rectangles	with	rounded	corners.
The	values	refers	to	the	radii	of	the	ellipse	used	to	draw	the
corners.

By	setting	the	horizontal	radius	parameter	to	half	the	width
of	the	rect	and	the	vertical	radius	parameter	to	half	the
height	of	the	rect	you	can	draw	ovals	and	circles.

By	default	frames	are	drawn	round	the	outside	of	the	current
rectangle.	This	allows	you	to	add	content	and	then	frame	it
ensuring	that	the	frame	and	the	content	do	not	overlap.
However	sometimes	you	may	wish	to	draw	the	frame	round
the	inside	of	the	rectangle.	You	can	do	this	by	setting	the
inside	parameter	to	true.

The	FrameRect	function	returns	the	Object	ID	of	the	newly
added	Graphic	Object.

	

The	following	code	adds	a	black	frame	to	a	document.	The	frame	is
inset	from	the	edges	of	the	document	by	50	points	horizontally	and
100	points	vertically.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(50,	100);
theDoc.FrameRect();

Example 	

theDoc.Save(Server.MapPath("docframerect.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(50,	100)
theDoc.FrameRect()
theDoc.Save(Server.MapPath("docframerect.pdf"))
theDoc.Clear()

docframerect.pdf

	

	

GetData	Function 	 	

Saves	a	document	to	memory.

	
	 	

Syntax 	

[C#]
byte[]	GetData()

[Visual	Basic]
Function	GetData()	As	Byte()

	may	throw	Exception()

	

	 	

Params 	

Name Description

return The	PDF	document	as	an	array	of
bytes.

	

	 	

Normally,	you	will	want	to	save	your	documents
using	the	Save	method.	However,	sometimes
you	will	need	to	obtain	your	PDF	as	raw	data
rather	than	in	a	file.	The	GetData	method	allows
you	to	do	this.

You	may	wish	to	write	a	PDF	directly	to	a	client
browser	rather	than	going	through	an
intermediate	file.	The	data	you	obtain	using
GetData	can	be	written	direct	to	an	HTTP
stream	using	Response.BinaryWrite.	Similarly,
you	may	wish	to	obtain	raw	data	for	insertion
into	a	database.

The	Refactor	setting	determines	whether
new/modified	redundant	objects	are	eliminated
when	the	document's	data	is	obtained.	You	can
use	SetInfo	to	change	the	setting.

PDFs	and	Internet	Explorer.	The
combination	of	Internet	Explorer	and
Acrobat	is	not	always	trouble	free	-
particularly	under	https	or	using	older
versions	of	Explorer.	It	can	be	difficult	to
know	exactly	where	the	problem	lies
because	there	is	an	interaction	of	the
Operating	System,	Explorer	and	Acrobat.
Any	of	these	can	be	the	cause.

Sometimes,	Explorer	may	get	'stuck'	on	a
particular	content	type	and	insist	on
displaying	your	PDF	as	HTML.	In	this
case,	you	will	see	random	text	starting
with	%PDF.	Sometimes,	this	can	happen	if
you	stream	PDF	data	to	a	window	which
was	previously	displaying	HTML.

Sometimes,	server-side	debugging	results
in	extra	data	being	inserted	into	the
content	stream.	While	this	may	not	matter
for	HTML,	it	will	corrupt	binary	documents
like	PDF.

Notes 	

Sometimes,	your	code	may	inadvertently
insert	extra	data	into	the	content	stream.
Again,	this	will	corrupt	the	PDF.	Error
messages	are	a	common	cause	of	this
kind	of	corruption.

HTTP	compression	may	result	in	PDF
streams	being	compressed	before	return
to	the	browser.	While	browsers	are	able	to
deal	with	this	type	of	compression,
Acrobat	may	not	be	able	to.	You	can	see	if
this	type	of	compression	is	being	used	by
examining	the	headers	returned	to	the
browser	using	a	tool	like	IEWatch.	If	you
are	using	IIS	6	compression,	you	can
disable	it	on	a	page	by	page	basis	using
the	IIS	Metabase	Explorer	from	the	IIS	6
resource	kit.

Sometimes,	the	use	of	HTTPS	with	PDF
content	can	be	problematic.	For	example,
see	Microsoft	KB812935.

For	testing	purposes,	you	may	wish	to
change	the	content-disposition	from	'inline'
to	'attachment'.	This	will	allow	you	to
download	the	data	rather	than	view	it	in
your	browser.	You	can	then	check	the
downloaded	document	using	Acrobat	or	a
hex	editor.

Alternatively,	if	the	problem	is	that	PDFs
seem	to	be	cached	you	may	wish	to	check
the	'Enable	Content	Expiration'	checkbox
you	will	find	under	the	Web	Site
Properties.

We	would	suggest	two	steps:

	 	

http://support.microsoft.com/kb/812935

1.	 Your	first	step	should	be	to	eliminate
ABCpdf	as	the	cause.	Why	not	save
the	PDF	to	disk	at	the	same	time	as
sending	it	to	the	client?	That	way	you
can	establish	that	the	PDF	is	fine.	If
you	want	to	take	it	further,	you	can
then	read	the	PDF	data	from	disk	and
stream	it	direct	to	the	client.

2.	 The	example	site	streams	PDF	data
direct	to	the	client.	So,	install	the
example	site	into	a	new	virtual
directory	and	establish	if	the	same
issue	exists	for	the	example	site.	If	it
works,	then	it's	simply	a	matter	of
moving	your	current	code	base	and
the	example	site	code	base	towards
each	other	until	you	find	the	cause	of
the	problem.

	

The	following	code	illustrates	how	one	might
add	text	to	a	PDF	and	then	write	it	direct	to	the
client	browser.	This	code	is	an	entire	ASP.NET
page	-	hello.aspx.

[C#]
<%	@Page	Language="C#"	%>
<%	@Import
Namespace="WebSupergoo.ABCpdf10"
%>
<%
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;

Example 	

theDoc.AddText("Hello	World");
byte[]	theData	=
theDoc.GetData();
Response.Clear();
Response.ContentType	=
"application/pdf";
Response.AddHeader("content-
disposition",	"inline;
filename=MyPDF.PDF");
Response.AddHeader("content-
length",
theData.Length.ToString());	
Response.BinaryWrite(theData);
Response.End();	
%>

[Visual	Basic]
<%	@Page	Language="Visual	Basic"
%>
<%	@Import
Namespace="WebSupergoo.ABCpdf10"
%>
<%
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Hello	World")
Dim	theData()	As	Byte	=
theDoc.GetData()
Response.Clear()
Response.ContentType	=
"application/pdf"
Response.AddHeader("content-
disposition",	"inline;
filename=MyPDF.PDF")
Response.AddHeader("content-
length",

	 	

theData.Length.ToString())
Response.BinaryWrite(theData)
Response.End()	
%>

hello.asp

	

	

	

GetInfo	Function 	 	

Gets	string	information	about	an	object.

	
	 	

Syntax 	

[C#]
string	GetInfo(int	id,	string
type)

[Visual	Basic]
Function	GetInfo(id	As	Integer,
type	As	String)	As	String

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be
queried.

type The	type	of	information	to	be	retrieved.

return The	returned	information.

	

	 	

After	you	modify	a	document	you	may	want	to
get	back	information	about	the	objects	you	have
added.	For	example	you	might	want	to	find	out
the	natural	dimensions	of	an	image	or	you	might

Notes 	

want	to	find	out	how	many	characters	were
drawn	when	you	inserted	some	text.	This
method	allows	you	access	to	this	information.

There	are	core	information	types	that	all	objects
support.	There	are	also	information	types
specific	to	particular	types	of	object.	You	can
use	core	information	types	to	allow	you	to
iterate	through	every	object	in	your	document
finding	out	specific	information	about	each	of
them.

If	the	object	does	not	exist	or	does	not	support
the	requested	type	of	information	then	an	empty
string	is	returned.

Every	object	supports	the	ID	and	Type
properties.	For	more	detailed	information	about
this	and	other	properties	see	the	Object	Paths
section	of	this	document.

PDF	objects	are	case	sensitive	so	be	sure	you
use	the	correct	case	when	specifying
information.

	

	 	

The	following	code	snippet	illustrates	how	one	might
report	the	natural	dimensions	of	an	image.

[C#]
Doc	theDoc	=	new	Doc();
string	thePath	=
Server.MapPath("../mypics/mypic.jpg");
int	theID1	=
theDoc.AddImageFile(thePath,	1);
int	theID2	=	theDoc.GetInfoInt(theID1,
"XObject");

Example 	

string	theWidth	=
theDoc.GetInfo(theID2,	"Width");
string	theHeight	=
theDoc.GetInfo(theID2,	"Height");
Response.Write("Width	"	+	theWidth	+	"

");
Response.Write("Height	"	+	theHeight	+
"
");
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.jpg")	
Dim	theID1	As	Integer	=
theDoc.AddImageFile(thePath,	1)	
Dim	theID2	As	Integer	=
theDoc.GetInfoInt(theID1,"XObject")	
Dim	theWidth	As	String	=
theDoc.GetInfo(theID2,"Width")	
Dim	theHeight	As	String	=
theDoc.GetInfo(theID2,"Height")	
Response.Write("Width	"	+	theWidth	+	"

")
Response.Write("Height	"	+	theHeight	+
"
")
theDoc.Clear()

This	is	the	kind	of	output	you	might	expect.

Width	480

Height	640

	

	 	

	

	

GetInfoDate	Function 	 	

Gets	date	information	about	an	object.

	
	 	

Syntax 	

[C#]
DateTime	GetInfoDate(int	id,
string	type)
DateTime	GetInfoDate(int	id,
string	type,	bool	allowLocal)

[Visual	Basic]
Function	GetInfoDate(id	As
Integer,	type	As	String)	As
DateTime
Function	GetInfoDate(id	As
Integer,	type	As	String,
allowLocal	As	Boolean)	As
DateTime

	

	 	

Name Description

id The	Object	ID	of	the	object	to	be
queried.

type The	type	of	information	to	be
retrieved.

Params 	

allowLocal

For	dates	containing	time	zone
information,	if	the	parameter	is
true,	the	returned	values	will	be
local	times	(local	to	the	time	zone
of	the	dates,	and	not	to	the	local
machine);	if	the	parameter	is	false,
the	returned	values	will	be	UTC
times.	The	default	is	false.

return The	returned	value.

	

	 	

Notes 	

This	function	behaves	identically	to	the	GetInfo
method	but	returns	a	DateTime	rather	than	a
string.	If	the	information	cannot	be	obtained	or
is	not	a	date,	then	the	return	value	will	be	the
zero	DateTime.

PDF	dates	also	contain	times.	They	are	stored
as	strings	in	PDF	so	this	function	is	mostly	used
with	the	:Text	object	type.

	

	 	

Example 	

See	the	GetInfo	function.

	

	

	 	

	

	

GetInfoDouble	Function 	 	

Gets	numeric	information	about	an	object.

	
	 	

Syntax 	

[C#]
double	GetInfoDouble(int	id,
string	type)

[Visual	Basic]
Function	GetInfoDouble(id	As
Integer,	type	As	String)	As
Double

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be
queried.

type The	type	of	information	to	be	retrieved.

return The	returned	value.

	

	 	

	

This	function	behaves	identically	to	the	GetInfo
method	but	returns	a	double	rather	than	a
string.	If	the	information	cannot	be	obtained	or

Notes is	not	numeric,	the	return	value	will	be	zero.

	

	 	

Example 	

See	the	GetInfo	function.

	

	

	 	

	

	

GetInfoInt	Function 	 	

Gets	numeric	information	about	an	object.

	
	 	

Syntax 	

[C#]
int	GetInfoInt(int	id,	string
type)

[Visual	Basic]
Function	GetInfoInt(id	As
Integer,	type	As	String)	As
Integer

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be
queried.

type The	type	of	information	to	be	retrieved.

return The	returned	integer.

	

	 	

	

This	function	behaves	identically	to	the	GetInfo
method	but	returns	an	integer	rather	than	a
string.	If	the	information	cannot	be	obtained	or

Notes is	not	numeric,	the	return	value	will	be	zero.

	

	 	

Example 	

See	the	GetInfo	function.

	

	

	 	

	

	

GetInfoInt64	Function 	 	

Gets	numeric	information	about	an	object.

	
	 	

Syntax 	

[C#]
long	GetInfoInt64(int	id,	string
type)

[Visual	Basic]
Function	GetInfoInt64(id	As
Integer,	type	As	String)	As	Long

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	object	to	be
queried.

type The	type	of	information	to	be	retrieved.

return The	returned	integer.

	

	 	

Notes
	

This	function	behaves	identically	to	the	GetInfo
method	but	returns	a	64-bit	integer	rather	than	a
string.	If	the	information	cannot	be	obtained	or
is	not	numeric,	the	return	value	will	be	zero.

	 	

	

Example 	

See	the	GetInfo	function.

	

	

	 	

	

	

GetStream	Function 	 	

Gets	a	document	as	raw	data	stream.

	
	 	

Syntax 	

[C#]
Stream	GetStream()

[Visual	Basic]
Function	GetStream()	As	Stream

	may	throw	Exception()

	

	 	

Params 	

Name Description

return The	PDF	document	as	a	stream.

	

	 	

Normally,	you	will	want	to	save	your	documents
using	the	Save	method.	However,	sometimes
you	will	need	to	obtain	your	PDF	as	raw	data
rather	than	in	a	file.	The	GetStream	method
allows	you	to	do	this.

You	may	wish	to	write	a	PDF	directly	to	a	client

browser	rather	than	going	through	an
intermediate	file.	The	data	you	obtain	using
GetStream	can	be	written	direct	to	an	HTTP
stream	using	Response.BinaryWrite.	Similarly,
you	may	wish	to	obtain	raw	data	for	insertion
into	a	database.

Because	of	the	CLR	limit	of	2	GB	per	object,	the
GetData	method	cannot	return	the	data	for	a
document	larger	than	2	GB.	Use	this	method	for
documents	larger	than	2	GB.	Dispose	of	the
returned	stream	as	soon	as	it	is	no	longer
needed	for	small	memory	footprint.

The	Refactor	setting	determines	whether
new/modified	redundant	objects	are	eliminated
when	the	document's	data	is	obtained.	You	can
use	SetInfo	to	change	the	setting.

PDFs	and	Internet	Explorer.	The
combination	of	Internet	Explorer	and
Acrobat	is	not	always	trouble	free	-
particularly	under	https	or	using	older
versions	of	Explorer.	It	can	be	difficult	to
know	exactly	where	the	problem	lies
because	there	is	an	interaction	of	the
Operating	System,	Explorer	and	Acrobat.
Any	of	these	can	be	the	cause.

Sometimes,	Explorer	may	get	'stuck'	on	a
particular	content	type	and	insist	on
displaying	your	PDF	as	HTML.	In	this
case,	you	will	see	random	text	starting
with	%PDF.	Sometimes,	this	can	happen	if
you	stream	PDF	data	to	a	window	which
was	previously	displaying	HTML.

Notes 	

Sometimes,	server-side	debugging	results
in	extra	data	being	inserted	into	the
content	stream.	While	this	may	not	matter
for	HTML,	it	will	corrupt	binary	documents
like	PDF.

Sometimes,	your	code	may	inadvertently
insert	extra	data	into	the	content	stream.
Again,	this	will	corrupt	the	PDF.	Error
messages	are	a	common	cause	of	this
kind	of	corruption.

HTTP	compression	may	result	in	PDF
streams	being	compressed	before	return
to	the	browser.	While	browsers	are	able	to
deal	with	this	type	of	compression,
Acrobat	may	not	be	able	to.	You	can	see	if
this	type	of	compression	is	being	used	by
examining	the	headers	returned	to	the
browser	using	a	tool	like	IEWatch.	If	you
are	using	IIS	6	compression,	you	can
disable	it	on	a	page	by	page	basis	using
the	IIS	Metabase	Explorer	from	the	IIS	6
resource	kit.

Sometimes,	the	use	of	HTTPS	with	PDF
content	can	be	problematic.	For	example,
see	Microsoft	KB812935.

For	testing	purposes,	you	may	wish	to
change	the	content-disposition	from	'inline'
to	'attachment'.	This	will	allow	you	to
download	the	data	rather	than	view	it	in
your	browser.	You	can	then	check	the
downloaded	document	using	Acrobat	or	a
hex	editor.

Alternatively,	if	the	problem	is	that	PDFs
seem	to	be	cached	you	may	wish	to	check

	 	

http://support.microsoft.com/kb/812935

the	'Enable	Content	Expiration'	checkbox
you	will	find	under	the	Web	Site
Properties.

We	would	suggest	two	steps:

1.	 Your	first	step	should	be	to	eliminate
ABCpdf	as	the	cause.	Why	not	save
the	PDF	to	disk	at	the	same	time	as
sending	it	to	the	client?	That	way	you
can	establish	that	the	PDF	is	fine.	If
you	want	to	take	it	further,	you	can
then	read	the	PDF	data	from	disk	and
stream	it	direct	to	the	client.

2.	 The	example	site	streams	PDF	data
direct	to	the	client.	So,	install	the
example	site	into	a	new	virtual
directory	and	establish	if	the	same
issue	exists	for	the	example	site.	If	it
works,	then	it's	simply	a	matter	of
moving	your	current	code	base	and
the	example	site	code	base	towards
each	other	until	you	find	the	cause	of
the	problem.

	

The	following	code	illustrates	how	one	might
add	text	to	a	PDF	and	then	write	it	direct	to	the
client	browser.	This	code	is	an	entire	ASP.NET
page	-	hello.aspx.

[C#]
<%	@Page	Language="C#"	%>
<%	@Import

Namespace="WebSupergoo.ABCpdf10"
%>
<%
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Hello	World");
using	(Stream	theStream	=
theDoc.GetStream())	{
		Response.Clear();
		Response.ContentType	=
"application/pdf";
		Response.AddHeader("content-
disposition",	"inline;
filename=MyPDF.PDF");
		Response.AddHeader("content-
length",
theStream.Length.ToString());
		long	theLen	=	theStream.Length;
		byte[]	theData	=	new	byte[theLen
>=	32768?	32768:	(int)theLen];
		while	(theLen	>	0)	{
				theStream.Read(theData,	0,
theData.Length);
				Response.BinaryWrite(theData);
				theLen	-=	theData.Length;
				if	(theLen	<	theData.Length	&&
theLen	>	0)
						theData	=	new
byte[(int)theLen];
		}
}
Response.End();
%>

[Visual	Basic]
<%	@Page	Language="Visual	Basic"

Example 	

%>
<%	@Import
Namespace="WebSupergoo.ABCpdf10"
%>
<%
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Hello	World")
Using	theStream	As	Stream	=
theDoc.GetStream()
		Response.Clear()
		Response.ContentType	=
"application/pdf"
		Response.AddHeader("content-
disposition",	"inline;
filename=MyPDF.PDF")
		Response.AddHeader("content-
length",
theStream.Length.ToString())
		Dim	theLen	As	Long	=
theStream.Length;
		Dim	theData()	As	Byte	=	New
Byte(Math.Min(32768,	theLen))
		Do	While	theLen	>	0
				theStream.Read(theData,	0,
theData.Length)
				Response.BinaryWrite(theData)
				theLen	-=	theData.Length
				If	theLen	<	theData.Length
AndAlso	theLen	>	0	Then
						theData	=	New	Byte(theLen)
				End	If
		Loop
End	Using
Response.End()
%>

	 	

hello.asp

	

	

	

GetText	Function 	 	

Extract	content	from	the	current	page	in	a
specified	format.

	

	 	

Syntax 	

[C#]
string	GetText(string	type)
string	GetText(Page.TextType
type,	bool	includeAnnotations)

[Visual	Basic]
Function	GetText(type	As	String)
As	String
Function	GetText(type	As
Page.TextType,	includeAnnotations
As	Boolean)	As	String

	

	 	

Params
	

Name Description

type The	format	in	which	to
return	the	content.

includeAnnotations Whether	to	include	field
and	annotation	text.

return The	returned	content.

	 	

	

Notes 	

This	function	allows	you	to	extract	the	content
from	a	page.

This	is	a	convenience	function	for	easy	access
to	the	content	of	the	current	page.	For	full
details	of	how	text	extraction	works	see	the
Page.GetText	function.

The	following	formats	are	supported	-	"Text",
"SVG",	"SVG+",	"SVG+2"	and	"RawText".
These	types	can	be	specified	as	strings	for
backwards	compatibility	with	older	code.
However	in	newer	code	you	should	prefer	the
function	overload	that	takes	a	Page.TextType
enumeration.

Text	is	in	layout	order	which	may	not	be	the
same	as	reading	order.	ABCpdf	will	make
sensible	assumptions	on	how	items	of	text
should	be	combined	but	some	situations	are
ambiguous.

The	current	release	of	ABCpdf	is	much	more
sophisticated	than	previous	ones	when	it	comes
to	extracting	text.	However	if	you	are	relying	on
the	ABCpdf	8	simplified	model	you	can	use	the
"RawText"	format	for	backwards	compatibility.

	

	 	

Example 	

None.

	

	

	 	

	

	

MeasureText	Function 	 	

Measure	the	length	of	a	block	of	text	without
adding	it	to	the	page.

	

	 	

Syntax 	

[C#]
double	MeasureText(string	text)
double	MeasureText(string	text,
double	fontSize,	double
charSpacing,	double	wordSpacing,
bool	italic,	bool	bold,	double
outline)
double	MeasureText(string	text,
double	fontSize,	double
charSpacing,	double	wordSpacing,
bool	italic,	bool	bold,	double
outline,	int	defaultSize1000ths)

[Visual	Basic]
Function	MeasureText(text	As
String)	As	Double
Function	MeasureText(text	As
String,	fontSize	As	Double,
charSpacing	As	Double,
wordSpacing	As	Double,	italic	As
Boolean,	bold	As	Boolean,	outline
As	Double)	As	Double
Function	MeasureText(text	As
String,	fontSize	As	Double,
charSpacing	As	Double,
wordSpacing	As	Double,	italic	As
Boolean,	bold	As	Boolean,	outline

	 	

As	Double,	defaultSize1000ths	As
Integer)	As	Double

	

Params 	

Name Description
text The	text	to	be	measured.
fontSize The	size	of	the	font.

charSpacing The	spacing	to	be	applied
between	each	character.

wordSpacing The	spacing	to	be	applied
between	each	word.

italic Whether	a	synthetic	italic
style	is	to	be	applied.

bold Whether	a	synthetic	bold
style	is	to	be	applied.

outline The	size	of	any	outline	to
be	applied	to	the	font.

defaultSize1000ths
The	default	width	for
missing	characters	in
1000ths	of	an	M.

return The	width	of	the	text	in
the	units	procided.

	

	 	

Notes 	

This	function	is	used	to	measure	the	length	of	a
block	of	text	using	the	current	Font.

This	method	is	unit	agnostic	so	you	can	use
whatever	units	you	like	and	the	result	will	be
returned	in	terms	of	those	units.	However
typically	you	would	provide	point	based
measurements	to	provide	a	point	based	length.

	 	

	

Example 	
None.

	
	 	

	

	

Read	Function

Reads	an	existing	document.

	

Syntax 	

[C#]
void	Read(string	path)
void	Read(byte[]	data)
void	Read(Stream	stream)
void	Read(string	path,	string	password)
void	Read(byte[]	data,	string	password)
void	Read(Stream	stream,	string	password)
void	Read(string	path,	XReadOptions	options)
void	Read(byte[]	data,	XReadOptions	options)
void	Read(Stream	stream,	XReadOptions	options)

[Visual	Basic]
Sub	Read(path	As	String)
Sub	Read(data()	As	Byte)
Sub	Read(stream	As	Stream)
Sub	Read(path	As	String,	password	As	String)
Sub	Read(data()	As	Byte,	password	As	String)
Sub	Read(stream	As	Stream,	password	As	String)
Sub	Read(path	As	String,	options	As
XReadOptions)
Sub	Read(data()	As	Byte,	options	As
XReadOptions)
Sub	Read(stream	As	Stream,	options	As
XReadOptions)

	may	throw	Exception()

	

Params 	

Name Description

path The	file	path	to	the	PDF,	OpenOffice.org,	SVG,	RTF,
XPS	or	other	supported	document	type.

data The	source	PDF	data.

stream The	source	PDF	or	document	stream.

password Any	password	needed	to	open	the	document.

options The	settings	for	the	read.

	

Use	this	method	to	read	a	file	into	a	document	object.	Any
existing	document	content	will	be	discarded.	All	properties	will	be
set	back	to	their	defaults.

You	can	specify	a	PDF	as	a	file	path	or	by	passing	in	the	raw	PDF
data.	Raw	data	must	be	held	as	an	array	of	bytes.	You	can	open
encrypted	PDF	documents	if	you	supply	a	valid	password.

You	may	notice	that	colors	in	the	PDF	files	are	slightly	different	
you	are	reading	non-PDF	files.	PDF	handles	alpha	blending
differently	from	other	file	formats.	Refer	to
SwfImportOperation.Import	for	notes	about	alpha	blending.

Other	File	Types.	This	method	supports	the	import	of	a
range	of	other	file	types	as	standard.

For	the	import	of	doc	and	docx	formats	we	recommend	the
use	of	WordGlue	wherever	possible.	This	eliminates	the
installation	and	configuration	issues	which	can	be
associated	with	other	doc	import	applications.

If	OpenOffice.org	is	installed	you	can	pass	this	method	a	file
path	to	OpenOffice.org	compatible	documents.	This	means
you	can	read	file	types	like	Microsoft	Word	(.doc,	.docx),
Microsoft	Excel	(.xls,	xlsx),	Rich	Text	Format	(.rtf),
PowerPoint	(.ppt,	.pptx),	WordPerfect	(.wpd),	Lotus	1-2-3
(.wk1)	and	AutoCAD	(.dxf).

If	both	Microsoft	Office	and	.NET	3.5	are	installed	you	can
pass	this	method	a	path	to	any	Microsoft	Office	compatible
document.	By	default	the	Microsoft	Office	import	operation
works	direct	but	it	can	also	work	via	the	XPS	printer	driver	if
you	explicitly	specify	that	the	XpsAny	read	module	be	used.
ABCpdf	works	with	Office	2007	or	later.

Rich	Text	Format	(.rtf)	documents	are	automatically
imported	using	the	nativeABCpdf	Rich	Text	Format	read
module.	This	is	generally	the	simplest,	fastest	and	most
reliable	import	method.	However	if	you	have	specific	needs
you	can	also	import	them	using	the	OpenOffice.org	or
Microsoft	Office	XReadOptiions.ReadModules.

You	can	pass	this	method	a	file	path	to	an	SVG	or	SVGZ
document	for	conversion	to	PDF.	ABCpdf	supports	a	subset
of	SVG	based	around	the	SVG	Tiny	specification.	For
details	see	the	SVG	Support	section	of	the	documentation.
You	can	also	pass	a	file	path	to	an	XPS,	OXPS	or	EPS
document	for	conversion	to	PDF.

You	can	use	a	path	to	an	image	type	such	as	JPEG	or	TIFF.
ABCpdf	will	import	multi-page	images	as	multi-page
documents.	The	image	types	supported	are,	broadly,	those

http://www.websupergoo.com/wordglue-1.htm
http://www.openoffice.org/

Notes

	

supported	by	the	XImage	object.

If	you	have	a	stream	or	data	rather	than	a	file	path	then	
will	need	to	specify	an	options	parameter.	This	is	necessary
because	in	the	case	of	data	ABCpdf	does	not	have	a	file
extension	from	which	it	can	automatically	decide	the	type	
module	to	use.	As	a	result	it	regards	all	data	as	PDF	unless
told	otherwise.

Full	control	over	the	import	process	can	be	implemented	by
specifying	an	options	parameter.	Reading	a	document
without	specifying	an	options	parameter	is	functionally	the
same	as	reading	a	document	using	a	default	XReadOptions
object.

After	the	read	operation	is	complete	the	Page	property	will	contain
the	ID	of	the	first	page	in	the	document.	The	Rect	and	MediaBox
properties	will	reflect	the	size	of	the	first	page	in	the	document.

ABCpdf	.NET	operates	an	intelligent	just-in-time	object	loading
scheme	for	PDFs	which	ensures	that	only	those	objects	that	are
required	are	loaded	into	memory.	This	means	that	if	you	are
modifying	large	documents	then	server	load	will	be	kept	to	a
minimum.	The	original	PDF	document	must	be	available	for	as
long	as	the	Doc	object	is	being	used.	As	a	result	you	cannot
modify	or	overwrite	a	PDF	file	while	it	is	read	into	a	Doc	object.
You	will	need	to	save	your	PDF	to	another	location	and	then	swap
the	two	files	around	after	the	Doc	object's	use	of	the	PDF	is
ended	(with	a	call	to	Clear,	Dispose,	or	Read	with	another	PDF
file).

Object	deletion	requires	that	all	references	to	an	object	are
removed.	There	is	no	way	of	doing	this	without	checking	each
object	in	the	document.	So	object	deletion	requires	that	every
object	in	the	document	is	loaded	and	for	large	documents	this
may	place	a	significant	load	on	the	server.	Reading	encrypted
documents	places	a	greater	load	on	the	server	because	-	like

object	deletion	-	it	requires	that	every	object	in	the	document	be
loaded.

Please	note	that	you	are	legally	bound	to	respect	the	permissions
present	in	existing	PDF	documents.	For	details	please	see	the
Legal	Requirement	Section.

The	Read	method	may	be	used	to	read	eForm	FDF	documents
as	well	as	PDF	documents.	Most	PDF	operations	will	not	work	on
FDF	documents	but	you	can	query	field	values	using	the	GetInfo
methods	to	return	Unicode	strings.

Modifying	Documents.	ABCpdf	will	allow	you	to	open,
modify	and	save	PDF	documents.

ABCpdf	will	allow	you	to	draw	on	top	of	PDF	documents	or
add	or	delete	pages	or	modify	document	data.	However
because	of	the	way	that	PDF	documents	are	structured	it's
unlikely	that	you'll	be	able	to	edit	existing	content.

So	if	there	are	blank	spaces	which	you	can	draw	your
entries	into	that	will	work.	Indeed	you	might	want	to	draw	a
white	box	over	existing	content	and	then	draw	on	that.

However	you	shouldn't	expect	to	be	able	to	edit	and	re-flow
text	that	is	already	in	your	PDF.

	

The	following	illustrates	how	one	might	add	a	large	red	number	to	
page	of	a	PDF	document.

[C#]
Doc	theDoc	=	new	Doc();

Example
	

theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
theDoc.FontSize	=	500;
theDoc.Color.String	=	"255	0	0";
theDoc.TextStyle.HPos	=	0.5;
theDoc.TextStyle.VPos	=	0.3;
int	theCount	=	theDoc.PageCount;
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.AddText(i.ToString());
}
theDoc.Save(Server.MapPath("docread.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
theDoc.FontSize	=	500
theDoc.Color.String	=	"255	0	0"
theDoc.TextStyle.HPos	=	0.5
theDoc.TextStyle.VPos	=	0.3
Dim	theCount	As	Integer	=	theDoc.PageCount
For	i	As	Integer	=	1	To	theCount
		theDoc.PageNumber	=	i
		theDoc.AddText(i.ToString())
Next
theDoc.Save(Server.MapPath("docread.pdf"))
theDoc.Clear()

docsave.pdf	-	[Page	1] docsave.pdf	-	[Page	2]

docsave.pdf	-	[Page	3] docsave.pdf	-	[Page	4]

	

	

	

	

RemapPages	Method

Remaps	pages	for	reordering,	copying	and	deletion.

	

Syntax 	

[C#]
void	RemapPages(string	pages)
void	RemapPages(int[]	pages)
void	RemapPages(int[]	pages,	int	index,	int
count)

[Visual	Basic]
Sub	RemapPages(pages	As	String)
Sub	RemapPages(pages()	As	Integer)
Sub	RemapPages(pages()	As	Integer,	index	As
Integer,	count	As	Integer)

	

Params 	

Name Description

pages The	list	of	page	numbers.

index The	index	of	the	first	page	number	into	the	array	pages.

count The	number	of	page	numbers	in	the	array	pages	to	use.

	

Notes 	

This	method	provides	a	simple	method	for	remapping	the	pages
in	a	document.	It	can	be	used	for	reordering,	copying	or	deleting
pages.

It	accepts	a	list	of	page	numbers	and	reorders	the	pages	in	the
document	so	that	they	match	these	page	numbers.	If	a	number	is
repeated	more	than	once,	the	page	is	duplicated.	If	a	number	is
omitted,	the	page	is	deleted.

Page	numbers	can	be	delimited	using	spaces,	commas	or
semicolons.	The	first	page	in	a	document	is	page	one.	So	to
reverse	a	four	page	document,	you	might	use	"4	3	2	1".

If	a	page	is	duplicated	and	it	contains	Form	fields,	you	may	want
to	call	MakeFieldsUnique	to	avoid	sharing	fields	across	pages.

	

The	following	code	snippet	illustrates	how	one	might	reverse	all	
pages	in	a	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
theDoc.FontSize	=	500;
theDoc.Color.String	=	"255	0	0";
theDoc.TextStyle.HPos	=	0.5;
theDoc.TextStyle.VPos	=	0.3;
int	theCount	=	theDoc.PageCount;
string	thePages	=	"";
for	(int	i	=	1;	i	<=	theCount;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.AddText(i.ToString());
		thePages	=	thePages	+	(theCount	-	i	+
1).ToString()	+	"	";
}
theDoc.RemapPages(thePages);

Example

	

theDoc.Save(Server.MapPath("docremappages.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
theDoc.FontSize	=	500
theDoc.Color.String	=	"255	0	0"
theDoc.TextStyle.HPos	=	0.5
theDoc.TextStyle.VPos	=	0.3
Dim	theCount	As	Integer	=	theDoc.PageCount
Dim	thePages	As	String	=	""
For	i	As	Integer	=	1	To	theCount
		theDoc.PageNumber	=	i
		theDoc.AddText(i.ToString())
		thePages	=	thePages	+	(theCount	-	i	+
1).ToString()	+	"	"	
Next
theDoc.RemapPages(thePages)
theDoc.Save(Server.MapPath("docremappages.pdf"))
theDoc.Clear()

docremappages.pdf	[Page	1] docremappages.pdf	[Page	2]

docremappages.pdf	[Page	3] docremappages.pdf	[Page	4]

	

	

	

Save	Function 	

Saves	the	document	as	PDF.

	
	

Syntax 	

[C#]
void	Save(string	path)
void	Save(Stream	stream)

[Visual	Basic]
Sub	Save(path	As	String)
Sub	Save(stream	As	Stream)

	may	throw	Exception()

	

	

Params 	

Name Description

path The	destination	file	path.

stream The	destination	stream.

	

	

Use	this	method	to	export	the	current	document	as
PDF,	XPS,	PostScript,	HTML,	DOCX	or	SWF.

To	export	as	XPS,	PostScript,	DOCX	or	HTML	you
need	to	specify	a	file	path	with	an	appropriate
extension	-	".xps",	".ps",	".docx",	".htm",	".html"	or

".swf".	If	the	file	extension	is	unrecognized	then	the
default	PDF	format	will	be	used.

When	saving	to	a	Stream	the	format	can	be	indicated
using	a	Doc.SaveOptions.FileExtension	property
such	as	".htm"	or	".xps".	For	HTML	you	must	provide
a	sensible	value	for	the	Doc.SaveOptions.Folder
property.	For	XPS	streams	must	be	both	readable
and	writable	-	FileAccess.ReadWrite	and	not	simply
FileAccess.Write.

ABCpdf	operates	an	intelligent	just-in-time	object
loading	scheme	which	ensures	that	only	those
objects	that	are	required	are	loaded	into	memory.
This	means	that	if	you	are	modifying	large	documents
then	server	load	will	be	kept	to	a	minimum.	The
original	PDF	document	must	be	available	for	as	long
as	the	Doc	object	is	being	used.

As	a	result	you	cannot	modify	or	overwrite	a	PDF	file
while	it	is	read	into	a	Doc	object.	You	will	need	to
save	your	PDF	to	another	location	and	then	swap	the
two	files	around	after	the	Doc	object's	use	of	the	PDF
is	ended	(with	a	call	to	Clear,	Dispose,	or	Read	with
another	PDF	file).

If	you	need	to	obtain	a	PDF	as	raw	data	you	can	use
the	GetData	function.

The	Refactor	setting	determines	whether
new/modified	redundant	objects	are	eliminated	when
the	document	is	saved.	You	can	use	SetInfo	to
change	the	setting.

Versions.	ABCpdf	automatically	determines	the
version	depending	on	the	features	you	use.	If
you	use	features	from	only	the	1.1	specification

Notes
	 it	will	write	a	1.1	PDF.	If	you	use	1.3	features	it

will	write	a	1.3	PDF.	If	you	use	1.4	features	it	will
write	a	1.4	PDF.	Ditto	1.5	and	1.6.

If	you're	using	a	PDF	template	or	drawing	from
another	PDF	the	final	output	will	be	the
minimum	version	used	in	these	templates.	In
many	real	world	applications	this	will	be	the
factor	which	determines	the	version	in	the	final
output	produced	by	ABCpdf.

There	is	no	advantage	in	producing	a	1.6
document	if	youThere	is	no	advantage	in
producing	a	1.6	document	if	you're	not	using
features	from	the	1.6	feature	set.	To	do	this	will
simply	stop	users	of	older	versions	of	Acrobat
from	accessing	a	document	which	should	be
available	to	them.

	

When	saving	to	SWF,	if	the
Doc.SaveOptions.Template	is	null,	the	current	page	is
exported	with	Rect	as	the	bounds	of	the	Flash	movie
using	Doc.SaveOptions.TemplateData.MeasureDpiX
and	Doc.SaveOptions.TemplateData.MeasureDpiY	if
specified.	Otherwise,	Doc.SaveOptions.Template
specifies	the	path	to	a	SWF	file.	The	saved	SWF	file
starts	with	the	template	SWF	files,	and	a	frame	is
added	for	each	page	in	the	document.	The	script
added	is	in	ActionScript	2.	If	the	template's	version	is
Flash	Player	7	or	lower,	the	saved	file's	version	will	be
Flash	Player	8.	For	information	on	the	interaction
between	the	added	frames	and	the	script	from	the
template,	please	refer	to	the	example	Flash	file.
Images	are	output	in	JPEG	if	(1)	they	are	in
DeviceGray	or	DeviceRGB	and	already	in	JPEG

	

(without	any	other	compression	on	top),	or	(2)	they
are	not	in	the	indexed	color	space	and	both	the	width
and	the	height	are	at	least	8	pixels.	For	(1),	the
original	JPEG	data	is	used	so	you	can	control	the
quality	by	pre-compressing	the	images;	for	(2),	the
output	will	use	80%	quality.

	

Example

	

The	following	code	illustrates	how	one	might	add	text	to	a
PDF	and	then	save	it	out.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Hello	World");
theDoc.Save(Server.MapPath("docsave.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Hello	World")
theDoc.Save(Server.MapPath("docsave.pdf"))
theDoc.Clear()

docsave.pdf

	

	

SetInfo	Function

Sets	information	about	an	object.

	

Syntax 	

[C#]
void	SetInfo(int	id,	string	type,	string	info)
void	SetInfo(int	id,	string	type,	int	info)
void	SetInfo(int	id,	string	type,	double	info)
void	SetInfo(int	id,	string	type,	DateTime
info)

[Visual	Basic]
Sub	SetInfo(id	As	Integer,	type	As	String,	info
As	String)
Sub	SetInfo(id	As	Integer,	type	As	String,	
As	Integer)
Sub	SetInfo(id	As	Integer,	type	As	String,	info
As	Double)
Sub	SetInfo(id	As	Integer,	type	As	String,	info
As	DateTime)

	

Name Description

id The	Object	ID	of	the	object	to	be	modified.

type The	type	of	value	to	insert.

The	value	to	insert.

Params
	

info

•	The	overloads	taking	integer/floating-point	info	converts
this	parameter	to	the	string	representation	(numbers	
used	in	PDF)	in	the	invariant	culture	without	creating	a
managed	string	object.
•	The	overload	taking	DateTime	info	converts	this
parameter	to	the	string	representation	(PDF	date	string)
so	it	is	mostly	used	with	the	:Text	object	type.

	

Notes 	

In	the	same	way	as	you	can	get	information	about	aspects	of	a
document	using	the	GetInfo	method	you	can	modify	aspects	of
the	document	using	the	SetInfo	method.

Different	types	of	object	support	different	types	of	properties.	
more	detailed	information	see	the	Object	Paths	section	of	this
document.

PDF	objects	are	case	sensitive	so	be	sure	you	use	the	correct
case.

	

See	Doc	Properties	Example	for	an	example	of	using	the	overload
taking	DateTime	info.

The	following	shows	how	to	modify	the	document	catalog	to	ensure	
the	PDF	opens	onto	the	second	page	rather	than	the	first.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
int	thePages	=	theDoc.GetInfoInt(theDoc.Root,
"Pages");
int	thePage2	=	theDoc.GetInfoInt(thePages,	"Page
2");

Example
	

string	theAction	=	"["	+	thePage2.ToString()	+	"	0
R	/Fit]";
theDoc.SetInfo(theDoc.Root,	"/OpenAction",
theAction);
theDoc.Save(Server.MapPath("docsetinfo.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
Dim	thePages	As	Integer	=
theDoc.GetInfoInt(theDoc.Root,"Pages")	
Dim	thePage2	As	Integer	=
theDoc.GetInfoInt(thePages,"Page	2")	
Dim	theAction	As	String	=	"["	+	thePage2.ToString()
+	"	0	R	/Fit]"	
theDoc.SetInfo(theDoc.Root,	"/OpenAction",
theAction)
theDoc.Save(Server.MapPath("docsetinfo.pdf"))
theDoc.Clear()

Open	Actions.	The	way	in	which	a	PDF	is	displayed	when	opened
is	dependent	on	certain	flags	within	the	PDF	itself.	Here	are	some
common	combinations.	For	full	details	of	how	these	work	you
should	see	the	Adobe	PDF	Specification	available	from	the	Adobe
web	site.

To	show	outlines:

theDoc.SetInfo(theDoc.Root,	"/PageMode",
"/UseOutlines")

Or	for	thumbnails:

theDoc.SetInfo	theDoc.Root,	"/PageMode",
"/UseThumbs"

To	display	two	pages	side	by	side:

theDoc.SetInfo(theDoc.Root,	"/PageLayout",
"/TwoColumnLeft")

To	make	the	print	dialog	appear	when	the	document	is	opened:

theDoc.SetInfo(theDoc.Root,	"/OpenAction",	"<<
/Type	/Action	/S	/Named	/N	/Print	>>")

To	open	at	200%	zoom	onto	the	current	page:

theDoc.SetInfo(theDoc.Root,	"/OpenAction",	"["
+	theDoc.Page.ToString()	+"	0	R	/XYZ	null	null
2]")

To	fit	the	document	width	onto	the	current	page:

theDoc.SetInfo(theDoc.Root,	"/OpenAction",	"["
+	theDoc.Page.ToString()	+	"	0	R	/FitH	"	+
theDoc.MediaBox.Height.ToString()	+	"]")

	

	

	

ToString	Function 	 	

A	string	representation	of	the	graphic	style	of
the	document

	

	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
none The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

Bookmark	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
Objects.Bookmark

[Visual	Basic]
Objects.Bookmark

n/a No
The	top	level
bookmark	for
the	document.

	

	 	

Notes 	

The	top	level	bookmark	associated	with	this
document.

PDF	documents	typically	provide	a	list	of	bookmarks
for	easy	navigation	between	pages.	In	Acrobat	this
navigation	structure	is	available	under	the
Bookmarks	tab.	The	PDF	specification	refers	to	this
structure	as	the	document	outline.

The	document	outline	comprises	of	a	hierarchy	of
bookmarks.	The	bookmark	at	the	top	of	the	hierarchy
is	available	via	this	property.

See	the	Objects.Bookmark	object	for	further	details.

	

	 	

Example 	
None.

	
	 	

	

	

Color	Property 	 	

	

Type Default ReadOnly Description

[C#]	XColor

[Visual	Basic]
XColor

		Black No
The	current
drawing	and	filling
color.

	

	 	

Notes 	

The	color	used	for	drawing.

This	property	determines	the	color	used	for	drawing
lines,	shapes,	filled	shapes	and	text.

	

	 	

The	following	code	creates	a	PDF	document	with	a	red
background.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Color.String	=	"255	0	0";
theDoc.FillRect();
theDoc.Save(Server.MapPath("doccolor.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Color.String	=	"255	0	0"

Example 	
theDoc.FillRect()
theDoc.Save(Server.MapPath("doccolor.pdf"))
theDoc.Clear()

doccolor.pdf

	 	

	

	

ColorSpace	Property

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		0 No The	current	ColorSpace
ID.

	

Notes 	

The	current	color	space.

The	ColorSpace	is	used	when	the	Color	is	of	a	matching	type.	If	the
color	type	does	not	match	then	the	default	-	device	-	color	space	is
used.

For	example	you	add	a	CMYK	color	space	and	assign	it	to	the
ColorSpace	property.	All	CMYK	Colors	you	use	will	be	defined	in
terms	of	this	color	space.	However	RGB	and	Grayscale	colors	will
continue	to	be	defined	in	terms	of	the	default	-	device	-	color	spaces.

To	get	a	ColorSpace	ID	you	need	to	add	your	color	space	to	the
current	document	using	the	AddColorSpaceFile	or
AddColorSpaceSpot	method.

	

The	following	code	shows	how	to	colorize	an	image.	It	adds	a	base	
to	the	current	page	and	converts	it	to	grayscale.	Then	it	creates	a	new	spot
color	space	and	assigns	the	new	color	space	to	the	image.

[C#]

Example
	

Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(20,	20);

XImage	theImg	=	new	XImage();	
theImg.SetFile(Server.MapPath("../mypics/mypic.jpg"));
int	theID	=	theDoc.AddImageObject(theImg,	false);

theID	=	theDoc.GetInfoInt(theID,	"XObject");
theDoc.SetInfo(theID,	"Grayscale",	"");

int	theCS	=	theDoc.AddColorSpaceSpot("MAGENTA",	"0	
0	0");
theDoc.SetInfo(theID,	"/ColorSpace:Ref",
theCS.ToString());
theDoc.SetInfo(theID,	"/Decode",	"[1	0]");

theDoc.Save(Server.MapPath("doccolorspace.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,	20)

Dim	theImg	As	XImage	=	New	XImage()	
theImg.SetFile(Server.MapPath("../mypics/mypic.jpg"))	
Dim	theID	As	Integer	=	theDoc.AddImageObject(theImg,
False)

theID	=	theDoc.GetInfoInt(theID,	"XObject")
theDoc.SetInfo(theID,	"Grayscale",	"")

Dim	theCS	As	Integer	=
theDoc.AddColorSpaceSpot("MAGENTA",	"0	100	0	0")
theDoc.SetInfo(theID,	"/ColorSpace:Ref",
theCS.ToString())
theDoc.SetInfo(theID,	"/Decode",	"[1	0]")

theDoc.Save(Server.MapPath("doccolorspace.pdf"))
theDoc.Clear()

doccolorspace.pdf

	

	

CropBox	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

Letter
Size	
[0,	0,
612,
792].

Yes
The	current
document	visible
page	size.

	

	 	

Notes 	

The	current	document	visible	page	size.

This	property	reflects	the	CropBox	of	the	current
page.

For	methods	you	can	use	to	change	the	CropBox	of
the	current	page	see	the	MediaBox	property.

	

	 	

Example 	
None.

	
	 	

	

	

Encryption	Property 	

	

Type Default Read
Only Description

[C#]	
XEncryption

[Visual	Basic]
XEncryption

No
encryption. No

The	current
encryption
settings.

	

	

Notes 	

This	property	determines	the	current	encryption	settings.
When	you	save	the	document	the	encryption	settings	-	if
any	-	will	be	used	to	determine	the	method	of	encryption
to	be	used.

By	default	documents	are	not	encrypted	when	created.
However	if	you	read	an	existing	PDF	document	the
encryption	property	will	be	updated	to	reflect	the
encryption	settings	used	to	create	the	original	document.

PDF	encryption	supports	two	different	types	of	password	-
a	user	password	and	an	owner	password.	You	can	use
either	password	to	open	and	view	the	document.
However	unless	you	supply	the	owner	password,
permissions	will	be	applied	and	access	to	the	document
may	be	restricted.

Typically	PDF	encryption	is	used	to	apply	permissions	to
a	document.	The	user	password	is	left	blank	and	only	an
owner	password	supplied.	PDF	readers	will	not	prompt
for	a	password	if	there	is	no	user	password.	However	any
permissions	will	automatically	be	applied.	In	this	way	you

	

can	allow	anyone	to	open	the	document	but	restrict
access	to	operations	like	copying	text,	printing	the
document	or	extracting	images.

Please	note	that	you	are	legally	bound	to	respect	the
permissions	present	in	existing	PDF	documents.	For
details	please	see	the	Legal	Requirement	Section.

	

Example 	

The	following	code	saves	a	simple	PDF	document	using	a	128
bit	encryption	key.	It	applies	a	copy-protection	permission	to	stop
people	copying	text	out	of	the	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Hello	World!");
theDoc.Encryption.Type	=	2;
theDoc.Encryption.CanCopy	=	false;
theDoc.Encryption.OwnerPassword	=	"owner";
theDoc.Save(Server.MapPath("docencrypt.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Hello	World!")
theDoc.Encryption.Type	=	2
theDoc.Encryption.CanCopy	=	false
theDoc.Encryption.OwnerPassword	=	"owner"
theDoc.Save(Server.MapPath("docencrypt.pdf"))

	

	

	

Font	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		0 No The	current
Font	ID.

	

	 	

Notes 	

The	font	used	for	drawing	text.

This	property	holds	the	current	Font	ID	and
determines	the	style	of	text	that	is	added	to	the
document	using	methods	like	AddText.

To	get	a	Font	ID	you	need	to	add	your	font	to	the
current	document	using	the	AddFont	method.

The	Font	property	is	an	accessor	for	the	the
XTextStyle.Font	property.

	

	 	

The	following	example	adds	two	blocks	of	styled	text	to	a
document.	The	first	block	is	in	Helvetica	and	the	second	in
Courier.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;	//	big	text

Example 	

theDoc.Font	=	theDoc.AddFont("Helvetica");
theDoc.AddText("Helvetica	Text.");
theDoc.Font	=	theDoc.AddFont("Courier");
theDoc.AddText("Courier	Text.");
theDoc.Save(Server.MapPath("docfont.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96	'	big	text
theDoc.Font	=	theDoc.AddFont("Helvetica")
theDoc.AddText("Helvetica	Text.")
theDoc.Font	=	theDoc.AddFont("Courier")
theDoc.AddText("Courier	Text.")
theDoc.Save(Server.MapPath("docfont.pdf"))
theDoc.Clear()

docfont.pdf

	 	

	

	

FontSize	Property 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		10 No The	current	text
size.

	

	

Notes 	

The	line	height	for	drawing	text.

This	property	determines	the	size	of	text	that	is	added	to
the	document	using	methods	like	AddText.

The	font	size	is	measured	in	the	current	Units.

You	should	prefer	use	of	the	XTextStyle.Size	property,	to
which	the	FontSize	property	is	simply	an	integer	accessor.
Assigning	a	value	to	the	FontSize	is	exactly	equivalent	to
assigning	it	to	the	XTextStyle.Size.	Getting	a	value	from
this	property	is	exactly	equivalent	to	the	following.

int	n	=	(int)(doc.TextStyle.Size	+	0.5);

	

	

The	following	example	adds	two	blocks	of	styled	text	to	a
document.	The	first	block	is	in	96	point	type	and	the	second	is	in
192	point	type.

Example
	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Small	");
theDoc.FontSize	=	192;
theDoc.AddText("Big");
theDoc.Save(Server.MapPath("docfontsize.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.AddText("Small	")
theDoc.FontSize	=	192
theDoc.AddText("Big")
theDoc.Save(Server.MapPath("docfontsize.pdf"))
theDoc.Clear()

docfontsize.pdf

	

	

Form	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XForm

[Visual	Basic]
XForm

n/a No The	document
form	and	fields.

	

	 	

Notes 	

This	property	allows	you	to	examine	and	manipulate
the	document	Form	and	Fields.

Fields	are	generally	obtained	using	a	fully	qualified
name.	A	full	name	describes	a	path	down	through	the
field	hierarchy	-	using	periods	as	delimiters	-	to	a
specific	field	object.

Once	a	field	has	been	obtained	you	can	query	or
change	its	values.	If	you	wish	to	convert	the	fields
into	a	permanent	part	of	the	document	you	can	use
the	Field.Stamp	method	to	permanently	emboss
them.

See	the	XForm	object	for	full	details.

	

	 	

Example 	 None. 	 	

	

	

HtmlOptions	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
XHtmlOptions

[Visual	Basic]
XHtmlOptions

n/a No
The	HTML	and
URL	rendering
options.

	

	 	

Notes 	

This	property	allows	you	control	over	the	way	that
HTML	is	rendered.

The	properties	of	this	object	may	be	used	to	control
the	way	that	the	AddImageUrl	and	AddImageHtml
methods	work.

The	methods	of	this	object	operate	on	objects	added
using	the	theAddImageUrl	and	AddImageHtml
methods.	Some	operations	change	the	content.
Others	provide	information	about	the	content	which
has	been	added.

See	the	XHtmlOptions	object	for	further	details.

	

	 	

Example 	 None. 	 	

	

	

Layer	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		1 No
The	insertion
layer	for	new
content.

	

	 	

The	insertion	layer	for	new	content.

The	default	layer	is	one	which	indicates	insertion	at
the	top.	So	if	you	want	to	insert	at	the	bottom	and
your	page	has	ten	layers	you	need	to	insert	at
position	eleven.

Note	that	insertion	may	not	behave	predictably	with
documents	read	from	file.	It	is	good	practice	for	each
layer	to	operate	independently	but	not	all	documents
are	set	up	this	way.

Optional	Content	Groups:	The	type	of	layer	that	this
property	describes	is	an	ABCpdf	construct	that	you
cannot	detect	using	Acrobat.	Acrobat	layers	are
something	completely	different	and	are	more
precisely	known	as	Optional	Content	Groups
(OCGs).	

See	the	Doc.Layer	property	for	details	of	how	to
construct	this	type	of	layer.

	

Notes 	

Optional	Content	Groups.	The	type	of	layer
that	this	property	describes	is	an	ABCpdf
construct	that	you	cannot	detect	using	Acrobat.
Acrobat	layers	are	something	completely
different	and	are	more	precisely	known	as
Optional	Content	Groups	(OCG	items).

OCGs	allow	you	to	specify	content	that	may	be
visible	or	invisible.	As	a	user	you	can	see	the
names	of	the	OCGs	that	exist	and	you	can	turn
them	on	or	off	to	see	or	hide	the	respective
content.

It	is	a	mistake	to	think	of	OCGs	as	pure	layers,
as	the	rules	associated	with	them	can	be	quite
sophisticated.	Each	content	item	on	the	page
may	be	associated	with	one	or	more	nested
visibility	groups	and	it	is	only	if	all	these	groups
are	visible	that	the	content	item	is	visible.	While
visibility	groups	are	often	OCGs	they	can	also
be	Optional	Content	Membership	Dictionaries
(OCMD	items)	-	a	construct	that	determines
visibility	from	a	set	of	OCGs	using	a	set	of
custom	written	rules.	So	visibility	can	be
complex	and	items	with	visibility	may	be
interleaved	rather	than	conceptually	part	of	a
simple	contiguous	layer.

That	said,	it	is	quite	common	for	simple	OCG
setups	to	mimic	simple	contiguous	layers	as
this	is	what	most	people	require.

The	OCGLayers	example	project	which	comes
with	ABCpdf	shows	how	to	create	content	with
visibility	determined	using	OCGs.	It	also
includes	more	complex	examples	detailing	the
use	of	nested	OCGs	and	OCMDs.	As	well	as

	 	

creating	layers	it	also	shows	shows	how	to	turn
OCGs	on	and	off,	annotate	the	items	on	a	page
based	on	the	OCGs	that	they	belong	to	and
how	to	redact	and	delete	invisible	items,
removing	any	associated	OCGs.

	

Example 	
None.

	
	 	

	

	

LayerCount	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
layers	on	the
current	page.

	

	 	

Notes 	

This	property	holds	the	number	of	layers	on	the
current	page.

You	can	add	layers	to	pages	using	calls	to	methods
such	as	AddText	and	AddImage.	See	the	Layer
property	for	more	details.

	

	 	

Example 	
None.

	
	 	

	

	

MediaBox	Property 	

	

Type Default Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

Letter
Size	
[0,	0,
612,
792].

No
The	current
document	page
size.

	

	

This	property	reflects	the	size	of	the	current	page.	It	also
determines	the	size	of	new	pages	created	by	the	AddPage
method.	Note	that	changing	the	MediaBox	does	not
change	the	current	Rect.	So	typically	you'll	want	to	write
code	like	this:

[C#]
theDoc.MediaBox.String	=	"0	0	200	300";
theDoc.Rect.String	=
theDoc.MediaBox.String;

[Visual	Basic]
theDoc.MediaBox.String	=	"0	0	200	300"
theDoc.Rect.String	=
theDoc.MediaBox.String

Changing	this	property	will	change	the	size	of	pages
created	by	subsequent	calls	to	AddPage.	However	it	will
not	change	the	size	of	the	pages	that	have	already	been
created.	To	change	the	size	of	the	pages	that	have	already

Notes 	

been	created	you	need	to	use	the	SetInfo	method.	For
example:

[C#]
theDoc.SetInfo(theDoc.Page,
"/MediaBox:Rect",	"0	0	200	300");

[Visual	Basic]
theDoc.SetInfo(theDoc.Page,
"/MediaBox:Rect",	"0	0	200	300")

Similar	methods	can	be	used	to	control	other	page	size
measures	such	as	the	CropBox,	BleedBox,	TrimBox	and
ArtBox.	For	example:

[C#]
theDoc.SetInfo(theDoc.Page,
"/CropBox:Rect",	"20	20	180	280");

[Visual	Basic]
theDoc.SetInfo(theDoc.Page,
"/CropBox:Rect",	"20	20	180	280")

The	default	page	size	is	often	the	one	you'll	want	to	use.
However	it	may	be	that	your	PDFs	are	required	to	conform
to	a	different	page	size.	If	this	is	the	case	you	can	simply
specify	the	name	of	the	size	rather	than	the	exact
dimension.	See	the	Rect.String	property	for	details.

	

	

The	following	code	creates	a	PDF	document	containing	three
different	pages	each	with	a	different	size.

[C#]

Example 	

Doc	theDoc	=	new	Doc();
theDoc.Page	=	theDoc.AddPage();
theDoc.MediaBox.String	=	"A4";
theDoc.Page	=	theDoc.AddPage();
theDoc.MediaBox.String	=	"B5";
theDoc.Page	=	theDoc.AddPage();
theDoc.Save(Server.MapPath("docmediabox.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Page	=	theDoc.AddPage()
theDoc.MediaBox.String	=	"A4"
theDoc.Page	=	theDoc.AddPage()
theDoc.MediaBox.String	=	"B5"
theDoc.Page	=	theDoc.AddPage()
theDoc.Save(Server.MapPath("docmediabox.pdf"))
theDoc.Clear()

	

	

	

ObjectSoup	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ObjectSoup

[Visual	Basic]
ObjectSoup

n/a Yes

The	collection	of
obects	that
make	up	the
PDF.

	

	 	

Notes 	

This	property	holds	a	reference	to	the	ObjectSoup	for
the	document.	The	soup	is	a	non-traditional
collection	of	indirect	PDF	objects	which	comprise	the
content	of	the	PDF.

Do	not	alter	the	soup	or	the	contents	of	the	soup
unless	you	are	sure	of	the	changes	you	are	making.
If	inappropriate	changes	are	made	the	result	will	be	a
corrupt	PDF	output.

	

	

	 	

Example 	 None. 	 	

	

	

Options	Property 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

		"" No
The	state	options	for
low	level	drawing
control.

	

	

Notes 	

The	options	property	is	an	advanced	feature	which	allows
low	level	control	over	PDF	drawing.	It	is	important	to	use
it	correctly	as	incorrect	use	can	corrupt	your	documents.

The	value	of	the	options	property	is	inserted	into	the	PDF
content	stream	after	state	has	been	established	but
before	any	drawing	has	taken	place.	You	can	use	this
property	to	insert	your	own	state	commands.	This	is	most
commonly	used	for	drawing	dashed	lines.

FillRect,	FrameRect,	AddLine	and	AddArc	all	insert	the
options	parameter.

You	can	find	details	of	graphics	state	parameters	and	how
to	use	them	in	the	Adobe	PDF	Specification.

	

	

The	following	code	adds	an	arc	to	a	document.	It	uses	the
options	parameter	to	make	the	line	dashed	rather	than	solid.

[C#]

http://partners.adobe.com/

Example 	

Doc	theDoc	=	new	Doc();
theDoc.Width	=	24;
theDoc.Color.String	=	"0	120	0";
theDoc.Options	=	"[6	10]	6	d";
theDoc.AddArc(0,	270,	300,	400,	200,	300);
theDoc.Save(Server.MapPath("docoptions.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	24
theDoc.Color.String	=	"0	120	0"
theDoc.Options	=	"[6	10]	6	d"
theDoc.AddArc(0,	270,	300,	400,	200,	300)
theDoc.Save(Server.MapPath("docoptions.pdf"))
theDoc.Clear()

docoptions.pdf

	

	

Page	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		0 No The	current
Page	ID.

	

	 	

Notes 	

This	property	holds	the	current	Page	ID.	The	current
page	is	the	one	that	receives	new	objects	as	they	are
added	to	the	document.

For	example	the	methods	AddText,	AddLine,
AddImage,	FrameRect	and	FillRect	all	operate	on	the
current	page.

When	you	change	the	Page	property	the	Pos
property	is	reset	to	the	top	left	of	the	current	Rect.

Note	that	the	PageNumber	property	is	not	the	same
as	the	Page	property.	The	Page	holds	an	Object	ID
typically	returned	from	a	call	to	AddPage.	The
PageNumber	indicates	the	page	using	an	index
ranging	between	one	and	the	PageCount.

Either	the	Page	or	the	PageNumber	property	can	be
used	to	set	the	current	page.

If	no	page	is	specified	the	current	page	is	taken	to	be
the	first	page	in	the	document.

	 	

	

Example 	

The	following	example	creates	a	document	with	two	pages
and	adds	text	to	each	of	the	pages	in	turn.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;	//	big	text
theDoc.Page	=	theDoc.AddPage();
theDoc.AddText("Page	One");
theDoc.Page	=	theDoc.AddPage();
theDoc.AddText("Page	Two");
theDoc.Save(Server.MapPath("docpage.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96	'	big	text
theDoc.Page	=	theDoc.AddPage()
theDoc.AddText("Page	One")
theDoc.Page	=	theDoc.AddPage()
theDoc.AddText("Page	Two")
theDoc.Save(Server.MapPath("docpage.pdf"))
theDoc.Clear()

	 	

docpage.pdf

	

	

PageCount	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

	0 Yes
The	number	of
pages	in	the
document.

	

	 	

Notes 	

This	property	holds	the	number	of	pages	in	the
document.

You	can	add	pages	to	the	document	using	the
AddPage	method.

	

	 	

Example 	
None.

	
	 	

	

	

PageNumber	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

		0 No
The	page
number	of	the
current	page.

	

	 	

This	property	holds	the	current	Page	Number.	The
current	page	is	the	one	that	receives	new	objects	as
they	are	added	to	the	document.

For	example	the	methods	AddText,	AddLine,
AddImage,	FrameRect	and	FillRect	all	operate	on	the
current	page.

When	you	change	this	property	the	Pos	property	is
reset	to	the	top	left	of	the	current	Rect.

Note	that	the	PageNumber	property	is	not	the	same
as	the	Page	property.	The	Page	holds	an	Object	ID
typically	returned	from	a	call	to	AddPage.	The
PageNumber	indicates	the	page	using	an	index
ranging	between	one	and	the	PageCount.

Either	the	Page	or	the	PageNumber	property	can	be
used	to	set	the	current	page.

If	no	page	is	specified	the	current	page	is	taken	to	be
the	first	page	in	the	document.

Notes 	

Optimization	Tips.

Well	structured	PDF	documents	are	optimized
for	fast	access	to	pages.	So	when	you	go	to	a
particular	page	of	a	document	by	specifying	a
PageNumber	this	operation	is	quick.

However	it	is	less	obvious	that	getting	the
PageNumber	property	can	be	more	expensive
than	one	might	think.	ABCpdf	cannot	assume
that	the	PDF	is	the	same	as	it	was	last	time	you
accessed	the	PageNumber	so	it	cannot
necessarily	just	give	you	the	number	it	had	last
time.	It	has	to	assume	the	worst	case	which	is
that	you	have	reorganized	the	pages	in	some
way	and	at	the	very	least	it	will	have	to	validate
the	current	PageNumber	by	a	test	retrieval	of
that	page.	At	the	very	worst	it	will	have	to	scan
through	the	entire	page	tree	looking	to	see
where	the	current	page	has	ended	up.

In	general	getting	the	PageNumber	is	not	too
expensive.	But	if	you	write	code	which	results
in	it	being	accessed	thousands	of	times	then	it
can	become	noticeable.	So	if	you	find	yourself
doing	this	then	consider	using	the
Page.GetPageArrayAll	function	instead.	It's	an
easy	optimization	to	make.

	

	

	 	

Example 	 None. 	 	

	

	

Pos	Property 	 	

	

Type Default Read
Only Description

[C#]XPoint

[Visual	Basic]
XPoint

The	top	left
of	the
current
rectangle.

No
The	current
drawing
position.

	

	 	

Notes 	

This	property	determines	the	current	drawing
position.	This	is	used	by	the	AddText	method.

When	you	change	the	Page	or	Rect	properties	the
Pos	is	automatically	reset	to	the	top	left	of	the	current
Rect.	After	adding	text	using	the	AddText	method	the
Pos	is	updated	to	point	to	the	next	text	insertion
position	-	just	after	the	last	drawn	character.

When	adding	text	with	AddText	or	AddHtml,	Pos
specifies	the	top	left	corner	of	characters,	and	text	is
positioned	in	rows	going	from	left	to	right	and	ordered
from	top	to	bottom.	However,	when	Font	is	set	to	a
vertical	font	(a	font	in	the	vertical	writing
mode/FontObject.WritingMode),	text	is	positioned	in
columns	going	from	top	to	bottom	and	ordered	from
right	to	left	as	in	East	Asian	scripts.	The	value	of	Pos
is	not	changed	by	a	change	in	Font.	This	works
because	with	vertical	text	flow,	an	internal
transformation	(which	is	only	a	manifestation	of	the
text	processing)	is	applied	to	Pos	(only	Pos	and
nothing	else),	and	all	horizontal	positioning	settings

	 	

are	applied	to	vertical	coordinates	and	vice	versa.
(Note	that	the	effects	of	XTextStyle.CharSpacing	and
XTextStyle.WordSpacing	depend	on	the	writing
mode.)	The	transformation	rotates	the	coordinate
system	by	90	degrees	clock-wise	and	maps	the	top-
left	corner	of	the	Rect	to	the	top-right	corner	of	the
Rect.	Hence,	the	default	initial	value	of	Pos	specifies
vertical	text	to	start	at	the	top-right	corner	of	the	Rect.
This	is	similar	to	Windows	processing	of	text	using
an	East	Asian	font	whose	name	is	prefixed	with	@
and	applying	the	transformation	only	at	the	last	step.

Please	note	that	text	in	vertical	fonts	and	text	in
horizontal	fonts	do	not	mix	well	without	additional
positioning	so	it	is	not	recommended	to	use
horizontal	fonts	with	AddHtml	when	Font	is	set	to	a
vertical	font	or	vice	versa.

	

The	following	code	creates	a	PDF	document	with	text
positioned	at	a	number	of	different	points	within	it.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	48;
for	(int	i	=	1;	i	<=	8;	i++)	{
		theDoc.Pos.X	=	i	*	40;
		theDoc.Pos.Y	=	i	*	80;
		theDoc.AddText("Pos	=	"	+
theDoc.Pos.String);
}
theDoc.Save(Server.MapPath("docpos.pdf"));
theDoc.Clear();

[Visual	Basic]

Example 	

Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	48
For	i	As	Integer	=	1	To	8
		theDoc.Pos.X	=	i	*	40
		theDoc.Pos.Y	=	i	*	80
		theDoc.AddText("Pos	=	"	+
theDoc.Pos.String)
Next
theDoc.Save(Server.MapPath("docpos.pdf"))
theDoc.Clear()

docpos.pdf

	 	

	

	

Rect	Property 	 	

	

Type Default Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

The
dimensions
of	the
current
page.

No

The	current
rectangle
used	for
drawing
operations.

	

	 	

Notes 	

This	property	determines	the	current	rectangle.	This
is	used	by	a	number	of	operations	including	AddText,
AddImage,	FrameRect	and	FillRect.

The	XRect	object	represents	a	rectangular	area	in
two-dimensional	space.	The	properties	of	the	XRect
object	represent	the	bottom	left	and	top	right	corners
of	the	area.

AddText	adds	text	within	the	current	rectangle
wrapping	the	text	at	the	edges.

The	AddImage	methods	add	an	image	scaled	to	fill
the	current	rectangle.

FrameRect	frames	the	current	rectangle	and	FillRect
fills	the	current	rectangle.

When	you	change	this	property	the	Pos	property	is
reset	to	point	to	the	top	left	of	the	Rect.

	

	 	

Example 	

The	following	code	creates	a	PDF	document	containing	a
number	of	concentric	frames.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.String	=	"50	50	550	550";
for	(int	i	=	1;	i	<=	20;	i++)	{
		theDoc.FrameRect();
		theDoc.Rect.Inset(20,	20);
}
theDoc.Save(Server.MapPath("docrect.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.String	=	"50	50	550	550"
For	i	As	Integer	=	1	To	20
		theDoc.FrameRect()
		theDoc.Rect.Inset(20,	20)
Next
theDoc.Save(Server.MapPath("docrect.pdf"))
theDoc.Clear()

	 	

docrect.pdf

	

	

Rendering	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
XRendering

[Visual	Basic]
XRendering

n/a No
The	rendering
options	and
control.

	

	 	

Notes 	

This	property	allows	you	control	over	the	way	that
PDFs	are	rendered.

Note	that	Rendering	is	only	available	under	the
ABCpdf	Professional	License.

See	the	XRendering	object	for	further	details.

	

	 	

Example 	
None.

	
	 	

	

	

Root	Property

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

		0 Yes The	root	catalog
object.

	

Notes 	

This	property	holds	the	ID	of	the	catalog	object.

The	catalog	is	the	root	of	the	whole	PDF	document.	It	contains
information	on	the	root	Pages	object	and	the	Outline	object.

For	dynamically	created	documents	the	root	of	the	document	is
always	one.	However	documents	read	from	existing	PDF	files
may	use	different	root	IDs.

	

The	following	code	snippet	illustrates	how	one	might	find	some
information	about	a	PDF	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/mydoc.pdf"));
string	theVers,	theNames,	thePages,	theOutlines;
theVers	=	theDoc.GetInfo(theDoc.Root,	"Version");
theNames	=	theDoc.GetInfo(theDoc.Root,	"/Names");
thePages	=	theDoc.GetInfo(theDoc.Root,	"pages");

Example 	

theOutlines	=	theDoc.GetInfo(theDoc.Root,
"outlines");
Response.Write("Version	"	+	theVers	+	"
");
Response.Write("Names	"	+	theNames	+	"
");
Response.Write("Pages	ID	"	+	thePages	+	"
");
Response.Write("Outlines	ID	"	+	theOutlines	+	"

");
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/mydoc.pdf"))
Dim	theVers	As	String,theNames	As	String,thePages
As	String,theOutlines	As	String
theVers	=	theDoc.GetInfo(theDoc.Root,	"Version")
theNames	=	theDoc.GetInfo(theDoc.Root,	"/Names")
thePages	=	theDoc.GetInfo(theDoc.Root,	"pages")
theOutlines	=	theDoc.GetInfo(theDoc.Root,
"outlines")
Response.Write("Version	"	+	theVers	+	"
")
Response.Write("Names	"	+	theNames	+	"
")
Response.Write("Pages	ID	"	+	thePages	+	"
")
Response.Write("Outlines	ID	"	+	theOutlines	+	"

")
theDoc.Clear()

This	might	result	in	the	following	output.

Version	/1.4

Names	12	0	R

Pages	ID	618

Outlines	ID	2169

	

	

	

SaveOptions	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
XSaveOptions

[Visual	Basic]
XSaveOptions

n/a No
The	save
options	and
control.

	

	 	

Notes 	

This	property	allows	you	control	over	the	way	that
PDF	documents	are	saved	or	streamed.

The	properties	of	this	object	may	be	used	to	control
the	way	that	the	Save	and	GetData	methods	work.

See	the	XSaveOptions	object	for	further	details.

	

	 	

Example 	
None.

	
	 	

	

	

String	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

Variable No

A	string
representation
of	the	graphic
style	of	the
document

	

	 	

Notes 	

A	string	representation	of	the	graphic	style	of	the
document.

This	covers	the	Transform,	ColorSpace,	Color,	Font,
TextStyle,	Width	and	Options	properties.	However	it
does	not	cover	the	Page,	Layer,	Rect	or	Pos
properties.

	

	 	

In	this	example	we	show	how	to	use	the	String
property	to	implement	a	graphics	state	stack	with
Push	and	Pop	operators.

[C#]
Doc	doc	=	new	Doc();
doc.FontSize	=	64;
doc.Rect.Inset(20,	20);
doc.Font	=	doc.AddFont("Helvetica");
Stack<string>	state	=	new

Example 	

Stack<string>();
state.Push(doc.String);
doc.AddText("Black
Helvetica\r\n\r\n");
doc.Color.SetRgb(255,	0,	0);
doc.Font	=	doc.AddFont("Helvetica-
Oblique");
doc.AddText("Red	Helvetica-
Oblique\r\n\r\n");
doc.String	=	state.Pop();
doc.AddText("Black	Helvetica
again\r\n\r\n");
doc.Save("savestate.pdf");

[Visual	Basic]
Dim	doc	As	New	Doc()
doc.FontSize	=	64
doc.Rect.Inset(20,	20)
doc.Font	=	doc.AddFont("Helvetica")
Dim	state	As	New	Stack(Of	String)()
state.Push(doc.[String])
doc.AddText("Black	Helvetica"	&	vbCr
&	vbLf	&	vbCr	&	vbLf)
doc.Color.SetRgb(255,	0,	0)
doc.Font	=	doc.AddFont("Helvetica-
Oblique")
doc.AddText("Red	Helvetica-Oblique"	&
vbCr	&	vbLf	&	vbCr	&	vbLf)
doc.[String]	=	state.Pop()
doc.AddText("Black	Helvetica	again"	&
vbCr	&	vbLf	&	vbCr	&	vbLf)
doc.Save("savestate.pdf")

	 	

savestate.pdf

	

	

	

TextStyle	Property 	

	

Type Default Read
Only Description

[C#]	
XTextStyle

[Visual	Basic]
XTextStyle

Ten
point
text.

No The	current	style	for
drawing	text.

	

	

Notes 	

This	property	determines	the	current	style	settings	used	for
adding	text.

	

	

The	following	code	creates	a	PDF	document	and	adds	some	text
using	a	number	of	the	text	style	properties	to	control	formatting.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes	lingua,
institutis,	legibus	inter	se	differunt.	Gallos
ab	Aquitanis	Garumna	flumen,	a	Belgis	Matrona	et
Sequana	dividit.";
theText	=	theText	+	"\r\n"	+	theText	+	"\r\n"	+
theText	+	"\r\n";

Example

	

theDoc.Rect.Inset(20,	20);
theDoc.TextStyle.Size	=	32;
theDoc.TextStyle.Justification	=	1;
theDoc.TextStyle.Indent	=	64;
theDoc.TextStyle.ParaSpacing	=	32;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("doctextstyle.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis	divisa
in	partes	tres,	quarum	unam	incolunt	Belgae,
aliam	Aquitani,	tertiam	qui	ipsorum	lingua
Celtae,	nostra	Galli	appellantur.	Hi	omnes
lingua,	institutis,	legibus	inter	se	differunt.
Gallos	ab	Aquitanis	Garumna	flumen,	a	Belgis
Matrona	et	Sequana	dividit."	
theText	=	theText	+	vbCrLf	+	theText	+	vbCrLf	+
theText	+	vbCrLf
theDoc.Rect.Inset(20,	20)
theDoc.TextStyle.Size	=	32
theDoc.TextStyle.Justification	=	1
theDoc.TextStyle.Indent	=	64
theDoc.TextStyle.ParaSpacing	=	32
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("doctextstyle.pdf"))
theDoc.Clear()

doctextstyle.pdf

	

	

TopDown	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No The	current	position
of	the	origin.

	

	

Notes 	

PDF	coordinates	are	measured	upwards	from	the	bottom
of	the	document.	For	some	types	of	layout	it	can	be
useful	to	measure	coordinates	downwards	from	the	top	of
the	document.

By	setting	this	property	to	true	coordinates	are	assumed
to	start	at	the	top	rather	than	the	bottom	of	the	document.

More	precisely	the	origin	is	assumed	to	be	at	the	top-left
of	the	current	MediaBox.

There	are	a	variety	of	methods	you	can	use	to	change
coordinate	systems.

Note	that	transforms	operate	on	the	underlying	PDF
coordinate	space	rather	than	any	abstraction	specified	by
the	Units	and	TopDown	properties.	If	you	are	using
transforms	you	will	find	it	easiest	to	work	in	the	native
PDF	coordinate	space.

	

	

Example
	

The	following	code	creates	a	PDF	document	and	adds	a	grid
measured	in	inches.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Units	=	UnitType.Inches;
theDoc.TopDown	=	true;
theDoc.Width	=	1.0	/	8.0;
theDoc.FontSize	=	1;
theDoc.Rect.Pin	=	XRect.Corner.TopLeft;
for	(int	i	=	0;	i	<=	12;	i	+=	2)	{
		theDoc.AddLine(0,	i,	12,	i);
		theDoc.Rect.Position(0,	i);
		theDoc.AddText(i.ToString());
		theDoc.AddLine(i,	0,	i,	12);
		theDoc.Rect.Position(i,	0);
		theDoc.AddText(i.ToString());
}
theDoc.Save(Server.MapPath("doctopdown.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Units	=	UnitType.Inches
theDoc.TopDown	=	True
theDoc.Width	=	1.0	/	8.0
theDoc.FontSize	=	1
theDoc.Rect.Pin	=	XRect.Corner.TopLeft
For	i	As	Integer	=	0	To	12	Step	2
		theDoc.AddLine(0,	i,	12,	i)
		theDoc.Rect.Position(0,	i)
		theDoc.AddText(i.ToString())
		theDoc.AddLine(i,	0,	i,	12)
		theDoc.Rect.Position(i,	0)
		theDoc.AddText(i.ToString())
Next

theDoc.Save(Server.MapPath("doctopdown.pdf"))
theDoc.Clear()

doctopdown.pdf

	

	

Transform	Property 	

	

Type Default Read
Only Description

[C#]	
XTransform

[Visual	Basic]
XTransform

No
transformation. No

The	current
transformation
for	drawing.

	

	

Notes 	

This	property	determines	the	current	world	space	transform.
It	affects	any	drawing	using	the	AddText,	AddImage,
AddLine,	FrameRect	and	FillRect	methods.

Transforms	are	general	operations	which	encompass
rotation,	translation,	magnification	and	skewing	or	a
combination	of	these.	Note	that	the	order	in	which
transforms	are	applied	is	significant:	a	rotation	followed	by	a
translation	is	not	the	same	as	a	translation	followed	by	a
rotation.

A	world	space	transform	is	not	same	an	object	transform.
You	are	changing	the	coordinate	system	-	not	the	objects
you're	inserting.

Note	that	transforms	operate	on	the	underlying	PDF
coordinate	space	rather	than	any	abstraction	specified	by
the	Units	and	TopDown	properties.	If	you	are	using
transforms	you	will	find	it	easiest	to	work	in	the	native	PDF
coordinate	space.

	

	

Example
	

The	following	code	creates	a	PDF	document	and	adds	some	text
and	a	rectangle	rotated	at	45	degrees	anti-clockwise	around	the
middle	of	the	document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText;
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes	lingua,
institutis,	legibus	inter	se	differunt.	Gallos
ab	Aquitanis	Garumna	flumen,	a	Belgis	Matrona	et
Sequana	dividit.";
theText	=	theText	+	"\r\n"	+	theText	+	"\r\n"	+
theText	+	"\r\n";
theDoc.Rect.Magnify(0.5,	0.5);
theDoc.Rect.Position(151,	198);
theDoc.FrameRect();
theDoc.Transform.Rotate(45,	302,	396);
theDoc.FrameRect();
theDoc.FontSize	=	24;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("doctransform.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes	lingua,
institutis,	legibus	inter	se	differunt.	Gallos

ab	Aquitanis	Garumna	flumen,	a	Belgis	Matrona	et
Sequana	dividit."
theText	=	theText	+	vbCrLf	+	theText	+	vbCrLf	+
theText	+	vbCrLf
theDoc.Rect.Magnify(0.5,	0.5)
theDoc.Rect.Position(151,	198)
theDoc.FrameRect()
theDoc.Transform.Rotate(45,	302,	396)
theDoc.FrameRect()
theDoc.FontSize	=	24
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("doctransform.pdf"))
theDoc.Clear()

doctransform.pdf

	

	

Units	Property 	 	

	

Type Default Read
Only Description

[C#]	UnitType

[Visual	Basic]
UnitType

UnitType.Points No
The	current
measurement
units.

	

	 	

This	property	holds	the	current	measurement	units.

The	UnitType	enumeration	may	take	the	following	values:

Points	(PostScript	Points)	-	1/72	of	an	Inch
Twips	(Twentieths	of	a	Point)	-	1/20	of	a	PostScript	Point
Didots	(Didot	Points)	-	1/72	of	a	French	Royal	Inch
ATAPoints	(ATA	Points)	-	1/72.272	of	an	Inch
TeXPoints	(TeX	Points)	-	1/72.27	of	an	Inch
INPoints	(l'Imprimerie	Nationale	Points)	-	0.4	mm
Picas	-	12	PostScript	Points
Ciceros	-	12	Didot	Points
ATACiceros	-	12	ATA	Points
TeXCiceros	-	12	TeX	Points
Microns	-	millionths	of	a	metre
Mm	-	thousandths	of	a	metre
Cm	-	hundredths	of	a	metre
M	-	metres
Inches
Feet

There	are	a	variety	of	methods	you	can	use	to	change

Notes 	

coordinate	systems.

Why	are	my	Units	a	string?

In	older	versions	of	ABCpdf	the	Units	property	was	a
string.	So	you	might	find	code	of	this	form.

theDoc.Units	=	"mm"

In	Version	8	the	Units	property	has	been	changed	to	a
true	enumeration.	This	is	a	safer	way	of	coding	as	it
allows	the	compiler	to	ensure	that	the	values	you	are
using	are	valid.	Your	new	code	should	look	like	this.

theDoc.Units	=	UnitType.Mm

The	names	of	the	items	in	the	UnitType	enumeration
are	the	same	as	the	values	of	the	strings	used	in
previous	versions.	So	changing	your	code	should	be	a
simple	search	and	replace	operation.

Alternatively	if	you	need	to	convert	between
enumerations	and	strings	automatically	you	can	do	so.
To	convert	from	a	string	to	an	enumeration	use	the
following	code.

UnitType	unitType	=
(UnitType)Enum.Parse(typeof(UnitType),
unitString,	true)

To	convert	from	an	enumeration	to	a	string	use	the
following	code.

string	unitString	=
unitType.ToString("G")

	 	

	

	

Example 	
See	the	TopDown	property.

	
	 	

	

	

Width	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

		1.0 No The	current	line
width.

	

	 	

Notes 	

The	width	determines	the	width	of	lines	drawn	using
methods	like	AddLine	and	FrameRect.	The	width	is
measured	in	the	current	Units.

The	AddLine	method	creates	lines	centered	on	the
points	you	provide.	This	means	if	you	draw	a	horizontal
line	with	a	width	of	ten	the	line	will	extend	five	points
above	your	start	position	and	five	points	below	it.

The	FrameRect	method	draws	lines	outside	the
rectangle	you	provide.	So	if	you	frame	a	rectangle
using	a	width	of	ten,	the	drawn	rectangle	will	extend
ten	points	above,	below,	to	the	left	and	to	the	right	of
your	specified	rectangle.	No	drawing	will	fall	within	the
rectangle.

	

	 	

The	following	code	adds	two	lines	to	a	document.	The	first
line	has	a	width	of	ten	points	and	the	second	has	a	width	of
twenty	points.

Example 	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Width	=	10;
theDoc.AddLine(10,	10,	300,	300);
theDoc.Width	=	20;
theDoc.AddLine(10,	300,	300,	10);
theDoc.Save(Server.MapPath("docwidth.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Width	=	10
theDoc.AddLine(10,	10,	300,	300)
theDoc.Width	=	20
theDoc.AddLine(10,	300,	300,	10)
theDoc.Save(Server.MapPath("docwidth.pdf"))
theDoc.Clear()

docwidth.pdf

	 	

	

	

FromGray	Function 	 	

Create	an	XColor	from	a	grayscale	value.

	
	 	

Syntax 	

[C#]
static	XColor	FromGray(int	gray)

[Visual	Basic]
Shared	Function	FromGray(gray	As
Integer)	As	XColor

	

	 	

Params 	

Name Description
gray The	amount	of	black	(0	to	255)
return The	resulting	XColor.

	

	 	

Notes 	

Create	an	XColor	from	a	grayscale	value
ranging	between	zero	and	255.

The	value	represents	the	amount	of	black	ink	so
zero	indicates	white	and	255	indicates	black.

	

	 	

Example
	
None. 	 	

	

	

	

FromRgb	Function 	 	

Create	an	XColor	from	a	set	of	RGB	component
values.

	

	 	

Syntax 	

[C#]
static	XColor	FromRgb(int	red,
int	green,	int	blue)

[Visual	Basic]
Shared	Function	FromRgb(red	As
Integer,	green	As	Integer,	blue
As	Integer)	As	XColor

	

	 	

Params 	

Name Description
red The	amount	of	red	(0	to	255)
green The	amount	of	green	(0	to	255)
blue The	amount	of	blue	(0	to	255)
return The	resulting	XColor.

	

	 	

Notes 	

Create	an	XColor	from	a	set	of	RGB	component
values	ranging	between	zero	and	255..

	

	 	

Example 	

None.

	
	 	

	

	

FromCmyk	Function 	 	

Create	an	XColor	given	a	set	of	CMYK
component	values.

	

	 	

Syntax 	

[C#]
static	XColor	FromCmyk(int	cyan,
int	magenta,	int	yellow,	int
black)

[Visual	Basic]
Shared	Function	FromCmyk(cyan	As
Integer,	magenta	As	Integer,
yellow	As	Integer,	black	As
Integer)	As	XColor

	

	 	

Params 	

Name Description
cyan The	amount	of	cyan	(0	to	100)
magenta The	amount	of	magenta	(0	to	100)
yellow The	amount	of	yellow	(0	to	100)
black The	amount	of	black	(0	to	100)
return The	resulting	XColor.

	

	 	

Create	an	XColor	given	a	set	of	CMYK
component	values	ranging	between	zero	and

Notes
	 100.

	

	 	

Example 	
None.

	
	 	

	

	

FromComponents	Function 	 	

Create	an	XColor	from	a	set	of	PDF
components	in	the	generic	ColorSpace	color
space.

	

	 	

Syntax 	

[C#]
static	XColor
FromComponents(double	value1)
static	XColor
FromComponents(double	value1,
double	value2)
static	XColor
FromComponents(double	value1,
double	value2,	double	value3)
static	XColor
FromComponents(double	value1,
double	value2,	double	value3,
double	value4)

[Visual	Basic]
Shared	Function
FromComponents(value1	As	Double)
As	XColor
Shared	Function
FromComponents(value1	As	Double,
value2	As	Double)	As	XColor
Shared	Function
FromComponents(value1	As	Double,
value2	As	Double,	value3	As
Double)	As	XColor
Shared	Function

	 	

FromComponents(value1	As	Double,
value2	As	Double,	value3	As
Double,	value4	As	Double)	As
XColor

	

Params 	

Name Description

value1 The	intensity	of	the	first	component(typically	0	to	1)

value2 The	intensity	of	the	second	component(typically	0	to	1)

value3 The	intensity	of	the	third	component(typically	0	to	1)

value4 The	intensity	of	the	fourth	component(typically	0	to	1)
return The	resulting	XColor.

	

	 	

Notes 	

Create	an	XColor	from	a	set	of	PDF
components	in	the	generic	ColorSpace	color
space.

PDF	color	components	typically	range	between
zero	-	no	intensity	-	and	one	-	100%	intensity.
However	this	is	not	always	the	case.	For	color
spaces	such	as	Lab	the	components	may	take
a	wider	range	of	values.

	

	 	

	

None.

Example 	 	 	

	

	

FromArrayAtom	Function 	 	

Create	an	XColor	from	an	ArrayAtom	of
NumAtoms	containing	PDF	color	values.

	

	 	

Syntax 	

[C#]
static	XColor
FromArrayAtom(ArrayAtom	array)

[Visual	Basic]
Shared	Function
FromArrayAtom(array	As	ArrayAtom)
As	XColor

	may	throw	Exception()

	

	 	

Params 	

Name Description

array The	ArrayAtom	containing	the
components	of	the	color.

return The	resulting	XColor.

	

	 	

Create	an	XColor	from	an	ArrayAtom	of
NumAtoms	containing	PDF	color	values.

There	may	be	only	one,	three	or	four	items	in

Notes 	

the	ArrayAtom.	The	number	of	items	is	used	to
select	between	Grayscale,	RGB	or	CMYK	color
spaces	respectively.

The	values	expected	are	PDF	color	values	so
all	the	atoms	in	the	ArrayAtom	must	be
NumAtoms	with	a	value	between	zero	and	one,
each	representing	a	component	of	the	color.

If	these	conditions	are	not	met	then	an
exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

FromOperator	Function 	 	

Create	an	XColor	given	a	PDF	color	operator
and	a	set	of	Atoms	containing	the	arguments	for
that	operator.

	

	 	

Syntax 	

[C#]
static	XColor	FromOperator(Atom[]
arguments,	string	op)

[Visual	Basic]
Shared	Function
FromOperator(arguments()	As	Atom,
op	As	String)	As	XColor

	may	throw	Exception()

	

	 	

Params 	

Name Description

arguments The	Atoms	containing	theparameters	for	the	color	operator.
op The	PDF	color	operator.
return The	resulting	XColor.

	

	 	

Create	an	XColor	given	a	PDF	color	operator
and	a	set	of	Atoms	containing	the	arguments	for

Notes 	

that	operator.

There	are	a	variety	of	color	operators	available
detailed	in	the	PDF	Specification.	However	the
most	common	ones	are"rg"	and	"RG"	which	are
used	to	set	the	color	to	DeviceRGB.	These
operators	take	three	NumAtom	arguments	for
the	red,	green	and	blue	components,	each	of
which	is	a	value	ranging	between	zero	and	one.
The	upper	case	operator	is	used	to	set	the
stroking	color	and	the	lower	case	one	is	used	to
set	the	non-stroking	color.

Other	similar	operators	include	"g"	and	"G"	for
grayscale;	"k"	and	"K"	for	CMYK;	"sc"	and	"SC"
for	generic	color	components;	"scn"	and	"SCN"
for	generic	components	-	possibly	also	including
a	pattern	name.

If	these	conditions	are	not	met	then	an
exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

SetColor	Function 	 	

Sets	the	color.

	
	 	

Syntax 	

[C#]
void	SetColor(XColor	color)

[Visual	Basic]
Sub	SetColor(color	As	XColor)

	

	 	

Params 	

Name Description
color The	source	color.

	

	 	

Notes 	

This	method	copies	the	value	from	the
parameter.

	

	 	

Example 	
None.

	
	 	

	

	

SetGray	Function 	 	

Set	the	color	to	a	grayscale	value.

	
	 	

Syntax 	

[C#]
void	SetGray(int	gray)
void	SetGray(int	gray,	int	alpha)

[Visual	Basic]
Sub	SetGray(gray	As	Integer)
Sub	SetGray(gray	As	Integer,
alpha	as	Integer)

	

	 	

Params 	

Name Description
gray The	amount	of	black	(0	to	255).

alpha The	level	of	opacity	from	transparent
through	to	fully	opaque	(0	to	255).

	

	 	

Notes 	

Set	the	color	to	grayscale	and	provide	a	value
for	it.

Optionally	set	the	alpha	value	to	specify	a
transparency	level.	If	this	parameter	is	omitted
the	color	is	set	to	fully	opaque	-	no
transparency.

	 	

	

Example 	
None.

	
	 	

	

	

SetRgb	Function 	 	

Set	the	color	to	an	RGB	value.

	
	 	

Syntax 	

[C#]
void	SetRgb(int	red,	int	green,
int	blue)
void	SetRgb(int	red,	int	green,
int	blue,	int	alpha)

[Visual	Basic]
Sub	SetRgb(red	As	Integer,	green
As	Integer,	blue	As	Integer)
Sub	SetRgb(red	As	Integer,	green
As	Integer,	blue	As	Integer,
alpha	as	Integer)

	

	 	

Params 	

Name Description
red The	amount	of	red	(0	to	255).
green The	amount	of	green	(0	to	255).
blue The	amount	of	blue	(0	to	255).

alpha The	level	of	opacity	from	transparent
through	to	fully	opaque	(0	to	255).

	

	 	

Notes 	

Set	the	color	to	RGB	and	provide	a	value	for	it.

Optionally	set	the	alpha	value	to	specify	a
transparency	level.	If	this	parameter	is	omitted
the	color	is	set	to	fully	opaque	-	no
transparency.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	colors	are	effectively	the
same

	

	 	

Syntax 	

[C#]
bool	Equals(XColor	color)
override	bool	Equals(object
color)

[Visual	Basic]
Function	Equals(color	As	XColor)
As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean

	

	 	

Params 	

Name Description
color The	color	to	test	against.
return Whether	the	two	colors	are	the	same.

	

	 	

Test	whether	the	two	colors	are	effectively	the
same.

Colors	are	considered	equal	if	they	have	the
same	ColorSpace,	the	same	number	and
values	of	color	Components	and	the	same

Notes 	

Name.	This	represents	value	equality	for	the
colors	in	question.

The	underlying	components	of	a	color	are
represented	as	floating	point	numbers.	Floating
point	numbers	are	subject	to	rounding	errors,	so
there	has	to	be	a	degree	of	latitude	when
comparing	color	values.	The	degree	of	latitude
is,	by	default,	determined	by	the	color	space.
CMYK	values	use	a	percentage	based	scale	so
the	value	used	to	determine	the	resolution	of
the	comparison	is	1%.	Other	color	spaces	use
an	eight	bit	scale	so	the	resolution	of
comparison	is	1/256.

	

	 	

Example 	
None.

	
	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	XColor

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()
As	Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

SetCmyk	Function 	 	

Set	the	color	to	an	CMYK	value.

	
	 	

Syntax 	

[C#]
void	SetCmyk(int	cyan,	int
magenta,	int	yellow,	int	black)
void	SetCmyk(int	cyan,	int
magenta,	int	yellow,	int	black,
int	alpha)

[Visual	Basic]
Sub	SetCmyk(cyan	As	Integer,
magenta	As	Integer,	yellow	As
Integer,	black	As	Integer)
Sub	SetCmyk(cyan	As	Integer,
magenta	As	Integer,	yellow	As
Integer,	black	As	Integer,	alpha
as	Integer)

	

	 	

Params 	

Name Description
cyan The	amount	of	cyan	(0	to	100).
magenta The	amount	of	magenta	(0	to	100).
yellow The	amount	of	yellow	(0	to	100).
black The	amount	of	black	(0	to	100).

alpha The	level	of	opacity	from	transparent
through	to	fully	opaque	(0	to	255).

	 	

	

Notes 	

Set	the	color	to	CMYK	and	provide	a	value	for
it.

Optionally	set	the	alpha	value	to	specify	a
transparency	level.	If	this	parameter	is	omitted
the	color	is	set	to	fully	opaque	-	no
transparency.

	

	 	

Example 	
None.

	
	 	

	

	

SetComponents	Function 	 	

Set	the	color	to	a	set	of	ColorSpace	PDF
components

	

	 	

Syntax 	

[C#]
void	SetComponents(double	value1)
void	SetComponents(double	value1,
double	value2)
void	SetComponents(double	value1,
double	value2,	double	value3)
void	SetComponents(double	value1,
double	value2,	double	value3,
double	value4)

[Visual	Basic]
Sub	SetComponents(value1	As
Double)
Sub	SetComponents(value1	As
Double,	value2	As	Double)
Sub	SetComponents(value1	As
Double,	value2	As	Double,	value3
As	Double)
Sub	SetComponents(value1	As
Double,	value2	As	Double,	value3
As	Double,	value4	As	Double)

	

	 	

Name Description

Params
	

value1 The	intensity	of	the	first	component
(typically	0	to	1)

value2 The	intensity	of	the	second	component(typically	0	to	1)

value3 The	intensity	of	the	third	component(typically	0	to	1)

value4 The	intensity	of	the	fourth	component(typically	0	to	1)

	

	 	

Notes 	

Sets	the	color	to	the	generic	ColorSpace	color
space	and	provide	a	set	of	components	for	it.

PDF	color	components	typically	range	between
zero	-	no	intensity	-	and	one	-	100%	intensity.
However	this	is	not	always	the	case.	For	color
spaces	such	as	Lab	the	components	may	take
a	wider	range	of	values.

	

	 	

Example 	
None.

	
	 	

	

	

SetRandom	Function 	 	

Set	the	color	to	a	random	opaque	value	in	the
current	color	space.

	

	 	

Syntax 	

[C#]
void	SetRandom()

[Visual	Basic]
Sub	SetRandom()

	

	 	

Params 	

Name Description
None 	

	

	 	

Notes 	

Set	the	color	to	a	random	opaque	value	in	the
current	color	space.

	

	 	

Example 	
None.

	
	 	

	

	

ToArrayAtom	Function 	 	

An	ArrayAtom	representation	of	the
components	of	the	color

	

	 	

Syntax 	

[C#]
ArrayAtom	ToArrayAtom()

[Visual	Basic]
ArrayAtom	ToArrayAtom()

	

	 	

Params 	

Name Description
return An	ArrayAtom	representing	the	color.

	

	 	

Notes 	

An	ArrayAtom	representation	of	the
components	of	the	color.

The	ArrayAtom	that	is	created	will	contain	one
NumAtom	for	each	component	of	the	color,
each	with	the	appropriate	value	set.

	

	 	

Example 	

None.
	 	

	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

Alpha	Property 	

	

Type Default Read	Only Description
[C#]	int

[Visual	Basic]
Integer

255 No The	alpha	opacity.

	

	

Notes 	

Allows	you	to	get	or	set	the	alpha	opacity	of	the	color.

Alpha	values	can	range	from	0	to	255.	Zero	indicates	fully
transparent	and	255	indicates	fully	opaque.

	

	

Here	we	create	a	PDF	document	showing	how	different	values	of
alpha	result	in	different	levels	of	transparency.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(20,20);
theDoc.FontSize	=	300;
for	(int	i	=	1;	i	<=	10;	i++)	{
		theDoc.Color.Alpha	=	255	/	i;
		theDoc.AddText(theDoc.Color.Alpha.ToString());
		theDoc.Rect.Move(25,	-50);
}
theDoc.Save(Server.MapPath("coloralpha.pdf"));
theDoc.Clear();

Example
	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,20)
theDoc.FontSize	=	300
For	i	As	Integer	=	1	To	10
		theDoc.Color.Alpha	=	255	/	i
		theDoc.AddText(theDoc.Color.Alpha.ToString())
		theDoc.Rect.Move(25,	-50)
Next
theDoc.Save(Server.MapPath("coloralpha.pdf"))
theDoc.Clear()

coloralpha.pdf

	

	

	

Black	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	black
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	black	level.

CMYK	color	components	can	range	from	0	to	100.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
CMYK	values	for	RGB	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	CMYK.

	

	 	

Example 	
None.

	
	 	

	

	

Blue	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	blue
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	blue	component.

RGB	color	components	can	range	from	0	to	255.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
RGB	values	for	CMYK	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	RGB.

	

	 	

Example 	
None.

	
	 	

	

	

Color	Property 	 	

	

Type Default ReadOnly Description

[C#]	Color

[Visual	Basic]
Color

n/a No The
System.Drawing.Color.

	

	 	

Notes 	

Allows	you	to	access	the	color	as	a	standard	.NET
Color	from	the	System.Drawing	namespace.

	

	 	

Example 	
None.

	
	 	

	

	

ColorSpace	Property

	

Type Default Read
Only Description

[C#]	
ColorOperatorType

[Visual	Basic]
ColorOperatorType

ColorOperatorType.Rgb No
The	color
space	for
the	color.

	

Allows	you	to	get	or	set	the	current	color	space	for	the	color.

Grayscale,	RGB	and	CMYK	colors	are	defined	purely	in	terms
of	the	values	of	the	XColor	object.	However	more	complex
colors	need	to	be	defined	in	the	context	of	a	separate	color
space.

The	ColorOperatorType	enumeration	may	take	the	following
values:

None
DeviceGray	(i.e.	grayscale)
DeviceRGB	(i.e.	RGB)
DeviceCMYK	(i.e.	CMYK)
ColorSpace	(i.e.	a	generic	set	of	color	components)

The	actual	color	is	defined	in	terms	of	the	Components	of	the
color.	For	grayscale,	RGB	and	CMYK	there	are	one,	three	and
four	of	these	respectively.	These	components	are	most
commonly	accessed	using	properties	such	as	Gray,	Red,
Green	or	Blue	which	express	the	values	in	terms	of	integers

Notes
	

(typically	0	to	255).	However	it	is	ultimately	the	Components
ranging	from	0.0	to	1.0	which	are	provided	as	parameters	to
the	PDF	color	operator.

If	you	change	the	value	of	this	property	between	DeviceGray,
DeviceRGB	and	DeviceCMYK,	the	current	color	will
automatically	be	converted	to	the	indicated	color	space.
However	different	color	spaces	have	fundamentally	different
properties	and	color	conversions	can	only	ever	be
approximate.	Changing	to	None	or	ColorSpace	will	not	change
the	number	or	values	of	the	Components.

The	integer	values	for	the	enumeration	values	DeviceGray,
DeviceRGB	and	DeviceCMYK	are	one,	three	and	four
respectively,	so	that	they	match	up	with	the	number	of	color
components	in	each	of	these	color	spaces.

The	ColorSpace	enumeration	value	indicates	a	generic	color
with	a	generic	set	of	components.	This	type	of	color	only
makes	sense	within	the	context	of	a	specified	color	space	such
as	a	spot	color	space.	In	this	situation	the	parameters	that	are
provided	to	the	PDF	color	operator	are	accessed	directly	using
the	Components	of	the	color.	In	addition,	for	pattern	color
spaces,	there	may	also	be	a	Name	associated	with	the	color.

Why	is	my	ColorSpace	an	integer?

In	older	versions	of	ABCpdf	the	ColorSpace	property	was
an	integer.	So	you	might	find	code	of	this	form.

theColor.ColorSpace	=	3

In	Version	10	the	ColorSpace	property	has	been	changed
to	a	true	enumeration.	This	is	a	safer	way	of	coding	as	it
allows	the	compiler	to	ensure	that	the	values	you	are
using	are	valid.	Your	new	code	should	look	like	this.

	

theColor.ColorSpace	=
ColorOperatorType.DeviceRGB

The	old	values	of	the	integers	match	up	with	the	new
enumeration	values.	So	if	you	find	code	of	this	form:

theColor.ColorSpace	=	anInteger

You	can	just	cast	it	to	the	correct	type.

theColor.ColorSpace	=
(ColorOperatorType)anInteger

Or	similarly:

int	n	=	theColor.ColorSpace

You	can	again	cast	it	to	the	correct	type.

int	n	=	(int)theColor.ColorSpace

	

Example 	
None.

	
	

	

	

Components	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IList<double>

[Visual	Basic]
IList<double>

n/a No

The	components
of	the	color	in
native	PDF
format

	

	 	

Notes 	

The	components	of	the	color	in	native	PDF	format.

PDF	color	components	typically	range	between	zero
-	no	intensity	-	and	one	-	100%	intensity.	However
this	is	not	always	the	case.	For	color	spaces	such	as
Lab	the	components	may	take	a	wider	range	of
values.

	

	 	

In	the	following	example	we	demonstrate	how	to	use
generic	color	components	to	draw	in	the	Lab	color
space.

[C#]
using	(Doc	doc	=	new	Doc())	{
		doc.Width	=	80;
		doc.Rect.Inset(50,	50);
		ColorSpace	cs	=	new
ColorSpace(doc.ObjectSoup,

Example 	

ColorSpaceType.Lab);
		doc.ColorSpace	=	cs.ID;
		//	This	Lab	color	is	a	deep	green
		doc.Color.ColorSpace	=
ColorOperatorType.ColorSpace;
		doc.Color.Components[0]	=	50;	//	L
range	is	0	to	+100
		doc.Color.Components[1]	=	-50;	//	a
range	is	-100	to	+100
		doc.Color.Components[2]	=	+50;	//	B
range	is	-100	to	+100
		doc.AddOval(true);
		doc.Save("examplelabcolorspace.pdf");
}

[Visual	Basic]
		Using	doc	As	New	Doc()
				doc.Width	=	80
				doc.Rect.Inset(50,	50)
				Dim	cs	As	New
ColorSpace(doc.ObjectSoup,
ColorSpaceType.Lab)
				doc.ColorSpace	=	cs.ID
				'	This	Lab	color	is	a	deep	green
				doc.Color.ColorSpace	=
ColorOperatorType.ColorSpace
				doc.Color.Components(0)	=	50
				'	L	range	is	0	to	+100
				doc.Color.Components(1)	=	-50
				'	a	range	is	-100	to	+100
				doc.Color.Components(2)	=	+50
				'	B	range	is	-100	to	+100
				doc.AddOval(True)
				doc.Save("examplelabcolorspace.pdf")
		End	Using
End	Sub

	 	

examplelabcolorspace.pdf

	

	

	

Cyan	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	cyan
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	cyan	level.

CMYK	color	components	can	range	from	0	to	100.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
CMYK	values	for	RGB	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	CMYK.

	

	 	

Example 	
None.

	
	 	

	

	

Gray	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	gray
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	gray	level.

Grayscale	levels	can	range	from	0	(black)	to	255
(white).

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
Grayscale	values	for	RGB	or	CMYK	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	Grayscale.

This	property	can	also	be	used	to	specify	levels	for
spot	colorants.	Levels	can	range	from	0	(0%
intensity)	to	255	(100%	intensity).	See	the
AddColorSpaceSpot	method	for	an	example.

	

	 	

Example 	
None.

	

	 	

	

	

Green	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	green
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	green	component.

RGB	color	components	can	range	from	0	to	255.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
RGB	values	for	CMYK	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	RGB.

	

	 	

Example 	
None.

	
	 	

	

	

Magenta	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	magenta
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	magenta	level.

CMYK	color	components	can	range	from	0	to	100.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
CMYK	values	for	RGB	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	CMYK.

	

	 	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No

Any	name	that
may	be
associated	with
this	color

	

	 	

Notes 	

Any	name	that	may	be	associated	with	this	color.
Most	commonly	this	is	used	for	pattern	names.

	

	 	

Example 	
None.

	
	 	

	

	

Red	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	red
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	red	component.

RGB	color	components	can	range	from	0	to	255.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
RGB	values	for	CMYK	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	RGB.

	

	 	

Example 	
None.

	
	 	

	

	

String	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

"0	0	0" No The	color	as	a
string.

	

	 	

Notes 	

Allows	you	access	to	the	color	as	a	string.

If	the	color	is	in	the	RGB	color	space	then	the	string
contains	three	values	representing	the	Red,	Green
and	Blue	levels.	For	example	"100	150	200".

If	the	color	is	in	the	CMYK	color	space	then	the	string
contains	four	values	representing	the	Cyan,
Magenta,	Yellow	and	Black	levels.	For	example	"30
60	90	10".

If	the	color	is	in	the	Grayscale	color	space	then	the
string	contains	one	value	representing	the	Gray	level.
For	example	"150".

You	can	use	the	ColorSpace	property	to	find	the
current	color	space	for	the	color.

Alpha	values	can	be	indicated	by	prepending	an	'a'	to
an	extra	component.	For	example	"30	60	90	a120"
would	indicate	an	RGB	value	with	an	alpha	value	of
120.

	 	

	

Example 	
None.

	
	 	

	

	

Yellow	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No The	yellow
component.

	

	 	

Notes 	

Allows	you	to	get	or	set	the	yellow	level.

CMYK	color	components	can	range	from	0	to	100.

Querying	this	property	does	not	change	the
ColorSpace.	This	means	you	can	obtain	approximate
CMYK	values	for	RGB	or	Grayscale	colors.

However	if	you	change	the	value	of	this	property	the
color	will	automatically	be	converted	to	CMYK.

	

	 	

Example 	
None.

	
	 	

	

	

SetCryptMethods	Function

Sets	the	crypt	methods	for	encryption	levels	of	type	4	or	above.

	

Syntax 	

[C#]
void	SetCryptMethods(CryptMethodType	method)
void	SetCryptMethods(CryptMethodType	stringMethod,
CryptMethodType	streamMethod)

[Visual	Basic]
Sub	SetCryptMethods(method	As	CryptMethodType)
Sub	SetCryptMethods(stringMethod	As	CryptMethodType,
streamMethod	As	CryptMethodType)

	may	throw	Exception()

	

Params 	

Name Description
method The	crypt	method	for	strings	and	streams.
stringMethod The	crypt	method	for	strings.
streamMethod The	crypt	method	for	streams.

	

The	default	crypt	method	for	Type	4	is	V2,	which	uses	RC4	algorithm.
Crypt	method	settings	are	in	effect	only	when	Type	is	4	or	above.

The	CryptMethodType	enumeration	can	take	any	of	the	following	values:

Notes 	

None	–	(Not	supported.)	An	exception	is	thrown	when	it	is	used.
Identity	–	No	encryption.
V2	–	Uses	the	RC4	algorithm.
AESV2	–	Uses	the	AES	algorithm	with	128-bit	encryption	keys.
AESV3	–	Uses	the	AES	algorithm	with	256-bit	encryption	keys.

Because	Adobe	Reader	does	not	support	using	more	than	one	crypt
methods	per	document	(i.e.	stringMethod≠streamMethod),	an	exception
is	thrown	if	you	try	to	use	multiple	crypt	methods.	However,	Identity	is
degenerate	and	can	be	used	with	other	crypt	methods.

	

Example 	

Here	we	use	128-bit	AES	encryption.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Hello	World!");
theDoc.Encryption.Type	=	4;
theDoc.Encryption.SetCryptMethods(CryptMethodType.AESV2);
theDoc.Save(Server.MapPath("docencrypt.pdf"));

[Visual	Basic]
Dim	theDoc	As	New	Doc()
theDoc.FontSize	=	96
theDoc.AddText("Hello	World!")
theDoc.Encryption.Type	=	4
theDoc.Encryption.SetCryptMethods(CryptMethodType.AESV2)
theDoc.Save(Server.MapPath("docencrypt.pdf"))

	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

CanAssemble	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	assemble
the	document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	assemble	the	document.

Assembling	is	defined	as	inserting,	rotating	or
deleting	pages;	creating	bookmarks	or	thumbnail
images.	This	is	allowed	even	if	the	CanChange
property	is	set	to	false.

This	property	is	only	applied	if	the	Type	is	set	to	2	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanChange	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	modify	the
document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	change	the	document.

Changing	is	defined	as	modifying	the	document	in
any	way	other	than	those	controlled	by	the	CanEdit,
CanFillForms	or	CanAssemble	properties.

This	property	is	only	applied	if	the	Type	is	set	to	1	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanCopy	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	copy	from
the	document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	copy	from	the	document.

Copying	is	defined	as	copying,	or	otherwise
extracting	text	and	graphics	from	the	document.	If	the
Type	is	set	to	3	and	the	CanExtract	property	is	set	to
true	then	extracting	text	and	graphics	in	support	of
accessibility	to	disabled	users	is	allowed.

This	property	is	only	applied	if	the	Type	is	set	to	1	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanEdit	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	edit	the
document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	edit	the	document.

Editing	is	defined	as	adding	or	modifying	text
annotations,	filling	in	interactive	form	fields	and	if	the
CanChange	property	is	set,	creating	or	modifying
interactive	form	fields	including	signature	fields.

This	property	is	only	applied	if	the	Type	is	set	to	1	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanExtract	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	extract	from
the	document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	extract	from	the	document.

Extracting	is	defined	as	extracting	text	or	graphics	in
support	of	accessibility	to	disabled	users	or	for	other
purposes.

This	property	is	only	applied	if	the	Type	is	set	to	2	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanFillForms	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	fill	forms	in
the	document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	fill	forms	in	the	document.

Filling	forms	is	defined	as	filling	in	existing	interactive
form	fields	including	signature	fields.	This	is	allowed
even	if	the	CanEdit	property	is	set	to	false.

This	property	is	only	applied	if	the	Type	is	set	to	2	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanPrint	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	a	user
can	print	the
document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	print	the	document.

Printing	may	not	be	available	at	the	highest	quality
level	if	the	CanPrintHi	property	is	set	to	false.

This	property	is	only	applied	if	the	Type	is	set	to	1	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

CanPrintHi	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	a	user
can	print	a	high
resolution	copy
of	the	document.

	

	 	

Notes 	

This	property	determines	if	people	who	supply	the
user	password	can	print	a	high	resolution	copy	of	the
document.

When	this	property	is	set	to	false	and	the	CanPrint
property	is	set	to	true	printing	is	limited	to	a	lower
quality	representation	of	the	document.

This	property	is	only	applied	if	the	Type	is	set	to	2	or
higher.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

EncryptMetadata	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
encrypt	the
document
metadata	for
encryption	levels
of	type	4	or
above.

	

	 	

Notes 	

This	property	determines	whether	the	document
metadata	is	encrypted.	It	is	in	effect	only	when	Type
is	4	or	above.

The	document	metadata	can	be	saved	unencrypted
so	that	tools	that	do	not	support	PDF	encryption	can
still	index/process	the	document	using	the	metadata.

	

	 	

Example 	
None.

	
	 	

	

	

OwnerPassword	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

"" No The	owner
password.

	

	 	

Notes 	

This	property	determines	or	reflects	the	owner
password	for	the	document.

You	can	open	and	view	an	encrypted	document	with
either	the	user	or	the	owner	password.	However	only
the	owner	has	full	control	over	the	document.	The
user	may	have	a	restricted	set	of	permissions.

For	more	information	about	the	user	and	owner
passwords	see	the	Doc.Encryption	property.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

Password	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

"" No The	user
password.

	

	 	

Notes 	

This	property	determines	or	reflects	the	user
password	for	the	document.

You	can	open	and	view	an	encrypted	document	with
either	the	user	or	the	owner	password.	However	only
the	owner	has	full	control	over	the	document.	The
user	may	have	a	restricted	set	of	permissions.

Typically	the	user	password	is	left	blank	to	allow	all
users	to	view	the	document.

For	more	information	about	the	user	and	owner
passwords	see	the	Doc.Encryption	property.

	

	 	

Example 	
See	the	Doc.Encryption	property.

	
	 	

	

	

StreamCryptionMethod	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
CryptMethodType

[Visual	Basic]
CryptMethodType

V2 Yes

The	crypt
method	for
streams	for
encryption
levels	of	type	4
or	above.

	

	 	

Notes 	

This	property	returns	the	crypt	methods	for	streams.
Crypt	method	settings	are	in	effect	only	when	Type	is
4	or	above.

To	change	this	value,	use	SetCryptMethods.

	

	 	

Example 	
None.

	
	 	

	

	

String	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

Variable No
The	encryption
settings	as	a
string.

	

	 	

Notes 	

A	string	representation	of	the	encryption	settings.

This	covers	all	the	properties	of	this	class	and	can	be
sued	for	a	save	and	restore	stack.

	

	 	

Example 	
None

	
	 	

	

	

StringCryptionMethod	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
CryptMethodType

[Visual	Basic]
CryptMethodType

V2 Yes

The	crypt
method	for
strings	for
encryption
levels	of	type	4
or	above.

	

	 	

Notes 	

This	property	returns	the	crypt	methods	for	strings.
Crypt	method	settings	are	in	effect	only	when	Type	is
4	or	above.

To	change	this	value,	use	SetCryptMethods.

	

	 	

Example 	
None.

	
	 	

	

	

Type	Property 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

0 No The	level	of
encryption	to	use.

	

	

Notes 	

This	property	determines	the	level	of	encryption	used	when
saving	the	document.	The	default	value	of	zero	indicates	that
no	encryption	will	be	used.

Higher	levels	of	encryption	provide	higher	levels	of	security	and
more	flexibility	in	applying	permissions	but	also	require	more
recent	versions	of	Adobe	Acrobat	to	view.	The	table	below
details	valid	combinations.

Type	Value 0 1 2 4 5
Acrobat
Version
Required

Any 2.0 5.0 7.0 9.0

Encryption
Key
Length
(bits)

None 40 128 128 256

Encryption
Algorithm Identity RC4 RC4 Identity/RC4/AES Identity/AES

Can
Assemble 	 	

Can
Change

	

Can	Copy 	
Can	Edit 	
Can	Extract 	 	
Can	Fill
Forms 	 	

Can	Print 	
Can	Print
Hi 	 	

	

Example 	

See	the	Doc.Encryption	property	and	the
SetCryptMethods	method.

	

	

	

	

FindAll	Function 	 	

Find	all	the	fonts	currently	installed	on	the
system.

	

	 	

Syntax 	

[C#]
static	XFont[]	FindAll()

[Visual	Basic]
Shared	Function	FindAll()	As
XFont()

	

	 	

Params 	

Name Description
return The	set	of	matching	fonts.

	

	 	

Notes 	

This	function	finds	all	the	fonts	currently
installed	on	the	system.

	

	 	

Example 	
None.

	
	 	

	

	

FindFamily	Function 	 	

Find	all	the	fonts	belonging	to	a	particular
family.

	

	 	

Syntax 	

[C#]
static	XFont[]	FindFamily(string
family)

[Visual	Basic]
Shared	Function	FindFamily(family
As	String)	As	XFont()

	

	 	

Params 	

Name Description
family The	name	of	the	font	family.
return The	set	of	matching	fonts.

	

	 	

Notes 	

This	function	finds	all	the	fonts	belonging	to	a
particular	font	family.

	

	 	

Example
	
None. 	 	

	

	

	

FindFamilyNames	Function 	 	

Find	the	names	of	all	font	families.

	
	 	

Syntax 	

[C#]
static	string[]	FindFamilyNames()

[Visual	Basic]
Shared	Function	FindFamilyNames()
As	String()

	

	 	

Params 	

Name Description
return The	set	of	family	names.

	

	 	

Notes 	

This	function	finds	all	the	font	families	currently
available.

	

	 	

Example 	
None.

	
	 	

	

	

FindByName	Function 	 	

Find	all	the	fonts	with	a	given	name.

	
	 	

Syntax 	

[C#]
static	XFont[]	FindByName(string
name)

[Visual	Basic]
Shared	Function	FindByName(name
As	String)	As	XFont()

	

	 	

Params 	

Name Description
name The	name	of	the	font.
return The	set	of	matching	fonts.

	

	 	

Notes 	

This	function	finds	all	the	fonts	with	a	given
name.

Note	that	each	font	may	contain	many	different
names.	Some	names	are	more	unique	than
others.	So	it	is	good	to	be	as	specific	as
possible	when	searching	by	name.

	

	 	

Example 	
None.

	
	 	

	

	

FindByStyle	Function 	 	

Find	a	font	from	a	specific	family,	with	a	given
style.

	

	 	

Syntax 	

[C#]
static	XFont	FindByStyle(string
family,	FontWeight	weight,	bool
italic)
static	XFont	FindByStyle(string
family,	int	weight,	bool	italic)
static	XFont
FindByStyle(IEnumerable<XFont>
fonts,	int	weight,	int
weightTolerance,	bool	italic)

[Visual	Basic]
Shared	Function
FindByStyle(family	As	String,
weight	As	FontWeight,	italic	As
Boolean)	As	XFont
Shared	Function
FindByStyle(family	As	String,
weight	As	Integer,	italic	As
Boolean)	As	XFont
Shared	Function	FindByStyle(fonts
As	IEnumerable(Of	XFont),	weight
As	Integer,	weightTolerance	as
Integer,	italic	As	Boolean)	As
XFont

	 	

	

Params 	

Name Description
family The	name	of	the	font	family.
fonts The	fonts.

weight
The	weight	(or	the	midpoint
of	the	permitted	weight
range)	of	the	required	font.

weightTolerance

The	maximum	permitted
difference	between	the
weight	parameter	and	the
weight	of	the	required	font.
The	default	value	is	0.

italic Whether	an	italic	font	is
required.

return
A	matching	font.	Null	if	no
matching	font	could	be
found.

	

	 	

Notes 	

This	function	finds	a	font	from	a	specific	family
or	among	the	given	fonts,	with	a	given	style.

If	no	matching	font	can	be	found,	then	the
function	will	return	null.

The	desired	weight	can	be	passed	in	either	as
an	integer	or	as	a	value	from	the	FontWeight
enumeration.

	

	 	

None.

Example 	 	 	 	

	

	

TextWidth	Function 	 	

Calculate	the	width	of	a	string	of	text.

	
	 	

Syntax 	

[C#]
int	TextWidth(string	text)

[Visual	Basic]
Function	TextWidth(text	As
String)	As	Integer

	

	 	

Params 	

Name Description
text The	text
return The	width	of	the	text	in	1000ths.

	

	 	

Notes 	

This	function	caculates	the	width	for	a	given	text
string.

The	value	returned	is	measured	in	thousandths
of	a	unit.	So	to	calculate	the	physical	size	on	the
page	multiply	the	returned	value	by	the	font	size
and	divide	by	one	thousand.

	

	 	

Example 	

None.

	 	 	

	

	

Unload	Function 	 	

Unloads	a	font	so	that	it	is	no	longer	available.

	
	 	

Syntax 	

[C#]
void	Unload()

[Visual	Basic]
Sub	Unload()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Unloads	a	font	so	that	it	is	no	longer	available.

It	is	important	that	you	ensure	that	the	fonts	is
not	being	used	by	ABCpdf	at	the	point	that	it	is
unloaded.	This	means	you	need	to	consider	if
other	threads	might	be	constructing	PDF
documents	that	are	making	use	of	the	font.
Unloading	a	font	which	is	in	use	may	result	in
unpredictable	behavior	or	output.

	

	 	

Example 	
None.

	
	 	

	

	

FamilyName	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes
The	name	of	the
family	to	which
the	font	belongs.

	

	 	

Notes 	

The	name	of	the	family	to	which	the	font	belongs.

Fonts	often	come	in	collections	providing	variations
on	a	particular	style.	Although	the	font	name	for	each
style	may	be	different	the	family	name	will	be	the
same.

	

	 	

Example 	

None.

	

	

	 	

	

	

FixedPitch	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes
Whether	the	font
is	in	a	fixed	pitch
style.

	

	 	

Notes 	

The	value	of	this	property	is	true	if	the	font	is	in	a
fixed	pitch	style.

Fixed	pitch	fonts	have	characters	which	are	all	the
same	width.	Courier	is	an	example	of	such	a	font.

	

	 	

Example 	
None.

	
	 	

	

	

Italic	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes
Whether	the	font
is	in	an	italic
style.

	

	 	

Notes 	

The	value	of	this	property	is	true	if	the	font	is	in	an
italic	style.

	

	 	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes
The	complete
human	readable
name	of	the	font.

	

	 	

Notes 	

The	complete	human	readable	name	of	the	font.

Font	names	are	not	guaranteed	to	be	unique.
However	it	is	unusual	to	find	duplicates.

	

	 	

Example 	

None.

	

	

	 	

	

	

Names	Property

	

Type

[C#]	
System.Collections.Specialized.StringCollection

[Visual	Basic]
System.Collections.Specialized.StringCollection

	

Notes 	

The	complete	set	of	names	by	which	this	font	is	known.

Fonts	can	hold	multiple	names.	These	can	be	short	names,	long	names,	
names,	names	for	a	particular	purpose	or	names	in	different	languages.

	

Example 	

None.

	

	

	

	

PostScriptName	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes

The	name	the
font	will	be
known	by	on	a
PostScript
printer.

	

	 	

Notes 	

The	name	the	font	will	be	known	by	on	a	PostScript
printer.

PDF	documents	generally	refer	to	fonts	by	their
PostScript	name.

	

	 	

Example 	

None.

	

	

	 	

	

	

Script	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes
Whether	the	font
is	in	a	script
style.

	

	 	

Notes 	

The	value	of	this	property	is	true	if	the	font	is	in	a
script	style.

Script	styles	are	designed	to	look	like	cursive
handwriting.	Comic	Sans	MS	is	an	example	of	such	a
font.

	

	 	

Example 	
None.

	
	 	

	

	

Serif	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes Whether	the	font
is	in	a	serif	style.

	

	 	

Notes 	

The	value	of	this	property	is	true	if	the	font	is	in	a
serif	style.

Fonts	come	in	serif	and	sans-serif	styles.	Serif	styles
have	structural	elements	on	the	end	of	strokes.
Sans-serif	styles	do	not.

Times	is	an	example	of	a	font	with	serifs.	Arial	is	an
example	of	one	without.

	

	 	

Example 	
None.

	
	 	

	

	

Weight	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes The	weight	of
the	font.

	

	 	

Notes 	

The	weight	of	the	font	determines	whether	the	font	is
light,	normal	or	bold.

The	value	of	this	property	can	be	compared	against
the	FontWeight	enumeration.

The	FontWeight	enumeration	contains	the	following
values:

DontCare	=	0
Thin	=	100
ExtraLight	=	200
Light	=	300
Normal	=	400
Medium	=	500
SemiBold	=	600
Bold	=	700
ExtraBold	=	800
Heavy	=	900

	

	 	

Example 	

None.

	
	 	

	

	

Baseline	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	baseline	of
the	font	in
thousandths	of	a
unit.

	

	 	

Notes 	

The	baseline	of	the	font	in	thousandths	of	a	unit.

To	find	the	base	of	the	font	use	this	metric	together
with	the	font	size	to	find	the	distance	from	the	top	of
the	text	area	to	the	baseline	of	your	font.

For	example	if	the	baseline	is	800	and	the	font	size	is
100	points,	then	the	base	of	the	font	will	be	80	points
from	the	top	of	the	current	rectangle.

	

	 	

Example 	
None.

	
	 	

	

	

Widths	Property 	 	

	

Type Default ReadOnly Description

[C#]	int[]

[Visual	Basic]
Integer()

n/a Yes
The	widths	of
the	characters	in
the	font.

	

	 	

Notes 	

The	character	widths	for	all	the	characters	in	the	font.

The	array	is	indexable	by	Unicode	value.	For
example	to	find	the	width	of	a	space	(ASCII	32)	you
would	simply	reference	item	32	in	the	array.

The	values	are	measured	in	in	1000ths	of	a	PDF
unit.	Characters	with	no	representation	in	the	font	are
assigned	a	width	of	-1.

	

	 	

Example 	
None.

	
	 	

	

	

GetFieldNames	Function 	 	

Gets	the	full	names	of	all	the	fields	in	the
document.

	

	 	

Syntax 	

[C#]
string[]	GetFieldNames()

[Visual	Basic]
Function	GetFieldNames()	As
String()

	

	 	

Params 	

Name Description

return The	names	of	all	the	eForm	fields	in
the	document.

	

	 	

Notes 	

This	function	scans	the	field	tree	and	extracts
the	full	name	of	every	terminal	field	in	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

MakeFieldsUnique	Function 	 	

Makes	shared	XForm	fields	unique.

	
	 	

Syntax 	

[C#]
void	MakeFieldsUnique()
void	MakeFieldsUnique(string
token)

[Visual	Basic]
Sub	MakeFieldsUnique()
Sub	MakeFieldsUnique(token	As
String)

	

	 	

Params 	

Name Description

token

A	token	appended	to	the	existing	field
name,	together	with	the	page	number.
This	makes	the	field	name	unique.
Default	value	is	"_page".

	

	 	

Makes	shared	XForm	fields	unique.

After	duplicating	pages	via	calls	such	as
RemapPages	and	Append,	fields	may	end	up
shared	by	pages.	This	means	that	updating	a

Notes 	

field	in	a	page	will	affect	the	same	field	in	a
different	page.	Very	often	this	is	not	the	desired
behaviour.	Fields	should	then	be	made	unique.
Changing	fields	in	a	page	will	not	affect	other
pages	when	fields	are	unique.	Call	this	method
to	make	the	fields	unique.	For	example:
RemapPages("1	1")	creates	two	copies	of	the
first	page,	which	means	that	any	field	owned	by
the	first	page	is	now	shared	by	two	pages.
Calling	MakeFieldsUnique	after	RemapPages,
will	create	separate	copies	of	the	fields,	each
one	with	a	unique	name.

To	make	names	unique	we	use	the	token
parameter.	This	is	a	string	that	is	appended	to
the	field	name.	It	is	also	followed	by	the	page
number.	For	example,	you	can	set	the	token	to
something	like	"_page",	the	default	value.	The
field	names	will	then	be	changed	to
ExistnigName_page1,	where	ExistingName	is
the	current	name	of	the	field	and	the	field	is
located	on	page	1.	Fields	must	have	unique
names,	this	is	required	by	the	PDF
specifications.

If	the	token	already	exists	in	the	field	name	-
and	is	located	at	the	end	except	for	digits	-	only
the	page	number	is	changed.	The	token	will	not
be	appended	twice.	Therefore	an	existing	field
name	that	ends	with	digits,	and	has	the	exact
token	before	such	digits,	will	have	the	digits
replaced	by	the	page	number	and	nothing	else
changed.

The	token	may	be	empty	but	be	aware	that	any
digits	at	the	end	of	the	field	name	will	be
replaced	by	the	page	number.	If	the	token	is	null
it	will	be	replaced	by	the	default	token,	_page.

	

If	a	field	is	shared	by	several	widget	annotations
either	on	the	same	or	different	pages,	we	do	our
best	not	to	break	this	sharing	when	the	fields
are	made	unique.	When	duplicating	a	shared
field,	the	page	number	in	the	field	name	will	be
the	number	of	the	last	page	the	field	appeared
on.	For	example,	take	a	field	called	"title"	and
shared	between	pages	1	and	2.	The	following
remap	is	performed:	"1	1	2	2".	Then
MakeFieldsUnique	is	called.	The	first	and	third
pages	will	then	share	a	field	called	title_page3
and	the	second	and	forth	pages	will	share	a
field	called	title_page4.	If	remapping	with	"1	2	1
2",	then	the	first	two	pages	share	title_page2
and	the	last	two	pages	share	title_page4.

	

Example 	
None.

	
	 	

	

	

AddResource	Function 	 	

Add	a	particular	type	of	resource	to	the	form

	
	 	

Syntax 	

[C#]
string	AddResource(IndirectObject
resource,	string	type,	string
name)

[Visual	Basic]
Function	AddResource(resource	As
IndirectObject,	type	As	String,
name	As	String)	As	String

	

	 	

Params 	

Name Description
resource The	resource	to	be	added.
type The	type	of	resource.

name The	format	of	the	name	that	should
be	used.

	

	 	

Add	a	particular	type	of	resource	to	the	form.

Forms	may	contain	default	resources	usable	by
any	of	the	fields	and	annotations	in	the	form.
The	most	common	resource	types	are	"Font",
"XObject"	and	"ColorSpace".	For	further	details

Notes 	

see	the	PDF	Specification.

This	method	allows	you	to	add	new	resources
to	the	form.	You	may	supply	your	own	name	for
the	resource	but	if	the	name	is	already	in	use,	it
may	need	to	be	modified.	For	this	reason	the
function	returns	the	value	which	was	actually
used	for	the	addition.

	

	

	 	

Example 	
None.

	
	 	

	

	

Item	Function 	 	

Returns	a	particular	field	referenced	by	full
name.

	

	 	

Syntax 	

[C#]
Field	this[string	name]

[Visual	Basic]
Default	Property	Item(name	As
String)	As	Field

	

	 	

Params 	

Name Description
name The	fully	qualified	name	of	the	field.
return The	matching	field.

	

	 	

Notes 	

Use	this	method	to	retrieve	a	field	referenced	by
fully	qualified	name.

If	no	matching	field	can	be	found	then	a	null
value	will	be	returned.

In	C#	this	property	is	the	indexer	for	the	class.

See	the	XForm	object	for	details	of	how	fully
qualified	names	are	constructed.

	 	

	

Example 	
None.

	
	 	

	

	

Refresh	Method 	 	

Refresh	and	reload	the	document	fields.

	
	 	

Syntax 	

[C#]
void	Refresh()

[Visual	Basic]
Sub	Refresh()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Use	this	method	to	refresh	and	reload	the
document	fields.

When	the	form	is	first	requested	field	data	is
cached.	This	allows	a	level	of	optimization
which	would	not	otherwise	be	possible.

However	if	you	are	using	the	low	level
functionality	to	modify	the	field	structure	the
cache	will	not	reflect	your	changes.	In	this
situation	you	can	force	the	fields	to	be	reloaded
by	calling	Refresh.

	

	 	

Example 	
None.

	
	 	

	

	

Stamp	Method 	 	

Stamp	all	fields	into	the	document.

	
	 	

Syntax 	

[C#]
void	Stamp()

[Visual	Basic]
Sub	Stamp()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Use	this	method	to	permanently	stamp	all	fields
into	the	document.

When	this	method	is	called	all	field
appearances	are	stamped	permanently	into	the
document	and	the	fields	are	deleted.

Each	field	becomes	a	new	layer	on	the	page
(see	Doc.LayerCount)	so	you	may	wish	to	call
Doc.Flatten	on	any	affected	pages.

You	can	use	the	Field.Stamp	method	to	stamp
individual	fields	into	the	document.

	 	

	

Example 	
None.

	
	 	

	

	

DateTimeFormat	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IFormatProvider

[Visual	Basic]
IFormatProvider

null No

The	format
provider	for
formatting
dates	and
times.

	

	 	

Notes 	

This	property	specifies	the	formats	of	dates	and
times	for	the	appearances	of	fields	that	use	javascript
functions	such	as	AFDate_FormatEx,
AFTime_FormatEx.

A	null	value	indicates	the	use	of	the	locale-
independent	default	formats.

You	can	see	the	appearances	when	the	PDF	is
rendered	to	an	image.

If	the	fields	are	not	stamped,	Adobe	Reader	may
ignore	the	appearances	and	generate	new
appearances	so	you	may	not	see	the	dates	and
times	in	the	specified	formats	when	viewing	in	Adobe
Reader.

	

	 	

	
None.

	 	

Example 	

	

	

Fields	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Fields

[Visual	Basic]
Fields

See
description. Yes

All	top	level
fields	in	the
form.

	

	 	

Notes 	

The	collection	of	all	top	level	fields	in	the	form.

Items	in	this	collection	can	be	referenced	by	partial
field	name	or	by	zero	based	index.

As	with	all	collections	you	can	use	the	Count
property	to	determine	the	number	of	items	contained
and	you	can	iterate	through	the	collection	using	the
standard	methods	appropriate	to	the	language	you
are	coding	in.

	

	 	

Example 	
None.

	
	 	

	

	

FormatFields	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	values
should	be
formatted	before
insertion	into
fields.

	

	 	

Notes 	

This	determines	if	values	should	be	formatted	before
insertion.

Acrobat	uses	JavaScript	to	implement	number	and
date	formats.	Although	this	is	something	which	is	part
of	Acrobat	rather	than	of	the	PDF	specification	you
can	ask	ABCpdf	to	adhere	to	these	formatting
scripts.

When	this	property	is	set	to	true	ABCpdf	will	detect
these	standard	scripts	and	generate	appearances
conforming	with	them.

It	is	unlikely	you	will	want	to	change	the	value	of	this
property	.

	

	 	

Example 	
None.

	
	 	

	

	

GenerateAppearances	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	field
appearances
should	be	pre-
generated.

	

	 	

Notes 	

This	property	determines	if	field	appearances	are
pre-generated	or	not.

Many	PDF	viewing	applications	are	unable	to
generate	field	appearances	dynamically.	This	means
that	they	are	unable	to	display	fields	given	the	field
and	the	value	of	that	field.	Instead	they	require	the
appearance	of	the	field	to	be	pre-generated.

A	new	appearance	will	only	be	generated	when	it	is
required.	Typically	this	is	when	the	value	of	a	field
changes.

It	is	unlikely	you	will	want	to	change	the	value	of	this
property.

	

	 	

Example 	
None.

	
	 	

	

	

NeedAppearances	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	the
viewer	should
automatically
regenerate	field
appearances.

	

	 	

Notes 	

This	property	determines	if	the	NeedAppearances
flag	in	the	PDF	is	set	when	field	values	are	changed.

The	NeedAppearances	flag	signals	to	the	viewing
application	that	field	appearances	should	be
automatically	generated	rather	than	using	the
appearance	embedded	in	the	PDF.

It	is	generally	best	to	allow	the	viewing	application	to
generate	its	own	appearances	and	use	the	pre-
generated	ones	as	a	fallback.

It	is	unlikely	you	will	want	to	change	the	value	of	this
property.

	

	 	

Example 	
None.

	
	 	

	

	

EndTasks	Method 	 	

Ends	any	HTML	Engine	worker	threads	or
processes.

	

	 	

Syntax 	

[C#]
int	EndTasks(TaskState	condition)

[Visual	Basic]
Function	EndTasks(condition	As
TaskState)	As	Integer

	

	 	

Params 	

Name Description

condition

The	way	in	which	to	select	threads
or	processes	that	should	be	ended.
The	TaskState	enumeration	may
take	the	following	values:

None	—	no	thread	or	process	is
selected.
Idle	—	idle	threads	or
processes	are	selected.
AllWhenBecomeIdle	—	all
threads	or	processes	are
selected,	and	to	busy	threads
or	processes,	the	operation	is
applied	only	when	they	become
idle.

	 	

All	—	all	threads	or	processes
are	selected.

return The	number	of	selected	threads	or
processes.

	

Notes 	

Use	this	method	to	end	worker	threads	or
processes	for	the	HTML	Engine.	HTML	Engine
may	be	executed	in	separate	threads	or
processes	for	isolation.

If	condition	specifies	All,	busy	threads	or
processes	will	be	ended	immediately,	and	this
may	cause	unexpected	behavior	in	other
threads	of	your	application	that	depend	on	the
busy	threads	or	processes.

	

	 	

Example 	
None.

	
	 	

	

	

GetHttpStatusCode	Method 	 	

Retrieves	the	HTTP	status	code.

	
	 	

Syntax 	

[C#]
int	GetHttpStatusCode(int	id)

[Visual	Basic]
Function	GetHttpStatusCode(id	As
Integer)	As	Integer

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	web	page	to	be
accessed.

return The	HTTP	status	code	or	zero	if	not
available.

	

	 	

Notes 	

Use	this	method	to	retrieve	the	HTTP	status
code	if	the	URL	uses	the	HTTP	protocol.

The	ID	should	be	obtained	from	a	call	to
Doc.AddImageUrl.

If	the	PageLoadMethod	property	is
WebBrowserNavigate,	only	error	status	codes
are	available.	Non-error	status	codes,	such	as

	 	

200,	are	not	available.

	

Example 	
None.

	
	 	

	

	

GetScriptReturn	Method 	 	

Retrieves	the	client	side	onload	script	return
value.

	

	 	

Syntax 	

[C#]
string	GetScriptReturn(int	id)

[Visual	Basic]
Function	GetScriptReturn(id	As
Integer)	As	String

	

	 	

Params 	

Name Description

id The	Object	ID	of	the	web	page	to	be
accessed.

return The	return	value.

	

	 	

Notes 	

Use	this	method	to	retrieve	the	client	side
onload	script	return	value.

The	ID	should	be	obtained	from	a	call	to
Doc.AddImageUrl	or	Doc.AddImageHtml.

See	the	OnLoadScript	property	for	further
details.

	 	

	

Example 	
See	the	UseScript	property.

	
	 	

	

	

GetTagIDs	Function 	 	

Gets	an	array	of	the	HTML	IDs	of	tagged	visible
items.

	

	 	

Syntax 	

[C#]
string[]	GetTagIDs(int	id)

[Visual	Basic]
Function	GetTagIDs(id	As	Integer)
As	String()

	

	 	

Params 	

Name Description
id The	Object	ID	of	the	object.

return The	IDs	of	tagged	visible	HTML
objects.

	

	 	

Use	this	method	to	retrieve	the	HTML	IDs	of
tagged	visible	items.

To	use	this	method	you	need	to	enable	the
tagging	functionality.	See	the	AddTags	property
for	details.

This	function	takes	an	ID	obtained	from	a	call	to
Doc.AddImageUrl,	Doc.AddImageHtml	or

Notes 	

Doc.AddImageToChain	and	returns	the	IDs	of
any	items	which	are	visible	on	the	PDF	page	as
a	result	of	that	call.

For	example	the	ID	associated	with	the
following	paragraph	is	"p1".

<p	id="p1"	style="abcpdf-tag-
visible:	true">Gallia	est	omnis
divisa	in	partes	tres.<p>

The	IDs	may	be	repeated	if	the	objects	are	split
over	more	than	one	area.

The	IDs	match	up	directly	on	a	one-to-one	basis
with	the	XRects	returned	by	the	GetTagRects	or
the	GetTagUntransformedRects	function.

	

	 	

Example 	
See	the	GetTagRects	method.

	
	 	

	

	

GetTagRects	Function

Gets	an	array	of	the	locations	of	tagged	visible	items.

	

Syntax 	

[C#]
XRect[]	GetTagRects(int	id)

[Visual	Basic]
Function	GetTagRects(id	As	Integer)	As	XRect

	

Params 	

Name Description
id The	Object	ID	of	the	object.
return The	location	of	tagged	visible	HTML	objects.

	

Notes 	

Use	this	method	to	retrieve	the	locations	of	tagged	visible	items.	The
locations	are	to	be	used	with	Doc.Transform	being	identity.

To	use	this	method	you	need	to	enable	the	tagging	functionality.	
AddTags	property	for	details.

This	function	takes	an	ID	obtained	from	a	call	to	Doc.AddImageUrl,
Doc.AddImageHtml	or	Doc.AddImageToChain	and	returns	the	locations	of
any	items	which	are	visible	on	the	PDF	page	as	a	result	of	that	call.

The	locations	match	up	directly	on	a	one-to-one	basis	with	the	
returned	by	the	GetTagIDs	function.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	
rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(100,	100);
theDoc.Rect.Top	=	700;
//	Tag	elements	with	style	'abcpdf-tag-visible:	
theDoc.HtmlOptions.AddTags	=	true;
int	id	=	theDoc.AddImageHtml("<FONT	id=\"p1\"
style=\"abcpdf-tag-visible:	true;	font-size:	72pt\">Gallia
est	omnis	divisa	in	partes	tres.");
//	Frame	location	of	the	tagged	element
XRect[]	tagRects	=	theDoc.HtmlOptions.GetTagRects(id);
foreach	(XRect	theRect	in	tagRects)	{
		theDoc.Rect.String	=	theRect.ToString();
		theDoc.FrameRect();
}
//	Output	tag	ID
string[]	tagIds	=	theDoc.HtmlOptions.GetTagIDs(id);
theDoc.Rect.String	=	theDoc.MediaBox.String;
theDoc.Rect.Inset(20,	20);
theDoc.FontSize	=	64;
theDoc.Color.String	=	"255	0	0";
theDoc.AddText("Tag	ID	\""	+	tagIds[0]	+"\":")	;
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsGetTagRects.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Rect.Inset(100,	100)
theDoc.Rect.Top	=	700

Example

	

'	Tag	elements	with	style	'abcpdf-tag-visible:	
theDoc.HtmlOptions.AddTags	=	true
Dim	id	As	Integer
id	=	theDoc.AddImageHtml("<FONT	id=""p1""	style=""abcpdf-
tag-visible:	true;	font-size:	72pt"">Gallia	est	
divisa	in	partes	tres.")
'	Frame	location	of	the	tagged	element
Dim	tagRects	As	XRect()
tagRects	=	theDoc.HtmlOptions.GetTagRects(id)
Dim	theRect	As	XRect
For	Each	theRect	in	tagRects
		theDoc.Rect.String	=	theRect.ToString()
		theDoc.FrameRect()
Next	
'	Output	tag	ID
Dim	tagIds	As	String()
tagIds	=	theDoc.HtmlOptions.GetTagIDs(id)
theDoc.Rect.String	=	theDoc.MediaBox.String
theDoc.Rect.Inset(20,	20)
theDoc.FontSize	=	64
theDoc.Color.String	=	"255	0	0"
theDoc.AddText("Tag	ID	"""	+	tagIds(0)	+""":")
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsGetTagRects.pdf"))
theDoc.Clear()

HtmlOptionsGetTagRects.pdf

	

	

	

GetTagUntransformedRects
Function

	 	

Gets	an	array	of	the	locations	of	tagged	visible
items	before	Doc.Transform	is	applied.

	

	 	

Syntax 	

[C#]
XRect[]
GetTagUntransformedRects(int	id)

[Visual	Basic]
Function
GetTagUntransformedRects(id	As
Integer)	As	XRect()

	

	 	

Params 	

Name Description
id The	Object	ID	of	the	object.

return
The	location	(before	Doc.Transform	is
applied)	of	tagged	visible	HTML
objects.

	

	 	

Use	this	method	to	retrieve	the	locations	of
tagged	visible	items.	The	locations	are	to	be
used	with	the	value	of	Doc.Transform	the	same
as	when	the	ID	is	obtained.

Notes 	

To	use	this	method	you	need	to	enable	the
tagging	functionality.	See	the	AddTags	property
for	details.

This	function	takes	an	ID	obtained	from	a	call	to
Doc.AddImageUrl,	Doc.AddImageHtml	or
Doc.AddImageToChain	and	returns	the
locations	of	any	items	which	are	visible	on	the
PDF	page	as	a	result	of	that	call.

The	locations	match	up	directly	on	a	one-to-one
basis	with	the	IDs	returned	by	the	GetTagIDs
function.

	

	 	

Example 	
See	the	GetTagRects	method.

	
	 	

	

	

LinkDestinations	Method

Convert	a	restricted	selection	of	external	links	to	internal	links.

	

Syntax 	

[C#]
int	LinkDestinations(IEnumerable<int>	ids)
int	LinkDestinations(IEnumerable<int>	linkIDs,
IEnumerable<int>	destIDs,	bool	linkPages)

[Visual	Basic]
Sub	LinkDestinations(ids	As	IEnumerable(Of	Integer))
Sub	LinkDestinations(linkIDs	As	IEnumerable(Of	Integer),
destIDs	As	IEnumerable(Of	Integer),	linkPages	As
Boolean)

	

Params 	

Name Description
ids Specifies	both	linkIDs	and	destIDs.

linkIDs The	list	of	IDs	of	view	objects	containing	links	(anchor	
href	attributes).

destIDs The	list	of	IDs	of	view	objects	containing	destinations	
tags	with	name	attributes).

linkPages
Whether	links	pointing	to	the	URLs	of	HTML	pages	(URLs	
fragments)	are	converted	to	internal	links.	The	default	
false.

return The	number	of	links	converted.

	

Notes 	

This	method	scans	the	view	objects	specified	in	linkIDs	converting	
links	to	internal	links	where	the	destinations	are	found	in	the	view	objects
specified	in	destIDs.	It	is	similar	to	the	LinkPages	method	but	allows	you	to
restrict	the	conversion	to	lists	of	view	objects.

By	default,	links	in	rendered	HTML	are	preserved	as	is.	This	means	
in	a	web	page	link	to	external	URLs.	When	you	click	on	them,	a	browser
window	will	be	launched	and	the	original	target	of	the	link	displayed.

In	some	situations,	you	may	wish	to	resolve	links	within	the	
they	take	you	between	pages	in	the	PDF	rather	than	launching	an	external
browser	window.

For	example,	you	might	add	a	number	of	web	pages	which	contain	
each	other.	Rather	than	linking	to	the	pages	on	the	original	web	site,	you
might	like	to	resolve	the	links	so	that	they	point	at	the	pages	as	they	now
appear	in	the	PDF.

Similarly,	if	you	use	named	destinations	(HTML	fragments)	with	
document,	you	will	may	wish	to	use	this	method	to	convert	them	from	external
links	to	internal	ones.

	

This	example	shows	how	to	import	an	HTML	page	which	uses	named	

We	first	create	a	Doc	object	and	inset	the	edges	a	little	so	that	the	HTML	will	appear
in	the	middle	of	the	page.	We	assign	the	appropriate	HTML	options	so	that	links	
be	rendered	live.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(18,	18);
theDoc.HtmlOptions.AddLinks	=	true;	

[Visual	Basic]

	

Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Rect.Inset(18,	18)
theDoc.HtmlOptions.AddLinks	=	True

We	add	the	pages	to	the	document.

[C#]
List<int>	theList	=	new	List<int>();
int	theID	=
theDoc.AddImageUrl("http://www.websupergoo.com/support.htm");
while	(true)	{
		theList.Add(theID);
		if	(!theDoc.Chainable(theID))
				break;
		theDoc.Page	=	theDoc.AddPage();
		theID	=	theDoc.AddImageToChain(theID);
}	

[Visual	Basic]
Dim	theList	As	List(Of	Integer)	=	New	List(Of	Integer)
Dim	theID	As	Integer
theID	=
theDoc.AddImageUrl("http://www.websupergoo.com/support.htm")
While	True
		theList.Add(theID)
		If	Not	theDoc.Chainable(theID)	Then
				Exit	While
		End	If
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddImageToChain(theID)
End	While

The	URL	we've	referenced	makes	extensive	use	of	named	
these	named	destination	links	to	take	us	between	pages	on	the	PDF	rather	than
taking	us	to	the	original	URL.

Example After	adding	the	pages,	we	can	flatten	them.	We	can't	do	this	
have	been	added	because	flattening	will	invalidate	our	previous	ID	and	break	the
chain.

[C#]
theDoc.HtmlOptions.LinkDestinations(theList);
for	(int	i	=	1;	i	<=	theDoc.PageCount;	i++)	
		theDoc.PageNumber	=	i;
		theDoc.Flatten();
}

[Visual	Basic]
theDoc.HtmlOptions.LinkDestinations(theList)
For	i	As	Integer	=	1	To	theDoc.PageCount
		theDoc.PageNumber	=	i
		theDoc.Flatten()
Next

Finally,	we	save.

[C#]
theDoc.Save(Server.MapPath("linkpages.pdf"));
theDoc.Clear();	

[Visual	Basic]
theDoc.Save(Server.MapPath("linkpages.pdf"))
theDoc.Clear()

We	get	the	following	output.	The	links	work	within	the	PDF.

linkpages.pdf	[Page	1] linkpages.pdf	[Page	2]

	

	

	

LinkPages	Method

Convert	external	links	to	internal	links	wherever	possible.

	

Syntax 	

[C#]
void	LinkPages()

[Visual	Basic]
Sub	LinkPages()

	

Params 	

Name Description
return n/a.

	

Notes 	

This	method	scans	the	entire	document	converting	external	links	
links	wherever	possible.	As	an	alternative	you	can	restrict	the	scope	of	the
conversion	by	using	the	LinkDestinations	method.

By	default,	links	in	rendered	HTML	are	preserved	as	is.	This	means	
in	a	web	page	link	to	external	URLs.	When	you	click	on	them,	a	browser
window	will	be	launched	and	the	original	target	of	the	link	displayed.

In	some	situations,	you	may	wish	to	resolve	links	within	the	
they	take	you	between	pages	in	the	PDF	rather	than	launching	an	external
browser	window.

For	example,	you	might	add	a	number	of	web	pages	which	contain	
each	other.	Rather	than	linking	to	the	pages	on	the	original	web	site,	you

might	like	to	resolve	the	links	so	that	they	point	at	the	pages	as	they	now
appear	in	the	PDF.

Similarly,	if	you	use	named	destinations	(HTML	fragments)	with	
document,	you	will	may	wish	to	use	this	method	to	convert	them	from	external
links	to	internal	ones.

	

This	example	shows	how	to	import	an	HTML	page	which	uses	named	

We	first	create	a	Doc	object	and	inset	the	edges	a	little	so	that	the	HTML	will	appear
in	the	middle	of	the	page.	We	assign	the	appropriate	HTML	options	so	that	links	
be	rendered	live.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(18,	18);
theDoc.HtmlOptions.AddLinks	=	true;	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Rect.Inset(18,	18)
theDoc.HtmlOptions.AddLinks	=	True

We	add	the	pages	to	the	document.

[C#]
int	theID	=
theDoc.AddImageUrl("http://www.websupergoo.com/support.htm");
while	(true)	{
		if	(!theDoc.Chainable(theID))
				break;
		theDoc.Page	=	theDoc.AddPage();
		theID	=	theDoc.AddImageToChain(theID);
}	

Example
	

[Visual	Basic]
Dim	theID	As	Integer
theID	=
theDoc.AddImageUrl("http://www.websupergoo.com/support.htm")
While	True
		If	Not	theDoc.Chainable(theID)	Then
				Exit	While
		End	If
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddImageToChain(theID)
End	While

The	URL	we've	referenced	makes	extensive	use	of	named	
these	named	destination	links	to	take	us	between	pages	on	the	PDF	rather	than
taking	us	to	the	original	URL.

After	adding	the	pages,	we	can	flatten	them.	We	can't	do	this	
have	been	added	because	flattening	will	invalidate	our	previous	ID	and	break	the
chain.

[C#]
theDoc.HtmlOptions.LinkPages();
for	(int	i	=	1;	i	<=	theDoc.PageCount;	i++)	
		theDoc.PageNumber	=	i;
		theDoc.Flatten();
}

[Visual	Basic]
theDoc.HtmlOptions.LinkPages()
For	i	As	Integer	=	1	To	theDoc.PageCount
		theDoc.PageNumber	=	i
		theDoc.Flatten()
Next

Finally,	we	save.

[C#]
theDoc.Save(Server.MapPath("linkpages.pdf"));
theDoc.Clear();	

[Visual	Basic]
theDoc.Save(Server.MapPath("linkpages.pdf"))
theDoc.Clear()

We	get	the	following	output.	The	links	work	–	where	possible	–	

linkpages.pdf	[Page	1] linkpages.pdf	[Page	2]

	

	

	

PageCacheClear	Method 	 	

Clears	the	HTML	page	cache.

	
	 	

Syntax 	

[C#]
void	PageCacheClear()

[Visual	Basic]
Sub	PageCacheClear()

	

	 	

Params 	

Name Description
return n/a.

	

	 	

Notes 	

ABCpdf	holds	a	cache	of	recently	requested
URLs	and	it's	only	after	five	minutes	or	so	that
these	pages	expire	from	the	cache.

This	results	in	a	considerable	degree	of
optimization	for	many	common	operations.

You	can	clear	the	cache	of	all	pages	by	calling
this	method.

	

	 	

Example 	
None.

	
	 	

	

	

PageCachePurge	Method 	 	

Purges	the	HTML	page	cache.

	
	 	

Syntax 	

[C#]
void	PageCachePurge()

[Visual	Basic]
Sub	PageCachePurge()

	

	 	

Params 	

Name Description
return n/a.

	

	 	

Notes 	

ABCpdf	holds	a	cache	of	recently	requested
URLs	and	it's	only	after	five	minutes	or	so	that
these	pages	expire	from	the	cache.

This	results	in	a	considerable	degree	of
optimization	for	many	common	operations.

You	can	clear	the	cache	of	all	expired	pages	by
calling	this	method.

	

	 	

Example 	
None.

	
	 	

	

	

SetTheme	Function 	 	

Specify	whether	to	use	Windows	themes	or	not.

	
	 	

Syntax 	

[C#]
void	SetTheme(bool	useTheme)
void	SetTheme(bool	useTheme,	bool
noTheme)

[Visual	Basic]
Sub	SetTheme(useTheme	As	Boolean)
Sub	SetTheme(useTheme	As	Boolean,
noTheme	As	Boolean)

	

	 	

Params 	

Name Description
useTheme Whether	to	use	the	current	theme.

noTheme
Whether	not	to	use	the	current
theme.	The	default	value	is	the
negation	of	useTheme.

	

	 	

Sets	the	values	of	UseTheme	and	NoTheme.
You	will	generally	want	to	use	the	function	which
accepts	only	one	parameter.

The	theme	is	only	relevant	if	you	are	using	the
MSHTML	engine	for	IE9	or	earlier.	As	such	it	is

Notes
	

likely	that	this	function	will	be	deprecated	in
future	releases	of	ABCpdf.

The	theme	is	the	user	interface	design	for	text
boxes,	buttons,	combo	boxes	and	other
interactive	features	which	may	be	found	on	web
pages.	Different	versions	of	Windows	have
different	themes.	If	you	do	not	use	the	current
theme	(typically	Windows	XP/Aero	Glass)	you
will	get	the	default	Windows	95	appearances.

The	fact	that	you	can	set	two	different	values	is
a	reflection	of	the	fact	that	these	two	inputs
correspond	to	the	Windows	flags
DOCHOSTUIFLAG_THEME	and
DOCHOSTUIFLAG_NOTHEME	respectively.
While	there	seems	little	point	in	setting	both	to
the	same	boolean	value,	the	fact	that	Windows
allow	it	is	why	it	is	reflected	in	this	function	call.
If	UseTheme	and	NoTheme	are	the	same	no
theme	is	applied.

	

	 	

Example 	
None.

	
	 	

	

	

Engine	Property

	

Type Default
Value

Read
Only Description

[C#]EngineType

[Visual	Basic]
EngineType

MSHtml No The	engine	to	use	for	HTML	import
operations.

	

This	property	specifies	the	HTML	engine	to	use	when	importing	HTML	pages.

The	EngineType	enumeration	can	take	any	of	the	following	values:

MSHtml.	Characteristics:
The	Screen	style	sheets	are	used	during	the	rendering	process.
Page	heights	can	vary	across	different	pages.	Segments	of	the	
composed	dynamically	to	fit	the	target	rectangle	as	accurately	as	possible	during	each
call	to	Doc.AddImageToChain.	This	means	the	target	rectangle	will	be	filled	with	more
contents	for	larger	target	rectangles	instead	of	scaled	to	fit.
For	definite	control	of	HTTP	requests,	you	should	set	TransferModule
value.

Internet	Explorer	9	support

ABCpdf	automatically	detects	and	accommodates	the	architectural	changes
introduced	in	Microsoft	Internet	Explorer	9.	For	many	server	applications,	this	is
transparent	and	and	requires	no	code	change.

The	Fusion	Log	Viewer	is	known	to	interfere	with	the	initialization	of	the	MSHtml
engine.	If	any	problem	arises,	try	disabling	it	or	specify	a	local	custom	log	path.

Currently,	there	are	some	limitations	when	using	the	MSHtml	
process	(See	MSHtmlBootstrap):

The	HtmlCallback	property	is	not	supported.
The	HtmlEmbedCallback	property	is	not	supported.

Gecko.	Characteristics:
The	Gecko	engine	is	a	component	independent	of	other	parts	of	
System.	It	will	not	be	affected	even	if	you	upgrade	your	Internet	Explorer	or	another
local	Firefox	installation.
It	supports	a	wide	range	of	the	HTML5	and	CSS3	standards.
It	supports	the	majority	of	the	SVG	Full	profile.	SVG	graphics	
pages	convert	natively	to	PDF	primitives.	Alternatively,	you	can	specify	the	a	SVG	file's
location	in	Doc.AddImageUrl	or	provide	a	string	of	SVG	contents	to
Doc.AddImageHtml	to	have	it	converted	to	PDF	using	the	Gecko	engine.
It	supports	XML	pages	with	XSLT	and	MathML.
You	can	specify	which	set	of	style	sheets	to	use	(Print/Screen)	through	the	use	of	the
Media	property.
In	large	tables	that	span	across	pages,	thead	and	tfoot
different	pages	properly.
The	rendered	HTML	will	always	fill	the	entire	current	rectangle.	After	the	initial	call	to
Doc.AddImageUrl	or	Doc.AddImageHtml,	the	page	height	will	be	fixed	at	that	point.
Subsequent	pages	rendered	using	Doc.AddImageToChain
(instead	of	having	the	contents	reflowed)	to	fit	in	the	current	rectangle	as	much	as
possible.
ActiveX	components	are	not	supported.
The	Paged	property	is	always	assumed	to	be	true.
The	Gecko	engine	does	not	use	Page	caching.	This	means	that	
never	stored	in	a	memory	cache.
On	the	other	hand,	Web	caching	is	used	to	store	contents	
Internet	and	is	configurable	using	with	the	UseNoCache
JavaScript	in	OnLoadScript	cannot	directly	modify	the	document	object.	For	example,
document.write("hello	world");	would	not	work.	Most	of	the	time,	you	can	work
around	to	get	your	desired	effect	by	indirectly	modifying	elements	
as	document.body.innerHTML	=	"hello	world";
The	use	of	OnLoadScript	does	not	require	UseScript.	You	are	free	to	

Notes
	

customize	the	page	without	allowing	JavaScript	execution	in	the	HTML.

Gecko	configuration

The	Gecko	engine	contains	a	number	of	preferences	that	can	be	
are	a	set	of	.js	files	in	the	"XULRunner??_?\defaults\pref"	
alphabetical	order	when	it	starts.	Each	file	contains	a	set	of	preferences.	So	by
adding	your	own	.js	file	to	this	folder,	you	can	add	in	your	own	settings.

If	you	are	not	familiar	with	the	format	of	these	files,	you	may	find	it	easier	to	copy	a
configuration	file	from	Firefox:

View	the	URI	"about:config"	in	Firefox.
Modify	the	configuration	as	usual.
Close	Firefox.	The	configuration	is	saved	to	the	file	only	
completely	closed.
See	the	Path	value	in	%APPDATA\Mozilla\Firefox\profile.ini.	
value	may	be	Profiles/sx4fgjw2.default.
Copy	prefs.js	in	the	folder	pointed	to	by	the	Path	value	
profile.ini)	to:

XULRunner??_?\defaults\pref.	The	preferences	are	considered	
the	software	developer.	For	example,	copy	C:\Users\
<user>\AppData\Roaming\Mozilla\Firefox\Profiles\sx4fgjw2.default\prefs.js
to	XULRunner??_?\defaults\pref.
some	place	outside	of	XULRunner??_?	and	set	the	file	path	
file	name)	to	the	GeckoPrefFile	registry	value.	The	preferences	are
considered	to	be	set	by	the	end	user.	See	below	for	the	differences
between	preferences	set	by	the	end	user	and	those	set	by	the	software
developer.

Do	not	delete	or	change	the	first	line	in	prefs.js.	You	need	only	the	lines	relevant
for	your	configuration	change.	You	can	delete	other	irrelevant	lines.

Preferences	set	by	the	end	user	are	in	the	JavaScript	file	whose	
the	GeckoPrefFile	registry	value.	(Registry	values	can	alternatively	be	specified	in
web.config	or	app.config.)	The	file	is	loaded	after	all	JavaScript	files	in	"XULRunner??
_?\defaults\pref",	so	user-set	preferences	take	precedence.	Some	preferences	

effect	only	when	set	by	the	end	user.	Here	is	an	incomplete	list	of	such	preferences:

Preference	in	effect
only	if	it	is	set	by
the	end	user

Default
Value Description

intl.accept_languages
"en-
US,
en"

The	order	of	languages	of	the	fonts	to	search	when
the	specified	font	does	not	support	a	character.	The
Gecko	engine	appends	to	the	list	the	ones	that	are
missing	in	the	following	in	order	ja,	ko,	zh-CN,	zh-
HK,	zh-TW.	For	example,	
preference,	a	piece	of	simplified	
Latin	font)	may	be	imported	
because	some	characters	are	supported	by
Japanese	fonts	and	some	are	not.

Additional	supported	settings:

Preference Default	Value
print.print_shrink_to_fit true
print.print_scaling "1"

Each	HTML	engine	supports	a	different	subset	of	HtmlOptions	methods	and	properties.	
use	one	of	the	filter	objects:	ForMSHtml	and	ForGecko,	to	filter	the	supported	options	in	your
IDE.

	

	

ForMSHtml	Property 	

	

Type Default
Value

Read
Only Description

[C#]	
IHtmlMSHtmlOptions

[Visual	Basic]
IHtmlMSHtmlOptions

n/a Yes

An	object	that
provides	access	to
only	the	HTML
options	supported
by	the	MSHTML
engine.

	

	

The	HTML	options	supported	by	the	MSHTML	engine.

Supported	methods
GetHttpStatusCode
GetScriptReturn
GetTagIDs
GetTagRects
GetTagUntransformedRects
LinkDestinations
LinkPages
PageCacheClear
PageCachePurge
SetTheme

Supported	properties
AddForms
AddLinks

Notes
	

AddMovies
AddTags
AdjustLayout
AutoTruncate
BreakMethod
BreakZoneSize
BrowserWidth
CoerceVector
ContentCount
DeactivateWebBrowser
DisableVectorCoercion
DoMarkup
FontEmbed
FontProtection
FontSubset
FontSubstitute
HideBackground
HostWebBrowser
HtmlCallback
HtmlEmbedCallback
HttpAdditionalHeaders
ImageQuality
InitialWidth
LogonName
LogonPassword
MakeFieldNamesUnique
MaxAtomicImageSize
NoCookie
NoTheme
OnLoadScript
PageCacheEnabled
PageCacheExpiry
PageCacheSize
Paged
PageLoadMethod
ProcessOptions	(See	MSHtmlBootstrap)
ReloadPage

	

RequestMethod
RetryCount
TargetLinks
Timeout
TransferModule
UseActiveX
UseJava
UseNoCache
UseResync
UseScript
UseTheme
UseVideo

Example 	

[C#]
Doc	doc	=	new	Doc();
doc.HtmlOptions.Engine	=	EngineType.MSHtml;
doc.HtmlOptions.ForMSHtml.AddLinks	=	true;

//	You	can	store	a	reference	to	the	filter	to
reduce	code	repetition
IHtmlMSHtmlOptions	options	=
doc.HtmlOptions.ForMSHtml;

options.UseActiveX	=	true;
options.AutoTruncate	=	true;

doc.AddImageUrl("http://www.websupergoo.com");
doc.Save(Server.MapPath("wsg.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.HtmlOptions.Engine	=	EngineType.MSHtml
theDoc.HtmlOptions.ForMSHtml.AddLinks	=	True

'	You	can	store	a	reference	to	the	filter	to

reduce	code	repetition
Dim	theOptions	As	IHtmlMSHtmlOptions	=
theDoc.HtmlOptions.ForMSHtml

theOptions.UseActiveX	=	True
theOptions.AutoTruncate	=	True

theDoc.AddImageUrl("http://www.websupergoo.com")
theDoc.Save(Server.MapPath("wsg.pdf"))

	

	

ForGecko	Property 	

	

Type Default
Value

Read
Only Description

[C#]
IHtmlGeckoOptions

[Visual	Basic]
IHtmlGeckoOptions

n/a Yes

An	object	that
provides	access	to
only	the	HTML
options	supported
by	the	Gecko	HTML
engine.

	

	

The	HTML	options	supported	by	the	Gecko	HTML	engine.

Supported	methods
GetGeckoVersion	—	also	initializes	the	Gecko	engine.
EndTasks
GetHttpStatusCode
GetScriptReturn
GetTagIDs
GetTagRects
GetTagUntransformedRects
LinkDestinations
LinkPages

Supported	properties
AddForms
AddLinks

Notes
	

AddMovies	(Flash	only)
AddTags
BrowserWidth
FontEmbed
FontSubset
FontSubstitute
FontProtection
HideBackground
ImageQuality
ImprovePageBreakAvoid
ImprovePageBreakInTable
InitialWidth
LogonName
LogonPassword
MakeFieldNamesUnique
Media
NoDefaultBackground
NoSnapRounding
OnLoadScript
ProcessOptions
RequestMethod
RetryCount
Timeout
UseNoCache
UseScript

The	HttpAdditionalHeaders	property	is	supported	under
some	circumstances	but	because	these	are	unusual	it	is	not
included	in	this	interface.	For	details	see	the	documentation
for	this	property.

	

	

[C#]
Doc	doc	=	new	Doc();
doc.HtmlOptions.Engine	=	EngineType.Gecko;

Example
	

doc.HtmlOptions.ForGecko.AddLinks	=	true;

//	You	can	store	a	reference	to	the	filter	to
reduce	code	repetition
IHtmlGeckoOptions	options	=
doc.HtmlOptions.ForGecko;

options.AddLinks	=	true;

doc.AddImageUrl("http://www.websupergoo.com");
doc.Save(Server.MapPath("wsg.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.HtmlOptions.Engine	=	EngineType.Gecko
theDoc.HtmlOptions.ForGecko.AddLinks	=	True

'	You	can	store	a	reference	to	the	filter	to
reduce	code	repetition
Dim	theOptions	As	IHtmlGeckoOptions	=
theDoc.HtmlOptions.ForGecko

theOptions.AddLinks	=	True

theDoc.AddImageUrl("http://www.websupergoo.com")
theDoc.Save(Server.MapPath("wsg.pdf"))

	

	

AddForms	Property

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	form	fields	should	be
live.

	

Notes 	

This	property	determines	whether	form	fields	in	HTML	are	reproduced	
fields	in	the	final	PDF	output.

Form	fields	in	PDF	do	not	work	exactly	the	same	as	form	fields	in	HTML	so
while	the	results	will	be	similar	they	may	not	be	identical.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	HTML	rendering.

[C#]
Doc	theDoc	=	new	Doc();
//	Covert	html	form	fields	to	the	pdf	form	fields	in	the
output	file
theDoc.HtmlOptions.AddForms	=	true;
int	id	=
theDoc.AddImageUrl("http://www.websupergoo.com/download.htm");
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsAddForms.pdf"));
theDoc.Clear();

Example
	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
'	Covert	html	form	fields	to	the	pdf	form	fields	in	the	output
file
theDoc.HtmlOptions.AddForms	=	True
Dim	id	As	Integer	=
theDoc.AddImageUrl("http://www.websupergoo.com/download.htm")	
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsAddForms.pdf"))
theDoc.Clear()

HtmlOptionsAddForms.pdf

	

	

	

AddLinks	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether
hyperlinks
should	be	live.

	

	 	

Notes 	

This	property	determines	whether	links	in	HTML	are
reproduced	as	links	in	the	final	PDF	output.

Links	which	are	not	live	look	exactly	like	links	but	do
not	link	through	to	a	destination	when	you	click	on
them.

Live	links	are	reproduced	exactly	as	specified	on	the
page	and	link	through	to	the	web	pages	specified.
These	web	pages	will	open	in	a	new	browser
window.

To	change	external	links	to	internal	PDF	links	see	the
Doc.LinkPages	method.

	

	 	

Example 	
See	the	Doc.LinkPages	method.

	
	 	

	

	

AddMovies	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

false No

Whether	active
content	such	as
movies	should
be	added.

	

	 	

Enables	the	embedding	of	active	content	such	as
Flash	(SWF),	AVI,	MPEG	and	WMV.

Flash	/	SWF	Previews.	ABCpdf	will
automatically	create	a	still	preview	of	Flash
(SWF)	movies.

The	preview	is	what	you	will	see	if	you	don't
have	Flash	installed.	It	is	what	is	used	when
printing	PDFs.	In	general	it	is	what	you	will	see
if	you	open	your	PDF	using	a	viewer	other	than
Acrobat.

The	preview	needs	to	be	created	at	a	certain
resolution	and	using	content	from	a	particular
point	in	the	movie.	By	default	the	values	are
taken	from	the	FlashPreviewTime	and
FlashPreviewDPI	Registry	Keys.	However	you
can	specify	ABCpdf_PreviewTime	and
ABCpdf_PreviewDPI	attributes	within	your
EMBED	tag	to	override	these	defaults.

Notes 	
Some	movies	take	time	to	draw	themselves
because	they	use	script	to	determine	how	they
should	appear.	You	can	use	the
ABCpdf_PreviewWaitTime	attribute	to
determine	the	time	(in	milliseconds)	that	the
movie	will	be	given	to	initialize	itself	before	the
preview	is	made.

For	example	to	take	a	preview	2000	ms	into	the
movie	at	300	dpi	you	might	use	the	following
HTML.

<EMBED	src="frogger.swf"
WIDTH="700"	HEIGHT="500"	
ABCpdf_PreviewWaitTime="2000"	
ABCpdf_PreviewDPI="300"></EMBED>

These	attributes	are	useful	if	your	settings	are
dependent	on	the	content	within	the	movie
rather	than	on	the	PDF.

	

	 	

Example 	
None.

	
	 	

	

	

AddTags	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	location
of	certain	tags
should	be	noted.

	

	 	

This	property	determines	whether	certain	tags	in
HTML	are	noted	so	that	their	location	can	be
determined	at	a	later	date.

After	adding	your	web	pages	you	can	retrieve
information	about	the	items	on	the	PDF	page	using
the	GetTagIDs	and	the	GetTagRects	methods.

Note	that	only	HTML	elements	which	have	an	actual
visual	representation	in	the	final	output	will	be
tagged.	For	example,	a	simple	<form>	element	may
not	be	tagged	because	it	does	not	have	a	visual
representation.

All	elements	of	style	'abcpdf-tag-visible:	true'	will	be
tagged.	For	example:

<p	id="p1"	style="abcpdf-tag-visible:
true">Gallia	est	omnis	divisa	in
partes	tres.<p>

For	the	Gecko	engine,	having	a	visual

Notes 	

representation	is	not	enough.	The	element	must	be	a
display	item,	which	means	that	there	is	something	to
display	for	the	element.	Inner	contents,	such	as	text
and	inner	elements,	are	children	of	the	element	and
are	not	the	element	itself.	This	is	important	for	layout-
only	elements	such	as	<p>,	<div>,	and	;	and
style-only	elements	such	as	,	,	and
.	Border,	outline,	etc.	are	some	of	the	things
that	make	a	layout/style-only	element	a	display	item:

<p	id="p1"	style="abcpdf-tag-visible:
true;	border:	1px	solid
transparent">Gallia	est	omnis	divisa
in	partes	tres.<p>

For	the	Gecko	engine,	you	can	use	the	CSS	class
'abcpdf-tag-visible'	instead	of	the	CSS	style	'abcpdf-
tag-visible:	true'	(even	if	the	CSS	class	is	not
defined),	but	it	is	deprecated.	See
UseCSSClassToAddTags	in	Registry	Keys.

<p	id="p1"	class="abcpdf-tag-visible"
style="border:	1px	solid
transparent">Gallia	est	omnis	divisa
in	partes	tres.<p>

	

	 	

Example 	

See	the	GetTagRects	and	the
GetTagUntransformedRects	methods.

	

	 	

	

	

AdjustLayout	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	HTML
layout	is
checked	and
adjusted	for
optimal	output	to
PDF.

	

	 	

Notes 	

This	property	determines	whether	HTML	layout	is
checked	and	adjusted	for	optimal	output	to	PDF.

HTML	layout	is	optimized	for	screen	based	output	on
a	scrolling	display.	Certain	types	of	percentage	based
sizing	can	give	rise	to	situations	in	which	the
proportions	of	the	different	elements	do	not	add	up	to
100%.	On	screen	this	type	of	confused	layout	is	less
noticable	than	it	is	on	a	paged	medium	like	PDF.

When	set	the	document	is	scanned	for	typical	layout
based	errors	and	these	are	fixed.

However	if	you	are	not	using	these	features	then
skipping	the	adjustment	stage	can	save	time	with	no
noticable	change	in	output	quality.

	

	 	

None.

Example
	 	 	 	

	

	

AutoTruncate	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
automatically
clip	redundant
content	at	the
end	of	the	page.

	

	 	

Notes 	

This	property	determines	whether	redundant	content
at	the	end	of	an	HTML	page	is	shown	or	not.

Redundancy	is	determined	using	a	number	of
heuristics.	However	most	commonly	it	covers
repeating	background	images	which	don't	need	to	be
shown.

	

	 	

Example 	
None.

	
	 	

	

	

BreakMethod	Property

	

Type Default	Value Read
Only Description

[C#]HtmlBreakMethodType

[Visual	Basic]
HtmlBreakMethodType

CumulativeCohesion
or	GlobalOptimum No

The	page
break	logic
for	HTML.

	

Notes 	

This	property	specifies	the	page	breaking	algorithm.

The	HtmlBreakMethodType	enumeration	can	take	any	of	the
following	values:

CumulativeCohesion	ï¿½	uses	the	cumulative	cohesion	of	all
objects	occupying	each	horizontal	line/vertical	position.
MaximumCohesion	ï¿½	uses	the	maximum	cohesion	among
objects	occupying	each	horizontal	line/vertical	position.

in	combination	with	any	of	the	following	values:

GlobalOptimum	ï¿½	optimizes	the	break	position	globally
around	a	candidate	position.
LocalOptimum	ï¿½	optimizes	the	break	position	locally	around
a	candidate	position.
NoOptimization	ï¿½	no	optimization.

Each	rendered	objects	in	an	HTML	page	has	associated	cohesion.
Text,	images,	and	form	controls	converted	to	form	fields	have	high
cohesion	whereas	simple	lines	and	shapes	have	low	cohesion.

Page	breaks	are	selected	at	positions	with	low	cohesion.

Use	MaximumCohesion	when	you	want	to	break	at	positions	where
there	are	a	lot	of	low-cohesion	objects	and	no	high-cohesion
objects.

The	break	position	can	be	optimized	according	to	the	cohesion.	If	it
is	optimized	locally,	the	cohesion	values	of	positions	between	the
final	position	and	the	candidate	position	is	a	monotone	function.

	

Example 	
None.

	

	

	

BreakZoneSize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

75 No

The	percentage
of	the	current
drawing	area	in
which	HTML
breaks	can
occur.

	

	 	

Notes 	

The	size	of	drawing	area	in	which	page	breaks	are
allowed.

When	HTML	is	added	to	a	PDF	page,	it	is	placed
within	the	current	Doc.Rect.

In	general,	you	do	not	want	page	breaks	to	occur	too
high	up	in	this	area.	So	ABCpdf	only	scans	for	good
break	locations	towards	the	bottom.

This	property	determines	how	far	up	(in	terms	of	a
percentage)	from	the	bottom	that	ABCpdf	will	scan
for	a	good	break	location.

	

	 	

Example 	
None.

	
	 	

	

	

BrowserWidth	Property

	

Type Default
Value Read	Only Description

[C#]
int

[Visual	Basic]
Integer

0 No The	width	of	the	virtual	browser	in	pixels.

	

Notes 	

For	MSHtml	engine

This	property	determines	or	reflects	the	virtual	browser	width	when	rendering	HTML.

HTML	documents	do	not	have	a	predefined	width	and	height.	The	width	
document	varies	as	the	client	resizes	the	browser.	How	far	the	content	flows	down	the
page	is	dependent	on	the	width	of	the	browser.

The	Width	parameter	is	used	to	control	this	aspect	of	HTML	rendering.	
you	were	displaying	your	HTML	in	a	browser	window	the	same	width	as	the	supplied
value.	Typical	values	might	be	640	or	800.

If	the	Width	is	zero	then	the	web	page	view	will	default	to	a	size	which	shows	all	the
available	content	without	needing	to	scroll	from	left	to	right.	You	can	use	this	default	to
ensure	that	all	your	HTML	content	is	visible.

For	Gecko	engine
This	value	determines	the	paper	width,	in	pixels,	to	use	while	doing	layout	in	Gecko.

Since	the	Gecko	engine	always	render	in	a	paginated	context	and	never	needs	to	scroll,
contents	that	horizontally	exceed	this	value	will	often	be	reflown	vertically.	For	example,	a
sidebar	done	using	the	CSS	float	property	may	appear	below	the	"main	content	area"
because	the	paper	is	not	wide	enough	to	accommodate	both	items.	If	the	value	is	0	the
paper	width	will	be	determined	from	the	current	Rect's	dimensions.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html";
//	Render	html	page	with	default	browser	width
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsBrowserWidth0.pdf"));
theDoc.Clear();
//	Render	html	page	with	browser	width	=	300
theDoc.HtmlOptions.BrowserWidth	=	300;
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsBrowserWidth300.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html"	
'	Render	html	page	with	default	browser	width
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsBrowserWidth0.pdf"))
theDoc.Clear()

Example

	

'	Render	html	page	with	browser	width	=	300
theDoc.HtmlOptions.BrowserWidth	=	300
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsBrowserWidth300.pdf"))
theDoc.Clear()

HtmlOptionsBrowserWidth0.pdf

HtmlOptionsBrowserWidth300.pdf

	

	

	

CoerceVector	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
HtmlRenderConditions

[Visual	Basic]
HtmlRenderConditions

Default No

The
conditions
under	which
to	coerce	a
vector
output.

	

	 	

Notes 	

The	HtmlRenderConditions	enumeration	can	take	a
combination	of	the	following	values:

Never	–	never	coerce	a	vector	output.
Always	–	always	coerce	a	vector	output.
Default	–	coerce	a	vector	output	under	the
default	conditions.	It	currently	behaves	the	same
as	OnFiltersDisabled.
OnFiltersDisabled	–	coerce	a	vector	output	when
some	DirectX	filter	is	disabled.
OnPartialContent	–	ignored.
OnVectorCoercionFailed	–	ignored.

This	property	determines	when	to	coerce	vector
outputs	if	this	is	not	disabled	by
DisableVectorCoercion.	This	requires	the	Microsoft
XPS	Document	Writer	printer	and	hosting	a
WebBrowser.	When	the	printer	is	not	available	or
HostWebBrowser	is	false,	this	property	is	ignored
and	assumed	Never.

	 	

When	certain	constructs,	such	as	DirectX	filters	or
ActiveX	controls,	are	used	in	the	HTML	page,	the
output	may	become	rasterized.	When	vector-output
coercion	is	activated,	a	vector	output	is	produced,	but
the	objects	that	cause	the	rasterization	of	the	output
may	not	appear	in	the	vector	output.

When	vector-output	coercion	is	activated,
DeactivateWebBrowser	is	ignored	and	assumed
false.

	

Example 	
None.

	
	 	

	

	

ContentCount	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

36 No

The	minimum
number	of
content	items
required	for	a
page	to	be	valid.

	

	 	

Notes 	

The	minimum	number	of	items	a	page	of	HTML
should	contain.

If	the	number	is	less	than	this	value	then	the	page
will	be	assumed	to	be	invalid.	Depending	on	the
RetryCount	settings	the	page	may	be	re-requested	or
an	error	may	be	returned.

	

	 	

Example 	
See	the	RetryCount	property.

	
	 	

	

	

DeactivateWebBrowser	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

true No
Whether	to
deactivate	the
WebBrowser.

	

	 	

Notes 	

This	property	determines	whether	the	WebBrowser	is
deactivated	before	rendering.

By	default,	if	vector-output	coercion	is	not	activated,
the	WebBrowser	is	deactivated	because	an	active
WebBrowser	may	produce	a	rasterized	output.

In	some	cases,	you	may	want	to	set	this	to	false	and
possibly	disable	vector-output	coercion	in	order	to
render	pages,	such	as	Google	Maps,	that	require	the
WebBrowser	to	be	active.

	

	 	

Example 	
None.

	
	 	

	

	

DisableVectorCoercion	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
HtmlRenderConditions

[Visual	Basic]
HtmlRenderConditions

Default No

The
conditions
under	which
to	disable
vector-
output
coercion.

	may	throw	Exception()

	

	 	

The	HtmlRenderConditions	enumeration	can	take	a
combination	of	the	following	values:

Never	–	never	disable	vector-output	coercion.
Always	–	always	disable	vector-output	coercion.
Default	–	disable	vector-output	coercion	under
the	default	conditions.	It	currently	behaves	the
same	as	OnPartialContent	Or
OnVectorCoercionFailed.
OnFiltersDisabled	–	disable	vector-output
coercion	when	some	DirectX	filter	is	disabled.
OnPartialContent	–	disable	vector-output
coercion	when	the	HTML	page	size	is	bigger
than	the	size	supported	by	vector-output
coercion.
OnVectorCoercionFailed	–	continue	rendering

Notes 	 without	vector-output	coercion	when	vector-
output	coercion	has	failed.

This	property	determines	when	to	disable	vector-
output	coercion	if	the	coercion	is	otherwise	activated
as	specified	by	CoerceVector.	There	is	a	size	limit	to
the	coerced	vector	output.	If	the	HTML	page	size	is
bigger	than	the	limit,	the	vector	output	is	clipped	so
the	default	behavior	is	to	disable	the	coercion	in	this
case.

Sometimes,	vector	coercion	fails	with	unexpected
errors.	If	OnVectorCoercionFailed	is	specified,	the
page	is	rendered	without	vector	coercion.	Otherwise,
an	exception	is	thrown.	If	the	output	becomes
rasterized,	you	may	want	to	try	rendering	the	page
with	HostWebBrowser	false.

	

	 	

Example 	
None.

	
	 	

	

	

DoMarkup	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	HTML
pages	are
marked	up
before
conversion	to
PDF.

	

	 	

Notes 	

This	property	determines	whether	HTML	pages	are
marked	up	before	conversion	to	PDF.

Markup	allows	common	HTML	problems	to	be	fixed
automatically.	It	is	also	necessary	for	enabling	page
break	CSS	tags,	for	adding	fields	and	for	tagged
content	to	be	identified.

However	if	you	are	not	using	these	features	then
skipping	markup	can	save	time	for	some	documents.

	

	 	

Example 	
None.

	
	 	

	

	

FontEmbed	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	fonts
should	be
embedded
rather	than
referenced.

	

	 	

Notes 	

This	property	determines	whether	fonts	are
embedded.

HTML	rendering	may	require	that	fonts	are	added	to
the	PDF	document.

By	default	these	fonts	are	-	where	possible	-
referenced.	You	can	use	this	setting	to	ensure	that
fonts	are	embedded.	This	will	increase	output	fidelity
at	a	cost	of	processing	time	and	output	file	size.

	

	 	

Example 	
None.

	
	 	

	

	

FontProtection	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	fonts
should	be
protected.

	

	 	

Notes 	

This	property	determines	whether	fonts	are
protected.

HTML	rendering	may	require	that	fonts	are
embedded	into	the	PDF	document.

Fonts	often	contain	licensing	information.	By	default
ABCpdf	will	prevent	you	from	embedding	fonts	which
indicate	that	embedding	is	not	permitted.

You	can	disable	this	protection	by	changing	the
default	for	this	value.

	

	 	

Example 	
None.

	
	 	

	

	

FontSubset	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether
embedded	fonts
should	be
subsetted	or	not.

	

	 	

Notes 	

This	property	determines	whether	embedded	fonts
are	subset.

HTML	rendering	may	require	that	fonts	are	added	to
the	PDF	document.

By	default	these	fonts	are	-	where	possible	-
referenced.	You	can	use	FontEmbed	to	ensure	that
fonts	are	embedded.	When	FontEmbed	is	set	to	true,
you	can	then	use	this	property	to	specify	if	fonts
should	be	subset	(only	required	glyphs	are
embedded)	or	not	(entire	font	is	embedded).	This	will
considerably	increase	output	size	and	processing
time.

	

	 	

Example 	
None.

	
	 	

	

	

FontSubstitute	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	font
substitution
should	be	used
to	reduce	file
size.

	

	 	

Notes 	

This	property	determines	whether	font	substitution	is
enabled.

In	many	situations	default	built-in	fonts	can	be
substituted	in	place	of	the	specified	fonts.

This	can	result	in	a	substantial	increase	in	speed	and
a	considerable	reduction	in	file	size	with	little	or	no
loss	in	output	quality.

	

	 	

Example 	
None.

	
	 	

	

	

HideBackground	Property

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	hide	the	background
color	of	a	page.

	

Notes 	

Whether	to	to	hide	the	background	color	of	an	HTML	page.

This	can	be	useful	for	making	HTML	pages	with	transparent	backgrounds.

Note	that	the	background	color	is	not	the	same	as	a	background	
image.	This	property	operates	on	background	colors	only.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	HTML	rendering.

[C#]
Doc	theDoc	=	new	Doc();
//	Please	note	that	the	URL	below	is	included	for
demonstration	purposes	only.
//	In	your	code	you	should	use	your	own	URL.	The	site	at	the
URL	below	changes	frequently
//	and	may	include	other	opaque	elements	which	may	obscure
our	blue	rectangle.
string	theURL	=	"http://www.usa.gov/";
//	Add	some	content

Example

	

theDoc.Color.String	=	"0	255	255";	//	light	blue
theDoc.FillRect(200,	200);
//	Hide	the	background	of	the	HTML	page	so	content	shows
through
theDoc.HtmlOptions.HideBackground	=	true;
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsHideBackground.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
'	Please	note	that	the	URL	below	is	included	for
demonstration	purposes	only.
'	In	your	code	you	should	use	your	own	URL.	The	site	at	the
URL	below	changes	frequently
'	and	may	include	other	opaque	elements	which	may	obscure	our
blue	rectangle.
Dim	theURL	As	String	=	"http://www.usa.gov/"
'	Add	some	content
theDoc.Color.String	=	"0	255	255"	'	light	blue
theDoc.FillRect(200,	200)
'	Hide	the	background	of	the	HTML	page	so	content	shows
through
theDoc.HtmlOptions.HideBackground	=	True
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsHideBackground.pdf"))
theDoc.Clear()

HtmlOptionsHideBackground.pdf

	

	

	

HostWebBrowser	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]
bool

[Visual	Basic]
Boolean

true
(overridable
by	registry
value)

No

Whether	to
host	a
WebBrowser
control.

	

	 	

Notes 	

This	property	determines	whether	a	WebBrowser
control	is	hosted.

By	default,	a	WebBrowser	control	is	hosted.	Script-
accessible	properties	(left,	top,	width,	height,
offsetLeft,	offsetTop,	offsetWidth,	offsetHeight,
clientLeft,	clientTop,	clientWidth,	clientHeight,
pixelLeft,	pixelTop,	pixelWidth,	pixelHeight,	posLeft,
posTop,	posWidth,	and	posHeight)	hold	their	proper
values.	The	source	document	can	be	in	any	format
as	long	as	it	is	HTML-compatible.	For	example,	XML
(with	or	without	XSL	applied)	can	be	used	because
the	WebBrowser	control	transforms	it	to	HTML.

When	no	WebBrowser	control	is	hosted,	script-
accessible	dynamic,	geometric	properties	are	always
zero.

This	property	affects	the	CoerceVector	property.

	

	 	

Example 	
None.

	
	 	

	

	

HtmlCallback	Property

	

Type Default
Value

Read
Only Description

[C#]HtmlCallback

[Visual	Basic]
HtmlCallback

null No The	multicast	delegate	to	be	called	while
HTML	rendering	is	taking	place.

	

Notes
	

This	delegate	is	called	during	HTML	rendering.

During	the	time	that	HTML	rendering	is	taking	place	delegates	are	
This	gives	a	mechanism	for	tracking	progress	and	for	intercepting	and	modifying	or
querying	pages	on	the	fly.

If	the	page	is	obtained	from	the	cache	then	the	delegate	will	not	be	

Note	that	the	amount	of	work	done	during	a	callback	should	be	kept	to	a	minimum.

The	definition	of	the	HtmlCallback	multicast	delegate	is	as	follows.

[C#]
delegate	void	HtmlCallback(string	stage,	object	page);

[Visual	Basic]
Delegate	Sub	HtmlCallback(stage	As	String,	page	As	Object);

Current	values	for	the	stage	variable	are	'get	width',	'get	height'	and	'render'.	The	first
occurs	prior	to	finding	the	natural	width	of	the	HTML	(the	width	it	can	occupy	without

scrolling).	The	second	occurs	prior	to	finding	the	natural	height.	The	third	occurs	
translation	into	PDF	format.

The	page	is	provided	via	a	mshtml.HTMLDocumentClass	object	-	see	
documentation	for	details.	However	note	that	while	the	interface	is	standard	the	behavior
may	not	be	identical.	For	example	element	positions	may	not	be	available.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_302.html";
//	Setup	the	callback
theDoc.HtmlOptions.HtmlCallback	=	MyHtmlCallback;
//	Render	html	page
theDoc.AddImageUrl(theURL);
//	Add	log	over	the	top	of	the	content
theDoc.Rect.Inset(100,	100);
theDoc.Color.String	=	"255	0	0";
theDoc.FontSize	=	96;
theDoc.AddText(theLog);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsCallback.pdf"));
theDoc.Clear();

[C#]
private	static	string	theLog	=	"";
public	static	void	MyHtmlCallback(string	stage,	object	page)
{
		theLog	+=	stage	+	"\n";
}

Example

	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_302.html"	
'	Setup	the	callback
theDoc.HtmlOptions.HtmlCallback	=	AddressOf	MyHtmlCallback
'	Render	html	page
theDoc.AddImageUrl(theURL)
'	Add	log	over	the	top	of	the	content
theDoc.Rect.Inset(100,	100)
theDoc.Color.String	=	"255	0	0"
theDoc.FontSize	=	96
theDoc.AddText(theLog)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsCallback.pdf"))
theDoc.Clear()

[Visual	Basic]
Private	Shared	theLog	As	String	=	""	
Public	Shared	Sub	MyHtmlCallback(stage	As	String,	page	As	Object)
		theLog	=	theLog	+	stage	+	"\n"
End	Sub

HtmlOptionsCallback.pdf

	

	

	

HtmlEmbedCallback	Property

	

Type Default
Value

Read
Only Description

[C#]HtmlEmbedCallback

[Visual	Basic]
HtmlEmbedCallback

null No The	multicast	delegate	to	be	called	when	embedding	an	
while	HTML	rendering	is	taking	

	

This	delegate	is	called	when	embedding	an	object.

Objects	embedded	in	HTML,	such	as	those	with	the	embed	HTML	tags,	
content	types.	This	callback	provides	a	way	to	change	the	parameters	of	the	embedded	

The	definition	of	the	HtmlEmbedCallback	multicast	delegate	is	as	

[C#]
delegate	void	HtmlEmbedCallback(Doc	doc,	HtmlEmbedInfo	

[Visual	Basic]
Delegate	Sub	HtmlEmbedCallback(doc	As	Doc,	info	As	

doc	is	the	target	Doc	for	the	added	HTML.	The	properties	of	HtmlEmbedInfo	are	as	follows:

Property	of
HtmlEmbedInfo Type Default

Value
[C#]
string

Notes
	

Url
[Visual	Basic]
String

n/a

BaseUrl

[C#]
string

[Visual	Basic]
String

n/a

EmbedType HtmlEmbedType See
description.

ParameterNamesAreCaseSensitive

[C#]
bool

[Visual	Basic]
Boolean

n/a

Parameters HtmlParameterDictionary n/a

Parameters	depends	on	EmbedType	as	follows:

EmbedType EmbedType
Description ParameterNamesAreCaseSensitive Parameters

None No	content.	This
value	is	not	used.

Swf SWF	files true	if	the	version	of	the
SWF	file	is	7	or	above.

Parameters	contains	those	in	the	FlashVars	parameter
and	

The	values	in	HtmlParameterDictionary	are	of	type	HtmlParameter.

Property	of
HtmlParameter

Type Default
Value

Read
Only

Description

Value

[C#]
string

[Visual	Basic]
String

n/a No The	parameter	value.

Conversion HtmlParameterConversionType None No

The	conversion	for	the	value.
HtmlParameterConversionType

None

UrlToTextFileContent

	

The	following	example	shows	the	effect	that	this	parameter	has	on	

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=	"file:///C:/myChart.html";
//	Setup	the	callback
theDoc.HtmlOptions.HtmlEmbedCallback	=	MyHtmlEmbedCallback;
//	Render	html	page
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsEmbedCallback.pdf"));
theDoc.Clear();

[C#]
public	static	void	MyHtmlEmbedCallback(Doc	doc,	HtmlEmbedInfo	
{
		if	(info.EmbedType==HtmlEmbedType.Swf)	{
				HtmlParameter	param;

Example 	

				if	(info.Parameters.TryGetValue("dataURL",	out	param))	
						info.Parameters.Remove("dataURL");
						param.Conversion	=	HtmlParameterConversionType.UrlToTextFileContent;
						info.Parameters["dataXML"]	=	param;
				}
		}
}

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=	"file:///C:/myChart.html"	
'	Setup	the	callback
theDoc.HtmlOptions.HtmlEmbedCallback	=	AddressOf	
'	Render	html	page
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsEmbedCallback.pdf"))
theDoc.Clear()

[Visual	Basic]
Public	Shared	Sub	MyHtmlEmbedCallback(doc	As	Doc,	info	As	
		If	info.EmbedType	=	HtmlEmbedType.Swf	Then
				Dim	param	As	HtmlParameter
				If	info.Parameters.TryGetValue("dataURL",	param)	
						info.Parameters.Remove("dataURL")
						param.Conversion	=	HtmlParameterConversionType.UrlToTextFileContent
						info.Parameters("dataXML")	=	param
				End	If
		End	If
End	Sub

	

	

	

HttpAdditionalHeaders	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

"" No
Additional	HTTP
headers	to	send	in
the	request.

	

	 	

Notes 	

This	property	specifies	HTTP	headers	added	to	the
default	headers.	It	must	follow	the	syntax	of	HTTP
headers,	typically	delimited	using	a	cr+lf	combination.

For	example,	you	may	add	the	cookies	from	a
response	to	a	request	under	some	authentication	(e.g.
ASP.NET	Forms)	where	a	session	ID	is	returned	for
subsequent	requests	so	re-authentication	is	not
needed.	See	the	NoCookie	property	for	further
information	if	you	specify	cookies	in	the	HTTP	headers.

The	headers	are	sent	in	only	the	request	for	the	URL;
they	are	not	sent	in	the	requests	for	the	linked
resources	(e.g.	CSS	and	images)	in	the	obtained
HTML	page.

The	additional	headers	are	always	used	by	the
MSHTML	Engine.	Under	Gecko,	these	headers	are
only	sent	if	you	are	using	the	Screen	Media	or	if	you
are	using	the	POST	RequestMethod.

	

	 	

The	following	example	shows	how	this	property	may	be	used.

[C#]
Doc	doc	=	new	Doc();
string	url	=	...;
HttpWebRequest	request	=
(HttpWebRequest)WebRequest.Create(url);
request.CookieContainer	=	new
CookieContainer();	//	required	for
HttpWebResponse.Cookies
request.Credentials	=	...;
using(WebResponse	resp	=
request.GetResponse())	{
		//	cookieless	Forms	Authentication	adds
authentication	ticket	to	the	URL
		url	=	resp.ResponseUri.AbsoluteUri;
		HttpWebResponse	response	=
(HttpWebResponse)resp;
		if(response.Cookies.Count>0)	{	//	includes
ASP.NET_SessionId
				bool	needsCookie2	=	false;
				StringBuilder	builder	=	new
StringBuilder("Cookie:	");
				for(int	i	=	0;	i<response.Cookies.Count;
++i)	{
						Cookie	cookie	=	response.Cookies[i];
						if(!needsCookie2	&&	cookie.Version!=1)
								needsCookie2	=	true;
						if(i>0)
								builder.Append(";	");
						builder.Append(cookie.ToString());
				}
				builder.Append(!needsCookie2?	"\r\n":
"\r\nCookie2:	$Version=1\r\n");
				doc.HtmlOptions.HttpAdditionalHeaders	=
builder.ToString();

Example
	

		}
}
doc.HtmlOptions.NoCookie	=	true;
doc.HtmlOptions.PageLoadMethod	=
PageLoadMethodType.MonikerForHtml;
int	id	=	doc.AddImageUrl(url);
doc.Save(Server.MapPath("HttpHeaders.pdf"));
doc.Clear();

[Visual	Basic]
Dim	doc	As	Doc	=	New	Doc()
Dim	url	As	String	=	...
Dim	request	As	HttpWebRequest	=
CType(WebRequest.Create(url),
HttpWebRequest)
request.CookieContainer	=	New
CookieContainer()	'	required	for
HttpWebResponse.Cookies
request.Credentials	=	...
Using	resp	As	WebResponse	=
request.GetResponse()
		'	cookieless	Forms	Authentication	adds
authentication	ticket	to	the	URL
		url	=	resp.ResponseUri.AbsoluteUri
		Dim	response	As	HttpWebResponse	=
CType(resp,	HttpWebResponse)
		If	response.Cookies.Count	>	0	Then	'
includes	ASP.NET_SessionId
				Dim	needsCookie2	As	Boolean	=	False
				Dim	builder	As	StringBuilder	=	New
StringBuilder("Cookie:	")
				For	i	As	Integer	=	0	To
response.Cookies.Count	-	1
						Dim	cookie	As	Cookie	=
response.Cookies(i)
						If	Not	needsCookie2	AndAlso

	 	

cookie.Version	<>	1	Then
								needsCookie2	=	True
						End	If
						If	i	>	0	Then	builder.Append(";	")
						builder.Append(cookie.ToString())
				Next
				If	Not	needsCookie2	Then
						builder.Append(ControlChars.CrLf)
				Else
						builder.Append(ControlChars.CrLf	&
"Cookie2:	$Version=1"	&	ControlChars.CrLf)
				End	If
				doc.HtmlOptions.HttpAdditionalHeaders	=
builder.ToString()
		End	If
End	Using
doc.HtmlOptions.NoCookie	=	True
doc.HtmlOptions.PageLoadMethod	=
PageLoadMethodType.MonikerForHtml
Dim	id	As	Integer	=	doc.AddImageUrl(url)
doc.Save(Server.MapPath("HttpHeaders.pdf"))
doc.Clear()

ASP.NET_SessionId.	If	your	application	runs	in
ASP.NET,	you	cannot	use	the	cookie	from	the
application's	originating	request	as	it	identifies	the
session.	If	the	site	containing	the	target	HTML	page	is
different	from	your	site,	the	session	ID	is	invalid.	If	it	is
the	same,	this	will	cause	a	re-entrance	in	the	same
session,	and	ASP.NET	may	not	allow	re-entrance	for	the
same	session.

	

	

	

ImageQuality	Property

	

Type Default
Value

Read
Only Description

[C#]int

[Visual	Basic]
Integer

101 No The	quality	of	compression	acceptable	for
continuous	tone	images	such	as	JPEGs.

	

Notes 	

This	property	determines	the	image	quality	acceptable	when	rendering	HTML.

ABCpdf	uses	a	high	quality	lossless	compression	method	for	image	
rendering	HTML.

Using	this	setting	you	can	indicate	the	quality	of	compression	which	is	acceptable	for
continuous	tone	images	such	as	JPEGs.

This	can	result	in	a	considerable	reduction	in	file	size	with	little	or	no	loss	in	output
quality.

Note	that	the	MSHTML	engine	contains	optimizations	to	allow	data	
from	the	web	through	to	the	PDF	without	recompression.	However	it	can	only	do	this	if
you	do	not	indicate	that	you	need	this	data	recompressed.	As	such	you	may	find	it	more
effective	in	terms	of	output	size	and	ouput	quality,	to	leave	the	default	setting	in	place.

Qualities	should	range	between	0	and	100	(75	is	a	reasonable	value).	Values	higher	than
100	will	result	in	lossless	compression	being	used	in	all	situations.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	

Example

	

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html";
//	Set	low	image	quality	for	HTML	rendering
theDoc.HtmlOptions.ImageQuality	=	5;
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsImageQuality5.pdf"));
theDoc.Clear();
//	Set	lossless	image	quality	for	HTML	rendering
theDoc.HtmlOptions.ImageQuality	=	101;
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsImageQuality101.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html"	
'	Set	low	image	quality	for	HTML	rendering
theDoc.HtmlOptions.ImageQuality	=	5
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsImageQuality5.pdf"))
theDoc.Clear()
'	Set	lossless	image	quality	for	HTML	rendering
theDoc.HtmlOptions.ImageQuality	=	101
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsImageQuality101.pdf"))
theDoc.Clear()

HtmlOptionsImageQuality5.pdf	[file	size	42	KB]

HtmlOptionsImageQuality101.pdf	[file	size	444	KB]

	

	

	

ImprovePageBreakAvoid	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
improve	the
support	for
page-break-
inside	of	avoid.

	

	 	

Notes 	

The	Gecko	engine	does	not	support	some	complex
uses	of	CSS	style	page-break-inside:avoid.	In
particular,	the	style	applied	inside	<table>	does	not
work	well.	Set	this	property	to	true	to	improve	the	lay-
out	of	elements	with	the	style.

	

	 	

Example 	
None.

	
	 	

	

	

ImprovePageBreakInTable	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
improve	the
support	for	page
break	in	table	to
prevent	missing
rows.

	

	 	

Notes 	

The	Gecko	engine	has	the	problem	of	not	laying	out
the	remaining	rows	in	a	table	if	a	row	reaches	exactly
the	bottom	of	a	page.	Set	this	property	to	true	to
resolve	the	problem.

	

	 	

Example 	
None.

	
	 	

	

	

InitialWidth	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]
int

[Visual	Basic]
Integer

800 No

The	minimum
width	to	be	used
for	auto-sized
pages.

	

	 	

Notes 	

When	the	BrowserWidth	is	zero	ABCpdf	will	attempt
to	automatically	determine	an	appropriate	size	for	the
page.

To	do	this	it	determines	the	scroll	width	and	scroll
height	for	the	page.	These	are	the	dimensions	which
would	need	to	be	applied	to	the	page	to	ensure	that
all	content	was	displayed	without	the	need	to	scroll.

Before	these	measurements	are	taken	the	page
needs	to	be	set	to	a	default	size.	This	value
determines	the	width	that	is	used.

This	effectively	means	that	the	output	will	always	be
a	minimum	of	this	initial	width.	If	you	are	working	with
narrow	pages	you	may	wish	to	reduce	this	value.

	

	 	

None.

Example 	 	 	 	

	

	

LogonName	Property

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

"" No A	user	name	to	be	used	for
authentication.

	

This	property	determines	the	authentication	user	name	to	be	used
when	accessing	secured	web	sites.

For	example	you	might	set	this	property	to	"MyServer\Steve"	to
authenticate	as	Steve	when	accessing	a	particular	web	site.

This	property	needs	to	be	used	in	conjunction	with	the
LogonPassword	property.

ABCpdf	is	a	user	like	any	other	user.	When	it	is	logged	in	it	stays
logged	in	until	the	session	times	out	or	until	you	explicitly	log	it
out.	So	if	you	wish	ABCpdf	to	log	on	as	a	different	user	you	must
ensure	that	it	is	logged	out	first.

ASP.NET	Forms	Authentication.	The	LogonName	and
LogonPassword	properties	are	related	to	authentication
methods	built	into	HTTP.	Methods	like	Basic	(forms)
Authentication	and	Windows	Integrated	Authentication.

Something	like	ASP.NET	forms	based	authentication
requires	a	different	kind	of	method	because	it	is	under	your

Notes 	

programmatic	control.	Because	it	is	under	your
programmatic	control	-	ABCpdf	cannot	authenticate	itself.
Because	Authentication	is	under	your	programmatic	control
-	you	have	to	Authenticate	ABCpdf.

You	will	need	to	allow	ABCpdf	to	pass	in	a	user	name	and
password	to	your	page	(probably	in	encoded	form	via	the
URL)	and	then	have	that	page	call	the
FormsAuthentication.Authenticate	code	using	that
username	and	password.

Some	of	our	clients	have	encoded	this	information	via	a	time
expiring	certificate	or	token	to	add	extra	security	to	the
process.

As	an	alternative	you	can	obtain	the	HTML	of	the	current
page	using	the	HttpResponse.Filter	property	or	by
overriding	the	Render	method	of	the	page.	You	can	then
present	this	HTML	to	ABCpdf	using	AddImageHtml.	If	your
HTML	references	resources	using	relative	references	you
may	wish	to	insert	a	<BASE>	tag	into	the	HTML	before
presentation	to	ABCpdf.	Of	course	any	resources	you
reference	would	need	to	be	available	outside	your
Authentication	scheme.

	

The	following	example	shows	this	property	may	be	used.

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=	"https://www.top-secret-site.com";
//	Assign	name	and	password
theDoc.HtmlOptions.LogonName	=	"Steve";
theDoc.HtmlOptions.LogonPassword	=	"stevepassword";

Example
	

//	Add	HTML	page
theDoc.AddImageUrl(theURL);
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsLogon.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=	"https://www.top-secret-
site.com"	
'	Assign	name	and	password
theDoc.HtmlOptions.LogonName	=	"Steve"
theDoc.HtmlOptions.LogonPassword	=	"stevepassword"
'	Add	HTML	page
theDoc.AddImageUrl(theURL)
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsLogon.pdf"))
theDoc.Clear()

	

	

	

LogonPassword	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

"" No
A	password	to
be	used	for
authentication.

	

	 	

Notes 	

This	property	determines	the	authentication
password	to	be	used	when	accessing	secured	web
sites.

For	example	you	might	set	this	property	to
"stevespassword"	to	authenticate	as	Steve	when
accessing	a	particular	web	site.

This	property	needs	to	be	used	in	conjunction	with
the	LogonName	property.

	

	 	

Example 	
See	the	LogonName	property.

	
	 	

	

	

MakeFieldNamesUnique	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	field
names	should
be	changed	to
make	them
unique.

	

	 	

Notes 	

HTML	forms	can	contain	fields	with	the	same	name.

If	the	names	of	two	fields	in	a	PDF	are	the	same,
then	the	fields	take	the	same	value.

So	if	multiple	HTML	fields	with	the	same	name	are
added	to	a	PDF,	these	fields	will	all	appear	to	contain
the	same	content.	This	is	true	even	if	the	original
HTML	fields	contained	different	content.

Setting	this	property	will	result	in	duplicate	fields
being	renamed	to	allow	the	content	to	be	different.

	

	 	

Example 	
None.

	
	 	

	

	

MaxAtomicImageSize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

480 No

The	maximum
size	at	which	an
image	may	be
regarded	as
unbreakable.

	

	 	

Notes 	

ABCpdf	generally	regards	images	as	atomic	-
unbreakable	over	more	than	one	page.

However	when	an	image	reaches	a	certain	size	it's
impossible	to	stop	the	image	being	broken.	To	try	do
so	would	result	in	unacceptable	gaps	in	the	content.
So	the	assumption	that	the	image	is	atomic	has	to	be
disregarded.

This	property	reflects	the	height	(in	pixels)	at	which
images	will	be	redefined	as	non-atomic.

	

	 	

Example 	
None.

	
	 	

	

	

Media	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	MediaType

[Visual	Basic]
MediaType

Print No The	CSS	media
type	to	use.

	

	 	

Notes 	

The	MediaType	enumeration	can	take	any	of	the
following	values:

Print
Screen

For	the	Gecko	engine,	the	Screen	media	must	be
used	with	UseScript	true.	An	invalid	combination	(i.e.
Screen	with	UseScript	false)	yields	an	exception
when	you	call	AddImageUrl	or	AddImageHtml.

The	same	HTML	document	can	achieve	different
visual	representations	when	rendered	on	different
media	by	specifying	several	sets	of	CSS	styles	for
each	medium	type.	The	Gecko	engine	supports	the
rendering	of	Web	pages	using	the	print	stylesheets
and	the	screen	stylesheets.

When	the	Screen	media	is	used	in	conjunction	with
the	Gecko	engine,	ABCpdf	obtains	the	web	page
before	invoking	the	engine.	Since	ABCpdf	does	not
obtain	additional	headers	from	the	Gecko	engine,
they	are	not	sent	in	the	request.	The	kind	of	headers

	 	

that	may	not	be	sent	include	Accept,	Accept-
Language,	Accept-Encoding,	Keep-Alive,	and
Accept-Charset.	The	User-Agent	may	be	different.	In
most	situations,	this	is	unimportant,	but	if	you	are
relying	on	these	headers,	you	can	use	the
HtmlOptions.HttpAdditionalHeaders	property	to	add
your	own	headers	to	the	request.

	

	

	

NoCookie	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
disable
automatic
cookies.

	

	 	

Notes 	

This	property	determines	whether	automatic	cookies
are	disabled.	If	it	is	true,	PageLoadMethod	must	be
effectively	MonikerForHtml.

The	HTML	engine	manages	cookies	as	it	receives
HTTP/HTTPS	responses	and	sends	HTTP/HTTPS
requests.	If	this	property	is	set	to	true,	cookies	stored
in	the	local	cookie	database	will	not	be	sent	in
requests,	and	cookies	received	in	responses	will	not
be	stored	in	the	local	cookie	database.

Cookies	specified	in	HttpAdditionalHeaders	are	not
sent	in	requests	if	automatic	cookies	are	enabled.
Set	this	property	to	true	if	cookies	are	specified	in
HttpAdditionalHeaders.

	

	 	

Example 	
See	the	HttpAdditionalHeaders	property.

	
	 	

	

	

NoDefaultBackground	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
disable	the
default
background
color.

	

	 	

Notes 	

When	the	HTML	page	does	not	specify	a	background
color,	the	Gecko	engine	applies	the	default
background	color	specified	by	preference
browser.display.background_color	or	overridden	by
preference	browser.display.use_system_colors.	This
default	color	is	always	opaque.

Because	the	default	preference	specifies	white,	you
get	a	white	background	(which	you	likely	do	not
notice	unless	there	is	already	some	objects	on	the
PDF	page)	if	this	property	is	set	to	false.

	

	 	

Example 	
None.

	
	 	

	

	

NoSnapRounding	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
disable	the	snap
rounding	of
coordinates	and
lengths.

	

	 	

Notes 	

The	Gecko	engine	snap-rounds	measurements	at
the	output	resolution.	This	does	not	make	sense
when	the	output	format,	such	as	PDF,	has	no
inherent	resolution.	The	units	of	measurement	of
PDF	is	points,	which	is	too	coarse	for	vector
graphics.

Set	this	property	to	true	to	use	the	source
measurements	without	snap	rounding.

	

	 	

Example 	
None.

	
	 	

	

	

NoTheme	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false Yes
Whether	themes
should	be
disabled.

	

	 	

Notes 	

This	property	determines	whether	UI	theme	is	not
applied	to	controls.

The	theme	is	only	relevant	if	you	are	using	the
MSHTML	engine	for	IE9	or	earlier.	As	such	it	is	likely
that	this	function	will	be	deprecated	in	future	releases
of	ABCpdf.

To	change	the	value,	use	SetTheme.

	

	 	

Example 	
None.

	
	 	

	

	

OnLoadScript	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]
string

[Visual	Basic]
String

"" No
A	script	to	be	run
after	the	page	is
loaded.

	

	 	

A	client	side	JavaScript	to	be	applied	to	a	web	page
before	the	page	is	rendered	to	PDF.

This	kind	of	script	can	be	used	for	a	variety	of
purposes.	For	example	you	might	wish	to	hide
background	images	or	get	pre-render	information
from	the	document.

You	can	provide	a	return	value	by	setting	an	"abcpdf"
property	in	the	documentElement.	For	example:

document.documentElement.abcpdf	=	"my
return	value";

The	return	value	can	be	accessed	using	the
GetScriptReturn	method	with	the	ID	returned	from
Doc.AddImageUrl	or	Doc.AddImageHtml.

For	the	MSHtml	engine,	you	must	have	the	UseScript
key	set	to	true	or	you	will	get	an	"access	denied"

Notes 	

error;	the	return	value	can	only	be	set	inside
OnLoadScript.	The	Gecko	engine	does	not	have
these	restrictions.

For	the	MSHtml	engine,	the	script	in	this	property	is
executed	after	the	page	load	is	complete,	so	it	may
be	executed	before	or	after	any	script	in	the	web
page	that	is	executed	after	the	completion	of	page
load.

For	the	Gecko	engine,	the	script	in	this	property	may
be	executed	before	or	after	any	event-triggered	script
in	the	web	page.	For	example,	if	you	set
window.ABCpdf_go	to	false	in	OnLoadScript,	but	the
event	listener	that	sets	window.ABCpdf_go	to	true	is
in	the	script	in	the	web	page,	you	should	check	the
value	of	window.ABCpdf_go	(initially	undefined)
before	setting	it	to	false	in	OnLoadScript.

doc.HtmlOptions.OnLoadScript	=
"if(!window.ABCpdf_go)
window.ABCpdf_go	=	false;";

	

	 	

Example 	
See	the	UseScript	property.

	
	 	

	

	

PageCacheEnabled	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	the
page	cache
should	be
searched	before
rendering	the
page.

	

	 	

Notes 	

ABCpdf	holds	a	cache	of	recently	requested	URLs,
and	it's	only	after	five	minutes	or	so	that	these	pages
expire	from	the	cache.

Searching	the	page	cache	before	rendering	a	URL
results	in	a	considerable	degree	of	optimization	for
many	common	operations.

However,	if	you	wish	to	bypass	the	cache,	you	can
do	so	by	setting	this	property	to	false.	When	the
cache	is	disabled,	the	registry	value
MakeURLsUnique	takes	effect,	and	the	actual	URL
may	be	modified.

	

	 	

Example 	
None.

	
	 	

	

	

PageCacheExpiry	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

300,000 No

The	length	of
time	that	pages
can	be	held	in
the	cache	(ms).

	

	 	

Notes 	

ABCpdf	holds	a	cache	of	recently	requested	URLs
and	it's	only	after	five	minutes	or	so	that	these	pages
expire	from	the	cache.

This	results	in	a	considerable	degree	of	optimization
for	many	common	operations.

You	can	modify	the	length	of	time	that	pages	are	held
in	the	cache	using	this	parameter.	This	value	cannot
be	reduced	to	zero.

This	value	is	measured	in	milliseconds.

	

	 	

Example 	
None.

	
	 	

	

	

PageCacheSize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

100 No

The	number	of
pages	that	can
be	held	in	the
cache.

	

	 	

Notes 	

ABCpdf	holds	a	cache	of	recently	requested	URLs
and	it's	only	after	five	minutes	or	so	that	these	pages
expire	from	the	cache.

This	results	in	a	considerable	degree	of	optimization
for	many	common	operations.

You	can	modify	the	number	of	items	which	can	be
held	in	the	URL	cache	using	this	parameter.	This
value	cannot	be	reduced	to	zero.

	

	 	

Example 	
None.

	
	 	

	

	

Paged	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	content
should	be
rendered	in
multipaged
format.

	

	 	

Notes 	

This	property	determines	whether	HTML	should	be
prepared	in	a	way	that	allows	it	to	be	paged	over
multiple	PDF	pages.

If	paged	mode	is	used	then	only	the	first	page	of	the
document	is	drawn.	Subsequent	pages	can	be	drawn
using	the	Doc.AddImageToChain	method.

There	are	subtle	differences	between	paged	and
non-paged	HTML.	In	general	you	will	want	to	set	this
parameter	to	true	even	if	you	only	wish	to	draw	one
page.

	

	 	

Example 	
None.

	
	 	

	

	

PageLoadMethod	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
PageLoadMethodType

[Visual	Basic]
PageLoadMethodType

Default No
The	method
for	loading
URI/HTML.

	

	 	

Notes 	

This	property	specifies	the	method	to	load	the
URI/HTML	page.

The	PageLoadMethodType	enumeration	can	take
any	of	the	following	values:

Default	—	this	is	currently	the	same	as
MonikerForHtml.
MonikerForHtml	—	Moniker	is	used	to	load	the
page.
WebBrowserNavigate	—
IWebBrowser2::Navigate	is	used	to	load	the
page.	HostWebBrowser	must	be	true	to	use	this
value.

This	property	affects	the	NoCookie	property	and	the
GetHttpStatusCode	method.

	

	 	

Example 	
See	the	HttpAdditionalHeaders	property.

	
	 	

	

	

ProcessOptions	Property

	

Type Default	Value Read
Only Description

[C#]	
XHtmlProcessOptions

[Visual	Basic]
XHtmlProcessOptions

The	default
XHtmlProcessOptions Yes

The	options
for	new
worker
processes.

	

Notes 	

For	each	HTML	engine	that	uses	worker	processes,	you	can	set
the	properties	in	the	XHtmlProcessOptions	object	to	specify	the
options	for	new	worker	processes.

The	worker	processes	are	in	a	process	pool	for	each	HTML
engine,	which	is	shared	by	different	instances	of	Doc.	However,
the	options	used	are	not	reflected	back	to	the	(writable)
XHtmlProcessOptions	properties	for	different	instances	of	Doc.

The	options	are	used	only	at	the	start	of	the	process	pool	and
must	not	be	disposed	of	before	the	process	pool	is	stopped.	If
the	process	pool	has	started,	the	options	are	ignored.

If	the	process	pool	has	started,	to	use	a	different	set	of	options
for	subsequent	HTML	rendering,	you	will	have	to	stop	the
process	pool	by	calling	EndTasks	so	that	all	worker	processes
are	terminated.	XHtmlProcessOptions.PoolHasStarted	is	false
when	the	process	pool	is	stopped.

	

Example 	
None.

	

	

	

ReloadPage	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to
reload	page.

	

	 	

Notes 	

This	property	determines	whether	the	page	is
reloaded	from	the	server.	If	it	is	true,
PageLoadMethod	must	be	effectively
MonikerForHtml.

When	a	page	is	to	be	reloaded,	all	proxy	servers	will
request	the	page	anew,	the	page	cache	is	not
searched,	and	if	the	page	cache	is	enabled,	the
reloaded	page	is	stored	in	the	page	cache.

Setting	this	property	to	true	sets
INTERNET_FLAG_RELOAD.	WinINET	will	bypass
the	cache	(redownloading	all	entries),	(will	not	send
an	If-Modified-Since	or	If-None-Match	request
header	on	these	requests	(Unconditional	request;
server	cannot	return	a	HTTP/304),)	and	will	add	a
request	header,	as	UseNoCache	does,	to	help
ensure	that	an	intermediary/proxy	does	not	return	a
previously	cached	result.

	

	 	

Example 	
None.

	
	 	

	

	

RequestMethod	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]UrlRequestMethodType

[Visual	Basic]
UrlRequestMethodType

Get No
The	request
method	for
URL.

	

	 	

Notes 	

The	UrlRequestMethodType	enumeration	can	take	any
of	the	following	values:

Get
Post

This	property	specifies	which	method	Doc.AddImageUrl
uses	to	get	the	HTML	page.	Normally,	Get	is	the
preferred	method	when	requesting	the	page	is	an
idempotent	operation.	However,	the	Get	method
supports	at	most	2,048	characters	in	the	URL.	If	the
URL	is	longer	than	2,048	characters	and	contains
parameters,	it	is	necessary	to	use	the	Post	method.
However,	the	URL	minus	the	parameters	(and	the
question	mark)	is	still	limited	to	2,048	characters.

The	Post	method	is	used	only	when	the	the	URL
contains	a	question	mark	(and	this	property	is	set	to
Post).	If	the	URL	does	not	contain	any	parameter,	the
Post	method	can	still	be	used	by	appending	a	question
mark	to	the	URL.

When	the	Post	method	is	used	in	conjunction	with	the

	 	

Gecko	engine,	ABCpdf	obtains	the	web	page	before
invoking	the	engine.	Since	ABCpdf	does	not	obtain
additional	headers	from	the	Gecko	engine,	they	are	not
sent	in	the	request.	The	kind	of	headers	that	may	not
be	sent	include	Accept,	Accept-Language,	Accept-
Encoding,	Keep-Alive,	and	Accept-Charset.	The	User-
Agent	may	be	different.	In	most	situations,	this	is
unimportant,	but	if	you	are	relying	on	these	headers,
you	can	use	the	HtmlOptions.HttpAdditionalHeaders
property	to	add	your	own	headers	to	the	request.

	

Example 	

None.

	

	

	 	

	

	

RetryCount	Property

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

5 No The	number	of	times	a	page	should	be	retried	if
unavailable	or	invalid.

	

Notes 	

This	property	controls	how	many	times	ABCpdf	will	attempt	to	obtain	

HTML	rendering	may	fail	one	time	but	succeed	the	next.	This	is	often	for	reasons	outside
the	control	of	ABCpdf.

So	ABCpdf	may	attempt	to	re-request	a	page	if	it	is	not	immediately	
analogous	to	clicking	on	the	refresh	button	of	a	web	browser	if	the	page	is	failing	to	load.

See	the	ContentCount	and	the	Timeout	properties	for	how	ABCpdf	determines	if	a	page
is	unavailable	or	invalid.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	HTML	rendering.

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html";
//	Set	minimum	number	of	items	a	page	of	HTML	should	contain.
//	Otherwise	the	page	will	be	assumed	to	be	invalid.

Example 	

theDoc.HtmlOptions.ContentCount	=	20;
//	Try	to	obtain	html	page	10	times
theDoc.HtmlOptions.RetryCount	=	10;
//	The	page	must	be	obtained	in	less	then	10	seconds
theDoc.HtmlOptions.Timeout	=	10000;
try
{
		theDoc.AddImageUrl(theURL);
}
catch	
{
		//	Page	couldn't	be	loaded
}
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsRetryCount.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theURL	As	String	=
"http://www.nasa.gov/multimedia/imagegallery/image_feature_313.html"	
'	Set	minimum	number	of	items	a	page	of	HTML	should	contain.
'	Otherwise	the	page	will	be	assumed	to	be	invalid.
theDoc.HtmlOptions.ContentCount	=	20
'	Try	to	obtain	html	page	10	times
theDoc.HtmlOptions.RetryCount	=	10
'	The	page	must	be	obtained	in	less	then	10	seconds
theDoc.HtmlOptions.Timeout	=	10000
Try
		theDoc.AddImageUrl(theURL)
Catch
		'	Page	couldn't	be	loaded
End	Try
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsRetryCount.pdf"))
theDoc.Clear()

HtmlOptionsRetryCount.pdf

	

	

	

	

TargetLinks	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether
hyperlinks
should	be
allowed	to	open
new	windows.

	

	 	

Notes 	

Whether	hyperlinks	with	targets	should	be	allowed	to
open	in	a	new	browser	window.

In	HTML,	hyperlinks	whose	targets	are	neither	empty,
"_self",	"_parent",	nor	"_top"	will	be	opened	in	new
browser	window.

Setting	this	property	to	true	allows	you	to	mimic	this
behavior	when	the	PDF	document	is	viewed	inside	a
browser.

	

	 	

Example 	
None.

	
	 	

	

	

Timeout	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

15,500 No

The	maximum
amount	of	time
allowed	for
obtaining	a	page
(ms).

	

	 	

Notes 	

HTML	rendering	can	take	some	time.

If	the	time	taken	exceeds	the	Timeout	then	the	page
is	assumed	to	be	unavailable.	Depending	on	the
RetryCount	settings	the	page	may	be	re-requested	or
an	error	may	be	returned.

This	value	is	measured	in	milliseconds.

	

	 	

Example 	
See	the	RetryCount	property.

	
	 	

	

	

TransferModule	Property 	

	

Type Default
Value

Read
Only Description

[C#]	
TransferModuleType

[Visual	Basic]
TransferModuleType

Default No
The	module	for
obtaining
URI/HTML	data.

	

	

This	property	specifies	the	module	to	obtain	URI/HTML	data.

The	TransferModuleType	enumeration	can	take	any	of	the
following	values:

Default	—	this	is	currently	the	same	as
RetryNetWebRequestOnEngineAccessDenied.
EngineTransfer	—	the	engine	(i.e.	MSHTML/WinINet)	obtains
the	page.
NetWebRequest	—	System.Net.WebRequest	is	used	to
obtain	the	page.
RetryNetWebRequestOnEngineAccessDenied	—	the	engine
obtains	the	page.	If	the	engine	is	denied	access	to	local
storage,	System.Net.WebRequest	is	used	to	obtain	the	page.
(Possibly	more	than	one	request	sent.)

RetryNetWebRequestOnEngineAccessDenied	is	useful	in
restricted	environment.	When	MSHTML	downloads	web	pages,	it
needs	to	access	the	following	shell	folders	(specified	in
"HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders"	in	the	registry):

Notes 	

History	—	the	default	value	is
%LOCALAPPDATA%\Microsoft\Windows\History
Cache	—	the	default	value	is
"%LOCALAPPDATA%\Microsoft\Windows\Temporary	Internet
Files"
Cookies	—	the	default	value	is
%APPDATA%\Microsoft\Windows\Cookies

If	the	folders	are	not	accessible,	the	fallback	folders	History,
"Temporary	Internet	Files",	and	Cookies	in	%TEMP%	are	used.

For	example,	your	application	uses	the	"ASP.NET	v4.0"	application
pool	and	the	identity	is	ApplicationPoolIdentity,	you	need	to	grant
"IIS	APPPOOL\ASP.NET	v4.0"	access	to	the	folders	with
%LOCALAPPDATA%	=
%SystemRoot%\System32\config\systemprofile\AppData\Local
and	%APPDATA%	=
%SystemRoot%\System32\config\systemprofile\AppData\Roaming
or	to	the	fallback	folders	with	%TEMP%	=	%SystemRoot%\Temp.

If	MSHTML	cannot	access	those	folders,	ABCpdf	with
RetryNetWebRequestOnEngineAccessDenied	specified	will	obtain
the	HTML	page	using	System.Net.WebRequest.	In	such	a	case,
more	than	one	request	may	be	sent.

	

Example 	
None.

	
	

	

	

UseActiveX	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to
enable	ActiveX.

	

	 	

Notes 	

This	property	determines	whether	ActiveX	is
enabled.

By	default	ActiveX	is	disabled	when	rendering	HTML
documents.

This	is	done	for	good	security	reasons	and	we
strongly	recommend	that	you	do	not	change	this
setting.

However	if	you	are	sure	that	your	source	documents
do	not	pose	a	security	risk	you	can	enable	ActiveX
using	this	setting.

Compatibility.	Not	all	ActiveX	controls	are
compatible	with	ABCpdf.	In	particular	some	rely
on	being	able	to	draw	direct	to	screen	which
stops	ABCpdf	being	able	to	use	them.

	 	

	

Example 	
None.

	
	 	

	

	

UseJava	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to
enable	Java.

	

	 	

Notes 	

This	property	determines	whether	Java	is	enabled.

By	default	Java	is	disabled	when	rendering	HTML
documents.

This	is	done	for	good	security	reasons	and	we
strongly	recommend	that	you	do	not	change	this
setting.

However	if	you	are	sure	that	your	source	documents
do	not	pose	a	security	risk	you	can	enable	Java
using	this	setting.

	

	 	

Example 	
None.

	
	 	

	

	

UseNoCache	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	any
proxy	servers
should	re-
request	items	of
content.

	

	 	

Notes 	

This	property	determines	whether	no-cache	is
enabled.

Setting	this	property	to	true	forces	any	intervening
proxy	server	to	re-request	the	page.

For	the	MSHTML	engine,	setting	this	property	to	true
sets	INTERNET_FLAG_PRAGMA_NOCACHE.
WinINET	will	add	request	header	Pragma:	no-cache
if	going	through	a	HTTP/1.0	proxy	and	request
header	Cache-Control:	no-cache	if	going	through	a
HTTP/1.1	proxy.

For	the	Gecko	engine,	setting	this	property	to	true
sets	the	following	flags.

LOAD_FLAGS_IS_REFRESH	—	the	load
should	have	the	semantics	of	an	HTML	Meta-
refresh	tag	(i.e.,	that	the	cache	should	be
bypassed).
LOAD_FLAGS_BYPASS_HISTORY	—	history
should	not	be	updated.

	 	

LOAD_FLAGS_BYPASS_CACHE	—	the	local
web	cache	should	be	bypassed	(but	an
intermediate	proxy	cache	could	still	be	used	to
satisfy	the	load).
LOAD_FLAGS_BYPASS_PROXY	—	any
intermediate	proxy	caches	should	be	bypassed
(i.e.,	that	the	content	should	be	loaded	from	the
origin	server).

	

Example 	
None.

	
	 	

	

	

UseResync	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	to
resynchronize
pages.

	

	 	

Notes 	

This	property	determines	whether	resync	is	enabled.

When	a	page	is	resynchronized,	the	server	is
requested	to	send	the	new	version	of	the	page	on	the
condition	that	the	page	in	the	engine's	cache	is	stale.

Setting	this	property	to	true	sets
INTERNET_FLAG_RESYNCHRONIZE.	WinINET	will
send	an	If-Modified-Since	or	If-None-Match	request
header	to	allow	a	304	response,	and	it	may	add	a
request	header,	as	UseNoCache	does,	to	help
ensure	that	an	intermediary	(proxy)	does	not	return	a
previously	cached	result.

	

	 	

Example 	
None.

	
	 	

	

	

UseScript	Property

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	enable	JavaScript	and
VBScript.

	

This	property	determines	whether	JavaScript	and	VBScript	are	enabled.

By	default,	client-side	script	such	as	JavaScript	is	disabled	when	
documents.

This	is	done	for	good	security	reasons,	and	we	strongly	recommend	
change	this	setting.

However,	if	you	are	sure	that	your	source	documents	do	not	pose	
can	enable	Script	using	this	setting.

If	you	have	a	server	edition	of	Windows	(e.g.	Windows	Server	2008)	and	are	using
the	MSHTML	engine,	you	may	need	to	also	disable	Enhanced	Security
Configuration	for	user	running	the	program/application	pool	to	allow	JavaScript
execution.

Script-Accessible	Functions	and	Properties.	These	are	functions	and
properties	that	script	inside	HTML	can	access.	The	function	signatures	shown
are	in	C#-like	syntax.	You'll	need	to	pass	in	the	correct	number	of	arguments.

MSHTML window.external.ABCpdf_RenderWait	–	Delays	ABCpdf's

Notes

	

only 	 rendering	of	the	HTML	page.

Syntax 	 bool	ABCpdf_RenderWait()

Params 	
Name Description

return True	if	ABCpdf	waits	(i.e.	the	function	succeeds),	otherwise
false.

Notes 	

When	this	function	is	called	before	the	page	load	is	considered
complete,	the	page	load	is	not	considered	complete	until
ABCpdf_RenderComplete	is	called.	This	function	returns	false	if
ABCpdf_RenderComplete	has	been	called.	This	is	useful	if	the	page
relies	on	timeout/asynchronous	events	(AJAX).

	

MSHTML
only 	 window.external.ABCpdf_RenderComplete	–	Resumes	ABCpdf's

rendering	of	the	HTML	page.

Syntax 	
bool	ABCpdf_RenderComplete()
bool	ABCpdf_RenderComplete(bool	force)

Params 	

Name Description

force Whether	ABCpdf	ignores	normal	indications	of	page	load
completion.	The	default	value	is	false.

return True	if	ABCpdf	resumes	rendering	as	requested	(i.e.	the
function	succeeds),	otherwise	false.

Notes 	

This	function	can	be	called	whether	ABCpdf_RenderWait	
not	been	called.	If	force	is	false,	ABCpdf	resumes	normal	rendering.
If	force	is	true,	ABCpdf	starts	rendering	immediately,	ignoring	all
other	indications	of	page	load	completion.	This	function	returns	false
if	force	is	false	and	the	function	has	been	previously	called	with	force
true.	This	is	useful	if	the	page	relies	on	timeout/asynchronous	events
(AJAX).

	

Gecko 	 window.ABCpdf_go	–	Specifies	whether	ABCpdf	proceeds	to

only render	the	HTML	page.

Syntax 	 bool	ABCpdf_go

Params 	

Value Description
undefined	(initial	value),

true
ABCpdf	proceeds	to	render	the	HTML
page.

false ABCpdf	waits.

Notes 	

UseScript	has	to	be	true	and	OnLoadScript	has	to	be	non-empty	for
this	property	to	be	effectual.	ABCpdf	will	wait	for	this	property	to	be
either	undefined	or	true	before	rendering	the	HTML	page.	The	whole
HTML	rendering	operation	is	still	subject	to	the	Timeout
value.	Usually,	this	property	is	set	to	false	in	OnLoadScript	and	is
also	set	to	true	in	an	event	listener	added	in	OnLoadScript.	If
assignments	to	this	property	are	provided	in	both	OnLoadScript	
the	script	in	the	web	page,	please	refer	to	the	notes	in	
for	the	order	of	execution.

Example 	

[C#]
Doc	doc	=	new	Doc();
doc.HtmlOptions.Engine	=	EngineType.Gecko;
doc.HtmlOptions.UseScript	=	true;

//	Render	after	3	seconds
doc.HtmlOptions.OnLoadScript	=	"(function(){
window.ABCpdf_go	=	false;	setTimeout(function(){
window.ABCpdf_go	=	true;	},	3000);	})();";

doc.AddImageUrl("http://www.websupergoo.com");
doc.Save(Server.MapPath("wsg.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()

theDoc.HtmlOptions.Engine	=	EngineType.Gecko
theDoc.HtmlOptions.UseScript	=	True

'	Render	after	3	seconds
theDoc.HtmlOptions.OnLoadScript	=	"(function(){
window.ABCpdf_go	=	false;	setTimeout(function(){
window.ABCpdf_go	=	true;	},	3000);	})();"

theDoc.AddImageUrl("http://www.websupergoo.com")
theDoc.Save(Server.MapPath("wsg.pdf"))

The	following	example	shows	one	method	of	crawling	and	transferring	
site	to	PDF.	Here,	we	use	JavaScript	to	determine	the	links	present	on	the
page.	However,	you	could	equally	well	use	the	HtmlCallback	to	do	the	same
thing.

[C#]
Doc	theDoc	=	new	Doc();
string	theURL	=	"http://www.fbi.gov/";
//	Set	HTML	options
theDoc.HtmlOptions.AddLinks	=	true;
theDoc.HtmlOptions.UseScript	=	true;
theDoc.HtmlOptions.PageCacheEnabled	=	false;
//	JavaScript	is	used	to	extract	all	links	from	the	page
theDoc.HtmlOptions.OnLoadScript	=	"var	hrefCollection	=
document.all.tags(\"a\");"	+
		"var	allLinks	=	\"\";"	+
		"for(i	=	0;	i	<	hrefCollection.length;	++i)	{"	+
		"if	(i	>	0)"	+
		"		allLinks	+=	\",\";"	+
		"allLinks	+=	hrefCollection.item(i).href;"	+
		"};"+
		"document.documentElement.abcpdf	=	allLinks;";
//	Array	of	links	-	start	with	base	URL
ArrayList	links	=	new	ArrayList();
links.Add(theURL);

for	(int	i	=	0;	i	<	links.Count;	i++)	{
		//	Stop	if	we	render	more	than	20	pages
		if	(theDoc.PageCount	>	20)
				break;
		//	Add	page
		theDoc.Page	=	theDoc.AddPage();
		int	theID	=	theDoc.AddImageUrl(links[i]	as	string);
		//	Links	from	the	rendered	page
		string	allLinks	=
theDoc.HtmlOptions.GetScriptReturn(theID);
		string[]	newLinks	=	allLinks.Split(new	char[]	{','});
		foreach	(string	link	in	newLinks)	{
				//	Check	to	see	if	we	allready	rendered	this	page
				if	(links.BinarySearch(link)	<	0)	{
						//	Skip	links	inside	the	page
						int	pos	=	link.IndexOf("#");	
						if	(!	(pos	>	0	&&
links.BinarySearch(link.Substring(0,	pos))	>=	0))	{
								if	(link.StartsWith(theURL))	{
										links.Add(link);
								}
						}
				}
		}
		//	Add	other	pages
		while	(true)	{
				theDoc.FrameRect();
				if	(!theDoc.Chainable(theID))
						break;
				theDoc.Page	=	theDoc.AddPage();
				theID	=	theDoc.AddImageToChain(theID);
		}
}
//	Link	pages	together
theDoc.HtmlOptions.LinkPages();
//	Flatten	all	pages
for	(int	i	=	1;	i	<=	theDoc.PageCount;	i++)	{

Example

	

		theDoc.PageNumber	=	i;
		theDoc.Flatten();
}
//	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsJavaScript.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
Dim	theURL	As	String	=	"http://www.fbi.gov/"
'	Set	HTML	options
theDoc.HtmlOptions.AddLinks	=	True
theDoc.HtmlOptions.UseScript	=	True
theDoc.HtmlOptions.PageCacheEnabled	=	False
'	JavaScript	is	used	to	extract	all	links	from	the	page
theDoc.HtmlOptions.OnLoadScript	=	"var	hrefCollection	=
document.all.tags(""a"");"	+	_
		"var	allLinks	=	"""";"	+	_
		"for(i	=	0;	i	<	hrefCollection.length;	++i)	{"	+	_
		"if	(i	>	0)"	+	_
		"		allLinks	+=	"","";"	+	_
		"allLinks	+=	hrefCollection.item(i).href;"	+	_
		"};"	+	_
		"document.documentElement.abcpdf	=	allLinks;"
'	Array	of	links	-	start	with	base	URL
Dim	links	As	ArrayList	=	New	ArrayList()
links.Add(theURL)
Dim	theID	As	Integer
For	i	As	Integer	=	0	To	links.Count	-	1
		'	Stop	if	we	render	more	than	20	pages
		If	theDoc.PageCount	>	20	Then	Exit	For
		'	Add	page
		theDoc.Page	=	theDoc.AddPage()
		theID	=	theDoc.AddImageUrl(links(i))
		'	Links	from	the	rendered	page
		Dim	allLinks	As	String

		allLinks	=	theDoc.HtmlOptions.GetScriptReturn(theID)
		Dim	newLinks()	As	String
		newLinks	=	allLinks.Split(New	Char()	{","})
		Dim	link	As	String
		For	Each	link	in	newLinks
				'	Check	to	see	if	we	allready	rendered	this	
				If	links.BinarySearch(link)	<	0	Then
						'	Skip	links	inside	the	page
						Dim	pos	As	Integer
						pos	=	link.IndexOf("#")
						If	Not	(pos	>	0	And
links.BinarySearch(link.Substring(0,	pos))	>=	0)	Then
								If	link.StartsWith(theURL)	Then	links.Add(link)
						End	If
				End	If
		Next
		'	Add	other	pages
		Do
				theDoc.FrameRect()
				If	Not	theDoc.Chainable(theID)	Then	Exit	Do
				theDoc.Page	=	theDoc.AddPage()
				theID	=	theDoc.AddImageToChain(theID)
		Loop
Next
'	Link	pages	together
theDoc.HtmlOptions.LinkPages()
'	Flatten	all	pages
For	i	As	Integer	=	1	To	theDoc.PageCount
		theDoc.PageNumber	=	i
		theDoc.Flatten()
Next
'	Save	the	document
theDoc.Save(Server.MapPath("HtmlOptionsJavaScript.pdf"))
theDoc.Clear()

HtmlOptionsJavaScript.pdf	-	[Page	1] HtmlOptionsJavaScript.pdf	-	[Page	2]

HtmlOptionsJavaScript.pdf	-	[Page	3] HtmlOptionsJavaScript.pdf	-	[Page	4]

	

	

	

	

UseTheme	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false Yes Whether	to
use	themes.

	

	 	

Notes 	

This	property	determines	whether	UI	theme	is
applied	to	controls.

The	theme	is	only	relevant	if	you	are	using	the
MSHTML	engine	for	IE9	or	earlier.	As	such	it	is	likely
that	this	function	will	be	deprecated	in	future	releases
of	ABCpdf.

To	change	the	value,	use	SetTheme.

	

	 	

Example 	
None.

	
	 	

	

	

UseVideo	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to
enable	Video.

	

	 	

Notes 	

This	property	determines	whether	Video	is	enabled.

By	default	Video	is	disabled	when	rendering	HTML
documents.

This	is	done	for	good	security	reasons	and	we
strongly	recommend	that	you	do	not	change	this
setting.

However	if	you	are	sure	that	your	source	documents
do	not	pose	a	security	risk	you	can	enable	Video
using	this	setting.

	

	 	

Example 	
None.

	
	 	

	

	

StartPool	Method 	 	

Start	the	process	pool	for	the	HTML	Engine.

	
	 	

Syntax 	

[C#]
bool	StartPool()

[Visual	Basic]
Function	StartPool()	As	Boolean

	

	 	

Params 	

Name Description

return Whether	the	process	pool	is	started
anew.

	

	 	

Notes 	

This	starts	the	process	pool	for	the	HTML
Engine	(without	rendering	an	HTML	page).

This	method	returns	false	if	the	process	pool
has	been	started	before	the	method	is	called.

	

	 	

Example 	
None.

	
	 	

	

	

PoolHasStarted	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes

Whether	the
process	pool	for
the	HTML
Engine	has
started.

	

	 	

Notes 	

This	gets	whether	the	process	pool	for	the	HTML
Engine	has	started.

The	process	options	are	used	only	at	the	start	of	the
process	pool.	If	the	process	pool	has	started,	the
options	are	ignored.

You	can	stop	the	process	pool	by	calling
XHtmlOptions.EndTasks	so	that	all	worker	processes
are	terminated.

	

	 	

Example 	
None.

	
	 	

	

	

ProcessCount	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	number	of
existing
processes	for
the	HTML
Engine.

	

	 	

Notes 	

This	gets	the	number	of	existing	processes	for	the
HTML	Engine.

	

	 	

Example 	
None.

	
	 	

	

	

Domain	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No

The	domain	or
server
containing	the
user.

	

	 	

Notes 	

This	specifies	the	domain	or	server	containing	the
user	for	new	worker	processes.

	

	 	

Example 	
None.

	
	 	

	

	

LoadUserProfile	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	load
the	user	profile.

	

	 	

Notes 	

This	specifies	whether	to	load	the	user	profile	for	new
worker	processes.

	

	 	

Example 	
None.

	
	 	

	

	

Password	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
SecureString

[Visual	Basic]
SecureString

null No The	password
for	the	user.

	

	 	

Notes 	

This	specifies	the	password	for	the	user	for	new
worker	processes.

The	SecureString	must	not	be	disposed	of	while	the
process	pool	is	not	stopped.

	

	 	

Example 	
None.

	
	 	

	

	

UserName	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No The	user
name.

	

	 	

Notes 	

This	specifies	the	user	name	for	new	worker
processes.

For	applications	running	in	a	restricted	environment,
you	may	need	to	install	TaskGardener	to	specify	the
user.

	

	 	

Example 	
None.

	
	 	

	

	

FromFile	Function 	 	

Creates	an	XImage	from	a	file	path.

	
	 	

Syntax 	

[C#]
static	XImage	FromFile(string
path,	XReadOptions	options)

[Visual	Basic]
Shared	Function	FromFile(path	As
String,	options	As	XReadOptions)
As	XImage

	may	throw	Exception()

	

	 	

Params 	

Name Description
path The	path	to	the	graphic	file.

options

The	settings	for	the	read.	The	XImage
takes	ownership	of	this	parameter.
Relevant	property	for	Default
ReadModule:	PreserveTransparency.

return The	resulting	IndirectObject.

	

	 	

The	object	takes	the	ownership	of	the
XReadOptions,	which	is	disposed	of	when	the

Notes 	

object	is	disposed	of.	You	can	make	the	object
release	the	ownership	without	disposing	of	the
XReadOptions	using	the	parameterized
overloads	of	Dispose	and	Clear.	The
XReadOptions	must	not	be	modified	as	long	as
the	object	has	the	ownership.

For	Default	ReadModule,	this	method	provides
the	same	functionality	as	the	SetFile	method
except	that	the	image	holds	additional
information	(PreserveTransparency).	In	addition
this	method	allows	you	to	read	any	document
format	and	treat	it	as	an	image.	See	the
Doc.Read	method	for	details	of	supported
document	formats.

For	modules	that	use	an	Operation	(whether
Operation	is	actually	null	or	not),	if	NeedsFile	is
true,	the	file	specified	must	exist	as	long	as	the
XImage	object	is	not	cleared,	disposed	of,	or
garbage-collected.	The	object	does	not	delete
the	file	when	it	is	disposed	of.

	

	 	

Example 	
None.

	
	 	

	

	

FromData	Function 	 	

Creates	an	XImage	from	an	array	of	bytes.

	
	 	

Syntax 	

[C#]
static	XImage	FromData(byte[]
data,	XReadOptions	options)

[Visual	Basic]
Shared	Function	FromData(data()
As	Byte,	options	As	XReadOptions)
As	XImage

	may	throw	Exception()

	

	 	

Params 	

Name Description
data The	data	containing	the	graphic.

options

The	settings	for	the	read.	The	XImage
takes	ownership	of	this	parameter.
Relevant	property	for	Default
ReadModule:	PreserveTransparency.

return The	resulting	IndirectObject.

	

	 	

The	object	takes	the	ownership	of	the
XReadOptions,	which	is	disposed	of	when	the

Notes 	

object	is	disposed	of.	You	can	make	the	object
release	the	ownership	without	disposing	of	the
XReadOptions	using	the	parameterized
overloads	of	Dispose	and	Clear.	The
XReadOptions	must	not	be	modified	as	long	as
the	object	has	the	ownership.

For	Default	ReadModule,	this	method	provides
the	same	functionality	as	the	SetData	method
except	that	the	image	holds	additional
information	(PreserveTransparency).

For	modules	that	use	an	Operation	(whether
Operation	is	actually	null	or	not),	the	array	of
bytes	must	not	be	modified	as	long	as	the
XImage	object	is	not	cleared,	disposed	of,	or
garbage-collected.

	

	 	

Example 	
None.

	
	 	

	

	

FromStream	Function 	 	

Creates	an	XImage	from	a	Stream.

	
	 	

Syntax 	

[C#]
static	XImage	FromStream(Stream
stream,	XReadOptions	options)

[Visual	Basic]
Shared	Function	FromStream(stream
As	Stream,	options	As
XReadOptions)	As	XImage

	may	throw	Exception()

	

	 	

Params 	

Name Description
stream The	stream	containing	the	graphic.

options

The	settings	for	the	read.	The	XImage
takes	ownership	of	this	parameter.
Relevant	property	for	Default
ReadModule:	PreserveTransparency.

return The	resulting	IndirectObject.

	

	 	

The	object	takes	the	ownership	of	the
XReadOptions,	which	is	disposed	of	when	the

Notes 	

object	is	disposed	of.	You	can	make	the	object
release	the	ownership	without	disposing	of	the
XReadOptions	using	the	parameterized
overloads	of	Dispose	and	Clear.	The
XReadOptions	must	not	be	modified	as	long	as
the	object	has	the	ownership.

For	Default	ReadModule,	this	method	provides
the	same	functionality	as	the	SetStream	method
except	that	the	image	holds	additional
information	(PreserveTransparency).

For	modules	that	use	an	Operation	(whether
Operation	is	actually	null	or	not),	if
NeedsStream	is	true,	the	object	takes	the
ownership	of	the	Stream,	which	is	disposed	of
when	the	object	is	disposed	of.	You	can	make
the	object	release	the	ownership	without
disposing	of	the	Stream	using	the
parameterized	overloads	of	Dispose	and	Clear.
The	Stream	must	not	be	modified	as	long	as	the
XImage	object	is	not	cleared,	disposed	of,	or
garbage-collected.

If	NeedsStream	is	false,	the	caller	is	responsible
for	closing	or	disposing	of	the	Stream.

	

	 	

Example 	
None.

	
	 	

	

	

Dispose	Function 	 	

Dispose	of	the	object.

	
	 	

Syntax 	

[C#]
void	Dispose()
void	Dispose(out	XReadOptions
outOptions,	out	Stream	outStream)
protected	void	Dispose(bool
disposing)

[Visual	Basic]
Sub	Dispose()
Sub	Dispose(<Out>	ByRef	outOption
As	XReadOptions,	<Out>	ByRef
outStream	As	Stream)
Protected	Sub	Dispose(disposing
As	Boolean)

	

	 	

Params 	

Name Description

outOptions The	XReadOptions	used	to	createthe	object.

outStream The	Stream	used	to	create	the
object	if	NeedsStream	is	true.

	

	 	

You	can	call	this	function	to	explicitly	dispose	of

Notes 	

an	object	and	reduce	the	garbage	collection
overhead.

The	overload	without	parameters	disposes	of
the	XReadOptions	and	of	the	Stream.

The	overload	with	output	parameters	returns	the
XReadOptions	and	the	Stream.	The	returned
objects	have	not	been	disposed	of.

This	method	follows	the	standard	design	pattern
for	objects	implementing	the	IDisposable
interface.	The	protected	Dispose	method	can	be
overridden	for	sub-classes	wishing	to	dispose	of
additional	objects.

Do	not	attempt	to	use	an	object	after	calling
Dispose.

	

	 	

Example 	
None.

	
	 	

	

	

Clear	Function 	 	

Clears	the	image.

	
	 	

Syntax 	

[C#]
void	Clear()
void	Clear(out	XReadOptions
outOptions,	out	Stream	outStream)
[Visual	Basic]
Sub	Clear()
Sub	Clear(<Out>	ByRef	outOption
As	XReadOptions,	<Out>	ByRef
outStream	As	Stream)

	

	 	

Params 	

Name Description

outOptions The	XReadOptions	used	to	createthe	object.

outStream The	Stream	used	to	create	the
object	if	NeedsStream	is	true.

	

	 	

Notes
	

Use	this	method	to	release	resources	and
return	the	image	to	a	just-created	state.

The	overload	without	parameters	disposes	of
the	XReadOptions	and	of	the	Stream. 	 	

The	overload	with	output	parameters	returns	the
XReadOptions	and	the	Stream.	The	returned
objects	have	not	been	disposed	of.

	

Example 	

None.

	

	

	 	

	

	

SetData	Function

Load	an	image	from	data.

	

Syntax 	

[C#]
void	SetData(byte[]	data)

[Visual	Basic]
Sub	SetData(data()	As	Byte)

	may	throw	Exception()

	

Params 	

Name Description
data The	data	containing	the	graphic.

	

Notes
	

Load	an	image	from	data.	The	data	is	expected	to	be
provided	as	an	array	of	bytes.

The	data	can	be	any	of	the	following	types:	JPEG,	GIF,	TIFF,
BMP,	PNG,	PSD,	PDB,	EXIF,	WMF,	EMF,	EPS,	PS	or	SWF
(Flash).

Different	images	within	the	file	can	be	accessed	using	the
Frame	property.	Different	portions	of	the	image	can	be
selected	using	the	Selection	property.

	

Example
	

Here	we	read	a	TIFF	file	and	present	the	data	to	the	XImage
object.	We	then	add	the	image	to	our	document	and	then	save	the
PDF.

[C#]
XImage	theImg	=	new	XImage();
Doc	theDoc	=	new	Doc();
//	read	the	data	from	a	file
string	thePath	=
Server.MapPath("../mypics/mypic.tif");
FileStream	theStream	=	File.OpenRead(thePath);
byte[]	theData	=	new	byte[theStream.Length];
theStream.Read(theData,	0,
(int)theStream.Length);
theStream.Close();
//	place	the	data	into	the	image
theImg.SetData(theData);
theDoc.Rect.Inset(20,	20);
theDoc.AddImageObject(theImg,	false);
theImg.Clear();
theDoc.Save(Server.MapPath("imagesetdata.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
Dim	theDoc	As	Doc	=	New	Doc()	
'	read	the	data	from	a	file
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.tif")	
Dim	theStream	As	FileStream	=
File.OpenRead(thePath)	
Dim	theData(theStream.Length)	As	Byte
theStream.Read(theData,	0,

CType(theStream.Length,	Integer))
theStream.Close()
'	place	the	data	into	the	image
theImg.SetData(theData)
theDoc.Rect.Inset(20,	20)
theDoc.AddImageObject(theImg,	False)
theImg.Clear()
theDoc.Save(Server.MapPath("imagesetdata.pdf"))
theDoc.Clear()

imagesetfile.pdf

	

	

	

SetFile	Function

Load	an	image	from	a	file.

	

Syntax 	

[C#]
void	SetFile(string	path)

[Visual	Basic]
Sub	SetFile(path	As	String)

	may	throw	Exception()

	

Params 	

Name Description
path The	path	to	the	graphic	file.

	

Notes 	

Load	an	image	from	file.

The	file	can	be	any	of	the	following	types:	JPEG,	GIF,	TIFF,	BMP,
PNG,	PSD,	PDB,	EXIF,	WMF,	EMF,	EPS,	PS	or	SWF	(Flash).

Different	images	within	the	file	can	be	accessed	using	the	Frame
property.	Different	portions	of	the	image	can	be	selected	using	the
Selection	property.

	

Example 	

Here	we	open	a	TIFF	file	using	the	XImage	object.	After	we've	
file	we	add	the	image	to	our	document	and	then	save	the	PDF.

[C#]
XImage	theImg	=	new	XImage();
Doc	theDoc	=	new	Doc();
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"));
theDoc.Rect.Inset(20,	20);
theDoc.AddImageObject(theImg,	false);
theImg.Clear();
theDoc.Save(Server.MapPath("imagesetfile.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
Dim	theDoc	As	Doc	=	New	Doc()	
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"))
theDoc.Rect.Inset(20,	20)
theDoc.AddImageObject(theImg,	False)
theImg.Clear()
theDoc.Save(Server.MapPath("imagesetfile.pdf"))
theDoc.Clear()

imagesetfile.pdf

	

	

	

SetMask	Function

Assign	a	soft	mask	to	the	image.

	

Syntax 	

[C#]
void	SetMask(XImage	mask,	bool	invert)

[Visual	Basic]
Sub	SetMask(mask	As	XImage,	invert	As	Boolean)

	may	throw	Exception()

	

Params 	

Name Description
mask The	image	containing	the	soft	mask.
invert Whether	to	invert	the	mask.

	

Notes 	

Assign	a	soft	mask	or	alpha	channel.	Soft	masks	are	used	to	
levels	of	transparency	to	an	image.

The	mask	provided	will	be	converted	to	a	grayscale	intensity	map	
may	be	scaled	to	ensure	that	the	dimensions	of	the	mask	match	
of	the	image.	The	assigned	mask	applies	to	all	frames	of	the	
image.

If	the	Invert	parameter	is	set	then	the	mask	will	be	inverted	-	
transparent	areas	opaque	and	opaque	areas	transparent.

Different	images	within	the	mask	can	be	accessed	using	the	
property.	Different	portions	of	the	mask	can	be	selected	using	the
Selection	property.

Note	that	transparency	is	only	applied	to	an	Image	if	the	Indirect
property	is	true	(which	is	generally	the	case).

	

Here	we	read	a	TIFF	file	and	present	the	data	to	the	Image	
read	a	mask	image	and	assign	that	to	our	Image.	Finally	we	add	the	image
to	our	document	and	then	save	the	PDF.

[C#]
Doc	theDoc	=	new	Doc();	
XImage	theImg	=	new	XImage();
XImage	theMsk	=	new	XImage();	
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"));
theMsk.SetFile(Server.MapPath("../mypics/mymask.jpg"));
theImg.SetMask(theMsk,	true);
theMsk.Clear();	
theDoc.Color.String	=	"0	0	0";
theDoc.FillRect();
theDoc.Rect.Inset(20,	20);
theDoc.AddImageObject(theImg,	true);
theImg.Clear();
theDoc.Save(Server.MapPath("imagesetmask.pdf"));
theDoc.Clear();	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theImg	As	XImage	=	New	XImage()	
Dim	theMsk	As	XImage	=	New	XImage()	
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"))
theMsk.SetFile(Server.MapPath("../mypics/mymask.jpg"))	

Example

	

theImg.SetMask(theMsk,	True)
theMsk.Clear()	
theDoc.Color.String	=	"0	0	0"
theDoc.FillRect()
theDoc.Rect.Inset(20,	20)
theDoc.AddImageObject(theImg,	True)
theImg.Clear()
theDoc.Save(Server.MapPath("imagesetmask.pdf"))
theDoc.Clear()

Given	the	following	input	images.

mypic.tif mymask.jpg

This	is	the	kind	of	output	you	might	expect.

imagesetmask.pdf

	

	

	

SetStream	Function

Load	an	image	from	stream.

	

Syntax 	

[C#]
void	SetStream(Stream	stream)

[Visual	Basic]
Sub	SetStream(stream	As	Stream)

	may	throw	Exception()

	

Params 	

Name Description
Stream The	stream	containing	the	graphic.

	

Notes 	

Load	an	image	from	stream.

The	stream	can	contain	any	of	the	following	types:	JPEG,	GIF,
TIFF,	BMP,	PNG,	PSD,	PDB,	EXIF,	WMF,	EMF,	EPS,	PS	or
SWF	(Flash).

Different	images	within	the	file	can	be	accessed	using	the
Frame	property.	Different	portions	of	the	image	can	be	selected
using	the	Selection	property.

	

Example

	

Here	we	read	a	TIFF	file	and	present	the	data	to	the	XImage	
We	then	add	the	image	to	our	document	and	then	save	the	

[C#]
XImage	theImg	=	new	XImage();
string	thePath;
thePath	=	Server.MapPath("../mypics/mypic.tif");
Stream	theStream;	
theStream	=	File.OpenRead(thePath);
theImg.SetStream(theStream);
theStream.Close();
Doc	theDoc	=	new	Doc();	
theDoc.Rect.Inset(20,	20);
theDoc.AddImageObject(theImg,	false);
theImg.Clear();
theDoc.Save(Server.MapPath("imagesetstream.pdf"));
theDoc.Clear();	

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
Dim	thePath	As	String
thePath	=	Server.MapPath("../mypics/mypic.tif")
Dim	theStream	As	Stream
theStream	=	File.OpenRead(thePath)
theImg.SetStream(theStream)
theStream.Close()
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,	20)
theDoc.AddImageObject(theImg,	False)
theImg.Clear()
theDoc.Save(Server.MapPath("imagesetstream.pdf"))
theDoc.Clear()

imagesetstream.pdf

	

	

	

BoundingBox	Property 	 	

	

Type Default Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

The
bounds	of
the	current
frame.

Yes

The	physical
bounds	of
the	image	in
points.

	

	 	

Notes 	

This	property	reflects	the	physical	bounds	of	the
image.

It	is	more	relevant	for	EPS	and	PS	files	which
operate	in	terms	of	physical	dimensions	rather	than
pixels.

Note	that	EPS	and	PS	files	may	have	bounds	which
are	not	anchored	at	the	origin.

	

	 	

Example 	

None.

	 	 	

	

	

Frame	Property

	

Type Default Read	Only Description
[C#]	int

[Visual	Basic]
Integer

1 No The	currently	selected	frame.

	

Notes 	

Some	file	formats	can	contain	more	than	one	image.	The	FrameCount
property	reflects	the	number	of	images.

You	can	change	the	currently	selected	image	using	the	Frame	property.
As	you	change	the	frame	the	Width,	Height,	HRes	and	VRes	properties
will	change	to	reflect	the	dimensions	and	resolution	of	the	currently
selected	image.	When	you	add	an	Image	using	the	Doc.AddImageObject
method	the	currently	selected	frame	is	added.

Flash	(SWF)	movies	contain	a	number	of	frames.	You	can	set	the	
frame	using	this	property.	If	you	set	this	property	to	a	negative	number	it
indicates	the	number	of	milliseconds	(rather	than	frames)	into	the	movie.

	

Here	we	open	a	TIFF	file	using	the	XImage	object.	We	then	scan	through	
of	the	images	within	the	file	and	insert	them	into	a	new	page	of	our	PDF
document.

[C#]
XImage	theImg	=	new	XImage();
Doc	theDoc	=	new	Doc();
theImg.SetFile(Server.MapPath("../mypics/multipage.tif"));

Example

	

for	(int	i	=	1;	i	<=	theImg.FrameCount;	i++)	{
		theImg.Frame	=	i;
		theDoc.Page	=	theDoc.AddPage();
		theDoc.AddImageObject(theImg,	false);
}
theImg.Clear();
theDoc.Save(Server.MapPath("imageframe.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
Dim	theDoc	As	Doc	=	New	Doc()	
theImg.SetFile(Server.MapPath("../mypics/multipage.tif"))
For	i	As	Integer	=	1	To	theImg.FrameCount
		theImg.Frame	=	i
		theDoc.Page	=	theDoc.AddPage()
		theDoc.AddImageObject(theImg,	False)
Next
theImg.Clear()
theDoc.Save(Server.MapPath("imageframe.pdf"))
theDoc.Clear()

imageframe.pdf	-	[Page	1]

imageframe.pdf	-	[Page	2]

	

	

	

	

FrameCount	Property 	 	

	

Type Default Read
Only Description

[C#]	int

[Visual	Basic]
Integer

See
description. Yes

The	number
of	frames	in
the	image.

	

	 	

Notes 	

TIFF	and	GIF	files	may	contain	more	than	one
image.	The	FrameCount	property	reflects	the	number
of	images	found	in	the	file.	You	can	select	different
images	using	the	Frame	property.

Multi-frame	TIFF	images	are	generally	used	for	one
of	two	purposes.	Sometimes	multiple	copies	of	the
same	image	are	embedded	at	different	sizes	to	allow
previews	to	be	obtained	quickly	and	easily.	This	type
of	multi-frame	image	is	generally	created	for	print
purposes.	Sometimes	multiple	pages	of	a	document
may	be	embedded	in	a	TIFF.	This	type	of	multi-frame
image	is	generally	created	by	document	scanning
software	or	fax	software.

Multi-frame	GIF	images	are	often	called	animated
GIFs.	Each	image	represents	a	frame	of	the
animation.	Similarly	Flash	/	SWF	movies	are	frame
based	and	this	property	allows	you	to	access	the
total	number	of	frames	in	the	movie.

PostScript	is	a	programming	language.	So	a
PostScript	program	may	output	a	different	number	of

	 	

pages	each	time	it	is	run.	For	this	reason	it	is	not
possible	to	reliably	determine	the	number	of	pages	in
a	PostScript	file	until	it	is	actually	displayed.	As	a
result	EPS	and	PS	files	always	have	a	FrameCount
of	one	no	matter	how	many	pages	they	may	display.
However	it	is	reasonably	safe	to	assume	that	EPS
files	only	ever	contain	one	page	of	content.

	

Example 	
See	the	Frame	property.

	
	 	

	

	

FrameRate	Property 	 	

	

Type Default Read
Only Description

[C#]	double

[Visual	Basic]
Double

See
description. Yes

The	default
frame	rate
for	a	moving
image.

	

	 	

Notes 	

Some	formats	like	Flash	consist	of	a	sequence	of
frames	to	be	played	one	after	the	other.

This	property	tells	you	the	number	of	frames	per
second	that	should	be	played.	Note	that	this	is	an
indicative	property	-	it	indicates	a	desired	value.	If
movies	are	complicated	then	some	devices	on	which
they	are	played	may	not	be	able	to	achieve	the
desired	frame	rates.

	

	 	

Example 	
See	the	Frame	property.

	
	 	

	

	

HasRealRes	Property 	 	

	

Type Default Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

See
description. Yes

Whether	the
image
specifies	the
resolution.

	

	 	

Notes 	

This	property	indicates	whether	HRes	and	VRes	are
obtained	from	the	image.	HRes	and	VRes	contain
default	values	if	they	are	not	obtained	from	the
image.

	

	 	

Example 	
None.

	
	 	

	

	

Height	Property 	 	

	

Type Default Read
Only Description

[C#]	int

[Visual	Basic]
Integer

See
description. Yes

The	height
of	the
current
frame
(pixels).

	

	 	

Notes 	

This	property	reflects	the	height	of	the	current	frame.
It	is	measured	in	pixels.

	

	 	

Example 	
None.

	
	 	

	

	

HRes	Property 	 	

	

Type Default Read
Only Description

[C#]	double

[Visual	Basic]
Double

See
description. Yes

The
horizontal
resolution	of
the	current
frame	(DPI).

	

	 	

Notes 	

This	property	reflects	the	horizontal	resolution	of	the
current	frame.	It	is	measured	in	dots	per	inch	(DPI).

	

	 	

Example 	
None.

	
	 	

	

	

Indirect	Property 	 	

	

Type Default Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

See
description. Yes

Whether	the
image	will	be
added	using
indirect
mode.

	

	 	

Notes 	

Images	can	be	added	using	indirect	mode	or	pass-
through	mode.

You	can	find	details	of	these	modes	in	the	Image
Handling	section	of	the	documentation.

When	you	add	an	Image	using	the
Doc.AddImageObject	method	it	will	generally	be
added	using	indirect	mode.

However	some	file	types	do	not	support	indirect
mode	and	can	only	be	added	using	pass-through
mode.	If	this	is	the	case	the	operation	of	the
Doc.AddImageObject	method	becomes	identical	to
the	Doc.AddImageFile	or	Doc.AddImageData
methods.

The	value	of	this	property	tells	you	if	the	image	will
be	added	using	indirect	mode.	It	is	true	for	all	image
types	with	the	exception	of	EPS	and	PS.

	

	 	

Example 	
None.

	
	 	

	

	

NeedsFile	Property 	 	

	

Type Default Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

See
description. Yes

Whether	the
file	needs	to
exist.

	

	 	

Notes 	

This	property	is	true	if	the	object	has	been	created
with	an	XReadOptions	with	ReadModule	that	uses
an	Operation	(whether	Operation	is	actually	null	or
not)	and	the	file	specified	is	required	to	exist	as	long
as	the	object	is	not	cleared,	disposed	of,	or	garbage-
collected.	The	object	does	not	delete	the	file	when	it
is	disposed	of.

	

	 	

Example 	
None.

	
	 	

	

	

NeedsStream	Property 	 	

	

Type Default Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

See
description. Yes

Whether	the
stream
needs	be
kept	open.

	

	 	

Notes 	

This	property	is	true	if	the	object	has	been	created
with	an	XReadOptions	with	ReadModule	that	uses
an	Operation	(whether	Operation	is	actually	null	or
not)	and	the	stream	provided	is	required	to	be	kept
open	and	unmodified	as	long	as	the	object	is	not
cleared,	disposed	of,	or	garbage-collected.	If	it	is
true,	the	object	has	taken	the	ownership	of	the
Stream,	which	is	disposed	of	when	the	object	is
disposed	of.	You	can	make	the	object	release	the
ownership	without	disposing	of	the	Stream	using	the
parameterized	overloads	of	Dispose	and	Clear

	

	 	

Example 	
None.

	
	 	

	

	

Selection	Property

	

Type Default Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

The	dimensions	of
the	current	frame. No

The	current
selection
rectangle.

	

Notes 	

You	may	wish	to	add	only	a	portion	of	an	image.	By	changing	the
selection	rectangle	you	can	specify	different	areas	to	be	added.

Note	that	this	property	only	has	an	effect	on	an	Image	if	the	Indirect
property	is	true	(which	is	generally	the	case).

	

Here	we	open	a	TIFF	file	using	the	XImage	object.	We	add	the	entire
image	to	the	document	and	then	just	a	portion	of	the	image	using	the
Selection	property.

[C#]
XImage	theImg	=	new	XImage();
Doc	theDoc	=	new	Doc();
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"));
theDoc.Rect.String	=	theImg.Selection.String;
theDoc.Rect.Magnify(0.5,	0.5);
theDoc.Rect.Position(100,	30);
theDoc.AddImageObject(theImg,	false);
theImg.Selection.Inset(100,	200);

Example 	

theDoc.Rect.String	=	theImg.Selection.String;
theDoc.Rect.Position(170,	400);
theDoc.AddImageObject(theImg,	false);
theImg.Clear();
theDoc.Save(Server.MapPath("imageselect.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theImg	As	XImage	=	New	XImage()	
Dim	theDoc	As	Doc	=	New	Doc()	
theImg.SetFile(Server.MapPath("../mypics/mypic.tif"))
theDoc.Rect.String	=	theImg.Selection.String
theDoc.Rect.Magnify(0.5,	0.5)
theDoc.Rect.Position(100,	30)
theDoc.AddImageObject(theImg,	False)
theImg.Selection.Inset(100,	200)
theDoc.Rect.String	=	theImg.Selection.String
theDoc.Rect.Position(170,	400)
theDoc.AddImageObject(theImg,	False)
theImg.Clear()
theDoc.Save(Server.MapPath("imageselect.pdf"))
theDoc.Clear()

imageselect.pdf

	

	

	

	

Type	Property 	 	

	

Type Default Read
Only Description

[C#]	string

[Visual	Basic]
String

See
description. Yes

The	type	of
image.

	

	 	

Notes 	

The	type	property	reflects	the	type	of	image	that	has
been	loaded	using	SetFile	or	SetData.	It	can	take
one	of	the	following	values.

""
"BMP"
"EMF"
"EXIF"
"GIF"
"Icon"
"JPEG"
"MemoryBMP"
"PNG"
"TIFF"
"WMF"
"EPS"
"PS"
"SWF"

	 	

None.

	

Example 	

	
	 	

	

	

VRes	Property 	 	

	

Type Default Read
Only Description

[C#]	double

[Visual	Basic]
Double

See
description. Yes

The	vertical
resolution	of
the	current
frame	(DPI).

	

	 	

Notes 	

This	property	reflects	the	vertical	resolution	of	the
current	frame.	It	is	measured	in	dots	per	inch	(DPI).

	

	 	

Example 	
None.

	
	 	

	

	

Width	Property 	 	

	

Type Default Read
Only Description

[C#]	int

[Visual	Basic]
Integer

See
description. Yes

The	width	of
the	current
frame
(pixels).

	

	 	

Notes 	

This	property	reflects	the	width	of	the	current	frame.
It	is	measured	in	pixels.

	

	 	

Example 	
None.

	
	 	

	

	

XPoint		Constructor 	 	

XPoint	Constructor.

	
	 	

Syntax 	

[C#]
XPoint()
XPoint(string	value)
XPoint(double	x,	double	y)

[Visual	Basic]
Sub	New
Sub	New(value	As	String)
Sub	New(x	As	Double,	y	as	Double)

	

	 	

Params 	

Name Description

value A	string	defining	the	initial	point	in	the
format	"x	y".

x The	x	coordinate	for	the	point.
y The	y	coordinate	for	the	point.

	

	 	

Notes 	
These	methods	construct	an	XPoint	object.

	
	 	

Example 	
None.

	
	 	

	

	

Copy	Function 	 	

Copies	a	series	of	X	and	Y	coordinates	between
arrays	of	doubles	and	arrays	of	XPoints

	

	 	

Syntax 	

[C#]
void	Copy(XPoint[]	source,
double[]	destination,	int	length)
void	Copy(XPoint[]	source,	int
sourceIndex,	double[]
destination,	int
destinationIndex,	int	length)
void	Copy(double[]	source,
XPoint[]	destination,	int	length)
void	Copy(double[]	source,	int
sourceIndex,	XPoint[]
destination,	int
destinationIndex,	int	length)

[Visual	Basic]
Sub	Copy(source()	As	XPoint,
destination()	As	Double,	length
As	Integer)
Sub	Copy(source()	As	XPoint,
sourceIndex	As	Integer,
destination()	As	Double,
destinationIndex	As	Integer,
length	As	Integer)
Sub	Copy(source()	As	Double,
destination()	As	XPoint,	length
As	Integer)
Sub	Copy(source()	As	Double,

	 	

sourceIndex	As	Integer,
destination()	As	XPoint,
destinationIndex	As	Integer,
length	As	Integer)

	

Params 	

Name Description

source An	array	of	points	to	be
copied	from.

destination An	array	of	points	to	be
copied	to.

length The	number	of	points	that
should	be	copied.

sourceIndex
The	index	in	the	source
array	at	which	copying
begins.

destinationIndex
The	index	in	the	destination
array	at	which	copying
begins.

	

	 	

Notes 	

Copies	a	series	of	X	and	Y	coordinates	between
arrays	of	doubles	and	arrays	of	XPoints.

The	array	of	doubles	is	represented	as	a	series
of	pairs	of	X	and	Y	coordinates.	So	the	double
array	should	always	be	twice	the	length	of	the
XPoint	array.	Indexes	into	the	arrays	are
specfied	in	terms	of	items	in	the	array.	This
means	that	indexes	into	a	double	array	will	be
twice	as	large	as	those	into	an	XPoint	array.
Lengths	are	always	specified	in	terms	of
numbers	of	points	rather	than	number	of	items

	 	

in	the	array.

In	the	case	of	copying	to	an	array	of	XPoints,
each	XPoint	in	the	destination	array	will	be
newly	created	from	the	source	array	values
overwriting	any	XPoint	which	may	already	be	at
that	location	in	the	array.

	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	points	are	effectvely	the
same

	

	 	

Syntax 	

[C#]
bool	Equals(XPoint	other,	double
epsilon)
bool	Equals(XPoint	other)
override	bool	Equals(object
other)

[Visual	Basic]
Function	Equals(other	As	XPoint,
epsilon	As	Double)	As	Boolean
Function	Equals(other	As	XPoint)
As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean

	

	 	

Params 	

Name Description
other The	point	to	test	against.

epsilon The	largest	difference	in	values	which
will	still	be	defined	as	equal

return Whether	the	two	points	are	the	same.

	

	 	

Notes 	

Test	whether	the	two	points	are	effectively	the
same.

Points	are	considered	equal	if	they	have	the
same	x	amd	y	coordinates.	This	represents
value	equality	for	the	points	in	question.

The	underlying	components	of	an	XPoint	are
represented	as	floating	point	numbers.	Floating
point	numbers	are	subject	to	rounding	errors,	so
there	has	to	be	a	degree	of	latitude	when
comparing	coordinate	values.	The	degree	of
latitude	is,	by	default,	determined	by	the
limitations	defined	in	the	PDF	Specification.
This	is,	broadly	speaking,	5	decimal	points	so
the	default	epsilon	is	typically	0.00001.	However
if	you	wish	to	rely	on	a	specific	epsilon	value
you	should	provide	one.

	

	 	

Example 	
None.

	
	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	XPoint

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()
As	Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

SetPoint	Function 	 	

Sets	the	point.

	
	 	

Syntax 	

[C#]
void	SetPoint(XPoint	point)

[Visual	Basic]
Sub	SetPoint(point	As	XPoint)

	

	 	

Params 	

Name Description
point The	source	point.

	

	 	

Notes 	

This	method	copies	the	value	from	the
parameter.

	

	 	

Example 	
None.

	
	 	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

Point	Property 	 	

	

Type Default ReadOnly Description

[C#]	Point

[Visual	Basic]
Point

n/a No The
System.Drawing.Point.

	

	 	

Notes 	

The	point	as	a	System.Drawing	Point.

Windows	coordinates	are	measured	in	distances
from	the	top	left	of	the	drawing	surface	while	PDF
coordinates	are	measured	from	the	bottom	left.

So	when	you	use	this	property	the	coordinates	must
be	re-mapped.	This	needs	to	be	done	in	the	context
of	a	containing	object.	Properties	such	as	the
Doc.Pos	are	interpreted	in	the	context	of	the
Doc.MediaBox.	If	there	is	no	containing	object	then
no	re-mapping	can	be	performed.

You	may	find	it	easier	to	work	with	.NET	Points	than
PDF	points.	However	remember	that	operations	such
as	Transforms	work	on	the	underlying	PDF
coordinates	and	not	on	the	abstracted	Windows
coordinates.

	

	 	

The	following	code	adds	three	words	to	a	document.	The

Example 	

positioning	is	done	using	standard	.NET	Points.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
Point	pt	=	theDoc.Pos.Point;
pt.Offset(100,	150);
theDoc.Pos.Point	=	pt;
theDoc.AddText("One");
pt.Offset(100,	150);
theDoc.Pos.Point	=	pt;
theDoc.AddText("Two");
pt.Offset(100,	150);
theDoc.Pos.Point	=	pt;
theDoc.AddText("Three");
theDoc.Save(Server.MapPath("xptpt.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
Dim	pt	As	Point	=	theDoc.Pos.Point	
pt.Offset(100,	150)
theDoc.Pos.Point	=	pt
theDoc.AddText("One")
pt.Offset(100,	150)
theDoc.Pos.Point	=	pt
theDoc.AddText("Two")
pt.Offset(100,	150)
theDoc.Pos.Point	=	pt
theDoc.AddText("Three")
theDoc.Save(Server.MapPath("xptpt.pdf"))
theDoc.Clear()

	 	

xptpt.pdf

	

	

	

String	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

"0	0" No The	point	as	a
string

	

	 	

Notes 	

Allows	you	to	access	to	the	point	as	a	string.

The	format	of	the	string	must	be	"x	y".

	

	 	

Example 	

The	following	code.

[C#]
XPoint	pt	=	new	XPoint();
pt.String	=	"20	10";
Response.Write("X	=	"
+pt.X.ToString());
Response.Write("
");
Response.Write("Y	=	"
+pt.Y.ToString());

[Visual	Basic]
Dim	pt	As	XPoint	=	New	XPoint()	
pt.String	=	"20	10"

	 	

Response.Write("X	=	"
+pt.X.ToString())
Response.Write("
")
Response.Write("Y	=	"
+pt.Y.ToString())

Produces	the	following	output.

X	=	20

Y	=	10

	

	

	

X	Property 	 	

	

Type Default ReadOnly Description

[C#]double

[Visual	Basic]
Double

0 No The	horizontal
coordinate

	

	 	

Notes 	

Allows	you	access	to	the	horizontal	offset	of	the
point.

Distances	are	measured	from	the	left	of	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

Y	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	vertical
coordinate

	

	 	

Notes 	

Allows	you	access	to	the	vertical	offset	of	the	point.

Distances	are	measured	from	the	bottom	of	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

XReadOptions	Constructor 	 	

XReadOptions	Constructor.

	
	 	

Syntax 	

[C#]
XReadOptions()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	an	empty	XReadOptions.

	
	 	

Example 	
None.

	
	 	

	

	

ClearCache	Function 	 	

Clear	cached	data	and	terminate	worker
threads	and	worker	processes	for	a	read
module.

	

	 	

Syntax 	

[C#]
bool	ClearCache()

[Visual	Basic]
Function	ClearCache()	As	Boolean

	

	 	

Params 	

Name Description
return Whether	it	has	taken	an	action.

	

	 	

Notes 	

This	method	returns	true	for	the	following	value
of	ReadModule.

MSOffice	—	terminate	MS	Office
application	processes.

	

	 	

	
None. 	 	

Example 	

	

	

Dispose	Function 	 	

Dispose	of	the	object.

	
	 	

Syntax 	

[C#]
void	Dispose()

[Visual	Basic]
Sub	Dispose()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

You	can	call	this	method	to	explicitly	dispose	of
an	object	and	reduce	the	garbage	collection
overhead.

This	method	disposes	of	the	Operation.

Do	not	attempt	to	use	an	object	after	calling
Dispose.

	

	 	

None.

Example 	 	 	 	

	

	

Equals	Function 	 	

Test	whether	the	two	XReadOptions	are
effectvely	the	same.

	

	 	

Syntax 	

[C#]
bool	Equals(XReadOptions	other)
override	bool	Equals(object
other)

[Visual	Basic]
Function	Equals(other	As
XReadOptions)	As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean

	

	 	

Params 	

Name Description
other The	object	to	test	against.

return Whether	the	two	XReadOptions	are
the	same.

	

	 	

Notes 	

Test	whether	the	two	XReadOptions	are	the
same.

	

	 	

Example 	

None.

	 	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	XReadOptions

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()	As
Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

	

ReadModule	Property 	 	

	

Type Default ReadOnly Description

[C#]ReadModuleType

[Visual	Basic]
ReadModuleType

Default No
Gets	or	sets
the	module
to	use.

	

	 	

The	ReadModuleType	enumeration	may	take	the
following	values:

Default
Pdf
SwfVector
Xps
XpsAny
MSOffice
OpenOffice
Svg
Eps
BasicImage
Tiff
Photoshop
WordGlue
RichTextFormat

The	Default	value	allows	ABCpdf	to	delegate	the
read	operation	to	what	it	considers	to	be	an
appropriate	module	or	set	of	modules,	depending	on
the	content	provided	and	the	method	called.

Notes 	

The	Pdf	value	is	the	standard	PDF	import	module.	It
takes	advantage	of	the	Password	property.

The	SwfVector	module	is	a	native	Flash	/	SWF	vector
import	module.	It	takes	advantage	of	the	Operation
and	Frame	properties.	The	Operation	must	be	either
null	or	a	SwfImportOperation.

The	Xps	module	is	a	native	XPS	and	OXPS	(Open
XPS)	import	module.	It	takes	advantage	of	the
Operation	property,	which	must	be	either	null	or	an
XpsImportOperation.

The	XpsAny	module	prints	via	the	XPS	printer	driver
and	then	imports	the	resultant	document.	It	takes
advantage	of	the	Operation,	FileExtension,	and
Timeout	properties.	The	Operation	provided	must	be
either	null	or	an	XpsImportOperation.

The	MSOffice	module	uses	Microsoft	Office	for
document	conversion.	This	module	is	fast	and
produces	high	fidelity	output,	including	native	form
fields	and	annotations	conversion.	It	takes	advantage
of	the	AddForms,	Boomarks,	Password,
EnableMSOfficeMacros,	PreserveTransparency	and
Timeout	properties.

The	OpenOffice	module	uses	OpenOffice.org	for
document	conversion.	It	takes	advantage	of	the
OpenOfficeParameters	and	Timeout	properties.

The	WordGlue	module	uses	WordGlue	.NET	for
DOC	and	DOCX	conversion.	WordGlue	.NET	is	a
fully	managed	component	for	the	conversion	of
semantic	document	formats.	This	requires	WordGlue
2.0.0.1	or	later	to	be	installed.	WordGlue	can	be
downloaded	from	our	web	site.

The	RichTextFormat	module	is	a	native	RTF	import
module.	It	takes	advantage	of	the	DefaultRect	and

	 	

Timeout	properties.

The	Svg	module	is	a	native	SVG	(Scaleable	Vector
Graphics)	import	module.	It	takes	advantage	of	the
DefaultFont	and	DefaultRect	properties.

The	Eps	module	is	a	native	EPS	(Encapsulated
PostScript)	import	module.	It	takes	advantage	of	the
ErrorHandling	and	Log	properties.

The	Tiff	module	is	a	native	TIFF	(Tagged	Image	File
Format)	import	module.	It	takes	advantage	of	the
PreserveTransparency	and	Frame	properties.	TIFF
images	may	be	black	and	white,	grayscale,	RGB,
CMYK,	TIFF	or	Lab	in	1,	8	,	16	and	32	bits	per
component	color	depth	and	with	out	without	alpha.
Because	PDF	does	not	support	32	bit	High	Dynamic
Range	(HDR)	encodings,	TIFFs	in	this	format	will	be
downsampled	to	16	bits	per	component.	TIFF	images
containing	JPEG	or	CCITT	compressed	frames	will
be	inserted	direct	into	the	document	without	a
decompress-recompress	cycle.	This	module	is
broadly	similar	in	speed	to	System.Drawing	for	most
images.	For	CMYK	images	and	images	with	large
embedded	color	profiles	it	is	a	bit	slower	simply
because	there	is	more	data	to	compress.	In	out	tests
with	large	images	in	the	order	of	about	500	MB	it	was
about	ten	times	faster.	In	our	tests	with	TIFF	images
containing	JPEG	or	CCITT	frames	it	is	typically	about
thirty	times	faster.

The	Photoshop	module	supports	the	standard	PSD
and	also	the	large	image	PDB	file	types.	If	the
PreserveTransparency	property	is	set	any
transparency	will	be	preserved.	It	allows	the	direct
import	of	bitmap,	RGB,	Grayscale,	CMYK,	Lab,
Indexed	and	Duotone	images	in	1,	8	,	16	and	32	bits
per	component	color	depth,	all	with	or	without	alpha.
The	PDF	format	does	not	support	32	bits	per

component	HDR	images	so	these	are	scaled	down	to
16	bits	per	component.	The	Frame	property	allows
the	extraction	of	individual	layers	from	within	the
image.	TIFF	orientation	flags	are	automatically
applied	so	that	images	that	are	tagged	in	this	way
automatically	appear	the	right	way	up.

The	BasicImage	module	allows	you	to	read	images
such	as	JPEG	and	multi-page	TIFF	directly	into	a
PDF	document.	It	takes	advantage	of	the
PreserveTransparency	property.

	

Example 	
None.

	
	 	

	

	

AddForms	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	form
fields	should	be
live.

	

	 	

Notes 	

This	property	determines	whether	form	fields	in
source	documents	are	converted	into	PDF	form
fields.

	

	 	

	

	

Bookmarks	Property 	 	

	

Type Default Read
Only Description

[C#]	
BookmarkType

[Visual	Basic]
BookmarkType

DontCare No
Bookmark
creation
strategy.

	

	 	

Notes 	

The	BookmarkType	enumeration	may	take	any	of	the
following	values:

DontCare	–	specifies	that	module-specific
default	settings	should	be	used.
None	–	specifies	that	no	bookmarks	should	be
imported	from	source	documents.
Heading	–	specifies	that	bookmarks	should	be
created	using	document	headings.	For	example,
styled	headings	in	Microsoft	Word	might	be
used.

This	property	is	currently	used	only	when	importing
MS	Word-supported	documents	using	the	MSOffice
read	module.

	 	

	

	

ContentItem	Property 	 	

	

Type Default ReadOnly Description

[C#]ContentItemType

[Visual	Basic]
ContentItemType

Default No

Gets	or	sets
the	content
items	to
process.

	

	 	

Notes 	

The	ContentItemType	enumeration	may	take	the
following	values:

Default	–	specifies	that	module-specific	default
settings	should	be	used.
Content	–	specifies	to	import	only	main	content.
WithMarkup	–	specifies	to	import	main	content
and	mark-up.

This	property	is	currently	used	only	when	importing
MS	Word-supported	documents	using	the	MSOffice
read	module.

	

	 	

Example 	
None.

	
	 	

	

	

DefaultFont	Property 	 	

	

Type Default Read
Only Description

[C#]string

[Visual	Basic]
String

"Helvetica" No

The	font	to
use	for	text
that	does	not
specify	a
font.

	

	 	

Notes 	
The	font	to	use	for	text	that	does	not	specify	a	font.

	
	 	

Example 	
None.

	
	 	

	

	

DefaultRect	Property 	 	

	

Type Default ReadOnly Description

[C#]XRect

[Visual	Basic]
XRect

"Letter" No

The	default
document	size
for	documents
that	do	not
specify	a	size.

	

	 	

Notes 	

Some	document	types	do	not	require	a	document
size.

For	example	SVG	and	PostScript	can	both	be
constructed	in	such	a	way	as	to	be	simply	a	set	of
drawing	instructions	without	any	details	of	the	size	of
the	output	device.	Formats	like	RTF	have	no	default
bounding	box	so	always	require	that	one	is	supplied.

This	property	allows	you	to	specify	a	default	size	for
use	if	the	document	does	not	specify	a	size.

	

	 	

Example 	
None.

	
	 	

	

	

DotsPerInch	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

96.0 No
The	default
resolution	to	use
for	the	import.

	

	 	

Notes 	

The	default	resolution	to	use	for	the	import.

Some	file	formats	allows	you	to	specify	pixel	based
measurements	which	can	only	be	converted	to
physical	measurements	in	the	context	of	a	resolution.
However	some	formats	do	not	require	a	resolution	to
be	specified	and	so	a	default	may	need	to	be
supplied.

This	property	is	currently	only	used	for	the	import	of
SVG	documents.

	

	 	

Example 	
None.

	
	 	

	

	

EnableMSOfficeMacros	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

false No

Whether	to
enable	macros
when	opening
MS	Office
documents.

	

	 	

Notes 	

This	property	specifies	whether	to	enable	macros
when	opening	MS	Office	documents.	It	is	supported
only	for	MS	Word,	Excel	and	PowerPoint.	It	is
ignored	in	all	other	cases.

By	default,	macros	are	disabled.

	

	 	

Example None. 	 	

	

ErrorHandling	Property

	

Type Default Read
Only Description

[C#]ErrorHandlingType

[Visual	Basic]
ErrorHandlingType

OutputUntilError No
The	error
handling
behavior.

	

Notes 	

The	ErrorHandlingType	enumeration	may	take	the	following
values:

OutputUntilError
NoOutputOnError

The	OutputUntilError	directs	ABCpdf	to	process	the	current
file	as	far	as	possible	even	if	it	encounters	an	error.	This	can
be	useful	for	dealing	with	common	forms	of	corruption.	For
example	EPS	files	sometimes	get	truncated.	As	long	as	the
truncation	is	small	the	output	will	be	the	same	as	the
complete	file	despite	the	fact	that	from	technical	point	of	view
these	files	are	invalid.

However	one	cannot	know	exactly	how	small	a	truncation	is.
It	might	be	that	one	needs	to	be	absolutely	sure	that	a	file	is
valid;	that	it	is	better	to	throw	an	exception	rather	than	risk
an	incomplete	image.	This	behavior	is	achieved	using
NoOutputOnError.

	

	

Example 	
None.

	
	

	

	

ExtraChecks 	 	

	

Type Default
Value

Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

false No

Whether	to
apply	extra
processing	to
enable	certain
types	of	corrupt
document	to	be
read.

	

	 	

Some	PDF	files	may	not	be	fully	compliant	with	PDF
specification.	In	short	they	may	be	corrupt.

ABCpdf	will	work	around	minor	forms	of	corruption	in
which	the	intent	is	obvious.	However	some	more
major	forms	of	corruption	require	that	the	entire
document	is	read	and	rebuilt.	This	will	only	occur	if
the	ExtraChecks	property	is	set	to	true.

Rebuilding	a	document	is	not	ideal.	Not	only	is	it	time
consuming,	but	there	may	also	be	more	than	one
way	of	performing	the	rebuild.	Depending	on	the
strategy	used	one	may	end	up	with	two	different
results.	Most	often	the	results	will,	for	all	practical
purposes,	be	identical.	However	on	rare	occasions
they	might	be	different.	For	this	reason	the	default
value	of	this	property	is	false.

Many	clients	who	need	to	process	large	quantities	of
PDF	documents,	from	sources	of	varying	quality,	end

Notes 	

up	writing	code	of	the	following	form.

[C#]
try	{
		theDoc.Read(theFile);
}
catch	{
		XReadOptions	xr	=	new
XReadOptions();
		xr.ExtraChecks	=	true;
		theDoc.Read(theFile,	xr);
}

[Visual	Basic]
Try
		theDoc.Read(theFile)
Catch
		Dim	xr	As	New	XReadOptions()
		xr.ExtraChecks	=	True
		theDoc.Read(theFile,	xr)
End	Try

	

	 	

Example 	
None.

	
	 	

	

	

Frame	Property 	 	

	

Type Default ReadOnly Description

[C#]long

[Visual	Basic]
Long

0 No

The	frame	to	be
read	from	a
multiple	frame
image	such	as	a
movie.

	

	 	

Notes 	

This	property	is	used	by	read	modules	that	support
frames	or	sub-documents.

Frames	are	numbered	from	one	upwards.	The
default	of	zero	indicates	that	a	default	frame	or	frame
set	should	be	used.

The	SwfVector	module	uses	this	property	when	the
Operation	is	null.	When	this	occurs	a	temporary
SwfImportOperation	is	created	and	the
ProcessingObjectEventArgs.Info.FrameNumber	is
set	to	the	value	of	this	property.	The	default	behavior
is	to	read	frame	one.

The	MSOffice	module	uses	this	property	to	allow	you
to	read	individual	worksheets	from	within	an	Excel
spreadsheet.	The	default	behavior	is	to	read	all	the
worksheets	in	order	rather	than	simply	select	one	of
them.

	 	

	

Example 	
None.

	
	 	

	

	

FileExtension	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

null No

Gets	or	sets	the
file	extension	for
data	sources
that	do	not	have
file	names.

	

	 	

Notes 	

This	property	is	used	by	modules	that	can	take	files
with	different	file	extensions	when	(and	only	when)
the	specification	of	the	source	does	not	provide	a	file
extension,	such	as	a	Stream	or	an	array	of	bytes.

For	the	Default	modules,	it	is	optional,	but	the
modules	may	behave	differently	when	it	is	specified.
For	the	XpsAny	and	the	OpenOffice	modules,	it	is
mandatory.

	

	 	

Example 	
None.

	
	 	

	

	

Log	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

null Yes The	log	for	the
read	operation.

	

	 	

Notes 	

During	a	read	operation	certain	problems	may	be
encountered.	Problems	that	can	be	solved	but
perhaps	only	by	making	assumptions.	Problems	that
might	not	justify	an	error	but	could	be	raised	as	a
warning.

For	example	during	the	EPS	import	process	an
unavailable	font	might	be	encountered.	ABCpdf
might	substitute	another	font	to	replace	the	missing
one.	The	output	would	probably	look	very	similar	to
the	intended	output	but	it	might	not	be	identical.

ABCpdf	will	log	these	types	of	events	using	this
property.

	

	 	

Example 	
None.

	
	 	

	

	

MakeFieldNamesUnique	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	field
names	should
be	changed	to
make	them
unique.

	

	 	

Notes 	

Input	document	forms	can	contain	fields	with	the
same	name,	or	no	name	at	all.

If	the	names	of	two	fields	in	a	PDF	are	the	same,
then	the	fields	take	the	same	value.

So	if	multiple	form	fields	with	the	same	name	are
added	to	a	PDF,	these	fields	will	all	appear	to	contain
the	same	content.	This	is	true	even	if	the	form	fields
in	the	original	document	contained	different	content.

Setting	this	property	will	result	in	duplicate	fields
being	renamed	to	allow	the	content	to	be	different.
Field	without	names	will	be	added	a	placeholder
name	so	they	can	be	displayed	properly	in	PDF.

	

	 	

Example 	
None.

	
	 	

	

	

OpenOfficeParameters	Property 	 	

	

Type Default ReadOnly Description

[C#]ListDictionary

[Visual	Basic]
ListDictionary

false No

OpenOffice.org
PDF
conversion
control
parameters.

	

	 	

This	property	is	used	by	the	OpenOffice.org	import
module.	It	is	used	to	pass	custom	parameters	to
OpenOffice.org	for	precise	control	over	the	PDF
conversion	process.

The	parameters	are	a	set	of	named	objects.	The	names
and	object	types	vary	between	versions	of	OpenOffice.org
but	ABCpdf	defaults	to	a	base	set	that	is	appropriate	for
most	conversions.

Name Description Type Value

UseLosslessCompression

Lossless
compression
of	images.
All	pixels	are
preserved.

Boolean false

Quality
Quality	level
for	JPEG
compression.

Int32 90

Resample	or

Notes 	

ReduceImageResolution
downsize	the
images	to	a
lower
number	of
pixels	per
inch.

Boolean false

MaxImageResolution
Target
resolution	for
the	images.

Int32 72

UseTaggedPDF

Preserve
semantic
structures
such	as	table
of	contents,
hyperlinks,
and	controls.

Boolean true

ExportNotes

Export	notes
of	Writer	and
Calc
documents
as	PDF
notes.

Boolean true

ExportNotesPages Export	pages
notes. Boolean false

UseTransitionEffects

Export
Impress	slide
transition
effect	to
respective
PDF	effects.

Boolean false

FormsType

Select	the
format	of
submitting
forms	from
within	the
PDF	file.
For Int32 0

	 	

example...	0
-	FDF,	1	-
PDF,	2	-
HTML,	3	-
XML

More	details	and	other	options	can	be	found	on	the
OpenOffice.org	web	site.

	

Example 	
None.

	
	 	

	

http://wiki.services.openoffice.org/wiki/API/Tutorials/PDF_export

	

Operation	Property

	

Type Default Read	Only Description
[C#]Operation

[Visual	Basic]
Operation

null No Gets	or	sets	the	Operation	to	use.

	

Notes 	

This	property	is	used	by	modules	for	which	a	suitable	derived	class	of	
exists.	If	it	is	null,	those	modules	create	a	temporary	Operation	with	default
behaviours.

ReadModule Operation Description

SwfVector SwfImportOperation

If	this	property	is	null,	the	temporary
SwfImportOperation	has	its	Timeout
Timeout	and	sets
ProcessingObjectEventArgs.Info.FrameNumber
to	Frame	once.

Xps XpsImportOperation
If	this	property	is	null,	the	temporary
XpsImportOperation	compresses	the
GraphicLayer's	of	the	pages.

XpsAny XpsImportOperation
If	this	property	is	null,	the	temporary
XpsImportOperation	compresses	the
GraphicLayer's	of	the	pages.

	

Example 	
None.

	

	

	

Password	Property 	 	

	

Type Default ReadOnly Description

[C#]
string

[Visual	Basic]
String

null No

Gets	or	sets	the
password
needed	to	read
the	source.

	

	 	

Notes 	

Specify	with	this	property	the	password	for	accessing
the	source,	for	example,	when	reading	a	PDF
document.

It	is	used	for	importing	MS	Word	or	MS	Excel
documents	when	using	Microsoft	Office	via	the
XpsAny	and	MSOffice	ReadModule.	Note	that	for
other	Office	applications,	eg.	MS	PowerPoint,
ABCpdf	cannot	import	password	protected
documents.	Currently,	certain	features	such	as	form
fields	conversion	may	be	disabled	if	the	document	is
password	protected,	even	if	the	correct	password	is
supplied.

	

Example 	
None.

	
	 	

	

	

PreserveTransparency	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

false No

Gets	or	sets	a
value	that
indicates
whether	the
transparency	of
raster	images
should	be
preserved.

	

	 	

Notes 	

This	property	is	used	when	the	source	is	a	raster
image.	If	the	method	(e.g.	Doc.AddImageObject)
called	has	a	parameter	for	specifying	the	same
setting,	the	parameter	overrides	this	property.

	

	 	

Example 	
None.

	
	 	

	

	

Timeout	Property 	 	

	

Type Default ReadOnly Description

[C#]int

[Visual	Basic]
Integer

60000 No

Gets	or	sets	the
timeout	in
milliseconds	for
external
components.

	

	 	

Notes 	

Timeout	is	used	for	external	components,	such	as
the	XPS	printer	driver	for	ReadModule	of	XpsAny.

	

	 	

Example 	
None.

	
	 	

	

	

SkipRevisions	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

0 No

Skip	back	a
number	of
revisions	when
reading	an
incrementally
saved	PDF
document.

	

	 	

Notes 	

Skip	back	a	number	of	revisions	when	reading	an
incrementally	saved	PDF	document.

PDF	documents	can	be	incrementally	updated	so
that	changes	are	appended	to	the	document	rather
than	overwriting	the	original.	This	means	that	it	is
possible	to	revert	back	to	a	previous	version	of	the
document.	Setting	this	value	allows	you	to	skip	back
a	specified	number	of	revisions.

See	the	IndirectObject.Revision	property	and	the
ObjectSoup.Revisions	property	for	determining	the
number	of	revisions	a	document	contains	and	the
content	which	is	associated	with	each	revision.

	

	 	

Example 	
None.

	
	 	

	

	

OpenPortfolios	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool	
[Visual	Basic]
Boolean

true No

Whether	to
automatically
open	the	default
document	inside
a	PDF	portfolio
rather	than	the
portfolio	itself

	

	 	

Notes 	

Whether	to	automatically	open	the	default	document
inside	a	PDF	portfolio	rather	than	the	portfolio	itself.

If	you	wish	to	see	the	document	the	way	a	user
would	see	it	when	it	opens,	them	this	parameter
should	be	set	to	true.	If	you	wish	to	operate	upon	the
set	of	files	embedded	in	the	portfolio	then	it	should
be	set	to	false.

	

	 	

Example 	

See	the	FileSpecification	constructor	for	the	creation
of	portfolios.	See	the	Catalog.GetEmbeddedFiles
function	for	how	to	extract	files	from	a	portfolio.

	

	 	

	

	

FromLbwh	Function 	 	

Creates	an	XRect	from	a	bottom	left	corner,	a
width	and	a	height.

	

	 	

Syntax 	

[C#]
static	XRect	FromLbwh(double
left,	double	bottom,	double
width,	double	height)

[Visual	Basic]
Shared	Function	FromLbwh(left	As
Double,	bottom	As	Double,	width
As	Double,	height	As	Double)	As
XRect

	

	 	

Params 	

Name Description
left The	left	coordinate.
bottom The	bottom	coordinate.
width The	width	of	the	rectangle.
height The	height	of	the	rectangle.

	

	 	

This	method	constructs	an	XRect	object	from	a
bottom	left	corner,	a	width	and	a	height.

Notes 	
It	assumes	that	subsequent	resizing	and
positioning	operations	on	this	object	will	also	be
based	around	the	bottom	left	corner.	As	such
the	Pin	property	will	remain	at	its	default	of
Corner.BottomLeft.

	

	 	

Example 	
None.

	
	 	

	

	

FromLtwh	Function 	 	

Creates	an	XRect	from	a	top	left	corner,	a	width
and	a	height.

	

	 	

Syntax 	

[C#]
static	XRect	FromLtwh(double
left,	double	top,	double	width,
double	height)

[Visual	Basic]
Shared	Function	FromLtwh(left	As
Double,	top	As	Double,	width	As
Double,	height	As	Double)	As
XRect

	

	 	

Params 	

Name Description
left The	left	coordinate.
top The	top	coordinate.
width The	width	of	the	rectangle.
height The	height	of	the	rectangle.

	

	 	

This	method	constructs	an	XRect	object	from	a
top	left	corner,	a	width	and	a	height.

Notes 	
It	assumes	that	subsequent	resizing	and
positioning	operations	on	this	object	will	also	be
based	around	the	top	left	corner.	As	such	the
Pin	property	will	be	set	to	Corner.TopLeft.

	

	 	

Example 	
None.

	
	 	

	

	

FromSides	Function 	 	

Creates	an	XRect	from	the	coordinates	of	two
diagonally	opposite	corners.

	

	 	

Syntax 	

[C#]
static	XRect	FromSides(double
xMin,	double	yMin,	double	xMax,
double	yMax)

[Visual	Basic]
Shared	Function	FromSides(xMin	As
Double,	yMin	As	Double,	xMax	As
Double,	yMax	As	Double)	As	XRect

	

	 	

Params 	

Name Description
xMin The	minimum	x	coordinate.
yMin The	minimum	y	coordinate.
xMax The	maximum	x	coordinate.
yMax The	maximum	y	coordinate.

	

	 	

This	method	constructs	an	XRect	object	from
the	coordinates	of	two	diagonally	opposite
corners.

Notes
	 If	the	minimum	x	values	are	larger	than	the
minimum	x	values	then	the	XRect	will	have	a
negative	width.	Similarly	if	the	minimum	y
values	are	larger	than	the	maximum	y	values
then	the	XRect	will	have	a	negative	height.

	

	 	

Example 	
None.

	
	 	

	

	

FromPoints	Function 	 	

Create	the	smallest	XRect	that	encloses	all	the
points	supplied.

	

	 	

Syntax 	

[C#]
static	XRect	FromPoints(XPoint
points)

[Visual	Basic]
Shared	Function	FromPoints(points
As	XPoint)	As	XRect

	

	 	

Params 	

Name Description
points The	points	that	should	be	enclosed.

	

	 	

Notes 	

Create	the	smallest	XRect	that	encloses	all	the
points	supplied.

If	no	points	or	null	is	supplied	then	the	return
value	is	null.

	

	 	

None.

Example
	 	 	 	

	

	

XRect	Constructor 	 	

XRect	Constructor.

	
	 	

Syntax 	

[C#]
XRect()
XRect(string	value)

[Visual	Basic]
Sub	New
Sub	New(value	As	String)

	

	 	

Params 	

Name Description

value A	string	defining	the	initial	rectangle	in
the	format	"left	bottom	right	top"

	

	 	

Notes 	

These	methods	construct	an	XRect	object.

To	construct	an	XRect	with	initial	values	use
one	of	the	static	constructors	such	as
XRect.FromSides,	XRect.FromLbwh	or
XRect.FromPoints.

	

	 	

Example 	
None.

	
	 	

	

	

Contains	Function 	 	

Determine	if	this	rectangle	contains	a	specified
point	or	rectangle.

	

	 	

Syntax 	

[C#]
bool	Contains(XPoint	point)
bool	Contains(PointF	point)
bool	Contains(Point	point)
bool	Contains(float	x,	float	y)
bool	Contains(double	x,	double	y)
bool	Contains(XRect	rect)

[Visual	Basic]
Function	Contains(point	As
XPoint)	As	Boolean
Function	Contains(point	As
PointF)	As	Boolean
Function	Contains(point	As	Point)
As	Boolean
Function	Contains(x	As	Float,	y
as	Float)	As	Boolean
Function	Contains(x	As	Double,	y
as	Double)	As	Boolean
Function	Contains(rect	As	XRect)
As	Boolean

	

	 	

Name Description
rect The	rectangle	to	test.

Params 	

point The	point	to	test.
x The	x	coordinate	of	a	point	to	test.
y The	y	coordinate	of	a	point	to	test.

return Whether	the	provided	object	is
contained	by	this	one.

	

	 	

Notes 	

Determine	if	this	rectangle	contains	a	specified
point	or	rectangle.

In	the	case	of	rectangles,	all	four	corners	must
be	contained	for	the	function	to	return	true.

If	a	null	point	or	rectangle	is	passed	this	function
will	return	false.

	

	 	

Example 	
None.

	
	 	

	

	

FitIn	Function 	 	

Fits	the	rectangle	as	content	inside	another
rectangle.

	

	 	

Syntax 	

[C#]
void	FitIn(XRect	rect,
ContentAlign	align,
ContentScaleMode	scaleMode)

[Visual	Basic]
Sub	FitIn(rect	As	XRect,	align	As
ContentAlign,	scaleMode	As
ContentScaleMode)

	

	 	

Params 	

Name Description
rect The	containing	rectangle.
align The	content	alignment.
scaleMode The	content	scale	mode.

	

	 	

The	rectangle	is	fitted	inside	the	containing
rectangle.

The	ContentAlign	enumeration	can	take	a
combination	of	the	following	values:

Notes 	

Center
Left
Right
Top
Bottom

The	ContentScaleMode	enumeration	can	take
any	of	the	following	values:

ShowAll	–	make	the	content	the	biggest
and	completely	within	the	area	while
keeping	the	aspect	ratio.
NoBorder	–	make	the	content	the	smallest
and	covering	the	entire	area	while	keeping
the	aspect	ratio.
ExactFit	–	scale	the	content	possibly	with
distortion	to	fit	the	entire	area.	It	is	the
same	as	assignment.
NoScale	–	no	scaling.	The	rectangle	is
repositioned.

	

	 	

Example 	
None.

	
	 	

	

	

GetCorners	Function 	 	

Get	the	four	corners	of	the	rectangle.

	
	 	

Syntax 	

[C#]
XPoint[]	GetCorners()

[Visual	Basic]
Sub	GetCorners()	As	XPoint()

	

	 	

Params 	

Name Description
return The	four	corners	of	the	rectangle.

	

	 	

Notes 	

Get	the	four	corners	of	the	rectangle.	The	first
item	in	the	array	is	the	bottom	left	and
subsequent	corners	are	presented	clockwise
from	that	point.

	

	 	

Example 	
None.

	
	 	

	

	

Inset	Function 	 	

Insets	the	edges	of	the	rectangle.

	
	 	

Syntax 	

[C#]
void	Inset(double	x,	double	y)

[Visual	Basic]
Sub	Inset(x	As	Double,	y	As
Double)

	

	 	

Params 	

Name Description

x The	amount	to	inset	the	left	and	right
edges.

y The	amount	to	inset	the	top	and
bottom	edges.

	

	 	

Notes 	

Insets	the	edges	of	the	rectangle	by	a	specified
horizontal	and	vertical	amount.

	

	 	

The	following	code.

[C#]

Example 	

XRect	rc	=	new	XRect();
rc.String	=	"0	0	200	100";
Response.Write("Rect	=	"	+
rc.String);
Response.Write("
");
rc.Inset(10,	20);
Response.Write("Inset	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"0	0	200	100"
Response.Write("Rect	=	"	+
rc.String)
Response.Write("
")
rc.Inset(10,	20)
Response.Write("Inset	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	0	0	200	100

Inset	=	10	20	190	80

	

	 	

	

	

Intersect	Function 	 	

Intersects	this	rectangle	with	another	rectangle.

	
	 	

Syntax 	

[C#]
void	Intersect(XRect	rect)

[Visual	Basic]
Sub	Intersect(rect	As	XRect)

	

	 	

Params 	

Name Description

rect
Another	rectangle.	The	supplied
rectangle	is	left	unchanged	by	this
function.

	

	 	

Notes 	

This	rectangle	becomes	the	intersection	of	this
rectangle	and	the	supplied	rectangle.

If	a	null	rectangle	is	passed,	this	rectangle	will
remain	unchanged.

	

	 	

Example
	
None. 	 	

	

	

	

IntersectsWith	Function 	 	

Determine	if	this	rectangle	intersects	with
another.

	

	 	

Syntax 	

[C#]
bool	IntersectsWith(XRect	rect)

[Visual	Basic]
Function	IntersectsWith(rect	As
XRect)	As	Boolean

	

	 	

Params 	

Name Description
rect Another	rectangle.
return Whether	the	two	rectangles	intersect.

	

	 	

Notes 	

Determine	if	this	rectangle	intersects	with
another.

If	a	null	rectangle	is	passed	this	function	will
return	false.

	

	 	

	
None. 	 	

Example 	

	

	

Magnify	Function 	 	

Magnifies	the	rectangle.

	
	 	

Syntax 	

[C#]
void	Magnify(double	x,	double	y)

[Visual	Basic]
Sub	Magnify(x	As	Double,	y	As
Double)

	

	 	

Params 	

Name Description
x The	horizontal	scale	factor.
y The	vertical	scale	factor.

	

	 	

Notes 	

Scales	the	rectangle	width	and	height	by	a
specified	horizontal	and	vertical	amount.

When	you	magnify	a	rectangle	one	corner	of	the
rectangle	is	pinned	and	the	width	and	height	of
the	rectangle	adjusted.	The	corner	which	is
pinned	is	indicated	by	the	Pin	property.	The
default	pin	corner	is	the	bottom	left.

	

	 	

Example 	

The	following	code.

[C#]
XRect	rc	=	new	XRect();
rc.String	=	"20	20	220	120";
Response.Write("Rect	=	"	+
rc.String);
Response.Write("
");
rc.Magnify(0.5,	0.5);
Response.Write("Scale	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"20	20	220	120"
Response.Write("Rect	=	"	+
rc.String)
Response.Write("
")
rc.Magnify(0.5,	0.5)
Response.Write("Scale	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	20	20	220	120

Scale	=	20	20	120	70

	

	 	

	

	

Move	Function 	 	

Translate	the	rectangle.

	
	 	

Syntax 	

[C#]
void	Move(double	x,	double	y)

[Visual	Basic]
Sub	Move(x	As	Double,	y	As
Double)

	

	 	

Params 	

Name Description

x The	horizontal	distance	to	move	the
rectangle.

y The	vertical	distance	to	move	the
rectangle.

	

	 	

Notes 	

Moves	the	rectangle	maintaining	the	width	and
height.

	

	 	

The	following	code.

[C#]

Example 	

XRect	rc	=	new	XRect();
rc.String	=	"20	20	220	120";
Response.Write("Rect	=	"	+
rc.String);
rc.Move(50,	50);
Response.Write("
");
Response.Write("Move	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"20	20	220	120"
Response.Write("Rect	=	"	+
rc.String)
rc.Move(50,	50)
Response.Write("
")
Response.Write("Move	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	20	20	220	120

Move	=	70	70	270	170

	

	 	

	

	

Position	Function 	 	

Position	the	bottom	left	of	the	rectangle.

	
	 	

Syntax 	

[C#]
void	Position(double	x,	double	y)
void	Position(double	x,	double	y,
Corner	corner)

[Visual	Basic]
Sub	Position(x	As	Double,	y	As
Double)
Sub	Position(x	As	Double,	y	As
Double,	corner	As	Corner)

	

	 	

Params 	

Name Description
x The	new	left	position.
y The	new	bottom	position.
corner The	corner	to	position.

	

	 	

Notes 	

Moves	the	rectangle	to	the	supplied	position
while	maintaining	the	width	and	height.

The	corner	moved	to	the	location	is	indicated	by
the	Pin	property	but	you	can	override	this
default	by	specifying	a	corner	when	calling	this

	 	

function.

	

Example 	

The	following	code.

[C#]
XRect	rc	=	new	XRect();
rc.String	=	"20	20	220	120";
Response.Write("Rect	=	"	+
rc.String);
Response.Write("
");
rc.Position(50,	50);
Response.Write("Pos.	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"20	20	220	120"
Response.Write("Rect	=	"	+
rc.String)
Response.Write("
")
rc.Position(50,	50)
Response.Write("Pos.	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	20	20	220	120

Pos.	=	50	50	250	150

	

	 	

	

	

Resize	Function 	 	

Resizes	the	rectangle.

	
	 	

Syntax 	

[C#]
void	Resize(double	w,	double	h)
void	Resize(double	w,	double	h,
Corner	corner)

[Visual	Basic]
Sub	Resize(w	As	Double,	h	As
Double)
Sub	Resize(w	As	Double,	h	As
Double,	corner	as	Corner)

	

	 	

Params 	

Name Description
w The	new	width.
h The	new	height.
corner The	corner	to	pin.

	

	 	

Notes 	

Changes	the	width	and	height	of	the	rectangle
while	maintaining	the	position.

When	you	change	the	width	or	height	of	a
rectangle	one	corner	of	the	rectangle	is	pinned
to	maintain	position.	The	corner	which	is	pinned 	 	

is	indicated	by	the	Pin	property	but	you	can
override	this	default	by	specifying	a	corner
when	calling	this	function.

	

Example 	

The	following	code.

[C#]
XRect	rc	=	new	XRect();
rc.String	=	"20	20	220	120";
Response.Write("Rect	=	"	+
rc.String);
Response.Write("
");
rc.Resize(50,	150);
Response.Write("Pos.	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"20	20	220	120"
Response.Write("Rect	=	"	+
rc.String)
Response.Write("
")
rc.Resize(50,	150)
Response.Write("Pos.	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	20	20	220	120

Pos.	=	20	20	70	170

	

	 	

	

	

Union	Function 	 	

Union	this	rectangle	with	another	rectangle.

	
	 	

Syntax 	

[C#]
void	Union(XRect	rect)
void	Union(XRect	rect,	bool
noAreaIsEmpty)

[Visual	Basic]
Sub	Union(rect	As	XRect)
Sub	Union(rect	As	XRect,
noAreaIsEmpty	as	Boolean)

	

	 	

Params 	

Name Description

rect

The	rectangle	to	add	to	this
one.	The	supplied	rectangle
is	left	unchanged	by	this
function.

noAreaIsEmpty
Whether	to	treat	rectangles
with	no	area	as	empty	-
default	true.

	

	 	

Union	the	rectangle	with	another	rectangle.

This	rectangle	becomes	the	smallest	rectangle

Notes 	

that	encloses	both	rectangles.

Rectangles	with	no	area	will,	by	default,	be
treated	as	being	empty.	A	union	of	a	non-empty
rectangle	with	an	empty	rectangle	always
results	in	the	output	being	set	to	the	non-empty
rectangle	value.	If	both	rectangles	are	empty
this	rectangle	will	be	left	unchanged.

If	the	noAreaIsEmpty	parameter	is	set	to	false
then	rectangles	with	no	area	will	be	treated	as
points	and	the	output	union	will	include	that
point.

	

	 	

Example 	
None.

	
	 	

	

	

SetRect	Function 	 	

Sets	the	location	and	size	of	the	rectangle.

	
	 	

Syntax 	

[C#]
void	SetRect(double	x,	double	y,
double	w,	double	h)
void	SetRect(XRect	rect)

[Visual	Basic]
Sub	SetRect(x	As	Double,	y	As
Double,	w	As	Double,	h	As	Double)
Sub	SetRect(rect	As	XRect)

	

	 	

Params 	

Name Description
x The	new	left	position.
y The	new	bottom	position.
w The	new	width.
h The	new	height.
rect The	source	rectangle.

	

	 	

Sets	the	location	and	size	of	the	rectangle.

The	width	and	height	of	the	rectangle	are	set	to
the	new	width	and	height.

Notes 	

The	rectangle	is	then	moved	to	the	supplied
position	while	maintaining	the	width	and	height.
The	corner	moved	to	the	location	is	indicated	by
the	Pin	property.	The	default	pin	corner	is	the
bottom	left.

The	overload	taking	an	XRect	copies	the
effective	location	and	size.	It	behaves	as	if	this
XRect	and	the	parameter	XRect	use	the	default
Pin	and	the	default	coordinate	settings
(Doc.TopDown	and	Doc.Units)	so	it	functions
differently	from	the	other	overload	and	from
copying	using	String.	Pin	is	not	copied.

For	example	suppose	you	have	a	Doc	object
(called	doc)	for	which	you	have	set	the
Doc.Units	to	mm	and	also	a	separate	XRect
(called	rect)	that	you	have	created.	If	you	call
rect.SetRect(doc.Rect)	the	rect	will	contain
coordinates	in	points	rather	than	mm.	Similarly	if
you	call	doc.Rect.SetRect(rect),	the	point	based
units	within	the	rect	will	be	converted	to	mm	for
insertion	into	the	doc.Rect.	So	there	is	an
automatic	conversion	between	coordinate
systems.

	

	 	

The	following	code.

[C#]
XRect	rc	=	new	XRect();
rc.String	=	"20	20	220	120";
Response.Write("Rect	=	"	+
rc.String);
Response.Write("
");

Example
	

rc.SetRect(20,	40,	50,	150);
Response.Write("Pos.	=	"	+
rc.String);

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"20	20	220	120"
Response.Write("Rect	=	"	+
rc.String)
Response.Write("
")
rc.SetRect(20,	40,	50,	150)
Response.Write("Pos.	=	"	+
rc.String)

Produces	the	following	output.

Rect	=	20	20	220	120

Pos.	=	20	40	70	190

	

	 	

	

	

SetSides	Function 	 	

Sets	the	sides	of	the	rectangle.

	
	 	

Syntax 	

[C#]
void	SetSides(double	x1,	double
y1,	double	x2,	double	y2)

[Visual	Basic]
Sub	SetSides(x1	As	Double,	y1	As
Double,	x2	As	Double,	y2	As
Double)

	

	 	

Params 	

Name Description
x1 The	new	left	position.
y1 The	new	bottom	position.
x2 The	new	right	position.
y2 The	new	top	position.

	

	 	

Notes 	
Sets	the	coordinates	of	the	rectangle.

	
	 	

	
None. 	 	

Example 	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	rectangles	are	effectively
the	same

	

	 	

Syntax 	

[C#]
bool	Equals(XRect	other,	double
epsilon)
bool	Equals(XRect	other)
override	bool	Equals(object
other)

[Visual	Basic]
Function	Equals(other	As	XRect,
epsilon	As	Double)	As	Boolean
Function	Equals(other	As	XRect)
As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean

	

	 	

Params 	

Name Description
other The	rect	to	test	against.

epsilon The	largest	difference	in	values	which
will	still	be	defined	as	equal

return Whether	the	two	rects	are	the	same.

	

	 	

Notes 	

Test	whether	the	two	rectangles	are	effectively
the	same.

Rectangles	are	considered	equal	if	they	have
the	same	position,	width	and	height.	This
represents	value	equality	for	the	rectangles	in
question.

The	underlying	components	of	an	XRect	are
represented	as	floating	point	numbers.	Floating
point	numbers	are	subject	to	rounding	errors,	so
there	has	to	be	a	degree	of	latitude	when
comparing	coordinate	values.	The	degree	of
latitude	is,	by	default,	determined	by	the
limitations	defined	in	the	PDF	Specification.
This	is,	broadly	speaking,	5	decimal	points	so
the	default	epsilon	is	typically	0.00001.	However
if	you	wish	to	rely	on	a	specific	epsilon	value
you	should	provide	one.

	

	 	

Example 	
None.

	
	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	XRect

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()
As	Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

Bottom	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	bottom
coordinate.

	

	 	

Notes 	
Allows	you	access	to	the	bottom	coordinate.

	
	 	

Example 	
None.

	
	 	

	

	

Height	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	height	of
the	rectangle.

	

	 	

Notes 	

Allows	you	access	to	the	height	of	the	rectangle.

When	you	change	the	width	or	height	of	a	rectangle
one	corner	of	the	rectangle	is	pinned	and	the	width	or
height	of	the	rectangle	adjusted	to	match	the	new
width	or	height.	The	corner	which	is	pinned	is
indicated	by	the	Pin	property.	The	default	pin	corner
is	the	bottom	left.

	

	 	

Example 	
None.

	
	 	

	

	

Left	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	left
coordinate.

	

	 	

Notes 	
Allows	you	access	to	the	left	coordinate.

	
	 	

Example 	
None.

	
	 	

	

	

Pin	Property 	 	

	

Type Default	Value Read
Only Description

[C#]	Corner

[Visual	Basic]
Corner

Corner.BottomLeft No

The	corner
of	the
rectangle	to
pin.

	

	 	

Allows	you	change	the	pinned	corner	of	the
rectangle.

The	Corner	enumeration	may	take	the	following
values:

BottomLeft
TopLeft
BottomRight
TopRight

Some	operations	require	that	the	rectangle	is	pinned
to	a	location.	For	example	if	you	want	to	change	the
width	of	a	rectangle	you	can	do	this	either	by	shifting
the	left	side	or	the	right	side.	If	the	pin	property	is	set
to	the	bottom	or	top	left	then	the	left	side	of	the
rectangle	will	be	kept	fixed	and	the	right	side	shifted.
Conversely	if	the	pin	property	is	set	to	the	bottom	or
top	right	then	the	right	side	of	the	rectangle	will	be
kept	fixed	and	the	left	side	shifted.

Notes 	

Why	is	my	Pin	a	number?

In	older	versions	of	ABCpdf	the	Pin	property
was	a	number.	To	assign	a	Corner	to	the	Pin
property	you	needed	to	cast	the	value.	So	you
might	find	code	of	this	form.

theRect.Pin	=
(int)XRect.Corner.TopRight

In	Version	8	the	Pin	property	has	been	changed
to	a	true	enumeration.	This	means	you	can
assign	the	Corner	directly.

theRect.Pin	=
XRect.Corner.TopRight

If	your	code	is	bound	to	integers	rather	than
enumerations	then	it	is	safe	to	cast	the	number
to	a	Corner.

theRect.Pin	=
(XRect.Corner)myIntegerValue

	

	

	 	

Example 	
None.

	
	 	

	

	

Rectangle	Property

	

Type Default ReadOnly Description

[C#]	Rectangle

[Visual	Basic]
Rectangle

n/a No The
System.Drawing.Rectangle.

	

Notes 	

The	rectangle	as	a	System.Drawing	Rectangle.

Windows	coordinates	are	measured	in	distances	from	the	top
left	of	the	drawing	surface	while	PDF	coordinates	are
measured	from	the	bottom	left.

So	when	you	use	this	property	the	coordinates	must	be	re-
mapped.	This	needs	to	be	done	in	the	context	of	a	containing
object.	Properties	such	as	the	Doc.Rect	and	the
XImage.Selection	have	containers	but	others	such	as	the
Doc.MediaBox	do	not.	In	these	cases	the	rectangles	are
assumed	to	contain	themselves.

You	may	find	it	easier	to	work	with	.NET	Rectangles	than	PDF
rectangles.	However	remember	that	operations	such	as
Transforms	work	on	the	underlying	PDF	coordinates	and	not
on	the	abstracted	Windows	coordinates.

	

	

The	following	code	adds	two	blocks	of	text	to	a	document.	The
positioning	is	done	using	standard	.NET	Rectangles.

Example

	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
Rectangle	rc	=	theDoc.MediaBox.Rectangle;
rc.Inflate(-50,	-50);
rc.Height	=	250;
theDoc.Rect.Rectangle	=	rc;
theDoc.FrameRect();
theDoc.AddText("First	Rectangle...");
rc.Offset(0,	300);
theDoc.Rect.Rectangle	=	rc;
theDoc.FrameRect();
theDoc.AddText("Second	Rectangle...");
theDoc.Save(Server.MapPath("xrectrectangle.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
Dim	rc	As	Rectangle	=	theDoc.MediaBox.Rectangle	
rc.Inflate(-50,	-50)
rc.Height	=	250
theDoc.Rect.Rectangle	=	rc
theDoc.FrameRect()
theDoc.AddText("First	Rectangle...")
rc.Offset(0,	300)
theDoc.Rect.Rectangle	=	rc
theDoc.FrameRect()
theDoc.AddText("Second	Rectangle...")
theDoc.Save(Server.MapPath("xrectrectangle.pdf"))
theDoc.Clear()

xrectrectangle.pdf

	

	

	

Right	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	right
coordinate.

	

	 	

Notes 	
Allows	you	access	to	the	right	coordinate.

	
	 	

Example 	
None.

	
	 	

	

	

String	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

"0	0	0
0" No The	rect	as	a

string.

	

	 	

Notes 	

Allows	you	access	to	the	rect	as	a	string.

When	working	in	standard	PDF	coordinates	the
format	of	the	string	is	"left	bottom	right	top".	When
working	with	top-down	coordinates	the	format	of	the
string	is	"left	top	right	bottom".

You	can	use	the	following	page	sizes	as	shortcuts
when	assigning	a	string	value	to	an	XRect:

Paper	Size Width	in	Points Height	in	Points
A3 842 1190
A4 595 842
A5 420 595
B4 729 1032
B5 516 729

Letter 612 792
Legal 612 1008
Tabloid 792 1224
Ledger 1224 792

	 	

Statement 396 612
Executive 540 720
Folio 612 936
Quarto 610 780
10x14 720 1008

	

Example 	

The	following	code.

[C#]
XRect	rc	=	new	XRect();
rc.String	=	"10	10	200	100";
Response.Write("Width	=	"	+
rc.Width.ToString());
Response.Write("
");
Response.Write("Height	=	"	+
rc.Height.ToString());

[Visual	Basic]
Dim	rc	As	XRect	=	New	XRect()	
rc.String	=	"10	10	200	100"
Response.Write("Width	=	"	+
rc.Width.ToString())
Response.Write("
")
Response.Write("Height	=	"	+
rc.Height.ToString())

Produces	the	following	output.

Width	=	190

Height	=	90

	

	 	

	

	

Top	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	top
coordinate.

	

	 	

Notes 	
Allows	you	access	to	the	top	coordinate.

	
	 	

Example 	
None.

	
	 	

	

	

Width	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	width	of
the	rectangle.

	

	 	

Notes 	

Allows	you	access	to	the	width	of	the	rectangle.

When	you	change	the	width	or	height	of	a	rectangle
one	corner	of	the	rectangle	is	pinned	and	the	width	or
height	of	the	rectangle	adjusted	to	match	the	new
width	or	height.	The	corner	which	is	pinned	is
indicated	by	the	Pin	property.	The	default	pin	corner
is	the	bottom	left.

	

	 	

Example 	
None.

	
	 	

	

	

HasArea	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes
Whether	the
rectangle	has
area.

	

	 	

Notes 	

Determine	if	the	rectangle	encloses	any	area.

If	the	width	or	height	is	less	than	the	minimum
resolution	of	the	PDF	coordinate	space	then	the
rectangle	is	defined	as	having	no	area.	I	it	has	no
area	it	is	simply	a	point.

	

	 	

Example 	
None.

	
	 	

	

	

GetBitmap	Function 	 	

Renders	the	current	area	of	the	current	page	to
a	Bitmap.

	

	 	

Syntax 	

[C#]
System.Drawing.Bitmap	GetBitmap()

[Visual	Basic]
Function	GetBitmap()	As
System.Drawing.Bitmap

	may	throw	Exception()

	

	 	

Params 	

Name Description
return The	Bitmap	containing	the	image.

	

	 	

Notes 	

Use	this	method	to	render	the	PDF	to	a
System.Drawing.Bitmap.

The	output	is	a	render	of	the	current	Doc.Rect
of	the	current	Doc.Page.

Any	page	rotation	specified	in	the	PDF	page	is
applied	so	that	the	output	render	is	the	correct
orientation.	This	may	mean	that	the	output	width 	 	

and	height	are	transposed	copies	of	the	width
and	height	as	specified	in	the	Doc.Rect.

You	can	then	use	this	Bitmap	for	drawing	to
screen	or	for	manipulation	using
System.Drawing	routines.

	

Example 	
See	the	AntiAliasPolygons	property.

	
	 	

	

	

GetData	Function 	 	

Renders	the	current	area	of	the	current	page	to
memory.

	

	 	

Syntax 	

[C#]
byte[]	GetData(string	name)

[Visual	Basic]
Function	GetData(name	As	String)
As	Byte()

	may	throw	Exception()

	

	 	

Params 	

Name Description

name A	dummy	file	name	used	to	determine
the	type	of	image	required.

return The	image	as	an	array	of	bytes.

	

	 	

Use	this	method	to	render	the	PDF	to	memory.

The	output	is	a	render	of	the	current	Doc.Rect
of	the	current	Doc.Page.

Any	page	rotation	specified	in	the	PDF	page	is

Notes 	

applied	so	that	the	output	render	is	the	correct
orientation.	This	may	mean	that	the	output	width
and	height	are	transposed	copies	of	the	width
and	height	as	specified	in	the	Doc.Rect.

The	file	path	extension	determines	the	format	of
the	output.	The	file	name	extensions	which	may
be	used	are	the	same	as	that	used	for	the	Save
method.	Typical	extensions	used	include	.TIF,
.TIFF,	JPG,	GIF,	PNG,	.BMP	or	.EMF.	EMF	is	a
vector	rather	than	raster	format	which	can	be
useful	when	you	require	resolution
independence	and	smaller	files.

Normally	you	will	want	to	render	your
documents	using	the	Save	method.	However
sometimes	you	will	need	to	obtain	your	image
as	raw	data	rather	than	in	file	format.	The
GetData	method	allows	you	to	do	this

You	may	wish	to	write	such	an	image	direct	to	a
client	browser	rather	than	going	through	an
intermediate	file.	The	data	you	obtain	using
GetData	can	be	written	direct	to	an	HTTP
stream	using	Response.BinaryWrite.	Similarly
you	may	wish	to	obtain	raw	data	for	insertion
into	a	database.

	

	 	

Example 	
None.

	
	 	

	

	

Save	Method 	 	

Renders	and	saves	the	current	area	of	the
current	page.

	

	 	

Syntax 	

[C#]
void	Save(string	path)
void	Save(string	name,	Stream
stream)

[Visual	Basic]
Sub	Save(path	As	String)
Sub	Save(name	As	String,	stream
As	Stream)

	may	throw	Exception()

	

	 	

Params 	

Name Description
path The	destination	file	path.

name A	dummy	file	name	used	to	determine
the	type	of	image	required.

stream The	destination	stream.

	

	 	

Use	this	method	to	render	the	PDF.

Notes
	

The	output	is	a	render	of	the	current	Doc.Rect
of	the	current	Doc.Page.

Any	page	rotation	specified	in	the	PDF	page	is
applied	so	that	the	output	render	is	the	correct
orientation.	This	may	mean	that	the	output	width
and	height	are	transposed	copies	of	the	width
and	height	as	specified	in	the	Doc.Rect.

The	file	path	extension	determines	the	format	of
the	output.	The	file	name	extensions	which	may
be	used	are	.TIF,	.TIFF,	.JPG,	.GIF,	.PNG,
.BMP,	.JP2,	.PSD,	.EMF,	.PS	and	.EPS.

JP2	is	used	for	the	JPEG	2000	format.	EMF	is	a
vector	rather	than	raster	format	which	can	be
useful	when	you	require	resolution
independence	and	smaller	files.	PS	is	raw
vector	PostScript-compatible	output.	EPS	is	the
Encapsulated	Postscript	format.	The	particular
type	of	EPS	produced	by	ABCpdf	conforms	to
the	DSC	(Document	Structuring	Conventions)
standard,	which	is	a	subset	of	EPS	intended	to
make	EPS	files	more	usable.

In	addition	you	can	render	to	any	of	the	file
types	specified	as	part	of	the	GetText	method	-
.TXT,	.SVG,	.SVG+	and	.SVG+2.

	

	 	

Example 	
See	the	AntiAliasPolygons	property.

	
	 	

	

	

AntiAliasImages	Property

	

Type Default	Value Read	Only Description
[C#]	bool

[Visual	Basic]
Boolean

true No Whether	to	anti-alias	images.

	

Notes 	

Determines	whether	image	transformations	will	be	interpolated.

This	feature	is	most	useful	when	the	original	embedded	image	resolution	
output	resolution.	When	this	property	is	set	to	true	interpolation	is	used	to	scale	images	thus
increasing	output	quality.

Whether	the	edges	of	images	are	anti-aliased	is	determined	by	the	

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/HyperX.pdf"));
theDoc.Rect.Inset(200,	200);
//	Render	document	with	AntiAliasImages	=	true	(default)
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasImagesTrue.png"));
//	Render	document	with	AntiAliasImages	=	false
theDoc.Rendering.AntiAliasImages	=	false;
//	Save	the	image
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasImagesFalse.png"));

Example 	

theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/HyperX.pdf"))
theDoc.Rect.Inset(200,	200)
'	Render	document	with	AntiAliasImages	=	true	(default)
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasImagesTrue.png"))
'	Render	document	with	AntiAliasImages	=	false
theDoc.Rendering.AntiAliasImages	=	False
'	Save	the	image
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasImagesFalse.png"))
theDoc.Clear()

RenderingAntiAliasImagesTrue.png

RenderingAntiAliasImagesFalse.png

	

	

	

AntiAliasPolygons	Property

	

Type Default	Value Read	Only Description
[C#]	bool

[Visual	Basic]
Boolean

true No Whether	to	anti-alias	polygons.

	

Notes 	

Determines	whether	polygons	will	be	rendered	with	anti-aliased	edges.

Anti-aliasing	is	a	technique	for	using	gradients	of	color	to	eliminate	
drawn.	The	object	edges	are	blurred	to	reduce	pixelation.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
//	Add	a	polygon
theDoc.Color.String	=	"255	0	0";
theDoc.AddPoly("32	650	50	704	68	650	22	683	79	683	32	650",	
theDoc.Rect.String	=	"20	650	80	704";
//	Render	the	drawn	area	with	AntiAliasPolygons	(default)
Bitmap	antiAliasedBitmap	=	theDoc.Rendering.GetBitmap();
//	Render	the	drawn	area	without	AntiAliasPolygons
theDoc.Rendering.AntiAliasPolygons	=	false;
Bitmap	aliasedBitmap	=	theDoc.Rendering.GetBitmap();
//	Add	magnified	aliased	image	

theDoc.Rect.String	=	"5	20	605	560";
theDoc.AddImageBitmap(aliasedBitmap,	false);
//	Anotate
theDoc.Color.String	=	"black";
theDoc.FontSize	=	30;
theDoc.Pos.String	=	"20	750";
theDoc.AddText("Original	path:");
theDoc.Pos.String	=	"20	620";
theDoc.AddText("Magnified	rendered	image:");
//	Render	the	document	with	aliased	image
theDoc.Rendering.DotsPerInch	=	36;
theDoc.Rect.String	=	theDoc.MediaBox.String;
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasPolygonsFalse.png"));
//	Add	magnified	antialiased	image	
theDoc.Rect.String	=	"5	20	605	560";
theDoc.AddImageBitmap(antiAliasedBitmap,	false);
//	Render	the	document	with	antialiased	image
theDoc.Rendering.DotsPerInch	=	36;
theDoc.Rect.String	=	theDoc.MediaBox.String;
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasPolygonsTrue.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
'	Add	a	polygon
theDoc.Color.String	=	"255	0	0"
theDoc.AddPoly("32	650	50	704	68	650	22	683	79	683	32	650",	
theDoc.Rect.String	=	"20	650	80	704"
'	Render	the	drawn	area	with	AntiAliasPolygons	(default)
Dim	antiAliasedBitmap	As	Bitmap	=	theDoc.Rendering.GetBitmap()	
'	Render	the	drawn	area	without	AntiAliasPolygons
theDoc.Rendering.AntiAliasPolygons	=	False
Dim	aliasedBitmap	As	Bitmap	=	theDoc.Rendering.GetBitmap()	
'	Add	magnified	aliased	image	
theDoc.Rect.String	=	"5	20	605	560"
theDoc.AddImageBitmap(aliasedBitmap,	False)

Example

	

'	Anotate
theDoc.Color.String	=	"black"
theDoc.FontSize	=	30
theDoc.Pos.String	=	"20	750"
theDoc.AddText("Original	path:")
theDoc.Pos.String	=	"20	620"
theDoc.AddText("Magnified	rendered	image:")
'	Render	the	document	with	aliased	image
theDoc.Rendering.DotsPerInch	=	36
theDoc.Rect.String	=	theDoc.MediaBox.String
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasPolygonsFalse.png"))
'	Add	magnified	antialiased	image	
theDoc.Rect.String	=	"5	20	605	560"
theDoc.AddImageBitmap(antiAliasedBitmap,	False)
'	Render	the	document	with	antialiased	image
theDoc.Rendering.DotsPerInch	=	36
theDoc.Rect.String	=	theDoc.MediaBox.String
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasPolygonsTrue.png"))
theDoc.Clear()

RenderingAntiAliasPolygonsTrue.png

RenderingAntiAliasPolygonsFalse.png

	

	

	

AntiAliasScene	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
apply	entire
scene	anti-
aliasing.

	

	 	

Notes 	

Determines	whether	to	apply	entire	scene	anti-
aliasing.

If	this	property	is	set	to	true	then	text,	polygons	and
images	will	be	anti-aliased	together	instead	of
individually.	This	uses	considerably	more	memory
and	takes	considerably	longer	but	can	result	in
higher	quality	output.

When	this	property	is	set	to	true	this	implicitly
disables	any	other	anti-aliasing	applied	to	individual
object	types.

Anti-aliasing	is	a	technique	for	using	gradients	of
color	to	eliminate	jagged	edges	when	objects	are
drawn.

	

	 	

Example 	
None.

	
	 	

	

	

AntiAliasText	Property

	

Type Default	Value Read	Only Description
[C#]	bool

[Visual	Basic]
Boolean

true No Whether	to	anti-alias	text.

	

Notes 	

Determines	whether	text	will	be	rendered	with	anti-aliased	edges.

Anti-aliasing	is	a	technique	for	using	gradients	of	color	to	eliminate	
objects	are	drawn.	The	object	edges	are	blurred	to	reduce	pixelation.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(50,	50);
//	Add	some	text
theDoc.FontSize	=	48;
theDoc.Pos.String	=	"50	690";
int	id	=	theDoc.AddText("Abc");
//	Render	images
theDoc.Rect.String	=	theDoc.GetInfo(id,	"rect");
theDoc.Rendering.AntiAliasText	=	true;
Bitmap	antialiasedBitmap	=	theDoc.Rendering.GetBitmap();
theDoc.Rendering.AntiAliasText	=	false;

	

Bitmap	aliasedBitmap	=	theDoc.Rendering.GetBitmap();
//	Add	enlarged	images	to	the	pdf	file
theDoc.Rect.Magnify(5,	5);
theDoc.Rect.Move(0,	-300);
theDoc.AddImageBitmap(aliasedBitmap,	false);
theDoc.Rect.Move(0,	-300);
theDoc.AddImageBitmap(antialiasedBitmap,	false);
//	Annotate
theDoc.Rect.String	=	theDoc.MediaBox.String;
theDoc.Color.String	=	"255	0	0";
theDoc.FontSize	=	36;
theDoc.Pos.String	=	"50	740";
theDoc.AddText("Original	text:");
theDoc.Pos.String	=	"50	620";
theDoc.AddText("Magnified	aliased	image:");
theDoc.Pos.String	=	"50	320";
theDoc.AddText("Magnified	antialiased	image:");
//	Save	render	of	pdf	files
theDoc.Rendering.AntiAliasText	=	true;
theDoc.Rendering.DotsPerInch	=	36;
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasText.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(50,	50)
'	Add	some	text
theDoc.FontSize	=	48
theDoc.Pos.String	=	"50	690"
Dim	id	As	Integer	=	theDoc.AddText("Abc")	
'	Render	images
theDoc.Rect.String	=	theDoc.GetInfo(id,	"rect")
theDoc.Rendering.AntiAliasText	=	True
Dim	antialiasedBitmap	As	Bitmap	=	theDoc.Rendering.GetBitmap()	
theDoc.Rendering.AntiAliasText	=	False
Dim	aliasedBitmap	As	Bitmap	=	theDoc.Rendering.GetBitmap()	

Example

'	Add	enlarged	images	to	the	pdf	file
theDoc.Rect.Magnify(5,	5)
theDoc.Rect.Move(0,	-300)
theDoc.AddImageBitmap(aliasedBitmap,	False)
theDoc.Rect.Move(0,	-300)
theDoc.AddImageBitmap(antialiasedBitmap,	False)
'	Annotate
theDoc.Rect.String	=	theDoc.MediaBox.String
theDoc.Color.String	=	"255	0	0"
theDoc.FontSize	=	36
theDoc.Pos.String	=	"50	740"
theDoc.AddText("Original	text:")
theDoc.Pos.String	=	"50	620"
theDoc.AddText("Magnified	aliased	image:")
theDoc.Pos.String	=	"50	320"
theDoc.AddText("Magnified	antialiased	image:")
'	Save	render	of	pdf	files
theDoc.Rendering.AntiAliasText	=	True
theDoc.Rendering.DotsPerInch	=	36
theDoc.Rendering.Save(Server.MapPath("RenderingAntiAliasText.png"))
theDoc.Clear()

RenderingAntiAliasText.png

	

	

	

	

AutoRotate	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	pages
should	be
automatically
rotated.

	

	 	

Notes 	

A	PDF	document	may	contain	pages	in	portrait	or
landscape	mode.

If	the	pages	are	in	landscape	mode	the	viewing
application	should	rotate	them	by	90	degrees	before
displaying	them.

If	you	use	ABCpdf	to	render	a	landscape	page	then	it
will	automatically	apply	the	correct	rotation.	However
if	you	want	to	disable	this	automatic	rotation	you	can
set	this	property	to	false.

	

	 	

Example 	
None.

	
	 	

	

	

BitsPerChannel	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

8 No
The	output	bits
per	color
channel.

	

	 	

Notes 	

This	property	determines	the	precision	of	the	output
color	channels.

The	value	is	specified	in	terms	of	the	number	of	bits
used	to	represent	each	channel	of	color.	This	can	be
1,	8	or	16.

All	color	spaces	support	8	and	16	bits	per	channel.
Only	the	Gray	color	space	supports	1	bit	per	channel.

The	TIFF	output	format	supports	all	output
precisions.	The	JP2	(JPEG	2000)	and	PSD
(Photoshop)	formats	support	8	and	16	bits	per
channel.	The	JPG,	GIF,	PNG	and	.BMP.	output
formats	support	8	bit	RGB	and	8	bit	Gray	only.

	

	 	

Example 	
See	the	DefaultHalftone	property.

	
	 	

	

	

	

ColorSpace	Property
	

	

Type Default	Value

[C#]	
XRendering.ColorSpaceType

[Visual	Basic]
XRendering.ColorSpaceType
	

	XRendering.ColorSpaceType.Rgb

	

The	name	of	the	output	color	space.

The	XRendering.ColorSpaceType	enumeration	may	take	the	following	values:

Rgb	-	red,	green	and	blue
Gray	-	grayscale
Cmyk	-	cyan,	magenta,	yellow	and	black
Lab	-	a	device	independent	color	space
Indexed	-	indexed	RGB;	see	the	PaletteSize	property

The	following	table	shows	the	supported	color	spaces	of	each	output	format:

Output	format RGB Gray
TIFF 	 	

PSD	(Photoshop) 	 	
JP2	(JPEG	2000) 	 	

JPG 	 	
BMP 	 	

Notes
	

GIF	and	PNG 	 	

*		The	JPEG	file	format	itself	does	not	support	indexed	colors.	Using	JPG	as	an	output	
Indexed	color	space	will	result	in	a	JPEG	output	with	the	number	of	colors	
the	color	profile	will	still	be	RGB.	This	is	what	you	would	expect	if	you	created	an	Indexed	PNG	and	then
converted	it	to	a	JPEG	file.

Why	is	my	ColorSpace	a	string?

In	older	versions	of	ABCpdf	the	ColorSpace	property	was	a	string.	So	you	might	find	code	of	this	form.

theDoc.Rendering.ColorSpace	=	"CMYK"

In	Version	8	the	ColorSpace	property	was	changed	to	a	true	enumeration.	This	is	a	safer	way	of
coding	as	it	allows	the	compiler	to	ensure	that	the	values	you	are	using	are	valid.	Your	new	code
should	look	like	this.

theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Cmyk

The	names	of	the	items	in	the	XRendering.ColorSpaceType	enumeration	are	the	same	as	the	values
of	the	strings	used	in	previous	versions.	So	changing	your	code	should	be	a	simple	search	and
replace	operation.

Note	that	the	enumeration	is	the	XRendering.ColorSpace	indicating	the	output	color	space	for
rendering.	There	is	a	different	ColorSpace	enumeration	used	for	the	content	of	objects	inside	a	PDF
document.	The	two	are	not	the	same.

Alternatively	if	you	need	to	convert	between	enumerations	and	strings	automatically	you	can	do	so.	To
convert	from	a	string	to	an	enumeration	use	the	following	code.

XRendering.ColorSpaceType	csType	=
(XRendering.ColorSpaceType)Enum.Parse(typeof(XRendering.ColorSpaceType),
csString,	true)

To	convert	from	an	enumeration	to	a	string	use	the	following	code.

string	csString	=	csType.ToString("G")

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.AddImage(Server.MapPath("../mypics/Shuttle.jpg"));
theDoc.Rect.String	=	theDoc.MediaBox.String;
//	Render	document	in	Gray	colorspace
theDoc.Rendering.ColorSpace	=	"Gray";
theDoc.Rendering.DotsPerInch	=	36;
theDoc.Rendering.Save(Server.MapPath("RenderingColorSpace.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.AddImage(Server.MapPath("../mypics/Shuttle.jpg"))
theDoc.Rect.String	=	theDoc.MediaBox.String
'	Render	document	in	Gray	colorspace
theDoc.Rendering.ColorSpace	=	"Gray"
theDoc.Rendering.DotsPerInch	=	36
theDoc.Rendering.Save(Server.MapPath("RenderingColorSpace.png"))
theDoc.Clear()

Example

	

Shuttle.jpg

RenderingColorSpace.png

	

	

	

	

DefaultHalftone	Property

	

Type Default	Value Read	Only Description
[C#]	string

[Visual	Basic]
String

		"Spot,30,100,CosineDot" No Halftone	type	and	options.

	

Notes
	

Specifies	the	default	halftone	type	and	options.

The	default	halftone	remains	in	effect	until	an	embedded	halftone	

The	Type	can	be:

Spot
ErrorDiffusion
OrderedDither
Threshold

If	the	type	is	Spot	then	an	angle	in	degrees,	frequency	and	spot	function	can	also	be
specified.	These	should	be	separated	by	commas	with	no	extraneous	spaces.	The	spot
functions	available	are:

SimpleDot
InvertedSimpleDot
DoubleDot
InvertedDoubleDot
CosineDot
Double
InvertedDouble
Line

LineX
LineY
Round
Ellipse
EllipseA
InvertedEllipseA
EllipseB
EllipseC
InvertedEllipseC
Square
Cross
Rhomboid
Diamond

If	the	type	is	Threshold	you	should	specify	a	value	-	for	example	
used	when	calculating	the	value	of	a	black	and	white	pixel.	If	the	grey	level	l	is	greater	than
the	threshold	the	pixel	will	be	black	otherwise	it	will	be	white.

For	full	details	of	how	Halftones	work	you	should	see	the	Adobe	
available	from	the	Adobe	web	site.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
XImage	image	=	new	XImage();
image.SetFile(Server.MapPath("../mypics/Shuttle.jpg"));
theDoc.Rect.String	=	image.Selection.String;
theDoc.AddImage(image);
//	Save	rendered	image	as	black	and	white	picture	using	Line	spot
function
theDoc.Rendering.UseEmbeddedHalftone	=	false;
theDoc.Rendering.DotsPerInch	=	50;
theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Gray;
theDoc.Rendering.BitsPerChannel	=	1;

	

theDoc.Rendering.DefaultHalftone	=	"Spot,30,100,Line";
theDoc.Rendering.Save(Server.MapPath("RenderingHalftoneLine.png"));
//	Save	rendered	image	as	black	and	white	picture	using	Diamond	
function
theDoc.Rendering.DefaultHalftone	=	"Spot,0,100,Diamond";
theDoc.Rendering.Save(Server.MapPath("RenderingHalftoneDiamond.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	image	As	XImage	=	New	XImage()	
image.SetFile(Server.MapPath("../mypics/Shuttle.jpg"))
theDoc.Rect.String	=	image.Selection.String
theDoc.AddImage(image)
'	Save	rendered	image	as	black	and	white	picture	using	Line	spot
function
theDoc.Rendering.UseEmbeddedHalftone	=	False
theDoc.Rendering.DotsPerInch	=	50
theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Gray
theDoc.Rendering.BitsPerChannel	=	1
theDoc.Rendering.DefaultHalftone	=	"Spot,30,100,Line"
theDoc.Rendering.Save(Server.MapPath("RenderingHalftoneLine.png"))
'	Save	rendered	image	as	black	and	white	picture	using	Diamond	spot
function
theDoc.Rendering.DefaultHalftone	=	"Spot,0,100,Diamond"
theDoc.Rendering.Save(Server.MapPath("RenderingHalftoneDiamond.png"))
theDoc.Clear()

Example

RenderingHalftoneLine.png

RenderingHalftoneDiamond.png

	

	

	

DotsPerInch	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

		72.0 No

The	output
resolution	in
dots	per	inch
(DPI).

	

	 	

Notes 	

This	property	determines	the	resolution	of	the	output
image.

Because	PDF	documents	specify	distances	in
physical	units	(typically	points)	a	resolution	unit	is
needed	to	convert	these	physical	units	to	pixel	based
units.

For	example	a	document	612	points	wide	rendered
at	144	DPI	will	result	in	an	output	image	1224	pixels
wide.

Changing	this	property	will	change	the	values	of	both
the	DotsPerInchX	and	DotsPerInchY	properties.

	

	 	

Example 	
See	the	DefaultHalftone	property.

	
	 	

	

	

DotsPerInchX	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

		72.0 No

The	horizontal
output	resolution
in	dots	per	inch
(DPI).

	

	 	

Notes 	

This	property	determines	the	horizontal	resolution	of
the	output	image.

Because	PDF	documents	specify	distances	in
physical	units	(typically	points)	a	resolution	unit	is
needed	to	convert	these	physical	units	to	pixel	based
units.

For	example	a	document	612	points	wide	rendered
at	144	DPI	will	result	in	an	output	image	1224	pixels
wide.

	

	 	

Example 	
See	the	SaveCompression	property.

	
	 	

	

	

DotsPerInchY	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

		72.0 No

The	vertical
output	resolution
in	dots	per	inch
(DPI).

	

	 	

Notes 	

This	property	determines	the	vertical	resolution	of	the
output	image.

Because	PDF	documents	specify	distances	in
physical	units	(typically	points)	a	resolution	unit	is
needed	to	convert	these	physical	units	to	pixel	based
units.

For	example	a	document	612	points	high	rendered	at
144	DPI	will	result	in	an	output	image	1224	pixels
high.

	

	 	

Example 	
See	the	SaveCompression	property.

	
	 	

	

	

DrawAnnotations	Property

	

Type Default	Value Read	Only Description
[C#]	bool

[Visual	Basic]
Boolean

true No Whether	to	render	fields	and	annotations.

	

Notes 	

Determines	whether	fields	and	annotations	will	be	rendered.

PDF	fields	and	annotations	are	not	part	of	the	PDF	content.	Instead	
background.	You	may	choose	to	render	these	fields	or	you	may	wish	to	avoid	rendering	them.

The	export	of	file	types	like	XPS,	DOCX	and	HTML	is	implemented	using	rendering.	For	this
reason	the	DrawAnnotations	proprety	will	determine	if	Annotations	are	exported	when	saving
these	formats	using	the	Doc.Save	method.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/Annotations.pdf"));	
theDoc.Rect.Pin	=	XRect.Corner.TopLeft;
theDoc.Rect.Height	=	300;
//	Render	document	with	DrawAnnotations	(default)
theDoc.Rendering.Save(Server.MapPath("RenderingDrawAnnotationsTrue.png"));
//	Render	document	without	DrawAnnotations
theDoc.Rendering.DrawAnnotations	=	false;

Example

	

theDoc.Rendering.Save(Server.MapPath("RenderingDrawAnnotationsFalse.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/Annotations.pdf"))	
theDoc.Rect.Pin	=	XRect.Corner.TopLeft
theDoc.Rect.Height	=	300
'	Render	document	with	DrawAnnotations	(default)
theDoc.Rendering.Save(Server.MapPath("RenderingDrawAnnotationsTrue.png"))
'	Render	document	without	DrawAnnotations
theDoc.Rendering.DrawAnnotations	=	False
theDoc.Rendering.Save(Server.MapPath("RenderingDrawAnnotationsFalse.png"))
theDoc.Clear()

RenderingDrawAnnotationsTrue.png

RenderingDrawAnnotationsFalse.png

	

	

	

IccCmyk	Property

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No The	path	to	the	default	CMYK	ICC
color	profile.

	

Notes 	

A	path	to	the	default	CMYK	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device	CMYK	specified	
file	to	the	device	independent	working	color	space.

This	is	used	when	the	output	ColorSpace	is	Lab	or	another	device	independent
color	space.	If	the	IccOutput	indicates	that	a	color	profile	should	be	used	the
output	is	always	device	independent.	If	the	IccOutput	indicates	that	no	color
profile	should	be	used	then	the	output	is	always	device	dependent.

This	property	can	take	a	path	to	an	icm	file.	However	there	are	also	two	special
values	you	can	use.	If	the	property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the	value	"standard"	then	a	built
in	default	color	profile	will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color	profile	then	
IccCmyk,	IccGray	and	IccOutput	should	also	be	set	to	"standard"	or	paths	to
color	profiles.	All	color	spaces	are	assumed	to	be	device	independent	color
spaces.

If	this	property	is	set	to	"device"	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"device".	All	color	spaces	are	all	assumed	to	be	device
color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path	information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be	searched	to	locate	the	file.

	

Example 	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(20,	40);
theDoc.FontSize	=	96;
//	Add	CMYK	Content
theDoc.Color.String	=	"200	20	20	20";
theDoc.AddText("Gallia	est	omnis	divisa	in	partes	tres,	quarum
unam	incolunt	Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.");
theDoc.Rect.String	=	theDoc.MediaBox.String;
theDoc.Rendering.DotsPerInch	=	36;
theDoc.Rendering.IccCmyk	=
Server.MapPath("../mypics/cmyk.icc");
theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Rgb;
//	Save	the	image
theDoc.Rendering.Save(Server.MapPath("RenderingIccCmyk.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,	40)
theDoc.FontSize	=	96
'	Add	CMYK	Content
theDoc.Color.String	=	"200	20	20	20"
theDoc.AddText("Gallia	est	omnis	divisa	in	partes	tres,	quarum
unam	incolunt	Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.")
theDoc.Rect.String	=	theDoc.MediaBox.String

theDoc.Rendering.DotsPerInch	=	36
theDoc.Rendering.IccCmyk	=
Server.MapPath("../mypics/cmyk.icc")
theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Rgb
'	Save	the	image
theDoc.Rendering.Save(Server.MapPath("RenderingIccCmyk.png"))
theDoc.Clear()

RenderingIccCmyk.png

	

	

	

	

IccGray	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
Gray	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	Gray	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device
Gray	specified	in	the	PDF	file	to	the	device
independent	working	color	space.

This	is	used	when	the	output	ColorSpace	is	Lab	or
another	device	independent	color	space.	If	the
IccOutput	indicates	that	a	color	profile	should	be
used	the	output	is	always	device	independent.	If	the
IccOutput	indicates	that	no	color	profile	should	be
used	then	the	output	is	always	device	dependent.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"standard"	or	paths	to	color

	 	

profiles.	All	color	spaces	are	assumed	to	be	device
independent	color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk,	IccGray	and	IccOutput	should	also	be	set
to	"device".	All	color	spaces	are	all	assumed	to	be
device	color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None.

	
	 	

	

	

IccOutput	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
output	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	output	ICC	color	profile.

Rendering	can	occur	to	either	an	device	color	space
or	to	a	device	independent	color	space.	By	specifying
an	output	color	profile	you	are	telling	ABCpdf	the
characteristics	of	the	output	device	independent	color
space	you	wish	to	use.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk	and	IccGray	should
also	be	set	to	"standard"	or	paths	to	color	profiles.	All
color	spaces	are	assumed	to	be	device	independent
color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk	and	IccGray	should	also	be	set	to	"device".

	 	

All	color	spaces	are	all	assumed	to	be	device	color
spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None.

	
	 	

	

	

IccRgb	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
RGB	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	RGB	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device
RGB	specified	in	the	PDF	file	to	the	device
independent	working	color	space.

This	is	used	when	the	output	ColorSpace	is	Lab	or
another	device	independent	color	space.	If	the
IccOutput	indicates	that	a	color	profile	should	be
used	the	output	is	always	device	independent.	If	the
IccOutput	indicates	that	no	color	profile	should	be
used	then	the	output	is	always	device	dependent.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"standard"	or	paths	to	color

	 	

profiles.	All	color	spaces	are	assumed	to	be	device
independent	color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk,	IccGray	and	IccOutput	should	also	be	set
to	"device".	All	color	spaces	are	all	assumed	to	be
device	color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None.

	
	 	

	

	

Log	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"" Yes The	log	for	the
last	render.

	

	 	

Notes 	

During	rendering	inconsistencies	may	be	detected	in
the	PDF	or	in	the	environment.

For	example	if	a	PDF	contains	a	corrupt	image	then
it	may	not	be	possible	to	display	it.	If	a	PDF	contains
a	reference	to	a	font	which	is	not	on	the	current
system	then	a	font	substitution	may	be	required.

ABCpdf	will	do	its	best	to	complete	the	render	even	if
errors	or	inconsistencies	are	found.	However	it	will
log	these	type	of	issues	and	make	the	log	available
via	this	property.	This	can	be	useful	for	debugging
purposes.

	

	 	

Example 	
None.

	
	 	

	

	

Metadata	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IDictionary<string,
string>

[Visual	Basic]
IDictionary<String,
String>

		null No

A	collection
of	TIFF	tags
that	should
be	written	to
the	output
file.

	

	 	

This	property	can	be	used	to	insert	custom	tags	for	TIFF
output.

To	use	this	property,	create	a	dictionary	and	assign	it	to	this
property.	Then	add	a	sequence	of	tag	names	and	values	for
output	to	file.	You	will	find	a	full	list	of	TIFF	tag	names	in	the
TIFF	specification.

Most	tags,	such	as	the	PageName,	take	a	string	value.
However	some	tags	may	take	one	or	more	numbers	instead.
For	example	the	PageNumber	tag	takes	two	numbers,	the
first	of	which	specifies	the	(zero	based)	index	of	the	current
page	and	the	second	of	which	specifies	the	total	number	of
pages	(zero	indicates	undetermined).	So	to	indicate	the
second	page	of	a	nine	page	output,	you	might	use	code	of
the	following	form.

[C#]
theDoc.Rendering.Metadata.Add("PageNumber",

Notes 	

"2	9");
theDoc.Rendering.Metadata.Add("PageName",
"Page	Two");

[Visual	Basic]
theDoc.Rendering.Metadata.Add("PageNumber",
"2	9")
theDoc.Rendering.Metadata.Add("PageName",
"Page	Two")

To	indicate	that	a	value	should	be	cleared	you	can	assign	an
entry	with	a	value	of	null.	This	can	be	useful	if	you	want	to,
for	example,	disable	the	automatic	insertion	of	page	name
and	number	tags.

Custom	TIFF	tags	can	be	indicated	using	a	hash	followed	by
the	number	of	the	tag.	For	example	the	EXIF	standard
describes	a	UserComment	tag	with	ID	37510.	To	insert	such
a	tag	you	would	use	the	name	"#37510".	All	custom	tags	are
assumed	to	be	string	based.

	

	 	

Example 	
None.

	
	 	

	

	

MininumLineWidth	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

0.25 No?
The	minimum
stroked	line
width	for	output

	

	 	

Notes 	

The	minimum	stroked	line	width	for	output.

This	represents	the	minimum	line	width	for	stroked
objects	in	device	units	(typically	pixels).	Lines	that
are	narrower	than	this	are	set	to	this	minimum	line
width.	This	can	be	used	to	ensure	that	narrow	lines
will	still	be	visible	even	when	drawn	on	high
resolution	outputs.

	

	 	

Example 	
None.

	
	 	

	

	

NamedSeparation	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"" No Named
separations.

	

	 	

Notes 	

Named	separations	to	be	used	in	addition	to	the
color	channels	specified	in	the	ColorSpace.

Separate	color	channels	for	the	named	separations
are	only	created	if	the	output	type	is	TIFF	and	the
output	color	space	is	CMYK	or	RGB.

If	these	conditions	are	met,	ABCpdf	will	write	each
separation	to	a	different	TIFF	page	and	set	the	TIFF
ink	name	to	the	name	of	that	separation.

This	property	can	be	either	a	comma	separated	list	of
the	named	separations,	or	it	can	be	the	keyword	'All'
which	indicates	that	all	named	separations
referenced	by	the	page	should	be	output.

For	example,	the	following	code	will	create	a	tiff	file
with	5	separated	colors,	each	written	to	its	own	page.
The	ink	name	for	each	page	will	be	the	name	of	the
separation	plane:	'Cyan',	'Magenta',	'Yellow',	'Black'
and	'Fluorescent	Orange'.

[C#] 	 	

doc.Rendering.NamedSeparation
="Fluorescent	Orange";
doc.Rendering.ColorSpace	=
XRendering.ColorSpaceType.Cmyk;
doc.Rendering.Save("separated.tiff");

[Visual	Basic]
doc.Rendering.NamedSeparation
="Fluorescent	Orange"
doc.Rendering.ColorSpace	=
XRendering.ColorSpaceType.Cmyk
doc.Rendering.Save("separated.tiff")

Note	that	ABCpdf	will	not	create	spot	colors	if	it
encounters	a	page	group	color	space	that	is	different
from	the	specified	color	space.	However	in	this
situation	it	will	still	write	the	process	colors
individually	to	the	TIFF	output.

	

Example 	
None.

	
	 	

	

	

NumTiffStrips	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

0 No

Number	of	strips
to	generate
when	writing	a
tiff	file

	

	 	

Notes 	

Number	of	strips	to	generate	when	writing	a	tiff	file.

If	the	number	of	strips	is	set	to	zero	then	ABCpdf	will
determine	the	number	of	strips	it	thinks	is	appropriate
for	the	file.

	

	 	

Example 	
None.

	
	 	

	

	

Overprint	Property

	

Type Default	Value Read	Only Description
[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	apply	overprint.

	

Notes 	

Overprint	is	a	way	of	combining	colors	when	dealing	with	subtractive	
such	as	CMYK	or	DeviceN.

Normally	when	one	color	is	painted	over	another	it	replaces	the	underlying	color.
So	a	black	over	a	cyan	becomes	yellow.	If	Overprint	is	set	then	the	top	color	may
be	placed	over	the	top	of	the	base	color.	So	black	over	cyan	becomes	a	mixture	of
both	black	and	cyan	inks.	This	can	be	useful	for	printing	purposes.

In	ABCpdf	overprint	is	only	applied	when	the	Overprint	property	is	set	to	true,	the
output	ColorSpace	is	CMYK,	the	IccOutput	is	"device",	the	PDF	graphics	state
indicates	that	overprint	mode	should	be	applied	(see	the	Adobe	PDF	Specification
for	details)	and	no	transparency	has	been	detected.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
//	Open	document	with	overprint
theDoc.Read(Server.MapPath("../mypics/Overprint.pdf"));
//	Render	the	document	(we	need	to	go	to	CMYK	for	overprint)

http://partners.adobe.com/

Example
	

theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Cmyk;
theDoc.Rendering.Overprint	=	true;
theDoc.Rendering.IccRgb	=	"device";
theDoc.Rendering.IccGray	=	"device";
theDoc.Rendering.IccCmyk	=	"device";
theDoc.Rendering.IccOutput	=	"device";
//	Put	image	back	into	another	PDF	and	render	the	document	as
RGB	
//	(so	that	we	can	see	the	effect	of	the	overprint	in	RGB)
Doc	theRgb	=	new	Doc();
theRgb.AddImageData(theDoc.Rendering.GetData(".tif"),	
theDoc.Clear();
theRgb.Rendering.DotsPerInch	=	36;
theRgb.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Rgb;
theRgb.Rendering.Save(Server.MapPath("RenderingOverprint.png"));
theRgb.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
'	Open	document	with	overprint
theDoc.Read(Server.MapPath("../mypics/Overprint.pdf"))
'	Render	the	document	(we	need	to	go	to	CMYK	for	overprint)
theDoc.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Cmyk
theDoc.Rendering.Overprint	=	True
theDoc.Rendering.IccRgb	=	"device"
theDoc.Rendering.IccGray	=	"device"
theDoc.Rendering.IccCmyk	=	"device"
theDoc.Rendering.IccOutput	=	"device"
'	Put	image	back	into	another	PDF	and	render	the	document	as	RGB
'	(so	that	we	can	see	the	effect	of	the	overprint	in	RGB)
Dim	theRgb	As	Doc	=	New	Doc()
theRgb.AddImageData(theDoc.Rendering.GetData(".tif"),	
theDoc.Clear()
theRgb.Rendering.DotsPerInch	=	36
theRgb.Rendering.ColorSpace	=	XRendering.ColorSpaceType.Rgb
theRgb.Rendering.Save(Server.MapPath("RenderingOverprint.png"))

theRgb.Clear()

RenderingOverprint.png

	

	

	

	

PaletteSize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int
[Visual	Basic]
Integer

256 No

The	number	of
colors	in	the
palette	for
indexed	color
output.

	

	 	

Notes 	

This	property	is	used	to	specify	the	number	of	colors
in	the	palette	when	using	the	"Indexed"	color	space.
The	valid	range	for	this	property	is	between	2	and
256.

Black	and	white	is	always	included	in	the	palette.	So	a
PaletteSize	of	two	will	always	produce	a	black	and
white	image	output.

	 	

	

	

ResizeImages	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	to
resize	images
for	vector	output.

	

	 	

Notes 	

Whether	to	resize	images	for	vector	output.

If	this	option	is	set	then	raster	images	will	be	resized
to	the	current	resolution	before	embedding	in	the
vector	format.	This	can	reduce	file	size	when
producing	formats	like	EMF	that	are	destined	for	a
particular	printer	at	a	particular	resolution.

Currenlty	this	option	only	takes	effect	for	EMF	output.
However	in	the	future	it	may	be	extended	to	other
vector	formats	such	as	Postscript.

	

	 	

Example 	
None.

	
	 	

	

	

SaveAlpha	Property

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

		false No Whether	to	save	the	alpha	channel	into
the	output.

	

Notes 	

This	property	determines	whether	the	Save	method	includes	an	alpha	
the	rendered	output.

Only	some	types	of	output	support	alpha.	These	are:

PNG
BMP
TIFF	(Grayscale,	RGB	and	CMYK)
PSD	(Photoshop)
Bitmap	(via	the	GetBitmap	function)

By	including	an	alpha	channel	in	your	output	you	can	identify	areas	
transparent	and	areas	on	which	no	drawing	has	taken	place.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.	We
create	a	PDF	with	some	text	on	it.	We	then	render	the	PDF	with	an	alpha	channel	and
add	the	transparent	image	into	a	new	PDF	with	a	blue	background.	The	blue	background
shows	through	where	the	image	is	transparent.

Example
	

[C#]
Doc	theDoc	=	new	Doc();
//	Add	some	text
theDoc.FontSize	=	196;
theDoc.TextStyle.HPos	=	0.5;
theDoc.TextStyle.VPos	=	0.3;
theDoc.AddText("Hello	World");
//	Render	the	PDF	with	alpha
theDoc.Rendering.SaveAlpha	=	true;
Bitmap	alphaBitmap	=	theDoc.Rendering.GetBitmap();
//	Create	a	blue	PDF
theDoc	=	new	Doc();
theDoc.Color.String	=	"0	0	255";
theDoc.FillRect();
//	Add	the	transparent	Bitmap	into	the	PDF
//	so	that	the	underlying	blue	can	show	through
theDoc.AddImageBitmap(alphaBitmap,	true);
//	Save	render	of	pdf
theDoc.Rendering.Save(Server.MapPath("RenderingSaveAlpha.png"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
'	Add	some	text
theDoc.FontSize	=	196
theDoc.TextStyle.HPos	=	0.5
theDoc.TextStyle.VPos	=	0.3
theDoc.AddText("Hello	World")
'	Render	the	PDF	with	alpha
theDoc.Rendering.SaveAlpha	=	True
Dim	alphaBitmap	As	Bitmap	=	theDoc.Rendering.GetBitmap()
'	Create	a	blue	PDF
theDoc	=	New	Doc
theDoc.Color.String	=	"0	0	255"
theDoc.FillRect()
'	Add	the	transparent	Bitmap	into	the	PDF

'	so	that	the	underlying	blue	can	show	through
theDoc.AddImageBitmap(alphaBitmap,	True)
'	Save	render	of	pdf
theDoc.Rendering.Save(Server.MapPath("RenderingSaveAlpha.png"))
theDoc.Clear()

RenderingSaveAlpha.png

	

	

	

	

SaveAppend	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

		false No

Whether	to
append	to
(rather	than
overwrite)
existing	image
files.

	

	 	

Notes 	

This	property	determines	whether	the	Save	method
appends	to	(rather	than	overwrites)	existing	image
files.

If	this	property	is	set	to	true	and	a	file	already	exists
then	the	Save	method	appends	the	rendered	image
to	the	exisiing	file	rather	than	just	overwriting	it.	In
this	way	you	can	build	up	multi-page	images.

For	in-memory	operations	you	can	use	this	property
set	to	true	in	conjunction	with	a	MemoryStream	and
the	Save	overload	that	supports	streams.

This	property	is	used	for	TIFF	output	only.

	

	 	

Example 	
See	the	SaveCompression	property.

	
	 	

	

	

SaveCompression	Property

	

Type Default
Value

Read
Only Description

[C#]	
Compression

[Visual	Basic]
Compression

		None No The	preferred	compression
method.

	

Notes
	

This	property	determines	the	preferred	compression	method.

Not	all	file	formats	support	all	compression	methods.	Not	all
compression	methods	support	all	color	spaces.	This	is	why	this
property	indicates	a	preferred	method.

The	Compression	enumeration	accepts	the	following	values:

None	[Uncompressed]
G3	[G3	Black	and	White	Fax	Compression]
G4	[G4	Black	and	White	Fax	Compression]
LZW	[LZW	Compression]
Jpeg	[Tiff	Jpeg	Compression]
AdobeFlate	[Adobe	Flate	Compression]
Flate	[Flate	Compression]
PackBits	[Macintosh	PackBits]

In	general	this	property	is	most	useful	when	producing	output	in
formats	like	TIFF	which	support	a	range	of	color	spaces	and
compression	methods.

	

Example
	

The	following	example	shows	how	to	render	a	PDF	into	a	multipage	
compressed	Fax	TIFF	using	different	vertical	and	horizontal	resolutions.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"));
//	set	up	the	rendering	parameters
theDoc.Rendering.ColorSpace	=
XRendering.ColorSpaceType.Gray;
theDoc.Rendering.BitsPerChannel	=	1;
theDoc.Rendering.DotsPerInchX	=	200;
theDoc.Rendering.DotsPerInchY	=	400;
//	loop	through	the	pages
int	n	=	theDoc.PageCount;
for	(int	i	=	1;	i	<=	n;	i++)	{
		theDoc.PageNumber	=	i;
		theDoc.Rect.String	=	theDoc.CropBox.String;
		theDoc.Rendering.SaveAppend	=	(i	!=	1);
		theDoc.Rendering.SaveCompression	=
XRendering.Compression.G4;
		theDoc.Rendering.Save(Server.MapPath("fax.tif"));
}
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"))
'	set	up	the	rendering	parameters
theDoc.Rendering.ColorSpace	=
XRendering.ColorSpaceType.Gray
theDoc.Rendering.BitsPerChannel	=	1
theDoc.Rendering.DotsPerInchX	=	200
theDoc.Rendering.DotsPerInchY	=	400

'	loop	through	the	pages
Dim	n	As	Integer	=	theDoc.PageCount
For	i	As	Integer	=	1	To	n
		theDoc.PageNumber	=	i
		theDoc.Rect.String	=	theDoc.CropBox.String
		theDoc.Rendering.SaveAppend	=	(i	<>	1)
		theDoc.Rendering.SaveCompression	=
XRendering.Compression.G4
		theDoc.Rendering.Save(Server.MapPath("fax.tif"))
Next
theDoc.Clear()

	

	

	

SaveQuality	Property

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

		75 No The	output	file	quality	for	lossy
compression.

	

Notes 	

This	property	determines	the	quality	of	the	output	image.

It	can	take	values	between	0	and	100	ranging	from	lowest	to	highest	

This	property	is	used	for	JPEG	and	JPEG	2000	output	only.

	

The	following	example	shows	the	effect	that	this	parameter	has	on	PDF	rendering.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/SpaceShuttlePage6.pdf"));
theDoc.Rendering.DotsPerInch	=	36;
//	Save	at	low	quality
theDoc.Rendering.SaveQuality	=	5;
theDoc.Rendering.Save(Server.MapPath("RenderingQuality5.jpg"));
//	Save	at	high	quality
theDoc.Rendering.SaveQuality	=	75;
theDoc.Rendering.Save(Server.MapPath("RenderingQuality75.jpg"));
theDoc.Clear();

Example

	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../mypics/SpaceShuttlePage6.pdf"))
theDoc.Rendering.DotsPerInch	=	36
'	Save	at	low	quality
theDoc.Rendering.SaveQuality	=	5
theDoc.Rendering.Save(Server.MapPath("RenderingQuality5.jpg"))
'	Save	at	high	quality
theDoc.Rendering.SaveQuality	=	75
theDoc.Rendering.Save(Server.MapPath("RenderingQuality75.jpg"))
theDoc.Clear()

RenderingQuality5.jpg	[file	size	9.26	KB]

RenderingQuality5.jpg	[file	size	37.3	KB]

	

	

	

UseEmbeddedHalftone	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

		True No
Whether	to	use
embedded
halftones.

	

	 	

Notes 	

Specifies	whether	to	use	embedded	halftones.

If	embedded	halftones	are	not	used	then	the
DefaultHalftone	will	be	used	for	all	halftoning.

	

	 	

Example 	
See	the	DefaultHalftone	property.

	
	 	

	

	

CompressObjects	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to	use
object	stream
compression	to
reduce	file	size.

	

	 	

This	property	determines	if	object	stream
compression	should	be	used.

Object	stream	compression	allows	groups	of	simple
atoms	to	be	stored	in	a	separate	stream	(an	ObjStm)
and	compressed.	This	can	reduce	the	output	file
size.

Typically	the	PDF	specification	is	efficiently
organized,	atoms	are	small	and	not	many	are
required.	Thus	the	overhead	associated	with
uncompressed	atoms	is	typically	minimal.	Since	not
all	PDF	readers	support	object	streams	we	default	to
avoiding	this	type	of	structure.	In	particular,	older
versions	of	Acrobat	(eg	8)	are	not	happy	reading
documents	which	incorporate	both	object	streams
and	linearized	content.

In	a	few	cases	the	PDF	specification	has	not	been
efficiently	organized.	The	most	notable	situation	in
which	this	occurs	is	in	the	case	of	Tagged	PDF	-
often	required	for	accessibility.	The	structures
required	for	tagging	can	result	in	a	multitude	of

Notes 	

similar	atoms	and	using	object	stream	compression
can	make	a	significant	difference	to	the	size	of
output.	It	is	perhaps	notable	that	tagged	PDF	was
introduced	in	PDF	1.4	and	then	object	streams	were
introduced	immediately	afterwards	in	PDF	1.5.	File
size	reduction	will	vary	considerably	depending	on
content	but	10%	might	be	typical.

The	other	situation	in	which	this	option	can	make	a
notable	difference	is	in	the	case	of	very	small	PDF
documents.	In	documents	measuring	ten	or	twenty
kilobytes,	atoms	can	make	up	a	significant	proportion
of	the	document	size.	In	these	situations	you	might
be	able	to	reduce	the	size	by	perhaps	30%	simply	by
enabling	this	option.

Object	stream	compression	is	incompatible	with
Incremental	update.	If	this	flag	is	set	then	object
stream	compression	will	not	be	used.

Future	Changes.	As	PDF	documents	become
more	accessible	there	may	be	more	reason	to
apply	object	stream	compression.	Similarly	as
PDF	readers	improve	there	may	be	less	reason
not	to	use	it.	As	such	it	is	possible	that	the
default	value	of	this	property	might	be	changed.
If	you	are	relying	on	a	particular	value	you
should	set	it	in	your	code.

	

	 	

Example 	

None.

	 	 	

	

	

EmbeddedGraphics	Property

	

Type Default	Value Read
Only

[C#]	
EmbeddedGraphics

[Visual	Basic]
EmbeddedGraphics

EmbeddedGraphicsType.Automatic No

	

	

This	property	specifies	how	PDF	vector	graphics	such	as	paths	are
implemented.	Different	exporters	can	take	advantage	of	different	export
formats.	However,	only	the	DOCX	and	HTML	exporters	currently	support
embedded	graphic	output.

The	EmbeddedGraphicsType	enumeration	may	take	the	following	values:

Automatic	-	selects	a	sensible	default	value	based	on	the	exporter
and	content
None	-	no	image	output
Image	-	graphics	are	rendered	to	a	bitmapped	image	(valid	for
DOCX	and	HTML)
Vml	-	graphics	are	rendered	using	VML	(valid	for	DOCX	only)
HtmlCanvas	-	graphics	are	rendered	using	the	HTML	5	Canvas
element	(valid	for	HTML	only)

Please	note	the	following	limitations	inherent	in	the	VML	specification.
VML	does	not	support	the	non-zero	fill	rule	so	VML	paths	may	not	be
identical	to	PDF	paths.	VML	does	not	support	sophisticated	dashing	so
dashed	or	dotted	lines	are	approximated.	VML	does	not	specify	how

Notes bitmapped	images	and	vector	paths	should	interact	so	the	Z-order	is
dependent	on	the	VML	display	implementation	-	a	graphic	which	overlays
an	image	in	a	PDF	may	vanish	under	the	image	using	certain	VML
viewers.

The	HTML5	Canvas	element	is	a	blank	element	on	which	JavaScript	can
draw.	For	older	versions	of	Internet	Explorer,	the	canvas	element	is
automatically	converted	into	VML	via	ExplorerCanvas.

Please	note	the	following	limitations	inherent	in	the	HTML	Canvas
specification.	The	even-odd	fill	rule	is	not	supported	so	Canvas	paths
may	not	be	identical	to	PDF	paths.	The	HTML	Canvas	does	not	support
dashing	so	dashed	or	dotted	lines	are	not	displayed.	Because	VML	only
supports	the	non-zero	fill	rule,	paths	will	look	different	in	older	versions	of
Internet	Explorer	which	are	working	via	the	ExplorerCanvas	VML
conversion.

If	an	invalid	type	is	specified	for	a	specific	export	format,	an	exception	will
be	thrown.

	

Example 	
None.

	

	

http://excanvas.sourceforge.net

	

FileExtension	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

null No

Gets	or	sets	the
file	extension	for
the	target	when
it	is	not
otherwise
specified.

	

	 	

Notes 	

This	property	is	used	to	specify	an	export	format
when	(and	only	when)	the	specification	of	the
destination	does	not	provide	a	file	extension,	such	as
a	Stream	or	an	array	of	bytes.

The	supported	values	are	"xps"	and	"swf".

	

	 	

Example 	
None.

	
	 	

	

	

Folder	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

null No

The	folder	where
to	save
additional	files
(images,	fonts,
etc).

	

	 	

Notes 	

This	property	specifies	the	folder	where	to	store
additional	data	such	as	images	and	fonts.	it	is	only
used	when	exporting	documents	to	HTML.	It	is
ignored	otherwise.

If	you	set	a	relative	path,	it	will	be	relative	to	the
location	of	the	output	path	passed	to	Doc.Save().	If
you	set	an	absolute	path,	the	output	html	will	contain
absolute	URLs.

If	you	are	saving	to	a	stream	and	specify	a	relative
path,	then	the	path	is	relative	to	the	current	directory.

If	you	are	saving	to	file	and	do	not	specify	a	folder,
then	a	folder	with	the	same	name	as	the	output	file
will	be	created	in	the	directory	where	the	output	file	is
located.

	

	 	

None.

Example
	 	 	 	

	

	

FontSubstitution	Property

	

Type Default	Value

[C#]FontSubstitutionType

[Visual	Basic]
FontSubstitutionType

FontSubstitutionType.Automatic

	

Notes 	

This	property	specifies	when	fonts	are	substituted	in	export	operations.	Only	the
DOCX	and	HTML	exporters	currently	support	this	property.	It	is	ignored	by	other
exporters,	for	example,	the	XPS	exporter.

The	FontSubstitutionType	enumeration	may	take	the	following	values:

Automatic	-	selects	a	sensible	default	value	based	on	the	exporter.
Always	-	always	substitute	fonts	with	those	installed	on	the	machine.
Missing	-	only	substitute	fonts	which	are	missing	or	could	not	
to	open	type.

	

Example 	
None.

	

	

	

IDConstant	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
assign	a
constant	file
version	identifier.

	

	 	

Notes 	

This	property	determines	if	the	file	identifiers	should
be	constant	rather	than	unique.

PDF	documents	have	two	unique	file	identifiers.	One
is	a	file	specific	identifier	which	stays	constant
throughout	the	life	of	the	file.	The	other	is	a	file
version	identifier	which	is	updated	every	time	the
document	is	saved.

This	property	allows	you	to	ensure	that	the	same
identifiers	are	always	used.	This	can	be	useful	for
debugging	if	you	need	to	do	a	binary	level
comparison	of	files	and	you	need	to	ensure	that
random	elements	have	been	eliminated.

	

	 	

Example 	
None.

	
	 	

	

	

IDHexadecimal	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
assign	non-
ASCII	file
identifiers.

	

	 	

Notes 	

This	property	determines	if	file	identifiers	should	be
hexadecimal	or	ASCII.

File	identifiers	take	the	form	of	strings.	The
characters	in	these	strings	can	span	any	range.
However	some	applications	demand	that	identifiers
are	restricted	to	the	ASCII	range	while	some	demand
that	identifiers	contain	characters	outside	the	ASCII
range.

Setting	this	value	to	false	will	allow	you	to	restrict
newly	generated	identifiers	to	the	ASCII	range.

	

	 	

Example 	
None.

	
	 	

	

	

IDUpdate	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No
Whether	to
update	the	file
version	identifier.

	

	 	

Notes 	

This	property	determines	if	the	file	version	identifier
should	be	updated.

PDF	documents	have	two	unique	file	identifiers.	One
is	a	file	specific	identifier	which	stays	constant
throughout	the	life	of	the	file.	The	other	is	a	file
version	identifier	which	is	updated	every	time	the
document	is	saved.

This	property	allows	you	to	suppress	the	version
update.

	

	 	

Example 	
None.

	
	 	

	

	

Incremental	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to	use
incremental
update	to
preserve	an
audit	trail.

	

	 	

Notes 	

This	property	determines	if	incremental	update
should	be	used.

Incremental	update	leaves	the	structure	of	any
original	document	intact	and	appends	any	changes
to	the	end	of	the	file.

Because	the	original	PDF	is	unchanged	it	is	possible
to	revert	back	to	the	state	before	the	changes	were
applied.	Because	only	updated	objects	are	written	to
disk	it	can	result	in	faster	write	times.

However	most	importantly	you	have	to	use
incremental	update	if	you	wish	to	preserve	any
signed	signature	fields	present	in	the	document.
Indeed	after	any	signature	field	is	signed	you	need	to
commit	changes	to	file	using	incremental	update.

Incremental	Update	is	incompatible	with	the
Linearization,	Remapping	and	CompressObjects
options.	As	such	it	will	override	these	settings.

	 	

	

Example 	
None.

	
	 	

	

	

Linearize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
linearize	the
output	for	fast
web	viewing.

	

	 	

Notes 	

This	property	determines	if	output	should	be
linearized	for	fast	viewing	over	the	web.

Linearized	PDFs	are	organized	in	a	special	way	to
enable	efficient	access	over	the	web.	The	output	is
valid	PDF	in	all	ways	but	it	is	structured	to	allow	web
viewers	to	access	only	the	portions	of	the	PDF	that
they	need.

From	a	practical	point	of	view	this	means	that	a
Linearized	PDF	opens	instantly	rather	than	requiring
that	the	entire	PDF	is	downloaded	before	it	can	be
seen.

Adobe	sometimes	refer	to	Linearization	as	Fast	Web
View.

There	is	a	performance	and	memory	overhead
associated	with	linearization.	However	this	is
something	that	you	should	normally	only	notice	when
handling	huge	documents.

	

	 	

Example 	
None.

	
	 	

	

	

Remap	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
reduce	size	by
remapping
objects.

	

	 	

Notes 	

This	property	determines	if	output	size	should	be
reduced	by	remapping	objects.

PDF	documents	consist	of	a	sequence	of	numbered
objects.	If	objects	have	been	deleted	there	may	be
gaps	in	this	sequence.	Gaps	can	lead	to	PDFs	which
are	larger	than	necessary.

If	this	property	is	set	to	true	then,	when	the	document
is	saved,	remapping	will	occur	to	eliminate	these
gaps.

Note	that	if	the	Linearize	property	is	set	to	true	then
remapping	will	occur	no	matter	the	value	of	this
property.

	

	 	

Example 	
None.

	
	 	

	

	

SaveQuality	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

		50 No
The	XPS	output
quality	for	lossy
compression.

	

	 	

Notes 	

This	property	determines	the	quality	of	output	images
in	XPS	export.

Under	some	circumstances	it	can	be	necessary	to
decompress	and	recode	JPEG	and	JPEG	2000
images	that	are	stored	in	a	PDF.	This	typically	occurs
when	exporting	to	another	format	which	does	not
support	exactly	the	same	features	as	are	supported
in	PDF.

This	property	determines	the	output	quality	for	the
recompression	of	such	images.	This	is	only	used
during	export	to	XPS.

	

	 	

Example 	 None. 	 	

	

	

Template	Property

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

null No The	path	to	the
template	file.

	

Notes 	

This	property	specifies	the	template	file,	which	provides	some
format-specific	data	essential	to	the	usefulness	of	the	output
when	saving	in	certain	formats	such	as	SWF.

When	saving	in	SWF,	if	the	property	is	null,	the	output	contains
the	content	of	the	current	rectangle	of	the	current	PDF	page.

When	saving	in	SWF,	if	the	property	is	the	special	value
XSaveTemplateData.Template_OnePagePerFrame,	each	frame
of	the	output	contains	the	content	of	a	PDF	page.	The	contents	of
pages	of	different	sizes	will	be	centered.	You	can	optionally
specify	settings	that	are	normally	provided	by	a	template	file.
Such	settings	are	separated	by	NUL	and	the	name-value
separator	is	colon.	The	values	of	settings	are	specified	in	string	in
the	invariant	culture.

Settings	for
XSaveTemplateData.Template_OnePagePerFrame

Name Type Default
Value Description

[C#]
ushort 64	(¼ The	frame	rate	in

FrameRate
[Visual	Basic]
UShort

frame	per
second)

1/256	frames	per
second.

Example 	

See	the	example	project	for	how	to	use	a	SWF	template	file.

Here	we	specify	one	page	per	frame	and	2	frames	per	second	for	SWF
format.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
theDoc.SaveOptions.Template	=
XSaveTemplateData.Template_OnePagePerFrame	+
"\0FrameRate:512";
theDoc.Save(Server.MapPath("swfsave.swf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
theDoc.SaveOptions.Template	=
XSaveTemplateData.Template_OnePagePerFrame	_
		&	ControlChars.NullChar	&	"FrameRate:512"
theDoc.Save(Server.MapPath("swfsave.swf"))

	

	

	

TemplateData	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]XSaveTemplateData

[Visual	Basic]
XSaveTemplateData

null No
The
template
data.

	

	 	

Notes 	

This	property	specifies	the	template	data	that	is	not
obtained	from	Template	and	which	provides	some
format-specific	data	essential	to	the	usefulness	of	the
output	when	saving	in	certain	formats	such	as	SWF.

	 	

Example 	
None.

	
	 	

	

	

WritePageSeparator	Property

	

Type Default
Value

Read
Only

[C#]XSaveOptions.PageSeparatorMethod

[Visual	Basic]
XSaveOptions.PageSeparatorMethod

null No

	

Notes 	

This	delegate	is	called	during	HTML	export.

If	it	is	null,	a	default	page	separator	is	produced	for	each	page.	You	can
customize	the	page	separator	by	setting	this	property.

The	definition	of	the	XSaveOptions.PageSeparatorMethod	delegate	
as	follows.

[C#]
delegate	void	PageSeparatorMethod(int	pageNum,
ExportArgs	e);

[Visual	Basic]
Delegate	Sub	PageSeparatorMethod(pageNum	As
Integer,	e	As	ExportArgs)

pageNum	is	the	page	number,	starting	with	1.

The	page	separator	is	to	be	written	to	e.Writer.	e.Writer	is	an	XmlWriter
for	HTML	export.

	

Example
	

The	following	example	shows	how	to	customize	the	page	separator.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
theDoc.SaveOptions.WritePageSeparator	=	delegate(int
pageNum,	XSaveOptions.ExportArgs	e)	{
		XmlWriter	writer	=	(XmlWriter)e.Writer;
		if(pageNum	>	1)	{
				writer.WriteStartElement("hr");
				writer.WriteEndElement();
		}
		writer.WriteStartElement("div");
		writer.WriteAttributeString("align",	"right");
		writer.WriteString(string.Format("Page	{0}",
pageNum));
		writer.WriteFullEndElement();
};
theDoc.Save(Server.MapPath("PageSeparator.htm"));
theDoc.Dispose();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
theDoc.SaveOptions.WritePageSeparator	=	AddressOf
WriteSeparator
theDoc.Save(Server.MapPath("PageSeparator.htm"))
theDoc.Dispose()

Private	Shared	Sub	WriteSeparator(pageNum	As

Integer,	e	As	ExportArgs)
		Dim	writer	As	XmlWriter	=	CType(e.Writer,
XmlWriter)
		If	pageNum	>	1	Then
				writer.WriteStartElement("hr")
				writer.WriteEndElement()
		End	If
		writer.WriteStartElement("div")
		writer.WriteAttributeString("align",	"right");
		writer.WriteString(String.Format("Page	{0}",
pageNum))
		writer.WriteFullEndElement()
End	Sub

	

	

SetMeasureResolution	Function

Sets	the	measurement	resolutions.

	

Syntax 	

[C#]
void	SetMeasureResolution(double	dpi)
void	SetMeasureResolution(double	dpiX,	double	dpiY)

[Visual	Basic]
Sub	SetMeasureResolution(dpi	As	Double)
Sub	SetMeasureResolution(dpiX	As	Double,	dpiY	As
Double)

	

Params 	

Name Description
dpi The	new	measurement	resolution	in	DPI.
dpiX The	new	horizontal	measurement	resolution	in	DPI.
dpiY The	new	vertical	measurement	resolution	in	DPI.

	

Notes 	

Sets	the	measurement	resolutions,	which	affects	the	measurements	
certain	output	formats	that	does	not	support	physical	sizes.	
SWF	measurements	are	pixel-based	while	PDF	measurements	
points	(1/72	of	an	inch).	This	specifies	how	many	pixels	in	SWF	
in	PDF	represents.

The	values	do	not	affect	the	pixel	sizes	of	raster-image	contents.	
of	the	values	(dpiX	or	dpiY)	is	invalid,	the	other	value	may	be	used	for

both	values.

For	SWF,	these	values	are	used	only	if	XSaveOptions.Template

	

Example 	

Here	we	use	72	DPI	so	that	1	inch	in	PDF	becomes	72	pixels	in	SWF.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
theDoc.SaveOptions.TemplateData	=	new
XSaveTemplateData();
theDoc.SaveOptions.TemplateData.SetMeasureResolution(72);
theDoc.Save(Server.MapPath("swfsave.swf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
theDoc.SaveOptions.TemplateData	=	New	XSaveTemplateData()
theDoc.SaveOptions.TemplateData.SetMeasureResolution(72)
theDoc.Save(Server.MapPath("swfsave.swf"))

	

	

	

ImageDisplaySmoothing	Property 	 	

	

Type Default ReadOnly Description

[C#]	
RasterSmoothing

[Visual	Basic]
RasterSmoothing

Default No
The	smoothing
for	displaying
images.

	

	 	

Notes 	

This	property	specifies	the	smoothing	for	displaying
images.

It	can	take	any	of	the	following	values:

Default	–	specifies	the	default	algorithm.
Alias	–	specifies	no	anti-aliasing.
AntiAlias	–	specifies	anti-aliasing.

Some	output	formats	support	different	smoothing
types	for	displaying	images.

For	SWF,	this	affects	the	FillStyleType	field	of	the
FILLSTYLE	structure	for	images.

	

	 	

Example 	
None.

	
	 	

	

	

JpegQuality	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

-1 No The	JPEG
quality	level.

	

	 	

Notes 	

This	property	specifies	the	quality	level	when
encoding	images	in	JPEG.	The	value	ranges	from	0
(the	worst	quality,	smaller	output)	to	100	(the	best
quality,	larger	output).	Setting	the	property	to	-1	is
considered	as	not	specifying	the	quality	level,	and	an
appropriate	default	quality	level	is	used.

	

	 	

Example 	
None.

	
	 	

	

	

MeasureDpiX	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 Yes
The	horizontal
measurement
resolution.

	

	 	

Notes 	
To	change	the	value,	use	SetMeasureResolution.

	
	 	

Example 	
None.

	
	 	

	

	

MeasureDpiY	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 Yes
The	vertical
measurement
resolution.

	

	 	

Notes 	
To	change	the	value,	use	SetMeasureResolution.

	
	 	

Example 	
None.

	
	 	

	

	

ReencodeJpeg	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	JPEG
images	are	re-
encoded	in
JPEG.

	

	 	

Notes 	

This	property	is	effectual	where	both	the	source	and
the	destination	formats	are	JPEG.	It	specifies
whether	JPEG	encoding	occurs.	When	it	is	false,	the
source	is	directly	used	as	the	output	without	re-
encoding.	When	it	is	true,	the	source	is	re-encoded	in
JPEG.

Reencoding	allows	a	JPEG	image	to	use	a	different
quality	level.	However,	reencoding	a	JPEG	image	at
the	same/a	higher	quality	level	does	not	improve	the
image	quality	and	may	degrade	it.

	

	 	

Example 	
None.

	
	 	

	

	

InstallLicense	Method 	 	

Install	a	license.

	
	 	

Syntax 	

[C#]
bool	InstallLicense(string
license)

[Visual	Basic]
Function	InstallLicense(license
As	String)	As	Boolean

	

	 	

Params 	

Name Description
license The	license	to	install.

return True	if	a	license	is	installed,	otherwise
false.

	

	 	

Notes 	

Use	this	method	to	install	a	license.	Call	this
method	at	application	startup	before	any
ABCpdf	objects	have	been	created.	You	only
need	to	call	this	method	once	though	calling	it
additional	times	will	not	cause	problems.

Any	license	installed	using	this	method	will
remain	available	to	the	current	process	(or
application	pool)	until	it	unloads.

	 	

	

Example 	
See	Manual	Installation.

	
	 	

	

	

InstallRedistributionLicense
Method

	 	

Install	a	redistribution	license.

	
	 	

Syntax 	

[C#]
bool
InstallRedistributionLicense(string
license)

[Visual	Basic]
Function
InstallRedistributionLicense(license
As	String)	As	Boolean

	

	 	

Params 	

Name Description
license The	license	to	install.

return True	if	a	license	is	installed,	otherwise
false.

	

	 	

Use	this	method	to	install	a	redistribution
license.	Call	this	method	at	application	startup
before	any	ABCpdf	objects	have	been	created.
You	only	need	to	call	this	method	once	though
calling	it	additional	times	will	not	cause

Notes
	 problems.

Any	license	installed	using	this	method	will
remain	available	to	the	current	process	(or
application	pool)	until	it	unloads.

	

	 	

Example 	
See	Manual	Installation.

	
	 	

	

	

InstallSystemLicense	Method 	 	

Install	a	system	license.

	
	 	

Syntax 	

[C#]
bool	InstallSystemLicense(stirng
license)

[Visual	Basic]
Function
InstallSystemLicense(license	As
String)	As	Boolean

	

	 	

Params 	

Name Description
license The	license	to	install.

return True	if	a	license	is	installed,	otherwise
false.

	

	 	

Use	this	method	to	install	a	system	license.	Call
this	method	at	application	startup	before	any
ABCpdf	objects	have	been	created.

This	method	saves	the	license	for	use	on	a
system-wide	basis.	So,	once	a	license	is
successfully	installed,	it	will	stay	on	the	system
and	be	picked	up	by	ABCpdf	automatically.

Notes 	

Licenses	are	specific	to	the	process	model	so
licenses	installed	for	with	32-bit	ABCpdf	will	not
be	available	to	64-bit	ABCpdf	and	vice	versa.
Indeed,	a	license	may	be	installed	successfully
without	being	valid	for	the	current	process	so	it
is	a	good	idea	to	check	LicenseValid	after
installing	a	system	license.

For	security	reasons,	you	should	not	use	this
method	unless	you	have	complete	control	of	the
system	on	which	you	are	installing.

	

	 	

Example 	
See	Manual	Installation.

	
	 	

	

	

InstallTrialLicense	Method 	 	

Install	a	trial	license

	
	 	

Syntax 	

[C#]
bool	InstallTrialLicense(string
license)

[Visual	Basic]
Function
InstallTrialLicense(license	As
String)	As	Boolean

	

	 	

Params 	

Name Description
license The	license	to	install.

return True	if	a	license	is	installed,	otherwise
false.

	

	 	

Notes 	

Use	this	method	to	install	a	trial	license.	Call
this	method	at	application	startup	before	any
ABCpdf	objects	have	been	created.	You	only
need	to	call	this	method	once	though	calling	it
additional	times	will	not	cause	problems.

Any	license	installed	using	this	method	will
remain	available	to	the	current	process	(or

	 	

application	pool)	until	it	unloads.

	

Example 	
See	Manual	Installation.

	
	 	

	

	

Register	Method 	 	

Register	and	install	a	trial	license.

	
	 	

Syntax 	

[C#]
void	Register()

[Visual	Basic]
Sub	Register()

	

	 	

Params 	

Name Description
return None.

	

	 	

Notes 	

Use	this	method	to	register	ABCpdf	and	install	a
trial	license	if	no	license	is	installed.

You	should	never	need	to	call	this	method	as
both	the	process	of	installing	and	the	process	of
running	the	PDFSettings	application	will
automatically	register	ABCpdf.

If	for	some	reason	the	registration	fails,	all	you
need	to	do	is	run	the	PDFSettings	application
as	Administrator.

	

	 	

Example 	
None.

	
	 	

	

	

SetConfigSection	Method

Set	the	application	configuration	section.

	

Syntax 	

[C#]
void	SetConfigSection(ConfigSection	section)

[Visual	Basic]
Sub	SetConfigSection(section	As	ConfigSection)

	

Params 	

Name Description
section The	ABCpdf	configuration	section.
return None.

	

Use	this	method	to	change	ABCpdf's	configuration	section	object.

Normally,	you	will	not	need	to	call	this	method	because	ABCpdf	
detects	the	presence	of	the	default	configuration	file.	It	does	so	by	calling
System.Configuration.ConfigurationManager.GetSection("ABCpdf10.Section").
So,	as	long	as	you	have	a	valid	ABCpdf10.Section	in	your	configuration	
there	should	be	no	need	to	call	this	method.

For	local	applications,	configuration	files	are	normally	stored	in	the	
folder	as	the	application	and	are	called	<application.exe>.config,	
<application.exe>	is	the	file	name	of	the	application.	For	web	
configuration	section	is	stored	in	Web.config.

Notes 	

The	ABCpdf	section	name	should	be	ABCpdf10.Section.	The	type	
WebSupergoo.ABCpdf10.ConfigSection.	Refer	to	the	example	
details.	ConfigSection	is	an	opaque	class	that	contains	an	array	of
Preferences.

Each	preference	has	a	Key	and	a	Value.

If	a	preference	is	not	found	in	the	configuration	file,	it	is	read	from	the	registry.

The	preference	key	is	the	same	as	the	registry	key	name.	For	
Key="LogErrors"	Value="1"	/>	is	equivalent	to	a	DWORD	registry	key	called
LogErrors	and	with	Value	set	to	1.	Refer	to	Registry	Keys	in	Concepts	for
further	details.	Make	sure	that	the	value	matches	the	type	as	specified	in
Registry	Keys.

Warning:	changing	preferences	from	ABCpdf	events/callbacks	for	
that	use	those	preferences	may	cause	problems.

	

Example
	

Here	is	an	example	of	a	.config	file	that	contains	a	valid	ABCpdf	config
section.	The	illustrated	ABCpdf	preferences	are	LogErrors,	UserName
and	Password.	Other	preferences	will	be	read	from	the	Registry.

<?xml	version="1.0"	encoding="utf-8"?>
<configuration>
		<configSections>
				<section	name="ABCpdf10.Section"
type="WebSupergoo.ABCpdf10.ConfigSection,	ABCpdf"
allowLocation="true"	
allowDefinition="Everywhere"
allowExeDefinition="MachineToLocalUser"
overrideModeDefault="Allow"	
restartOnExternalChanges="true"
requirePermission="true"	/>
		</configSections>
		<ABCpdf10.Section>

				<Preferences>
						<clear	/>
						<add	Key="TempDirectory"	Value="C:\Temp"	
						<add	Key="LogErrors"	Value="1"	/>
						<add	Key="MakeURLsUnique"	Value="0"	/>
						<add	Key="MSOfficeShow"	Value="1"	/>
				</Preferences>
		</ABCpdf10.Section>
</configuration>

	

	

Key	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

None Yes

A	trial	license
key	used	for
remote
deployment.

	

	 	

Notes 	

This	property	contains	a	trial	license	that	you	can	use
for	remote	deployment.

If	ABCpdf	has	not	yet	been	registered,	this	property
will	be	empty.

	

	 	

Example 	 None. 	 	

	

	

LicenseDescription	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

None Yes
The	current
license	for	the
software.

	

	 	

Notes 	

This	property	describes	the	current	license	for	the
software	in	human	readable	format.	Typically,	this	will
be	trial,	standard	or	professional.

	

	 	

Example 	 None. 	 	

	

	

Licensee	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]string

[Visual	Basic]
String

None Yes
The	current
licensee	for	the
software.

	

	 	

Notes 	

This	property	retrieves	the	licensee	for	the	software
and	presents	it	in	a	human	readable	format.

The	licensee	is	the	legal	entity	to	which	ABCpdf	is
registered.	The	licensee	is	selected	at	the	point	at
which	a	license	is	purchased	and	that	license	is
specific	to	that	entity.	Licensees	are	normally
companies	but	may	be	individuals.

	

	 	

Example 	 None. 	 	

	

	

LicenseType	Property 	 	

	

Type Default ReadOnly Description

[C#]	
LicenseType

[Visual	Basic]
LicenseType

	n/a	 Yes
The	current
feature	level	for
the	software.

	

	 	

Notes 	

The	LicenseType	enumeration	may	take	the	following
values:

None
TimePeriod
Standard
Professional

	

	 	

Example 	
None.

	
	 	

	

	

LicenseValid	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

None Yes
Whether	the
current	license	is
valid.

	

	 	

Notes 	

This	property	determines	whether	the	current	license
is	valid.

After	installing	a	license,	you	may	wish	to	check	that
it	is	installed	and	valid	using	this	property.

	

	 	

Example 	 None. 	 	

	

	

LogErrors	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]bool

[Visual	Basic]
Boolean

False No

Whether	to	log
errors	in	the
Application
Event	Log.

	

	 	

Notes 	

This	property	determines	whether	to	log	errors	in	the
Application	Event	Log.

	

	 	

Example 	 None. 	 	

	

	

Version	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]int

[Visual	Basic]
Integer

None Yes The	software
version.

	

	 	

Notes 	
This	property	gets	the	software	version.

	
	 	

Example 	 None. 	 	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example 	
None.

	
	 	

	

	

Ascender	Property 	 	

	

Type Default ReadOnly Description

[C#]int

[Visual	Basic]
Integer

-1 No

An	adjustment	to
allow	the	text
ascender	to
coincide	with	the
top	of	the	text
area.

	

	 	

Notes 	

The	distance	between	the	line	spacing	below	the	top
of	the	text	frame	and	the	first	baseline.

Because	LineSpacing	is	always	applied	at	the	top,
the	top	of	the	text	rectangle	needs	to	be	shifted	up	by
LineSpacing	for	better	control	of	the	position	of	the
first	line.

This	property	is	measured	in	1000ths	of	the	font	size.
When	it	is	-1,	default	spacing	will	be	applied.

	

	 	

Example 	 None. 	 	

	

	

Bold	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	to	apply	a
synthetic	bold
effect.

	

	

Notes 	

This	property	determines	whether	a	synthetic	bold	effect
is	applied	to	text.

It	is	generally	better	to	specify	a	bold	typeface	rather
than	synthesize	a	bold	effect	using	the	current	typeface.
However	under	some	circumstances	this	may	not	be
possible	and	you	may	prefer	to	apply	a	synthetic	bold
effect.

	

	

In	this	example	we	add	some	bold	text	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText;
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.";
theDoc.Rect.Inset(20,	40);

Example 	

theDoc.TextStyle.Size	=	96;
theDoc.TextStyle.Bold	=	true;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylebold.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur."
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	96
theDoc.TextStyle.Bold	=	True
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylebold.pdf"))
theDoc.Clear()

stylebold.pdf

	

	

	

	

CharSpacing	Property 	

	

Type Default ReadOnly Description

[C#]double

[Visual	Basic]
Double

0.0 No The	inter-character
spacing.

	

	

Notes 	

This	property	controls	the	spacing	between	each	character.
It	is	sometimes	called	tracking	but	should	not	be	confused
with	kerning	which	is	slightly	different.

Each	character	in	a	string	of	text	has	a	width	which	is	used
for	positioning	the	next	character.	The	CharSpacing	is
added	to	the	width	of	each	character.

In	the	horizontal	writing	mode,	specifying	a	positive	value
has	the	effect	of	stretching	out	the	text.	Specifying	negative
values	has	the	effect	of	condensing	the	text.	In	the	vertical
writing	mode,	positive	values	condense	the	text,	and
negative	values	stretch	out	the	text.	See	the
FontObject.WritingMode	property.	

Because	this	property	is	measured	as	an	absolute	value
the	visual	effect	will	be	greater	if	your	text	is	smaller.

	

	

In	this	example	we	add	three	blocks	of	text	to	a	document.	The
first	block	uses	the	default	spacing.	The	second	block	uses	a

Example

	

positive	value	to	stretch	out	the	text.	The	last	block	uses	a
negative	value	to	condense	the	text.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.TextStyle.Size	=	96;
theDoc.AddText("Zero	CharSpacing");
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.CharSpacing	=	10;
theDoc.AddText("Positive	CharSpacing");
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.CharSpacing	=	-10;
theDoc.AddText("Negative	CharSpacing");
theDoc.Save(Server.MapPath("stylecspace.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.TextStyle.Size	=	96
theDoc.AddText("Zero	CharSpacing")
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.CharSpacing	=	10
theDoc.AddText("Positive	CharSpacing")
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.CharSpacing	=	-10
theDoc.AddText("Negative	CharSpacing")
theDoc.Save(Server.MapPath("stylecspace.pdf"))
theDoc.Clear()

stylecspace.pdf

	

	

	

	

CharUsage	Property 	 	

	

Type Default ReadOnly Description

[C#]	
CharUsageType

[Visual	Basic]
CharUsageType

Default No The	usage	of
characters.

	

	 	

Notes 	

This	property	specifies	the	characters	to	use.

The	CharUsageType	enumeration	can	take	any	of
the	following	values:

Default
SymbolUnicode	—	enables	the	range	0xf000–
0xf0ff	for	symbol	fonts.	Symbol	fonts	are	usually
used	in	ANSI	encoding,	and	their	characters	are
in	the	range	0–255.	Since	symbol	characters	do
not	represent	Latin	characters,	the	range
0xf000–0xf0ff	in	Unicode	is	also	mapped	to
them.

	

	 	

Example 	
None.

	
	 	

	

	

Direction	Property 	

	

Type Default	Value Read
Only Description

[C#]	
DirectionType

[Visual	Basic]
DirectionType

DirectionType.Default No
The	default
text
direction

	

	

Notes
	

This	property	specifies	the	default	primary	text	direction.

The	DirectionType	enumeration	may	take	the	following
values:

Default	-	left-to-right	reading	direction
LeftToRight	-	left-to-right	reading	direction	(e.g.
English)
RightToLeft	-	right-to-left	reading	direction	(e.g.
Hebrew).

If	a	run	of	English	(left-to-right)	text	is	followed	by	a	run
of	Hebrew	(right-to-left)	text,	LeftToRight	gives	English
text	on	the	left	and	Hebrew	text	on	the	right,	whereas
RightToLeft	gives	English	text	on	the	right	and	Hebrew
text	on	the	left.	In	any	case,	the	English	text	is	still	left-
to-right,	and	the	Hebrew	text	is	still	right-to-left.

To	support	ligatures	(glyph	shaping)	and	right-to-left	text,
LeftToRight	or	RightToLeft	must	be	specified	at	least
once	somewhere.	It	can	be	in	this	property	or	in	the	dir

	

attribute	of	StyleRun	(for	Doc.AddHtml).	If	only	Default	is
specified,	there	will	be	no	ligature	support	and	right-to-
left	text	may	appear	incorrect.

	

Example 	
None.

	
	

	

	

Font	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

0 No The	current
Font	ID.

	

	 	

Notes 	

The	font	used	for	drawing	text.

This	property	holds	the	current	Font	ID	and
determines	the	style	of	text	that	is	added	to	the
document	using	methods	like	Doc.AddText.

To	get	a	Font	ID	you	need	to	add	your	font	to	the
current	document	using	the	Doc.AddFont	method.
See	the	Doc.Font	property	for	further	details.

	

	 	

Example 	
None.

	
	 	

	

	

HPos	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

0? No?

The	current
horizontal
positioning	factor
(0	to	1).

	

	 	

Notes 	

This	property	determines	the	horizontal	offset	of
blocks	of	text	-	used	for	left	alignment,	right	alignment
or	centering.

The	offset	is	measured	as	a	proportion	of	the
distance	from	the	left.	A	value	of	zero	indicates	left
alignment,	a	value	of	one	half	indicates	centered	text
and	a	value	of	one	indicates	right	alignment.
Intermediate	values	can	be	used	for	intermediate
offsets.

To	vertically	align	text	use	the	VPos	property.	To
justify	text	use	the	Justification	property.

	

	 	

The	following	code	adds	two	blocks	of	text	to	a	document.
The	first	block	is	left	aligned	and	the	second	is	right	aligned.
Before	adding	the	text	we	change	the	current	rectangle	and
frame	it	so	that	you	can	see	how	the	text	is	aligned.

Example 	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.Rect.Magnify(1.0,	0.5);
theDoc.Rect.Inset(40,	40);
theDoc.FrameRect();
theDoc.AddText("Left	justified	text...");
theDoc.Rect.Move(0,	theDoc.Rect.Height	+
80);
theDoc.FrameRect();
theDoc.TextStyle.HPos	=	1.0;
theDoc.AddText("Right	justified	text...");
theDoc.Save(Server.MapPath("dochpos.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.Rect.Magnify(1.0,	0.5)
theDoc.Rect.Inset(40,	40)
theDoc.FrameRect()
theDoc.AddText("Left	justified	text...")
theDoc.Rect.Move(0,	theDoc.Rect.Height	+
80)
theDoc.FrameRect()
theDoc.TextStyle.HPos	=	1.0
theDoc.AddText("Right	justified	text...")
theDoc.Save(Server.MapPath("dochpos.pdf"))
theDoc.Clear()

	 	

dochpos.pdf

	

	

Indent	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	first	line	of
paragraph	indent.

	

	

Notes 	

This	property	determines	the	horizontal	indent	applied	to
the	first	line	of	every	paragraph.

If	the	indent	is	positive	the	start	of	the	first	line	is	shifted	to
the	right	by	the	specified	number	of	points.	If	the	indent	is
negative	it	is	shifted	to	the	left	by	the	specified	number	of
units.

	

	

In	this	example	we	add	a	block	of	text	to	a	document.	We	specify
a	ParaSpacing	value	to	space	out	the	paragraphs	and	an	Indent
value	to	indent	the	first	line	of	each	paragraph.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes	lingua,
institutis,	legibus	inter	se	differunt.";

Example

	

theText	=	theText	+	theText;
theText	=	theText	+	"\r\n"	+	theText	+	"\r\n";
theText	=	theText	+	theText	+	theText	+
theText;
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	16;
theDoc.TextStyle.ParaSpacing	=	16;
theDoc.TextStyle.Indent	=	48;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("styleindent.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.	Hi
omnes	lingua,	institutis,	legibus	inter	se
differunt."	
theText	=	theText	+	theText
theText	=	theText	+	vbCrLf	+	theText	+	vbCrLf
theText	=	theText	+	theText	+	theText	+	theText
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	16
theDoc.TextStyle.ParaSpacing	=	16
theDoc.TextStyle.Indent	=	48
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("styleindent.pdf"))
theDoc.Clear()

styleindent.pdf

	

	

	

Italic	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	apply	a
synthetic	italic	effect.

	

	

Notes 	

This	property	determines	whether	a	synthetic	italic	effect	is
applied	to	text.

It	is	generally	better	to	specify	an	italic	typeface	rather	than
synthesize	an	italic	effect	using	the	current	typeface.
However,	under	some	circumstances	this	may	not	be
possible	and	you	may	prefer	to	apply	a	synthetic	italic
effect.

	

	

In	this	example	we	add	some	italic	text	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText;
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.";
theDoc.Rect.Inset(20,	40);

Example 	

theDoc.TextStyle.Size	=	96;
theDoc.TextStyle.Italic	=	true;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("styleitalic.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur."
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	96
theDoc.TextStyle.Italic	=	True
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("styleitalic.pdf"))
theDoc.Clear()

styleitalic.pdf

	

	

	

Justification	Property

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0.0 No The	horizontal	justification
factor.

	

Notes 	

Allows	you	to	adjust	the	horizontal	justification.

Every	line	of	text	is	drawn	within	a	bounding	box	determined	by	the
Doc.Rect	property.	The	justification	property	can	be	used	to	space
out	words	so	that	they	fit	the	bounding	box	exactly.

Typically	you	will	only	need	to	use	values	of	zero	-	no	justification	
and	one	-	full	justification.	However	intermediate	values	can	be	used
to	partially	justify	text.

As	each	line	is	drawn	the	difference	between	the	width	of	the	line
and	the	width	of	the	bounding	box	is	evaluated	to	determine	the
amount	of	free	width.	This	free	width	is	divided	by	the	number	of
space	characters	in	the	line	and	then	multiplied	by	the	justification
factor	to	produce	an	inter-word	spacing	for	the	line.	Lines	at	the	end
of	paragraphs	are	not	justified.

Text	alignment	is	determined	by	the	TextStyle.HPos	and
TextStyle.VPos	properties.

	

Example

	

In	this	example	we	add	two	blocks	of	text	to	a	document.	The	first	
with	no	justification	and	the	second	is	added	with	a	justification	factor	of
one.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam	Aquitani,
tertiam	qui	ipsorum	lingua	Celtae,	nostra	Galli
appellantur.";
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	48;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-350);
theDoc.TextStyle.Justification	=	1.0;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylejustification.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,	nostra
Galli	appellantur."	
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	48
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-350)
theDoc.TextStyle.Justification	=	1.0
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylejustification.pdf"))
theDoc.Clear()

stylejustification.pdf

	

	

	

	

Kerning	Property 	

	

Type Default
Value

Read
Only Description

[C#]	
KerningType

[Visual	Basic]
KerningType

Default No The	kerning
method.

	

	

Notes 	

The	kerning	method.

Kerning	is	similar	to	character	spacing	in	that	it	controls
how	far	apart	two	characters	are.	However	rather	than
being	a	constant,	it	is	a	value	which	is	determined	by	the
two	characters	themselves.	So	the	kerning	for	"tt"	would
likely	be	different	than	for	"te".

The	KerningType	enumeration	may	take	the	following
values:

None
Default

The	default	kerning	method	is	based	around	the	kerning
tables	in	the	TrueType	font	file.	Not	all	fonts	contain
kerning	tables	so	not	all	fonts	will	kern.

	

	

The	following	shows	how	to	insert	a	table	of	contents	while

Example
	

disabling	kerning.

[C#]
string	text	=
File.ReadAllText("tableofcontents.txt");
text	=	text.Replace("\r",	"
");	//	make	our
carriage	returns	into	breaks
text	=	text.Replace("	",	"					");	//	make	our
indent	at	start	of	line	into	nbsp
using	(Doc	doc	=	new	Doc())	{
		doc.TextStyle.Size	=	36;
		doc.TextStyle.Kerning	=
XTextStyle.KerningType.None;
		doc.Rect.Inset(10,	10);
		doc.Page	=	doc.AddPage();
		doc.AddHtml(text.Replace("	~",	"<leader>.
</leader>"));
		doc.Save("TableOfContentsWithLeaders.pdf");
}

[Visual	Basic]
		Dim	text	As	String	=
File.ReadAllText("tableofcontents.txt")
		text	=	text.Replace(vbCr,	"
")
		'	make	our	carriage	returns	into	breaks
		text	=	text.Replace("	",	"					")
		'	make	our	indent	at	start	of	line	into	nbsp
		Using	doc	As	New	Doc()
				doc.TextStyle.Size	=	36
				doc.TextStyle.Kerning	=
XTextStyle.KerningType.None
				doc.Rect.Inset(10,	10)
				doc.Page	=	doc.AddPage()
				doc.AddHtml(text.Replace("	~",	"<leader>.
</leader>"))
				doc.Save("TableOfContentsWithLeaders.pdf")

		End	Using
End	Sub

Using	the	following	input	text.

Chapter	1:	Getting	Started	~1
Introduction	~2
Next	Steps	~3
Chapter	2:	What	To	Do	~4
Some	Difficult	Bits	~15
Some	More	Difficult	Bits	~20
Chapter	3:	In	Conclusion	~21
Summary	~22
Endword	~23

We	get	the	following	output.

TableOfContentsWithLeaders.pdf

	

	

	

LeftMargin	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	paragraph
indent.

	

	

Notes 	

Allows	you	to	apply	a	left	margin	to	a	block	of	text.

The	left	margin	is	a	horizontal	indent	applied	to	every	line
of	text.	You	can	achieve	the	same	effect	by	insetting	the
left	of	the	current	Rect	but	using	this	property	can	be	more
convenient.

If	the	value	is	positive	the	block	is	shifted	to	the	right	by	the
specified	number	of	units.	If	the	value	is	negative	it	is
shifted	to	the	left	by	the	specified	number	of	units.

	

	

In	the	following	example	we	add	three	blocks	of	text	to	a
document.	The	first	block	uses	the	default	left	margin.	The
subsequent	blocks	use	different	left	margin	settings	to	indent	the
text.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in

Example

	

partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani...";
theDoc.TextStyle.Size	=	48;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-250);
theDoc.TextStyle.LeftMargin	=	100;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-250);
theDoc.TextStyle.LeftMargin	=	200;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylemargin.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani..."	
theDoc.TextStyle.Size	=	48
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-250)
theDoc.TextStyle.LeftMargin	=	100
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-250)
theDoc.TextStyle.LeftMargin	=	200
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylemargin.pdf"))
theDoc.Clear()

stylelmargin.pdf

	

	

	

LineSpacing	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0.0 No The	inter-line
spacing.

	

	

Notes 	

Allows	you	to	adjust	the	distance	between	lines	of	text.

At	the	start	of	every	new	line	of	text,	the	text	drawing
position	is	shifted	vertically	by	the	distance	specified	in	this
property.	If	the	value	is	positive	this	will	space	the	lines	out.
If	the	value	is	negative	it	will	shift	the	lines	together.

You	can	use	the	font's	line	spacing:

doc.TextStyle.LineSpacing	=
doc.GetInfoDouble(doc.Font,	"LineSpacing")
*	doc.TextStyle.Size	/	1000

	

	

In	the	following	example	we	add	three	blocks	of	text	to	a
document.	The	first	block	uses	the	default	line	spacing.	The
second	block	uses	a	positive	value	to	space	out	the	lines.	The
last	block	uses	a	negative	value	to	shift	the	lines	together.

[C#]

Example

	

Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani...";
theDoc.TextStyle.Size	=	48;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-250);
theDoc.TextStyle.LineSpacing	=	20;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-350);
theDoc.TextStyle.LineSpacing	=	-20;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylelspace.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani..."	
theDoc.TextStyle.Size	=	48
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-250)
theDoc.TextStyle.LineSpacing	=	20
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-350)
theDoc.TextStyle.LineSpacing	=	-20
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylelspace.pdf"))
theDoc.Clear()

stylelspace.pdf

	

	

	

Outline	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 No The	width	of
character	outlining.

	

	

Notes 	

This	property	determines	whether	a	character	outlining	style
is	applied	and	the	weight	of	the	outline.

If	the	outline	property	is	zero	no	outlining	is	done.	If	the
outline	property	is	greater	than	zero	it	indicates	the	width	of
lines	used	to	outline	the	text.

	

	

In	this	example	we	add	some	text	to	a	document	varying	the
outline	style	to	show	how	different	values	affect	the	final	result.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.TextStyle.Size	=	144;
theDoc.AddText("Outline	0");
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.Outline	=	4;
theDoc.AddText("Outline	4");
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.Outline	=	10;

Example 	

theDoc.AddText("Outline	10");
theDoc.Save(Server.MapPath("styleoutline.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.TextStyle.Size	=	144
theDoc.AddText("Outline	0")
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.Outline	=	4
theDoc.AddText("Outline	4")
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.Outline	=	10
theDoc.AddText("Outline	10")
theDoc.Save(Server.MapPath("styleoutline.pdf"))
theDoc.Clear()

styleoutline.pdf

	

	

	

ParaSpacing	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0.0 No The	inter-paragraph
spacing.

	

	

Notes 	

Allows	you	to	adjust	the	distance	between	paragraphs.

At	the	start	of	every	new	paragraph	the	text	drawing
position	is	shifted	vertically	by	the	distance	specified	in	this
property.	If	the	value	is	positive	this	will	space	the
paragraphs	out.	If	the	value	is	negative	it	will	shift	the
paragraphs	together.

	

	

In	this	example	we	add	two	blocks	of	text	to	a	document.	The	first
block	uses	the	default	paragraph	spacing.	The	second	block	uses
a	positive	value	to	space	out	the	paragraphs.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.	Hi	omnes	lingua,
institutis,	legibus	inter	se	differunt.";

Example

	

theText	=	theText	+	"\r\n"	+	theText	+	"\r\n"	+
theText	+	"\r\n"	+	theText;
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	16;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-350);
theDoc.TextStyle.ParaSpacing	=	20;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylepspace.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam	incolunt
Belgae,	aliam	Aquitani,	tertiam	qui	ipsorum
lingua	Celtae,	nostra	Galli	appellantur.	Hi
omnes	lingua,	institutis,	legibus	inter	se
differunt."	
theText	=	theText	+	vbCrLf	+	theText	+	vbCrLf	+
theText	+	vbCrLf	+	theText
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	16
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-350)
theDoc.TextStyle.ParaSpacing	=	20
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylepspace.pdf"))
theDoc.Clear()

stylepspace.pdf

	

	

	

PreserveSpace	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
preserve	white
space
characters	for
plain	text.

	

	 	

Notes 	

This	property	determines	whether	white	space
characters	are	preserved	when	Doc.AddText	is
called.	It	does	not	affect	Doc.AddHtml.

	

	 	

Example 	 None. 	 	

	

	

Size	Property 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

10.0 No The	current	text
size.

	

	

Notes 	

This	property	determines	the	size	of	text	that	is	added	to
the	document	using	methods	like	AddText.

The	Size	property	is	equivalent	to	the	the	Doc.FontSize
property	but	unlike	the	FontSize	property	it	allows
fractional	point	sizes	to	be	specified.

The	font	size	is	measured	in	units.

	

	

The	following	example	adds	two	blocks	of	styled	text	to	a
document.	The	first	block	is	in	96.5	point	type	and	the	second
is	in	192.5	point	type.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.TextStyle.Size	=	96.5;
theDoc.AddText("Small	");
theDoc.TextStyle.Size	=	192.5;
theDoc.AddText("Big");

Example 	

theDoc.Save(Server.MapPath("stylesize.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.TextStyle.Size	=	96.5
theDoc.AddText("Small	")
theDoc.TextStyle.Size	=	192.5
theDoc.AddText("Big")
theDoc.Save(Server.MapPath("stylesize.pdf"))
theDoc.Clear()

stylesize.pdf

	

	

	

	

Strike	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	apply	a
strikethrough	effect.

	

	

Notes 	

This	property	determines	whether	a	strikethrough	is
applied	to	text.

	

	

In	this	example	we	add	some	strikethrough	styled	text	to	a
document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText;
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.";
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	96;
theDoc.TextStyle.Strike	=	true;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylestrike.pdf"));

Example
	

theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur."
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	96
theDoc.TextStyle.Strike	=	True
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylestrike.pdf"))
theDoc.Clear()

stylestrike.pdf

	

	

	

Strike2	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	to	apply	a
double	strikethrough
effect.

	

	

Notes 	

This	property	determines	whether	a	double	strikethrough	is
applied	to	text.

	

	

In	this	example	we	add	some	double	strikethrough	styled	text	to	
document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText;
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.";
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	96;
theDoc.TextStyle.Strike2	=	true;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylestrike2.pdf"));

Example
	

theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String
theText	=	"Gallia	est	omnis	divisa	in	partes
tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur."
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	96
theDoc.TextStyle.Strike2	=	True
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylestrike2.pdf"))
theDoc.Clear()

stylestrike2.pdf

	

	

	

String	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

Variable No The	text	style
as	a	string.

	

	 	

Notes 	

A	string	representation	of	the	text	style.

This	covers	all	the	properties	of	this	class	and	can	be
sued	for	a	save	and	restore	stack.

	

	 	

Example 	

The	following	code.

[C#]
XTextStyle	ts	=	new	XTextStyle();
ts.String	=	"24.5	10	0	0	0	0	0";
Response.Write("Size	=	"	+
ts.Size.ToString()	+	"
");
Response.Write("Indent	=	"	+
ts.Indent.ToString());

[Visual	Basic]
Dim	ts	As	XTextStyle	=	New
XTextStyle()	

	 	

ts.String	=	"24.5	10	0	0	0	0	0"
Response.Write("Size	=	"	+
ts.Size.ToString()	+	"
")
Response.Write("Indent	=	"	+
ts.Indent.ToString())

Produces	the	following	output.

Size	=	24.5

Indent	=	10

	

	

	

Underline	Property 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No Whether	to	underline
text.

	

	

Notes 	
This	property	determines	whether	underlining	is	applied	to	text.

	
	

In	this	example	we	add	some	underlined	text	to	a	document.

[C#]
Doc	theDoc	=	new	Doc();
string	theText	=	"Gallia	est	omnis	divisa	in
partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur.";
theDoc.Rect.Inset(20,	40);
theDoc.TextStyle.Size	=	96;
theDoc.TextStyle.Underline	=	true;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("styleunderline.pdf"));
theDoc.Clear();

[Visual	Basic]

Example 	

Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"Gallia	est	omnis	divisa
in	partes	tres,	quarum	unam	incolunt	Belgae,	aliam
Aquitani,	tertiam	qui	ipsorum	lingua	Celtae,
nostra	Galli	appellantur."	
theDoc.Rect.Inset(20,	40)
theDoc.TextStyle.Size	=	96
theDoc.TextStyle.Underline	=	True
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("styleunderline.pdf"))
theDoc.Clear()

styleunderline.pdf

	

	

	

VPos	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

0? No?

The	current
vertical
positioning	factor
(0	to	1).

	

	 	

Notes 	

This	property	determines	the	vertical	offset	of	blocks
of	text	-	used	for	bottom	alignment,	top	alignment	or
middle	alignment.

The	offset	is	measured	as	a	proportion	of	the
distance	from	the	top.	A	value	of	zero	indicates	top
alignment,	a	value	of	one	half	indicates	center	aligned
text	and	a	value	of	one	indicates	bottom	aligned	text.
Intermediate	values	can	be	used	for	intermediate
offsets.

To	horizontally	align	text	use	the	HPos	property.	To
justify	text	use	the	Justification	property.

	

	 	

The	following	code	adds	two	blocks	of	text	to	a	document.
The	first	block	is	bottom	aligned	and	the	second	is	top
aligned.	Before	adding	the	text	we	change	the	current
rectangle	and	frame	it	so	that	you	can	see	how	the	text	is
aligned.

Example 	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.Rect.Magnify(1.0,	0.5);
theDoc.Rect.Inset(40,	40);
theDoc.FrameRect();
theDoc.AddText("Top	aligned	text...");
theDoc.Rect.Move(0,	theDoc.Rect.Height	+
80);
		theDoc.FrameRect();
theDoc.TextStyle.TextStyle.VPos	=	1.0;
theDoc.AddText("Bottom	aligned	text...");
theDoc.Save(Server.MapPath("docvpos.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	96
theDoc.Rect.Magnify(1.0,	0.5)
theDoc.Rect.Inset(40,	40)
theDoc.FrameRect()
theDoc.AddText("Top	aligned	text...")
theDoc.Rect.Move(0,	theDoc.Rect.Height	+
80)
theDoc.FrameRect()
theDoc.TextStyle.TextStyle.VPos	=	1.0
theDoc.AddText("Bottom	aligned	text...")
theDoc.Save(Server.MapPath("docvpos.pdf"))
theDoc.Clear()

	 	

docvpos.pdf

	

	

WordSpacing	Property 	

	

Type Default ReadOnly Description

[C#]double

[Visual	Basic]
Double

0.0 No The	inter-word
spacing.

	

	

Notes 	

This	property	controls	the	spacing	between	each	word.

This	property	works	in	a	similar	way	to	the	CharSpacing
property	but	the	value	is	added	to	only	space	characters	in
the	string.	This	has	the	effect	of	spacing	out	words	or
pushing	them	together	depending	on	the	sign	of	the	value,
and	the	property	bears	the	same	relation	to	the	font's
writing	mode	as	CharSpacing.

Because	this	property	is	an	absolute	value	the	visual	effect
will	be	greater	if	your	text	is	smaller.

	

	

In	this	example	we	add	three	blocks	of	text	to	a	document.	The
first	block	uses	the	default	spacing.	The	second	block	uses	a
positive	value	to	stretch	out	the	text.	The	last	block	uses	a
negative	value	to	condense	the	text.

[C#]
Doc	theDoc	=	new	Doc();

Example

	

string	theText	=	"This	is	an	example	of	word
spacing.";
theDoc.TextStyle.Size	=	72;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.WordSpacing	=	20;
theDoc.AddText(theText);
theDoc.Rect.Move(0,	-300);
theDoc.TextStyle.WordSpacing	=	-20;
theDoc.AddText(theText);
theDoc.Save(Server.MapPath("stylewspace.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
Dim	theText	As	String	=	"This	is	an	example	of
word	spacing."	
theDoc.TextStyle.Size	=	72
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.WordSpacing	=	20
theDoc.AddText(theText)
theDoc.Rect.Move(0,	-300)
theDoc.TextStyle.WordSpacing	=	-20
theDoc.AddText(theText)
theDoc.Save(Server.MapPath("stylewspace.pdf"))
theDoc.Clear()

stylewspace.pdf

	

	

	

XTransform		Constructor 	 	

XTransform	Constructor.

	
	 	

Syntax 	

[C#]
XTransform()
XTransform(string	text)
XTransform(double[]	entries)
XTransform(Matrix	matrix)
XTransform(double	m11,	double
m12,	double	m21,	double	m22,
double	tx,	double	ty)
XTransform(XRect	src,	XRect	dst)

[Visual	Basic]
Sub	New
Sub	New(text	As	String)
Sub	New(entries	As	Double())
Sub	New(entries	As	Matrix)
Sub	New(m11	As	Double,	m12	As
Double,	m21	As	Double,	m22	As
Double,	tx	As	Double,	ty	As
Double)
Sub	New(src	As	XRect,	dst	As
XRect)

	

	 	

Name Description

Params 	

text
A	string	defining	the	initial	rectangle	in
the	format	returned	by	the	String
property.

matrix
A	System.Drawing.Drawing2D	Matrix
object	specifying	the	values	for	the
transform.

entries
An	array	of	doubles	specifying	the
values	for	the	matrix.	These	are	in	the
order	m11,	m12,	m21,	m22,	tx	and	ty.

m11 Matrix	entry	1,1.
m12 Matrix	entry	1,2.
m21 Matrix	entry	2,1.
m22 Matrix	entry	2,2.
tx The	x	translation	to	be	applied.
ty The	y	translation	to	be	applied.
src The	source	rectangle.
dst The	source	rectangle.

	

	 	

Notes 	

These	methods	construct	an	XTransform	object.

The	default	constructor	creates	an	identity
transform.

The	constructor	which	takes	two	rectangles
creates	a	transform	which	maps	the	source
rectangle	to	the	destination	rectangle	using
positive	scale	values.

	

	 	

	

None.
	 	

Example 	

	

	

Invert	Function

Invert	the	transform.

	

Syntax 	

[C#]
void	Invert()

[Visual	Basic]
Sub	Invert()

	

Params 	

Name Description
None 	

	

Notes 	

When	you	invert	a	transform	a	rotation	clockwise	becomes	an
identical	rotation	anti-clockwise.	A	translation	to	the	left	becomes
a	translation	to	the	right.	A	zoom	in	becomes	a	zoom	out.

Note	that	not	every	transform	can	be	inverted.	If	you	specify	a
magnification	of	zero	you	have	shrunk	your	world	space	to	a
point.	In	this	case	it	is	not	possible	to	invert	the	transform	to	get
the	original	back	again.	However	this	kind	of	transform	is
uncommon	in	the	real	world	and	normally	only	occurs	as	a	result
of	programming	errors.

If	you	apply	the	invert	method	to	a	non-invertable	transform	the
transform	will	remain	unmodified.

	

Example

	

Here	we	add	some	text	rotated	at	45	degrees	anti-clockwise	around	
middle	of	the	document.	We	then	invert	the	transform	and	draw	
more	text.	Because	the	transform	has	been	inverted	the	text	now
appears	rotated	45	degrees	clockwise.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	72;
theDoc.Rect.String	=	"0	0	999	999";
theDoc.Pos.String	=	"302	396";
theDoc.Transform.Rotate(45,	302,	396);
theDoc.AddText("45	Degrees");
theDoc.Pos.String	=	"302	396";
theDoc.Transform.Invert();
theDoc.AddText("Inverted");
theDoc.Save(Server.MapPath("transforminvert.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	72
theDoc.Rect.String	=	"0	0	999	999"
theDoc.Pos.String	=	"302	396"
theDoc.Transform.Rotate(45,	302,	396)
theDoc.AddText("45	Degrees")
theDoc.Pos.String	=	"302	396"
theDoc.Transform.Invert()
theDoc.AddText("Inverted")
theDoc.Save(Server.MapPath("transforminvert.pdf"))
theDoc.Clear()

transforminvert.pdf

	

	

	

Equals	Function 	 	

Determines	if	two	transforms	are	effectively	the
same.

	

	 	

Syntax 	

[C#]
bool	Equals(XTransform	other,
double	epsilon)
bool	Equals(XTransform	other)
override	bool	Equals(object
other)

[Visual	Basic]
Function	Equals(other	As
XTransform,	epsilon	As	Double)	As
Boolean
Function	Equals(other	As
XTransform)	As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean

	

	 	

Params 	

Name Description

other The	transform	to	be	compared	against
this	one

epsilon The	largest	difference	in	values	which
will	still	be	defined	as	equal

return Whether	the	two	transforms	are	the
same.

	 	

	

Notes 	

Determines	if	two	transforms	are	effectively	the
same.

Transforms	contain	a	set	of	elements	which	are
represented	as	floating	point	numbers.	Floating
point	numbers	are	subject	to	rounding	errors	so
the	epsilon	value	is	used	to	determine	the
resolution	of	the	comparison.	Only	if	two
elements	differ	by	more	than	the	value	of
epsilon	will	they	be	defined	as	not	equal.

Internally	Acrobat	uses	double	precision	floating
point	numbers	for	a	very	high	level	of	accuracy.
However	within	a	PDF	itself	these	numbers	are
typically	only	represented	to	around	five	decimal
points.	You	may	wish	to	represent	similar	levels
of	accuracy	in	your	epsilon	values.	The	default
epsilon	is	zero	so	by	default,	transforms	have	to
match	perfectly	for	them	to	be	considered
equal.

	

	 	

Example 	

None.

	

	

	 	

	

	

Magnify	Function

Scale	about	a	locked	anchor	point.

	

Syntax 	

[C#]
void	Magnify(double	scaleX,	double	scaleY,
double	anchorX,	double	anchorY)

[Visual	Basic]
Sub	Magnify(scaleX	As	Double,	scaleY	As	Double,
anchorX	As	Double,	anchorY	As	Double)

	

Params 	

Name Description
scaleX The	amount	of	horizontal	scaling	to	apply.
scaleY The	amount	of	vertical	scaling	to	apply.

anchorX The	horizontal	coordinate	about	which	the	stretch
should	be	applied.

anchorY The	vertical	coordinate	about	which	the	stretch	should
be	applied.

	

Notes
	

This	method	stretches	the	world	space	about	a	locked	anchor
point.	Different	degrees	of	horizontal	and	vertical	stretch	can	be
used.

Another	way	of	looking	at	this	kind	of	transform	is	as	a	zoom.	

anchor	point	is	the	location	you're	zooming	in	on	and	the	scale
factors	indicate	the	level	of	zoom.

	

Example 	

Here	we	add	two	chunks	of	text.	The	default	text	is	added	in	
the	magnified	text	is	drawn	in	red.	We	specify	the	middle	of	the
document	as	the	anchor	point	which	means	that	all	scaling	is	
the	middle	of	the	document.	Our	horizontal	scale	factor	is	larger	than	our
text	has	been	stretched	horizontally	somewhat.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(200,	200);
theDoc.FontSize	=	48;
theDoc.AddText("Normal");
theDoc.FrameRect();
theDoc.Rect.Move(0,	-100);
theDoc.Color.String	=	"255	0	0";
theDoc.Transform.Magnify(2,	1.5,	302,	396);
theDoc.AddText("Magnified");
theDoc.FrameRect();
theDoc.Save(Server.MapPath("transformmagnify.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(200,	200)
theDoc.FontSize	=	48
theDoc.AddText("Normal")
theDoc.FrameRect()
theDoc.Rect.Move(0,	-100)
theDoc.Color.String	=	"255	0	0"
theDoc.Transform.Magnify(2,	1.5,	302,	396)
theDoc.AddText("Magnified")
theDoc.FrameRect()

theDoc.Save(Server.MapPath("transformmagnify.pdf"))
theDoc.Clear()

transformmagnify.pdf

	

	

	

PreMultiply	Function 	 	

Pre-multiplies	this	transformation	matrix	by	the
supplied	transform.

	

	 	

Syntax 	

[C#]
void	PreMultiply(XTransform
transform)

[Visual	Basic]
Sub	PreMultiply(transform	as
XTransform)

	

	 	

Params 	

Name Description

transform The	transform	to	combine	with	this
one.

	

	 	

Notes 	

Pre-multiplies	this	transformation	matrix	by	the
supplied	transform.

The	final	result	is	contained	in	this	transform.

See	also	the	Mutiply	function.

	

	 	

Example 	
None.

	
	 	

	

	

PostMultiply	Function 	 	

Post-multiplies	this	transformation	matrix	by	the
supplied	transform.

	

	 	

Syntax 	

[C#]
void	PostMultiply(XTransform
transform)

[Visual	Basic]
Sub	PostMultiply(transform	as
XTransform)

	

	 	

Params 	

Name Description

transform The	transform	to	combine	with	this
one.

	

	 	

Notes 	

Post-multiplies	this	transformation	matrix	by	the
supplied	transform.

The	final	result	is	contained	in	this	transform.

See	also	the	PreMutiply	function.

	

	 	

Example 	
None.

	
	 	

	

	

Reset	Function

Reset	to	the	identity.

	

Syntax 	

[C#]
void	Reset()

[Visual	Basic]
Sub	Reset()

	

Params 	

Name Description
None 	

	

Notes 	

This	method	resets	the	transform	to	it's	original	state.	This
state	is	known	as	the	identity	and	indicates	that	no
transformation	will	be	applied.

	

Here	we	add	some	text	rotated	at	60	degrees	around	the	middle	of
the	document.	We	then	reset	the	transform	and	draw	some	more	text.
This	text	is	drawn	with	no	rotation	because	the	transform	has	been
reset.

[C#]

Example

	

Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(10,	10);
theDoc.FontSize	=	96;
theDoc.Transform.Rotate(60,	302,	396);
theDoc.Pos.String	=	"302	396";
theDoc.AddText("Angled");
theDoc.FrameRect();
theDoc.Transform.Reset();
theDoc.Pos.String	=	"302	396";
theDoc.AddText("Reset");
theDoc.FrameRect();
theDoc.Save(Server.MapPath("transformreset.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(10,	10)
theDoc.FontSize	=	96
theDoc.Transform.Rotate(60,	302,	396)
theDoc.Pos.String	=	"302	396"
theDoc.AddText("Angled")
theDoc.FrameRect()
theDoc.Transform.Reset()
theDoc.Pos.String	=	"302	396"
theDoc.AddText("Reset")
theDoc.FrameRect()
theDoc.Save(Server.MapPath("transformreset.pdf"))
theDoc.Clear()

transformreset.pdf

	

	

	

Rotate	Function

Rotate	about	a	locked	anchor	point	(angle	in	degrees).

	

Syntax 	

[C#]
void	Rotate(double	angle,	double	anchorX,
double	anchorY)

[Visual	Basic]
Sub	Rotate(angle	As	Double,	anchorX	As	Double,
anchorY	As	Double)

	

Params 	

Name Description
angle The	angle	to	rotate	in	degrees.

anchorX The	horizontal	coordinate	about	which	the	rotation
should	be	applied.

anchorY The	vertical	coordinate	about	which	the	rotation
should	be	applied.

	

Notes 	

This	method	rotates	the	world	space	about	a	locked	anchor
point.	The	angle	is	specified	in	degrees	anti-clockwise.

	

Here	we	add	a	number	of	chunks	of	text	rotated	at	different	

Example

	

about	the	middle	of	the	document.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	48;
theDoc.TextStyle.Indent	=	48;
for	(int	i	=	1;	i	<=	8;	i++)	{
		int	theAngle	=	i	*	45;
		theDoc.Pos.String	=	"302	396";
		theDoc.Transform.Reset();
		theDoc.Transform.Rotate(theAngle,	302,	396);
		theDoc.AddText("Rotated	"	+	theAngle.ToString());
}
theDoc.Save(Server.MapPath("transformrotate.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.FontSize	=	48
theDoc.TextStyle.Indent	=	48
For	i	As	Integer	=	1	To	8
		Dim	theAngle	As	Integer	=	i	*	45	
		theDoc.Pos.String	=	"302	396"
		theDoc.Transform.Reset()
		theDoc.Transform.Rotate(theAngle,	302,	396)
		theDoc.AddText("Rotated	"	+	theAngle.ToString())
Next
theDoc.Save(Server.MapPath("transformrotate.pdf"))
theDoc.Clear()

transformrotate.pdf

	

	

	

Skew	Function

Skew	horizontally	and	vertically	about	a	locked	anchor	point.

	

Syntax 	

[C#]
void	Skew(double	skewX,	double	skewY,	double
anchorX,	double	anchorY)

[Visual	Basic]
Sub	Skew(skewX	As	Double,	skewY	As	Double,
anchorX	As	Double,	anchorY	As	Double)

	

Params 	

Name Description
skewX The	amount	of	horizontal	skewing	to	apply.
skewY The	amount	of	vertical	skewing	to	apply.

anchorX The	horizontal	coordinate	about	which	the	stretch
should	be	applied.

anchorY The	vertical	coordinate	about	which	the	stretch
should	be	applied.

	

	

This	method	skews	the	world	space	about	a	locked	anchor
point.	Different	degrees	of	horizontal	and	vertical	stretch	can
be	used.

A	skew	or	shear	is	a	mathematical	operation	which	shifts

Notes points	by	an	amount	proportional	to	the	distance	from	the
anchor	point.	This	shift	is	scaled	by	the	horizontal	and	vertical
skew	factors.

	

Example
	

Here	we	draw	two	rectangles	into	our	document.	The	black
rectangle	is	drawn	before	the	skew	operation	and	the	red	one	is
drawn	after	it.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Width	=	200;
theDoc.Rect.Height	=	250;
theDoc.Rect.Position(20,	20);
theDoc.Width	=	20;
theDoc.FrameRect();
theDoc.Transform.Skew(1.5,	1.5,	20,	20);
theDoc.Color.String	=	"255	0	0";	//	red
theDoc.FrameRect();
theDoc.Save(Server.MapPath("transformskew.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Width	=	200
theDoc.Rect.Height	=	250
theDoc.Rect.Position(20,	20)
theDoc.Width	=	20
theDoc.FrameRect()
theDoc.Transform.Skew(1.5,	1.5,	20,	20)
theDoc.Color.String	=	"255	0	0"	'	red
theDoc.FrameRect()
theDoc.Save(Server.MapPath("transformskew.pdf"))
theDoc.Clear()

transformskew.pdf

	

	

	

SetTransform	Function 	 	

Set	the	transform.

	
	 	

Syntax 	

[C#]
void	SetTransform(double	m11,
double	m12,	double	m21,	double
m22,	double	tx,	double	ty)
void	SetTransform(XTransform
transform)

[Visual	Basic]
Sub	SetTransform(m11	As	Double,
m12	As	Double,	m21	As	Double,	m22
As	Double,	tx	As	Double,	ty	As
Double)
Sub	SetTransform(transform	As
XTransform)

	

	 	

Params 	

Name Description
m11 The	new	horizontal	scale.
m12 The	new	vertical	skew.
m21 The	new	horizontal	skew.
m22 The	new	vertical	scale.
tx The	new	horizontal	translation.
ty The	new	vertical	translation.
transform The	source	transform.

	 	

	

Notes 	
This	method	sets	the	transform.

	
	 	

Example 	

None.

	

	

	 	

	

	

ToString	Function 	 	

Returns	a	string	representation	of	the	object.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	method	returns	the	string	value	of	the
object.	This	is	equivalent	to	reading	the	String
property	of	the	object.

	

	 	

Example
	

None.

	 	 	

	

	

	

TransformPoint	Function 	 	

Applies	this	transform	to	a	specified	point.

	
	 	

Syntax 	

[C#]
void	TransformPoint(Point[]
point)
void	TransformPoint(PointF[]
point)
void	TransformPoint(XPoint	point)
void	TransformPoint(ref	double	x,
ref	double	y)

[Visual	Basic]
Sub	TransformPoint(point	As
Point())
Sub	TransformPoint(point	As
PointF())
Sub	TransformPoint(point	As
XPoint())
Sub	TransformPoint(ByRef	point	As
Double,	ByRef	y	As	Double)

	

	 	

Params
	

Name Description
point The	point	to	be	transformed.

x The	x	coordinate	of	a	point	to	be
transformed.
The	y	coordinate	of	a	point	to	be

	 	

y transformed.

	

Notes 	
Applies	this	transform	to	a	specified	point.

	
	 	

Example 	

None.

	

	

	 	

	

	

TransformPoints	Function 	 	

Applies	this	transform	to	a	specified	array	of
points.

	

	 	

Syntax 	

[C#]
override	Point[]
TransformPoints(Point[]	points)
override	PointF[]
TransformPoints(PointF[]	points)
override	XPoint[]
TransformPoints(XPointF	points)

[Visual	Basic]
Overrides	Sub
TransformPoints(points	As
Point())	As	Point[]
Overrides	Sub
TransformPoints(points	As
PointF())	As	PointF[]
Overrides	Sub
TransformPoints(points	As
XPoint())	As	XPoint[]

	

	 	

Params 	

Name Description
points The	array	of	points	to	be	transformed.
return The	array	that	was	passed	in. 	 	

	

Notes 	

Applies	this	transform	to	a	specified	array	of
points.

The	behavior	of	this	method	is	the	same	as	that
of	the	System.Drawing.Drawing2D
Matrix.TransformPoints	function.

	

	 	

Example 	

None.

	

	

	 	

	

	

Translate	Function

Translate	horizontally	and	vertically.

	

Syntax 	

[C#]
void	Translate(double	x,	double	y)

[Visual	Basic]
Sub	Translate(x	As	Double,	y	As	Double)

	

Params 	

Name Description
x The	distance	to	translate	to	the	right.
y The	distance	to	translate	upwards.

	

Notes 	

This	method	shifts	the	world	space	a	specified	distance	up	and	to
the	right.	Objects	on	the	PDF	will	appear	to	translate	upwards	and	
the	right.

	

Here	we	draw	two	rectangles	into	our	document.	The	black	
drawn	before	the	translation	operation	and	the	red	one	is	drawn	after	it.

[C#]
Doc	theDoc	=	new	Doc();

Example 	

theDoc.Rect.Width	=	200;
theDoc.Rect.Height	=	250;
theDoc.Rect.Position(100,	100);
theDoc.Width	=	20;
theDoc.FrameRect();
theDoc.Transform.Translate(200,	200);
theDoc.Color.String	=	"255	0	0";	//	red
theDoc.FrameRect();
theDoc.Save(Server.MapPath("transformtranslate.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Width	=	200
theDoc.Rect.Height	=	250
theDoc.Rect.Position(100,	100)
theDoc.Width	=	20
theDoc.FrameRect()
theDoc.Transform.Translate(200,	200)
theDoc.Color.String	=	"255	0	0"	'	red
theDoc.FrameRect()
theDoc.Save(Server.MapPath("transformtranslate.pdf"))
theDoc.Clear()

transformtranslate.pdf

	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	XTransform.

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()	As
Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

String	Property 	 	

	

Type Default Read
Only Description

[C#]	string

[Visual	Basic]
String

"1	0	0	1	0	0" No
The
transform
as	a	string.

	

	 	

Notes 	

Allows	you	access	to	the	transform	as	a	string.

The	format	of	the	string	must	be	"m11	m12	m21	m22
mX	mY".

To	transform	a	point	(x,	y)	to	another	point	(x',	y'),	the
following	formula	is	used:

		x'	=	(x	*	m11)	+	(y	*	m21)	+	mX
		y'	=	(x	*	m12)	+	(y	*	m22)	+	mY

	 	

Example 	
None.

	
	 	

	

	

AngleUnit	Property

	

Type Default Read
Only Description

[C#]AngleUnitType

[Visual	Basic]
AngleUnitType

Degrees No The	angle	unit,	degrees
or	radians.

	

Notes 	

Specify	the	angle	unit	as	used	by	the	Rotate	method.

The	AngleUnitType	enumeration	may	take	the	following	values:

Degrees
Radians

	

[C#]
Doc	doc	=	new	Doc();
doc.FontSize=96;
doc.TextStyle.HPos=0.5;
doc.TextStyle.VPos=0.5;
doc.Transform.Rotate(90,	doc.Rect.Width/2,
doc.Rect.Height/2);	
doc.TextStyle.Underline	=	true;	
doc.AddText("Hello	World	rotated	by	90	degrees");	
doc.Page	=	doc.AddPage();
doc.Transform.AngleUnit	=

Example

	

WebSupergoo.ABCpdf10.XTransform.AngleUnitType.Radians;
doc.Transform.Rotate(-1	*	Math.PI/2,	doc.Rect.Width	/
2,	doc.Rect.Height	/	2);	
doc.AddText("Hello	World	rotated	back	by	PI/2
radians");	
doc.Save(Server.MapPath("transformrotate.pdf"));

[Visual	Basic]
Dim	doc	as	New	Doc()
doc.FontSize=96
doc.TextStyle.HPos=0.5
doc.TextStyle.VPos=0.5
doc.Transform.Rotate(90,	doc.Rect.Width/2,
doc.Rect.Height/2)
doc.TextStyle.Underline	=	True
doc.AddText("Hello	World	rotated	by	90	degrees")
doc.Page	=	doc.AddPage()
doc.Transform.AngleUnit	=
WebSupergoo.ABCpdf10.XTransform.AngleUnitType.Radians	
doc.Transform.Rotate(-1	*	Math.PI/2,	doc.Rect.Width	/
2,	doc.Rect.Height	/	2)
doc.AddText("Hello	World	rotated	back	by	PI/2
radians")	
doc.Save(server.MapPath("transformrotate.pdf"))

transforrotate.pdf,	page	1

transforrotate.pdf,	page	2

	

	

Elements	Property 	 	

	

Type Default ReadOnly Description

[C#]	double[]

[Visual	Basic]
Double()

n/a No

The	transform
as	an	array	of
floating-point
values.

	

	 	

Notes 	

The	transform	as	an	array	of	floating-point	values.

Windows	coordinates	are	measured	in	distances
from	the	top	left	of	the	drawing	surface	while	PDF
coordinates	are	measured	from	the	bottom	left.

Remember	that	transforms	operate	on	the	underlying
PDF	coordinates	rather	than	on	any	Windows
coordinates.	So	by	specifying	a	rotation	around	the
origin	you	are	specifying	a	rotation	anchored	at	the
bottom	left	of	the	document	page.

	

	 	

Example 	
None.

	
	 	

	

	

Matrix	Property

	

Type Default ReadOnly Description

[C#]	Matrix

[Visual	Basic]
Matrix

n/a No
The	transform	as	a
System.Drawing.Drawing2D
Matrix.

	

Notes 	

The	transform	as	a	System.Drawing.Drawing2D	Matrix.

This	matrix	type	holds	element	values	as	single	precision
floating	point	values	so	it	is	is	less	accurate	than	the
underlying	XTransform.

Windows	coordinates	are	measured	in	distances	from	the
top	left	of	the	drawing	surface	while	PDF	coordinates	are
measured	from	the	bottom	left.

Remember	that	transforms	operate	on	the	underlying	PDF
coordinates	rather	than	on	any	Windows	coordinates.	So
by	specifying	a	rotation	around	the	origin	you	are
specifying	a	rotation	anchored	at	the	bottom	left	of	the
document	page.

	

	

Example 	
None.

	
	

	

	

MediaMatrix	Property 	 	

	

Type Default ReadOnly Description

[C#]	
MediaMatrix

[Visual	Basic]
MediaMatrix

n/a No
The	transform	as	a
System.Windows.Media
Matrix.

	

	 	

Notes 	

The	transform	as	a	System.Windows.Media	Matrix.

This	matrix	type	holds	elements	as	double	precision
floating	point	values.

Windows	coordinates	are	measured	in	distances	from
the	top	left	of	the	drawing	surface	while	PDF
coordinates	are	measured	from	the	bottom	left.

Remember	that	transforms	operate	on	the	underlying
PDF	coordinates	rather	than	on	any	Windows
coordinates.	So	by	specifying	a	rotation	around	the
origin	you	are	specifying	a	rotation	anchored	at	the
bottom	left	of	the	document	page.

	

	 	

Example 	
None.

	
	 	

	

	

OffsetX	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 Yes The	x
translation.

	

	 	

Notes 	
Allows	you	access	to	the	x	translation.

	
	 	

Example 	
None.

	
	 	

	

	

OffsetY	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0 Yes The	y
translation.

	

	 	

Notes 	
Allows	you	access	to	the	y	translation.

	
	 	

Example 	
None.

	
	 	

	

	

FromString	Function 	 	

Construct	an	appropriate	type	of	IndirectObject
given	a	string	value.

	

	 	

Syntax 	

[C#]
static	IndirectObject
FromString(string	value)

[Visual	Basic]
Shared	Function	FromString(value
As	String)	As	IndirectObject

	

	 	

Params 	

Name Description

value The	string	representing	the	value	of	the
object.

return The	resulting	IndirectObject.

	

	 	

Notes 	

The	text	you	pass	this	function	must	be	in	native
PDF	format.	This	means	that	unusual
characters	in	text	strings	must	be	appropriately
escaped.

For	full	details	of	the	way	that	PDF	objects	are
represented	you	should	see	the	Adobe	PDF
Specification.

	 	

	

Example 	
None.

	
	 	

	

	

IndirectObject	Constructor 	 	

IndirectObject	Constructor.

	
	 	

Syntax 	

[C#]
IndirectObject()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Creates	an	indirect	object	containing	a
NullAtom.

Typically	you	will	need	to	replace	the	NullAtom
before	you	can	do	anything	useful	with	the
object.

	

	 	

Example 	
None.

	
	 	

	

	

Dispose	Function 	 	

Dispose	of	the	object.

	
	 	

Syntax 	

[C#]
void	Dispose()
protected	void	Dispose(bool
disposing)

[Visual	Basic]
Sub	Dispose()
Protected	Sub	Dispose(disposing
As	Boolean)

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

You	can	call	this	function	to	explicitly	dispose	of
an	object	and	reduce	the	garbage	collection
overhead.

This	method	follows	the	standard	design	pattern
for	objects	implementing	the	IDisposable
interface.	The	protected	Dispose	method	can	be
overridden	for	sub-classes	wishing	to	dispose	of
additional	objects.

	 	

Do	not	attempt	to	use	an	object	after	calling
Dispose.

	

Example 	
None.

	
	 	

	

	

Clone	Function 	 	

Create	a	deep	copy	of	the	current
IndirectObject.

	

	 	

Syntax 	

[C#]
IndirectObject	Clone()

[Visual	Basic]
Function	Clone()	As
IndirectObject

	

	 	

Params 	

Name Description
return The	newly	created	copy.

	

	 	

Notes 	

This	function	creates	a	new	object	that	is	a	copy
of	this	instance.

The	copy	is	a	deep	copy	and	all	contained
objects	are	copied	as	part	of	the	clone	process.
The	copy	is	not	associated	with	any
ObjectSoup.

Note	that	many	methods	require	that	an	object
be	part	of	a	soup.	For	this	reason	it	is	quite
common	to	call	doc.ObjectSoup.Add	with	the

	 	

newly	cloned	object	before	calling	methods	on
it.	If	at	a	later	date	the	object	needs	to	be
deleted	this	can	be	done	using
ObjectSoup.Remove.

	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	IndirectObjects	are	the
same.

	

	 	

Syntax 	

[C#]
bool	Equals(IndirectObject	other)
override	bool	Equals(object
other)
bool	Equals(IndirectObject	other,
ComparisonType	type)

[Visual	Basic]
Function	Equals(other	As
IndirectObject)	As	Boolean
Overrides	Function	Equals(other
As	Object)	As	Boolean
Function	Equals(other	As
IndirectObject,	type	As
ComparisonType)	As	Boolean

	

	 	

Params 	

Name Description
other The	object	to	test	against.
return Whether	the	objects	are	equal.

	

	 	

This	method	can	be	used	to	determine	whether

Notes 	

the	specified	object	is	equal	to	the	current
object.

Objects	are	considered	equal	if	they	refer	to	the
same	underlying	object	within	the	PDF
document.	So	by	default	this	method
determines	object	equality	rather	than	value
equality.

To	perform	other	types	of	equality	test	you	can
use	the	overload	that	accepts	a
ComparisonType.	The	comparison	type
specifies	the	type	of	data	to	compare.

The	ComparisonType	enumeration	is	a	flags
type	enumeration	so	the	different	values	can	be
combined	together	using	bitwise	operations.	It
may	take	the	following	values:

None	(nothing)
Object	(the	underlying	PDF	object)
ID	(the	ID	of	the	IndirectObject)
Atom	(the	value	of	the	Atom)
Data	(the	data	associated	with	the	stream	-
if	this	is	a	stream)

Only	if	all	the	comparisons	are	true	are	the
objects	said	to	be	equal.

	

	 	

Example 	
None.

	
	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	IndirectObject.

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()
int	GetHashCode(ComparisonType
type)

[Visual	Basic]
Overrides	Function	GetHashCode()
As	Integer
Function	GetHashCode(type	As
ComparisonType)	As	Integer

	

	 	

Params 	

Name Description
type The	elements	to	use	in	the	hash	code.
return The	returned	hash	code.

	

	 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

The	default	hash	code	is	derived	from	the
underlying	object	within	the	PDF	document.	In
some	situations	you	may	wish	to	derive	a	hash
code	from	just	some	aspects	of	the

Notes 	

IndirectObject.	You	can	do	this	using	the
overload	which	takes	a	ComparisonType
argument.

The	ComparisonType	enumeration	is	a	flags
type	enumeration	so	the	different	values	can	be
combined	together	using	bitwise	operations.	It
may	take	the	following	values:

None	(nothing)
Object	(the	underlying	PDF	object)
ID	(the	ID	of	the	IndirectObject)
Atom	(the	value	of	the	Atom)
Data	(the	data	associated	with	the	stream	-
if	this	is	a	stream)

The	hash	code	can	be	made	up	of	a	variety	of
parts	of	the	indirect	object	combined	together.
The	ID	and	the	Atom	hash	codes	are	derived
from	the	value	of	the	ID	and	Atom	respectively.
The	Data	hash	code	is	made	from	a	sample	of
the	compressed	data	contained	in	the	stream.
So	two	StreamObjects,	compressed	differently,
will	return	different	hash	codes	even	if	the
uncompressed	data	is	identical.	The	data
sample	is	kept	small	-	in	the	order	of	a	few
hundred	bytes	-	to	ensure	a	fast	response	even
for	very	large	streams.

	

	 	

Example 	
None.

	
	 	

	

	

Resolve	Function 	 	

Resolves	any	indirect	references	and	returns
the	Atom.

	

	 	

Syntax 	

[C#]
Atom	Resolve(Atom	atom)

[Visual	Basic]
Function	Resolve(atom	As	Atom)	As
Atom

	

	 	

Params 	

Name Description
atom The	Atom	to	resolve.

return The	final	Atom	or	null	if	no	Atom	could
be	found.

	

	 	

Atoms	come	in	two	basic	types.	Data	atoms	like
NumAtoms	and	NameAtoms	contain	actual
data.	RefAtoms	contain	a	reference	to	an
IndirectObject	which	contains	another	Atom.

Quite	often	you	will	want	to	resolve	any
RefAtoms	and	just	obtain	the	Atom	within	the
final	IndirectObject	-	you	want	the	final	item	of
data	rather	than	a	reference	to	a	piece	of	data.

Notes 	

This	function	takes	an	Atom.	If	it	is	a	RefAtom	it
finds	the	Atom	to	which	it	points.	It	keeps	doing
this	until	it	finds	and	returns	the	final	data	Atom
in	the	chain.

This	method	may	return	null	if	null	is	passed	in,
if	a	RefAtom	cannot	be	resolved	or	if	a	circular
dependency	is	detected.

The	reason	this	function	is	a	member	of	the
IndirectObject	is	because	resolving	RefAtoms
requires	access	to	the	ObjectSoup.	The
ObjectSoup	is	taken	from	the	IndirectObject.

	

	 	

Example 	
None.

	
	 	

	

	

ResolveRef	Function 	 	

Resolves	any	indirect	references	and	returns
the	final	RefAtom.

	

	 	

Syntax 	

[C#]
RefAtom	ResolveRef(Atom	atom)

[Visual	Basic]
Function	ResolveRef(atom	As	Atom)
As	RefAtom

	

	 	

Params 	

Name Description
atom The	Atom	to	resolve.

return The	final	RefAtom	or	null	if	no	valid
RefAtom	could	be	found.

	

	 	

Atoms	come	in	two	basic	types.	Data	atoms	like
NumAtoms	and	NameAtoms	contain	actual
data.	RefAtoms	contain	a	reference	to	an
IndirectObject	which	contains	another	Atom.

Quite	often	you	will	want	to	resolve	any
RefAtoms	and	just	obtain	the	RefAtom	pointing
to	the	final	IndirectObject	-	you	want	a	pointer	to
the	final	item	of	data	rather	than	a	reference

Notes 	

somewhere	up	the	chain.

This	function	takes	an	Atom.	If	it	is	a	RefAtom	it
finds	the	IndirectObject	to	which	it	points.	It
keeps	doing	this	until	it	finds	the	final
IndirectObject	in	the	chain.	It	returns	the
RefAtom	which	points	to	this	IndirectObject.

This	method	may	return	null	if	null	is	passed	in,
if	the	supplied	Atom	is	not	a	RefAtom,	if	a
RefAtom	cannot	be	resolved	or	if	a	circular
dependency	is	detected.

The	reason	this	function	is	a	member	of	the
IndirectObject	is	because	resolving	RefAtoms
requires	access	to	the	ObjectSoup.	The
ObjectSoup	is	taken	from	the	IndirectObject.

	

	 	

Example 	
None.

	
	 	

	

	

ResolveObj	Function 	 	

Resolves	any	indirect	references	and	returns
the	final	IndirectObject.

	

	 	

Syntax 	

[C#]
IndirectObject	ResolveObj(Atom
atom)

[Visual	Basic]
Function	ResolveObj(atom	As	Atom)
As	IndirectObject

	

	 	

Params 	

Name Description
atom The	Atom	to	resolve.

return The	final	IndirectObject	or	null	if	no
valid	object	could	be	found.

	

	 	

Atoms	come	in	two	basic	types.	Data	atoms	like
NumAtoms	and	NameAtoms	contain	actual
data.	RefAtoms	contain	a	reference	to	an
IndirectObject	which	contains	another	Atom.

Quite	often	you	will	want	to	resolve	any
RefAtoms	and	just	obtain	the	final
IndirectObject	-	you	want	a	pointer	to	the	final

Notes 	

item	of	data	rather	than	a	reference	somewhere
up	the	chain.

This	function	takes	an	Atom.	If	it	is	a	RefAtom	it
finds	the	IndirectObject	to	which	it	points.	It
keeps	doing	this	until	it	finds	the	final
IndirectObject	in	the	chain.	It	returns	this
IndirectObject.

This	method	may	return	null	if	null	is	passed	in,
if	the	supplied	Atom	is	not	a	RefAtom,	if	a
RefAtom	cannot	be	resolved	or	if	a	circular
dependency	is	detected.

The	reason	this	function	is	a	member	of	the
IndirectObject	is	because	resolving	RefAtoms
requires	access	to	the	ObjectSoup.	The
ObjectSoup	is	taken	from	the	IndirectObject.

	

	 	

Example 	
None.

	
	 	

	

	

ToString	Function 	 	

The	string	representation	of	the	IndirectObject.

	
	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	function	derives	the	content	of	the	object
as	it	will	be	inserted	into	the	final	PDF
document.

Note	that	the	the	string	value	of	an	object	may
be	large	and	it	may	contain	unusual	characters.

	

	 	

Example 	

None.
	 	

	

	

	

Transcode	Function 	 	

Transcodes	and	reloads	the	IndirectObject

	
	 	

Syntax 	

[C#]
IndirectObject	Transcode()

[Visual	Basic]
Function	Transcode()	As
IndirectObject

	

	 	

Params 	

Name Description

return An	appropriate	subclass	of
IndirectObject.

	

	 	

PDF	objects	are	not	hard	typed.	The	only	thing
that	distinguishes	one	from	another	are	the
named	attributes	which	are	applied	to	them.	To
enable	an	appropriate	class	of	IndirectObject	to
be	created	ABCpdf	has	to	examine	the
attributes	on	the	base	object	and	then	create	an
appropriate	subclass	depending	on	those
characteristics.	This	is	known	as	transcoding.

Normally	transcoding	takes	place	automatically
as	objects	are	loaded	or	added.	However

Notes 	

sometimes	changes	occur	which	may	result	in
core	aspects	of	the	object	changing.	These
changes	may	require	caches	to	be	regenerated
or	even	an	entirely	new	object	to	be	created	-
one	which	better	represents	the	new	structure
of	the	object.	This	is	particular	the	case	for	the
FontObject	class	as	it	is	heavily	dependent	on
caching	and	often	on	other	objects	in	the
ObjectSoup.

The	Transcode	method	re-interprets	this	object
and	if	it	is	appropriate,	it	returns	a	newly	created
object	of	an	appropriate	subclass.	If	transcoding
results	in	a	new	object	being	created	it	will
displace	the	current	object	from	the	soup.	As
such	you	will	need	to	discard	the	old	object	if	a
new	one	is	returned.

	

	 	

Example 	
None.

	
	 	

	

	

ID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes The	ID	of	the
PDF	object.

	

	 	

Notes 	
The	unique	ID	of	the	PDF	object.

	
	 	

Example 	
None.

	
	 	

	

	

Gen	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	Generation
of	the	PDF
object.

	

	 	

Notes 	
The	Generation	of	the	PDF	object.

	
	 	

Example 	
None.

	
	 	

	

	

Atom	Property 	 	

	

Type Default ReadOnly Description

[C#]	Atom

[Visual	Basic]
Atom

	n/a	 No
The	Atom
contained	by	the
IndirectObject.

	

	 	

Notes 	

The	Atom	contained	by	the	IndirectObject.

Atoms	can	only	be	contained	by	one	object	at	a	time.
So	-	if	you	assign	a	new	Atom	to	this	property	and
the	supplied	Atom	is	currently	contained	by	another
object	-	a	clone	of	the	Atom	will	be	inserted	rather
than	a	reference	to	the	original.

	

	 	

Example 	
None.

	
	 	

	

	

Version	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	1	 No

The	minimum
version	of	the
PDF
specification
required	to
support	this
object.

	

	 	

Notes 	

The	minimum	version	of	the	PDF	specification
required	to	support	this	object.

For	example	a	version	of	3	indicates	that	the	features
specified	by	the	object	require	a	PDF	1.3	capable
browser.	Adobe	Acrobat	4	was	the	first	browser	to
support	PDF	1.3.

	

	 	

Example 	
None.

	
	 	

	

	

Revision	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	0 Yes

The	revision	of
the	document	in
which	this	object
is	stored.

	

	 	

Notes 	

The	revision	of	the	document	in	which	this	object	is
stored.

PDF	documents	can	be	incrementally	updated	so
that	changes	are	appended	to	the	document	rather
than	overwriting	the	original.	This	means	that	it	is
possible	to	revert	back	to	a	previous	version	of	the
document.	This	feature	is	mostly	used	for	document
signatures	so	that	the	act	of	signing	the	document
does	not	invalidate	previous	signatures.

Objects	from	the	oldest	update	will	have	a	Revision
of	one	and	and	larger	values	indicate	more	recent
updates.	A	value	of	zero	indicates	that	the	object	was
not	read	from	stream.

	

	 	

Example 	
None.

	
	 	

	

	

Alive	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 Yes
Whether	the
IndirectObject	is
currently	alive.

	

	 	

Notes 	

Whether	the	IndirectObject	is	currently	alive.

Objects	contained	within	a	PDF	document	are
considered	to	be	alive.	Objects	which	have	been
created	or	cloned	but	have	not	yet	been	assigned	to
a	PDF	are	not	considered	to	be	alive.

	

	 	

Example 	
None.

	
	 	

	

	

Doc	Property 	 	

	

Type Default ReadOnly Description

[C#]	Doc

[Visual	Basic]
Doc

	n/a	 Yes
The	Doc
containing	this
IndirectObject.

	

	 	

Notes 	

The	Doc	containing	this	IndirectObject.

Note	that	although	IndirectObjects	are	normally	held
inside	a	containing	Doc	object	it	is	possible	to	detach
them	from	the	container.	If	this	is	the	case	the	value
of	the	Doc	property	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

Soup	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ObjectSoup

[Visual	Basic]
ObjectSoup

	n/a	 Yes
The	soup
containing	this
IndirectObject.

	

	 	

Notes 	

The	ObjectSoup	containing	this	IndirectObject.

Note	that	although	IndirectObjects	are	normally	held
inside	a	containing	soup	object	it	is	possible	to
detach	them	from	the	container.	If	this	is	the	case	the
value	of	the	soup	property	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

AdbeExtLevel	Property 	 	

	

Type Default ReadOnly Description

[C#]	int[]

[Visual	Basic]
Integer()

	null	 No

The	minimum
extension	level
of	Adobe
Supplement	to
the	PDF
specification
required	to
support	this
object.

	

	 	

Notes 	

The	minimum	extension	level	of	Adobe	Supplement
to	the	PDF	specification	required	to	support	this
object.

The	value	must	be	null	or	contain	two	elements.	If	it
is	null,	the	object	requires	no	Adobe	extension	(for
getting),	or	the	extension	level	is	removed	(for
setting).	The	first	element	is	the	base	version;	the
second	element	is	the	extension	level.

For	example,	a	base	version	of	7	and	an	extension
level	of	3	indicate	that	the	features	specified	by	the
object	require	a	PDF	consumer	supporting	base
version	1.7	and	extension	level	3.	Adobe	Reader	9.1
was	the	first	browser	to	support	it.

	

	 	

Example 	
None.

	
	 	

	

	

Dispose	Function 	 	

Dispose	of	the	object.

	
	 	

Syntax 	

[C#]
void	Dispose()
protected	void	Dispose(bool
disposing)	

[Visual	Basic]
Sub	Dispose()
Protected	Sub	Dispose(disposing
As	Boolean)	

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

You	can	call	this	function	to	explicitly	dispose	of
an	object	and	reduce	the	garbage	collection
overhead.

This	method	follows	the	standard	design	pattern
for	objects	implementing	the	IDisposable
interface.	The	protected	Dispose	method	can	be
overridden	for	sub-classes	wishing	to	dispose	of
additional	objects.

	 	

Do	not	attempt	to	use	an	object	after	calling
Dispose.

	

Example 	
None.

	
	 	

	

	

CopyTo	Function 	 	

Copies	the	objects	in	the	Soup	to	an	Array.

	
	 	

Syntax 	

[C#]
void	CopyTo(IndirectObject[]
array,	int	index)

[Visual	Basic]
Sub	CopyTo(array	As
IndirectObject(),	index	As
Integer)

	

	 	

Params 	

Name Description

array The	array	that	is	the	destination	for	the
elements.

index The	zero-based	index	in	array	at	which
copying	begins.

	

	 	

Notes 	

Copies	the	elements	of	the	Soup	to	an	array
starting	at	a	particular	array	index.

The	array	must	be	one-dimensional	and	have
zero-based	indexing.

	

	 	

Example 	
None.

	
	 	

	

	

Add	Function 	 	

Adds	an	object	to	the	Soup.

	
	 	

Syntax 	

[C#]
int	Add(IndirectObject	value)

[Visual	Basic]
Function	Add(value	As
IndirectObject)	As	Integer

	

	 	

Params 	

Name Description
value The	IndirectObject	to	be	added.

return The	position	in	which	the	new	element
was	inserted.

	

	 	

Notes 	

This	method	adds	an	IndirectObject	to	the
Soup.

An	IndirectObject	can	exist	in	only	one
ObjectSoup	at	a	time.	If	the	object	supplied	is
already	contained	in	another	ObjectSoup	then	a
Clone	of	the	object	is	inserted.

When	an	IndirectObject	is	inserted	the	ID	is
updated	to	reflect	the	position	of	the	object

	 	

within	the	Soup.

	

Example 	
None.

	
	 	

	

	

Clear	Function 	 	

Removes	all	objects	from	the	Soup.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Removes	all	IndirectObjects	from	the	Soup.

Only	the	Null	object	at	array	index	zero	is
preserved.

	

	 	

Example 	
None.

	
	 	

	

	

Contains	Function 	 	

Determines	whether	the	Soup	contains	a
specific	object.

	

	 	

Syntax 	

[C#]
bool	Contains(IndirectObject
value)

[Visual	Basic]
Function	Contains(value	As
IndirectObject)	As	Boolean

	

	 	

Params 	

Name Description
value The	object	to	locate.

return True	if	the	object	is	found,	otherwise
false.

	

	 	

Notes 	

Determines	whether	the	Soup	contains	a
specific	IndirectObject.

	

	 	

Example 	

None.
	 	

	

	

	

IndexOf	Function 	 	

Determines	the	index	of	a	specific	object.

	
	 	

Syntax 	

[C#]
int	IndexOf(IndirectObject	value)

[Visual	Basic]
Function	IndexOf(value	As
IndirectObject)	As	Integer

	

	 	

Params 	

Name Description
value The	object	to	locate	in	the	Soup.

return If	found,	the	index	of	value,	otherwise
-1.

	

	 	

Notes 	

Determines	the	index	of	a	specific
IndirectObject	in	the	Soup.

	

	 	

Example 	
None.

	
	 	

	

	

Insert	Function 	 	

Inserts	an	object	into	the	Soup	at	the	specified
position.

	

	 	

Syntax 	

[C#]
void	Insert(int	index,
IndirectObject	value)

[Visual	Basic]
Sub	Insert(index	As	Integer,
value	As	IndirectObject)

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description

index The	zero-based	index	at	which	value
should	be	inserted.

return The	Object	to	insert	into	the	Soup.

	

	 	

Objects	within	a	collection	refer	to	each	other	by
index.	This	means	that	once	an	object	is
inserted	into	the	Soup	it	must	stay	at	the	same
index.	If	it	moves	then	references	may	be

Notes 	
broken.

Insertion	at	a	particular	position	might	require
other	objects	to	be	moved.	For	this	reason	this
method	always	throws	a
NotSupportedException.

	

	 	

Example 	
None.

	
	 	

	

	

Remove	Function 	 	

Removes	an	object	from	the	Soup.

	
	 	

Syntax 	

[C#]
bool	Remove(IndirectObject	value)

[Visual	Basic]
Function	Remove(value	As
IndirectObject)	As	Boolean

	

	 	

Params 	

Name Description
value The	IndirectObject	to	be	removed.

return True	if	the	IndirectObject	is	removed,
otherwise	false.

	

	 	

Notes 	

When	an	object	is	removed	it	leaves	a	gap	in
the	Soup.	Other	objects	do	not	move	to	fill	the
gap.

RefAtoms	pointing	to	the	object	which	was
removed	are	not	updated.	This	means	you	can
remove	one	object	and	replace	it	with	a
substitute.	Other	IndirectObjects	in	the	Soup	will
then	refer	to	the	new	object	rather	than	the	old
one. 	 	

However	it	also	means	that	you	should	be
careful	about	removing	an	object	and	not
replacing	it.	Because	the	slot	is	free	it	may	be
re-used	and	any	references	which	exist	may
then	point	to	a	new	-	inappropriate	-	object.

	

Example 	
None.

	
	 	

	

	

RemoveAt	Function 	 	

Removes	an	object	at	a	specified	position	from
the	Soup.

	

	 	

Syntax 	

[C#]
void	RemoveAt(int	index)

[Visual	Basic]
Sub	RemoveAt(index	As	Integer)

	may	throw
ArgumentOutOfRangeException()

	

	 	

Params 	

Name Description

index The	zero-based	index	of	the	item	to
remove.

	

	 	

If	the	index	is	not	valid	then	an
ArgumentOutOfRangeException	will	be	thrown.

When	an	object	is	removed	it	leaves	a	gap	in
the	Soup.	Other	objects	do	not	move	to	fill	the
gap.

RefAtoms	pointing	to	the	object	which	was

Notes 	

removed	are	not	updated.	This	means	you	can
remove	one	object	and	replace	it	with	a
substitute.	Other	IndirectObjects	in	the	Soup	will
then	refer	to	the	new	object	rather	than	the	old
one.

However	it	also	means	that	you	should	be
careful	about	removing	an	object	and	not
replacing	it.	Because	the	slot	is	free	it	may	be
re-used	and	any	references	which	exist	may
then	point	to	a	new	-	inappropriate	-	object.

	

	 	

Example 	
None.

	
	 	

	

	

GetEnumerator	Function 	 	

Gets	an	enumerator	for	the	Soup.

	
	 	

Syntax 	

[C#]
IEnumerator<IndirectObject>
GetEnumerator()

[Visual	Basic]
Function	GetEnumerator()	As
IEnumerator(Of	IndirectObject)

	

	 	

Params 	

Name Description
return The	enumerator	for	the	collection.

	

	 	

Notes 	
Gets	an	IndirectObject	enumerator	for	the	Soup.

	
	 	

Example 	
None.

	
	 	

	

	

Count	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
items	in	the
Soup.

	

	 	

Notes 	

The	number	of	items	in	the	Soup.

As	objects	are	added	to	the	collection	the	Count	will
increase	to	accomodate	them.

The	collection	may	contain	null	values	as	well	as
instantiated	IndirectObjects.

	

	 	

Example 	
None.

	
	 	

	

	

Item	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IndirectObject
this[int	index]

[Visual	Basic]
Default	Property
Item(index	As
Integer)	As
IndirectObject

	n/a	 No

Gets	or	sets
the	object	at
the
specified
index.

	

	may	throw
ArgumentOutOfRangeException()

	

	 	

Notes 	

Gets	or	sets	the	IndirectObject	at	the	specified	index.
In	C#	this	property	is	the	indexer	for	the	class.

An	IndirectObject	can	exist	in	only	one	ObjectSoup	at
a	time.	If	the	object	supplied	is	already	contained	in
another	ObjectSoup	then	a	Clone	of	the	object	is
inserted.

When	an	IndirectObject	is	inserted	the	ID	is	updated
to	reflect	the	position	of	the	object	within	the	Soup.

	

	 	

Example 	
None.

	
	 	

	

	

Catalog	Property 	 	

	

Type Default ReadOnly Description

[C#]	Catalog

[Visual	Basic]
Catalog

	n/a	 Yes The	Catalog	for
the	document.

	

	 	

Notes 	

The	Catalog	for	the	document.

The	Catalog	is	the	root	of	the	whole	PDF	document.
It	contains	information	on	the	root	Pages	object	and
the	Outline	object.

	

	 	

Example 	
None.

	
	 	

	

	

Trailer	Property 	 	

	

Type Default ReadOnly Description

[C#]	
StreamObject

[Visual	Basic]
StreamObject

	n/a	 Yes
The	Trailer	or
XRef	for	the
document.

	

	 	

Notes 	

The	Trailer	or	XRef	StreamObject	for	the	document.

In	PDF	1.4	documents	have	trailer	dictionary.	In	PDF
1.5	documents	have	XRef	streams.	Internally
ABCpdf	only	uses	XRef	streams	but	-	when	writing
PDF	1.4	documents	-	it	converts	the	XRef	to	a
standard	trailer	before	output.

	

	 	

Example 	
None.

	
	 	

	

	

Revisions	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
incremental
updates.

	

	 	

Notes 	

The	number	of	incremental	updates.

No	object	in	the	collection	will	have	an
IndirectObject.Revision	higher	than	this.

However	it	is	possible,	though	unusual,	for	some
revisions	to	have	no	objects.

	

	 	

Example 	
None.

	
	 	

	

	

ObjectSoupSubset	Constructor 	 	

Construct	an	ObjectSoupSubset.

	
	 	

Syntax 	

[C#]
ObjectSoupSubset(ObjectSoup	soup)

[Visual	Basic]
Sub	New(soup	As	ObjectSoup)

	

	 	

Params 	

Name Description

soup The	soup	from	which	objects	will	be
selected.

	

	 	

Notes 	

Create	an	ObjectSoupSubset.

An	ObjectSoupSubset	is	specific	to	a	particular
ObjectSoup	and	may	only	contain
IndirectObjects	from	that	soup.

For	this	reason	you	should	specify	the	soup	in
question	at	the	point	of	construction.	If	later	you
attempt	to	add	objects	from	a	different	soup
then	an	exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

CopyTo	Function 	 	

Copy	the	objects	in	this	subset	to	a	new	soup
while	preserving	the	relationships	between	the
items	in	the	selection.

	

	 	

Syntax 	

[C#]
void	CopyTo(ObjectSoup	soup)

[Visual	Basic]
Sub	CopyTo(soup	As	ObjectSoup)

	

	 	

Params 	

Name Description
soup The	destination	soup.

	

	 	

Notes 	

Copy	the	objects	in	this	subset	to	a	new	soup
while	preserving	the	relationships	between	the
items	in	the	selection.

Each	IndirectObject	in	the	selection	has	a
unique	ID.	However	the	destination	soup	may
already	contain	items	with	this	ID.	For	this
reason	the	process	of	copying	the	objects
requires	a	remapping	of	old	IDs	to	new	ones	in
the	destination	soup. 	 	

Some	remap	entries	may	already	have	been
created	during	addition	as	the	entries	in	the
RemapTypes	property	get	applied.	However
most	will	be	created	at	the	point	that	the	CopyTo
method	is	called.	The	remap	table	is	accessible
via	the	RemapIDs	property.

	

Example 	
None.

	
	 	

	

	

AddFamily	Function 	 	

Add	a	parent	object	along	with	all	objects	it
refers	to.

	

	 	

Syntax 	

[C#]
int	AddFamily(IndirectObject
parent)
int	AddFamily(DictAtom	dict)

[Visual	Basic]
Function	AddFamily(parent	As
IndirectObject)	As	Integer
Function	AddFamily(dict	As
DictAtom)	As	Integer

	may	throw	Exception()

	

	 	

Params 	

Name Description
parent The	IndirectObject	to	be	added.
dict A	dictionary	atom	to	be	added.

return The	number	of	objects	that	were
added.

	

	 	

Add	a	parent	object	along	with	all	objects	it

Notes 	

refers	to.

If	a	dictionary	is	specified	there	is	no	parent.	In
this	situation	only	the	objects	referred	to	in	the
dictionary	will	be	added.

If	the	parent	or	dictionary	is	not	part	of	the	soup
specified	in	the	ObjectSoupSubset	constructor
then	an	exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

AddOnlyOne	Function 	 	

Add	just	this	object	ignoring	any	objects	it	may
refer	to.

	

	 	

Syntax 	

[C#]
bool	AddOnlyOne(IndirectObject
io)

[Visual	Basic]
Function	AddOnlyOne(io	As
IndirectObject)	As	Boolean

	may	throw	Exception()

	

	 	

Params 	

Name Description
io The	IndirectObject	to	be	added.

return True	if	the	item	was	added.

	

	 	

Add	a	parent	object	ignoring	any	objects	it	may
refer	to.

If	the	item	was	added	this	function	returns	true.
If	the	item	was	not	added	because	the	subset
already	contained	it	or	because	the

Notes 	 RemapTypes	specified	a	different	remapping
then	the	function	returns	false.

If	the	specified	object	is	not	part	of	the	soup
specified	in	the	ObjectSoupSubset	constructor
then	an	exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

Objects	Property

	

Type Default ReadOnly Description

[C#]	
ICollection<IndirectObject>

[Visual	Basic]
ICollection<IndirectObject>

	n/a	 Yes

The	collection
of
IndirectObjects
currently
contained	in
the	subset.

	

Notes 	

Gets	the	collection	of	IndirectObjects	currently	contained	in	the
subset.

	

	

Example 	
None.

	
	

	

	

RemapIDs	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IDictionary<int,
int>

[Visual	Basic]
IDictionary<int,
int>

	n/a	 Yes

Gets	the
dictionary
used	to	map
object	IDs
from	the
source	soup
to	new	object
IDs	in	the	final
soup.

	

	

	 	

Notes 	

Gets	the	dictionary	used	to	map	object	IDs	from	the
source	soup	to	new	object	IDs	in	the	final	soup.

Some	mappings	may	be	populated	via	the
RemapTypes	as	IndirectObjects	are	added.	Most	will
be	populated	at	the	point	that	the	CopyTo	method	is
called.

	

	 	

Example 	
None.

	
	 	

	

	

RemapTypes	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IDictionary<string,
int>

[Visual	Basic]
IDictionary<string,
int>

	n/a	 Yes

A	dictionary
used	to
redirect	all
objects	of	a
specific	type
to	a	specific
object	ID.

	

	 	

Notes 	

A	dictionary	used	to	redirect	all	objects	of	a	specific
type	to	a	specific	object	ID.

For	example	a	stamp	annotation	is	an	object	that
describes	a	rubber	stamp	image	that	floats	over	a
page.	This	object	will	contain	links	to	other	objects
which	will	describe	features	like	the	appearance	of
the	stamp.	However	it	also	contains	a	link	to	the
page	on	which	it	is	located.

Suppose	you	want	to	copy	this	annotation	to	another
document.	When	you	call	AddFamily	with	this
annotation	you	want	to	include	related	items	like	the
annotation	appearance	but	you	don't	want	to	include
the	page	on	which	it	is	located.	In	fact	you	actually
want	links	to	this	page	in	the	source	document	to	be
redirected	to	a	different	page	in	the	final	destination
document.

	 	

By	specifying	a	mapping	from	the	"Page"	object	type
to	the	ID	of	a	page	in	the	final	destination	you	both
stop	looking	for	linked	objects	at	the	point	at	which	a
page	is	discovered	and	also	allow	references	to	the
source	page	to	be	linked	to	the	destination	page	at
the	point	that	CopyTo	is	called.

To	be	precise,	each	time	an	IndirectObject	is
encountered	it	is	checked	for	a	"Type"	entry.	If	this
entry	matches	an	item	in	the	RemapTypes	dictionary
then	the	object	is	not	added	and	no	items	to	which	it
referrers	are	added.	Instead	an	item	is	added	to	the
RemapIDs	property	specifying	a	mapping	between
the	ID	of	the	object	in	question	and	the	ID	specified
in	the	RemapTypes	entry.

	

Example 	
None.

	
	 	

	

	

Focus	Function 	 	

Prepare	document	for	drawing	at	the	annotation
location

	

	 	

Syntax 	

[C#]
bool	Focus()

[Visual	Basic]
Function	Focus()	As	Boolean

	

	 	

Params 	

Name Description

return True	if	the	focus	operation	was
successful.

	

	 	

Notes 	

Use	this	method	to	focus	on	the	Annotation.

This	prepares	the	document	for	drawing	at	the
Annotation	location.

If	the	operation	was	successful	then	the	function
returns	true.	If	not	then	it	will	return	false.

The	Doc.Page,	Doc.Rect	and	Doc.Transform
may	all	be	changed	as	a	result	of	calling	this
method.

	 	

	

Example 	
None.

	
	 	

	

	

GetFieldOptions	Function 	 	

The	field	options	for	any	form	field	associated
with	this	annotation.

	

	 	

Syntax 	

[C#]
string[]	GetFieldOptions()

[Visual	Basic]
Function	GetFieldOptions()	As
String()

	

	 	

Params 	

Name Description
return The	list	of	field	options.

	

	 	

This	function	gets	the	field	options	for	any	form
field	associated	with	this	annotation.

Typically	you	assign	a	value	using	the
FieldValue.	Some	fields	such	as	Text	fields	will
accept	any	value.	Others	such	as	Checkboxes
and	List	Boxes	accept	only	a	limited	range	of
options.	You	can	obtain	these	options	using	this
method.

The	unmarked	state	of	a	Checkbox	or	Radio

Notes 	
Button	is	always	"Off".	The	marked	state	varies
and	is	available	via	this	function.	This	function
will	always	return	a	one	item	arrray	for	this	type
of	field.

The	set	of	options	for	a	Combo	Box	or	List	Box
is	available	via	this	property.	This	function	will
return	as	many	items	as	there	are	possible
values.

Pushbuttons,	Signatures	and	Text	fields	do	not
have	options.

	

	 	

Example 	
None.

	
	 	

	

	

Stamp	Function 	 	

Stamp	this	annotation	into	the	page.

	
	 	

Syntax 	

[C#]
void	Stamp()

[Visual	Basic]
Sub	Stamp()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Use	this	method	to	permanently	stamp	an
annotation	into	the	page	on	which	it	is	located.

When	this	method	is	called	the	annotation
appearance	is	stamped	permanently	into	the
document	and	the	annotation	is	deleted.

The	annotation	becomes	a	new	layer	on	the
page	(see	Doc.LayerCount)	so	you	may	wish	to
call	Doc.Flatten	on	the	affected	page.

	

	 	

Example 	
None.

	
	 	

	

	

UpdateAppearance	Function 	 	

Update	the	Appearance	Stream	for	this
annotation.

	

	 	

Syntax 	

[C#]
void	UpdateAppearance()

[Visual	Basic]
Sub	UpdateAppearance()

	

	 	

Params 	

Name Description
none n/a.

	

	 	

Notes 	

Update	the	Appearance	Stream	for	this
Annotation.

Annotations	often	have	appearance	streams
which	define	how	they	appear	on	the	page
when	displayed	or	printed.	ABCpdf	understands
a	variety	of	annotation	types	and	can	create	an
appropriate	stream	when	requested.

Calling	this	function	will	result	in	the	appearance
stream	being	updated	or	(if	one	does	not
already	exist)	created.

	 	

	

Example 	
None.

	
	 	

	

	

Border	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	ArrayAtom

[Visual	Basic]
ArrayAtom

n/a No The	border
appearance

	

	 	

Notes 	

The	border	determines	the	visible	appearance	of	the
border	around	the	annotation.

The	border	is	an	ArrayAtom	contaiining	three	or	four
elements.	The	first	three	elements	describe	the
horizontal	corner	radius,	the	vertical	corner	radius
and	the	border	width.	If	the	corners	are	zero	then	the
border	has	rectangular	rather	than	rounded	corners.
If	the	border	width	is	zero	then	there	is	no	border.

The	last	optional	element	is	a	dash	array	to	be	used
in	drawing	dashed	borders.	This	conforms	to	the
standard	dash	array	format	which	indicates
alternatingly	the	length	of	lines	and	gaps.	So	[2	1]
would	indicate	two	on,	one	off,	two	on,	one	off...
Longer	arrays	can	be	used	for	more	complex	dash
patterns.

If	this	property	is	null	then	a	solid	rectangular	border
of	width	one	will	be	drawn.	This	is	equivalent	to	the
following	code.

[C#]

	 	

annot.Border	=
(ArrayAtom)Atom.FromString("[0	0	1");

[Visual	Basic]
annot.Border	=
DirectCast(Atom.FromString("[0	0
1]"),	ArrayAtom)

After	changing	this	property	you	will	need	to	call
UpdateAppearance	to	realize	the	change.

	

Example 	
None.

	
	 	

	

	

Contents	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes
The	visible	text
of	the
annotation.

	

	 	

Notes 	

The	visible	text	of	the	annotation.

If	the	annotation	subtype	does	not	display	text	then
this	field	should	contain	an	alternative	description	of
the	annotation	contents.

	

	 	

Example 	
None.

	
	 	

	

	

FieldBackgroundColor	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XColor

[Visual	Basic]
XColor

n/a No The	background
color	of	the	field.

	

	 	

Notes 	

This	property	is	used	to	access	or	change	the
background	color	of	a	field.

This	property	is	only	valid	if	this	annotation	is
associated	with	a	form	field.

If	you	assign	a	color	to	this	property	the	color
supplied	must	be	grayscale,	RGB	or	CMYK.	A	value
of	null	indicates	that	the	background	is	transparent.

When	you	set	this	property	a	clone	of	the	XColor	you
assign	is	created	to	avoid	one	XColor	being	shared
by	multiple	annotations.

After	changing	this	property	you	will	need	to	call
UpdateAppearance	to	realize	the	change.

	

	 	

Example 	
None.

	
	 	

	

	

FieldBorderColor	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XColor

[Visual	Basic]
XColor

n/a No
The	border
color	of	the
field.

	

	 	

Notes 	

This	property	is	used	to	access	or	change	the	border
color	of	a	field.

This	property	is	only	valid	if	this	annotation	is
associated	with	a	form	field.

If	you	assign	a	color	to	this	property	the	color
supplied	must	be	grayscale,	RGB	or	CMYK.	A	value
of	null	indicates	that	the	border	is	transparent.

When	you	set	this	property	a	clone	of	the	XColor	you
assign	is	created	to	avoid	one	XColor	being	shared
by	multiple	annotations.

After	changing	this	property	you	will	need	to	call
UpdateAppearance	to	realize	the	change.

	

	 	

Example 	
None.

	
	 	

	

	

FieldRotation	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a No

The	rotation	of
the	annotation	in
degrees
counterclockwise
to	the	page.

	

	 	

Notes 	

This	property	is	used	to	access	or	change	the
rotation	of	the	annotation	in	degrees
counterclockwise	to	the	page.	This	rotation	must	be	a
multiple	of	90.

This	property	is	only	valid	if	this	annotation	is
associated	with	a	form	field.

If	you	assign	a	color	to	this	property	the	color
supplied	must	be	grayscale,	RGB	or	CMYK.	A	value
of	null	indicates	that	the	border	is	transparent.

When	you	set	this	property	a	clone	of	the	XColor	you
assign	is	created	to	avoid	one	XColor	being	shared
by	multiple	annotations.

After	changing	this	property	you	will	need	to	call
UpdateAppearance	to	realize	the	change.

	

	 	

Example 	
None.

	
	 	

	

	

FieldType	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes

The	field	type	for
any	form	field
associated	with
this	annotation.

	

	 	

Notes 	

The	field	type	for	any	form	field	associated	with	this
annotation.

The	following	field	types	are	available:

"Pushbutton"
"Checkbox"
"Radio"
"Text"
"List"
"Combo"
"Signature"
"Unknown"

More	details	of	these	field	types	can	be	found	in	the
Section	8.6.3	of	the	Adobe	PDF	Specification.

	

	 	

Example
	
None. 	 	

http://partners.adobe.com/

	

	

	

FieldValue	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 No

The	field	value
for	any	form	field
associated	with
this	annotation.

	

	 	

Notes 	

The	field	value	for	any	form	field	associated	with	this
annotation.

You	may	wish	to	assign	or	query	the	form	field	value
using	this	property.

Checkboxes	and	Radio	Buttons	have	a	value	which
is	either	"Off"	or	the	on-state	of	the	control	as
accessible	via	GetFieldOptions.

Text	fields	have	a	free-text	value.

Combo	Boxes	and	List	Boxes	have	values	restricted
to	a	set	of	selections	as	accessible	via
GetFieldOptions.

Pushbuttons	and	Signatures	do	not	have	a	value.

	

	 	

Example
	
None. 	 	

	

	

	

Flags	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
AnnotationFlags

[Visual	Basic]
AnnotationFlags

n/a No
The
Annotation
Flags	entry

	

	 	

This	property	is	used	to	access	or	change	the	flags
for	the	annotation.

The	AnnotationFlags	type	is	a	flags	type	enumeration
so	the	different	values	can	be	combined	together
using	bitwise	operations.	It	may	take	the	following
values:

Invisible	(Do	not	display	the	annotation	if	it	does
not	belong	to	one	of	the	standard	types	and	no
special	handler	is	available)
Hidden	(Do	not	display	or	print	the	annotation	or
allow	it	to	interact	with	the	user,	regardless	of	its
type	or	whether	an	annotation	handler	is
available)
Print	(Print	the	annotation	when	the	page	is
printed.	Typically	used	to	hide	pushbuttons	when
a	page	is	printed)
NoZoom	(Do	not	scale	the	annotation	as	the
zoom	level	of	the	page	is	changed.	The	top	left
of	the	annotation	on	the	page	remains	fixed

Notes 	

regardless	of	the	page	zoom	level)
NoRotate	(Do	not	rotate	the	annotation	as	the
page	is	rotated.	The	top	left	of	the	annotation	on
the	page	remains	fixed	regardless	of	the	page
rotation)
NoView	(Do	not	show	the	annotation	on	the
screen	or	allow	it	to	interact	with	the	user.	The
annotation	may	be	printed	if	the	Print	flag	is	set)
ReadOnly	(Do	not	allow	the	annotation	to
interact	with	the	user)
Locked	(Do	not	allow	the	annotation	to	be
moved,	deleted	or	otherwise	modified.	However
the	content	may	be	changed	even	if	this	property
is	set)
ToggleNoView	(Invert	the	interpretation	of	the
NoView	flag	for	certain	events)
LockedContents	(Do	not	allow	the	contents	of
the	annotation	to	be	modified.	Other	annotation
properties	such	as	size	and	location	may	be
modified)

For	code	shoing	how	to	check,	set	or	clear	flags	see
the	FontObject.Flags	property.

	

	 	

Example 	
None.

	
	 	

	

	

FullName	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes

The	full	name	of
any	form	field
associated	with
this	annotation.

	

	 	

Notes 	

The	full	name	of	any	form	field	associated	with	this
annotation.

Note	that	the	PDF	specification	does	not	require	that
full	names	are	unique.

	

	 	

Example 	
None.

	
	 	

	

	

Page	Property 	 	

	

Type Default ReadOnly Description

[C#]	Page

[Visual	Basic]
Page

	n/a	 No

The	Page	on
which	this
annotation	is
located.

	

	 	

Notes 	
The	Page	on	which	this	annotation	is	located.

	
	 	

Example 	
None.

	
	 	

	

	

Rect	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

	n/a	 No

The	rectangle
which	defines
the	position	and
area	of	the
annotation	on
the	page.

	may	throw	NullReferenceException()

	

	 	

Notes 	

The	XRect	which	defines	the	position	and	area	of	the
annotation	on	the	page.

This	rectangle	is	encoded	in	PDF	coordinates	rather
than	any	abstracted	coordinate	space.

This	property	must	always	have	a	value.	Attempting
to	assign	a	null	value	to	this	property	will	result	in	a
NullReferenceException	being	thrown.

	

	 	

Example 	
None.

	
	 	

	

	

SubType	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes The	sub-type	of
Annotation.

	

	 	

Notes 	

The	sub-type	of	annotation.

This	may	be	'Text',	'Link',	'Widget'	or	any	of	the	many
supported	types	listed	in	Section	8.4.5	of	the	Adobe
PDF	Specification.

	

	 	

Example 	
None.

	
	 	

	

http://partners.adobe.com/

	

TextDirection	Property

	

Type Default	Value Read
Only Description

[C#]	
XTextStyle.DirectionType

[Visual	Basic]
XTextStyle.DirectionType

DirectionType.Default No
The	default
text
direction

	

Notes 	

This	property	specifies	the	default	primary	text	direction.	For	the
details	of	each	value,	please	refer	to	XTextStyle.Direction.

Its	value	is	not	saved	to	the	PDF	file.	It	does	not	support	RightToLeft
and	mainly	allows	you	to	enable	the	support	for	ligatures	and	right-to-
left	text	(in	left-to-right	primary	text	direction)	while	the	appearance
stream	is	updated.

	

Example 	
None.

	

	

	

CopyTo	Function 	 	

Copies	the	Bookmarks	into	an	array.

	
	 	

Syntax 	

[C#]
void	CopyTo(Bookmark[]	array,	int
index)

[Visual	Basic]
Sub	CopyTo(array	As	Bookmark(),
index	As	Integer)

	

	 	

Params 	

Name Description

array The	array	that	is	the	destination	for	the
elements.

index The	zero-based	index	in	array	at	which
copying	begins.

	

	 	

Notes 	

Copies	the	elements	of	the	Collection	to	an
array	starting	at	a	particular	array	index.

The	array	must	be	one-dimensional	and	have
zero-based	indexing.

	

	 	

Example 	

None.

	
	 	

	

	

Add	Function 	 	

Adds	a	Bookmark	to	the	end	of	the	list.

	
	 	

Syntax 	

[C#]
int	Add(Bookmark	bookmark)
int	Add(string	title)	

[Visual	Basic]
Function	Add(bookmark	As
Bookmark)	As	Integer
Function	Add(title	As	String)	As
Integer

	

	 	

Params 	

Name Description
bookmark The	bookmark	to	be	added.

title The	title	for	the	bookmark	to	be
added.

return The	position	in	which	the	new
element	was	inserted.

	

	 	

This	method	adds	an	item	to	the	end	of	the	list.

You	can	add	a	Bookmark	directly	or	you	can
use	one	of	the	overloaded	operators	to	add	a
bookmark	with	a	specified	title.

Notes 	

When	you	add	a	string	this	is	encapsulated
within	a	new	Bookmark	which	is	then	inserted.

Bookmarks	can	exist	in	only	one	place	at	a
time.	If	the	Bookmark	supplied	is	already
contained	by	another	object	then	a	Clone	of	the
Bookmark	is	added.

	

	 	

Example 	
None.

	
	 	

	

	

Clear	Function 	 	

Removes	all	Bookmarks	from	the	list.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Removes	all	Bookmarks	from	the	list.

	
	 	

Example 	
None.

	
	 	

	

	

Contains	Function 	 	

Determines	whether	the	list	contains	a	specific
Bookmark.

	

	 	

Syntax 	

[C#]
bool	Contains(Bookmark	value)

[Visual	Basic]
Function	Contains(value	As
Bookmark)	As	Boolean

	

	 	

Params 	

Name Description
value The	object	to	locate.

return True	if	the	object	is	found,	otherwise
false.

	

	 	

Notes 	

Determines	whether	the	Collection	contains	a
specific	Bookmark.

	

	 	

Example 	
None.

	
	 	

	

	

IndexOf	Function 	 	

Determines	the	index	of	a	specific	Bookmark.

	
	 	

Syntax 	

[C#]
int	IndexOf(Bookmark	value)
int	IndexOf(string	value)

[Visual	Basic]
Function	IndexOf(value	As
Bookmark)	As	Integer
Function	IndexOf(value	As	String)
As	Integer

	

	 	

Params 	

Name Description

value The	object	or	the	title	of	the	object	to
locate	in	the	Collection.

return If	found,	the	index	of	value,	otherwise
-1.

	

	 	

Notes 	

Determines	the	index	of	a	specific	Bookmark	in
the	list.

	

	 	

Example 	
None.

	
	 	

	

	

Insert	Function 	 	

Inserts	a	Bookmark	into	the	list	at	the	specified
position.

	

	 	

Syntax 	

[C#]
void	Insert(int	index,	Bookmark
bookmark)
void	Insert(int	index,	string
title)	

[Visual	Basic]
Sub	Insert(index	As	Integer,
bookmark	As	Bookmark)
Sub	Insert(index	As	Integer,
title	As	String)

	may	throw
ArgumentOutOfRangeException()

	

	 	

Params 	

Name Description

index The	zero-based	index	at	which
value	should	be	inserted.

bookmark The	bookmark	to	be	added.

title The	title	for	the	bookmark	to	be
added.

	

	 	

Notes 	

Inserts	an	item	into	the	list	at	the	specified
position.

You	can	insert	a	Bookmark	directly	or	you	can
use	one	of	the	overloaded	operators	to	insert	a
bookmark	with	a	specified	title.

When	you	insert	a	string	this	is	encapsulated
within	a	new	Bookmark	which	is	then	inserted.

Bookmarks	can	exist	in	only	one	place	at	a
time.	If	the	Bookmark	supplied	is	already
contained	by	another	object	then	a	Clone	of	the
Bookmark	is	added.

If	the	index	equals	the	number	of	items	in	the
array	then	the	bookmark	is	appended	to	the
end.

If	the	index	is	not	a	valid	index	this	method
throws	an	ArgumentOutOfRangeException.

	

	 	

Example 	
None.

	
	 	

	

	

Remove	Function 	 	

Removes	a	Bookmark	from	the	list.

	
	 	

Syntax 	

[C#]
bool	Remove(Bookmark	value)

[Visual	Basic]
Function	Remove(value	As
Bookmark)	As	Boolean

	 	

Params 	

Name Description
value The	Bookmark	to	be	removed.

return True	if	the	Bookmark	is	removed,
otherwise	false.

	

	 	

Notes 	

When	a	Bookmark	is	removed	the	elements	that
follow	the	removed	element	move	up	to	occupy
the	vacated	spot.

	

	 	

Example 	
None.

	
	 	

	

	

RemoveAt	Method 	 	

Remove	the	Bookmark	at	the	specified	location.

	
	 	

Syntax 	

[C#]
void	RemoveAt(int	index)

[Visual	Basic]
Sub	RemoveAt(index	As	Integer)

	

	 	

Params 	

Name Description

index The	zero	based	index	specifying	the
Bookmark	to	be	removed.

	

	 	

Notes 	

Use	this	method	to	remove	the	Bookmark	at	the
specified	location.

The	Bookmarks	that	follow	the	removed
Bookmark	move	up	to	occupy	the	empty	spot.

	

	 	

Example 	

None.

	 	 	

	

	

GetEnumerator	Function 	 	

Gets	an	enumerator	for	the	Collection.

	
	 	

Syntax 	

[C#]
IEnumerator<Bookmark>
GetEnumerator()

[Visual	Basic]
Function	GetEnumerator()	As
IEnumerator(Of	Bookmark)

	

	 	

Params 	

Name Description
return The	enumerator	for	the	collection.

	

	 	

Notes 	
Gets	a	Bookmark	enumerator	for	the	Collection.

	
	 	

Example 	
None.

	
	 	

	

	

Adopt	Method 	 	

Adopt	a	specified	Bookmark.

	
	 	

Syntax 	

[C#]
void	Adopt(Bookmark	value)

[Visual	Basic]
Sub	Adopt(value	As	Bookmark)

	may	throw	Exception()

	

	 	

Params 	

Name Description
value The	bookmark	to	be	adopted.

	

	 	

Notes 	

Use	this	method	to	move	bookmarks	within	the
bookmark	hierarchy.

The	bookmark	to	be	adopted	is	detached	from
the	bookmark	hierarchy.	Then	it	is	added	at	the
end	of	the	bookmark	collection	for	the	current
object.

Some	Adopt	operations	are	not	possible.	For
example	a	child	cannot	adopt	its	parent.	In
these	cases	the	field	structure	will	be	left

	 	

unchanged	and	an	exception	thrown.

	

Example 	
None.

	
	 	

	

	

Refresh	Method 	 	

Refresh	and	reload	the	document	Bookmarks.

	
	 	

Syntax 	

[C#]
void	Refresh()

[Visual	Basic]
Sub	Refresh()

	

	 	

Params 	

Name Description
return n/a.

	

	 	

Notes 	

Use	this	method	to	refresh	and	reload	all
Bookmarks	in	the	list.

When	a	bookmark	is	first	referenced	the
bookmark	data	from	the	PDF	is	cached.	This
allows	a	level	of	optimization	which	would	not
otherwise	be	possible.

However	if	you	are	using	the	low	level
functionality	to	modify	the	bookmark	structure
the	cache	will	not	reflect	your	changes.	In	this
situation	you	can	force	the	bookmarks	to	be
reloaded	by	calling	Refresh.

	 	

	

Example 	
None.

	
	 	

	

	

Count	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

See
description. Yes

The	number
of
Bookmarks
in	the
collection.

	

	 	

Notes 	

The	number	of	Bookmarks	in	the	Collection.

As	with	all	Collections	you	can	use	the	Count
property	to	determine	the	number	of	items	contained
and	you	can	iterate	through	the	collection	using	the
standard	methods	appropriate	to	the	language	you
are	coding	in.

	

	 	

Example 	
None.

	
	 	

	

	

Item	Property 	 	

	

Type Default ReadOnly Description

[C#]	
Bookmark	this[int
index]

[Visual	Basic]
Default	Property
Item(index	As
Integer)	As
Bookmark

	n/a	 No

Get	or	set
the
Bookmark
at	the
specified
index.

	may	throw
ArgumentOutOfRangeException()

	

	 	

Notes 	

Gets	or	sets	the	Bookmark	at	the	specified	index.	In
C#	this	property	is	the	indexer	for	the	class.

If	the	index	is	not	a	valid	index	this	property	throws
an	ArgumentOutOfRangeException.

	

	 	

Example 	
None.

	
	 	

	

	

Open	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	the
bookmark
appears	open	or
closed.

	

	 	

Notes 	

This	property	determines	if	the	bookmark	appears
open	or	closed.

When	a	bookmark	is	open	all	its	children	are	visible
in	a	tree	below	it.	When	it	is	closed	its	children	are
hidden.	Clients	can	toggle	the	state	of	the	bookmark
by	clicking	on	it.

This	property	determines	the	default	state.

	

	 	

Example 	
None.

	
	 	

	

	

Page	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Page

[Visual	Basic]
Page

0 No

The	destination
Page	associated
with	this
bookmark.

	

	 	

Notes 	

When	activated	a	bookmark	will	trigger	an	action.	In
most	cases	this	will	be	a	navigation	action	resulting
in	a	new	page	being	displayed.

The	Page	object	for	the	destination	page	is	available
via	this	property.

Occasionally	you	may	come	across	bookmarks
which	have	more	complicated	actions.	In	these	cases
this	property	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

PageID	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

0 No

The	destination
Page	ID
associated	with
this	bookmark.

	

	 	

Notes 	

When	activated	a	bookmark	will	trigger	an	action.	In
most	cases	this	will	be	a	navigation	action	resulting
in	a	new	page	being	displayed.

The	Page	ID	for	the	destination	page	is	available	via
this	property.

Occasionally	you	may	come	across	bookmarks
which	have	more	complicated	actions.	In	these	cases
this	property	will	be	zero.

	

	 	

Example 	
None.

	
	 	

	

	

Parent	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Bookmark

[Visual	Basic]
Bookmark

n/a Yes The	parent	of
this	Bookmark.

	

	 	

Notes 	

Bookmarks	exist	in	a	hierarchy.

This	property	allows	you	to	find	the	bookmark	above
this	one	in	the	hierarchy.

The	top	level	outline	item	has	no	parent	so	in	this
case	the	property	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

Title	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

"" No

The	bookmark
title	to	be
displayed	on
screen.

	

	 	

Notes 	

This	property	determines	the	title	of	the	bookmark.

The	title	is	the	text	that	appears	in	the	bookmarks
tab.

	

	 	

Example 	
None.

	
	 	

	

	

AnalyzeContent	Function 	 	

Perform	whole	document	analysis	of	page
contents.

	

	 	

Syntax 	

[C#]
void	AnalyzeContent()

[Visual	Basic]
Function	AnalyzeContent()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

This	function	scans	the	document	and	performs
analysis	of	the	contents.

Scanning	the	document	content	involves
decompressing	and	parsing	all	the	content	in
the	document.	As	such	it	can	be	an	expensive
and	time	consuming	process	for	large	or
complex	documents.

For	this	reason	the	analysis	is	cached	the	first
time	this	function	is	called.	If	you	later	change
the	content	it	is	your	responsibility	to	call	this

	 	

function	to	ensure	that	the	analysis	is	updated.

Whole	document	analysis	enables	certain	other
optimizations	such	as	Font.Subset.

	

Example 	
None.

	
	 	

	

	

GetEmbeddedFiles	Function 	

Gets	all	the	embedded	files	in	this	document

	
	

Syntax 	

[C#]
IDictionary<string,
FileSpecification>	GetEmbeddedFiles()

[Visual	Basic]
Function	GetEmbeddedFiles()	As
IDictionary<string,
FileSpecification>

	

	

Params 	

Name Description

return A	set	of	names	and	the	file	associated	with
each	name.

	

	

Gets	all	the	embedded	files	in	this	document.

PDF	documents	can	contain	a	set	of	named	files.
These	files	can	then	be	referenced	by	name
elsewhere	in	the	document.

The	most	common	case	in	which	named	files	are
used	is	in	the	case	of	PDF	portfolios.	Adobe	now
uses	the	name	Portfolio	for	this	type	of	document

Notes
	

but	in	the	PDF	specification	they	are	known	as
Portable	Collections.	While	the	names	may	vary	two
are	the	same.

PDF	Portfolios	appear	as	one	PDF	document	but
actually	contain	many.	Typically	the	first	document
represents	the	visible	face	of	the	collection	when
opened.	After	the	collection	is	open	you	can	switch
between	the	embedded	PDFs.

PDF	portfolios	can	be	used	to	represent	a	folder	of
PDFs.	For	example	you	might	find	a	portable
collection	being	used	to	display	multiple	emails
within	a	single	PDF	Portfolio.

	

	

The	example	below	show	how	to	extract	all	the	files
embedded	in	a	PDF	portfolio.	See	the	FileSpecification
constructor	for	the	creation	of	portfolios.

[C#]
using	(Doc	doc	=	new	Doc())	{
		XReadOptions	ro	=	new	XReadOptions();
		ro.OpenPortfolios	=	false;
		doc.Read("Portfolio1.pdf",	ro);
		var	files	=
doc.ObjectSoup.Catalog.GetEmbeddedFiles();
		foreach	(var	pair	in	files)	{
				FileSpecification	fileSpec	=
pair.Value;
				fileSpec.Rationalize();
				EmbeddedFile	file	=
fileSpec.EmbeddedFile;
				if	((file	!=	null)	&&
(file.Decompress()))	{
						string	name	=	"Portfolio_"	+

Example
	

fileSpec.Uri;
						string	path	=	name;
						File.WriteAllBytes(path,
file.GetData());
				}
		}
}

[Visual	Basic]
Sub...
		Using	doc	As	New	Doc()
				Dim	ro	As	New	XReadOptions()
				ro.OpenPortfolios	=	False
				doc.Read("Portfolio1.pdf",	ro)
				Dim	files	=
doc.ObjectSoup.Catalog.GetEmbeddedFiles()
				For	Each	pair	As	var	In	files
						Dim	fileSpec	As	FileSpecification	=
pair.Value
						fileSpec.Rationalize()
						Dim	file__1	As	EmbeddedFile	=
fileSpec.EmbeddedFile
						If	(file__1	IsNot	Nothing)	AndAlso
(file__1.Decompress())	Then
								Dim	name	As	String	=	"Portfolio_"
+	fileSpec.Uri
								Dim	path	As	String	=	name
								File.WriteAllBytes(path,
file__1.GetData())
						End	If
				Next
		End	Using
End	Sub

	

	

	

GetFieldNames	Function 	 	

The	names	of	all	the	eForm	fields	in	the
document.

	

	 	

Syntax 	

[C#]
string[]	GetFieldNames()

[Visual	Basic]
Function	GetFieldNames()	As
String()

	

	 	

Params 	

Name Description

return The	names	of	all	the	eForm	fields	in
the	document.

	

	 	

Notes 	

This	function	scans	the	field	tree	and	extracts
the	full	name	of	every	field	in	the	document.

	

	 	

Example 	
None.

	
	 	

	

	

GetFields	Function 	 	

Get	all	the	eForm	fields	in	the	document.

	
	 	

Syntax 	

[C#]
IndirectObject[]	GetFields()

[Visual	Basic]
Function	GetFields()	As
IndirectObject()

	

	 	

Params 	

Name Description
return All	the	eForm	fields	in	the	document.

	

	 	

Notes 	

This	function	scans	the	field	tree	and	builds	an
array	of	all	the	fields	in	the	document.

Most	fields	are	Annotations	which	means	they
have	a	visible	appearance	on	the	page.	All
fields	are	IndirectObjects.

	

	 	

Example 	

None.
	 	

	

	

	

GetFonts	Function 	 	

Gets	all	the	fonts	in	this	document.

	
	 	

Syntax 	

[C#]
FontObject[]	GetFonts()

[Visual	Basic]
Function	GetFonts()	As
FontObject()

	

	 	

Params 	

Name Description
return All	the	fonts	in	the	document.

	

	 	

Notes 	

This	function	scans	the	document	and	builds	an
array	of	all	the	fonts.

	

	 	

Example 	
None.

	
	 	

	

	

Outline	Property 	 	

	

Type Default ReadOnly Description

[C#]	Outline

[Visual	Basic]
Outline

	n/a	 Yes The	root
Outline	object.

	

	 	

Notes 	

The	root	Outline	object.

The	Outline	object	holds	the	structure	of	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

Pages	Property 	 	

	

Type Default ReadOnly Description

[C#]	Pages

[Visual	Basic]
Pages

	n/a	 Yes The	root
Pages	object.

	

	 	

Notes 	

The	root	Pages	object.

The	Pages	object	holds	references	to	every	page	in
the	document.

	

	 	

Example 	
None.

	
	 	

	

	

ColorSpace	Constructor 	 	

Construct	a	ColorSpace.

	
	 	

Syntax 	

[C#]
ColorSpace(ObjectSoup	soup)
ColorSpace(ObjectSoup	soup,
ColorSpaceType	space)	

[Visual	Basic]
Sub	New(soup	As	ObjectSoup)
Sub	New(soup	As	ObjectSoup,	space
As	ColorSpaceType)

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	StreamObject.

space The	type	of	color	space	required.

	

	 	

Notes 	

Create	a	ColorSpace.

If	a	color	space	is	not	specified	the	default	of
DeviceRGB	will	be	used.

	

	 	

Example 	

See	the	PixMap.Recolor	function.

	
	 	

	

	

ColorSpaceType	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ColorSpaceType

[Visual	Basic]
ColorSpaceType

	n/a	 No The	type	of
color	space.

	

	 	

The	ColorSpaceType	enumeration	may	take	the
following	values:

None
DeviceGray
DeviceRGB
DeviceCMYK
CalGray
CalRGB
ICCBased
Lab
Indexed
Pattern
Separation
DeviceN

Device	color	spaces	are	device	dependent	color
spaces.	This	means	that	output	color	will	vary
depending	on	the	output	medium.	For	example	a
DeviceRGB	value	may	look	different	on	one	monitor
than	it	does	on	another.

Notes 	

Cal,	ICC	and	Lab	color	spaces	are	device
independent	color	spaces.	They	try	to	define	colors
in	terms	of	how	they	should	look	rather	than	how
they	should	be	produced.	The	goal	is	to	allow	colors
to	be	reproduced	accurately	on	different	devices
within	the	capabilities	of	the	destination	device.

The	Indexed	color	space	is	used	for	palettized	color.
Each	item	in	the	palette	is	defined	in	terms	of	a	base
color	space	such	as	DeviceRGB.	Palettes	can	hold
up	to	256	entries.	The	base	color	space	can	be
determined	using	the	BaseColorSpaceType	property.

Pattern	color	spaces	are	special	color	spaces	used
for	defining	repeating	patterns.

Separation	and	DeviceN	color	spaces	define	colors
in	terms	of	different	base	colors.	Separations	specify
one	color	only.	DeviceN	color	spaces	define	multiple
different	colors.	For	example	using	a	DeviceN	color
space	you	could	define	an	image	to	be	printed	using
a	combination	of	Gold,	Silver	and	Black	inks.

The	None	color	space	represents	an	unknown	or
undefined	color	space.	As	such	you	cannot	set	this
property	to	be	None.	Attempting	to	do	so	will	result	in
a	default	DeviceRGB	color	space.

More	details	of	these	color	space	types	can	be	found
in	Section	4.5	of	the	Adobe	PDF	Specification.

	

	 	

Example 	
None.

	

	 	

http://partners.adobe.com/

	

	

Components	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	number	of
color
components	in
the	color	space.

	

	 	

Notes 	

Different	color	spaces	have	different	numbers	of
components.

For	example	RGB	color	spaces	have	three
components	and	CMYK	color	spaces	have	four.

This	property	allows	you	to	determine	the	number	of
color	components	in	the	color	space.

Indexed	color	spaces	define	colors	via	a	palette.	So
although	a	color	value	is	determined	via	a	single
index	into	a	palette,	the	number	of	components	is
determined	by	the	number	of	color	components	in
the	palette.

For	example	the	number	of	components	in	an
indexed	RGB	color	space	is	three.

Pattern	color	spaces	are	special	and	have	no
components.

	

	 	

Example 	

None.

	 	 	

	

	

IccProfile	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IccProfile

[Visual	Basic]
IccProfile

	n/a	 No

Any	ICC	Color
Profile
associated	with
this	color	space.

	

	 	

Notes 	

Any	IccProfile	describing	an	ICC	Color	Profile
associated	with	this	color	space.

Querying	the	value	of	this	property	will	never	raise	an
exception.

Assigning	a	new	value	to	this	property	automatically
results	in	the	IccProfile	being	decompressed,
validated,	recompressed	and	(if	it	is	not	already
there)	added	to	the	same	ObjectSoup	as	the
ColorSpace.

The	ColorSpaceType	and	Components	properties
will	change	to	reflect	the	color	space	of	the	new
profile.

An	exception	will	be	thrown	if	the	assignation	is	not
possible.	This	may	happen	if	the	ColorSpace	is	not	in
an	ObjectSoup	or	if	the	IccProfile	is	not	valid.

	

	 	

Example 	
See	the	PixMap.Recolor	function.

	
	 	

	

	

BaseColorSpaceType	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ColorSpaceType

[Visual	Basic]
ColorSpaceType

	n/a	 Yes The	base	type
of	color	space.

	

	 	

Notes 	

The	base	color	space	is	relevant	for	cases	in	which
the	ColorSpaceType	property	is	Indexed.

An	Indexed	color	space	contains	a	palette	of	colors
indexed	by	number.	Each	item	in	the	palette	is	a
color	in	a	different	color	space.	As	such	the	Indexed
color	space	has	a	base	color	space	in	which	the
palette	colors	are	defined.

This	property	allows	you	to	determine	the	base	color
space	for	an	Indexed	color	space.	If	the	color	space
is	not	Indexed	then	this	property	is	equal	to	the
ColorSpaceType	property.

	

	 	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes
Any	name
associated	with
the	color	space.

	

	 	

Notes 	

Any	name	associated	with	the	color	space.

Names	are	relevant	only	for	Separation	color	spaces.
They	typically	refer	to	the	name	of	a	spot	color.

	

	 	

Example 	
None.

	
	 	

	

	

Gamma	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	ArrayAtom

[Visual	Basic]
ArrayAtom

n/a No
The	gamma
correction	for	the
color	space

	

	 	

Notes 	

The	gamma	correction	for	the	color	space.

This	property	is	only	valid	for	color	spaces	in	which	the
ColorSpaceType	is	CallGray	or	CalRGB.

Gamma	is	defined	for	each	component	of	a	calibrated
color	space.	So	for	a	CalGray	color	space	it	has	one
entry	and	for	a	CalRGB	color	space	it	has	three.

This	means	that	for	a	CalGray	color	space	this
property	will	be	a	NumAtom	and	for	a	CalRGB	color
space	it	will	be	an	ArrayAtom	with	three	entries.

Each	gamma	entry	must	be	positive	and	is	generally
greater	than	or	equal	to	one.

	

	 	

In	this	example	we	show	how	to	use	the	Gamma	property
with	a	calibrated	grayscale	color	space.

[C#]

Example

	

using	(Doc	doc	=	new	Doc())	{
		doc.Width	=	80;
		doc.Rect.Inset(50,	50);
		ColorSpace	cs	=	new
ColorSpace(doc.ObjectSoup,
ColorSpaceType.CalGray);
		((NumAtom)cs.Gamma).Real	=	1.2;
		doc.ColorSpace	=	cs.ID;
		doc.Color.SetComponents(0.9);	//	gray
		doc.AddOval(true);
		doc.Save("examplecalgraycolorspace.pdf");
}

[Visual	Basic]
		Using	doc	As	New	Doc()
				doc.Width	=	80
				doc.Rect.Inset(50,	50)
				Dim	cs	As	New	ColorSpace(doc.ObjectSoup,
ColorSpaceType.CalGray)
				DirectCast(cs.Gamma,	NumAtom).Real	=	1.2
				doc.ColorSpace	=	cs.ID
				doc.Color.SetComponents(0.9)
				'	gray
				doc.AddOval(True)
				doc.Save("examplecalgraycolorspace.pdf")
		End	Using
End	Sub

	 	

examplecalgraycolorspace.pdf

	

	

	

BlackPoint	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XColor

[Visual	Basic]
XColor

n/a No

The	black	point
for	the	color
space	specified
in	CIE	1931	XYZ
space

	

	 	

Notes 	

The	black	point	for	the	color	space	specified	in	CIE
1931	XYZ	space.

This	property	is	only	valid	for	color	spaces	in	which
the	ColorSpaceType	is	CallGray,	CalRGB	or	Lab.

All	components	for	this	valud	must	be	non-negative.
The	default	for	this	peroperty	is	0	0	0.

When	you	set	this	property	a	clone	of	the	XColor	you
assign	is	created	to	avoid	one	XColor	being	shared
by	multiple	color	spaces.

	

	 	

Example 	
See	the	WhitePoint	property.

	
	 	

	

	

WhitePoint	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XColor

[Visual	Basic]
XColor

n/a No

The	white	point
for	the	color
space	specified
in	CIE	1931	XYZ
space

	

	 	

Notes 	

The	white	point	for	the	color	space	specified	in	CIE
1931	XYZ	space.

This	property	is	only	valid	for	color	spaces	in	which
the	ColorSpaceType	is	CallGray,	CalRGB	or	Lab.

X	and	Y	must	be	positive	and	Z	must	be	one.	The
default	for	this	peroperty	is	0	0	0.

When	you	set	this	property	a	clone	of	the	XColor	you
assign	is	created	to	avoid	one	XColor	being	shared
by	multiple	color	spaces.

	

	 	

In	this	example	we	show	how	to	use	the	WhitePoint	and
BlackPoint	with	a	calibrated	RGB	color	space.

[C#]
using	(Doc	doc	=	new	Doc())	{

Example 	

		doc.Width	=	80;
		doc.Rect.Inset(50,	50);
		ColorSpace	cs	=	new
ColorSpace(doc.ObjectSoup,
ColorSpaceType.CalRGB);
		cs.WhitePoint.SetComponents(0.9,	1.0,
1.1);
		cs.BlackPoint	=
XColor.FromComponents(0.1,	0.1,	0.1);
		doc.ColorSpace	=	cs.ID;
		doc.Color.SetComponents(0.9,	0.1,	0.1);
//	red
		doc.AddOval(true);
		doc.Save("examplecalrgbcolorspace.pdf");
}

[Visual	Basic]
		Using	doc	As	New	Doc()
				doc.Width	=	80
				doc.Rect.Inset(50,	50)
				Dim	cs	As	New
ColorSpace(doc.ObjectSoup,
ColorSpaceType.CalRGB)
				cs.WhitePoint.SetComponents(0.9,	1.0,
1.1)
				cs.BlackPoint	=
XColor.FromComponents(0.1,	0.1,	0.1)
				doc.ColorSpace	=	cs.ID
				doc.Color.SetComponents(0.9,	0.1,	0.1)
				'	red
				doc.AddOval(True)
				doc.Save("examplecalrgbcolorspace.pdf")
		End	Using
End	Sub

	 	

examplecalrgbcolorspace.pdf

	

	

	

EmbeddedFile	Function 	 	

EmbeddedFile	Constructor

	
	 	

Syntax 	

[C#]
EmbeddedFile(ObjectSoup	soup)
EmbeddedFile(ObjectSoup	soup,
string	path)
EmbeddedFile(ObjectSoup	soup,
byte[]	data)

[Visual	Basic]
Sub	New(soup	As	ObjectSoup)
Sub	New(soup	As	ObjectSoup,	path
As	String)
Sub	New(soup	As	ObjectSoup,
data()	As	Byte)

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	EmbeddedFile.

path A	path	to	a	file	containing	data	which
should	be	placed	in	the	EmbeddedFile.

data An	array	of	bytes	which	should	be
placed	in	the	EmbeddedFile.

	

	 	

Notes 	

Create	an	EmbeddedFile.

This	constructor	which	takes	a	path	to	a	file	will
embed	and	compress	the	file	data	using	using
the	CompressFlate	function.	It	will	also	insert
appropriate	metadata	using	the
UpdateMetadata	function.

The	constructor	which	takes	an	array	of	data
will	similarly	embed	and	compress	the	data.
However	since	there	is	no	file	path	metadata
will	not	be	assigned.

	

	 	

Example 	
None.

	
	 	

	

	

UpdateMetadata	Function 	 	

Update	metadata	for	the	embedded	file.

	
	 	

Syntax 	

[C#]
void	UpdateMetadata(string	path)

[Visual	Basic]
Sub	UpdateMetadata(path	As
String)

	may	throw	Exception()

	

	 	

Params 	

Name Description

path A	path	to	a	file	containing	data.	If	null	is
passed	the	data	will	be	cleared.

	

	 	

Notes 	

Update	metadata	like	the	ModificationDate,
CreationDate	and	Size	to	reflect	the	file	values.

This	EmbeddedFile	must	be	part	of	an
ObjectSoup	or	an	exception	will	be	thrown.

	

	 	

Example 	
None.

	
	 	

	

	

Checksum	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No

The	16	byte
checksum	for
the	embedded
file

	

	 	

Notes 	

The	16	byte	checksum	for	the	embedded	file.

f	there	is	no	such	checksum	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

CreationDate	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	DateTime?

[Visual	Basic]
DateTime?

null No
The	creation
date	of	the
embedded	file

	

	 	

Notes 	

The	creation	date	of	the	embedded	file.

If	there	is	no	such	date	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

MacCreator	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int?

[Visual	Basic]
Nullable(Of	Integer)

null No

The
Macintosh
file	creator	-
a	four	char
code
represented
as	an
integer

	

	 	

Notes 	

The	Macintosh	file	creator	-	a	four	char	code
represented	as	an	integer.

If	there	is	no	creator	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

MacResFork	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
StreamObject

[Visual	Basic]
StreamObject

null No

The	Macintosh
resource	forks
stream	for	this
file

	

	 	

Notes 	

The	Macintosh	resource	forks	stream	for	this	file.

If	there	is	no	resource	fork	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

MacType	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int?

[Visual	Basic]
Nullable(Of	Integer)

null No

The
Macintosh
file	type	-	a
four	char
code
represented
as	an
integer

	

	 	

Notes 	

The	Macintosh	file	type	-	a	four	char	code
represented	as	an	integer.

If	there	is	no	type	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

ModificationDate	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	DateTime?

[Visual	Basic]
DateTime?

null No
The	modification
date	of	the
embedded	file

	

	 	

Notes 	

The	modification	date	of	the	embedded	file.

If	there	is	no	such	date	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

Size	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int?

[Visual	Basic]
Nullable(Of	Integer)

null No

The	size	of
the
embedded
file

	

	 	

Notes 	

The	size	of	the	embedded	file.

If	there	is	no	size	the	value	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

Subtype	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No
The	subtype	of
the	embedded
file

	

	 	

Notes 	

The	subtype	of	the	embedded	file.

This	property	is	represented	via	a	NameAtom	and
hence	it	cannot	take	an	empty	string.	As	such,
setting	this	property	to	an	empty	string	will	set	it	to
null.

	

	 	

Example 	
None.

	
	 	

	

	

Focus	Function 	 	

Prepare	document	for	drawing	at	the	field
location.

	

	 	

Syntax 	

[C#]
bool	Focus()

[Visual	Basic]
Function	Focus()	As	Boolean

	

	 	

Params 	

Name Description

return True	if	the	focus	operation	was
successful.

	

	 	

Notes 	

Use	this	method	to	focus	on	the	field.

This	prepares	the	document	for	drawing	at	the
field	location.

If	the	operation	was	successful	then	the	function
returns	true.	If	the	field	has	no	visible	location	it
will	return	false.

The	Doc.Page,	Doc.Rect	and	Doc.Transform
may	all	be	changed	as	a	result	of	calling	this
method.

	 	

	

Example 	
None.

	
	 	

	

	

GetAnnotations	Function 	 	

Gets	all	the	Annotations	referenced	by	this	field
or	its	children

	

	 	

Syntax 	

[C#]
Annotation[]	GetAnnotations()

[Visual	Basic]
Overridable	GetAnnotations()	As
Annotation()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Gets	all	the	Annotations	referenced	by	this	field
or	its	children.

	

	 	

Example 	
None.

	
	 	

	

	

GetKids	Function 	 	

Gets	a	set	of	Fields	that	are	descendents	of	this
one.

	

	 	

Syntax 	

[C#]
Field[]	GetKids(int	maximumDepth)

[Visual	Basic]
Function	GetKids(maximumDepth	As
Integer)	As	Field()

	

	 	

Params 	

Name Description

maximumDepth The	maximum	depth	tosearch.

	

	 	

Notes 	

Gets	a	set	of	Fields	that	are	descendents	of	this
one.

The	maximum	depth	parameter	allows	you	to
control	the	depth	to	which	the	field	tree	is
searched.	One	for	immediate	children,	two	for
children	and	grandchildren,	etc.

Set	the	maximumDepth	to	Int32.MaxValue	if
you	wish	to	retrieve	all	the	fields	under	this	one.

	 	

	

Example 	
None.

	
	 	

	

	

SetFont	Function 	 	

Sets	the	font	and	font	size	to	be	used	for	text

	
	 	

Syntax 	

[C#]
vitual	void	SetFont(FontObject
font,	double	size)

[Visual	Basic]
Sub	SetFont(font	As	FontObject,
size	As	Double)

	

	 	

Params 	

Name Description
font The	font	to	be	assigned	to	the	field.

size The	font	size	to	be	assigned	to	the
field.

	

	 	

Sets	the	font	and	font	size	to	be	used	for	text.

This	function	works	by	changing	the
DefaultAppearance	for	the	field	using	the
specified	FontObject	and	size.

Properties	such	ase	the	TextFont	and	TextSize
get	the	effective	value	which	may	be	inherited.
Calling	this	funtion	sets	the	value	on	this	item

Notes 	

itself	which	will	override	any	inherited	value.

Passing	a	font	value	of	null	will	remove	both	the
font	and	size	from	the	item	itself	though	a	value
may	be	still	be	present	if	it	is	inherited	from	a
parent	field	or	from	document	defaults.

A	zero	size	font	indicates	that	the	font	should
scale	so	that	it	fits	the	size	of	the	field.	Negative
font	heights	appear	the	same	as	positive	ones
but	are	best	avoided	as	they	are	likely	to	cause
confusion.

The	appearance	of	the	field	is	not	updated	until
you	change	the	Value	or	call
UpdateAppearance.

	

	 	

Example 	
None.

	
	 	

	

	

Stamp	Method 	 	

Stamp	this	field	into	the	document.

	
	 	

Syntax 	

[C#]
void	Stamp()

[Visual	Basic]
Sub	Stamp()

	

	 	

Params 	

Name Description
return n/a.

	

	 	

Notes 	

Use	this	method	to	permanently	stamp	a	field
into	the	document.

When	this	method	is	called	the	field	appearance
is	stamped	permanently	into	the	document	and
the	field	is	deleted.

The	field	becomes	a	new	layer	on	the	page	(see
Doc.LayerCount)	so	you	may	wish	to	call
Doc.Flatten	on	the	affected	page.

You	can	use	the	XForm.Stamp	method	to	stamp
all	fields	into	the	document.

	 	

	

Example 	
None.

	
	 	

	

	

UpdateAppearance	Function 	 	

Update	the	appearance	of	all	the	Annotations
associated	with	this	field

	

	 	

Syntax 	

[C#]
void	UpdateAppearance()

[Visual	Basic]
Sub	UpdateAppearance()

	

	 	

Params 	

Name Description
none n/a

	

	 	

Notes 	

Update	the	appearance	of	all	the	Annotations
associated	with	this	field.

A	field	may	have	more	than	one	appearance	on
one	or	more	pages.	Each	appearance	is
represented	as	an	Annotation.	When	a	field	is
changed	in	a	way	which	may	impact	the	visual
rendition	on	the	page,	the	appearance	of	all	the
Annotations	associated	with	that	field	need	to
be	updated.

When	you	update	the	Value	this	happens

	 	

automatically.	However	if	you	change	other
properties	such	as	the	TextColor	you	will	need
to	make	an	explicit	call	to	ensure	the
appearance	streams	are	updated.

	

Example 	
None.

	
	 	

	

	

DefaultAppearance	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	ArrayAtom

[Visual	Basic]
ArrayAtom

n/a No

The	default
appearance
(DA)	used	for
the	text

	

	 	

Notes 	

The	default	appearance	(DA)	used	for	the	text.

The	ArrayAtom	is	a	sequence	of	PDF	parameters
and	operators	which	makes	up	a	complete	drawing
sequence.

This	property	controls	the	base	set	of	drawing
instructions	used	for	controlling	the	appearance	of
variable	text	in	a	field.	Getting	this	property	gets	the
effective	value	which	may	be	inherited.	Setting	this
property	sets	the	value	on	this	item	itself.

Similarly	setting	this	property	to	null	will	remove	the
property	on	the	item	itself	but	the	value	may	continue
to	be	inherited.	The	appearance	of	the	field	is	not
updated	until	you	change	the	Value	or	call
UpdateAppearance.

	

	 	

	
None.

	 	

Example 	

	

	

FieldType	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	FieldType

[Visual	Basic]
FieldType

See
description. Yes

The	field
type.

	

	 	

Notes 	

The	FieldType	enumeration	may	take	the	following
values:

Pushbutton
Checkbox
Radio
Text
List
Combo
Signature
Unknown

More	details	of	these	field	types	can	be	found	in
Section	8.6.3	of	the	Adobe	PDF	Specification.

	

	 	

Example 	
None.

	
	 	

http://partners.adobe.com/

	

	

Flags	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
FieldFlags

[Visual	Basic]
FieldFlags

n/a No The	Field
Flags	(Ff)	entry

	

	 	

This	property	is	used	to	access	or	change	the	flags
(Ff	entry)	for	the	field.

The	FieldFlags	type	is	a	flags	type	enumeration	so
the	different	values	can	be	combined	together	using
bitwise	operations.	It	may	take	the	following	values:

ReadOnly	(Do	not	let	the	user	change	the	value
of	the	field)
Required	(Require	that	the	field	has	a	value	at
the	time	it	is	exported	by	a	form	submission
action)
NoExport	(Do	not	export	the	value	of	the	field	as
part	of	a	form	submission	action)
NoToggleToOff	(This	is	used	for	radio	buttons
and	specifies	that	exactly	one	button	shall	be
selected	at	all	times)
Radio	(Indicates	whether	the	field	is	a	radio
button	or	a	checkbox.	This	field	is	ignored	if	the
Pushbutton	flag	is	set)
Pushbutton	(Whether	this	field	is	a	pushbutton

Notes 	

that	stores	no	permanent	value)
RadiosInUnison	(Allow	radio	buttons	with	the
same	'on'	value	to	turn	on	and	off	together)
Multiline	(Allow	a	text	field	to	contain	multiple
lines	of	text)
Password	(Display	text	field	as	a	password	box
in	which	the	text	contents	are	obscured)
FileSelect	(Display	a	text	field	that	allows	a	file	to
be	selected.	When	the	form	is	submitted	the
contents	of	the	file	will	be	used	as	the	value	of
the	field)
DoNotSpellCheck	(Text	in	this	text	or	choice	field
shall	not	be	spell	checked)
DoNotScroll	(Text	in	this	text	field	shall	not	scroll.
Once	text	has	been	entered	which	fills	the	field	it
shall	accept	no	further	characters)
Comb	(Use	the	MaxLen	property	to	equally
space	out	text	field	characters	into	a	comb-like
slot	position)
RichText	(The	value	of	this	text	field	shall	be	a
rich	text	string)
Combo	(Whether	this	field	is	a	combo	or	list
field)
Edit	(Whether	field	shall	present	an	editable	text
box	in	addition	to	a	list)
Sort	(Whether	entries	in	the	list	shall	be	put	into
alphabetical	order)
MultiSelect	(Whether	more	than	one	entry	in	the
list	can	be	selected	at	the	same	time)
CommitOnSelChange	(A	change	to	the	value	of
this	field	will	be	committed	as	soon	as	it	is	made)

The	ReadOnly,	Required	and	NoExport	flags	are
used	by	all	field	types.

The	NoToggleToOff,	Radio,	Pushbutton	and
RadiosInUnison	flags	are	used	by	button	fields.

	 	

The	Multiline,	Password,	FileSelect,
DoNotSpellCheck,	DoNotScroll,	Comb	and	RichText
flags	are	used	by	text	fields.

The	Combo,	Edit,	Sort,	MultiSelect,
DoNotSpellCheck	and	CommitOnSelChange	are
used	by	choice	fields.

For	code	shoing	how	to	check,	set	or	clear	flags	see
the	FontObject.Flags	property.

Example 	
None.

	
	 	

	

	

Format	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

See
description. Yes

The	field
format.

	

	 	

Notes 	

The	format	for	this	field.

The	PDF	specification	does	not	define	how	fields
should	be	formatted.	Acrobat	uses	a	set	of	standard
JavaScripts	to	perform	field	formatting.

This	property	reflects	the	JavaScript	formatting
function	which	is	being	used	and	the	values	which
are	being	passed	to	it.	A	typical	value	might	be:

AFNumber_Format(2,	3,	0,	0,	"",
true);

This	defines	a	number	format	with	two	decimal
places.	For	a	precise	understanding	of	the	purposes
of	the	other	parameters	you	will	need	to	see	the
JavaScripts	which	come	installed	with	Acrobat.

Other	typical	formatting	functions	are
AFPercent_Format,	AFSpecial_Format,
AFDate_Format	and	AFTime_Format.	Again	for	full
details	you	should	see	the	JavaScripts	which	come

	 	

installed	with	Acrobat.

	

Example 	
None.

	
	 	

	

	

Kids	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Fields

[Visual	Basic]
Fields

See
description. Yes

All	the
immediate
children	of
this	field.

	

	 	

Notes 	

This	property	holds	the	immediate	children	of	this
field.

Items	in	this	collection	can	be	referenced	by	partial
field	name	or	by	zero	based	index.

As	with	all	collections	you	can	use	the	Count
property	to	determine	the	number	of	items	contained
and	you	can	iterate	through	the	collection	using	the
standard	methods	appropriate	to	the	language	you
are	coding	in.

	

	 	

Example 	
None.

	
	 	

	

	

MultiSelect	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

See
description. Yes

Whether	the
field
supports
multiple
selections.

	

	 	

Notes 	

This	property	allows	you	to	determine	if	the	the	field
supports	multiple	values.

Most	fields	have	a	single	value.	A	text	box	contains
one	item	of	text.	A	radio	button	group	has	one
selected	button.	A	checkbox	can	be	checked	or	clear.

However	some	kinds	of	fields	can	hold	multiple
values.	For	example	a	list	box	can	be	used	to	select
multiple	items.	If	this	is	the	case	then	the	MultiSelect
property	will	be	set	to	true.

If	the	field	supports	multiple	selection	then	the	Value
of	the	field	will	be	a	comma	delimited	list	of	the	items
which	are	selected.

	

	 	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

See
description. Yes

The	fully
qualified
field	name.

	

	 	

Notes 	

The	fully	qualified	field	name	for	this	field.

See	the	XForm	object	for	details	of	how	fully	qualified
names	are	constructed.

	

	 	

Example 	
None.

	
	 	

	

	

Options	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string[]

[Visual	Basic]
String()

See
description. Yes

The	field
options.

	

	 	

Notes 	

The	options	available	for	the	value	of	this	field.

Typically	you	assign	a	value	using	the	Value	property.
Some	fields	such	as	Text	fields	will	accept	any	value.
Others	such	as	Checkboxes	and	List	Boxes	accept
only	a	limited	range	of	options.	The	field	options	tell
you	what	options	are	available	for	a	particular	field.

The	unmarked	state	of	a	Checkbox	or	Radio	Button
is	always	"Off".	The	marked	state	varies	and	is
available	via	item	zero	of	this	property.

The	set	of	options	for	a	Combo	Box	or	List	Box	can
be	obtained	directly	via	this	property.

Pushbuttons,	Signatures	and	Text	fields	do	not	have
options.

	

	 	

Example
	
None. 	 	

	

	

	

Page	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Page

[Visual	Basic]
Page

See
description. No

The	Page	on
which	the
field
appears.

	may	throw
ArgumentOutOfRangeException()

	

	 	

Notes 	

This	property	reflects	the	page	on	which	this	field	is
located.

This	property	is	only	valid	if	the	fields	has	one	single
visible	appearance	on	the	page.	If	you	are	unsure
whether	your	field	will	always	map	to	one	visible
appearance	it	is	better	to	call	GetAnnotations	and
work	with	the	Annotation.Page	of	each	of	the	items	in
the	array.	If	there	is	only	one	item	in	the	array	then
this	indicates	that	the	field	has	one	one	single	visible
appearance	on	the	page.

The	most	common	case	in	which	a	field	does	not
have	a	single	visible	appearance	is	in	the	case	of
radio	buttons.	In	this	case	the	field	describes	the
radio	button	group	and	the	children	of	the	field	are
the	visible	buttons.	Be	aware	that	it	is	possible	to
spread	radio	buttons	across	more	than	one	page.

	 	

This	value	may	be	null	if	the	field	does	not	have	a
visible	appearance.

If	this	field	does	not	have	one	single	visible
appearance	on	the	page,	attempting	to	assign	a
value	to	this	property	will	result	in	an
ArgumentOutOfRangeException	being	thrown.

	

Example 	
None.

	
	 	

	

	

PageID	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

See
description. No

The	ID	of	the
page	on
which	the
field
appears.

	may	throw
ArgumentOutOfRangeException()

	

	 	

Notes 	

This	property	reflects	the	page	on	which	this	field	is
located.

This	property	is	only	valid	if	the	fields	has	one	single
visible	appearance	on	the	page.	If	you	are	unsure
whether	your	field	will	always	map	to	one	visible
appearance	it	is	better	to	call	GetAnnotations	and
work	with	the	Annotation.Page	of	each	of	the	items	in
the	array.	If	there	is	only	one	item	in	the	array	then
this	indicates	that	the	field	has	one	one	single	visible
appearance	on	the	page.

The	most	common	case	in	which	a	field	does	not
have	a	single	visible	appearance	is	in	the	case	of
radio	buttons.	In	this	case	the	field	describes	the
radio	button	group	and	the	children	of	the	field	are
the	visible	buttons.	Be	aware	that	it	is	possible	to
spread	radio	buttons	across	more	than	one	page.

	 	

This	value	may	be	zero	if	the	field	does	not	have	a
visible	appearance.

If	this	field	does	not	have	one	single	visible
appearance	on	the	page,	attempting	to	assign	a
value	to	this	property	will	result	in	an
ArgumentOutOfRangeException	being	thrown.

	

Example 	
None.

	
	 	

	

	

Parent	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Field

[Visual	Basic]
Field

See
description. Yes

The	parent
of	this	field.

	

	

	 	

Notes 	

This	property	holds	the	parent	of	this	field.

Each	field	may	have	a	number	of	children	which	you
can	access	using	the	Kids	property.	Each	child	will
have	one	parent	which	you	can	access	using	the
Parent	property.	Fields	at	the	top	of	the	hierarchy	will
have	a	null	parent.

	

	 	

Example 	
None.

	
	 	

	

	

PartialName	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

See
description. Yes

The	partial
field	name.

	

	 	

Notes 	

The	partial	name	for	this	field.

See	the	XForm	object	for	details	of	how	partial	and
fully	qualified	names	are	related.

	

	 	

Example 	
None.

	
	 	

	

	

Rect	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

See
description. No

The	location
and	size	of
the	field.

	may	throw	NullReferenceException()

	may	throw
ArgumentOutOfRangeException()

	

	 	

Notes 	

This	property	reflects	the	position	and	area	of	the
field	on	the	page.

This	property	is	only	valid	if	the	fields	has	one	single
visible	appearance	on	the	page.	If	you	are	unsure
whether	your	field	will	always	map	to	one	visible
appearance	it	is	better	to	call	GetAnnotations	and
work	with	the	Annotation.Rect	of	each	of	the	items	in
the	array.	If	there	is	only	one	item	in	the	array	then
this	indicates	that	the	field	has	one	one	single	visible
appearance	on	the	page.

The	most	common	case	in	which	a	field	does	not
have	a	single	visible	appearance	is	in	the	case	of
radio	buttons.	In	this	case	the	field	describes	the
radio	button	group	and	the	children	of	the	field	are 	 	

the	visible	buttons.	Be	aware	that	it	is	possible	to
spread	radio	buttons	across	more	than	one	page.

This	rectangle	will	be	empty	if	the	field	does	not	have
one	single	visible	appearance	on	the	page.

This	property	must	always	have	a	value.	Attempting
to	assign	a	null	value	to	this	property	will	result	in	a
NullReferenceException	being	thrown.

If	this	field	has	no	visible	appearance,	attempting	to
assign	a	value	will	result	in	an
ArgumentOutOfRangeException	being	thrown.

	

Example 	
None.

	
	 	

	

	

TextAlignment	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
AlignmentType

[Visual	Basic]
AlignmentType

n/a No The	alignment
for	the	text

	

	 	

Notes 	

The	alignment	for	the	text.

The	AlignmentType	enumeration	may	take	the
following	values:

Left
Center
Right

Getting	this	property	gets	the	effective	value	which
may	be	inherited.	Setting	this	property	sets	the
alignment	on	this	item	itself.

This	feature	is	referred	to	as	quadding	within	the
Adobe	PDF	Specification.	We	call	it	alignment
because	quadding	is	not	normal	terminology.

The	appearance	of	the	field	is	not	updated	until	you
change	the	Value	or	call	UpdateAppearance.

	

	 	

Example 	
None.

	
	 	

	

	

TextColor	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XColor

[Visual	Basic]
XColor

n/a No The	color	used
for	the	text

	

	 	

Notes 	

The	color	used	for	the	text.

This	is	derived	from	the	DefaultAppearance	for	the
field.

Getting	this	property	gets	the	effective	value	which
may	be	inherited.	Setting	this	property	sets	the	value
on	this	item	itself.	When	you	set	this	property	a	clone
of	the	XColor	you	assign	is	created	to	avoid	one
XColor	being	shared	by	multiple	fields.

The	appearance	of	the	field	is	not	updated	until	you
change	the	Value	or	call	UpdateAppearance.

	

	 	

Example 	
None.

	
	 	

	

	

TextFont	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
FontObject

[Visual	Basic]
FontObject

n/a Yes The	font	used
for	the	text

	

	 	

Notes 	

The	font	used	for	the	text.

The	FontObject	that	comprises	this	property	is
derived	from	the	DefaultAppearance	for	the	field.

Getting	this	property	gets	the	effective	value	which
may	be	inherited	from	a	parent	field	or	from
document	defaults.	To	change	this	property	use	the
SetFont	function.

	

	 	

Example 	
None.

	
	 	

	

	

TextSize	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

n/a Yes The	font	size
used	for	the	text

	

	 	

Notes 	

The	font	size	used	for	the	text.

This	is	derived	from	the	DefaultAppearance	for	the
field.

Getting	this	property	gets	the	effective	value	which
may	be	inherited	from	a	parent	field	or	from
document	defaults.	To	change	this	property	use	the
SetFont	function.

The	value	zero	has	a	special	significance	and
indicates	that	the	text	in	the	field	should	be	scaled	to
fit	the	area	available.

	

	 	

Example 	
None.

	
	 	

	

	

Value	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

"" No The	field
value.

	

	 	

This	property	allows	you	access	to	the	value	of	the
field.

You	may	wish	to	assign	or	query	the	form	field	value
using	this	property.

Text	fields	have	a	free-text	value.

Checkboxes	and	Radio	Buttons	have	a	value	which	is
either	"Off"	or	the	on-state	of	the	control	as	specified
in	the	Options.

Combo	Boxes	and	List	Boxes	have	values	restricted
to	a	set	of	selections	as	specified	in	the	Options
property.

Pushbuttons	and	Signatures	do	not	have	a	value.

Common	Operations.

Set	the	value	of	a	text	field:

Notes 	

[C#]
theField.Value	=	"Mr	Jones";

[Visual	Basic]
theField.Value	=	"Mr	Jones"

Set	a	checkbox:

[C#]
theField.Value	=
theField.Options[0];

[Visual	Basic]
theField.Value	=
theField.Options(0)

Clear	a	checkbox:

[C#]
theField.Value	=	"Off";

[Visual	Basic]
theField.Value	=	"Off"

Set	the	fifth	Radio	Button	in	a	group:

[C#]
theField.Value	=
theField.Options[4];

	 	

[Visual	Basic]
theField.Value	=
theField.Options(4)

Multiline	Form	Fields	Tip.

When	inserting	carriage	returns	into	multiline
form	fields	use	carriage	returns	(\r)	only.

Using	line	feeds	(\n)	or	a	carriage	return	linefeed
combination	(\r\n)	is	less	compatible	with	older
versions	of	Acrobat.

	

	

Example 	
None.

	
	 	

	

	

CopyTo	Function 	 	

Copies	the	items	into	a	collection.

	
	 	

Syntax 	

[C#]
void	CopyTo(Field[]	array,	int
index)

[Visual	Basic]
Sub	CopyTo(array	As	Field(),
index	As	Integer)

	

	 	

Params 	

Name Description

array The	array	that	is	the	destination	for	the
elements.

index The	zero-based	index	in	array	at	which
copying	begins.

	

	 	

Notes 	

Copies	the	elements	of	the	collection	to	an
array	starting	at	a	particular	array	index.

The	array	must	be	one-dimensional	and	have
zero-based	indexing.

	

	 	

Example 	

None.

	
	 	

	

	

Add	Function 	 	

Add	an	item	to	the	end	of	the	collection.

	
	 	

Syntax 	

[C#]
int	Add(Field	field)

[Visual	Basic]
Function	Add(field	As	Field)	As
Integer

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description
field The	item	to	be	added.

	

	 	

Notes 	

This	method	adds	an	item	to	the	collection.

All	Fields	collections	are	read	only	so	calling
this	function	will	generate	a
NotSupportedException.

	

	 	

Example 	
None.

	
	 	

	

	

Clear	Function 	 	

Removes	all	items	from	the	collection.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Removes	all	items	from	the	collection.

All	Fields	collections	are	read	only	so	calling
this	function	will	generate	a
NotSupportedException.

	

	 	

None.

Example
	 	 	 	

	

	

Contains	Function 	 	

Determines	whether	the	collection	contains	a
specific	item.

	

	 	

Syntax 	

[C#]
bool	Contains(Field	value)

[Visual	Basic]
Function	Contains(value	As	Field)
As	Boolean

	

	 	

Params 	

Name Description
value The	object	to	locate.

return True	if	the	object	is	found,	otherwise
false.

	

	 	

Notes 	

Determines	whether	the	collection	contains	a
specific	item.

	

	 	

Example 	
None.

	
	 	

	

	

IndexOf	Function 	 	

Determines	the	index	of	a	specific	item.

	
	 	

Syntax 	

[C#]
int	IndexOf(Field	value)

[Visual	Basic]
Function	IndexOf(value	As	Field)
As	Integer

	

	 	

Params 	

Name Description
value The	object	to	locate	in	the	collection.

return If	found,	the	index	of	value,	otherwise
-1.

	

	 	

Notes 	

Determines	the	index	of	a	specific	item	in	the
collection.

	

	 	

Example 	
None.

	
	 	

	

	

Insert	Function 	 	

Inserts	an	item	into	the	collection	at	the
specified	position.

	

	 	

Syntax 	

[C#]
void	Insert(int	index,	Field
value)

[Visual	Basic]
Sub	Insert(index	As	Integer,
value	As	Field)

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description

index The	zero-based	index	at	which	value
should	be	inserted.

value The	item	to	insert	into	the	array.

	

	 	

Inserts	an	item	into	the	collection	at	the
specified	position.

All	Fields	collections	are	read	only	so	calling

Notes
	 this	function	will	generate	a
NotSupportedException.

	

	 	

Example 	
None.

	
	 	

	

	

Remove	Function 	 	

Removes	an	item	from	the	collection.

	
	 	

Syntax 	

[C#]
bool	Remove(Field	value)

[Visual	Basic]
Function	Remove(value	As	Field)
As	Boolean

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description
value The	item	to	be	removed.

return True	if	the	item	is	removed,	otherwise
false.

	

	 	

Notes 	

Removes	an	item	from	the	collection.

All	Fields	collections	are	read	only	so	calling
this	function	will	generate	a
NotSupportedException.

	 	

	

Example 	
None.

	
	 	

	

	

RemoveAt	Function 	 	

Removes	an	item	at	a	specified	position	from
the	collection.

	

	 	

Syntax 	

[C#]
void	RemoveAt(int	index)

[Visual	Basic]
Sub	RemoveAt(index	As	Integer)

	may	throw
NotSupportedException()

	

	 	

Params 	

Name Description

index The	zero-based	index	of	the	item	to
remove.

	

	 	

Notes 	

Removes	an	item	from	the	collection.

All	Fields	collections	are	read	only	so	calling
this	function	will	generate	a
NotSupportedException..

	

	 	

Example 	
None.

	
	 	

	

	

GetEnumerator	Function 	 	

Gets	an	enumerator	for	the	Collection.

	
	 	

Syntax 	

[C#]
IEnumerator<Field>
GetEnumerator()

[Visual	Basic]
Function	GetEnumerator()	As
IEnumerator(Of	Field)

	

	 	

Params 	

Name Description
return The	enumerator	for	the	collection.

	

	 	

Notes 	
Gets	a	Field	enumerator	for	the	Collection.

	
	 	

Example 	
None.

	
	 	

	

	

Count	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
items	in	the
collection.

	

	 	

Notes 	

The	number	of	items	in	the	collection.

All	Fields	collections	are	read	only	so	this	value	will
be	constant.

	

	 	

Example 	
None.

	
	 	

	

	

Item	Property 	 	

	

Type Default ReadOnly Description

[C#]	
Field	this[int
index]
Field	this[string
index]

[Visual	Basic]
Default	Property
Item(index	As
Integer)	As	Field
Default	Property
Item(index	As
String)	As	Field

	n/a	 No

Get	or	set
the	item	at
the
specified
index.

	may	throw
ArgumentOutOfRangeException()

	may	throw	NotSupportedException()

	

	 	

Gets	or	sets	the	item	at	the	specified	location.	In	C#
this	property	is	the	indexer	for	the	class.

The	index	specified	may	be	a	zero	based	numeric
index.	If	the	index	is	not	a	valid	index	this	property
throws	an	ArgumentOutOfRangeException.

Notes 	
Alternatively	it	may	be	a	string	specifying	a	field
name.	If	the	name	is	not	one	which	matches	a	Field
in	the	collection	then	a	null	value	will	be	returned.

All	Fields	collections	are	read	only	so	attempting	to
assign	an	item	using	this	function	will	generate	a
NotSupportedException.

	

	 	

Example 	
None.

	
	 	

	

	

FileSpecification	Function 	 	

FileSpecification	Constructor

	
	 	

Syntax 	

[C#]
FileSpecification(ObjectSoup
soup)
FileSpecification(ObjectSoup
soup,	string	path)

[Visual	Basic]
Sub	New(soup	As	ObjectSoup)
Sub	New(soup	As	ObjectSoup,	path
As	String)

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	FileSpecification.

path A	file	to	embed	within	the	file
specification.

	

	 	

Create	a	FileSpecification.

This	constructor	which	takes	a	path	to	a	file	will
embed	and	compress	the	file	data	using	using
the	CompressFlate	function.	It	will	also	insert

Notes 	

appropriate	metadata	using	the
EmbeddedFileUpdateMetadata	function.

The	constructor	which	takes	an	array	of	data
will	similarly	embed	and	compress	the	data.
However	since	there	is	no	file	path	metadata
will	not	be	assigned.

	

	 	

The	example	below	shows	how	to	combine	a	set
of	PDF	documents	into	a	portfolio.	See	the
Catalog.GetEmbeddedFiles	function	for	how	to
extract	files	from	a	portfolio.

[C#]
string[]	files	=	{
		"Bentley.pdf",
		"Acrobat.pdf",
		"Noise.pdf",
		"ChecksModified.pdf",
};
using	(Doc	doc	=	new	Doc())	{
		List<Tuple<string,
FileSpecification>>	fileSpecs	=	new
List<Tuple<string,
FileSpecification>>();
		foreach	(string	file	in	files)	{
				byte[]	data	=	null;
				using	(Doc	subDoc	=	new	Doc())
{
						subDoc.Read(file);
						data	=	subDoc.GetData();
				}
				EmbeddedFile	embedFile	=	new
EmbeddedFile(doc.ObjectSoup,	data);
				embedFile.CompressFlate();

				FileSpecification	fileSpec	=
new
FileSpecification(doc.ObjectSoup);
				fileSpec.EmbeddedFile	=
embedFile;
				fileSpec.Uri	=	file;
				string	name	=
Path.GetFileName(file);
				fileSpecs.Add(new	Tuple<string,
FileSpecification>(name,
fileSpec));
		}
		fileSpecs.Sort((a,	b)	=>
a.Item1.CompareTo(b.Item1));
		//	we	don't	really	need	to	delete
existing	files	but	we	do	so	as	an
example
		doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names:Del",
"");
		foreach	(Tuple<string,
FileSpecification>	fileSpec	in
fileSpecs)	{
				doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names*
[]:Text",	fileSpec.Item1);
				doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names*
[]:Ref",	fileSpec.Item2.ID);
		}
		doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Limits*
[]:Ref",	fileSpecs[0].Item1);
		doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Limits*
[]:Ref",	fileSpecs[fileSpecs.Count
-	1].Item1);

Example 	

		doc.SetInfo(doc.Root,
"/Collection*/D:Text",	files[0]);
		doc.Save("createportfolio.pdf");
}

[Visual	Basic]
Sub	...
		Dim	files	As	String()	=
{"Bentley.pdf",	"Acrobat.pdf",
"Noise.pdf",	"ChecksModified.pdf"}
		Using	doc	As	New	Doc()
				Dim	fileSpecs	As	New	List(Of
Tuple(Of	String,
FileSpecification))()
				For	Each	file	As	String	In
files
						Dim	data	As	Byte()	=	Nothing
						Using	subDoc	As	New	Doc()
								subDoc.Read(file)
								data	=	subDoc.GetData()
						End	Using
						Dim	embedFile	As	New
EmbeddedFile(doc.ObjectSoup,	data)
						embedFile.CompressFlate()
						Dim	fileSpec	As	New
FileSpecification(doc.ObjectSoup)
						fileSpec.EmbeddedFile	=
embedFile
						fileSpec.Uri	=	file
						Dim	name	As	String	=
Path.GetFileName(file)
						fileSpecs.Add(New	Tuple(Of
String,	FileSpecification)(name,
fileSpec))
				Next
				fileSpecs.Sort(Function(a,	b)

	 	

a.Item1.CompareTo(b.Item1))
				'	we	don't	really	need	to
delete	existing	files	but	we	do	so
as	an	example
				doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names:Del",
"")
				For	Each	fileSpec	As	Tuple(Of
String,	FileSpecification)	In
fileSpecs
						doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names*
[]:Text",	fileSpec.Item1)
						doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Names*
[]:Ref",	fileSpec.Item2.ID)
				Next
				doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Limits*
[]:Ref",	fileSpecs(0).Item1)
				doc.SetInfo(doc.Root,
"/Names*/EmbeddedFiles*/Limits*
[]:Ref",	fileSpecs(fileSpecs.Count
-	1).Item1)
				doc.SetInfo(doc.Root,
"/Collection*/D:Text",	files(0))
				doc.Save("createportfolio.pdf")
		End	Using
End	Sub

	

	

	

GetPath	Function 	 	

Get	the	path	to	the	file	for	the	specified	platform

	
	 	

Syntax 	

[C#]
string	GetPath(string	platform)

[Visual	Basic]
Function	GetPath(platform	As
String)	As	String

	

	 	

Params 	

Name Description
platform The	platform	name.
return The	file	path.

	

	 	

	

This	method	is	provided	for	low	level	control
over	obsolete	entries	contained	in	old	PDF
documents.

So	in	general	you	should	be	using	the
Rationalize	method	and	the	Uri	property	rather
than	this	method.

A	FileSpecification	may	hold	multiple	paths	to	a
file.

	 	

Notes Each	path	is	specific	to	a	platform	such	as	Mac,
Windows	or	Unix.	For	further	details	see	the
Platform	property.

This	function	allolws	you	to	retrieve	the	path	for
the	specified	platform.

If	there	is	no	matching	path	then	null	will	be
returned.

	

Example 	
None.

	
	 	

	

	

Rationalize	Function 	 	

Removes	any	obsolescent	and	redundant
entries.

	

	 	

Syntax 	

[C#]
void	Rationalize()

[Visual	Basic]
Sub	Rationalize()

	

	 	

Params 	

Name Description
none n/a

	

	 	

Notes 	

Removes	any	obsolescent	and	redundant
entries.

This	will	converts	the	object	to	be	compliant	with
the	changes	recommended	in	the	PDF	1.7
standard.

	

	 	

Example 	

None.
	 	

	

	

	

SetPath	Function 	 	

Set	the	path	to	the	file	for	the	specified	platform

	
	 	

Syntax 	

[C#]
string	SetPath(string	platform,
string	path)

[Visual	Basic]
Function	SetPath(platform	As
String,	path	As	String)	As	String

	

	 	

Params 	

Name Description
platform The	platform	name.
path The	file	path.

	

	 	

This	method	is	provided	for	low	level	control
over	obsolete	entries	contained	in	old	PDF
documents.

So	in	general	you	should	be	using	the
Rationalize	method	and	the	Uri	property	rather
than	this	method.

A	FileSpecification	may	hold	multiple	paths	to	a
file.

Notes
	 Each	path	is	specific	to	a	platform	such	as	Mac,
Windows	or	Unix.	For	further	details	see	the
Platform	property.

This	function	allolws	you	to	set	the	path	for	the
specified	platform.

Setting	to	null	will	remove	the	path.

	

	 	

Example 	
None.

	
	 	

	

	

Description	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No
A	description	of
the	file	for	use	in
a	user	interface

	

	 	

Notes 	
A	description	of	the	file	for	use	in	a	user	interface.

	
	 	

Example 	
None.

	
	 	

	

	

EmbeddedFile	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
EmbeddedFile

[Visual	Basic]
EmbeddedFile

null No

The	embedded
file	if	one	has
been	embedded
in	the	PDF

	

	 	

Notes 	

The	embedded	file	if	one	has	been	embedded	in	the
PDF.

If	a	file	has	not	been	embedded	then	the	URL	needs
to	be	intepreted	in	the	context	of	the	current	PDF	to
locate	the	external	file.

Setting	this	property	will	clear	the	EmbeddedFiles
property	if	one	is	present.

This	property	requires	reference	to	other	objects	in
the	ObjectSoup.	If	this	object	is	not	part	of	an
ObjectSoup	this	property	will	always	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

EmbeddedFiles	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
Tuple<string,
EmbeddedFile>
[]

[Visual	Basic]
Tuple<string,
EmbeddedFile>
[]

null No

The	set	of
embedded	files
if	a	set	has	been
embedded	in	the
PDF

	

	 	

Notes 	

The	set	of	embedded	files	if	a	set	has	been
embedded	in	the	PDF.

Normally	a	file	specification	will	refer	to	one	file.
However	in	some	situations	it	may	be	necessary	to
allow	it	to	refer	to	multiple.	For	example	if	a	CMYK
image	is	available	as	four	color	separations	then	it
may	be	useful	to	be	able	to	embed	four	different	files
to	make	up	the	whole	data	set.	Each	file	will	need	a
name	so	this	property	reflects	both	the	name	and	the
content	of	each	file.

If	the	EmbeddedFiles	property	has	a	value,	then	the
first	file	in	the	array	should	always	be	the	same	as
the	EmbeddedFile	property.	For	this	reason	setting
this	property	will	also	set	the	EmbeddedFile	property
to	be	equal	to	the	first	file	in	the	array.	If	there	are	no

	 	

items	in	the	array	then	the	EmbeddedFile	property
will	be	cleared.

This	property	requires	reference	to	other	objects	in
the	ObjectSoup.	If	this	object	is	not	part	of	an
ObjectSoup	this	property	will	always	be	null.

	

Example 	
None.

	
	 	

	

	

Platform	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

nulll No

The	default
platform	being
used	for	the	file
specification

	

	 	

Notes 	

The	default	platform	being	used	for	the	file
specification.

For	historic	reasons	PDF	has	supported	multiple
different	files	for	multiple	different	platforms.	This	was
appropriate	when	files	were	often	non-interoperable
and	would	not	port	easily	between	machines.

Fortunately	this	state	of	affairs	is	now	unusual	and
only	the	default	"UF"	platform	is	commonly	used.
Adobe	do	not	specify	what	the	initials	stand	for,	but	it
is	likely	to	be	Unicode	File,	though	it	could	be
Universal	File	or	URL	File.

While	you	are	unlikely	to	wish	to	create	documents
which	use	these	obsolescent	platforms,	you	may	find
old	documents	that	use	them.	This	method	allows
you	to	access	information	specified	by	platform.
Appropriate	selectors	are	"UF",	"F",	"DOS",	"Mac"	or
"Unix"	as	per	the	descriptions	in	the	Adobe	PDF
Specification.	You	can	use	the	Platforms	property	to
deterine	which	are	being	used.

	 	

The	defaut	of	"UF"	provides	access	via	the	standard
settings	as	specified	in	the	PDF	1.7	specification.

	

Example 	
None.

	
	 	

	

	

Uri	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No The	URI	to
the	file

	may	throw	Exception()

	

	 	

Notes 	

The	URI	to	the	file.

For	the	default	plaform,	attempting	to	set	this
property	to	a	value	which	is	not	a	valid	URI	will	result
in	an	exception	being	thrown.	To	convert	a	standard
Windows	path	to	a	URI	use	(new
System.Uri(path).AbsouteUri.

For	some	values	of	the	Platform	property	(e.g.	Mac,
DOS,	Unix)	raw	file	paths	can	be	used.	However
these	are	obsolete	and	while	you	may	see	PDFs
which	contain	them,	you	would	be	inadvised	to
generate	new	documents	containing	these
structures.

	

	 	

Example 	
None.

	 	

	

	

	

Volatile	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No
Whether	the	file
changes
frequently.

	

	 	

Notes 	

This	property	indicates	whether	the	file	changes
frequently	and	needs	to	be	reloaded	each	time	it	is
used,	or	if	it	is	not	and	may	be	cached.

	

	 	

Example 	
None.

	
	 	

	

	

GetEncoding	Function 	 	

Obtain	a	standard	encoding	dictionary	for	use
with	PDF	text	operators.

	

	 	

Syntax 	

[C#]
static	Dictionary<char,	char>
GetEncoding(LanguageType	type,
bool	vertical)

[Visual	Basic]
Shared	Function	GetEncoding(type
As	LanguageType,	vertical	As
Boolean)	As	Dictionary(Of	Char,
Char)

	may	throw	Exception()

	 	

Params 	

Name Description

type The	language	type	for	the	desired
encoding.

vertical Whether	the	writing	direction	should
be	horizontal	or	vertical.

return A	dictionary	mapping	Unicode	values
to	native	character	IDs.

	 	

	

Notes 	

Use	this	method	to	obtain	a	standard	encoding
dictionary	for	use	with	PDF	text	operators.

Note	that	the	encoding	dictionary	is	defined
purely	by	the	language	and	direction	provided
as	arguments	to	this	function.	It	is	your
responsibility	to	ensure	that	the	returned
encoding	dictionary	is	only	used	with	fonts	that
already	have	this	encoding.	If	instead	you	need
to	encode	text	using	the	font	encoding	specific
to	this	particular	font	see	the	EncodeText
method.

Since	the	Unicode	LanguageType	is	already
Unicode	the	encoding	for	this	type	is	identity.
For	this	reason	an	exception	will	be	thrown	if	an
encoding	for	this	type	is	requested.

See	the	Fonts	and	Languages	section	for
details	on	language	types.

	

	 	

Example 	
None.

	
	 	

	

	

EmbedFont	Function 	 	

Search	for	and	embed	a	font	file	into	this	font
object

	

	 	

Syntax 	

[C#]
bool	EmbedFont()

[Visual	Basic]
Function	EmbedFont()	As	Boolean

	

	 	

Params 	

Name Description

return Whether	the	font	was	embedded
successfully.

	

	 	

Notes 	

Search	for	and	embed	a	font	file	into	this	font
object.

If	an	existing	font	file	is	already	embedded	it	will
be	replaced.	If	you	wish	to	subset	the	font	you
will	need	to	call	the	Subset	method	after
embedding	the	font.

Calling	this	function	on	Identity	encoded	fonts
should	be	done	with	great	caution	as	these
types	of	fonts	rely	on	glyph	indexes	and	are

	 	

thus	specific	to	a	particular	font	file.

	

Example 	
None.

	
	 	

	

	

EncodeText	Function 	 	

Encode	text	for	use	with	PDF	text	operators.

	
	 	

Syntax 	

[C#]
string	EncodeText(string	text,
EncodingSupport	support)
string	EncodeText(string	text,
EncodingSupport	support,	out	int
outCount)

[Visual	Basic]
Function	EncodeText(text	As
String,	support	As
EncodingSupport)
Function	EncodeText(text	As
String,	support	As
EncodingSupport,	<Out>	ByRef
outCount	As	Integer)

	may	throw	Exception()

	

	 	

Name Description

text The	text	to	be	encoded.

The	way	in	which	characters	not

Params 	

support included	in	the	font	are	to	be
encoded.

outCount
The	number	of	characters	in
(parameter)	text	that	are	encoded	in
the	return	value.

return The	PDF	string	containing	the
encoded	text.

	

	 	

Notes 	

Use	this	method	to	convert	Unicode	text	into
PDF	string	for	use	with	the	Tj	or	the	TJ	operator.

The	EncodingSupport	enumeration	can	take
any	of	the	following	values:

All	–	encode	all	text.
NoneIfAnyNotSupported	–	encode	nothing
if	any	character	is	not	included	in	the	font.
SupportedPrefix	–	encode	up	to	and
excluding	the	first	character	not	included	in
the	font.

Note	that	the	encoding	for	a	font	is	constructed
and	cached	at	the	time	the	font	is	first	created.
So	changing	the	encoding	for	the	font	will	not
result	in	a	corresponding	change	of	behavior
from	this	method.	If	this	is	something	you	need
to	do	then	you	will	need	to	create	an	entirely
new	font.

	

	 	

Example 	
None.

	
	 	

	

	

RegenerateToUnicode	Function 	 	

Attempt	to	regenerate	a	ToUnicode	map.

	
	 	

Syntax 	

[C#]
bool	RegenerateToUnicode()

[Visual	Basic]
Function	RegenerateToUnicode()	As
Boolean

	 	

Params 	

Name Description

return Whether	a	new	ToUnicode	map	was
inserted.

	

	 	

Attempt	to	regenerate	a	ToUnicode	map	using
embedded	font	data	as	a	key.

Complex	fonts	are	generally	embedded	using
an	identity	encoding	which	references
characters	by	glyph	index	rather	than	character
code.	Because	glyph	indexes	are	specific	to	a
particular	font,	to	extract	text	from	the	PDF	you
need	a	table	mapping	the	glyph	indexed	to
character	codes.	This	map	is	called	the
ToUnicode	map.

Notes
	 Well	behaved	PDF	producers	will	insert	a
ToUnicode	map	for	all	fonts	that	they	embed.
However	some	font	producers	may	fail	to	do	so.
This	means	that	copying	or	extracting	text	from
such	a	PDF	will	result	in	gibberish.

In	some	cases	it	is	possible	to	regenerate	the
ToUnicode	map	from	the	embedded	font	data.
This	function	attempts	to	do	so	and	returns	true
if	a	new	ToUnicode	map	was	inserted.	This
function	only	works	on	composite	fonts	and
calling	it	on	other	types	of	fonts	will	not	do
anything.

	

	 	

Example 	
None.

	
	 	

	

	

Subset	Function 	 	

Subset	a	previously	embedded	font.

	
	 	

Syntax 	

[C#]
bool	Subset()
bool	Subset(string	characters)

[Visual	Basic]
Function	Subset()	As	Boolean
Function	Subset(characters	as
String)	As	Boolean

	 	

Params 	

Name Description

characters The	character	set	to	be	used	forthe	subsetting.

return Whether	subsetting	was
performed	succesfully.

	

	 	

Use	this	method	to	subset	a	previously
embedded	font.

Many	PDF	producers	are	not	efficient	at
subsetting	fonts.	Subsetting	previously
embedded	fonts	can	be	a	time	consuming

Notes 	

operation	but	can	also	result	in	a	significant
reduction	in	file	size.

If	you	provide	a	character	set	string	then	this	is
a	relatively	fast	operation.	However	if	you	do	not
pass	a	character	set	then	one	has	to	be
constructed	and	to	do	this	it	is	necessary	to
analyze	the	entire	document	to	determine	what
characters	are	being	used.	In	this	case	if	a	call
to	Catalog.AnalyzeContent	has	not	already
been	made	then	one	will	be	triggered.

This	call	will	subset	embedded	TrueType	fonts.
If	the	font	is	referenced	or	if	the	font	is	not
TrueType	then	this	function	will	return	false.

	

	 	

Example 	
None.

	
	 	

	

	

UnembedFont	Function 	 	

Unembed	the	font	if	this	is	a	simple	operation.

	
	 	

Syntax 	

[C#]
int	UnembedSimpleFont()

[Visual	Basic]
UnembedSimpleFont()	As	Integer

	 	

Params 	

Name Description

return The	number	of	bytes	of	font	data	that
were	removed	as	a	result	of	this	call.

	

	 	

Notes 	

Unembed	the	font	if	this	is	a	simple	operation.

Latin	based	fonts	can	often	be	unembedded	as
a	simple	and	fast	operation.	However	Unicode
and	symbolic	fonts	are	more	complex	to
unembed	and	cannot	be	simply	removed	from
the	document.	To	unembed	a	composite	font
you	need	to	use	the	ReduceSizeOperation
class.

This	function	returns	the	number	of	bytes	of	font
data	that	were	removed	as	a	result	of	this	call.
Note	that	it	is	possible	for	multiple	font	objects

	 	

to	reference	the	same	embedded	font.	In	this
case	each	call	to	unembed	will	return	the	same
number	and	the	actual	font	will	only	actually	be
removed	from	the	document	if	all	references	to
it	are	released.

	

Example 	
None.

	
	 	

	

	

BaseFont	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
string

n/a Yes The	PostScript
name	of	the	font.

	
	
	

	 	

Notes 	
The	PostScript	name	of	the	font.

	
	 	

Example 	
None.

	
	 	

	

	

EmbeddedFont	Property 	 	

	

Type Default ReadOnly Description

[C#]	
StreamObject

[Visual	Basic]
StreamObject

n/a Yes The	embedded
font	file.

	
	
	

	 	

Notes 	

The	embedded	font	file.

Font	files	may	be	in	a	number	of	different	formats
such	as	TrueType,	OpenType	or	Type	1	-	PostScript.

	

	 	

Example 	
None.

	
	 	

	

	

IsComposite	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
bool

n/a Yes
Whether	the	font
is	a	complex
composite	font.

	
	
	

	 	

Notes 	

Whether	the	font	is	a	complex	composite	font.

Composite	fonts	are	typically	used	for	non-ASCII
characters	and	complex	writing	systems.

	

	 	

Example 	
None.

	
	 	

	

	

IsIdentity	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

n/a Yes

Whether	the	font
is	a	composite
glyph	encoded
identity	font

	

	 	

Notes 	

Whether	the	font	is	a	composite	glyph	encoded
identity	font.

The	normal	way	to	identify	a	character	in	a	font	is	to
use	a	standard	such	as	ASCII.	Language	encodings
such	as	Latin	work	this	way.

For	characters	outside	this	range	the	PDF	format
allows	you	to	reference	font	glyphs	directly	using	the
glyph	index	within	the	font.	This	is	known	as	an
identity	encoding.	Language	encodings	such	as
Unicode	work	this	way.

Identity	encodings	are	very	flexible	but	they	do
hardwire	the	document	to	a	particular	font	file	and	as
such	the	font	must	be	embdded.	Care	should	be
taken	when	operating	on	identty	encoded	embedded
font	files.

	

	 	

None.

Example 	
	

	 	

	

	

IsSubset	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
bool

n/a Yes

Whether	the	font
contains	an
embedded
subset.

	
	
	

	 	

Notes 	
Whether	the	font	contains	an	embedded	subset.

	
	 	

Example 	
None.

	
	 	

	

	

IsVertical	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
bool

n/a Yes
Whether	the	font
is	for	vertical
writing.

	
	
	

	 	

Notes 	

Whether	the	font	is	for	vertical	writing.

Some	languages	may	be	written	vertically	instead	of
horizontally.	As	well	as	the	direction	of	flow	often
there	are	often	specific	forms	of	characters	for	the
different	directions.

	

	 	

Example 	
None.

	
	 	

	

	

WritingMode	Property 	 	

	

Type Default ReadOnly Description

[C#]WritingModeType

[Visual	Basic]
WritingModeType

n/a Yes
Gets	the
font	writing
mode.

	
	
	

	 	

Notes 	

Gets	the	font	writing	mode.

The	WritingModeType	enum	has	two	possible	values:

Horizontal
Vertical

	

	 	

Example 	
None.

	
	 	

	

	

Widths	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IDictionary<char,
int>

[Visual	Basic]
IDictionary<char,
int>

n/a Yes

The	widths
of	the
characters	in
the	font.

	

	 	

Notes 	

The	character	widths	for	all	the	characters	in	the	font.

The	array	is	indexable	by	Unicode	value.	For
example	to	find	the	width	of	a	space	(ASCII	32)	you
would	simply	reference	item	32	in	the	collection.	The
values	are	measured	in	in	1000ths	of	a	PDF	unit.

Font	subsetting	can	result	in	characters	being
partially	or	completely	removed	from	a	font.	ABCpdf
will	attempt	to	ensure	that	the	Widths	collection	only
contains	entries	for	valid	characters.	However
sometimes	it	is	difficult	to	tell	and	as	such	you	cannot
rely	on	a	character	being	present	simply	because	it
has	a	width.

	

	 	

The	example	below	shows	how	to	add	text	on	a	curve

and	text	flowing	round	a	circle.

[C#]
void	Example()	{
		string	theFont	=	"Comic	Sans	MS";
		string	theText	=	"Gallia	est	omnis
divisa	in	partes	tres,	quarum	unam
incolunt	Belgae...";
		string	theTitle	=	"Commentarii	de
Bello	Gallico";
		using	(Doc	doc	=	new	Doc())	{
				doc.FontSize	=	36;
				doc.TextStyle.Kerning	=
XTextStyle.KerningType.None;
				doc.Font	=	doc.EmbedFont(theFont,
LanguageType.Latin,	false,	true,	false);
				//	add	some	radial	text	in	the	top
middle	of	the	page
				double	cx	=	doc.MediaBox.Width	*
0.5;
				double	cy	=	doc.MediaBox.Height	*
0.6;
				double	r	=	doc.MediaBox.Width	*	0.3;
				CurvedText.AddRadial(doc,	theText,
cx,	cy,	r,	225,	true,	false);
				//	add	some	curved	text	to	a
rectangle
				double	width	=
doc.MeasureText(theTitle);
				doc.Rect.SetRect(100,	100,	width,
doc.FontSize	*	1.5);
				doc.FrameRect();
				CurvedText.AddCurved(doc,	theTitle);
				//	save
				doc.Save("ExampleCurvedText.pdf");
		}
}

class	CurvedText	{
		public	static	void	AddCurved(Doc	doc,
string	text)	{
				double	halfWidth	=	doc.Rect.Width	/
2;
				double	height	=	doc.Rect.Height	-
doc.TextStyle.Size;
				double	radius	=	((halfWidth	*
halfWidth)	+	(height	*	height))	/	(2	*
height);
				double	centerX	=	doc.Rect.Left	+
halfWidth;
				double	centerY	=	doc.Rect.Bottom	+
radius	+	doc.TextStyle.Size;
				double	alpha	=	Math.Asin(halfWidth	/
radius)	-	Math.PI;
				AddRadial(doc,	text,	centerX,
centerY,	radius,
RadiansToDegrees(alpha),	true,	false);
		}

		public	static	void	AddRadial(Doc	doc,
string	text,	double	centerX,	double
centerY,	double	radius,	double
startAngleDegrees,	bool	inside,	bool
clockwise)	{
				FontObject	font	=
doc.ObjectSoup[doc.Font]	as	FontObject;
				IDictionary<char,	int>	widths	=
font.Widths;
				int	n	=	text.Length;
				double	a	=
DegreesToRadians(startAngleDegrees);
				double	fontWidthToRadians	=
doc.TextStyle.Size	/	(radius	*	1000);
				doc.Rect.String	=

doc.MediaBox.String;
				for	(int	i	=	0;	i	<	n;	i++)	{
						//	work	out	position
						double	x	=	centerX	+	(Math.Sin(a)
*	radius);
						double	y	=	centerY	+	(Math.Cos(a)
*	radius);
						//	add	a	character
						doc.Pos.X	=	x;
						doc.Pos.Y	=	y;
						doc.Transform.Reset();
						double	charRotation	=	inside	?
RadiansToDegrees(-a)	+	180	:
RadiansToDegrees(-a);
						doc.Transform.Rotate(charRotation,
x,	y);
						doc.AddText(text[i].ToString());
						//	increment	angle
						double	da	=
Convert.ToDouble(widths[text[i]])	*
fontWidthToRadians;
						a	+=	clockwise	?	da	:	-da;
				}
				doc.Transform.Reset();
		}

		private	static	double
DegreesToRadians(double	degrees)	{
				return	degrees	*	Math.PI	/	180;
		}

		private	static	double
RadiansToDegrees(double	radians)	{
				return	radians	*	180	/	Math.PI;
		}
}

Example
	

[Visual	Basic]
Sub	...
		Dim	theFont	As	String	=	"Comic	Sans
MS"
		Dim	theText	As	String	=	"Gallia	est
omnis	divisa	in	partes	tres,	quarum	unam
incolunt	Belgae..."
		Dim	theTitle	As	String	=	"Commentarii
de	Bello	Gallico"
		Using	doc	As	New	Doc()
				doc.FontSize	=	36
				doc.TextStyle.Kerning	=
XTextStyle.KerningType.None
				doc.Font	=	doc.EmbedFont(theFont,
LanguageType.Latin,	False,	True,	False)
				'	add	some	radial	text	in	the	top
middle	of	the	page
				Dim	cx	As	Double	=
doc.MediaBox.Width	*	0.5
				Dim	cy	As	Double	=
doc.MediaBox.Height	*	0.6
				Dim	r	As	Double	=	doc.MediaBox.Width
*	0.3
				CurvedText.AddRadial(doc,	theText,
cx,	cy,	r,	225,	_
						True,	False)
				'	add	some	curved	text	to	a
rectangle
				Dim	width	As	Double	=
doc.MeasureText(theTitle)
				doc.Rect.SetRect(100,	100,	width,
doc.FontSize	*	1.5)
				doc.FrameRect()
				CurvedText.AddCurved(doc,	theTitle)
				'	save
				doc.Save("ExampleCurvedText.pdf")
		End	Using

	 	

End	Sub

Private	Class	CurvedText
		Public	Shared	Sub	AddCurved(doc	As
Doc,	text	As	String)
				Dim	halfWidth	As	Double	=
doc.Rect.Width	/	2
				Dim	height	As	Double	=
doc.Rect.Height	-	doc.TextStyle.Size
				Dim	radius	As	Double	=	((halfWidth	*
halfWidth)	+	(height	*	height))	/	(2	*
height)
				Dim	centerX	As	Double	=
doc.Rect.Left	+	halfWidth
				Dim	centerY	As	Double	=
doc.Rect.Bottom	+	radius	+
doc.TextStyle.Size
				Dim	alpha	As	Double	=
Math.Asin(halfWidth	/	radius)	-	Math.PI
				AddRadial(doc,	text,	centerX,
centerY,	radius,
RadiansToDegrees(alpha),	_
						True,	False)
		End	Sub

		Public	Shared	Sub	AddRadial(doc	As
Doc,	text	As	String,	centerX	As	Double,
centerY	As	Double,	radius	As	Double,
startAngleDegrees	As	Double,	_
				inside	As	Boolean,	clockwise	As
Boolean)
				Dim	font	As	FontObject	=
TryCast(doc.ObjectSoup(doc.Font),
FontObject)
				Dim	widths	As	IDictionary(Of	Char,
Integer)	=	font.Widths
				Dim	n	As	Integer	=	text.Length

				Dim	a	As	Double	=
DegreesToRadians(startAngleDegrees)
				Dim	fontWidthToRadians	As	Double	=
doc.TextStyle.Size	/	(radius	*	1000)
				doc.Rect.[String]	=	doc.MediaBox.
[String]
				For	i	As	Integer	=	0	To	n	-	1
						'	work	out	position
						Dim	x	As	Double	=	centerX	+
(Math.Sin(a)	*	radius)
						Dim	y	As	Double	=	centerY	+
(Math.Cos(a)	*	radius)
						'	add	a	character
						doc.Pos.X	=	x
						doc.Pos.Y	=	y
						doc.Transform.Reset()
						Dim	charRotation	As	Double	=
If(inside,	RadiansToDegrees(-a)	+	180,
RadiansToDegrees(-a))
						doc.Transform.Rotate(charRotation,
x,	y)
						doc.AddText(text(i).ToString())
						'	increment	angle
						Dim	da	As	Double	=
Convert.ToDouble(widths(text(i)))	*
fontWidthToRadians
						a	+=	If(clockwise,	da,	-da)
				Next
				doc.Transform.Reset()
		End	Sub

		Private	Shared	Function
DegreesToRadians(degrees	As	Double)	As
Double
				Return	degrees	*	Math.PI	/	180
		End	Function

		Private	Shared	Function
RadiansToDegrees(radians	As	Double)	As
Double
				Return	radians	*	180	/	Math.PI
		End	Function
End	Class

ExampleCurvedText.pdf

	

	

	

CharToEncoding	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IDictionary<char,
char>

[Visual	Basic]
IDictionary<char,
char>

n/a Yes

The	Unicode
to	glyph
mapping
table	for	all
the
characters	in
the	font

	

	 	

Notes 	

The	Unicode	to	glyph	mapping	table	for	all	the
characters	in	the	font.

In	this	context,	the	glyph	value	is	the	value	which
occurs	in	the	content	stream	when	using	this	font.
While	the	encoding	used	is	often	similar	to	ASCII,	it
may	vary	cionsiderably	depending	on	the	way	the
font	has	been	included	in	the	PDF.

To	map	from	the	glyph	encoding	to	a	Unicode
character	see	EncodingToChar.

	

	 	

Example 	
None.

	
	 	

	

	

CheckGlyphs	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
exclude	invalid
glyphs	from	our
lookup	tables

	

	 	

Notes 	

Whether	to	exclude	invalid	glyphs	from	our	lookup
tables.

When	fonts	are	subsetted	the	glyphs	in	the	tables
may	be	rendered	invalid	because	they	are	not	used.
The	encoding	continues	to	exist	but	the	information
required	to	draw	the	glyphs	has	been	lost.	As	such	it
is	not	a	good	idea	to	attempt	to	use	these	glyphs
even	though	they	may	appear	to	be	part	of	the	font.

By	default	we	attempt	to	detect	such	glyphs	and
exclude	them	from	any	operations	or	font	properties
such	as	the	EncodingToChar	and	CharToEncoding
mappings.	This	prevents	them	being	used
inadvertently.

	

	 	

Example 	
None.

	
	 	

	

	

EncodingToChar	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IDictionary<char,
char>

[Visual	Basic]
IDictionary<char,
char>

0? No?

The	glyph	to
Unicode
mapping
table	for	all
the
characters	in
the	font

	

	 	

Notes 	

The	glyph	to	Unicode	mapping	table	for	all	the
characters	in	the	font.

In	this	context,	the	glyph	value	is	the	value	which
occurs	in	the	content	stream	when	using	this	font.
While	the	encoding	used	is	often	similar	to	ASCII	it
may	vary	cionsiderably	depending	on	the	way	the
font	has	been	included	in	the	PDF.

Typically	you	would	use	the	StringAtom	Decode	or
DecodeDoubleByte	methods	to	allow	text	operator
parameters	to	be	decoded	into	the	base	text
encoding.	These	can	then	be	passed	through	the
FontObject	EncodingToChar	and	EncodingToString
properties	to	allow	mapping	from	the	text	encoding
through	to	Unicode	values.

To	map	from	a	Unicode	character	to	the	glyph
encoding	see	CharToEncoding.

	 	

	

Example 	
None.

	
	 	

	

	

EncodingToString	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IDictionary<char,
string>

[Visual	Basic]
IDictionary<Char,
String>

n/a Yes

The	glyph	to
Unicode
string
mapping
table.

	

	 	

Notes 	

The	glyph	to	Unicode	string	mapping	table	for	all	the
characters	in	the	font	that	contain	one.

Most	glyphs	map	to	a	single	Unicode	character.
However	in	some	circumstances	it	may	be	necessary
to	map	one	glyph	to	a	sequence	of	characters.	For
example	the	sequence	"ffl"	may	be	represented	as
one	glyph	in	a	font.	If	there	is	no	Unicode	encoding
for	this	type	of	ligature	then	it	will	need	to	map	back
to	a	string	rather	than	a	single	Unicode	character.

Typically	you	would	use	the	StringAtom	Decode	or
DecodeDoubleByte	methods	to	allow	text	operator
parameters	to	be	decoded	into	the	base	text
encoding.	These	can	then	be	passed	through	the
FontObject	EncodingToChar	and	EncodingToString
properties	to	allow	mapping	from	the	text	encoding
through	to	Unicode	values.

	 	

String	encodings	are	unusual	and	this	property	is
normally	empty.	If	it	is	populated	it	should	be	viewed
as	a	supplement	and	an	override	for	the
EncodingToChar	and	CharToEncoding	mappings.

	

Example 	
None.

	
	 	

	

	

Flags	Property

	

Type Default
Value

Read
Only Description

[C#]	FontFlags

[Visual	Basic]
FontFlags

n/a No The	Font	Descriptor	Flags
entry

	

The	Font	Descriptor	Flags	entry.

The	FontFlags	type	is	a	flags	type	enumeration	so	the	different	values	can	be
combined	together	using	bitwise	operations.	It	may	take	the	following	

FixedPitch	(All	glyphs	have	the	same	width;	as	opposed	to	proportional
or	variable-pitch	fonts,	which	have	different	widths)
Serif	(Glyphs	have	serifs	-	short	strokes	drawn	at	an	angle	on	the	top	and
bottom	of	glyph	stems.	Sans	serif	fonts	do	not	have	serifs)
Symbolic	(Font	contains	glyphs	outside	the	Adobe	standard	Latin
character	set.	This	flag	and	the	Nonsymbolic	flag	are	mutually	exclusive)
Script	(Glyphs	look	like	cursive	handwriting)
Nonsymbolic	(Font	uses	the	Adobe	standard	Latin	character	set	or	a
subset	of	it)
Italic	(Glyphs	have	slanted	dominant	vertical	strokes)
AllCap	(Font	contains	no	lowercase	letters)
SmallCap	(Lower	case	letters	in	this	font	look	like	smaller	versions	of
their	upper	case	equivalents)
ForceBold	(Whether	bold	glyphs	shall	be	painted	with	extra	pixels	even	at
very	small	text	sizes)

The	flags	detailed	here	are	descriptive.	So	reading	them	from	an	existent	font

Notes
	

object	will	provide	information	on	the	style.	However	changing	them	will	not
necessarily	change	it.	If	the	font	is	referenced	then	the	viewing	application	will
need	to	find	an	appropriate	system	font	and	it	should	try	to	take	account	of
these	flags.	However	if	the	fonts	is	embedded	then	changing	the	flags	will	not
change	the	underlying	embedded	font.	Make	sure	you	understand	these
concepts	before	you	change	these	values.

How	do	I	manipulate	flags	enumerations?

To	check	a	flag	you	can	write	code	of	the	following	form:

bool	isSymbolic	=
font.Flags.HasFlags(FontObject.FontFlags.Symbolic)

To	set	the	flag:

font.Flags	|=	FontObject.FontFlags.Symbolic

To	clear	the	flag:

font.Flags	&=	~FontObject.FontFlags.Symbolic

	

	

Example 	
None.

	

	

	

FontAscender	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

	 Yes
The	ascender
for	the	glyphs	in
this	font

	

	 	

Notes 	

The	ascender	for	the	glyphs	in	this	font.

This	corresponds	to	the	sTypoAscender	entry	in	the
'OS/2'	TrueType	table.

	

	 	

Example 	
None.

	
	 	

	

	

FontAscent	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes
The	ascent	for
the	glyphs	in	this
font

	

	 	

Notes 	

The	ascent	for	the	glyphs	in	this	font.

This	corresponds	to	the	usWinAscent	entry	in	the
'OS/2'	TrueType	table.

	

	 	

Example 	
None.

	
	 	

	

	

FontBBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a Yes

The	bounding
box	for	the
glyphs	in	this
font

	

	 	

Notes 	

The	bounding	box	for	the	glyphs	in	this	font.

This	XRect	corresponds	to	the	xMin,	xMax,	yMin	and
yMax	entries	in	the	'head'	TrueType	table.

The	PDF	format	only	supports	a	limited	range	of
metrics	so	FontObjects	read	from	PDF	may	contain
some	approximations	compared	with	'live'
FontObjects	which	have	been	added	using	the
Doc.AddFont	or	Doc.EmbedFont	methods.

	

	 	

Example 	
None.

	
	 	

	

	

FontDescender	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes
The	descender
for	the	glyphs	in
this	font

	

	 	

Notes 	

The	descender	for	the	glyphs	in	this	font.

This	corresponds	to	the	sTypoDescender	entry	in	the
'OS/2'	TrueType	table.

	

	 	

Example 	
None.

	
	 	

	

	

FontDescent	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes
The	descent	for
the	glyphs	in	this
font

	

	 	

Notes 	

The	descent	for	the	glyphs	in	this	font.

This	corresponds	to	the	usWinDescent	entry	in	the
'OS/2'	TrueType	table.

	

	 	

Example 	
None.

	
	 	

	

	

FontLineGap	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes
The	line	gap	for
the	glyphs	in	this
font

	

	 	

Notes 	

The	line	gap	for	the	glyphs	in	this	font.

This	corresponds	to	the	sTypoLineGap	entry	in	the
'OS/2'	TrueType	table.

	

	 	

Example 	
None.

	
	 	

	

	

FontLineSpacing	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes
The	line	spacing
for	the	glyphs	in
this	font

	

	 	

Notes 	

The	line	spacing	for	the	glyphs	in	this	font.

This	broadly	reflects	the	distance	in	1000ths	between
the	bottom	of	the	lowest	descender	and	the	top	of	the
highest	ascender	on	two	subsequent	lines.	We	follow
Microsoft	best	practice	on	this	metric	and	vary	the
calculations	depending	on	whether	bit	7	of	the
fsSelection	entry	in	the	'OS/2'	TrueType	table	is	set
or	not.	However	it	is	worth	noting	that	many	items	of
software	including	Microsoft	flagship	products	do	not.

The	PDF	format	only	supports	a	limited	range	of
metrics	so	FontObjects	read	from	PDF	may	contain
some	approximations	compared	with	'live'
FontObjects	which	have	been	added	using	the
Doc.AddFont	or	Doc.EmbedFont	methods.

	

	 	

Example 	
None.

	

	 	

	

	

AddResource	Function 	 	

Add	a	particular	type	of	resource

	
	 	

Syntax 	

[C#]
string	AddResource(IndirectObject
resource,	string	type,	string
name)

[Visual	Basic]
Function	AddResource(resource	As
IndirectObject,	type	As	String,
name	As	String)	As	String

	

	 	

Params 	

Name Description
resource The	resource	to	be	added.
type The	type	of	resource.

name The	format	of	the	name	that	should
be	used.

	

	 	

Add	a	particular	type	of	resource	to	the	Form
XObject.

Form	XObjects	may	contain	default	resources
usable	by	the	page	content	stream.	The	most
common	resource	types	are	"Font",	"XObject"

Notes 	

and	"ColorSpace".	For	further	details	see	the
PDF	Specification.

This	method	allows	you	to	add	new	resources
to	the	Form	XObject.	You	may	supply	your	own
name	for	the	resource	but	if	the	name	is	already
in	use,	it	may	need	to	be	modified.	For	this
reason	the	function	returns	the	value	which	was
actually	used	for	the	addition.

	

	 	

Example 	
None.

	
	 	

	

	

GetResourceMap	Function 	 	

Get	a	dictionary	mapping	the	names	of	a
particular	type	of	resource	to	Atoms

	

	 	

Syntax 	

[C#]
IDictionary<string,	Atom>
GetResourceMap(string	type)
IDictionary<string,	Atom>
GetResourceMap(string	type,	bool
includeXObjects,	bool
includePatterns,	ISet<int>	skip,
ISet<Atom>	set)

[Visual	Basic]
Function	GetResourceMap(type	As
String)	As	IDictionary(Of	string,
Atom)
Function	GetResourceMap(type	As
String,	includeXObjects	As
Boolean,	includePatterns	As
Boolean,	skip	As	ISet{Of	Integer},
set	As
System.Collections.Generic.ISet{Of
Atom})	As	IDictionary(Of	string,
Atom)

	

	 	

Name Description
type The	type	of	resource	to	be

Params 	

indexed.

includeXObjects

Whether	to	include
resources	from	other	Form
XObjects	referenced	from
this	one.

includePatterns

Whether	to	include
resources	from	Patterns
referenced	from	this	Form
XObject.

skip

A	set	of	IDs	indicating
IndirectObjects	that	should
be	skipped.	This	value	may
be	null	if	you	do	not	want	to
skip	any	items.

set

A	set	of	IDs	of	all	the
resources	that	have	been
encountered.	The	set	of
resources	is	generally	the
same	as	the	set	of	items	in
the	returned	dictionary,	but
may	not	be	if	resource
names	have	clashed.	This
value	may	be	null	if	you	are
not	interested	in	the	set.

	

	 	

Notes
	

Get	a	dictionary	mapping	the	names	of	a
particular	type	of	resource	to	Atoms.	The	Atoms
returned	are	typically	RefAtom	objects	referring
to	an	IndirectObject.	However	some	resource
types	(notably	color	spaces)	may	be	referred	to
direct.

It	is	unusual	to	look	up	just	one	resource	name.
Typically	one	has	a	sequence	of	resource

	 	

names	from	a	content	stream	which	all	need
resolving.	For	this	reason	it	is	best	to	use	this
function	to	obtain	a	map	which	can	then	be
cached.

	

Example 	
None.

	
	 	

	

	

BBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No

The	rect	defining
the	bounding
box	of	the
graphic

	

	 	

Notes 	

The	rect	defining	the	bounding	box	of	the	graphic.

Content	will	be	clipped	to	this	area.

	

	 	

Example 	
None.

	
	 	

	

	

Matrix	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
XTransform

[Visual	Basic]
XTransform

n/a No

The
transformation
matrix	used	for
mapping	the
Form	XObject
space	into	user
space

	

	 	

Notes 	

The	transformation	matrix	used	for	mapping	the
Form	XObject	space	into	user	space.

This	entry	may	be	null	which	signifies	the	identity
matrix.

	

	 	

Example 	
None.

	
	 	

	

	

IccProfile	Constructor 	 	

IccProfile	Constructor.

	
	 	

Syntax 	

[C#]
IccProfile(ObjectSoup	soup,	byte[]
data)	
IccProfile(ObjectSoup	soup,	string
path)

[Visual	Basic]
Sub	New(soup	As	ObjectSoup,	data()
As	Byte)
Sub	New(soup	As	ObjectSoup,	path	As
String)

	may	throw	Exception()

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	IccProfile.

data An	ICC	profile	stored	in	an	array	of	bytes.
path A	path	to	an	ICC	file.

	

	 	

Create	an	IccProfile	object.

Notes 	
If	the	content	provided	is	not	a	valid	ICC	profile	then
an	exception	will	be	thrown.

	

	 	

Example 	
See	the	PixMap.Recolor	function.

	
	 	

	

	

SetData	Function 	 	

Set	the	raw	binary	content	of	the	stream.

	
	 	

Syntax 	

[C#]
override	void	SetData(byte[]
value)

[Visual	Basic]
Overrides	Sub	SetData(value()	As
Byte)

	may	throw	Exception()

	

	 	

Params 	

Name Description
value The	raw	binary	content	of	the	stream.

	

	 	

Notes 	

Set	the	raw	binary	content	of	the	stream.

This	function	overrides	the
StreamObject.SetData	function.

If	the	StreamObject	currently	contains
compressed	data	or	if	the	content	provided	is
not	a	valid	ICC	profile	then	an	exception	will	be
thrown.

	 	

	

Example 	
None.

	
	 	

	

	

UpdateProfile	Function 	 	

Updates	this	object	to	reflect	the	values
contained	within	the	embedded	ICC	color	profile
data

	

	 	

Syntax 	

[C#]
bool	UpdateProfile()

[Visual	Basic]
Overridable	UpdateProfile()	As
Boolean

	

	 	

Params 	

Name Description
return Whether	the	operation	was	successful.

	

	 	

Notes 	

Updates	this	object	to	reflect	the	values
contained	within	the	embedded	ICC	color	profile
data.

If	the	ICC	profile	was	absent	or	corrupt	then	the
return	value	will	be	false.

	

	 	

Example
	 None.

	

	 	

	

	

AlternateColorSpaceType	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
ColorSpaceType
[Visual	Basic]
ColorSpaceType

n/a Yes

The	alternate
color	space	for
this	ICC	color
profile

	

	 	

Notes 	

The	alternate	color	space	for	this	ICC	color	profile.

The	alternate	color	space	generally	indicates	the
base	color	space	type	such	as	DeviceRGB	or
DeviceCMYK.	This	is	useful	to	know	if	you	are
attempting	to	find	out	the	core	type	of	color	space
referenced	by	an	ICC	color	profile.

In	the	situation	that	no	alternate	color	space	is
available,	one	can	be	generated	using	the
UpdateProfile	function.

	

	 	

Example 	
None.

	
	 	

	

	

ImageName	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

n/a Yes

The	name	used
to	identify	the
PixMap	in	the
Page	resources

	

	 	

Notes 	

The	name	used	to	identify	the	PixMap	in	the	Page
resources.

	

	 	

Example 	
None.

	
	 	

	

	

PixMap	Property 	 	

	

Type Default ReadOnly Description

[C#]	PixMap

[Visual	Basic]
PixMap

	n/a	 Yes
The	PixMap
containing	the
image	data.

	

	 	

Notes 	
The	PixMap	containing	the	image	data.

	
	 	

Example 	
None.

	
	 	

	

	

BaseRect	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a Yes

The
untransformed
rect	defining	the
bounds	of	the
visible	content
on	the	page

	

	 	

Notes 	

The	untransformed	XRect	defining	the	bounds	of	the
visible	content	on	the	page.

This	rectangle	is	encoded	in	PDF	coordinates	rather
than	any	abstracted	coordinate	space.

	

	 	

Example 	
None.

	
	 	

	

	

Page	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	Page

[Visual	Basic]
Page

n/a Yes
The	Page	on
which	the	Layer
is	located

	

	 	

Notes 	

The	Page	on	which	the	Layer	is	located.

While	Layers	are	normally	only	referenced	from	one
page,	it	is	possible	to	reference	them	from	multiple.
This	property	reflects	the	orginal	Page	for	which	this
layer	was	created.

	

	 	

Example 	
None.

	
	 	

	

	

Rect	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

	n/a	 Yes

The	transformed
rect	defining	the
bounds	of	the
visible	content.

	

	 	

Notes 	

The	transformed	XRect	defining	the	bounds	of	the
visible	content.

This	rectangle	is	encoded	in	PDF	coordinates	rather
than	any	abstracted	coordinate	space.

	

	 	

Example 	
None.

	
	 	

	

	

Transform	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
XTransform

[Visual	Basic]
XTransform

n/a Yes

The	transform
which	has	been
applied	to	the
visible	content

	

	 	

Notes 	

The	transform	which	has	been	applied	to	the	visible
content.

	

	 	

Example 	
None.

	
	 	

	

	

DeInline	Function 	 	

Makes	any	inline	images	into	external	images.

	
	 	

Syntax 	

[C#]
void	DeInline(bool
convertAnnotations)
void	DeInline(bool
convertAnnotations,	out	PixMap[]
detachedPixMaps)

[Visual	Basic]
Sub	DeInline(convertAnnotations
As	Boolean)
Sub	DeInline(convertAnnotations
As	Boolean,	<Out>	ByRef
detachedPixMaps	As	PixMap())

	may	throw	Exception()

	

	 	

Params 	

Name Description

convertAnnotations
Whether	to	convert	the
color	space	of	annotation
appearance	streams.

detachedPixMaps
All	the	PixMaps	which
were	extracted	as	a	result
of	the	call.

	 	

	

Notes 	

Makes	any	inline	images	into	external	images.

Images	in	PDF	documents	are	generally	held	as
external	object	and	are	then	referenced	from
the	page	content	stream.	However	it	is	also
possible	to	inline	small	images	and	embed	the
binary	image	data	directly	into	the	PDF	content
stream.	This	is	not	always	desirable	as	it
complicates	certain	types	of	PDF	processing.

This	method	allows	you	to	extract	such	inline
images	and	convert	them	into	standard	external
PixMap	objects.

	

	 	

Example 	

None.

	

	

	 	

	

	

Detach	Function 	 	

Detaches	a	content	stream	from	the	page.

	
	 	

Syntax 	

[C#]
void	Detach(StreamObject	layer)

[Visual	Basic]
Sub	Detach(layer	As	StreamObject)

	

	 	

Params 	

Name Description
layer The	stream	to	detach	from	the	page.

	

	 	

Notes 	

Detaches	a	content	stream	from	the	page.

The	layer	is	not	deleted	it	is	simply	that	any
reference	to	it	is	removed	from	the	page.

	

	 	

Example 	
None.

	
	 	

	

	

Flatten	Function 	 	

Flatten	and	compress	the	page	content	stream.

	
	 	

Syntax 	

[C#]
void	Flatten()
void	Flatten(bool	force)

[Visual	Basic]
Sub	Flatten()
Sub	Flatten(force	As	Boolean)

	

	 	

Params 	

Name Description

force
Whether	to	force	the	flattening	even	if
the	streams	contain	extra	information
which	might	be	lost	-	default	false.

return Whether	the	page	is	flat.

	

	 	

Objects	added	to	a	page	are	stored	as
individual	layers.	Calling	this	method	combines
all	the	layers	on	the	current	page	and	then	re-
compresses	the	layer	data.

This	method	is	the	same	as	the	Doc.Flatten
method.	However	the	'force'	parameter	can	be
used	to	force	the	page	to	be	flattened	even

Notes 	

when	the	Doc.Flatten	method	would	be	more
cautious.

The	Doc.Flatten	method	is	cautious	because
different	layers	can	be	tagged	with	different
information.	Flattening	the	page	will	result	in	this
type	of	information	being	lost.	This	type	of
tagging	is	not	something	that	is	defined	in	the
PDF	specification	but	it	is	possible	that	various
third	party	applications	may	make	use	of
proprietary	techniques	like	this	to	add	extra
information	to	the	document.

However	for	some	types	of	operations	a	failure
to	flatten	the	page	can	be	very	inconvenient.
For	example	it	is	possible	to	split	PDF	drawing
operations	over	more	than	one	content	stream.
If	you	are	analyzing	and	updating	a	page	using
the	Doc.GetText	method	to	identify	the	locations
of	PDF	operators,	it	can	be	very	tiresome	to
deal	with	this	type	of	construct.

	

	 	

Example 	

None.

	

	

	 	

	

	

GetAnnotations	Function 	 	

Gets	all	the	Annotations	on	the	page.

	
	 	

Syntax 	

[C#]
Annotation[]	GetAnnotations()

[Visual	Basic]
Function	GetAnnotations()	As
Annotation()

	

	 	

Params 	

Name Description

return An	array	of	all	the	Annotations	on	the
page.

	

	 	

Notes 	
Gets	all	the	Annotations	on	the	page.

	
	 	

Example 	
None.

	
	 	

	

	

GetLayers	Function 	 	

Gets	all	the	content	Layers	for	the	page.

	
	 	

Syntax 	

[C#]
StreamObject[]	GetLayers()

[Visual	Basic]
Function	GetLayers()	As
StreamObject()

	

	 	

Params 	

Name Description

return An	array	of	all	the	content	Layers	on
the	page.

	

	 	

Notes 	
Gets	all	the	content	Layers	for	the	page.

	
	 	

Example 	
None.

	
	 	

	

	

GetNamedSeparations	Function 	 	

Gets	all	the	named	separations	referenced	by
the	page.

	

	 	

Syntax 	

[C#]
string[]	GetNamedSeparations()

[Visual	Basic]
Function	GetNamedSeparations()	As
String()

	

	 	

Params 	

Name Description

return An	array	of	the	names	of	the
separations.

	

	 	

Notes 	

Gets	the	names	of	all	the	separations
referenced	by	the	page.

In	general	named	separations	are	referenced
on	a	page	because	they	are	used	on	that	page.

However	this	is	not	a	necessary	truth.
Separations	can	be	referenced	but	never	used.

	

	 	

Example 	
None.

	
	 	

	

	

GetResourcesByType	Function 	 	

Get	all	the	resources	of	a	named	type,
optionally	including	any	used	by	referenced
objects.

	

	 	

Syntax 	

[C#]
ISet<Atom>
GetResourcesByType(string	type,
bool	annotations,	bool	patterns,
bool	xobjects,	bool	parents,
ISet<int>	skip)

[Visual	Basic]
Function	GetResourcesByType(type
As	String,	annotations	As
Boolean,	patterns	As	Boolean,
xobjects	As	Boolean,	parents	As
Boolean,	skip	As	ISet(Of
Integer))	As	ISet(Of	Atom)

	

	 	

Name Description
type The	type	of	resource	to	be	found.

annotations Whether	to	include	resources	in
annotations.

patterns
Whether	to	include	resources	in
pattern	dictionaries.

Whether	to	include	resources	in

Params
	

xobjects referenced	Form	XObjects.

parents Whether	to	include	resources	in
parent	objects.

skip
A	set	of	IndirectObject	IDs	that
should	be	skipped	when
performing	the	scan.	May	be	null.

return A	set	of	matching	resource
Atoms.

	

	 	

Notes 	

Get	all	the	resources	of	a	named	type,
optionally	including	any	used	by	referenced
objects.

This	can,	for	example,	be	used	to	find	all	the
FontObjects	referenced	in	the	"Font"	section	of
the	page.	Optionally	you	can	include
annotations,	patterns,	Form	XObjects	and
parent	objects	in	the	scan	and	generally	this	is
something	you	will	want	to	do.

If	you	are	performing	multiple	operations	of	this
type	you	may	wish	to	include	a	set	of
IndirectObject	IDs	that	should	be	skipped.	On
return	the	set	will	have	been	updated	and	all	the
new	IndirectObjects	that	have	been	scanned
will	have	been	added.

	

	 	

Example 	

None.

	
	 	

	

	

GetResourceMap	Function 	 	

Get	a	dictionary	mapping	the	names	of	a
particular	type	of	resource	to	Atoms.

	

	 	

Syntax 	

[C#]
IDictionary<string,	Atom>
GetResourceMap(int	id,	string
type)

[Visual	Basic]
Function	GetResourceMap(int	id,
string	type)	As	IDictionary(Of
Atom)

	

	 	

Params 	

Name Description
id The	type	of	resource	to	be	found.

type
The	ID	of	the	resource	containing
object.	This	is	typically	the	Page	ID	but
you	may	also	use	a	Form	XObject	ID.

return A	dictionary	mapping	resource	names
to	Atoms.

	

	 	

Get	a	dictionary	mapping	the	names	of	a
particular	type	of	resource	to	Atoms.	The	Atoms
returned	are	typically	RefAtom	objects	referring

Notes 	

to	an	IndirectObject.	However	some	resource
types	(notably	color	spaces)	may	be	referred	to
direct.

It	is	unusual	to	look	up	just	one	resource	name.
Typically	one	has	a	sequence	of	resource
names	from	a	content	stream	which	all	need
resolving.	For	this	reason	it	is	best	to	use	this
function	to	obtain	a	map	which	can	then	be
cached.

For	resources	referenced	from	the	content
stream	of	a	page	you	should	pass	the	ID	of	the
page	as	this	is	the	containing	object.	For
resources	referenced	from	a	Form	XObject
stream	you	should	pass	the	ID	of	the	Form
XObject	as	this	is	the	containing	object.

	

	 	

Example 	
None.

	
	 	

	

	

GetText	Function

Extract	content	from	the	current	page	in	a	specified	format.

	

Syntax 	

[C#]
string	GetText(TextType	type,	bool
includeAnnotations)
string	GetText(TextType	type,	bool
includeAnnotations,	bool	includePaths,	bool
includeText,	bool	includeImages,	bool
includeColors)

[Visual	Basic]
Function	GetText(type	As	TextType,
includeAnnotations	As	Boolean)	As	String
Function	GetText(type	As	TextType,
includeAnnotations	As	Boolean,	includePaths	As
Boolean,	includeText	As	Boolean,	includeImages
As	Boolean,	includeColors	As	Boolean)	As
String

	

Name Description
type The	format	in	which	to	return	the	content.

includeAnnotations Whether	to	include	field	and	annotation
text.

includePaths
Whether	to	include	graphics	paths	and
path	operators	in	the	output	(ignored	for
Text	and	RawText).

Params
	

includeText Whether	to	include	text	and	text	operators
in	the	output	(ignored	for	Text	and
RawText).

includeImages Whether	to	include	image	placeholders	in
the	output	(ignored	for	Text	and	RawText).

includeColors
Whether	to	include	colors	and	color
operators	in	the	output	(ignored	for	Text
and	RawText).

return An	array	of	the	names	of	the	separations.

	

The	TextType	enumeration	may	take	the	following	values:

Text
RawText
Svg
SvgPlus
SvgPlus2

Text	is	in	layout	order,	which	may	not	be	the	same	as	reading	
ABCpdf	will	make	sensible	assumptions	on	how	items	of	text	
combined,	but	some	situations	are	ambiguous.	The	TextType.Text
format	provides	sophisticated	text	analysis	and	interpolation	for	a	more
human	readable	output.	The	TextType.RawText	format	is	faster	and
simpler	and	provides	a	more	literal	interpretation	of	the	text	in	the
document.

SVG	is	an	XML	based	format	for	representing	vector	graphics.
Because	SVG	is	standard	XML,	it's	easy	to	parse	and	gives	you	the
precise	position	of	each	item	of	text	on	the	page.	The	way	that	
constructs	the	SVG	should	make	it	easy	to	extract	any	information	you
require.	ABCpdf	currently	supports	SVG	text,	paths	and	image
placeholders.

For	example,	a	simple	"Hello	World"	PDF	might	produce	the	
content:

Notes 	

<?xml	version="1.0"	standalone="no"?>
<!DOCTYPE	svg	PUBLIC	"-//W3C//DTD	SVG	1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg	width="612"	height="792"	x="0"	y="0">
<text	x="0"	y="76.8"	font-size="96"	font-
family="Times-Roman"	>Hello	World</text>
</svg>

SVG+	and	SVG+2	are	annotated	forms	of	SVG	which	include	details	
the	PDF	operators	and	how	they	relate	to	the	items	of	content	in	
SVG.	They	can	be	very	useful	if	you	are	trying	to	deconstruct	a	
and	determine	how	objects	in	the	PDF	relate	to	objects	in	the	
SVG+,	SVG	elements	appear	before	the	pdf	elements	for	their
generating	operators,	and	the	pdf	elements	for	the	Do	operator	on
Form	XObjects	are	not	generated.	In	SVG+2,	SVG	elements	appear
after	the	pdf	elements	of	their	generating	operators,	and	the	pdf
elements	for	the	Do	operator	on	Form	XObjects	are	generated.

For	example,	you	could	use	SVG+	to	identify	the	section	of	a	PDF
stream	that	relates	to	a	particular	word	on	a	page.	You	could	then
replace	the	text	show	operator	for	that	word	with	another	one.
Effectively,	you'd	be	performing	a	low-level	Search/Replace	on	the	
document.	However,	you	should	note	that	this	would	not	mean	that
your	layout	would	automatically	adjust	if	-	for	example	-	you	were	
replace	a	short	word	with	a	long	one.

There	is	no	official	standard	for	SVG+,	but	if	you	are	familiar	
PDF	specification,	it	should	be	easy	enough	to	understand.

For	example,	a	simple	"Hello	World"	PDF	might	produce	the	
content:

<?xml	version="1.0"	standalone="no"?>
<!DOCTYPE	svg	PUBLIC	"-//W3C//DTD	SVG	1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg	width="612"	height="792"	x="0"	y="0">
<pdf	pdf_Op="q"	pdf_StreamID="5"
pdf_StreamOffset="0"	pdf_StreamLength="1"	/>

<pdf	pdf_Op="BT"	pdf_StreamID="5"
pdf_StreamOffset="3"	pdf_StreamLength="2"	/>
<pdf	pdf_Op="0	Tr"	pdf_StreamID="5"
pdf_StreamOffset="7"	pdf_StreamLength="4"	/>
<pdf	pdf_Op="/Fabc6	96	Tf"	pdf_StreamID="5"
pdf_StreamOffset="13"	pdf_StreamLength="12"	/>
<pdf	pdf_Op="0	0	0	rg"	pdf_StreamID="5"
pdf_StreamOffset="27"	pdf_StreamLength="8"	
<pdf	pdf_Op="1	0	0	1	0	715.2	Tm"	pdf_StreamID="5"
pdf_StreamOffset="37"	pdf_StreamLength="18"	/>
<pdf	pdf_Op="0	Ts"	pdf_StreamID="5"
pdf_StreamOffset="57"	pdf_StreamLength="4"	/>
<text	x="0"	y="76.8"	font-size="96"	font-
family="Times-Roman"	pdf_CTM="1	0	0	1	0	0"
pdf_TM="1	0	0	1	0	715.2"	pdf_Trm="96	0	0	96	0
715.2"	pdf_Tf="Fabc6"	pdf_Tz="100"	pdf_Ts="0"
pdf_w1000="5027"	pdf_Op="(Hello	World)	Tj"
pdf_StreamID="5"	pdf_StreamOffset="63"
pdf_StreamLength="16"	>Hello	World</text>
<pdf	/>
<pdf	pdf_Op="ET"	pdf_StreamID="5"
pdf_StreamOffset="81"	pdf_StreamLength="2"	
<pdf	pdf_Op="Q"	pdf_StreamID="5"
pdf_StreamOffset="85"	pdf_StreamLength="1"	/>
</svg>

The	operators	within	the	PDF	stream	are	detailed	in	the	SVG.	For
example,	the	first	'q'	operator	is	located	in	Object	ID	5	at	offset	0	
has	a	length	of	1	byte.	The	'Tj'	operator	which	shows	"Hello	
offset	63	and	has	length	16.	The	Current	Transformation	Matrix	(CTM),
the	Text	Matrix	(TM),	and	other	important	PDF	state	values	are	shown.

Unfortunately,	the	XML	specification	was	designed	in	such	a	way	that	it
does	not	allow	all	ASCII	values	to	be	represented.	There	are	certain
ranges	of	characters	that	are	completely	banned,	and	this	is	true	even
if	you	attempt	to	use	entity	references	to	include	them.	Given	that	the
PDF	specification	allows	a	broader	range	of	values,	you	need	to

consider	how	you	represent	characters	outside	the	XML	range.	For	the
pdf_Op	attribute,	all	such	characters	are	moved	into	the	U+E000
Unicode	private	use	area.	So	to	convert	this	string	to	a	PDF	format
string,	you	just	need	to	coerce	any	such	character	to	a	byte.	This	is
only	relevant	to	the	pdf_Op	attribute.

	

Example 	
None.

	

	

	

Recolor	Function 	 	

Converts	the	page	from	one	color	space	to
another.

	

	 	

Syntax 	

[C#]
void	Recolor(ColorSpace	space,
bool	convertAnnotations)
void	Recolor(ColorSpace	space,
bool	convertAnnotations,	out
PixMap[]	recoloredPixMaps)

[Visual	Basic]
Sub	Recolor(space	As	ColorSpace,
convertAnnotations	As	Boolean)
Sub	Recolor(space	As	ColorSpace,
convertAnnotations	As	Boolean,
<Out>	ByRef	recoloredPixMaps	As
PixMap())

	may	throw	Exception()

	

	 	

Params 	

Name Description

space The	destination	color
space.

convertAnnotations
Whether	to	convert	the
color	space	of	annotation
appearance	streams. 	 	

recoloredPixMaps All	the	PixMaps	which
were	recolored	as	a	result
of	the	call.

	

Notes 	

Converts	the	page	from	one	color	space	to
another.

All	images	used	on	the	page	are	converted	to
the	new	color	space.	All	color	operators	used	in
the	page	content	stream	are	converted	to	the
new	color	space.

Annotations	and	fields	are	not	part	of	the	page
but	instead	float	over	the	page.	You	can	choose
whether	to	convert	the	appearance	stream	of
any	annotations	or	leave	them	in	their	native
color	space.

Colors	can	only	be	sensibly	mapped	from	one
color	space	to	another	if	we	know	something
about	the	characteristics	of	the	color	space.	If
your	color	spaces	do	not	contain	this
information	(e.g.	if	they	are	device	color	spaces)
then	ABCpdf	will	use	a	default	color	profile.

An	exception	will	be	thrown	if	the	operation	is
not	possible.	This	may	happen	if	the	Page	is	not
in	an	ObjectSoup	or	if	the	ColorSpace	object	is
in	some	way	invalid.

As	part	of	the	Recolor	process	it	is	necessary	to
call	PixMap.Recolor	on	all	the	images	used	on
the	page.	After	the	Recolor	process	has	been
completed	these	PixMap	objects	will	no	longer
be	compressed.	You	may	wish	to	compress
them	using	the	StreamObject.Compress

	 	

method.

	

Example 	

None.

	

	

	 	

	

	

VectorizeText	Function 	

Replaces	the	text	on	the	page	with	glyph	outlines.

	
	

Syntax 	

[C#]
void	VectorizeText()

[Visual	Basic]
Sub	VectorizeText()

	may	throw	Exception()

	

	

Params 	

Name Description
none 	

	

	

Notes 	

Use	this	method	to	vectorize	the	text	(i.e.	replace	the	text	with
equivalent	glyph	polygon	outlines).

	

	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.FontSize	=	96;
theDoc.AddText("Hello	World");

Example 	

List<Page>	theList	=	new	List<Page>();
foreach	(IndirectObject	obj	in	theDoc.ObjectSoup)
{
		Page	page	=	obj	as	Page;
		if	(page	!=	null)	{
				theList.Add(page);
		}
}
for	(int	i	=	0;	i	<	theList.Count;	i++)	{
		Page	page	=	theList[i];
		page.VectorizeText();
}
theDoc.Save(Server.MapPath("VectorizedText.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.FontSize	=	96
theDoc.AddText("Hello	World")
Dim	obj	As	IndirectObject
Dim	thePage	As	Page
Dim	theList	As	New	List(Of	Page)
For	Each	obj	in	theDoc.ObjectSoup
		thePage	=	TryCast(obj,	Page)
		If	thePage	IsNot	Nothing	Then
				theList.Add(thePage)
		End	If
Next
For	Each	thePage	As	Page	in	theList
		thePage.VectorizeText()
Next
theDoc.Save(Server.MapPath("VectorizedText.pdf"))
theDoc.Clear()

	

	

	

AddLayer	Function 	 	

Add	a	content	layer	at	the	front	of	the	page

	
	 	

Syntax 	

[C#]
void	AddLayer(StreamObject	layer)

[Visual	Basic]
Sub	AddLayer(layer	As
StreamObject)

	

	 	

Params 	

Name Description
layer The	layer	to	be	added.

	

	 	

Notes 	

Add	a	content	layer	at	the	front	of	the	page.

The	StreamObject	that	is	supplied	should
contain	PDF	drawing	operations.	You	will	need
to	ensure	that	any	resources	that	are
referenced	in	this	content	stream	have	been
added	to	the	resources	of	the	page	using	a
method	such	as	AddResource.

	

	 	

Example
	 None.

	

	 	

	

	

AddResource	Function 	 	

Add	a	particular	type	of	resource	to	the	page

	
	 	

Syntax 	

[C#]
string	AddResource(IndirectObject
resource,	string	type,	string
name)

[Visual	Basic]
Function	AddResource(resource	As
IndirectObject,	type	As	String,
name	As	String)	As	String

	

	 	

Params 	

Name Description
resource The	resource	to	be	added.
type The	type	of	resource.

name The	format	of	the	name	that	should
be	used.

	

	 	

Add	a	particular	type	of	resource	to	the	page.

Pages	may	contain	default	resources	usable	by
the	page	content	stream.	The	most	common
resource	types	are	"Font",	"XObject"	and
"ColorSpace".	For	further	details	see	the	PDF

Notes 	

Specification.

This	method	allows	you	to	add	new	resources
to	the	page.	You	may	supply	your	own	name	for
the	resource	but	if	the	name	is	already	in	use,	it
may	need	to	be	modified.	For	this	reason	the
function	returns	the	value	which	was	actually
used	for	the	addition.

	

	 	

Example 	
None.

	
	 	

	

	

GetBitmap	Function 	

Render	one	or	more	layers	on	the	current	page

	
	

Syntax 	

[C#]
System.Drawing.Bitmap
GetBitmap(Layer[]	layers)

[Visual	Basic]
Function	GetBitmap(layers()	As
Layer)	As	System.Drawing.Bitmap

	may	throw	Exception()

	

	 	

Params 	

Name Description
layers The	layers	to	be	rendered.

return The	System.Drawing.Bitmap	containing
the	image	of	the	layers.

	

	 	

Render	one	or	more	layers	on	the	current	page.

This	function	renders	a	set	of	layers	and	returns
the	result	as	a	System.Drawing.Bitmap.	The
Bitmap	covers	the	smallest	possible	area	which
encompasses	all	the	layers	provided.

Notes 	

If	this	Page	is	not	in	a	Doc	then	an	exception	will
be	raised.	The	function	will	return	null	if	the	layers
argument	is	null	or	empty	or	the	output	Bitmap
would	be	smaller	than	one	pixel	in	area.

Rendering	options	such	as	resolution	are	taken
directly	from	the	current	Doc.Rendering	settings.
However	automatic	page	rotation
(XRendering.AutoRotate)	is	disabled	so	that	a
Layer	can	be	rendered	and	then	re-inserted	into
the	page	as	a	raster	copy	of	itself.

Note	that	a	layer	can	exist	on	multiple	pages	and
indeed	can	be	rendered	in	the	context	of	a	page
that	does	not	currently	contain	it.	However	layers
typically	contain	references	to	named	resources
which	are	only	available	in	the	context	of	a	specific
page.	So	rendering	a	layer	in	the	context	of	a	page
which	does	not	normally	contain	it	is	prone	to	error
unless	the	page	and	layer	have	been	specifically
constructed	to	allow	this.

	

	 	

The	following	example	shows	how	to	use	this	method	to
generate	various	types	of	drop	shadows.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				//	light	blue	background
				doc.Color.SetCmyk(50,	0,	0,	0);
				doc.FillRect();
				doc.Color.SetRgb(0,	0,	0);
				doc.Rect.Inset(20,	20);
				doc.Rect.Pin	=	XRect.Corner.TopLeft;
				doc.Rect.Height	=	doc.Rect.Height	/

5;
				//	set	up	styles
				doc.TextStyle.Size	=	72;
				double	shift	=	doc.TextStyle.Size	*
0.1;
				XColor	pink	=	new	XColor();
				pink.SetRgb(255,	128,	128);
				XColor	gray	=	new	XColor();
				gray.SetRgb(128,	128,	128);
				XColor	blue	=	new	XColor();
				blue.SetRgb(0,	0,	255);
				//	add	text	content
				AddDropShadow(doc,	doc.AddText("Sharp
Shadow"),	0,	shift,	-shift,	gray);
				doc.Rect.Move(0,	-doc.Rect.Height);
				AddDropShadow(doc,
doc.AddText("Blurred	Shadow"),	1,	shift,
-shift,	gray);
				doc.Rect.Move(0,	-doc.Rect.Height);
				AddDropShadow(doc,	doc.AddText("Pink
Shadow"),	1,	shift,	-shift,	pink);
				doc.Rect.Move(0,	-doc.Rect.Height);
				//	add	drawn	content	
				doc.Transform.Magnify(0.5,	0.5,	0,
0);
				doc.Transform.Translate(50,	0);
				string	star	=	"124	158	300	700	476
158	15	493	585	493	124	158";
				doc.Width	=	20;
				doc.Color.String	=	"255	0	0";
				AddDropShadow(doc,	doc.AddPoly(star,
false),	3,	shift,	-shift,	blue);
				doc.Save("dropshadows.pdf");
		}
}

void	AddDropShadow(Doc	doc,	int	id,

double	gaussianBlurRadius,	double
shadowHorizontalShift,	double
shadowVerticalShift,	XColor	shadowColor)
{
		string	rect	=	doc.Rect.String;
		string	transform	=
doc.Transform.String;
		string	color	=	doc.Color.String;
		double	dpiX	=
doc.Rendering.DotsPerInchX;
		double	dpiY	=
doc.Rendering.DotsPerInchY;
		bool	saveAlpha	=
doc.Rendering.SaveAlpha;
		int	docLayer	=	doc.Layer;
		try	{
				doc.Rendering.DotsPerInch	=	72;
				doc.Rendering.SaveAlpha	=	true;
				Layer	layer	=	doc.ObjectSoup[id]	as
Layer;
				Page	page	=	doc.ObjectSoup[doc.Page]
as	Page;
				Bitmap	bm	=	page.GetBitmap(new
Layer[]	{	layer	});
				doc.Transform.Reset();
				doc.Rect.String	=	layer.Rect.String;
				doc.Rect.Move(shadowHorizontalShift,
shadowVerticalShift);
				doc.Layer	=	docLayer	+	1;
				int	pid	=	doc.AddImageBitmap(bm,
true);
				//	Here	we	set	the	base	image	to	be
one	pixel	of	an	appropriate	color.
				//	This	is	what	will	determine	the
shadow	color.	
				ImageLayer	img	=	doc.ObjectSoup[pid]
as	ImageLayer;

				PixMap	pm	=	img.PixMap;
				pm.ClearData();	//	this	will	remove
any	compression	settings
				pm.SetData(new	byte[]	{
(byte)shadowColor.Red,
(byte)shadowColor.Green,
(byte)shadowColor.Blue	});
				pm.Width	=	1;
				pm.Height	=	1;
				//	The	alpha	channel	is	held	as	a
separate	soft	mask	and	this	is	what	will	
				//	determine	the	shape	of	the	shadow.
If	required	we	blur	it	to	give	it	
				//	soft	edges.
				PixMap	alpha	=	pm.SMask;
				if	(gaussianBlurRadius	>	0)	{
						using	(EffectOperation	effect	=	new
EffectOperation("Gaussian	Blur"))	{
								effect.Parameters["Radius"].Value
=	gaussianBlurRadius;
								effect.Apply(alpha);
						}
				}
		}
		finally	{
				doc.Rect.String	=	rect;
				doc.Transform.String	=	transform;
				doc.Color.String	=	color;
				doc.Rendering.DotsPerInchX	=	dpiX;
				doc.Rendering.DotsPerInchY	=	dpiY;
				doc.Rendering.SaveAlpha	=	saveAlpha;
				doc.Layer	=	docLayer;
		}
}

[Visual	Basic]

Example

	

Sub	...
		Using	doc	As	New	Doc()
				'	light	blue	background
				doc.Color.SetCmyk(50,	0,	0,	0)
				doc.FillRect()
				doc.Color.SetRgb(0,	0,	0)
				doc.Rect.Inset(20,	20)
				doc.Rect.Pin	=	XRect.Corner.TopLeft
				doc.Rect.Height	=	doc.Rect.Height	/	5
				'	set	up	styles
				doc.TextStyle.Size	=	72
				Dim	shift	As	Double	=
doc.TextStyle.Size	*	0.1
				Dim	pink	As	New	XColor()
				pink.SetRgb(255,	128,	128)
				Dim	gray	As	New	XColor()
				gray.SetRgb(128,	128,	128)
				Dim	blue	As	New	XColor()
				blue.SetRgb(0,	0,	255)
				'	add	text	content
				AddDropShadow(doc,	doc.AddText("Sharp
Shadow"),	0,	shift,	-shift,	gray)
				doc.Rect.Move(0,	-doc.Rect.Height)
				AddDropShadow(doc,
doc.AddText("Blurred	Shadow"),	1,	shift,
-shift,	gray)
				doc.Rect.Move(0,	-doc.Rect.Height)
				AddDropShadow(doc,	doc.AddText("Pink
Shadow"),	1,	shift,	-shift,	pink)
				doc.Rect.Move(0,	-doc.Rect.Height)
				'	add	drawn	content	
				doc.Transform.Magnify(0.5,	0.5,	0,	0)
				doc.Transform.Translate(50,	0)
				Dim	star	As	String	=	"124	158	300	700
476	158	15	493	585	493	124	158"
				doc.Width	=	20
				doc.Color.[String]	=	"255	0	0"

	

				AddDropShadow(doc,	doc.AddPoly(star,
False),	3,	shift,	-shift,	blue)
				doc.Save("dropshadows.pdf")
		End	Using
End	Sub

Private	Sub	AddDropShadow(doc	As	Doc,	id
As	Integer,	gaussianBlurRadius	As	Double,
shadowHorizontalShift	As	Double,
shadowVerticalShift	As	Double,
shadowColor	As	XColor)
		Dim	rect	As	String	=	doc.Rect.[String]
		Dim	transform	As	String	=
doc.Transform.[String]
		Dim	color	As	String	=	doc.Color.
[String]
		Dim	dpiX	As	Double	=
doc.Rendering.DotsPerInchX
		Dim	dpiY	As	Double	=
doc.Rendering.DotsPerInchY
		Dim	saveAlpha	As	Boolean	=
doc.Rendering.SaveAlpha
		Dim	docLayer	As	Integer	=	doc.Layer
		Try
				doc.Rendering.DotsPerInch	=	72
				doc.Rendering.SaveAlpha	=	True
				Dim	layer	As	Layer	=
TryCast(doc.ObjectSoup(id),	Layer)
				Dim	page	As	Page	=
TryCast(doc.ObjectSoup(doc.Page),	Page)
				Dim	bm	As	Bitmap	=	page.GetBitmap(New
Layer()	{layer})
				doc.Transform.Reset()
				doc.Rect.[String]	=	layer.Rect.
[String]
				doc.Rect.Move(shadowHorizontalShift,
shadowVerticalShift)

				doc.Layer	=	docLayer	+	1
				Dim	pid	As	Integer	=
doc.AddImageBitmap(bm,	True)
				'	Here	we	set	the	base	image	to	be
one	pixel	of	an	appropriate	color.
				'	This	is	what	will	determine	the
shadow	color.	
				Dim	img	As	ImageLayer	=
TryCast(doc.ObjectSoup(pid),	ImageLayer)
				Dim	pm	As	PixMap	=	img.PixMap
				pm.ClearData()
				'	this	will	remove	any	compression
settings
				pm.SetData(New	Byte()
{CByte(shadowColor.Red),
CByte(shadowColor.Green),
CByte(shadowColor.Blue)})
				pm.Width	=	1
				pm.Height	=	1
				'	The	alpha	channel	is	held	as	a
separate	soft	mask	and	this	is	what	will	
				'	determine	the	shape	of	the	shadow.
If	required	we	blur	it	to	give	it	
				'	soft	edges.
				Dim	alpha	As	PixMap	=	pm.SMask
				If	gaussianBlurRadius	>	0	Then
						Using	effect	As	New
EffectOperation("Gaussian	Blur")
								effect.Parameters("Radius").Value
=	gaussianBlurRadius
								effect.Apply(alpha)
						End	Using
				End	If
		Finally
				doc.Rect.[String]	=	rect
				doc.Transform.[String]	=	transform
				doc.Color.[String]	=	color

				doc.Rendering.DotsPerInchX	=	dpiX
				doc.Rendering.DotsPerInchY	=	dpiY
				doc.Rendering.SaveAlpha	=	saveAlpha
				doc.Layer	=	docLayer
		End	Try
End	Sub

dropshadows.pdf

	

	

	

MakeFormXObject	Function 	 	

Makes	a	FormXObject	out	of	the	page.

	
	 	

Syntax 	

[C#]
FormXObject	MakeFormXObject()

[Visual	Basic]
Function	MakeFormXObject()	As
FormXObject

	

	 	

Params 	

Name Description
return The	newly	created	FormXObject.

	

	 	

Notes 	

Makes	a	FormXObject	out	of	the	page.

This	process	involves	copying	the	page	content
stream	to	a	new	Form	XObject	and	referencing
any	required	resources.	The	current	page	is	left
unaltered.

The	returned	FormXObject	will	have	been
added	to	the	same	ObjectSoup	as	contains	the
Page.	The	returned	Form	XObject	can	then	be
added	to	other	pages	using	methods	such	as
AddXObject.

	 	

	

	

This	example	shows	how	to	take	a	page,	convert	it
into	a	separate	drawing	object	and	then	draw	it,
scaled,	onto	the	page	it	came	from.

[C#]
using	(Doc	doc	=	new	Doc())	{
		doc.Read("HyperX.pdf");
		Page	page1	=
doc.ObjectSoup[doc.Page]	as	Page;
		FormXObject	form	=
page1.MakeFormXObject();
		doc.Transform.Magnify(0.5,	0.5,	0,
0);
		doc.Page	=	doc.AddPage();
		Page	page2	=
doc.ObjectSoup[doc.Page]	as	Page;
		string	name	=
page2.AddResource(form,	"XObject",
"Iabc");
		//	Here	we	create	our	own	layer	for
the	purposes	of	the	demonstration.
		//	However	a	simpler	approach	would
be	to	use	Doc.AddXObject.
		StreamObject	layer	=	new
StreamObject(doc.ObjectSoup);
		layer.SetText(String.Format("q	{0}
cm	/{1}	Do	Q	",
doc.Transform.ToString(),	name));
		page2.AddLayer(layer);
		doc.Save("exampleformxobject.pdf");
}

Example 	

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				doc.Read("HyperX.pdf")
				Dim	page1	As	Page	=
TryCast(doc.ObjectSoup(doc.Page),
Page)
				Dim	form	As	FormXObject	=
page1.MakeFormXObject()
				doc.Transform.Magnify(0.5,	0.5,	0,
0)
				doc.Page	=	doc.AddPage()
				Dim	page2	As	Page	=
TryCast(doc.ObjectSoup(doc.Page),
Page)
				Dim	name	As	String	=
page2.AddResource(form,	"XObject",
"Iabc")
				'	Here	we	create	our	own	layer	for
the	purposes	of	the	demonstration.
				'	However	a	simpler	approach	would
be	to	use	Doc.AddXObject.
				Dim	layer	As	New
StreamObject(doc.ObjectSoup)
				layer.SetText([String].Format("q
{0}	cm	/{1}	Do	Q	",
doc.Transform.ToString(),	name))
				page2.AddLayer(layer)
				doc.Save("exampleformxobject.pdf")
		End	Using
End	Sub

	 	

exampleformxobject.pdf	[Page	1]

exampleformxobject.pdf	[Page	2]

	

	

	

StampFormXObjects	Function 	 	

Removes	all	Form	XObjects	from	the	page	by
embedding	them	into	the	page	content

	

	 	

Syntax 	

[C#]
int	StampFormXObjects(bool	force)

[Visual	Basic]
Function	StampFormXObjects(force
As	Boolean)	As	Integer

	

	 	

Params 	

Name Description

force
Whether	to	stamp	FormXObjects	that
may	cause	a	change	in	the	page
appearance.

return The	number	of	FormXObjects	removed
from	the	page.

	

	 	

Removes	all	Form	XObjects	from	the	page	by
embedding	them	into	the	content.

Most	Form	XObjects	can	be	embedded	in	the
page	with	no	difference	in	page	appearance.
However	Form	XObjects	such	as	transparency
groups	contain	structures	which	cannot	be

Notes 	

represented	any	other	way.	These	structures
are	uncommon	in	most	documents	but	they	do
occur.

In	this	situation	you	need	to	decide	whether	a
change	in	page	appearance	is	acceptable	and
that	the	objects	should	be	forcibly	embedded.
The	alternative	is	to	skip	these	objects	and
embed	only	those	that	will	not	affect	the	page
appearance.

	

	 	

Example 	
None.

	
	 	

	

	

ArtBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No The	ArtBox	for
the	page

	

	 	

Notes 	

The	ArtBox	defines	the	extent	of	meaningful	content
on	this	page.

These	boundaries	are	always	defined	directly	on	the
Page	object.	If	no	property	has	been	defined	then
this	property	will	be	null	and	the	effective	value	is
assumed	to	be	that	of	the	CropBox.

Note	that,	as	with	all	objects	in	this	namespace,	this
property	is	measured	in	points	in	the	native	PDF
coordinate	space.	It	is	unaffected	by	the	Doc.Units	or
Doc.TopDown	properties.

	

	 	

Example 	
None.

	
	 	

	

	

BleedBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No The	BleedBox
for	the	page

	

	 	

Notes 	

The	BleedBox	defines	the	region	to	which	the
contents	of	the	page	shall	be	clipped	when	rendered
in	a	production	environment.

These	boundaries	are	always	defined	directly	on	the
Page	object.	If	no	property	has	been	defined	then
this	property	will	be	null	and	the	effective	value	is
assumed	to	be	that	of	the	CropBox.

Note	that,	as	with	all	objects	in	this	namespace,	this
property	is	measured	in	points	in	the	native	PDF
coordinate	space.	It	is	unaffected	by	the	Doc.Units	or
Doc.TopDown	properties.

	

	 	

Example 	
None.

	
	 	

	

	

CropBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No The	CropBox
for	the	page

	may	throw	NullReferenceException()

	

	 	

Notes 	

The	CropBox	for	the	page.

The	CropBox	defines	the	visible	part	of	the	physical
medium	on	which	the	page	may	be	displayed	or
printed.	This	is	what	you	see	as	the	boundary	of	the
page	when	you	view	a	document	using	Acrobat
Reader.

These	boundaries	may	be	defined	directly	on	the
Page	object	or	they	may	be	inherited	from	a	parent
Pages	object.

The	CropBox	is	optional	and	if	this	property	is	null	it
is	implicitly	assumed	to	be	the	same	as	the
MediaBox.

Assigning	a	new	value	to	this	property	will	change
the	property	for	the	current	Page	rather	than	any
Pages	object	from	which	the	value	may	have	been
inherited.	In	this	way	the	property	exhibits	a	copy-on- 	 	

write	behavior.

Attempting	to	assign	a	null	value	to	this	property	will
result	in	a	NullReferenceException	being	thrown.
This	is	because	the	CropBox	may	be	inherited	from	a
parent	page	and	thus	removing	the	CropBox	from	the
current	page	may	simply	result	in	it	being	inherited
from	another.	This	is	unusual	and	counterintuitive
behavior	and	can	result	in	subtle	bugs	related	to
specific	documents.	As	such,	if	you	want	to	clear	this
property	you	should	assign	it	the	value	of	the
MediaBox.

Note	that,	as	with	all	objects	in	this	namespace,	this
property	is	measured	in	points	in	the	native	PDF
coordinate	space.	It	is	unaffected	by	the	Doc.Units	or
Doc.TopDown	properties.

	

Example 	
None.

	
	 	

	

	

MediaBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No The	MediaBox
for	the	page

	may	throw	NullReferenceException()

	

	 	

Notes 	

The	MediaBox	defines	the	boundaries	of	the	physical
medium	on	which	the	page	may	be	displayed	or
printed.	This	may	include	bleed	areas	or	printing
marks	and	also	parts	of	the	medium	on	which
printing	cannot	take	place	because	of	physicsal
limitations	of	the	output	technology.	Any	PDF	drawing
outside	the	MediaBox	can	be	safely	ignored.

These	boundaries	may	be	defined	directly	on	the
Page	object	or	they	may	be	inherited	from	a	parent
Pages	object.

A	MediaBox	is	mandatory	for	all	pages	so	this
property	should	never	be	null.

Assigning	a	new	value	to	this	property	will	change
the	property	for	the	current	Page	rather	than	any
Pages	object	from	which	the	value	may	have	been
inherited.	In	this	way	the	property	exhibits	a	copy-on-
write	behavior.

	 	

Attempting	to	assign	a	null	value	to	this	property	will
result	in	a	NullReferenceException	being	thrown.

Note	that,	as	with	all	objects	in	this	namespace,	this
property	is	measured	in	points	in	the	native	PDF
coordinate	space.	It	is	unaffected	by	the	Doc.Units	or
Doc.TopDown	properties.

	

Example 	
None.

	
	 	

	

	

PageNumber	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

		n/a Yes
The	number	of
the	page	in	the
document.

	

	 	

Notes 	

This	property	holds	the	current	Page	Number.

The	PageNumber	indicates	the	page	using	an	index
ranging	between	one	and	the	Doc.PageCount.

	

	 	

Example 	 None. 	 	

	

	

Parent	Property 	 	

	

Type Default ReadOnly Description

[C#]	Pages

[Visual	Basic]
Pages

	n/a	 Yes The	parent	of
this	page.

	

	 	

Notes 	
The	parent	Pages	object	for	this	page.

	
	 	

Example 	
None.

	
	 	

	

	

Rotation	Property

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 No The	number	of	degrees	to
rotate	the	page	before	display.

	

Notes 	

The	number	of	degrees	clockwise	to	rotate	the	page	before	display.

The	values	0	and	180	indicate	portrait	orientation.	The	values	90
and	270	indicate	landscape	orientation.

This	value	should	be	a	multiple	of	90.

	

This	example	shows	how	to	use	the	Rotation	property	to	determine	how
to	add	a	PDF	page	-	which	may	be	rotated	-	to	a	portrait	PDF	page.

[C#]
using(Doc	doc	=	new	Doc(),	src	=	new	Doc())	{
		src.Read("landscape.pdf");
		int	rotation	=
((Page)src.ObjectSoup[src.Page]).Rotation;
		bool	landscape	=	src.MediaBox.Width	>
src.MediaBox.Height;
		doc.Page	=	doc.AddPage();		//	output	is	always	in
portrait

		if(landscape){
				switch(rotation)	{
				default:
				case	90:
						doc.Transform.Rotate(270,	0,	0);
						doc.Transform.Translate(0,
doc.MediaBox.Height);
						break;
				case	180:
				case	270:
						doc.Transform.Rotate(90,	0,	0);
						doc.Transform.Translate(doc.MediaBox.Width,	0);
						break;
				}
				doc.Rect.SetRect(0,	0,	doc.MediaBox.Height,
doc.MediaBox.Width);
		}	else	{
				switch(rotation)	{
				case	90:
				case	180:
						doc.Transform.Rotate(180,	0,	0);
						doc.Transform.Translate(doc.MediaBox.Width,
doc.MediaBox.Height);
						break;
				}
		}
		doc.AddImageDoc(src,	1,	null);
		doc.Save("addtoportrait.pdf");
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc(),	src	As	New	Doc()
				src.Read("landscape.pdf")
				Dim	rotation	As	Integer	=
((Page)src.ObjectSoup(src.Page)).Rotation

Example

	

				'	output	is	always	in	portrait
				If	landscape	Then
						Select	Case	rotate
								Case	Else,	90
										doc.Transform.Rotate(270,	0,	0)
										doc.Transform.Translate(0,
doc.MediaBox.Height)
										Exit	Select
								Case	180,	270
										doc.Transform.Rotate(90,	0,	0)
										doc.Transform.Translate(doc.MediaBox.Width,
0)
										Exit	Select
						End	Select
						doc.Rect.SetRect(0,	0,	doc.MediaBox.Height,
doc.MediaBox.Width)
				Else
						Select	Case	rotate
								Case	90,	180
										doc.Transform.Rotate(180,	0,	0)
										doc.Transform.Translate(doc.MediaBox.Width,
doc.MediaBox.Height)
										Exit	Select
						End	Select
				End	If
				doc.AddImageDoc(src,	1,	Nothing)
				doc.Save("addtoportrait.pdf")
		End	Using
End	Sub

landscape.pdf

addtoportrait.pdf

	

	

	

Thumbnail	Property 	

	

Type Default
Value

Read
Only Description

[C#]	PixMap

[Visual	Basic]
PixMap

n/a No The	Thumbnail	for
the	page

	

	

Notes 	

Each	page	can	have	a	thumbnail	image	for	quick	preview
purposes.	This	property	allows	to	access	such	a	thumbnail
if	it	exists,	or	to	assign	such	a	thumbnail	to	a	page	if	it	does
not.

	

	

This	example	shows	how	to	create	and	embed	thumbnails	in	a
PDF	document.

[C#]
using	(Doc	doc	=	new	Doc(),	srcDoc	=	new	Doc())
{
		doc.Read("spaceshuttle.pdf");
		doc.Rendering.DotsPerInch	=	18;
		Page[]	pages	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll();
		foreach	(Page	page	in	pages)	{
				doc.Page	=	page.ID;
				using	(XImage	xi	=

Example
	

XImage.FromData(doc.Rendering.GetData(".jpg"),
null))
						page.Thumbnail	=
PixMap.FromXImage(doc.ObjectSoup,	xi);
		}
		doc.Save("embedthumbnails.pdf");
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc(),	srcDoc	As	New	Doc()
				doc.Read("spaceshuttle.pdf")
				doc.Rendering.DotsPerInch	=	18
				Dim	pages	As	Page()	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll()
				For	Each	page	As	Page	In	pages
						doc.Page	=	page.ID
						Using	xi	As	XImage	=
XImage.FromData(doc.Rendering.GetData(".jpg"),
Nothing)
								page.Thumbnail	=
PixMap.FromXImage(doc.ObjectSoup,	xi)
						End	Using
				Next
				doc.Save("embedthumbnails.pdf")
		End	Using
End	Sub

	

	

	

TrimBox	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	XRect

[Visual	Basic]
XRect

n/a No The	TrimBox
for	the	page

	

	 	

Notes 	

The	TrimBox	defines	the	intended	boundaries	of	the
page	after	trimming.

These	boundaries	are	always	defined	directly	on	the
Page	object.	If	no	property	has	been	defined	then
this	property	will	be	null	and	the	effective	value	is
assumed	to	be	that	of	the	CropBox.

Note	that,	as	with	all	objects	in	this	namespace,	this
property	is	measured	in	points	in	the	native	PDF
coordinate	space.	It	is	unaffected	by	the	Doc.Units	or
Doc.TopDown	properties.

	

	 	

Example 	
None.

	
	 	

	

	

GetPage	Function 	 	

Performs	a	fast	lookup	to	retrieve	a	particular
Page	from	this	node	tree

	

	 	

Syntax 	

[C#]
Page	GetPage(int	page)

[Visual	Basic]
Function	GetPage(Integer	page)	As
Page

	

	 	

Params 	

Name Description
page The	page	number	-	a	one	based	index

returns The	specified	Page	object	or	null	ifone	could	not	be	found.

	

	 	

Notes 	

Performs	a	fast	lookup	to	retrieve	a	particular
Page	from	this	node	tree.

The	page	is	specified	in	terms	of	the	index	of
the	page	within	the	tree.	This	is	a	one-based
index	within	the	current	Pages	node.	Since	a
Pages	node	relates	to	only	a	portion	of	a	PDF
document,	the	page	number	within	the	Pages
node	is	offset	from	the	page	number	within	the

	 	

document.

	

Example 	
None.

	
	 	

	

	

GetPageArray	Function 	 	

Gets	all	the	Page	objects	immediately	under
this	node.

	

	 	

Syntax 	

[C#]
Page[]	GetPageArray()

[Visual	Basic]
Function	GetPageArray()	As	Page()

	

	 	

Params 	

Name Description
return An	array	of	Page	objects.

	

	 	

Notes 	

Gets	all	the	Page	objects	under	this	node.

Only	immediate	children	are	returned.	Any
Pages	objects	are	returned	as	null	Page
objects.

For	an	array	that	includes	descendents	see
GetPageArrayAll.

	

	 	

Example
	 None.

	

	 	

	

	

GetPageArrayAll	Function 	 	

Gets	all	the	Page	objects	under	this	node	and
descendents	of	this	node.

	

	 	

Syntax 	

[C#]
Page[]	GetPageArrayAll()

[Visual	Basic]
Function	GetPageArrayAll()	As
Page()

	

	 	

Params 	

Name Description
return An	array	of	Page	objects.

	

	 	

Notes 	

Gets	all	the	Page	objects	under	this	node	and
descendents	of	this	node.	The	pages	are
returned	in	order	of	page	number.	The	Page.ID
can	be	assigned	directly	to	the	Doc.Page
property	to	set	the	focus	to	a	particular	page.
For	large	or	badly	structured	documents	it	is
likely	to	be	faster	to	use	this	type	of	operation
than	it	is	to	repeatedly	access	the
Doc.PageNumber	property.

For	an	array	of	the	immediate	children	of	this

	 	

node	see	GetPageArray.

	

Example 	
None.

	
	 	

	

	

Recolor	Function 	 	

Converts	the	pages	from	one	color	space	to
another.

	

	 	

Syntax 	

[C#]
void	Recolor(ColorSpace	space,
bool	convertAnnotations)	
void	Recolor(ColorSpace	space,
bool	convertAnnotations,	out
PixMap[]	recoloredPixMaps)	

[Visual	Basic]
Sub	Recolor(space	As	ColorSpace,
convertAnnotations	As	Boolean)
Sub	Recolor(space	As	ColorSpace,
convertAnnotations	As	Boolean,
<Out>	ByRef	recoloredPixMaps	As
PixMap())

	may	throw	Exception()

	

	 	

Params 	

Name Description

space The	destination	color
space.

convertAnnotations
Whether	to	convert	the
color	space	of	annotation
appearance	streams. 	 	

recoloredPixMaps All	the	PixMaps	which
were	recolored	as	a	result
of	the	call.

	

Notes 	

Converts	the	pages	from	one	color	space	to
another.

This	method	calls	the	Page.Recolor	method	on
all	Page	objects	within	this	group	of	pages.

	

	 	

Example 	

None.

	

	

	 	

	

	

Count	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
visible	pages
under	this	node.

	

	 	

Notes 	
The	number	of	visible	pages	under	this	node.

	
	 	

Example 	
None.

	
	 	

	

	

Parent	Property 	 	

	

Type Default ReadOnly Description

[C#]	Pages

[Visual	Basic]
Pages

	n/a	 Yes The	parent	of
this	node.

	

	 	

Notes 	
The	parent	Pages	object	for	this	node.

	
	 	

Example 	
None.

	
	 	

	

	

FromXImage	Function 	 	

PixMap	static	constructor

	
	 	

Syntax 	

[C#]
static	PixMap
FromXImage(ObjectSoup	soup,
XImage	image)

[Visual	Basic]
Shared	Function	FromXImage(soup
As	ObjectSoup,	image	As	XImage)
As	PixMap

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	PixMap.

image The	XImage	from	which	the	PixMap
should	be	created.

	

	 	

Notes 	

This	method	allows	you	to	create	a	PixMap
directly	from	an	XImage	object.

The	PixMap	that	is	created	exists	within	the
current	Doc.Soup	but	is	not	linked	into	any
pages. 	 	

To	link	it	into	a	page	t	needs	to	be	added	as	a
resource	and	then	drawn	from	the	content
stream	of	the	page.

	

Example 	
None.

	
	 	

	

	

CompressCcitt	Function 	 	

Compresses	the	image	using	CCITT
compression.

	

	 	

Syntax 	

[C#]
void	CompressCcitt()

[Visual	Basic]
Sub	CompressCcitt()

	may	throw	Exception()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Compresses	the	image	using	CCITT
compression.

CCITT	compression	can	only	be	used	on	black
and	white	images.	It	is	optimized	for	the
lossless	compression	of	scanned	documents
and	faxes.

If	the	values	of	both	the	BitsPerComponent	and
the	Components	is	one	then	the	PixMap	can	be

	 	

compressed	using	this	method.	If	not	then
calling	this	method	will	generate	an	exception.

	

Example 	
None.

	
	 	

	

	

CompressJbig2	Function 	 	

Compresses	the	image	using	JBIG2
compression.

	

	 	

Syntax 	

[C#]
void	CompressJbig2()

[Visual	Basic]
Sub	CompressJbig2()

	may	throw	Exception()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Compresses	the	image	using	JBIG2
compression.

JBIG2	compression	can	only	be	used	on
monochrome	-	typically	black	and	white	-
images.	It	offers	high	compression	levels	for
images	like	scanned	documents	which	contain
repeating	patterns.

	

	 	

Example 	
None.

	
	 	

	

	

CompressJpeg	Function 	 	

Compresses	the	image	using	JPEG
compression.

	

	 	

Syntax 	

[C#]
void	CompressJpeg(int	quality)

[Visual	Basic]
Sub	CompressJpeg(quality	As
Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description

quality The	quality	of	compression	to	use	(0	to100).

	

	 	

Compresses	the	image	using	JPEG
compression.

JPEG	compression	can	be	used	on	RGB,
Grayscale	or	CMYK	images.	It	offers	high
compression	levels	for	continuous	tone	images
like	photographs.	However	it	is	a	lossy	method
which	means	that	the	quality	of	the	compressed

Notes 	 image	will	not	be	as	good	as	the	uncompressed
image.

The	quality	of	the	compression	can	range	from
zero	(lowest	quality,	highest	compression)	to
100	(highest	quality,	lowest	compression).	A
good	generic	value	is	75.

	

	 	

Example 	
See	the	Recolor	function.

	
	 	

	

	

CompressJpx	Function 	 	

Compresses	the	image	using	JPEG	2000
compression.

	

	 	

Syntax 	

[C#]
void	CompressJpx(int	quality)

[Visual	Basic]
Sub	CompressJpx(quality	As
Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description

quality The	quality	of	compression	to	use	(0	to100).

	

	 	

Compresses	the	image	using	JPEG	2000
compression.

JPEG	2000	compression	can	be	used	on	RGB,
Grayscale	or	CMYK	images.	It	offers	high
compression	levels	for	continuous	tone	images
like	photographs.	However	it	is	a	lossy	method
which	means	that	the	quality	of	the	compressed

Notes 	 image	will	not	be	as	good	as	the	uncompressed
image.

The	quality	of	the	compression	can	range	from
zero	(lowest	quality,	highest	compression)	to
100	(lossless	quality,	lowest	compression).	A
good	generic	value	is	75.

	

	 	

Example 	
None.

	
	 	

	

	

Decompress	Function 	 	

Decompress	the	data	in	the	stream	using	on-
the-fly	resizing

	

	 	

Syntax 	

[C#]
bool	Decompress(int	width,	int
height)

[Visual	Basic]
Function	Decompress(width	As
Integer,	height	As	Integer)	As
Boolean

	

	 	

Params 	

Name Description
width The	desired	final	width.
height The	desired	final	height

return Whether	the	data	was	decompressed
correctly.

	

	 	

Decompress	the	data	in	the	stream	using	on-
the-fly	resizing	of	the	image.	This	type	of	scaling
is	fast	and	memory	efficient	but	may	change	the
depth	of	the	image.	Only	some	compression
types	support	on-the-fly	resizing.

Notes 	 As	such	you	should	always	check	the
dimensions	of	the	image	after	calling	this
method.	Do	not	assume	that	simply	because
the	image	has	decompressed	correctly	that	it
has	also	been	resized.

	

	 	

Example 	
None.

	
	 	

	

	

Flip	Function 	 	

Flip	the	image	horizontally	or	vertically

	
	 	

Syntax 	

[C#]
void	Flip(bool	horizontal,	bool
vertical)

[Visual	Basic]
Sub	Flip(horizontal	As	Boolean,
vertical	As	Boolean)

	

	 	

Params 	

Name Description

horizontal Whether	to	flip	the	image
horizontally.

vertical Whether	to	flip	the	image	vertically

	

	 	

This	function	flips	the	image	horizontally	or
vertically	or	both.	Flipping	both	horizontally	and
vertically	is	equivalent	to	a	180	degree	rotation.

An	image	may	have	an	associated	bit	mask	or
soft	(alpha)	mask.	If	this	is	the	case	the
associated	mask	will	be	transformed	as	well.

Flipping	horizontally	will	mean	that	pixels	that

Notes 	

were	on	the	far	right	of	the	image	will	be	moved
to	the	far	left	and	pixels	on	the	left	will	be	moved
to	the	right.

Flipping	horizontally	will	mean	that	pixels	that
were	on	the	top	of	the	image	will	be	moved	to
the	bottom	and	pixels	that	were	on	the	bottom
will	be	moved	to	the	top.

After	the	Bitmap	has	been	set	the	PixMap	will
be	uncompressed.	You	may	wish	to	compress	it
using	a	call	like	CompressJpeg	or
CompressFlate.

	

	 	

Example 	
None.

	
	 	

	

	

GetBitmap	Function

Get	the	PixMap	image	as	a	System.Drawing.Bitmap.

	

Syntax 	

[C#]
System.Drawing.Bitmap	GetBitmap()

[Visual	Basic]
Function	GetBitmap()	As
System.Drawing.Bitmap

	may	throw	Exception()

	

Params 	

Name Description
return The	Bitmap	containing	the	image.

	

Use	this	method	to	get	the	PixMap	image	as	a
System.Drawing.Bitmap.

You	can	then	use	this	Bitmap	for	drawing	to	screen	or	for
manipulation	using	System.Drawing	routines.

ABCpdf	tries	to	make	a	literal	copy	of	the	image	contained
in	the	PixMap,	both	to	minimize	color	shifts	and	also	for
speed.

Notes 	

However	because	PDF	images	can	contain	many	color
spaces	and	bit	depths	that	are	unsupported	by
System.Drawing	it	may	be	necessary	to	change	the	color
space	or	bit	depth	of	the	image.

In	addition	there	are	certain	parameters	such	as	decode
arrays	which	may	be	used	to	modify	the	image	before
display.	This	method	returns	the	image	content	as	literally
as	possible	which	means	decode	arrays	and	alpha
channels	are	not	included.

Please	note	that	some	formats	of	Bitmaps	are	not	usable
for	certain	operations.	In	particular,	indexed	color	bitmaps
cannot	be	drawn	on	using	the	Graphics.FromImage
method.	For	this	reason	if	you	are	going	to	wish	to	draw	on
the	returned	Bitmap	you	should	check	the	pixel	format
before	use.

	

This	example	shows	how	to	extract	all	the	page	thumbnails	(if
they	exist)	from	a	document.	See	also	the	ContentExtract
example	project	for	another	example.

[C#]
using	(Doc	doc	=	new	Doc(),	srcDoc	=	new	Doc())
{
		doc.Read("embedthumbnails.pdf");
		doc.Rendering.DotsPerInch	=	18;
		Page[]	pages	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll();
		foreach	(Page	page	in	pages)	{
				if	(page.Thumbnail	==	null)
						continue;
				string	path	=	"embedthumbnails"	+
page.Thumbnail.ID.ToString(+	".jpg");
				using	(Bitmap	bm	=

Example
	

page.Thumbnail.GetBitmap())	{
						bm.Save(path);
				}
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc(),	srcDoc	As	New	Doc()
				doc.Read("embedthumbnails.pdf")
				doc.Rendering.DotsPerInch	=	18
				Dim	pages	As	Page()	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll()
				For	Each	page	As	Page	In	pages
						If	page.Thumbnail	Is	Nothing	Then
								Continue	For
						End	If
						Dim	path	As	String	=	"embedthumbnails"	+
page.Thumbnail.ID.ToString(+	".jpg")
						Using	bm	As	Bitmap	=
page.Thumbnail.GetBitmap()
								bm.Save(path)
						End	Using
				Next
		End	Using
End	Sub

embedthumbnails.pdf	-	[Page	1] embedthumbnails.pdf	-	[Page	2]

embedthumbnails.pdf	-	[Page	3] embedthumbnails.pdf	-	[Page	4]

	

	

	

	

Realize	Function 	 	

Converts	the	image	to	component	color.

	
	 	

Syntax 	

[C#]
void	Realize()

[Visual	Basic]
Sub	Realize()

	may	throw	Exception()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Converts	the	image	from	indexed	color	to
component	color.

The	process	of	converting	an	indexed	color
image	into	a	component	color	image,	will	result
in	any	chromakeys	being	converted	to	masks
and	the	elimination	of	any	decode	arrays.

The	Indexed	color	space	is	used	for	palletized
color.	Each	item	in	the	palette	is	defined	in
terms	of	a	base	color	space	such	as 	 	

DeviceRGB.	Palettes	can	hold	up	to	256
entries.

After	an	indexed	color	image	has	been	realized
it	is	no	longer	compressed.	You	may	wish	to
compress	it	using	the	StreamObject.Compress
method.

	

Example 	
See	the	Resize	function.

	
	 	

	

	

Recolor	Function

Converts	the	image	from	one	color	space	to	another.

	

Syntax 	

[C#]
void	Recolor(ColorSpace	space)
void	Recolor(ColorSpace	space,	RenderingIntent
intent)	

[Visual	Basic]
Sub	Recolor(space	As	ColorSpace)
Sub	Recolor(space	As	ColorSpace,	intent	As
RenderingIntent)

	may	throw	Exception()

	

Params 	

Name Description
space The	destination	color	space.

intent The	rendering	intent	enumeration.	If	no	intent	is	provided	
default	for	the	image	(typically	RelativeColorimetric)	is	

	

Converts	the	image	from	one	color	space	to	another.

Calling	this	method	results	in	the	pixels	within	the	PixMap	image
being	mapped	from	the	current	color	space	to	the	new	color	space.

Notes
	

The	new	ColorSpace	is	then	assigned	to	the	PixMap	and	(if	it	is	not
already	there)	added	to	the	PixMap	ObjectSoup.

Colors	can	only	be	sensibly	mapped	from	one	color	space	to	
if	we	know	something	about	the	characteristics	of	the	color	
your	color	spaces	do	not	contain	this	information	(e.g.	if	they	are
device	color	spaces)	then	ABCpdf	will	use	a	default	color	profile.

An	exception	will	be	thrown	if	the	operation	is	not	possible.	
happen	if	the	PixMap	is	not	in	an	ObjectSoup	or	if	the	ColorSpace
object	is	in	some	way	invalid.

If	the	ImageMask	property	is	true	the	image	has	no	color	space	and	is
implicitly	black	and	white.	Image	masks	cannot	be	anything	other	than
black	and	white	so	trying	to	convert	an	image	mask	to	another	color
space	will	result	in	an	exception	being	raised.

The	rendering	intent	determines	how	out	of	gamut	colors	are	
The	following	options	are	available:

Perceptual
RelativeColorimetric
Saturation
AbsoluteColorimetric

The	perceptual	model	maps	the	entire	gamut	of	the	source	color
space	into	the	destination	one	and	is	good	for	photographic	type
images.	The	saturation	model	is	good	for	diagrams,	cartoons	or
posterized	images	where	distinctiveness	of	color	is	more	important
than	precise	color	fidelity.	The	colorimetric	methods	remap	only	
colors	which	are	out	of	gamut.	The	relative	one	keeps	the	color	values
the	same	while	allowing	the	brightness	to	vary.	The	absolute
colorimetric	method	uses	the	closest	color	at	the	gamut	boundary.

In	general	you	will	want	to	use	a	perceptual	intent	when	mapping	
a	large	gamut	color	space	(e.g.	RGB)	to	a	narrow	one	(e.g.	CMYK).	
general	you	will	want	to	use	a	relative	colorimetric	intent	when
mapping	between	similar	color	spaces	(e.g.	RGB	to	RGB	or	CMYK	to
CMYK).

After	the	PixMap	has	been	Recolored	it	is	no	longer	compressed	
will	have	a	BitsPerComponent	of	eight	or	sixteen.	You	may	wish	to
compress	it	using	the	StreamObject.Compress	method.

	

Here	we	change	all	the	images	in	a	document	to	CMYK.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"));
List<PixMap>	theList	=	new	List<PixMap>();
//	find	all	the	PixMap	objects	in	the	soup
foreach	(IndirectObject	obj	in	theDoc.ObjectSoup)	
		PixMap	p	=	obj	as	PixMap;
		if	(p	!=	null)
				theList.Add(p);
}
//	add	our	destination	color	space
ColorSpace	cs	=	new	ColorSpace(theDoc.ObjectSoup);
cs.IccProfile	=	new	IccProfile(theDoc.ObjectSoup,
Server.MapPath("../Rez/abccmyk.icc"));
//	convert	images	to	our	color	space
for	(int	i	=	0;	i	<	theList.Count;	i++)	{
		PixMap	p	=	theList[i];
		p.Recolor(cs,	RenderingIntent.Perceptual);
		p.CompressJpeg(75);
}
theDoc.Save(Server.MapPath("pixmaprecolor.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	New	Doc()
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"))
Dim	theList	As	New	List(Of	PixMap)

Example

	

'	find	all	the	PixMap	objects	in	the	soup
Dim	obj	As	IndirectObject
Dim	p	As	PixMap
For	Each	obj	In	theDoc.ObjectSoup
		p	=	TryCast(obj,	PixMap)
		If	p	IsNot	Nothing	Then
				theList.Add(p)
		End	If
Next	'	add	our	destination	color	space
Dim	cs	As	New	ColorSpace(theDoc.ObjectSoup)
cs.IccProfile	=	New	IccProfile(theDoc.ObjectSoup,
Server.MapPath("../Rez/abccmyk.icc"))
'	convert	images	to	our	color	space
For	i	As	Integer	=	0	To	theList.Count	-	1
		p	=	theList(i)
		p.Recolor(cs,	RenderingIntent.Perceptual)
		p.CompressJpeg(75)
Next
theDoc.Save(Server.MapPath("pixmaprecolor.pdf"))
theDoc.Clear()

spaceshuttle.pdf	[page	1]

pixmaprecolor.pdf	[page	1]

	

	

	

Resample	Function 	 	

Changes	the	number	of	bits	per	color
component.

	

	 	

Syntax 	

[C#]
void	Resample(int
bitsPerComponent)

[Visual	Basic]
Sub	Resample(bitsPerComponent	As
Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description

bitsPerComponent The	number	of	bits	percolor	component.

	

	 	

Change	the	number	of	bits	per	color
component.

The	bit	depths	you	should	use	are	1,	2,	4,	8	or
16.	Other	values	are	not	supported	in	the	PDF
Specification.

Notes 	

Changing	this	property	for	Indexed	color	images
changes	the	precision	of	the	index	rather	than
of	the	color	components.	If	you	want	to	change
the	precision	of	the	components	you	need	to
Realize	the	PixMap	first.

Operations	like	Resize	operate	more	naturally
on	eight	and	sixteen	bit	images	-	producing
better	results,	faster,	using	less	memory.	So	if
you	will	be	resizing	and	also	moving	to	eight	or
sixteen	bit	depth	it	is	typically	better	to
Resample	before	calling	Resize.

After	this	method	is	called	the	image	may	no
longer	be	longer	compressed.	You	may	wish	to
compress	it	using	the	StreamObject.Compress
method.

	

	 	

Example 	
None.

	
	 	

	

	

Resize	Function

Resizes	the	image.

	

Syntax 	

[C#]
void	Resize(int	width,	int	height)
void	Resize(int	width,	int	height,	Interpolation
interpolation)	

[Visual	Basic]
Sub	Resize(width	As	Integer,	height	As	Integer)
Sub	Resize(width	As	Integer,	height	As	Integer,
interpolation	As	Interpolation)

	may	throw	Exception()

	

Params 	

Name Description
width The	destination	width	for	the	image.
height The	destination	height	for	the	image.

interpolation The	type	of	interpolation	to	be	used	when	resizing	theimage.	The	default	value	is	Auto.

	

Resizes	the	image	to	a	specified	width	and	height	using	a	specified
interpolation	method.

Notes 	

The	interpolation	parameter	should	be	viewed	as	a	request	rather
than	a	command	because	not	all	types	of	interpolation	can	be	used	
all	types	of	image.	If	the	method	you	specify	is	not	appropriate	
ABCpdf	will	automatically	select	a	suitable	alternative.

After	an	image	has	been	resized	it	is	no	longer	compressed.	You	
wish	to	compress	it	using	the	StreamObject.Compress	method.

The	Interpolation	enumeration	may	take	the	following	values:

Auto
NearestNeighbor
Linear
Cubic
Super
Lanczos

The	Auto	setting	allows	ABCpdf	to	automatically	choose	an
appropriate	interpolation	algorithm	given	the	type	of	image	and	the
type	of	scaling.	If	you	are	aiming	to	maximize	quality	this	is	the	setting
you	should	use.

The	nearest	neighbor	algorithm	is	the	fastest	but	also	the	lowest
quality	method.	It	simply	finds	the	nearest	pixel	in	the	source	
and	maps	it	through	to	the	destination	image.	However	it	is	
only	method	which	can	be	used	for	Indexed	color	images.

The	Linear,	Cubic	and	Lanzcos	methods	are	progressively	higher
quality	methods	based	around	a	weighted	average	of	pixels	from	the
source	image.	However	they	are	also	progressively	slower.	The
Lanzcos	function	used	is	the	three	lobed	variety.

The	Linear,	Cubic	and	Lanzcos	methods	use	weighted	averages	from
a	limited	number	of	pixels	in	the	source	image.	For	large	size
reductions	this	may	result	in	information	from	some	pixels	in	the
source	image	being	completely	discarded.	The	super	method	aims	to
work	around	this	issue	by	increasing	coverage	to	all	the	pixels	in	the
source	image.	It	only	works	if	an	image	is	being	reduced	in	both
height	and	width.

This	function	is	optimized	for	resizing	one,	three	and	four	component
images	at	precisions	of	eight	or	sixteen	bits	per	component.

	

Here	we	resize	all	the	images	in	a	document	to	a	quarter	of	their	
resolution.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"));
foreach	(IndirectObject	io	in	theDoc.ObjectSoup)	{
		if	(io	is	PixMap)	{
				PixMap	pm	=	(PixMap)io;
				pm.Realize();	//	eliminate	indexed	color	
				pm.Resize(pm.Width	/	4,	pm.Height	/	4);
		}
}
theDoc.Save(Server.MapPath("pixmapresize.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../Rez/spaceshuttle.pdf"))
Dim	io	As	IndirectObject
For	Each	io	in	theDoc.ObjectSoup
		If	TypeOf	io	Is	PixMap	Then
				Dim	pm	As	PixMap	=	CType(io,	PixMap)
				pm.Realize()	'	eliminate	indexed	color	images	
				pm.Resize(pm.Width	/	4,	pm.Height	/	4)
		End	If
Next
theDoc.Save(Server.MapPath("pixmapresize.pdf"))
theDoc.Clear()

Example
	

spaceshuttle.pdf	[page	1]

pixmapresize.pdf	[page	1]

	

	

	

Rotate	Function 	 	

Rotate	the	image	clockwise

	
	 	

Syntax 	

[C#]
void	Rotate(int	degrees)

[Visual	Basic]
Sub	Rotate(degrees	As	Integer)

	may	throw
ArgumentOutOfRangeException()

	

	 	

Params 	

Name Description

degrees
The	number	of	degrees	clockwise
that	the	image	should	be	rotated.
This	must	be	a	multiple	of	90.

	

	 	

This	function	rotates	the	PixMap	image
clockwise.	The	rotation	angle	must	be	a	multiple
of	90.	If	an	invalid	number	of	degrees	is
specified,	then	an
ArgumentOutOfRangeException	will	be	thrown.

An	image	may	have	an	associated	bit	mask	or
soft	(alpha)	mask.	If	this	is	the	case,	the

Notes 	

associated	mask	will	be	transformed	as	well.

When	a	PixMap	is	drawn	on	a	page,	it	is	scaled
to	fit	into	a	particular	location.	The	scaling	is
separate	from	the	PixMap	itself.	Rotating	by	90
or	270	degrees	will	swap	the	width	and	height	of
the	PixMap.	Because	the	scaling	of	drawn
copies	is	separate	from	the	PixMap	itself,	any
previously	drawn	instances	of	the	PixMap	may
appear	to	have	an	incorrect	aspect	ratio.

After	the	Bitmap	has	been	set,	the	PixMap	will
be	uncompressed.	You	may	wish	to	compress	it
using	a	call	like	CompressJpeg	or
CompressFlate.

	

	 	

Example 	
None.

	
	 	

	

	

Save	Function 	 	

Saves	the	PixMap	to	stream	attempting	to
preserve	resolution,	color	space	and	depth	as
far	as	the	output	format	allows

	

	 	

Syntax 	

[C#]
void	Save(string	path)
void	Save(Stream	stream,	string
name)

[Visual	Basic]
Sub	Save(path	As	String)
Sub	Save(stream	As	Stream,	name
As	String)

	

	 	

Params 	

Name Description
path The	destination	file	path.
stream The	destination	output	stream.

name A	dummy	file	name	used	to	determine
the	type	of	image	required.

	

	 	

Saves	the	PixMap	to	stream	attempting	to
preserve	resolution,	color	space	and	depth	as
far	as	the	output	format	allows.

Notes 	

The	output	format	is	specified	using	a	file
extension.	In	the	case	of	saving	to	file,	the
extension	is	taken	from	the	file	path.	In	the	case
of	saving	to	stream,	a	dummy	name	should	be
provided.

For	details	of	the	capabilities	of	output	formats,
see	the	XRendering.Save	method.

	

	 	

Example 	
None.

	
	 	

	

	

SetAlpha	Function

Sets	a	constant	alpha	value	(0-255)	for	this	image.

	

Syntax 	

[C#]
void	SetAlpha(double	alpha)

[Visual	Basic]
Sub	SetAlpha(alpha	As	Double)

	

Params 	

Name Description
alpha A	constant	alpha	value	to	assign	to	this	image.

	

Notes 	

Assigns	a	constant	alpha	transparency	to	the	PixMap.

The	alpha	value	should	range	from	0	(fully	transparent)	to	255
(fully	opaque).	Any	values	outside	this	range	will	result	in	the
alpha	channel	being	removed.

	

Here	we	add	an	image	without	transparency	and	then,	at	a	position
down	and	to	the	right,	with	50%	transparency.

[C#]

Example

	

Doc	theDoc	=	new	Doc();
theDoc.Rect.Pin	=	XRect.Corner.TopLeft;
theDoc.Rect.Magnify(0.5,	0.5);
string	thePath	=
Server.MapPath("../mypics/mypic.tif");
theDoc.AddImageFile(thePath,	1);
theDoc.Rect.Move(theDoc.Rect.Width,	-
theDoc.Rect.Height);
int	i	=	theDoc.AddImageFile(thePath,	1);
ImageLayer	im	=	(ImageLayer)theDoc.ObjectSoup[i];
im.PixMap.SetAlpha(128);
theDoc.Save(Server.MapPath("pixmapsetalpha.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Pin	=	XRect.Corner.TopLeft
theDoc.Rect.Magnify(0.5,	0.5)
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.tif")	
theDoc.AddImageFile(thePath,	1)
theDoc.Rect.Move(theDoc.Rect.Width,	-
theDoc.Rect.Height)
Dim	i	As	Integer	=	theDoc.AddImageFile(thePath,1)	
Dim	im	As	ImageLayer	=	CType(theDoc.ObjectSoup(i),
ImageLayer)
im.PixMap.SetAlpha(128)
theDoc.Save(Server.MapPath("pixmapsetalpha.pdf"))	
theDoc.Clear()

pixmapsetalpha.pdf

	

	

	

SetBitmap	Function 	 	

Set	the	content	of	the	object	as	a	Bitmap

	
	 	

Syntax 	

[C#]
void
SetBitmap(System.Drawing.Bitmap
bitmap,	bool	transparent)

[Visual	Basic]
Sub	SetBitmap(bitmap	As
System.Drawing.Bitmap,
transparent	As	Boolean)

	

	 	

Params 	

Name Description
bitmap The	Bitmap	containing	the	image.

transparent Whether	any	transparency
information	should	be	preserved.

	

	 	

Notes
	

Set	the	content	of	the	object	as	a
System.Drawing.Bitmap.

If	transparency	is	required,	the	PixMap	must	be
contained	within	an	ObjectSoup.

After	the	Bitmap	has	been	set,	the	PixMap	will
	 	

be	uncompressed.	You	may	wish	to	compress	it
using	a	call	like	CompressJpeg	or
CompressFlate.

	

Example 	 See	the	Doc.AddXObject	method.. 	 	

	

	

SetChromakey	Function

Sets	a	chromakey	transparent	color	for	this	image.

	

Syntax 	

[C#]
void	SetChromakey(string	chromakey)

[Visual	Basic]
Sub	SetChromakey(chromakey	As	String)

	

Params 	

Name Description
chromakey A	chromakey	string	to	assign	to	this	image.

	

Notes 	

This	allows	you	to	assign	a	transparent	color	or	color	range	to	
image.

You	need	to	specify	two	values	for	each	component	of	the	color.	
a	particular	pixel,	if	all	the	components	of	the	color	fall	within	the
specified	ranges,	then	the	pixel	will	not	be	displayed.

For	example,	to	make	pure	white	elements	of	an	RGB	transparent
you	might	specify,

doc.SetChromakey("255	255	255	255	255	255")

If	you	wanted	to	include	colors	which	were	off-white	you	might	

doc.SetChromakey("250	255	250	255	250	255")

This	function	is	equivalent	to	setting	the	PixMap	"/Mask"	entry	to	an
array	of	color	values.

	

Example
	

Here	we	add	an	image	over	the	top	of	a	green	background.	We	use	
chromakey	to	make	black	and	near-black	colors	transparent.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Inset(20,	20);
theDoc.Color.String	=	"0	255	0";
theDoc.FillRect();	
string	thePath	=
Server.MapPath("../mypics/mypic.tif");
int	i	=	theDoc.AddImageFile(thePath,	1);
ImageLayer	im	=	(ImageLayer)theDoc.ObjectSoup[i];
im.PixMap.SetChromakey("0	50	0	50	0	50");
theDoc.Save(Server.MapPath("pixmapsetchromakey.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Inset(20,	20)
theDoc.Color.String	=	"0	255	0"
theDoc.FillRect()	
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.tif")	
Dim	i	As	Integer	=	theDoc.AddImageFile(thePath,1)	
Dim	im	As	ImageLayer	=	CType(theDoc.ObjectSoup(i),
ImageLayer)
im.PixMap.SetChromakey("0	50	0	50	0	50")

theDoc.Save(Server.MapPath("pixmapsetchromakey.pdf"))	
theDoc.Clear()

pixmapsetchromakey.pdf

	

	

	

ToGrayscale	Function

Converts	the	image	to	grayscale.

	

Syntax 	

[C#]
void	ToGrayscale()

[Visual	Basic]
Sub	ToGrayscale()

	

Params 	

Name Description
none 	

	

Notes 	

This	allows	you	to	convert	an	image	to	grayscale.	It	can	be	useful
for	preparing	soft	masks.

This	function	is	a	convenience	method	for	this	common	operation.
A	practically	identical	effect	can	be	achieved	using	the	Recolor
method	followed	by	Compress.

	

Here	we	add	an	image	in	its	natural	color	space	and	then,	at	a	
down	and	to	the	right,	converted	to	grayscale.

Example

	

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Rect.Pin	=	XRect.Corner.TopLeft;
theDoc.Rect.Magnify(0.5,	0.5);
string	thePath	=
Server.MapPath("../mypics/mypic.tif");
theDoc.AddImageFile(thePath,	1);
theDoc.Rect.Move(theDoc.Rect.Width,	-
theDoc.Rect.Height);
int	i	=	theDoc.AddImageFile(thePath,	1);
ImageLayer	im	=	(ImageLayer)theDoc.ObjectSoup[i];
im.PixMap.ToGrayscale();
theDoc.Save(Server.MapPath("pixmaptograyscale.pdf"));
theDoc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Rect.Pin	=	XRect.Corner.TopLeft
theDoc.Rect.Magnify(0.5,	0.5)
Dim	thePath	As	String	=
Server.MapPath("../mypics/mypic.tif")	
theDoc.AddImageFile(thePath,	1)
theDoc.Rect.Move(theDoc.Rect.Width,	-
theDoc.Rect.Height)
Dim	i	As	Integer	=	theDoc.AddImageFile(thePath,1)	
Dim	im	As	ImageLayer	=	CType(theDoc.ObjectSoup(i),
ImageLayer)
im.PixMap.ToGrayscale()
theDoc.Save(Server.MapPath("pixmaptograyscale.pdf"))	
theDoc.Clear()

pixmaptograyscale.pdf

	

	

	

AutoFix	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	true No
Whether	to
automatically	fix
corrupt	images.

	

	 	

Notes 	

Some	corrupt	documents	can	contain	corrupt
images.	The	most	common	type	of	corruption	is	the
truncation	of	the	image	data.	However	most	of	the
time	it	is	better	to	use	the	image	data	that	exists
rather	than	throw	an	error.

If	the	AutoFix	property	is	set,	then	when	the	image	is
decompressed	it	will	be	checked.	If	it	is	found	that
the	data	has	been	truncated	then	extra	blank	data
will	be	added	onto	the	end.

Typically	such	an	image	will	appear	containing	black
content	at	the	bottom.	Depending	on	the	amount	of
truncation	in	the	original	data	there	will	be	varying
amounts	of	blank	space.

	

	 	

Example 	
None.

	
	 	

	

	

BitsPerComponent	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
bits	per	color
component.

	

	 	

Notes 	

The	number	of	bits	per	color	component.

This	property	can	take	the	value	1,	2,	4,	8	or	16.
Other	values	are	not	supported	in	the	PDF
Specification.

To	change	the	bits	per	component	of	an	image	use
the	Resample	method.

	

	 	

Example 	
None.

	
	 	

	

	

ColorSpace	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ColorSpace

[Visual	Basic]
ColorSpace

	n/a	 No The	ColorSpace
for	this	image.

	

	 	

Notes 	

The	ColorSpace	for	this	image.

Note	that	referencing	this	property	may	result	in	the
creation	of	a	color	space	if	one	does	not	already
exist.	So	you	should	avoid	querying	this	property
while	iterating	through	the	ObjectSoup.	If	you	do	so
and	an	object	is	created	then	it	will	invalidate	the
enumerator	and	cause	an	exception	to	be	raised.

Not	all	PixMaps	have	color	spaces.	For	example
image	masks	do	not	and	must	not	contain	a	color
space	atom;	they	are	implicitly	one	bit	grayscale.	In
this	case	the	ColorSpace	property	will	be	null.

In	most	cases	properties	which	you	might	like	to
reference	via	the	ColorSpace	can	be	referenced
directly	via	the	PixMap.	This	is	a	less	intrusive	way	of
obtaining	the	same	information.

Querying	the	value	of	this	property	will	never	raise	an
exception.

	 	

Assigning	a	value	to	this	property	changes	the	color
space	without	changing	the	raw	pixel	values	of	the
image.	You	might	wish	to	do	this	if	you	wanted	to
convert	-	say	-	a	DeviceRGB	to	a	CalRGB	color
space	or	a	DeviceGray	to	a	Separation	color	space.

The	number	of	components	in	the	two	color	spaces
should	be	the	same.	If	they	are	not	then	an	exception
will	be	thrown.

If	you	wish	to	convert	the	image	pixel	values	from
one	color	space	to	another	then	you	need	to	use	the
Recolor	method.

	

Example 	
None.

	
	 	

	

	

ColorSpaceType	Property 	 	

	

Type Default ReadOnly Description

[C#]	
ColorSpaceType

[Visual	Basic]
ColorSpaceType

	n/a	 Yes The	ColorSpace
for	this	image.

	

	 	

Notes 	

The	ColorSpaceType	for	this	image.

Referencing	this	property	has	a	number	of
advantages	over	referencing	the
PixMap.ColorSpace.ColorSpaceType	property.

Firstly	it	avoids	the	possibility	that	a	new	ColorSpace
object	will	need	to	be	created.

Secondly	it	takes	account	of	the	fact	that	certain
types	of	PixMap	(e.g.	ImageMasks)	do	not	have	a
ColorSpace.	In	these	cases	the	ColorSpaceType	is
implicit	in	the	definition	of	the	PixMap	and	needs	to
be	inferred	by	the	PixMap	itself.

	

	 	

Example 	
None.

	
	 	

	

	

Components	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	number	of
color
components	for
each	pixel.

	

	 	

Notes 	

The	number	of	color	components	for	each	pixel.

For	example	Grayscale	images	contain	one
component,	RGB	images	contain	three	and	CMYK
images	contain	four.

Referencing	this	property	has	a	number	of
advantages	over	referencing	the
PixMap.ColorSpace.Components	property.

Firstly	it	avoids	the	possibility	that	a	new	ColorSpace
object	will	need	to	be	created.

Secondly	it	takes	account	of	the	fact	that	certain
types	of	PixMap	(e.g.	ImageMasks)	do	not	have	a
ColorSpace.	In	these	cases	the	number	of
components	is	implicit	in	the	definition	of	the	PixMap
and	needs	to	be	inferred	by	the	PixMap	itself.

	

	 	

None.

Example
	 	 	 	

	

	

Height	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes The	height	of	the
image	in	pixels.

	

	 	

Notes 	
The	height	of	the	image	in	pixels.

	
	 	

Example 	
None.

	
	 	

	

	

ImageMask	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 Yes
Whether	this
image	is	a	one
bit	image	mask.

	

	 	

Notes 	
Whether	this	image	is	a	one	bit	image	mask.

	
	 	

Example 	
None.

	
	 	

	

	

Mask	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	PixMap

[Visual	Basic]
PixMap

n/a No

Any	one	bit
image	mask
associated	with
this	image

	

	 	

Notes 	

One-bit	masks	do	not	have	the	quality	of	soft	masks
but	they	are	more	compatible	with	older	viewing
software,	printer	RIPs	and	formats	like	PDF/A.

If	both	a	SMask	and	Mask	entry	are	specified,	then
the	SMask	will	take	priority.

	

	 	

Example 	
None.

	
	 	

	

	

Matte	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	ArrayAtom

[Visual	Basic]
ArrayAtom

n/a No
Any	matte
associated	with
this	soft	mask

	

	 	

Notes 	

The	matte	is	array	of	components	specifying	the
color	with	which	the	image	has	been	preblended.
The	number	of	items	in	the	array	is	equal	to	the
number	of	components.

	

	 	

Example 	
None.

	
	 	

	

	

SMask	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	PixMap

[Visual	Basic]
PixMap

n/a No
Any	soft	image
mask	associated
with	this	image

	

	 	

Notes 	

Soft	masks	are	higher	quality	than	one	bit	masks	but
are	less	compatible	with	older	viewing	software,
printer	RIPs	and	formats	like	PDF/A.

If	both	a	SMask	and	Mask	entry	are	specified,	then
the	SMask	will	take	priority.

	

	 	

Example 	
None.

	
	 	

	

	

Width	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes The	width	of	the
image	in	pixels.

	

	 	

Notes 	
The	width	of	the	image	in	pixels.

	
	 	

Example 	
None.

	
	 	

	

	

Commit	Function 	 	

Commit	a	previously	signed	signature	to	the
document.

	

	 	

Syntax 	

[C#]
void	Commit()

[Visual	Basic]
Sub	Commit()

	may	throw	Exception()

	

	 	

Params 	

Name Description
none 	

	

	 	

After	a	signature	is	signed,	it	needs	to	be
committed	to	the	document.

Normally,	this	is	done	when	you	save	the
document.	It	happens	invisibly	without	you
needing	to	do	anything.	However,	sometimes,
you	may	wish	to	commit	before	the	document	is
saved.	This	most	commonly	occurs	if	you	are
working	with	documents	containing	more	than
one	signature	field.

Notes 	

The	PDF	architecture	requires	that	a	document
be	incrementally	updated	each	time	a	signature
is	signed.	It	requires	this	so	that	a	PDF	viewer
can	show	what	changes	were	made	to	the
document	between	the	times	it	was	signed.	For
this	reason,	if	you	are	signing	multiple	fields,
each	signature	(bar	the	last)	needs	to	be	signed
and	then	committed	in	turn.	The	last	signature
does	not	need	to	be	committed	because	this	is
implicitly	done	by	the	final	save.

A	Commit	operation	involves	an	implicit
Doc.Save	event.	For	this	reason	it	is	important
that	the	Doc.SaveOptions	are	appropriately	set
up	before	the	signature	is	Committed.	If	you
intending	to	commit	to	a	document	containing
multiple	signatures	you	will	want	to	ensure	that
the	XSaveOptions.Incremental	property	is	set.

Similarly	after	each	commit,	all	previous
references	to	form	fields	are	invalidated.	You
need	to	obtain	updated	references	to	form	fields
from	the	Doc.Form.Fields	property.

	

	 	

Example 	
None.

	
	 	

	

	

GetCertificates	Function 	 	

Extract	the	encoded	X.509	data	of	the
certificate(s).

	

	 	

Syntax 	

[C#]
IEnumerable<byte[]>
GetCertificates()
IEnumerable<byte[]>
GetCertificates(out	int
outCount)

[Visual	Basic]
Function	GetCertificates()
As	IEnumerable(Of	Byte())
Function
GetCertificates(<Out>	ByRef
outCount	As	Integer)	As
IEnumerable(Of	Byte())

	may	throw	Exception()

	

	 	

Params 	

Name Description
outCount The	number	of	certificates.

return The	encoded	X.509	data	for
the	certificate(s).

	

	 	

Notes 	

Use	this	method	to	extract	the	encoded	X.509
data	of	the	certificate	that	was	used	to	sign	the
document.	Normally,	there	is	only	one
certificate	returned,	but	for	some	documents,
you	may	receive	additional	certificates	that	can
be	used	to	create	a	certificate	chain.	In	such
cases,	the	first	certificate	is	always	the
certificate	that	was	used	for	signing.

You	can	pass	the	data	returned	by	this	function
to	the	X509Certificate2	class	constructor	in
System.Security.Cryptography.X509Certificates
and	then	extract	certificate	details	such	as	the
subject,	the	issuer,	the	serial	number,	the
version,	etc.	See	the	Annotations	example
project	for	details.

	

	 	

Example 	
None.

	
	 	

	

	

Sign	Method

Sign	the	digital	signature	using	a	private	key	and	password.

	

Syntax 	

[C#]
void	Sign(string	path,	string	password)
void	Sign(byte[]	data,	string	password)
void	Sign(Stream	stream,	string	password)
void	Sign(X509Certificate2	cert,	bool	silent)

[Visual	Basic]
Sub	Sign(path	As	String,	password	As	String)
Sub	Sign(data()	As	Byte,	password	As	String)
Sub	Sign(stream	As	Stream,	password	As	String)
Sub	Sign(cert	As	X509Certificate2,	silent	As
Boolean)

	may	throw	Exception()

	

Name Description

path The	path	to	the	PFX/PKCS	#12	(.pfx	or	.p12)	file	used	for
signing.

data The	data	for	the	PFX/PKCS	#12	(.pfx	or	.p12)	file	used	for
signing.

stream The	stream	for	the	PFX/PKCS	#12	(.pfx	or	.p12)	file	used	for
signing.

Params 	

password The	password	used	to	authorize	use	of	the	private	

cert

The
System.Security.Cryptography.X509Certificates.X509Certificate2
object	for	the	PFX/PKCS	#12	(.pfx	or	.p12)	certificate	used	for
signing.

silent

Whether	to	suppress	prompting	the	user	to	use	the	private	
While	using	the	private	keys	of	some	certificates	(such	
imported	with	the	check	box	"Enable	strong	private	
protected.	You	will	be	prompted	every	time	the	private	key	
used	by	an	application	if	you	enable	this	option."	
dialog	box	is	displayed	and	must	be	closed	if	this	
false,	and	the	signing	fails	if	this	parameter	is	true.	For	a	non-
interactive/unattended	operation,	this	parameter	should	be	set	to
true.

	

Notes 	

Use	this	method	to	sign	a	signature	field.

In	order	to	sign	a	signature,	you	need	to	use	your	private	key.	To
authorize	the	use	of	this	key,	you	need	to	provide	your	password	if	
are	not	using	a	X509Certificate2	certificate.

Typically,	this	password	protected	private	key	is	held	in	an	PFX/PKCS
#12	(.pfx	or	.p12)	file.	So	to	perform	the	signing	operation,	you	provide
a	path	to	this	file	and	a	password	to	allow	use	of	the	private	

Time-stamped	signatures	can	be	produced	by	using	the	service	of	a
Time	Stamping	Authority	(TSA).	See	TimestampServiceUrl.

If	you	are	signing	multiple	signature	fields	in	the	same	PDF	document,
you	should	call	Commit	manually	after	each	signing	operation.

If	the	file	is	not	available,	if	the	file	is	invalid	or	if	the	password	is
incorrect,	then	this	function	will	throw	an	exception.

	

Example 	

Read	a	document	and	sign	a	signature	field	embedded	within	that	
Before	signing,	we	specify	a	location	and	a	reason	why	the	
digitally	signed.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/Authorization.pdf"));
Signature	theSig	=	(Signature)theDoc.Form["Signature"];
theSig.Location	=	"Washington";
theSig.Reason	=	"Schedule	Agreed";
theSig.Sign(Server.MapPath("../Rez/JohnSmith.pfx"),
"1234");
theDoc.Save(Server.MapPath("Signed.pdf"));

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()	
theDoc.Read(Server.MapPath("../Rez/Authorization.pdf"))
Dim	theSig	As	Signature	=	theDoc.Form("Signature")
theSig.Location	=	"Washington"
theSig.Reason	=	"Schedule	Agreed"
theSig.Sign(Server.MapPath("../Rez/JohnSmith.pfx"),
"1234")
theDoc.Save(Server.MapPath("Signed.pdf"))

	

	

	

Validate	Function

Check	and	validate	the	status	of	this	signature.

	

Syntax 	

[C#]
bool	Validate()
bool	Validate(string[]	certificatePaths)
bool	Validate(System.Collections.IEnumerable
certificates)

[Visual	Basic]
Function	Validate()	As	Boolean
Function	Validate(certificatePaths()	As	String)	
Boolean
Function	Validate(certificates	As
System.Collections.IEnumerable)	As	Boolean

	may	throw	Exception()

	

Params 	

Name Description
certificatePaths An	array	of	paths	to	X.509	certificate	(.cer)	files.

certificates A	collection	of
System.Security.Cryptography.X509Certificates.X509Certificate2

return True	if	the	certificate	is	valid.

	

This	function	returns	true	if	the	signature	is	valid.	To	be	precise,	this	method

Notes 	

updates	the	properties	IsModified,	IsTimeValid	and	IsTrusted.	The	return
value	is	true	only	if	the	IsModified	is	false,	and	all	of	IsTimeValid,
and	IsTrusted	are	true.

Signatures'	certificates	can	only	be	validated	by	referencing	certificates
issued	by	certification	authorities.

This	method	allows	you	to	check	and	validate	the	status	of	a	signature	with
reference	to	a	set	of	such	certificates.	Additionally,	ABCpdf	can	also	use
certificates	found	in	the	Windows	Certificate	Store	for	validation.	See
ValidationPolicy	for	details.

The	certificates	you	provide	will	be	cached	at	a	document	level	so	this
function	is	efficient	even	when	checking	multiple	signatures	within	one
document.	If	you	do	not	provide	any	parameters,	this	function	will	use	the
previously	cached	certificates	to	validate	the	document.	Therefore,	
ValidationPolicy	is	set	to	EntireChainTrust,	or	certificates	have	been
provided	using	a	previous	call	to	this	function,	calling	the	parameterless
version	of	this	function	will	cause	an	exception	to	be	thrown	to	indicate	that
there	are	no	certificates	to	validate	against.

ABCpdf	does	not	currently	do	revocation	checks	on	certificates	provided
and	on	certificates	embedded	in	a	PDF	document.	If	you	need	to	do	
type	of	operation,	you	should	use	the	GetCertificates	function	and	check	the
certificates	yourself.

If	a	certificate	is	unavailable	or	invalid,	this	method	may	throw	an	exception.
This	means	validating	against	an	unsigned	signature	field	will	cause	an
exception	to	be	thrown.

How	does	Adobe	Reader	validate	a	PDF	document	without
certificate	files?

You	may	find	that	Adobe	Reader	does	not	need	a	list	of	certificate	files
to	validate	PDF	documents.	This	is	because	Adobe	Reader	may	use
several	built-in	Public	Key	Infrastructure	hierarchies	to	certify	PDF
documents:

Certified	Document	Services	(CDS)	is	a	trust	hierarchy	that
chains	back	to	the	Adobe	Root	Certification	Authority	(Adobe
Root	CA).
Adobe	Approved	Trust	List	(AATL)	is	an	extra	list	of	CA
certificates	that	Adobe	Reader	may	download	from	Adobe
periodically	(for	Adobe	Reader/Acrobat	9	or	later).
The	Windows	Certificate	Store.	This	is	only	true	if	Windows	digital
signature	integration	is	enabled	in	Acrobat,	which	is	not	the
default	for	Acrobat	9	and	X.

In	order	to	validate	a	PDF	document	the	same	way	Adobe	Reader
does,	you	need	to	use	the	same	certificates	it	uses.	This	can	be	easily
achieved	by	exporting	the	trusted	identities	from	Adobe	Reader	to	.cer
format	certificate	files.	(Note:	CDS	and	AATL	certificates	are	
not	in	your	Windows	Certificate	Store	by	default.)

The	Windows	Certificate	Store	can	be	accessed	by	using
System.Security.Cryptography.X509Certificates.X509Store	(examples
below).

	

[C#]
//	Validate	using	certificate	files
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/Signed.pdf"));
string[]	theCerts	=
Server.MapPath("../Rez/JohnSmith.cer").Split(new
char[]	{	';'	});
Signature	theSig	=
(Signature)theDoc.Form["Signature"];
if	((theSig.Validate(theCerts))	&&
(!theSig.IsModified))	{
		theDoc.AddText("Signature	valid	at	"	+
DateTime.Now.ToString());

http://www.adobe.com/security/partners_cds.html
http://www.adobe.com/security/approved-trust-list.html

Example
	

}
theDoc.Save(Server.MapPath("SignedAndValidated.pdf"));

//	Validate	using	the	Windows	Certificate	Store
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../Rez/Signed.pdf"));
X509Store	theStore	=	new	X509Store(StoreName.Root,
StoreLocation.LocalMachine);
theStore.Open(OpenFlags.ReadOnly);
Signature	theSig	=
(Signature)theDoc.Form["Signature"];
if	((theSig.Validate(theStore.Certificates))	&&
(!theSig.IsModified))	{
		theDoc.AddText("Signature	valid	at	"	+
DateTime.Now.ToString());
}
theStore.Close();
theDoc.Save(Server.MapPath("SignedAndValidated.pdf"));

[Visual	Basic]
'	Validate	using	certificate	files
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../Rez/Signed.pdf"))
Dim	theCerts()	As	String	=	{
Server.MapPath("../Rez/JohnSmith.cer")	}
Dim	theSig	As	Signature	=	theDoc.Form("Signature")
If	(theSig.Validate(theCerts))	And	(Not
theSig.IsModified)	Then
		theDoc.AddText("Signature	valid	at	"	+
DateTime.Now.ToString())
End	If
theDoc.Save(Server.MapPath("SignedAndValidated.pdf"))

'	Validate	using	the	Windows	Certificate	Store
Dim	theDoc	As	Doc	=	New	Doc()

theDoc.Read(Server.MapPath("../Rez/Signed.pdf"))
Dim	theStore	As	X509Store	=	New
X509Store(StoreName.Root,	StoreLocation.LocalMachine)
theStore.Open(OpenFlags.ReadOnly)
Dim	theSig	As	Signature	=	theDoc.Form("Signature")
If	(theSig.Validate(store.Certificates))	And	(Not
theSig.IsModified)	Then
		theDoc.AddText("Signature	valid	at	"	+
DateTime.Now.ToString())
End	If
theStore.Close()
theDoc.Save(Server.MapPath("SignedAndValidated.pdf"))

	

	

	

IsModified	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true Yes

True	if	the	PDF
has	been
tampered	with
after	signing.

	

	 	

Example 	

This	property	allows	you	to	determine	if	the	PDF	has
been	tampered	with	after	signing.

It	is	important	to	understand	that	certain	types	of
updates	are	allowed.	The	validity	of	this	property
relates	to	the	validity	of	the	particular	revision	of	the
document.	So	it	allows	you	to	determine	if	the
original	PDF	has	been	tampered	with	in	any	way.

However	it	is	possible	to	update	PDF	by
incrementally	updating	the	revision.	This	will	provide
a	document	which	contains	modifications	but	can	be
backtracked	to	show	the	exact	state	of	the	document
at	the	point	that	a	particular	signature	was	applied.

Most	commonly	this	is	needed	when	multiple
signatures	are	being	applied	as	each	signature
needs	to	be	applied	to	a	new	revision	of	the
document	and	to	be	valid	for	that	particular	revision.

See	also	the	Validate	function.

	

	 	

	

	

IsSecure	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false Yes

True	if	the
signature	and
document	look
well	formed	and
well	applied.

	

	 	

Example 	

True	if	the	signature	and	document	look	well	formed
and	well	applied.

A	signature	with	a	PDF	document	occupies	a	specific
portion	of	that	document	and	should	cover	the	rest	of
the	document.	However	it	is	possible	to	create
signatures	which	conform	technically	but	are	badly	or
suspiciously	applied.

For	example	one	could	create	a	signature	which	did
not	cover	the	start	of	a	document.	While	this	is	legal
it	is	not	sensible	and	this	kind	of	structure	should	be
regarded	as	insecure.

This	property	can	be	used	to	determine	whether	the
signature	has	been	well	and	sensibly	applied.

	

	 	

	

	

IsTrusted	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false Yes

True	if	the
signature's
certificate	is
trusted
according	to	the
validation	policy.

	

	 	

Example 	

See	the	Validate	function	and	the	ValidationPolicy
property.

	

	 	

	

	

IsTimeValid	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false Yes

True	if	the
signature's
certificate	was
time-valid	when
the	document
was	signed.

	

	 	

Example 	
See	the	Validate	function.

	
	 	

	

	

Location	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No The	location	of
the	signing.

	

	 	

Notes 	

The	location	of	the	signing.

If	you	wish	to	set	a	value	for	this	property,	you	should
do	so	before	calling	the	Sign	function.

This	property	can	take	null	as	a	value.	This	indicates
that	no	location	was	provided.

Note	that	this	property	can	only	be	relied	on	if	the
certificate	is	valid.	You	can	check	whether	the
certificate	is	valid	using	the	Validate	function.

	

	 	

Example 	
See	the	Sign	function.

	
	 	

	

	

Reason	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

null No The	reason
for	signing.

	

	 	

Notes 	

The	reason	for	signing.

If	you	wish	to	set	a	value	for	this	property,	you	should
do	so	before	calling	the	Sign	function.

This	property	can	take	null	as	a	value.	This	indicates
that	no	reason	was	given.

Note	that	this	property	can	only	be	relied	on	if	the
certificate	is	valid.	You	can	check	whether	the
certificate	is	valid	using	the	Validate	function.

	

	 	

Example 	
See	the	Sign	function.

	
	 	

	

	

Signer	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

See
description. No

The	name	of
the	person
signing.

	

	 	

Notes 	

The	name	of	the	person	signing.

When	you	call	the	Sign	function	the	name	of	the
signer	is	automatically	updated	to	match	the	name
associated	with	the	private	key.

Note	that	this	property	can	only	be	relied	on	if	the
certificate	is	valid.	You	can	check	whether	the
certificate	is	valid	using	the	Validate	function.

You	will	not	need	to	change	the	value	of	this	property
unless	you	are	writing	low	level	signature
manipulation	code.

	

	 	

Example 	
None.

	
	 	

	

	

SigningUtcTime	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	DateTime

[Visual	Basic]
DateTime

See
description. No

The	time	of
signing	in
UTC	format.

	may	throw	Exception()

	

	 	

Notes 	

The	time	of	signing	in	UTC	format.

When	you	call	the	Sign	function,	the	UTC	time	is
automatically	updated.

Note	that	this	property	can	only	be	relied	on	if	the
certificate	is	valid.	You	can	check	whether	the
certificate	is	valid	using	the	Validate	function.

You	will	not	need	to	change	the	value	of	this	property
unless	you	are	writing	low	level	signature
manipulation	code.

If	the	format	of	the	date	in	the	PDF	is	incorrect,	then
querying	the	value	of	this	property	may	result	in	an
exception	being	thrown.

	

	 	

Example 	
None.

	
	 	

	

	

TimestampServiceUrl	Property 	

	

Type Default
Value

Read
Only Description

[C#]	
System.Uri

[Visual	Basic]
System.Uri

null No The	URL	to	a	time-
stamping	service.

	

	

Notes 	

If	this	property	is	not	null	when	you	call	Sign,	an	X.509	RFC	3161
time-stamped	signature	will	be	created	by	using	the	service	provided
in	the	URL.	Note	that	this	property	serves	as	an	option	for	Sign,	and
is	not	persisted	in	the	PDF	document.

If	your	time-stamping	service	provider	requires	authentication,	you
can	specify	your	credentials	in	the	Uri.	For	example,
"https://username:password@example.com/tsp".

ABCpdf	uses	System.Net.WebRequest	to	send	the	time-stamping
request.	You	can	use
System.Net.ServicePointManager.ServerCertificateValidationCallback
to	customize	trust	relationship	establishment	when	you	connect	to	an
SSL/TLS	channel.

	

Example 	
None.

	
	

http://tools.ietf.org/html/rfc3161
http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.servercertificatevalidationcallback.aspx

	

	

ValidationPolicy	Property

	

Type Default	Value Read
Only Description

[C#]ValidationPolicyType

[Visual	Basic]
ValidationPolicyType

EntireChainTrust No

The
validation
policy	for
certificates.

	

Notes 	

The	validation	policy	for	certificates.

The	ValidationPolicyType	enumeration	may	take	the	following
values:

EntireChainTrust
CertificateSignatureOnly

When	you	call	Validate,	you	can	choose	to	provide	additional
certificates.	This	property	indicates	how	such	certificates	are
used	and	how	the	certificates	in	the	document	signature	are
validated.

When	you	set	this	property	to	EntireChainTrust,	ABCpdf	checks
whether	the	certificates	in	the	document	signature	can	be
validated	against	a	trusted	root	Certificate	Authority	(trust	anchor)
by	performing	a	X.509	certification	path	validation	as	described	in
RFC	5280.	ABCpdf	will	use	the	certificates	found	in	"Trusted
Root	Certification	Authorities"	in	the	Windows	Certificate	Store	of
the	local	machine	as	trust	anchors.	Certificates	you	pass	into	the
Validate	method	will	be	regarded	as	additional	trust	anchors.

When	you	set	this	property	to	CertificateSignatureOnly,	ABCpdf

http://www.ietf.org/rfc/rfc5280.txt

checks	whether	at	least	one	of	the	certificates	in	the	document
signature	has	been	signed	with	the	public	key	of	one	of	the
certificates	passed	to	Validate.	When	this	value	is	set,	Validate
does	not	check	the	Windows	Certificate	Store.	If	no	certificates
have	been	passed	to	Validate,	an	exception	will	be	thrown.

EntireChainTrust	is	a	sensible	default	because	it	is	how	Acrobat
builds	up	a	certificate	trust	chain	and	also	how	PKI	generally
works.

	

Example 	
None.

	

	

	

StreamObject	Constructor 	 	

StreamObject	Constructor.

	
	 	

Syntax 	

[C#]
StreamObject(ObjectSoup	soup)
StreamObject(ObjectSoup	soup,	byte[]
data)	
StreamObject(ObjectSoup	soup,	string
path)

[Visual	Basic]
Sub	New(soup	As	ObjectSoup)
Sub	New(soup	As	ObjectSoup,	data()	As
Byte)
Sub	New(soup	As	ObjectSoup,	path	As
String)

	may	throw	Exception()

	

	 	

Params 	

Name Description

soup The	ObjectSoup	to	contain	the	newly
created	StreamObject.

data An	array	of	bytes	which	should	be	placed	in
the	StreamObject.

path A	path	to	a	file	containing	data	which	should
be	placed	in	the	StreamObject.

	 	

	

Notes 	

Create	a	StreamObject.

If	no	arguments	are	passed	then	the	StreamObject
contains	no	data.	No	exception	will	be	thrown.

If	an	array	of	bytes	is	passed	then	the	StreamObject
data	will	be	initialized	with	the	contents	of	the	array.
No	exception	will	be	thrown.

If	a	string	is	passed	then	the	StreamObject	data	will
be	initialized	with	the	contents	of	the	file.	If	the	file
cannot	be	read	then	an	exception	is	thrown.

	

	 	

Example 	
None.

	
	 	

	

	

ClearData	Function 	 	

Clear	the	data	and	compression	settings	for	the
stream.

	

	 	

Syntax 	

[C#]
void	ClearData()

[Visual	Basic]
Sub	ClearData()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Clears	all	data	and	compression	settings
leaving	the	stream	empty	of	data.

	

	 	

Example 	
None.

	
	 	

	

	

ClearCachedDecompressed
Function

	 	

Clear	the	cached,	decompressed	data	for	the
stream.

	

	 	

Syntax 	

[C#]
void	ClearCachedDecompressed()

[Visual	Basic]
Sub	ClearCachedDecompressed()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

The	uncompressed	data	are	retrieved	from
compressed	streams	during	most	operations,
but	the	streams	are	still	compressed.	The
uncompressed	data	are	sometimes	cached	so
that	later	operations	(including	the	actual
decompression	of	the	streams)	need	not	invoke
the	decompression	algorithm.

This	increases	the	memory	usage,	and	it	is	not
desirable	if	the	document	is	to	be	kept	in
memory	for	an	extended	period	of	time. 	 	

This	method	discards	the	cached,
decompressed	data	so	that	a	re-read	of	the
document	is	not	required	to	release	the
memory.

You	can	apply	the	effect	to	multiple	stream
objects	using
Doc.ClearCachedDecompressedStreams.

	

Example 	
None.

	
	 	

	

	

Compress	Function 	 	

Compress	the	data	in	the	stream.

	
	 	

Syntax 	

[C#]
void	Compress()

[Visual	Basic]
Sub	Compress()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Compresses	the	data	in	the	stream	if	it	is	not
already	compressed.

	

	 	

Example 	
None.

	
	 	

	

	

CompressAscii85	Function 	 	

Compress	the	data	in	the	stream	using	ASCII
85	encoding.

	

	 	

Syntax 	

[C#]
bool	CompressAscii85()
bool	CompressAscii85(bool	force)

[Visual	Basic]
Sub	CompressAscii85()	As	Boolean
Sub	CompressAscii85(force	As
Boolean)	As	Boolean

	

	 	

Params 	

Name Description

force Whether	to	force	the	stream	to	be
compressed	in	this	way.

return Whether	the	compression	was	applied.

	

	 	

Compress	the	data	in	the	stream	using	ASCII
85	encoding.

ASCII	85	replaces	each	five	bytes	of	data	with	a
four	character	ASCII	notation.	As	such	it	is	not
strictly	a	compression	method	and	it	will	result
in	the	data	size	increasing	by	about	twenty

Notes 	

percent.	However	the	resultant	data	will	be
ASCII,	which	can	be	useful	if	you	need	to	treat
the	PDF	data	as	text.

PDF	streams	allow	a	set	of	compression	filters
to	be	applied	to	a	stream	of	data.	For	example
one	might	want	to	apply	Flate	compression	and
then	ASCII85	encode	the	result.	This	is
represented	as	two	compression	filters	in
sequence.

This	function	does	not	decompress	the	stream.
So	if	compression	is	already	present,	then	this
method	will	compress	the	already-encoded	data
and	append	a	compression	specification	to	the
sequence.

ABCpdf	tries	to	avoid	creating	certain
compression	sequences.	Some	compression
types	on	some	objects	are	illegal.	Some
sequences	are	legal	but	not	supported	within
Acrobat	(though	they	are	in	most	other	viewers).
However	these	are	unusual	situations	and	you
are	unlikely	to	ever	see	them.

You	can	override	this	behavior	by	forcing	the
compression	to	take	place.	However	if	you	do
this	you	may	end	up	creating	a	document	which
is	invalid	or	unviewable	in	Acrobat.

	

	 	

Example 	
None.

	
	 	

	

	

CompressAsciiHex	Function 	 	

Compress	the	data	in	the	stream	using	the
ASCII	Hex	encoding.

	

	 	

Syntax 	

[C#]
bool	CompressAsciiHex()
bool	CompressAsciiHex(bool	force)

[Visual	Basic]
Sub	CompressAsciiHex()	As	Boolean
Sub	CompressAsciiHex(force	As
Boolean)	As	Boolean

	

	 	

Params 	

Name Description

force Whether	to	force	the	stream	to	be
compressed	in	this	way.

return Whether	the	compression	was	applied.

	

	 	

Compress	the	data	in	the	stream	using	ASCII
Hex	encoding.

ASCII	Hex	replaces	each	byte	of	data	with	a
two	byte	hexadecimal	notation.	As	such	it	is	not
strictly	a	compression	method	and	it	will	result
in	a	doubling	of	the	size	of	the	data.	However

Notes 	

the	resultant	data	will	be	ASCII,	which	can	be
useful	if	you	need	to	treat	the	PDF	data	as	text.

PDF	streams	allow	a	set	of	compression	filters
to	be	applied	to	a	stream	of	data.	For	example
one	might	want	to	apply	Flate	compression	and
then	ASCII85	encode	the	result.	This	is
represented	as	two	compression	filters	in
sequence.

This	function	does	not	decompress	the	stream.
So	if	compression	is	already	present,	then	this
method	will	compress	the	already-encoded	data
and	append	a	compression	specification	to	the
sequence.

ABCpdf	tries	to	avoid	creating	certain
compression	sequences.	Some	compression
types	on	some	objects	are	illegal.	Some
sequences	are	legal	but	not	supported	within
Acrobat	(though	they	are	in	most	other	viewers).
However	these	are	unusual	situations	and	you
are	unlikely	to	ever	see	them.

You	can	override	this	behavior	by	forcing	the
compression	to	take	place.	However	if	you	do
this	you	may	end	up	creating	a	document	which
is	invalid	or	unviewable	in	Acrobat.

	

	 	

Example 	
None.

	
	 	

	

	

CompressFlate	Function 	 	

Compress	the	data	in	the	stream	using	Flate
compression.

	

	 	

Syntax 	

[C#]
bool	CompressFlate()
bool	CompressFlate(bool	force)

[Visual	Basic]
Sub	CompressFlate()	As	Boolean
Sub	CompressFlate(force	As
Boolean)	As	Boolean

	

	 	

Params 	

Name Description

force Whether	to	force	the	stream	to	be
compressed	in	this	way.

return Whether	the	compression	was	applied.

	

	 	

Compress	the	data	in	the	stream	using	Flate
compression.

Flate	compression	is	a	standard,	fast	and
efficient	lossless	compression	method.	It	is
used	as	the	basis	of	file	formats	like	ZIP	and
image	formats	like	PNG.	In	most	situations	this

Notes 	

is	the	method	you	should	prefer.

PDF	streams	allow	a	set	of	compression	filters
to	be	applied	to	a	stream	of	data.	For	example
one	might	want	to	apply	Flate	compression	and
then	ASCII85	encode	the	result.	This	is
represented	as	two	compression	filters	in
sequence.

This	function	does	not	decompress	the	stream.
So	if	compression	is	already	present,	then	this
method	will	compress	the	already-encoded	data
and	append	a	compression	specification	to	the
sequence.

ABCpdf	tries	to	avoid	creating	certain
compression	sequences.	Some	compression
types	on	some	objects	are	illegal.	Some
sequences	are	legal	but	not	supported	within
Acrobat	(though	they	are	in	most	other	viewers).
However	these	are	unusual	situations	and	you
are	unlikely	to	ever	see	them.

You	can	override	this	behavior	by	forcing	the
compression	to	take	place.	However	if	you	do
this	you	may	end	up	creating	a	document	which
is	invalid	or	unviewable	in	Acrobat.

	

	 	

Example 	
None.

	
	 	

	

	

CompressRunLength	Function 	 	

Compress	the	data	in	the	stream	using	run
length	encoding.

	

	 	

Syntax 	

[C#]
bool	CompressRunLength()
bool	CompressRunLength(bool
force)

[Visual	Basic]
Sub	CompressRunLength()	As
Boolean
Sub	CompressRunLength(force	As
Boolean)	As	Boolean

	

	 	

Params 	

Name Description

force Whether	to	force	the	stream	to	be
compressed	in	this	way.

return Whether	the	compression	was	applied.

	

	 	

Compress	the	data	in	the	stream	using	run
length	encoding.

Run	length	encoding	is	a	simple	form	of
compression	which	replaces	sequences	of

Notes 	

identical	bytes,	with	a	count	and	the	value	of	the
bytes	in	the	sequence.	While	simple	to	encode
and	decode,	it	is	relatively	inefficient	and
options	such	as	CompressFlate	should	be
preferred.

PDF	streams	allow	a	set	of	compression	filters
to	be	applied	to	a	stream	of	data.	For	example
one	might	want	to	apply	Flate	compression	and
then	ASCII85	encode	the	result.	This	is
represented	as	two	compression	filters	in
sequence.

This	function	does	not	decompress	the	stream.
So	if	compression	is	already	present,	then	this
method	will	compress	the	already-encoded	data
and	append	a	compression	specification	to	the
sequence.

ABCpdf	tries	to	avoid	creating	certain
compression	sequences.	Some	compression
types	on	some	objects	are	illegal.	Some
sequences	are	legal	but	not	supported	within
Acrobat	(though	they	are	in	most	other	viewers).
However	these	are	unusual	situations	and	you
are	unlikely	to	ever	see	them.

You	can	override	this	behavior	by	forcing	the
compression	to	take	place.	However	if	you	do
this	you	may	end	up	creating	a	document	which
is	invalid	or	unviewable	in	Acrobat.

	

	 	

Example 	
None.

	
	 	

	

	

Decompress	Function 	 	

Decompress	the	data	in	the	stream.

	
	 	

Syntax 	

[C#]
bool	Decompress()

[Visual	Basic]
Function	Decompress()	As	Boolean

	

	 	

Params 	

Name Description

return Whether	the	data	in	the	stream	is
uncompressed.

	

	 	

Notes 	

This	method	removes	all	compression	from	the
stream.

Under	some	circumstances	it	may	not	be
possible	to	fully	decompress	the	stream.	In
these	situations	the	function	will	return	false.

	

	 	

Example 	

None.
	 	

	

	

	

GetData	Function 	 	

Get	the	raw	binary	content	of	the	stream.

	
	 	

Syntax 	

[C#]
byte[]	GetData()

[Visual	Basic]
Function	GetData()	As	Byte()

	

	 	

Params 	

Name Description
return The	raw	binary	content	of	the	stream.

	

	 	

Notes 	

Get	the	raw	binary	content	of	the	stream.

If	the	stream	is	compressed	then	this	data	will
be	compressed.

	

	 	

Example 	
None.

	
	 	

	

	

GetText	Function 	 	

Get	the	content	of	the	stream	as	a	string.

	
	 	

Syntax 	

[C#]
string	GetText()

[Visual	Basic]
Function	GetText()	As	String

	

	 	

Params 	

Name Description
return The	content	of	the	stream	as	a	string.

	

	 	

Notes 	

Get	the	content	of	the	stream	in	string	format.

You	will	generally	want	to	ensure	your	stream	is
decompressed	before	using	this	function.

	

	 	

Example 	
None.

	
	 	

	

	

SetData	Function 	 	

Set	the	raw	binary	content	of	the	stream.

	
	 	

Syntax 	

[C#]
void	SetData(byte[]	value)
void	SetData(byte[]	value,	int
index,	int	count)
void	SetData(StreamObject	source)

[Visual	Basic]
Sub	SetData(value()	As	Byte)
Sub	SetData(value()	As	Byte,
index	As	Integer,	count	As
Integer)
Sub	SetData(source	As
StreamObject)

	

	 	

Params 	

Name Description

value The	raw	binary	content	to	be	assigned
to	the	stream.

index The	index	in	the	array	at	which
copying	should	start.

count The	number	of	bytes	to	copy.

source The	source	stream	from	which	to	copythe	data.

	

	 	

Notes 	

Set	the	raw	binary	content	of	the	stream.

Compression	settings	are	unaltered.	So	if	-	for
example	-	you	have	a	stream	which	is	Flate
compressed	you	must	use	SetData	with	Flate
compressed	data.

For	this	reason	you	may	wish	to	call	ClearData
before	using	SetData.

Using	the	overload	which	accepts	a
StreamObject	is	equivalent	to,	but	more	efficient
than,	getting	the	data	from	the	source
StreamObject	and	then	using	SetData	to	assign
it	to	this	one.

	

	 	

Example 	
None.

	
	 	

	

	

SetFile	Function 	 	

Set	the	raw	binary	content	of	the	stream	using
data	from	a	file.

	

	 	

Syntax 	

[C#]
void	SetFile(string	path)

[Visual	Basic]
Sub	SetFile(path	As	String)

	may	throw	Exception()

	

	 	

Params 	

Name Description

path A	path	to	a	file	containing	data	which
should	be	placed	in	the	StreamObject.

	

	 	

Notes
	

Set	the	raw	binary	content	of	the	stream	using
data	read	from	a	file.	If	the	file	cannot	be	read
then	an	exception	is	thrown.

Compression	settings	are	unaltered.	So	if	-	for
example	-	you	have	a	stream	which	is	Flate
compressed	you	must	use	SetFile	with	Flate
compressed	data.

	 	

For	this	reason	you	may	wish	to	call	ClearData
before	using	SetFile.

	

Example 	
None.

	
	 	

	

	

SetText	Function 	 	

Set	the	content	of	the	stream	as	a	string.

	
	 	

Syntax 	

[C#]
void	SetText(string	value)

[Visual	Basic]
Sub	SetText(value	As	String))

	

	 	

Params 	

Name Description
value The	content	of	the	stream	as	a	string.

	

	 	

Notes 	

Get	the	content	of	the	stream	in	string	format.

Compression	settings	are	unaltered.	For	this
reason	you	may	wish	to	call	ClearData	before
using	SetData.

	

	 	

Example 	
None.

	
	 	

	

	

Compressed	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 Yes

Whether	the
stream	data	is
compressed	or
otherwise
encoded.

	

	 	

Notes 	

Whether	the	stream	data	is	compressed	or	otherwise
encoded.

	

	 	

Example 	
None.

	
	 	

	

	

Compression	Property 	 	

	

Type Default Read
Only Description

[C#]	
CompressionType

[Visual	Basic]
CompressionType

See
description.	 Yes

The	primary
compression
type.

	

	 	

Notes 	

A	single	stream	can	be	compressed	and	encoded
using	multiple	methods.	This	property	reflects	the
primary	compression	type	used	by	the	stream.

Compression	types	which	result	in	high	levels	of
compression	(e.g.	JPEG)	are	considered	more
important	than	those	that	do	not	(e.g.	ASCII	85).

The	CompressionType	enumeration	may	take	the
following	values:

None
Unknown
Flate
Lzw
Ccitt
Jpeg
Jpx
AsciiHex
Ascii85
RunLength

	 	

Jbig2
Crypt

More	details	of	these	compression	types	can	be
found	in	Section	3.3	of	the	Adobe	PDF	Specification.

	

Example 	
None.

	
	 	

	

http://partners.adobe.com/

	

Compressions	Property 	 	

	

Type Default Read
Only Description

[C#]	
CompressionType[]

[Visual	Basic]
CompressionType()

See
description.	 Yes

All	the
compression
types
applied	to
the	stream.

	

	 	

Notes 	

A	stream	can	be	compressed	and	encoded	using
multiple	methods	applied	in	sequence.

This	property	reflects	all	the	compression	types	that
have	been	applied	to	the	stream.

The	CompressionTypes	are	ordered	in	terms	of	the
complete	decompression	sequence	required.	

	

	 	

Example 	
None.

	
	 	

	

	

Length	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	number	of
bytes	of
encoded	stream
data.

	

	 	

Notes 	
The	number	of	bytes	of	encoded	stream	data.

	
	 	

Example 	
None.

	
	 	

	

	

ClearTextOperation	Function 	 	

Removes	any	cached	TextOperation	and
TextFragments	associated	with	this	object

	

	 	

Syntax 	

[C#]
void	ClearTextOperation()

[Visual	Basic]
Sub	ClearTextOperation()

	

	 	

Params 	

Name Description
none n/a

	

	 	

Notes 	

Removes	any	cached	TextOperation	and
TextFragments	associated	with	this	object.

This	can	reduce	memory	use	or	it	can	be	used
to	allow	text	information	to	be	regenerated	after
the	TextLayer	contents	have	been	updated.

	

	 	

Example
	
None. 	 	

	

	

	

Characters	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	number	of
characters
appearing	on	the
page.

	

	 	

Notes 	
The	number	of	characters	appearing	on	the	page.

	
	 	

Example 	
None.

	
	 	

	

	

EndPos	Property 	 	

	

Type Default ReadOnly Description

[C#]	XPoint

[Visual	Basic]
XPoint

	n/a	 Yes

The	point
defining	the	end
position	of	the
text.

	

	 	

Notes 	

The	XPoint	defining	the	end	position	of	the	text.

This	point	is	encoded	in	PDF	coordinates	rather	than
any	abstracted	coordinate	space.

	

	 	

Example 	
None.

	
	 	

	

	

Lines	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
lines	appearing
on	the	page.

	

	 	

Notes 	
The	number	of	lines	appearing	on	the	page.

	
	 	

Example 	
None.

	
	 	

	

	

Previous	Property 	 	

	

Type Default ReadOnly Description

[C#]	TextLayer

[Visual	Basic]
TextLayer

	n/a	 Yes
The	previous
text	object	in	the
text	chain.

	

	 	

Notes 	

The	previous	text	object	in	the	text	chain.

If	the	object	is	not	part	of	a	chain	(or	is	at	the	head	of
the	chain)	this	property	will	be	null.

	

	 	

Example 	
None.

	
	 	

	

	

Truncated	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 Yes
Whether	the	text
had	to	be
truncated.

	

	 	

Notes 	

Whether	the	text	had	to	be	truncated.

This	property	indicates	if	all	the	assigned	text	could
be	displayed.	It	is	true	if	the	text	had	to	be	truncated
and	false	if	not.

Only	text	objects	that	have	been	truncated	can	be
chained	to.	If	the	object	has	not	been	truncated	then
there's	no	more	text	to	display.

	

	 	

Example 	
None.

	
	 	

	

	

FullText	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 Yes

The	full	text
provided	in	the
initial	call	to
AddHtml	or
AddText.

	

	 	

Notes 	

The	full	text	provided	in	the	initial	call	to	AddHtml	or
AddText.

This	text	is	shared	between	all	the	items	in	a	chain.	It
is	in	plain	text	and	does	not	indicate	any	styles.

	

	 	

Example 	
None.

	
	 	

	

	

TextStart	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	offset	to	the
first	character
drawn	onto	this
layer.

	

	 	

Notes 	

The	offset	to	the	first	character	(in	the	FullText)	to	be
drawn	onto	this	layer.

	

	 	

Example 	
None.

	
	 	

	

	

TextEnd	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	offset	to	the
last	character
drawn	onto	this
layer.

	

	 	

Notes 	

The	offset	to	the	last	character	(in	the	FullText)	to	be
drawn	onto	this	layer.

	

	 	

Example 	
None.

	
	 	

	

	

TextEnd	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 No

The	offset	to	the
character	which
will	be	drawn	at
the	start	of	next
item	in	the
chain.

	

	 	

Notes 	

The	offset	to	the	character	(in	the	FullText)	which	will
be	drawn	as	the	next	item	in	the	chain.

By	changing	this	property	you	can	control	the
character	at	which	the	next	item	in	the	chain	starts.
So	by	increasing	the	value	you	can	skip	characters
between	chained	items.	By	decreasing	the	value	you
can	repeat	text	from	the	previous	item.

	

	 	

Example 	
None.

	
	 	

	

	

TextFragments	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IList<TextFragment>

[Visual	Basic]
IList<TextFragment>

n/a Yes

The
TextFragments
describing	the
precise	layout
of	this	text
layer

	

	 	

Notes 	

The	TextFragments	describing	the	precise	layout	of
this	text	layer.

The	properties	of	this	object	can	be	used	to	establish
precise	metrics	for	each	of	the	items	of	text	in	the
layer.

The	operation	is	created	the	first	time	this	property	is
accessed	and	it	is	cached	thereafter.	To	reduce
memory	use,	you	may	wish	to	call
ClearTextOperation	after	you	have	established	the
precise	metrics	that	you	require.

	

	 	

Example 	
None.

	
	 	

	

	

TextOperation	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
TextOperation

[Visual	Basic]
TextOperation

n/a Yes

A	TextOperation
describing	the
precise	layout	of
this	text	layer

	

	 	

Notes 	

A	TextOperation	describing	the	precise	layout	of	this
text	layer.

The	properties	of	this	object	can	be	used	to	establish
precise	metrics	for	each	of	the	items	of	text	in	the
layer.

The	operation	is	created	the	first	time	this	property	is
accessed	and	it	is	cached	thereafter.	To	reduce
memory	use,	you	may	wish	to	call
ClearTextOperation	after	you	have	established	the
precise	metrics	that	you	require.

	

	 	

Example 	
None.

	
	 	

	

	

ContentHeight	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	content
height	of	the
image	in	pixels.

	

	 	

Notes 	

The	content	height	of	the	image.	It	is	usually	very
close	to	ScrollHeight.

When	adding	HTML	you	only	see	one	page	at	a	time.
This	property	allows	you	to	find	the	height	of	the
HTML	before	it	is	paged	onto	the	PDF.

	

	 	

Example 	
None.

	
	 	

	

	

ContentWidth	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	content
width	of	the
image	in	pixels.

	

	 	

Notes 	

The	content	width	of	the	image.	It	is	usually	very
close	to	ScrollWidth.

When	adding	HTML	you	only	see	one	page	at	a	time.
This	property	allows	you	to	find	the	width	of	the
HTML	before	it	is	paged	onto	the	PDF.

	

	 	

Example 	
None.

	
	 	

	

	

PageHeight	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	height	of	the
content	on	the
current	page	in
pixels.

	

	 	

Notes 	

The	height	of	the	content	on	the	current	page.

Note	that	the	content	may	not	vertically	completely	fill
the	area	into	which	the	view	has	been	drawn.

This	may	occur	if	the	page	is	has	been	broken	early
to	ensure	that	content	is	split	at	a	sensible	location.
Or	alternatively,	it	may	occur	if	the	content	was	not	as
tall	as	the	area	specified	while	it	horizontally	fills	the
area.

	

	 	

Example 	
None.

	
	 	

	

	

PageOffset	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	offset	to	the
top	of	the
current	page	in
pixels.

	

	 	

Notes 	

The	vertical	offset	from	the	top	of	the	underlying
graphic	to	the	top	of	the	current	page.

	

	 	

Example 	
None.

	
	 	

	

	

PageWidth	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes

The	width	of	the
content	on	the
current	page	in
pixels.

	

	 	

Notes 	
The	width	of	the	content	on	the	current	page.

	
	 	

Example 	
None.

	
	 	

	

	

ScrollHeight	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	scroll	height
of	the	image	in
pixels.

	

	 	

Notes 	

The	scroll	height	of	the	image.

It	is	the	same	scroll	height	value	as	retrieved	using
script	inside	HTML.

	

	 	

Example 	
None.

	
	 	

	

	

ScrollWidth	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	scroll	width
of	the	image	in
pixels.

	

	 	

Notes 	

The	scroll	width	of	the	image.

It	is	the	same	scroll	width	value	as	retrieved	using
script	inside	HTML.

	

	 	

Example 	
None.

	
	 	

	

	

Truncated	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 Yes
Whether	the
image	is
truncated.

	

	 	

Notes 	
Whether	the	image	is	truncated.

	
	 	

Example 	
None.

	
	 	

	

	

FromString	Function 	 	

Create	an	appropriate	type	of	Atom	from	a	raw
PDF	string	representation.

	

	 	

Syntax 	

[C#]
static	Atom	FromString(string
value)

[Visual	Basic]
Shared	Function	FromString(value
As	String)	As	Atom

	

	 	

Params 	

Name Description

value The	string	representing	the	value	of	the
object.

return The	resulting	Atom.

	

	 	

Notes 	

The	text	you	pass	this	function	must	be	in	native
PDF	format.	This	means	that	unusual
characters	in	text	strings	must	be	appropriately
escaped.

For	full	details	of	the	way	that	PDF	objects	are
represented	you	should	see	the	Adobe	PDF
Specification.

	 	

	

Example 	
None.

	
	 	

	

	

GetBool	Function 	 	

Gets	the	Boolean	value	from	the	Atom	if	it	is	a
BoolAtom.

	

	 	

Syntax 	

[C#]
static	bool	GetBool(Atom	atom)

[Visual	Basic]
Shared	Function	GetBool(atom	As
Atom)	As	Boolean

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	Boolean	from.
return The	returned	Boolean.

	

	 	

Notes 	

Get	the	Boolean	value	from	the	supplied	Atom	if
it	is	a	BoolAtom.

If	the	atom	is	not	a	BoolAtom	or	if	it	is	null	then
false	will	be	returned.

	

	 	

	
None. 	 	

Example 	

	

	

GetDouble	Function 	 	

Gets	the	double	value	from	the	Atom	if	it	is	a
NumAtom.

	

	 	

Syntax 	

[C#]
static	double	GetDouble(Atom
atom)

[Visual	Basic]
Shared	Function	GetDouble(atom	As
Atom)	As	Double

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	double	from.
return The	returned	double.

	

	 	

Notes 	

Get	the	double	value	from	the	supplied	Atom	if	it
is	a	NumAtom.

If	the	atom	is	not	a	NumAtom	or	if	it	is	null	then
zero	will	be	returned.

	

	 	

Example 	
None.

	
	 	

	

	

GetID	Function 	 	

Gets	the	Object	ID	value	from	the	Atom	if	it	is	a
RefAtom.

	

	 	

Syntax 	

[C#]
static	int	GetID(Atom	atom)

[Visual	Basic]
Shared	Function	GetID(atom	As
Atom)	As	Integer

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	Object	ID	from.
return The	returned	Object	ID.

	

	 	

Notes 	

Get	the	Object	ID	from	the	supplied	Atom	if	it	is
a	RefAtom.

If	the	atom	is	not	a	RefAtom	or	if	it	is	null	then
zero	will	be	returned.

	

	 	

	
None. 	 	

Example 	

	

	

GetInt	Function 	 	

Gets	the	integer	value	from	the	Atom	if	it	is	a
NumAtom.

	

	 	

Syntax 	

[C#]
static	int	GetInt(Atom	atom)

[Visual	Basic]
Shared	Function	GetInt(atom	As
Atom)	As	Integer

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	integer	from.
return The	returned	integer.

	

	 	

Notes 	

Get	the	integer	value	from	the	supplied	Atom	if
it	is	a	NumAtom.

If	the	atom	is	not	a	NumAtom	or	if	it	is	null	then
zero	will	be	returned.

	

	 	

	
None. 	 	

Example 	

	

	

GetItem	Function 	 	

Gets	the	specified	item	from	the	Atom	if	it	is	of	a
type	which	contains	other	Atoms.

	

	 	

Syntax 	

[C#]
static	Atom	GetItem(Atom	atom,
string	key)
static	Atom	GetItem(Atom	atom,
int	index)	

[Visual	Basic]
Shared	Function	GetItem(atom	As
Atom,	key	As	String)	As	Atom
Shared	Function	GetItem(atom	As
Atom,	index	As	Integer)	As	Atom

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	item	from.
key The	name	of	the	item	to	be	retrieved.
index The	index	of	the	item	to	be	retrieved.
return The	returned	Atom.

	

	 	

Both	DictAtoms	and	ArrayAtoms	can	contain
other	Atoms.

Notes 	

This	function	allows	you	to	get	an	item	from	an
ArrayAtom	or	DictAtom.

Entries	in	ArrayAtoms	can	be	referenced	by
number.	If	the	supplied	atom	is	not	an
ArrayAtom	or	if	it	is	null	or	if	the	index	is	outside
the	bounds	of	the	array	then	null	will	be
returned.

Entries	in	DictAtoms	can	be	referenced	by
name	or	by	number.	If	the	supplied	atom	is	not
a	DictAtom	or	if	it	is	null	or	if	the	name	is	not	a
key	in	the	dictionary	or	if	the	index	is	outside	the
bounds	of	the	dictionary	then	null	will	be
returned.

	

	 	

Example 	
None.

	
	 	

	

	

GetName	Function 	 	

Gets	the	Name	value	from	the	Atom	if	it	is	a
NameAtom.

	

	 	

Syntax 	

[C#]
static	string	GetName(Atom	atom)

[Visual	Basic]
Shared	Function	GetName(atom	As
Atom)	As	String

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	name	from.
return The	returned	name.

	

	 	

Notes 	

Get	the	Name	value	from	the	supplied	Atom	if	it
is	a	NameAtom.

If	the	atom	is	not	a	NameAtom	or	if	it	is	null	then
an	empty	string	("")	will	be	returned.

	

	 	

	
None. 	 	

Example 	

	

	

GetText	Function 	 	

Gets	the	Text	value	from	the	Atom	if	it	is	a
StringAtom.

	

	 	

Syntax 	

[C#]
static	string	GetText(Atom	atom)

[Visual	Basic]
Shared	Function	GetText(atom	As
Atom)	As	String

	

	 	

Params 	

Name Description
atom The	Atom	to	get	the	text	from.
return The	returned	text.

	

	 	

Notes 	

Get	the	Text	value	from	the	supplied	Atom	if	it	is
a	StringAtom.

If	the	atom	is	not	a	StringAtom	or	if	it	is	null	then
an	empty	string	("")	will	be	returned.

	

	 	

	
None. 	 	

Example 	

	

	

RemoveItem	Function 	 	

Removes	the	named	entry	from	the	Atom	if	it	is
a	DictAtom.

	

	 	

Syntax 	

[C#]
static	void	RemoveItem(Atom	atom,
string	key)	

[Visual	Basic]
Shared	Sub	RemoveItem(atom	As
Atom,	key	As	String)

	

	 	

Params 	

Name Description

atom The	Atom	from	which	the	item	should
be	removed.

key The	name	of	the	item	to	be	removed.

	

	 	

Notes 	

DictAtoms	can	contain	other	Atoms	referenced
by	name.

This	function	allows	you	to	remove	a	named
item	from	a	DictAtom.

If	the	atom	supplied	is	not	a	DictAtom	then
calling	this	function	will	have	no	effect.

	 	

	

Example 	
None.

	
	 	

	

	

SetItem	Function 	 	

Adds	a	specified	item	to	the	Atom	if	it	is	of	a
type	which	contains	other	Atoms.

	

	 	

Syntax 	

[C#]
static	Atom	SetItem(Atom	atom,
string	key,	Atom	val)
static	Atom	SetItem(Atom	atom,
int	index,	Atom	val)	

[Visual	Basic]
Shared	Function	SetItem(atom	As
Atom,	key	As	String,	val	As	Atom)
As	Atom
Shared	Function	SetItem(atom	As
Atom,	index	As	Integer,	val	As
Atom)	As	Atom

	

	 	

Params 	

Name Description

atom The	Atom	to	which	the	item	should	be
added.

key The	name	of	the	item	to	be	added.

index The	index	at	which	the	item	should	be
added.

return The	returned	Atom.

	

	 	

Notes 	

Both	DictAtoms	and	ArrayAtoms	can	contain
other	Atoms.

This	function	allows	you	to	add	an	item	to	an
ArrayAtom	or	DictAtom.

If	the	container	Atom	supplied	is	not	a	DictAtom
or	an	ArrayAtom	then	insertion	will	not	be
successful.

Entries	in	ArrayAtoms	can	be	referenced	by
number.	If	the	container	Atom	supplied	is	an
ArrayAtom	and	the	index	supplied	is	within	the
bounds	of	the	array	then	insertion	will	be
successful.	If	the	index	supplied	is	less	than
zero	then	the	value	Atom	will	be	added	to	the
end	of	the	array.	Again	insertion	will	be
successful.

Entries	in	DictAtoms	can	be	referenced	by
name.	If	the	container	Atom	supplied	is	a
DictAtom	and	the	key	supplied	is	not	empty
then	insertion	will	be	successful.

If	insertion	was	successful	the	function	will
return	the	Atom	which	was	added.	If	it	was	not
successful	it	will	return	null.

	

	 	

Example 	
None.

	
	 	

	

	

GetData	Function 	 	

The	byte	array	representation	of	the	Atom	as	it
would	appear	in	a	PDF

	

	 	

Syntax 	

[C#]
byte[]	GetData()

[Visual	Basic]
Function	GetData()	As	Byte()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

The	byte	array	representation	of	the	Atom	as	it
would	appear	in	a	PDF.

	

	 	

Example 	
None.

	
	 	

	

	

Clone	Function 	 	

Creates	a	deep	copy	of	the	current	Atom.

	
	 	

Syntax 	

[C#]
Atom	Clone()

[Visual	Basic]
Function	Clone()	As	Atom

	

	 	

Params 	

Name Description
return The	newly	created	copy.

	

	 	

Notes 	

This	function	creates	a	new	object	that	is	a	copy
of	this	instance.

The	copy	is	a	deep	copy	and	all	contained
Atoms	are	copied	as	part	of	the	clone	process

	

	 	

Example 	
None.

	
	 	

	

	

Dispose	Function 	 	

Dispose	of	the	object.

	
	 	

Syntax 	

[C#]
void	Dispose()
protected	void	Dispose(bool
disposing)	

[Visual	Basic]
Sub	Dispose()
Protected	Sub	Dispose(disposing
As	Boolean)	

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

You	can	call	this	function	to	explicitly	dispose	of
an	object	and	reduce	the	garbage	collection
overhead.

This	method	follows	the	standard	design	pattern
for	objects	implementing	the	IDisposable
interface.	The	protected	Dispose	method	can	be
overridden	for	sub-classes	wishing	to	dispose	of
additional	objects.

	 	

Do	not	attempt	to	use	an	object	after	calling
Dispose.

	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	Atoms	are	the	same.

	
	 	

Syntax 	

[C#]
bool	Equals(Atom	other)
override	bool	Equals(object
test);

[Visual	Basic]
Function	Equals(other	As	Atom)	As
Boolean
Overrides	Function	Equals(test	As
Object)	As	Boolean

	

	 	

Params 	

Name Description
other The	object	to	test	against.
return Whether	the	objects	are	equal.

	

	 	

Notes 	

This	method	can	be	used	to	determine	whether
the	specified	object	is	equal	to	the	current
object.

Objects	are	considered	equal	if	they	refer	to	the
same	underlying	object	within	the	PDF
document.	So	this	method	determines	object

	 	

equality	rather	than	value	equality.

	

Example 	
None.

	
	 	

	

	

GetHashCode	Function 	 	

A	hash	code	for	the	Atom.

	
	 	

Syntax 	

[C#]
override	int	GetHashCode()

[Visual	Basic]
Overrides	Function	GetHashCode()
As	Integer

	

	 	

Params 	

Name Description
return The	returned	hash	code.

	

	 	

Notes 	

Derives	a	hash	code	suitable	for	use	in	hashing
algorithms	and	data	structures	like	hash	tables.

	

	 	

Example 	
None.

	
	 	

	

	

ToString	Function 	 	

The	string	representation	of	the	Atom	as	it
would	appear	in	a	PDF.

	

	 	

Syntax 	

[C#]
override	string	ToString()

[Visual	Basic]
Overrides	Function	ToString()	As
String

	

	 	

Params 	

Name Description
return The	string	representation	of	the	object.

	

	 	

Notes 	

This	function	derives	the	content	of	the	object
as	it	will	be	inserted	into	the	final	PDF
document.

Note	that	the	the	string	value	of	an	object	may
be	large	and	it	may	contain	unusual	characters.

	

	 	

	
None.

Example 	 	 	

	

	

FromXRect	Function 	 	

Create	an	ArrayAtom	from	a	XRect
representation

	

	 	

Syntax 	

[C#]
static	ArrayAtom
FromXRect(WebSupergoo.ABCpdf10.XRect
value)

[Visual	Basic]
Shared	Function	FromXRect(value	As
WebSupergoo.ABCpdf10.XRect)	As
ArrayAtom

	

	 	

Params 	

Name Description

value The	XRect	representing	the	value	of
the	object.

	

	 	

Notes 	

Create	an	ArrayAtom	from	a	XRect
representation.

The	ArrayAtom	will	contain	four	NumAtoms
corresponding	to	the	horizontal	and	vertical
elements	of	two	diagonally	opposite	corners.

	 	

	

Example 	
None.

	
	 	

	

	

FromXTransform	Function 	 	

Create	an	ArrayAtom	from	a	XTransform
representation

	

	 	

Syntax 	

[C#]
static	ArrayAtom
FromXTransform(XTransform	value)

[Visual	Basic]
Shared	Function
FromXTransform(value	As
XTransform)	As	ArrayAtom

	

	 	

Params 	

Name Description

value The	XTransform	representing	the	value
of	the	object.

	

	 	

Notes 	

Create	an	ArrayAtom	from	a	XTransform
representation.

The	ArrayAtom	will	contain	six	NumAtoms
corresponding	to	the	elements	of	the	transform.

	

	 	

Example 	

None.

	
	 	

	

	

FromContentStream	Function 	

Create	an	array	of	Atoms	from	a	byte	array	containing	a
sequence	of	PDF	objects

	

	

Syntax 	

[C#]
static	ArrayAtom	FromContentStream(string
value)
static	ArrayAtom	FromContentStream(byte[]
value)

[Visual	Basic]
Shared	Function	FromContentStream(value
As	String)	As	ArrayAtom
Shared	Function	FromContentStream(value()
As	Byte)	As	ArrayAtom

	

	

Params 	

Name Description
value The	string	holding	the	sequence	of	atoms.

	

	

Notes
	

Create	an	array	of	Atoms	from	a	byte	array	containing	a
sequence	of	PDF	objects.

This	method	is	useful	for	deconstructing	PDF	content
streams	for	analysis	and	modification.	To	convert	back
into	a	content	stream	you	can	use	the	Atom.GetData

	

function.

	

This	example	shows	how	to	use	the	FromContentStream
function	to	parse	and	display	a	PDF	content	stream.

[C#]
StringBuilder	sb	=	new	StringBuilder();
using	(Doc	doc	=	new	Doc())	{
		doc.Read("spaceshuttle.pdf");
		Page	page	=	doc.ObjectSoup[doc.Page]	as
Page;
		StreamObject[]	layers	=	page.GetLayers();
		MemoryStream	st	=	new	MemoryStream();
		foreach	(StreamObject	layer	in	layers)	{
				if	(!layer.Decompress())
						throw	new	Exception("Unable	to
decompress	stream.");
				byte[]	data	=	layer.GetData();
				st.Write(data,	0,	data.Length);
		}
		ArrayAtom	array	=
ArrayAtom.FromContentStream(st.ToArray());
		int	indent	=	0;
		HashSet<string>	indentPlus	=	new
HashSet<string>(new	string[]	{	"q",	"BT"	});
		HashSet<string>	indentMinus	=	new
HashSet<string>(new	string[]	{	"Q",	"ET"	});
		IList<Tuple<string,	int>>	items	=
OpAtom.Find(array);
		int	index	=	0;
		foreach	(var	pair	in	items)	{
				string	op	=
((OpAtom)array[pair.Item2]).Text;
				//	add	indent	to	code

				if	(indentMinus.Contains(op))
						indent--;
				for	(int	i	=	0;	i	<	indent;	i++)
						sb.Append("	");
				//	write	out	the	operators
				for	(int	i	=	index;	i	<=	pair.Item2;	i++)
{
						if	(i	!=	index)
								sb.Append("	");
						Atom	item	=	array[i];
						//	we	write	arrays	out	individually	so
that
						//	we	can	override	default	cr	lf
behavior
						ArrayAtom	itemArray	=	item	as	ArrayAtom;
						if	(itemArray	!=	null)	{
								int	n	=	itemArray.Count;
								for	(int	j	=	0;	j	<	n;	j++)	{
										sb.Append(itemArray[j].ToString());
										if	(j	!=	n	-	1)
												sb.Append("	");
								}
						}
						else	{
								sb.Append(item.ToString());
						}
				}
				sb.AppendLine();
				if	(indentPlus.Contains(op))
						indent++;
				index	=	pair.Item2	+	1;
		}
		//	write	out	any	atoms	that	are	left	over
		for	(int	i	=	index;	i	<	array.Count;	i++)	{
				sb.Append("	");
				sb.Append(array[i].ToString());
		}

Example

	

}
using	(Doc	doc	=	new	Doc())	{
		doc.Font	=	doc.AddFont("Courier");
		doc.Rect.Inset(20,	20);
		doc.AddText(sb.ToString());
		doc.Save("PageContents.pdf");
}

[Visual	Basic]
		Dim	sb	As	New	StringBuilder()
		Using	doc	As	New	Doc()
				doc.Read("spaceshuttle.pdf")
				Dim	page	As	Page	=
TryCast(doc.ObjectSoup(doc.Page),	Page)
				Dim	layers	As	StreamObject()	=
page.GetLayers()
				Dim	st	As	New	MemoryStream()
				For	Each	layer	As	StreamObject	In	layers
						If	Not	layer.Decompress()	Then
								Throw	New	Exception("Unable	to
decompress	stream.")
						End	If
						Dim	data	As	Byte()	=	layer.GetData()
						st.Write(data,	0,	data.Length)
				Next
				Dim	array	As	ArrayAtom	=
ArrayAtom.FromContentStream(st.ToArray())
				Dim	indent	As	Integer	=	0
				Dim	indentPlus	As	New	HashSet(Of	String)
(New	String()	{"q",	"BT"})
				Dim	indentMinus	As	New	HashSet(Of	String)
(New	String()	{"Q",	"ET"})
				Dim	items	As	IList(Of	Tuple(Of	String,
Integer))	=	OpAtom.Find(array)
				Dim	index	As	Integer	=	0
				For	Each	pair	As	var	In	items

						Dim	op	As	String	=
DirectCast(array(pair.Item2),	OpAtom).Text
						'	add	indent	to	code
						If	indentMinus.Contains(op)	Then
								indent	-=	1
						End	If
						For	i	As	Integer	=	0	To	indent	-	1
								sb.Append("	")
						Next
						'	write	out	the	operators
						For	i	As	Integer	=	index	To	pair.Item2
								If	i	<>	index	Then
										sb.Append("	")
								End	If
								Dim	item	As	Atom	=	array(i)
								'	we	write	arrays	out	individually	so
that
								'	we	can	override	default	cr	lf
behavior
								Dim	itemArray	As	ArrayAtom	=
TryCast(item,	ArrayAtom)
								If	itemArray	IsNot	Nothing	Then
										Dim	n	As	Integer	=	itemArray.Count
										For	j	As	Integer	=	0	To	n	-	1
												sb.Append(itemArray(j).ToString())
												If	j	<>	n	-	1	Then
														sb.Append("	")
												End	If
										Next
								Else
										sb.Append(item.ToString())
								End	If
						Next
						sb.AppendLine()
						If	indentPlus.Contains(op)	Then
								indent	+=	1
						End	If

						index	=	pair.Item2	+	1
				Next
				'	write	out	any	atoms	that	are	left	over
				For	i	As	Integer	=	index	To	array.Count	-
1
						sb.Append("	")
						sb.Append(array(i).ToString())
				Next
		End	Using
		Using	doc	As	New	Doc()
				doc.Font	=	doc.AddFont("Courier")
				doc.Rect.Inset(20,	20)
				doc.AddText(sb.ToString())
				doc.Save("PageContents.pdf")
		End	Using
End	Sub

PageContents.pdf

	

	

ArrayAtom	Constructor 	 	

ArrayAtom	Constructor.

	
	 	

Syntax 	

[C#]
ArrayAtom()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	an	empty	ArrayAtom.

	
	 	

Example 	
None.

	
	 	

	

	

CopyTo	Function 	 	

Copies	the	Atoms	into	an	array.

	
	 	

Syntax 	

[C#]
void	CopyTo(Atom[]	array,	int
index)

[Visual	Basic]
Sub	CopyTo(array	As	Atom(),	index
As	Integer)

	

	 	

Params 	

Name Description

array The	array	that	is	the	destination	for	the
elements.

index The	zero-based	index	in	array	at	which
copying	begins.

	

	 	

Notes 	

Copies	the	elements	of	the	Collection	to	an
array	starting	at	a	particular	array	index.

The	array	must	be	one-dimensional	and	have
zero-based	indexing.

	

	 	

Example 	

None.

	
	 	

	

	

Add	Function 	 	

Add	an	item	to	the	end	of	the	array.

	
	 	

Syntax 	

[C#]
int	Add(Atom	atm)
int	Add(int	num)
int	Add(double	real)
int	Add(string	str)	

[Visual	Basic]
Function	Add(atm	As	Atom)	As
Integer
Function	Add(num	As	Integer)	As
Integer
Function	Add(real	As	Double)	As
Integer
Function	Add(str	As	String)	As
Integer	

	

	 	

Params 	

Name Description
atm The	Atom	to	be	added.
num The	integer	to	be	added.
real The	floating	point	value	to	be	added.
str The	string	to	be	added.

return The	position	in	which	the	new	element
was	inserted.

	 	

	

Notes 	

This	method	adds	an	item	to	the	array.

You	can	add	an	Atom	directly	into	the	array	or
you	can	use	one	of	the	overloaded	operators	to
add	numbers	or	strings.

When	you	add	a	string	this	is	encapsulated
within	a	StringAtom	and	then	inserted.	When
you	add	an	integer	or	floating	point	value	this	is
converted	to	a	NumAtom	and	then	inserted.
These	operations	are	more	efficient	than
creating	an	Atom	and	adding	it	yourself.

Atoms	can	exist	in	only	one	place	at	a	time.	If
the	Atom	supplied	is	already	contained	by
another	object	then	a	Clone	of	the	Atom	is
added.

Adding	a	null	value	will	result	in	a	NullAtom
being	added	to	the	array.

	

	 	

Example 	
None.

	
	 	

	

	

Clear	Function 	 	

Removes	all	Atoms	from	the	array.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Removes	all	Atoms	from	the	array.

	
	 	

Example 	
None.

	
	 	

	

	

Contains	Function 	 	

Determines	whether	the	array	contains	a
specific	Atom.

	

	 	

Syntax 	

[C#]
bool	Contains(Atom	value)

[Visual	Basic]
Function	Contains(value	As	Atom)
As	Boolean

	

	 	

Params 	

Name Description
value The	object	to	locate.

return True	if	the	object	is	found,	otherwise
false.

	

	 	

Notes 	

Determines	whether	the	Collection	contains	a
specific	Atom.

	

	 	

Example 	
None.

	
	 	

	

	

IndexOf	Function 	 	

Determines	the	index	of	a	specific	Atom.

	
	 	

Syntax 	

[C#]
int	IndexOf(Atom	value)

[Visual	Basic]
Function	IndexOf(value	As	Atom)
As	Integer

	

	 	

Params 	

Name Description
value The	object	to	locate	in	the	Collection.

return If	found,	the	index	of	value,	otherwise
-1.

	

	 	

Notes 	

Determines	the	index	of	a	specific	Atom	in	the
Collection.

	

	 	

Example 	
None.

	
	 	

	

	

Insert	Function 	 	

Inserts	an	Atom	into	the	array	at	the	specified
position.

	

	 	

Syntax 	

[C#]
void	Insert(int	index,	Atom
value)

[Visual	Basic]
Sub	Insert(index	As	Integer,
value	As	Atom)

	may	throw
ArgumentOutOfRangeException()

	

	 	

Params 	

Name Description

index The	zero-based	index	at	which	value
should	be	inserted.

value The	Atom	to	insert	into	the	array.

	

	 	

Inserts	an	Atom	into	the	array	at	the	specified
position.

If	the	index	equals	the	number	of	items	in	the

Notes 	

array	then	the	Atom	is	appended	to	the	end.

Atoms	can	exist	in	only	one	place	at	a	time.	If
the	Atom	supplied	is	already	contained	by
another	object	then	a	Clone	of	the	Atom	is
added.

Adding	a	null	value	will	result	in	a	NullAtom
being	added	to	the	array.

If	the	index	is	not	a	valid	index	this	method
throws	an	ArgumentOutOfRangeException.

	

	 	

Example 	
None.

	
	 	

	

	

Remove	Function 	 	

Removes	an	Atom	from	the	array.

	
	 	

Syntax 	

[C#]
bool	Remove(Atom	value)

[Visual	Basic]
Function	Remove(value	As	Atom)	As
Boolean

	

	 	

Params 	

Name Description
value The	Atom	to	be	removed.

return True	if	the	Atom	is	removed,	otherwise
false.

	

	 	

Notes 	

When	an	Atom	is	removed	the	elements	that
follow	the	removed	element	move	up	to	occupy
the	vacated	spot.

	

	

	 	

	
None. 	 	

Example 	

	

	

RemoveAt	Function 	 	

Removes	an	Atom	at	a	specified	position	from
the	array.

	

	 	

Syntax 	

[C#]
void	RemoveAt(int	index)

[Visual	Basic]
Sub	RemoveAt(index	As	Integer)

	may	throw
ArgumentOutOfRangeException()

	

	 	

Params 	

Name Description

index The	zero-based	index	of	the	item	to
remove.

	

	 	

Notes 	

If	the	index	is	not	valid	then	an
ArgumentOutOfRangeException	will	be	thrown.

When	an	Atom	is	removed	the	elements	that
follow	the	removed	element	move	up	to	occupy
the	vacated	spot.

	

	 	

Example 	
None.

	
	 	

	

	

AddRange	Function 	 	

Adds	the	elements	in	the	supplied	array	at	the
end	of	this	array

	

	 	

Syntax 	

[C#]
void	AddRange(ArrayAtom	array)

[Visual	Basic]
Sub	AddRange(array	As	ArrayAtom)

	may	throw	Exception()

	

	 	

Params 	

Name Description

array The	array	whose	elements	should	be
added.

	

	 	

Notes 	

Adds	the	elements	in	the	supplied	array	at	the
end	of	this	array.

If	the	supplied	array	is	null	then	an	exception
will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	ArrayAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(ArrayAtom	other)

[Visual	Basic]
Function	Equals(other	As
ArrayAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	ArrayAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	ArrayAtoms	are	the	same.

Two	ArrayAtoms	are	judged	to	be	equal	if	they
have	the	same	number	of	Atoms	contained
within	them	and	each	Atom	in	one	array	is	equal
to	the	corresponding	Atom	in	the	other	array.

	

	 	

Example
	
None.

	 	

	

	

	

GetEnumerator	Function 	 	

Gets	an	enumerator	for	the	Collection.

	
	 	

Syntax 	

[C#]
IEnumerator<Atom>	GetEnumerator()

[Visual	Basic]
Function	GetEnumerator()	As
IEnumerator(Of	Atom)

	

	 	

Params 	

Name Description
return The	enumerator	for	the	collection.

	

	 	

Notes 	
Gets	an	Atom	enumerator	for	the	Collection.

	
	 	

Example 	
None.

	
	 	

	

	

GetRange	Function 	 	

Creates	a	shallow	copy	of	a	range	of	elements
in	the	source	array

	

	 	

Syntax 	

[C#]
ArrayAtom	GetRange(int	index,	int
count)

[Visual	Basic]
Function	GetRange(index	As
Integer,	count	As	Integer)	As
ArrayAtom

	may	throw	Exception()

	

	 	

Params 	

Name Description

index The	zero-based	index	specifying	the
first	element.

count The	number	of	elements	to	be
selected.

	

	 	

Creates	a	shallow	copy	of	a	range	of	elements
in	the	source	array.

Notes 	
If	the	index	is	equal	to	the	Count	then	the
elements	are	added	to	the	end	of	the	array.	If
the	index	or	count	is	invalid	then	an	exception
will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

InsertRange	Function 	 	

Inserts	the	elements	in	the	supplied	array	into
this	array	at	the	specified	index

	

	 	

Syntax 	

[C#]
void	InsertRange(int	index,
ArrayAtom	array)

[Visual	Basic]
Sub	InsertRange(index	As	Integer,
array	As	ArrayAtom)

	may	throw	Exception()

	

	 	

Params 	

Name Description

index The	zero-based	index	at	which	the	new
elements	should	be	inserted.

array The	array	whose	elements	should	be
inserted.

	

	 	

Inserts	the	elements	in	the	supplied	array	into
this	array	at	the	specified	index.

If	the	index	is	equal	to	the	Count	then	the

Notes 	 elements	are	added	to	the	end	of	the	array.

If	the	supplied	array	is	null	or	the	index	is	invalid
then	an	exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

RemoveRange	Function 	 	

Removes	a	range	of	elements	from	the	source
array

	

	 	

Syntax 	

[C#]
void	RemoveRange(int	index,	int
count)

[Visual	Basic]
Sub	RemoveRange(index	As	Integer,
count	As	Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description

index The	zero-based	index	specifying	the
first	element.

count The	number	of	elements	to	be
removed.

	

	 	

Removes	a	range	of	elements	from	the	source
array.

If	the	index	is	equal	to	the	Count	then	the

Notes 	 elements	are	added	to	the	end	of	the	array.

If	the	index	or	count	is	invalid	then	an	exception
will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

Count	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
The	number	of
Atoms	in	the
array.

	

	 	

Notes 	

The	number	of	Atoms	in	the	array.

As	Atoms	are	added	to	the	array	the	Count	will
increase.

	

	 	

Example 	
None.

	
	 	

	

	

Item	Property 	 	

	

Type Default ReadOnly Description

[C#]
Atom	this[int
index]
int	this[int
index,	int	def]
double	this[int
index,	double
def]
string	this[int
index,	string
def]

[Visual	Basic]
Default	Property
Item(index	As
Integer)	As	Atom
Default	Property
Item(index	As
Integer,	def	As
Integer)	As
Integer
Default	Property
Item(index	As
Integer,	def	As
Double)	As	Double
Default	Property
Item(index	As
Integer,	def	As
String)	As	String

	n/a	 No

Get	or	set
the	Atom	at
the
specified
index.

	 	

	may	throw
ArgumentOutOfRangeException()

	

Notes 	

Gets	or	sets	the	Atom	at	the	specified	index.	In	C#
this	property	is	the	indexer	for	the	class.

You	can	access	an	Atom	directly	or	you	can	use	one
of	the	overloaded	operators	to	specify	numbers	or
strings.	Using	the	overloads	to	access	numbers	or
strings	is	more	efficient	than	accessing	an	Atom	and
extracting	the	value	from	it.

You	specify	one	of	the	overloads	using	the	def
parameter.	If	you	are	setting	a	value	then	this
parameter	is	ignored.	If	you	are	getting	a	value	then
this	parameter	becomes	the	default	value	to	be	used
if	the	underlying	Atom	was	not	the	correct	type.	For
example	the	default	would	be	returned	if	you
attempted	to	get	an	integer	but	the	underlying	Atom
was	actually	a	StringAtom.

Atoms	can	exist	in	only	one	place	at	a	time.	If	the
Atom	supplied	is	already	contained	by	another	object
then	a	Clone	of	the	Atom	is	added.

Adding	a	null	value	will	result	in	a	NullAtom	being
added	to	the	array.

If	the	index	is	not	a	valid	index	this	property	throws
an	ArgumentOutOfRangeException.

	

	 	

	
None.

	 	

Example 	

	

	

BoolAtom	Constructor 	 	

Construct	a	BoolAtom.

	
	 	

Syntax 	

[C#]
BoolAtom()
BoolAtom(bool	value)	

[Visual	Basic]
Sub	New()
Sub	New(value	As	Boolean)

	

	 	

Params 	

Name Description

value The	initial	value	that	the	Atom	should
adopt.

	

	 	

Notes 	

Create	a	BoolAtom.

If	a	value	is	not	specified	the	default	of	false	will
be	used.

	

	 	

Example 	

None.
	 	

	

	

	

Equals	Function 	 	

Test	whether	the	two	BoolAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(BoolAtom	other)

[Visual	Basic]
Function	Equals(other	As
BoolAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	BoolAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	BoolAtoms	are	the	same.

Two	BoolAtoms	are	judged	to	be	equal	if	their
Truth	is	equal.

	

	 	

Example 	
None.

	
	 	

	

	

Truth	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

	n/a	 No
Whether	the
Boolean	is	true
or	false.

	

	 	

Notes 	
Whether	the	Boolean	is	true	or	false.

	
	 	

Example 	
None.

	
	 	

	

	

DictAtom	Constructor 	 	

Construct	a	DictAtom.

	
	 	

Syntax 	

[C#]
DictAtom()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	an	empty	DictAtom.

	
	 	

Example 	
None.

	
	 	

	

	

CopyTo	Function 	 	

Copies	the	Atoms	into	an	array.

	
	 	

Syntax 	

[C#]
void	CopyTo(Atom[]	array,	int
index)
void	CopyTo(KeyValuePair<string,
Atom>[]	array,	int	index)

[Visual	Basic]
Sub	CopyTo(array	As	Atom(),	index
As	Integer)
Sub	CopyTo(array	As
KeyValuePair(Of	String,	Atom)(),
index	As	Integer)

	

	 	

Params 	

Name Description

array The	array	that	is	the	destination	for	the
elements.

index The	zero-based	index	in	array	at	which
copying	begins.

	

	 	

Copies	the	elements	of	the	dictionary	to	an
array	starting	at	a	particular	array	index.

Notes 	

The	array	must	be	one-dimensional	and	have
zero-based	indexing.

The	implementation	of	ICollection.CopyTo
copies	KeyValuePair<string,	Atom>	values	to
the	array	if	the	element	type	of	the	array	is
compatible.	Otherwise,	it	copies	DictionaryEntry
values	to	the	array.

	

	 	

Example 	
None.

	
	 	

	

	

Add	Function 	 	

Add	an	item	to	the	dictionary.

	
	 	

Syntax 	

[C#]
void	Add(string	key,	Atom	atm)
void	Add(string	key,	int	num)
void	Add(string	key,	double	real)
void	Add(string	key,	string	str)	

[Visual	Basic]
Sub	Add(key	As	String,	atm	As
Atom)
Sub	Add(key	As	String,	num	As
Integer)
Sub	Add(key	As	String,	real	As
Double)
Sub	Add(key	As	String,	str	As
String)

	may	throw	ArgumentException()

	may	throw
ArgumentNullException()

	

	 	

Name Description
key The	string	to	use	as	the	key	of	the

element	to	add.

Params 	

atm The	Atom	to	be	added.
num The	integer	to	be	added.
real The	floating	point	value	to	be	added.
str The	string	to	be	added.

	

	 	

Notes 	

This	method	adds	an	item	to	the	dictionary.

You	can	add	an	Atom	directly	into	the	dictionary
or	you	can	use	one	of	the	overloaded	operators
to	add	numbers	or	strings.

When	you	add	a	string	this	is	encapsulated
within	a	StringAtom	and	then	inserted.	When
you	add	an	integer	or	floating	point	value	this	is
converted	to	a	NumAtom	and	then	inserted.
These	operations	are	more	efficient	than
creating	an	Atom	and	adding	it	yourself.

Atoms	can	exist	in	only	one	place	at	a	time.	If
the	Atom	supplied	is	already	contained	by
another	object	then	a	Clone	of	the	Atom	is
added.

Adding	a	null	value	will	result	in	a	NullAtom
being	added	to	the	dictionary.

If	the	key	is	null	then	this	method	will	throw	an
ArgumentNullException.	If	the	key	is	already
present	in	the	dictionary	then	this	method	will
throw	an	ArgumentException.

	

	 	

None.

Example
	 	 	 	

	

	

Clear	Function 	 	

Removes	all	elements	from	the	dictionary.

	
	 	

Syntax 	

[C#]
void	Clear()

[Visual	Basic]
Sub	Clear()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Removes	all	elements	from	the	dictionary.

	
	 	

Example 	
None.

	
	 	

	

	

Contains	Function 	 	

Determines	whether	the	dictionary	contains	an
element	with	a	specific	name.

	

	 	

Syntax 	

[C#]
bool	Contains(string	name)

[Visual	Basic]
Function	Contains(name	As	String)
As	Boolean

	

	 	

Params 	

Name Description
name The	element	to	locate	in	the	dictionary.

return True	if	the	name	is	found,	otherwise
false.

	

	 	

Notes 	

Determines	whether	the	dictionary	contains	an
element	with	a	specific	name.

	

	 	

Example 	

None.

	
	 	

	

	

Remove	Function 	 	

Remove	an	element	from	the	dictionary.

	
	 	

Syntax 	

[C#]
void	Remove(string	name)

[Visual	Basic]
Sub	Remove(name	As	String)

	

	 	

Params 	

Name Description

name The	name	of	the	element	to	be
removed.

	

	 	

Notes 	

Remove	the	element	with	the	specified	name
from	the	dictionary.

	

	 	

Example 	
None.

	
	 	

	

	

GetKeys	Function 	 	

Get	an	array	of	all	the	names	in	the	dictionary.

	
	 	

Syntax 	

[C#]
string[]	GetKeys()

[Visual	Basic]
Function	GetKeys()	As	String()

	

	 	

Params 	

Name Description

return An	array	of	all	the	names	in	the
dictionary.

	

	 	

Notes 	
Get	an	array	of	all	the	names	in	the	dictionary.

	
	 	

Example 	
None.

	
	 	

	

	

GetValues	Function 	 	

Get	an	array	of	all	the	Atoms	in	the	dictionary.

	
	 	

Syntax 	

[C#]
Atom[]	GetValues()

[Visual	Basic]
Function	GetValues()	As	Atom()

	

	 	

Params 	

Name Description

return An	array	of	all	the	Atoms	in	the
dictionary.

	

	 	

Notes 	
Get	an	array	of	all	the	Atoms	in	the	dictionary.

	
	 	

Example 	
None.

	
	 	

	

	

GetEnumerator	Function 	 	

Get	an	enumerator	for	the	dictionary.

	
	 	

Syntax 	

[C#]
DictAtom.Enumerator
GetEnumerator()

[Visual	Basic]
Function	GetEnumerator()	As
DictAtom.Enumerator

	

	 	

Params 	

Name Description
return The	enumerator	for	the	dictionary.

	

	 	

Notes 	

Get	an	KeyValuePair<string,	Atom>	enumerator
for	the	dictionary.

DictAtom.Enumerator	is	a	value	type	that
implements	IEnumerator<KeyValuePair<string,
Atom>>	and	IDictionaryEnumerator.

	

	 	

None.

Example
	 	 	 	

	

	

Equals	Function 	 	

Test	whether	the	two	DictAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(DictAtom	other)

[Visual	Basic]
Function	Equals(other	As
DictAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	DictAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	DictAtoms	are	the	same.

Two	DictAtoms	are	judged	to	be	equal	if	they
have	the	same	named	entries	and	the	Atom
corresponding	with	each	named	entry	is	equal
to	the	corresponding	Atom	in	the	other
dictionary.

	

	 	

	
None. 	 	

Example 	

	

	

Count	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 Yes
Get	the	number
of	elements	in
the	dictionary.

	

	 	

Notes 	

Get	the	number	of	elements	in	the	dictionary.

As	elements	are	added	to	the	dictionary	the	Count
will	increase.

	

	 	

Example 	
None.

	
	 	

	

	

Item	Property 	 	

	

Type Default ReadOnly Description

[C#]	
Atom	this[string
name]
int	this[string
name,	int	def]
double
this[string	name,
double	def]
string
this[string	name,
string	def]

[Visual	Basic]
Default	Property
Item(name	As
String)	As	Atom
Default	Property
Item(
name	As	String,	def
As	Integer)	As	Integer
Default	Property
Item(
name	As	String,	def
As	Double)	As	Double
Default	Property
Item(
name	As	String,	def
As	String)	As	String

	n/a	 Yes

Get	or	set
the	entry
with	the
specified
name.

	 	

	may	throw	ArgumentNullException()

	

Notes 	

Get	or	set	the	Atom	with	the	specified	name.	In	C#
this	property	is	the	indexer	for	the	class.

You	can	access	an	Atom	directly	or	you	can	use	one
of	the	overloaded	operators	to	specify	numbers	or
strings.	Using	the	overloads	to	access	numbers	or
strings	is	more	efficient	than	accessing	an	Atom	and
extracting	the	value	from	it.

You	specify	one	of	the	overloads	using	the	def
parameter.	If	you	are	setting	a	value	then	this
parameter	is	ignored.	If	you	are	getting	a	value	then
this	parameter	becomes	the	default	value	to	be	used
if	the	underlying	Atom	was	not	the	correct	type.	For
example	the	default	would	be	returned	if	you
attempted	to	get	an	integer	but	the	underlying	Atom
was	actually	a	StringAtom.

Atoms	can	exist	in	only	one	place	at	a	time.	If	the
Atom	supplied	is	already	contained	by	another	object
then	a	Clone	of	the	Atom	is	added.

Adding	a	null	value	will	result	in	a	NullAtom	being
added	to	the	array.

If	the	name	is	null	this	property	throws	an
ArgumentNullException.

	

	 	

Example 	
None.

	
	 	

	

	

Keys	Property 	 	

	

Type Default ReadOnly Description

[C#]	
DictAtom.KeyCollection

[Visual	Basic]
DictAtom.KeyCollection

	n/a	 Yes

Get	the
collection	of
the	keys	in
the
dictionary.

	

	 	

Notes 	

Get	the	collection	of	the	keys	in	the	dictionary.

DictAtom.KeyCollection	implements
ICollection<string>	and	ICollection.

	

	 	

Example 	
None.

	
	 	

	

	

Values	Property 	 	

	

Type Default ReadOnly Description

[C#]	
DictAtom.ValueCollection

[Visual	Basic]
DictAtom.ValueCollection

	n/a	 Yes

Get	the
collection	of
the	Atoms
in	the
dictionary.

	

	 	

Notes 	

Get	the	collection	of	the	Atoms	in	the	dictionary.

DictAtom.ValueCollection	implements
ICollection<Atom>	and	ICollection.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	NameAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(NameAtom	other)

[Visual	Basic]
Function	Equals(other	As
NameAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	NameAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	NameAtoms	are	the	same.

Two	NameAtoms	are	judged	to	be	equal	if	their
Text	is	equal.

	

	 	

Example 	

None.

	 	 	

	

	

NameAtom	Constructor 	 	

Construct	a	NameAtom.

	
	 	

Syntax 	

[C#]
NameAtom()
NameAtom(string	value)	

[Visual	Basic]
Sub	New()
Sub	New(value	As	String)

	

	 	

Params 	

Name Description

value The	initial	value	that	the	Atom	should
adopt.

	

	 	

Notes 	

Create	a	NameAtom.

If	a	value	is	not	specified	the	default	-	an	empty
string	-	will	be	used.

	

	 	

Example 	

None.
	 	

	

	

	

Text	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 No The	text	of	the
name.

	

	 	

Notes 	
The	text	of	the	name.

	
	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	NullAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(NullAtom	other)

[Visual	Basic]
Function	Equals(other	As
NullAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	NullAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	NullAtoms	are	the	same.

NullAtoms	are	are	always	equal	to	each	other.

	

	 	

Example 	
None.

	
	 	

	

	

NullAtom	Constructor 	 	

Construct	a	NullAtom.

	
	 	

Syntax 	

[C#]
NullAtom()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	a	NullAtom.

	
	 	

Example 	
None.

	
	 	

	

	

Encode	Function 	 	

Encode	a	number	into	a	PDF	string.	This	format
may	be	needed	for	direct	insertion	into	a
content	stream.

	

	 	

Syntax 	

[C#]
static	string	Encode(double
value)

[Visual	Basic]
Shared	Function	Encode(value	As
Double)	As	String

	

	 	

Params 	

Name Description
value The	number	to	convert.
return The	string	representation.

	

	 	

Encode	a	number	into	a	PDF	string.	This	format
may	be	needed	for	direct	insertion	into	a
content	stream.

PDF	content	streams	accept	certain	formats	of
numbers.	In	many	situations	these	are	the	same
as	the	strings	returned	by	.NET	functions	such
as	ToString.	However	in	the	case	of	floating

Notes 	

point	conversions,	not	all	output	formats	are
valid	in	a	PDF	content	stream.

For	example,	very	small	or	very	large	numbers
can	lead	to	the	insertion	of	exponential	format
strings	which	are	not	an	accepted	PDF	format
and	can	lead	to	errors.	Because	numbers
typically	occur	in	a	non	exponential	range	these
errors	can	be	infrequent	and	difficult	to	track
down.

This	method	will	produce	PDF	valid	strings	for
use	in	content	streams	and	similar	applications.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	NumAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(NumAtom	other)

[Visual	Basic]
Function	Equals(other	As	NumAtom)
As	Boolean

	

	 	

Params 	

Name Description
other The	NumAtoms	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	NumAtoms	are	the	same.

Two	NumAtoms	are	judged	to	be	equal	if	their
numeric	value	is	equal.

	

	 	

Example 	
None.

	
	 	

	

	

NumAtom	Constructor 	 	

Construct	a	NumAtom.

	
	 	

Syntax 	

[C#]
NumAtom()
NumAtom(int	num)
NumAtom(double	real)

[Visual	Basic]
Sub	New()
Sub	New(num	As	Integer)
Sub	New(real	As	Double)

	

	 	

Params 	

Name Description

num The	initial	integer	value	that	the	Atom
should	adopt.

real The	initial	floating	point	value	that	the
Atom	should	adopt.

	

	 	

Notes 	

Create	a	NumAtom.

If	a	value	is	not	specified	the	default	of	zero	will
be	used.

	

	 	

Example 	
None.

	
	 	

	

	

Num	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 No
The	integer
value	of	the
number.

	

	 	

Notes 	
The	integer	value	of	the	number.

	
	 	

Example 	
None.

	
	 	

	

	

Num64	Property 	 	

	

Type Default ReadOnly Description

[C#]	long

[Visual	Basic]
Long

	n/a	 No
The	64-bit
integer	value	of
the	number.

	

	 	

Notes 	
The	64-bit	integer	value	of	the	number.

	
	 	

Example 	
None.

	
	 	

	

	

Real	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

	n/a	 No
The	floating
point	value	of
the	number.

	

	 	

Notes 	
The	floating	point	value	of	the	number.

	
	 	

Example 	
None.

	
	 	

	

	

OpAtom	Function 	 	

Create	an	operator	atom	for	a	string

	
	 	

Syntax 	

[C#]
OpAtom()
OpAtom(string	value)

[Visual	Basic]
New()
New(value	As	String)

	

	 	

Params 	

Name Description
value The	operator	text.

	

	 	

Notes 	
Create	an	operator	atom	for	a	string.

	
	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	OpAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(OpAtom	other)

[Visual	Basic]
Function	Equals(other	As	OpAtom)
As	Boolean

	

	 	

Params 	

Name Description
other The	OpAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	OpAtoms	are	the	same.

Two	OpAtoms	are	judged	to	be	equal	if	their
Text	is	equal.

	

	 	

Example 	
None.

	
	 	

	

	

Find	Function 	

Finds	specified	types	of	OpAtom	entries	in	an	array

	
	

Syntax 	

[C#]
IList<Tuple<string,	int>>
Find(ArrayAtom	atom)
IList<Tuple<string,	int>>
Find(ArrayAtom	atom,	string[]	names)

[Visual	Basic]
Function	Find(atom	As	ArrayAtom)	As
IList(Of	Tuple(Of	string,	int))
Function	Find(atom	As	ArrayAtom,
names()	As	String)	As	IList(Of
Tuple(Of	string,	int))

	

	

Params 	

Name Description
atom The	ArrayAtom	to	be	searched.

names The	types	of	OpAtoms	that	should	bereturned.

return The	positions	and	text	of	the	items	which
were	found.

	

	

Finds	specified	types	of	OpAtom	entries	in	an	array.

Notes 	

If	you	specify	no	names	then	the	positions	and	text
of	all	the	OpAtoms	in	the	ArrayAtom	will	be
returned.	If	you	are	only	interested	in	a	particular	set
of	operators	then	you	can	specify	an	array	of	those
types	to	restrict	the	number	of	items	returned.

	

	

This	example	shows	how	to	use	the
Array.FromContentStream	function	to	parse	a	content
stream	and	then	use	the	Find	method	to	search	for	certain
types	of	color	operators	and	replace	them	with	other	color
operators.	In	this	example	this	has	the	effect	of	converting
some	black	parts	of	the	PDF	to	red.

[C#]
using	(Doc	doc	=	new	Doc())	{
		doc.Read("spaceshuttle.pdf");
		doc.RemapPages(new	int[]	{	1,	1	});
		doc.PageNumber	=	2;
		Page	page	=	doc.ObjectSoup[doc.Page]	as
Page;
		StreamObject[]	layers	=
page.GetLayers();
		MemoryStream	st	=	new	MemoryStream();
		foreach	(StreamObject	layer	in	layers)	{
				if	(!layer.Decompress())
						throw	new	Exception("Unable	to
decompress	stream.");
				byte[]	data	=	layer.GetData();
				st.Write(data,	0,	data.Length);
				layer.CompressFlate();
		}
		ArrayAtom	array	=
ArrayAtom.FromContentStream(st.ToArray());
		if	(true)	{

				var	items	=	OpAtom.Find(array,	new
string[]	{	"k"	});
				foreach	(var	pair	in	items)	{	//	make
red
						Atom[]	args	=
OpAtom.GetParameters(array,	pair.Item2);
						if	(args	!=	null)	{
								((NumAtom)args[0]).Real	=	0;
								((NumAtom)args[1]).Real	=	1;
								((NumAtom)args[2]).Real	=	1;
								((NumAtom)args[3]).Real	=	0;
						}
				}
		}
		if	(true)	{
				var	items	=	OpAtom.Find(array,	new
string[]	{	"rg"	});
				foreach	(var	pair	in	items)	{	//	make
green
						Atom[]	args	=
OpAtom.GetParameters(array,	pair.Item2);
						if	(args	!=	null)	{
								((NumAtom)args[0]).Real	=	0;
								((NumAtom)args[1]).Real	=	1;
								((NumAtom)args[2]).Real	=	0;
						}
				}
		}
		byte[]	arrayData	=	array.GetData();
		StreamObject	so	=	new
StreamObject(doc.ObjectSoup);
		so.SetData(arrayData,	1,
arrayData.Length	-	2);
		doc.SetInfo(page.ID,	"/Contents:Del",
"");
		page.AddLayer(so);
		doc.Save("ReplaceColors.pdf");

Example

	

}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				doc.RemapPages(New	Integer[]	{	1,	1	})
				doc.PageNumber	=	2
				Dim	page	As	Page	=
TryCast(doc.ObjectSoup(doc.Page),	Page)
				Dim	layers	As	StreamObject()	=
page.GetLayers()
				Dim	st	As	New	MemoryStream()
				For	Each	layer	As	StreamObject	In
layers
						If	Not	layer.Decompress()	Then
								Throw	New	Exception("Unable	to
decompress	stream.")
						End	If
						Dim	data	As	Byte()	=	layer.GetData()
						st.Write(data,	0,	data.Length)
						layer.CompressFlate()
				Next
				Dim	array	As	ArrayAtom	=
ArrayAtom.FromContentStream(st.ToArray())
				If	True	Then
						Dim	items	=	OpAtom.Find(array,	New
String()	{"k"})
						For	Each	pair	As	var	In	items
								'	make	red
								Dim	args	As	Atom()	=
OpAtom.GetParameters(array,	pair.Item2)
								If	args	IsNot	Nothing	Then
										DirectCast(args(0),
NumAtom).Real	=	0
										DirectCast(args(1),
NumAtom).Real	=	1

										DirectCast(args(2),
NumAtom).Real	=	1
										DirectCast(args(3),
NumAtom).Real	=	0
								End	If
						Next
				End	If
				If	True	Then
						Dim	items	=	OpAtom.Find(array,	New
String()	{"rg"})
						For	Each	pair	As	var	In	items
								'	make	green
								Dim	args	As	Atom()	=
OpAtom.GetParameters(array,	pair.Item2)
								If	args	IsNot	Nothing	Then
										DirectCast(args(0),
NumAtom).Real	=	0
										DirectCast(args(1),
NumAtom).Real	=	1
										DirectCast(args(2),
NumAtom).Real	=	0
								End	If
						Next
				End	If
				Dim	arrayData	As	Byte()	=
array.GetData()
				Dim	so	As	New
StreamObject(doc.ObjectSoup)
				so.SetData(arrayData,	1,
arrayData.Length	-	2)
				doc.SetInfo(page.ID,	"/Contents:Del",
"")
				page.AddLayer(so)
				doc.Save("ReplaceColors.pdf")
		End	Using
End	Sub

ReplaceColors.pdf	[Page	1]

ReplaceColors.pdf	[Page	2]

	

	

	

GetParameter	Function 	 	

Gets	the	parameter	associated	with	the	OpAtom
at	the	specified	index	and	validates	that	the
atom	is	of	the	correct	type

	

	 	

Syntax 	

[C#]
Atom	GetParameter(ArrayAtom
array,	int	index)

[Visual	Basic]
Function	GetParameter(array	As
ArrayAtom,	index	As	Integer)	As
Atom

	may	throw	Exception()

	

	 	

Params 	

Name Description

array The	array	in	which	the	OpAtom	is
found.

index The	index	to	the	OpAtom.
return The	parameter.

	

	 	

Gets	the	parameter	associated	with	the	OpAtom
at	the	specified	index	and	validates	that	the

Notes 	

atom	is	of	the	correct	type.

Only	the	top	level	atoms	are	checked.	So	for
example,	the	TJ	operator	takes	an	ArrayAtom
consisting	of	NumAtoms	and	StringAtoms.	This
function	will	ensure	that	there	is	one	ArrayAtom
available	as	a	parameter.	However	it	will	not
ensure	that	all	items	inside	the	array	are
NumAtoms	or	StringAtoms.

If	the	atom	is	not	of	the	correct	type,	is	not
available	in	the	array	(e.g.	because	the	array	is
too	small)	or	the	operator	is	unrecognized	then
the	return	value	will	be	null.	If	the	operator	does
not	take	any	parameters	the	return	will	be	null.

The	Atom	is	the	actual	object	in	the	supplied
array	so	changing	the	value	of	the	Atom	will
change	the	value	in	the	array.	If	the	index	does
not	point	to	an	OpAtom	or	is	not	inside	the	array
bounds	then	an	exception	will	be	thrown.

This	function	supports	all	the	standard	PDF
operator	types	as	defined	in	the	PDF
Specification	apart	from	BI,	ID	and	EI	which	are
used	for	inline	images.	The	reason	these	are
not	supported	is	because	this	sequence	is	read
as	a	DictAtom	with	embedded	data	so	you
should	never	encounter	it.

	

	 	

Example 	
None.

	
	 	

	

	

GetParameters	Function 	 	

Gets	the	parameters	associated	with	the
OpAtom	at	the	specified	index	and	validates
that	the	atoms	are	of	the	correct	type

	

	 	

Syntax 	

[C#]
Atom[]	GetParameters(ArrayAtom
array,	int	index)

[Visual	Basic]
Function	GetParameters(array	As
ArrayAtom,	index	As	Integer)	As
Atom()

	

	 	

Params 	

Name Description

array The	array	in	which	the	OpAtom	is
found.

index The	index	to	the	OpAtom.
return The	parameters.

	

	 	

Gets	the	parameters	associated	with	the
OpAtom	at	the	specified	index	and	validates
that	the	atoms	are	of	the	correct	type.

Because	the	arguments	are	validated	and	the

Notes 	

types	are	checked	so	you	can	rely	on	the	fact
that	the	returned	array	contains	a	valid	number
of	Atoms	of	the	correct	types.

Only	the	top	level	atoms	are	checked.	So	for
example,	the	TJ	operator	takes	an	ArrayAtom
consisting	of	NumAtoms	and	StringAtoms.	This
function	will	ensure	that	there	is	one	ArrayAtom
available	as	a	parameter.	However	it	will	not
ensure	that	all	items	inside	the	array	are
NumAtoms	or	StringAtoms.	Also	resource
lookups	are	not	done	so,	for	example,	it	is	not
checked	that	a	font	name	actually	exists	in	the
font	resource	dictionary.

If	the	operator	takes	no	parameters	a	zero
length	array	will	be	returned.	If	the	operator
parameters	are	incorrect	or	if	the	operator	is	not
recognized	then	the	return	value	will	be	null.	In
this	unusual	situation	you	may	wish	to	set	the
OpAtom.Text	to	white	space	to	remove	the
invalid	operator	from	the	content	stream.	While
this	does	not	fix	the	underlying	problem,	it	will	at
least	prevent	applications	like	Acrobat	from
reporting	an	error.

	

	 	

Example 	
None.

	
	 	

	

	

Text	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

n/a No The	text	of	the
operator

	

	 	

Notes 	

The	text	of	the	operator.

Typical	operators	include	"rg"	for	setting	a	RGB	color
and	"cm"	for	concatenating	a	matrix.	Further	details
may	be	found	in	the	PDF	Specification.

	

	 	

Example 	
None.

	
	 	

	

	

RefAtom	Constructor 	 	

Construct	a	RefAtom.

	
	 	

Syntax 	

[C#]
RefAtom()
RefAtom(IndirectObject	value)	

[Visual	Basic]
Sub	New()
Sub	New(value	As	IndirectObject)

	

	 	

Params 	

Name Description

value The	initial	IndirectObject	that	the	Atom
should	point	to.

	

	 	

Notes 	

Create	a	RefAtom.

If	an	IndirectObject	is	not	specified	the	default	of
the	null	object	at	entry	zero	will	be	used.

	

	 	

Example 	

None.
	 	

	

	

	

Assign	Function 	 	

Set	the	IndirectObject	that	the	reference	should
point	to.

	

	 	

Syntax 	

[C#]
void	Assign(IndirectObject	value)

[Visual	Basic]
Sub	Assign(value	As
IndirectObject)

	

	 	

Params 	

Name Description

value The	IndirectObject	that	the	RefAtom
should	point	to.

	

	 	

Notes 	

Set	the	IndirectObject	that	the	reference	should
point	to.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	RefAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(RefAtom	other)

[Visual	Basic]
Function	Equals(other	As	RefAtom)
As	Boolean

	

	 	

Params 	

Name Description
other The	RefAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	RefAtoms	are	the	same.

Two	RefAtoms	are	judged	to	be	equal	if	their	ID
and	Gen	properties	are	equal.

	

	 	

Example 	
None.

	
	 	

	

	

Resolve	Function 	 	

Get	the	IndirectObject	that	the	reference	is
pointing	to.

	

	 	

Syntax 	

[C#]
IndirectObject	Resolve(ObjectSoup
objects)

[Visual	Basic]
Function	Resolve(objects	As
ObjectSoup)	as	IndirectObject

	

	 	

Params 	

Name Description

objects The	collection	of	objects	to	besearched.
return The	matching	IndirectObject.

	

	 	

Notes 	

This	function	resolves	a	RefAtom	to	the
IndirectObject	that	it	references.

If	the	RefAtom	is	referencing	another	RefAtom
then	the	Resolve	process	will	continue	until	an
Atom	which	is	not	a	RefAtom	is	found.	If	no	item
is	found	then	null	is	returned.

	 	

	

Example 	
None.

	
	 	

	

	

ID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 No
The	ID	of	the
referenced
IndirectObject.

	

	 	

Notes 	
The	ID	of	the	referenced	IndirectObject.

	
	 	

Example 	
None.

	
	 	

	

	

Gen	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

	n/a	 No

The	generation
of	the
referenced
IndirectObject.

	

	 	

Notes 	
The	generation	of	the	referenced	IndirectObject.

	
	 	

Example 	
None.

	
	 	

	

	

Encode	Function 	 	

Encode	a	string	into	a	format	for	use	in	a
content	stream	using	a	normal	or	simple	font.

	

	 	

Syntax 	

[C#]
static	StringBuilder
Encode(string	text,
IDictionary<char,	char>	encoding,
StringBuilder	builder)

[Visual	Basic]
Shared	Function	Encode(text	As
String,	encoding	As
IDictionary<char,	char>,	builder
As	StringBuilder)	As
StringBuilder

	

	 	

Params 	

Name Description
text The	text	to	be	encoded.

encoding
The	encoding	to	use	-	typically
obtained	from	the
FontObject.GetEncoding	method.

builder
The	StringBuilder	to	which	the
encoded	representation	should	be
appended.

return The	updated	StringBuilder.

	 	

	

Notes 	

Encode	a	string	into	a	format	for	use	in	a
content	stream	using	a	normal	or	simple	font.

Typically	you	will	obtain	an	appropriate
encoding	from	the	FontObject.GetEncoding
method.	This	method	supports	eight	bit
characters	only	as	this	is	what	is	supported	by
simple	fonts.	Most	commonly	you	will	want	to
use	the	Latin	horizontal	encoding.

You	should	not	use	a	null	or	identity	encoding
as	there	are	subtle	differences	between	the
Latin1	encoding	used	in	PDF	and	the	first	256
characters	of	Unicode.	As	such	if	you	use	a	null
or	identity	encoding	then	characters	such	as	the
Euro	sign	will	appear	incorrectly.

	

	 	

Example 	
None.

	
	 	

	

	

EncodeDoubleByte	Function 	 	

Encode	a	string	into	a	format	for	use	in	a
content	stream	using	a	composite	font	with	a
double	byte	CMap.

	

	 	

Syntax 	

[C#]
static	StringBuilder
EncodeDoubleByte(string	text,
IDictionary<char,	char>	encoding,
StringBuilder	builder)

[Visual	Basic]
Shared	Function
EncodeDoubleByte(text	As	String,
encoding	As	IDictionary<char,
char>,	builder	As	StringBuilder)
As	StringBuilder

	

	 	

Params 	

Name Description
text The	text	to	be	encoded.

encoding
The	encoding	to	use	-	typically
obtained	from	the
FontObject.GetEncoding	method.

builder
The	StringBuilder	to	which	the
encoded	representation	should	be
appended.

return The	updated	StringBuilder.

	 	

	

Notes 	

Encode	a	string	into	a	format	for	use	in	a
content	stream	using	a	composite	font	with	a
double	byte	CMap.

Typically	you	will	obtain	an	appropriate
encoding	from	the	FontObject.GetEncoding
method.	This	method	supports	eight	bit
characters	only	as	this	is	what	is	supported	by
simple	fonts.	Most	commonly	you	will	want	to
use	a	Korean,	Japanese,	ChineseS	or
ChineseT	encoding	in	either	horizontal	or
vertical	format.

This	method	should	only	be	used	with
composite	fonts	that	specify	this	type	of
encoding	as	only	these	fonts	will	understand	the
fact	that	the	characters	are	multi-byte.	If	you
attempt	to	use	this	method	with	a	simple	font
then	you	will	get	extra	characters	inserted	since
each	double	byte	entry	will	be	interpreted	as
two	single	characters.

See	the	Fonts	and	Languages	section	for
details	on	language	types.

	

	 	

Example 	
None.

	
	 	

	

	

StringAtom	Constructor 	 	

Construct	a	StringAtom.

	
	 	

Syntax 	

[C#]
StringAtom()
StringAtom(string	value)	

[Visual	Basic]
Sub	New()
Sub	New(value	As	String)

	

	 	

Params 	

Name Description

value The	initial	value	that	the	Atom	should
adopt.

	

	 	

Notes 	

Create	a	StringAtom.

If	a	value	is	not	specified	the	default	-	an	empty
string	-	will	be	used.

	

	 	

Example 	

None.
	 	

	

	

	

Decode	Function 	 	

Decode	a	PDF	encoded	string	into	a	plain	string
format

	

	 	

Syntax 	

[C#]
StringBuilder	Decode(string	text,
StringBuilder	builder)

[Visual	Basic]
Function	Decode(text	As	String,
builder	As	StringBuilder)	As
StringBuilder

	

	 	

Params 	

Name Description
text The	text	to	be	decoded.

builder

The	StringBuilder	to	which	the
encoded	representation	should	be
appended.	If	null	then	one	will	be
created.

return The	StringBuilder	supplied	or	created.

	

	 	

Decode	a	PDF	encoded	string	into	a	plain	string
format.

This	type	of	operation	can	be	useful	if	you	are

Notes 	

extracting	text	from	a	PDF	content	stream
containing	raw	PDF	string	operators.

Typically	you	would	use	the	StringAtom	Decode
or	DecodeDoubleByte	methods	to	allow	text
operator	parameters	to	be	decoded	into	the
base	text	encoding.	These	can	then	be	passed
through	the	FontObject	EncodingToChar	and
EncodingToString	properties	to	allow	mapping
from	the	text	encoding	through	to	Unicode
values.

	

	 	

Example 	
None.

	
	 	

	

	

DecodeDoubleByte	Function 	 	

Decode	a	double	byte	PDF	encoded	string	into
a	plain	string	format

	

	 	

Syntax 	

[C#]
StringBuilder
DecodeDoubleByte(string	text,
StringBuilder	builder)

[Visual	Basic]
Function	DecodeDoubleByte(text	As
String,	builder	As	StringBuilder)
As	StringBuilder

	

	 	

Params 	

Name Description
text The	text	to	be	decoded.

builder

The	StringBuilder	to	which	the
encoded	representation	should	be
appended.	If	null	then	one	will	be
created.

return The	StringBuilder	supplied	or	created.

	

	 	

Decode	a	double	byte	PDF	encoded	string	into
a	plain	string	format.

Notes 	

This	may	be	necessary	if	you	are	looking	at	a
content	stream	using	a	Composite	font	with	a
double	byte	CMap.

This	type	of	operation	can	be	useful	if	you	are
extracting	text	from	a	PDF	content	stream
containing	raw	PDF	string	operators.

Typically	you	would	use	the	StringAtom	Decode
or	DecodeDoubleByte	methods	to	allow	text
operator	parameters	to	be	decoded	into	the
base	text	encoding.	These	can	then	be	passed
through	the	FontObject	EncodingToChar	and
EncodingToString	properties	to	allow	mapping
from	the	text	encoding	through	to	Unicode
values.

	

	 	

Example 	
None.

	
	 	

	

	

Equals	Function 	 	

Test	whether	the	two	StringAtoms	are	the	same

	
	 	

Syntax 	

[C#]
bool	Equals(StringAtom	other)

[Visual	Basic]
Function	Equals(other	As
StringAtom)	As	Boolean

	

	 	

Params 	

Name Description
other The	StringAtom	to	test	against.

	

	 	

Notes 	

Test	whether	the	two	StringAtoms	are	the	same.

Two	StringAtoms	are	judged	to	be	equal	if	their
Text	is	equal.

	

	 	

Example 	

None.

	 	 	

	

	

Text	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

	n/a	 No The	text	of	the
string.

	

	 	

Notes 	
The	text	of	the	string.

	
	 	

Example 	
None.

	
	 	

	

	

ProcessingObject	Event 	 	

Occurs	just	before	an	IndirectObject	is
processed.

	

	 	

Syntax 	

[C#]
event	ProcessingObjectEventHandler
ProcessingObject;

delegate	void
ProcessingObjectEventHandler(object
sender,	ProcessingObjectEventArgs
e);	

[Visual	Basic]
Event	ProcessingObject	As
ProcessingObjectEventHandler

Delegate	Sub
ProcessingObjectEventHandler(sender
As	Object,	e	As
ProcessingObjectEventArgs);

	

	 	

Params 	

Name Description
sender The	Operation	firing	the	event.

e The	ProcessingObjectEventArgs	used
to	control	the	operation.

	

	 	

Notes 	

Typically	you	handle	the	ProcessingObject
event	in	order	to	determine	properties	about	an
IndirectObject	before	processing.

Because	the	handler	passes	an	EventArgs
class	which	inherits	from	CancelEventArgs	you
can	also	choose	to	cancel	the	operation	on	the
IndirectObject.

To	associate	the	event	with	your	event	handle
add	an	instance	of	the
ProcessingObjectEventHandler	delegate	to	the
event.	The	event	handler	will	be	called
whenever	the	event	occurs.

	

	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

ProcessedObject	Event 	 	

Occurs	just	after	an	IndirectObject	has	been
processed.

	

	 	

Syntax 	

[C#]
event	ProcessedObjectEventHandler
ProcessedObject;

delegate	void
ProcessedObjectEventHandler(object
sender,	ProcessedObjectEventArgs
e);	

[Visual	Basic]
Event	ProcessedObject	As
ProcessedObjectEventHandler

Delegate	Sub
ProcessedObjectEventHandler(sender
As	Object,	e	As
ProcessedObjectEventArgs);

	

	 	

Params 	

Name Description
sender The	Operation	firing	the	event.

e
The	ProcessedObjectEventArgs	used
to	report	back	the	status	of	the
operation.

	 	

	

Notes 	

Typically	you	handle	the	ProcessedObject	event
in	order	to	post-process	an	IndirectObject.

To	associate	the	event	with	your	event	handle
add	an	instance	of	the
ProcessedObjectEventHandler	delegate	to	the
event.	The	event	handler	will	be	called
whenever	the	event	occurs.

	

	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

ProcessedObjectEventArgs
Constructor

	 	

ProcessedObjectEventArgs	Constructor.

	
	 	

Syntax 	

[C#]
ProcessedObjectEventArgs(IndirectObject
obj,	bool	successful)

[Visual	Basic]
Sub	New(obj	As	IndirectObject,
successful	As	Boolean)

	

	 	

Params 	

Name Description
obj The	IndirectObject	processed.

successful A	value	indicating	whether	theprocessing	was	successful.

	

	 	

Notes 	

Create	a	ProcessedObjectEventArgs	detailing
an	IndirectObject	and	whether	it	was	processed
successfully	or	not.

	

	 	

Example 	
None.

	

	 	

	

	

Object	Property 	 	

	

Type Default ReadOnly Description

[C#]IndirectObject

[Visual	Basic]
IndirectObject

n/a Yes

Gets	the
IndirectObject
which	has
just	been
processed.

	

	 	

Notes 	
The	IndirectObject	which	has	just	been	processed.

	
	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

Successful	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

n/a Yes

Gets	a	value
indicating
whether	the
processing	was
successful.

	

	 	

Notes 	

Gets	a	value	indicating	whether	the	processing	was
successful.

	

	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

Tag	Property 	 	

	

Type Default ReadOnly Description

[C#]object

[Visual	Basic]
Object

n/a No

Gets	or	sets	an
object	which	can
be	used	to	save
data	about	the
event.

	

	 	

Notes 	

Gets	or	sets	an	object	which	can	be	used	to	save
data	about	the	event.

This	can	be	useful	if	you	need	to	pass	information
from	a	ProcessingObject	event	to	a	ProcessedObject
event.

	

	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

ProcessingObjectEventArgs
Constructor

	 	

ProcessingObjectEventArgs	Constructor.

	
	 	

Syntax 	

[C#]
ProcessingObjectEventArgs(IndirectObject
obj)
ProcessingObjectEventArgs(IndirectObject
obj,	ProcessingInfo	info)

[Visual	Basic]
Sub	New(obj	As	IndirectObject)
Sub	New(obj	As	IndirectObject,	info	As
ProcessingInfo)

	

	 	

Params 	

Name Description

obj The	IndirectObject	which	is	about	to	be
processed.

info The	ProcessingInfo	containing	related
information.

	

	 	

Notes
	

Create	a	ProcessingObjectEventArgs	detailing	an
IndirectObject	which	is	about	to	be	processed. 	 	

	

Example 	
None.

	
	 	

	

	

Object	Property 	 	

	

Type Default ReadOnly Description

[C#]IndirectObject

[Visual	Basic]
IndirectObject

n/a Yes

Gets	the
IndirectObject
to	be
processed.

	

	 	

Notes 	
The	IndirectObject	to	be	processed.

	
	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

Tag	Property 	 	

	

Type Default ReadOnly Description

[C#]object

[Visual	Basic]
Object

n/a No

Gets	or	sets	an
object	which	can
be	used	to	save
data	about	the
event.

	

	 	

Notes 	

Gets	or	sets	an	object	which	can	be	used	to	save
data	about	the	event.

This	can	be	useful	if	you	need	to	pass	information
from	a	ProcessingObject	event	to	a	ProcessedObject
event.

	

	 	

Example 	
See	the	RecolorOperation.Recolor	method.

	
	 	

	

	

Info	Property 	 	

	

Type Default ReadOnly Description

[C#]ProcessingInfo

[Visual	Basic]
ProcessingInfo

n/a Yes

Gets	the
ProcessingInfo
containing
related
information.

	

	 	

Notes 	
The	ProcessingInfo	containing	related	information.

	
	 	

Example 	

See	the	XpsImportOperation.Import	and	the
SwfImportOperation.Import	methods.

	

	 	

	

	

ProcessingInfo	Constructor 	 	

ProcessingInfo	Constructor.

	
	 	

Syntax 	

[C#]
ProcessingInfo()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	a	ProcessingInfo.

	
	 	

Example 	
None.

	
	 	

	

	

SourceType	Property

	

Type Default Read
Only Description

[C#]ProcessingSourceType

[Visual	Basic]
ProcessingSourceType

See
description. Yes

Gets	the
type	of	the
source
object	to	be
processed
and	the
stage	of
operation.

	

Notes
	

The	ProcessingSourceType	enumeration	may	take	the
following	values:

Unknown
Document
Page
PageContent
Image
ImageMask
MultiFrameImage
ImageFrame
Stream
Path
Text
FormXObject
Shading

The	meaning	of	these	source	types	depends	on	the

	

operations.

	

Example 	
None.

	
	

	

	

Handled	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

false No

Gets	or	sets	a
value	that
indicates
whether	the
event	handler
has	handled	the
event	so	that	the
operation	skips
the	default
processing.

	

	 	

Notes 	

This	property	determines	whether	the	operation	skips
the	default	processing.

	

	 	

Example 	
See	the	XpsImportOperation.Import	method.

	
	 	

	

	

X	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

n/a Yes

Gets	the	x-
coordinate
of	the
location	of
the	source
object.

	

	 	

Notes 	

This	property	holds	the	horizontal	offset	of	the
location.

Values	are	in	the	coordinate	system	of	the	source
object.

	

	 	

Example 	
None.

	
	 	

	

	

Y	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

n/a Yes

Gets	the	y-
coordinate
of	the
location	of
the	source
object.

	

	 	

Notes 	

This	property	holds	the	vertical	offset	of	the	location.

Values	are	in	the	coordinate	system	of	the	source
object.

	

	 	

Example 	
None.

	
	 	

	

	

Width	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

n/a Yes

Gets	the
width	of	the
source
object.

	

	 	

Notes 	

This	property	holds	the	width	of	the	source	object.

Values	are	in	the	coordinate	system	of	the	source
object.

	

	 	

Example 	
None.

	
	 	

	

	

Height	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

n/a Yes

Gets	the
height	of	the
source
object.

	

	 	

Notes 	

This	property	holds	the	height	of	the	source	object.

Values	are	in	the	coordinate	system	of	the	source
object.

	

	 	

Example 	
None.

	
	 	

	

	

DocNumber	Property 	 	

	

Type Default ReadOnly Description

[C#]int?

[Visual	Basic]
Nullable(Of	Integer)

n/a No

Gets	or	sets
the
document
number	of
the	source
document
being/to	be
processed.

	

	 	

Notes 	

The	value	of	this	property	when	the
Operation.ProcessingObject	event	is	generated
depends	on	the	operation.

The	event	handler	should	change	this	value	when	a
processing	sequence	other	than	the	default	is
desired.	Set	this	value	to	null	to	end	the	processing
of	the	current	set	of	documents.

	

	 	

Example 	
See	the	XpsImportOperation.Import	method.

	
	 	

	

	

DocCount	Property 	 	

	

Type Default ReadOnly Description

[C#]int?

[Visual	Basic]
Nullable(Of	Integer)

n/a Yes

Gets	the
number	of
documents
in	the
source
object.

	

	 	

Notes 	

This	property	holds	the	number	of	pages	in	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

PageNumber	Property 	 	

	

Type Default ReadOnly Description

[C#]int?

[Visual	Basic]
Nullable(Of	Integer)

n/a No

Gets	or	sets
the	page
number	of
the	source
page
being/to	be
processed.

	

	 	

Notes 	

The	value	of	this	property	when	the
Operation.ProcessingObject	event	is	generated
depends	on	the	operation.

The	event	handler	should	change	this	value	when	a
processing	sequence	other	than	the	default	is
desired.	Set	this	value	to	null	to	end	the	processing
of	the	current	set	of	pages.

	

	 	

Example 	
See	the	XpsImportOperation.Import	method.

	
	 	

	

	

PageCount	Property 	 	

	

Type Default ReadOnly Description

[C#]int?

[Visual	Basic]
Nullable(Of	Integer)

n/a Yes

Gets	the
number	of
pages	in	the
source
object.

	

	 	

Notes 	

This	property	holds	the	number	of	pages	in	the
source	object.

	

	 	

Example 	
None.

	
	 	

	

	

FrameNumber	Property

	

Type Default ReadOnly Description

[C#]long?

[Visual	Basic]
Nullable(Of	Long)

n/a No Gets	or	sets	the	frame	number	of	the
source	frame	being/to	be	processed.

	

Notes 	

The	value	of	this	property	when	the	Operation.ProcessingObject	
generated	depends	on	the	operation.

The	event	handler	should	change	this	value	when	a	processing	sequence	other
than	the	default	is	desired.	Set	this	value	to	null	to	end	the	processing	of	the
current	set	of	frames.

	

See	the	SwfImportOperation.Import	method.

	

Here	we	import	the	frame	at	3.5	seconds.

[C#]
Doc	doc	=	new	Doc();
using(SwfImportOperation	operation	=	new	SwfImportOperation())
{

Example
	

		operation.Doc	=	doc;
		operation.ContentAlign	=	ContentAlign.Top;
		operation.ContentScaleMode	=	ContentScaleMode.ShowAll;
		operation.ProcessingObject	+=	delegate(object	sender,
ProcessingObjectEventArgs	e)	{
				if(e.Info.SourceType==ProcessingSourceType.MultiFrameImage
&&	e.Info.FrameNumber.HasValue)
						e.Info.FrameNumber	=	1+(long)
(e.Info.FrameRate.Value*3.5);
		};
		operation.Import(Server.MapPath("ABCpdf.swf"));
}
doc.Save(Server.MapPath("swf.pdf"));
doc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
Using	theOperation	As	New	SwfImportOperation
		theOperation.Doc	=	theDoc
		theOperation.ContentAlign	=	ContentAlign.Top
		theOperation.ContentScaleMode	=	ContentScaleMode.ShowAll
		AddHandler	theOperation.ProcessingObject,	AddressOf
Processing
		theOperation.Import(Server.MapPath("ABCpdf.swf"))
End	Using
theDoc.Save(Server.MapPath("swf.pdf"))
theDoc.Clear()

Private	Shared	Sub	Processing(sender	As	Object,	e	As
ProcessingObjectEventArgs)
		If	e.Info.SourceType	=	ProcessingSourceType.MultiFrameImage
_
				AndAlso	e.Info.FrameNumber.HasValue	Then
				e.Info.FrameNumber	=	1	+	CLng(e.Info.FrameRate.Value	*
3.5)		End	If
End	Sub

	

	

FrameCount	Property 	 	

	

Type Default ReadOnly Description

[C#]long?

[Visual	Basic]
Nullable(Of	Long)

n/a Yes

Gets	the
number	of
frames	in
the	source
object.

	

	 	

Notes 	

This	property	holds	the	number	of	frames	in	the
source	object.

	

	 	

Example 	
None.

	
	 	

	

	

FrameRate	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

n/a Yes

Gets	the
number	of
frames	per
second	for
the	source
object.

	

	 	

Notes 	

This	property	holds	the	number	of	frames	per	second
for	the	source	object.

	

	 	

Example 	

See	the	FrameNumber	property	and	the
SwfImportOperation.Import	method.

	

	 	

	

	

BackgroundColor	Property 	 	

	

Type Default ReadOnly Description

[C#]XColor

[Visual	Basic]
XColor

n/a Yes

Gets	the
background
color	of	the
source	object.

	

	 	

Notes 	

This	property	holds	the	background	color	of	the
source	object.

	

	 	

Example 	
See	the	SwfImportOperation.Import	method.

	
	 	

	

	

StreamPosition	Property 	 	

	

Type Default ReadOnly Description

[C#]long?

[Visual	Basic]
Nullable(Of	Long)

n/a Yes

Gets	or	Sets
the	stream
position	of
the	source
object,	if
applicable.

	

	 	

Notes 	

The	value	of	this	property	when	the
Operation.ProcessingObject	event	is	generated
depends	on	the	operation.

This	property	holds	the	position	in	the	PDF	stream.
Set	this	value	to	null	to	end	the	processing	of	the
current	stream.

See	the	RenderOperation.Save	method.

	

	 	

Example 	
None.

	
	 	

	

	

StreamLength	Property 	 	

	

Type Default ReadOnly Description

[C#]long?

[Visual	Basic]
Nullable(Of	Long)

n/a No

Gets	the
stream
length	of	the
source
object,	if
applicable.

	

	 	

Notes 	

The	value	of	this	property	when	the
Operation.ProcessingObject	event	is	generated
depends	on	the	operation.

See	the	RenderOperation.Save	method.

	

	 	

Example 	
None.

	
	 	

	

	

Text	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

n/a No

Gets	the
unicode	Text	of
the	Source
Event,	if
applicable.

	

	 	

Notes 	

The	value	of	this	property	when	the
Operation.ProcessingObject	event	is	generated
depends	on	the	operation.

See	the	RenderOperation.Save	method.

	

	 	

Example 	
None.

	
	 	

	

	

RecolorOperation	Constructor 	 	

RecolorOperation	Constructor.

	
	 	

Syntax 	

[C#]
RecolorOperation()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Create	a	RecolorOperation.

You	must	specify	a	ColorSpace	before	calling
the	Recolor	method.

	

	 	

Example 	
See	the	Recolor	method.

	
	 	

	

	

Recolor	Function

Recolor	pages	in	a	document.

	

Syntax 	

[C#]
void	Recolor(Doc	doc)
void	Recolor(Pages	pages)
void	Recolor(Page	page)

[Visual	Basic]
Sub	Recolor(doc	As	Doc)
Sub	Recolor(pages	As	Pages)
Sub	Recolor(page	As	Page)

	may	throw	Exception()

	

Params 	

Name Description
doc The	document	to	be	recolored.

pages The	pages	to	be	recolored	as	referenced	by	a	PagesIndirectObject.

page The	page	to	be	recolored	as	referenced	by	a	Page
IndirectObject.

	

Converts	the	specified	pages	from	one	color	space	to	another.

Notes
	

The	destination	color	space	is	specified	by	assigning	a	value	to
the	DestinationColorSpace	property.	All	images	used	on	the	page
are	converted	to	the	new	color	space.	All	color	operators	used	in
the	page	content	stream	are	converted	to	the	new	color	space.

Annotations	and	fields	are	not	part	of	the	page	but	instead	float
over	the	page.	You	can	choose	whether	to	convert	the
appearance	stream	of	any	annotations	or	leave	them	in	their
native	color	space.	This	is	controlled	using	the
ConvertAnnotations	property.

Colors	can	only	be	sensibly	mapped	from	one	color	space	to
another	if	we	know	something	about	the	characteristics	of	the
color	space.	If	your	color	spaces	do	not	contain	this	information
(e.g.	if	they	are	device	color	spaces)	then	ABCpdf	will	use	a
default	color	profile.

An	exception	will	be	thrown	if	the	operation	is	not	possible.	
may	happen	if	the	IndirectObjects	provided	are	not	in	an
ObjectSoup	or	if	the	destination	ColorSpace	is	in	some	way
invalid.

As	part	of	the	Recolor	process,	all	images	used	on	the	page(s)
are	also	recolored.	(See	also	PixMap.Recolor.)	After	the	recolor
process	has	been	completed	these	PixMap	objects	will	no	longer
be	compressed.	You	may	wish	to	analyse	and	recompress	these
images	by	pre	and	post	processing	them	during	the
ProcessingObject	and	ProcessedObject	events.

Although	the	Recolor	operation	is	designed	to	convert	a
document	to	a	single	color	space,	such	as	CMYK,	with
actual	colors	unchanged,	it	can	also	be	used	to	convert	a
document	to	a	single,	different,	color.	When	you	add	a
spot	color	(please	see	AddColorSpaceSpot)	and	make	it
the	destination	color	space,	the	conversion	will	be	to
shades	of	the	spot	color	specified.

	

Here	we	recolor	one	page	out	of	a	document.	We	pick	up	the
ProcessingObject	events	so	that	we	can	store	the	source	color	space	for
all	the	PixMap	objects	which	are	processed.	We	don't	want	to	convert
CMYK	pixmaps	so	we	set	the	Cancel	property	to	true	if	we	find	these.

We	then	pick	up	the	ProcessedObject	events	so	that	we	can	recompress
the	PixMap	objects	after	they	have	been	recolored.	We	vary	the
recompression	method	used	dependent	on	the	source	color	space	and
the	size	of	the	image.

Here	we	use	standard	delegates	for	backwards	compatibility	with	
1.1	code.	However	.NET	2.0	anonymous	delegates	will	provide	a	
compact	solution.

[C#]
Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
MyOp.Recolor(theDoc,
(Page)theDoc.ObjectSoup[theDoc.Page]);
theDoc.Save(Server.MapPath("RecolorOperation.pdf"));
theDoc.Clear();

private	class	MyOp{
		public	static	void	Recolor(Doc	doc,	Page	
				RecolorOperation	op	=	new	RecolorOperation();
				op.DestinationColorSpace	=	new
ColorSpace(doc.ObjectSoup,
ColorSpaceType.DeviceGray);
				op.ConvertAnnotations	=	false;
				op.ProcessingObject	+=	Recoloring;
				op.ProcessedObject	+=	Recolored;
				op.Recolor(page);
		}

		public	static	void	Recoloring(object	sender,

Example
	

ProcessingObjectEventArgs	e)	{
				PixMap	pm	=	e.Object	as	PixMap;
				if	(pm	!=	null)	{
						ColorSpaceType	cs	=	pm.ColorSpaceType;
						if	(cs	==	ColorSpaceType.DeviceCMYK)
								e.Cancel	=	true;
						e.Tag	=	cs;
				}
		}

		public	static	void	Recolored(object	sender,
ProcessedObjectEventArgs	e)	{
				if	(e.Successful)	{
						PixMap	pm	=	e.Object	as	PixMap;
						if	(pm	!=	null)	{
								ColorSpaceType	cs	=	(ColorSpaceType)e.Tag;
								if	(pm.Width	>	1000)
										pm.CompressJpx(30);
								else	if	(cs	==	ColorSpaceType.DeviceRGB)
										pm.CompressJpeg(30);
								else
										pm.Compress();	//	Flate
						}
				}
		}
}	

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
theDoc.Read(Server.MapPath("../mypics/sample.pdf"))
MyOp.Recolor(theDoc,
CType(theDoc.ObjectSoup(theDoc.Page),	Page))
theDoc.Save(Server.MapPath("RecolorOperation.pdf"))
theDoc.Clear()

Private	Class	MyOp

		Public	Shared	Sub	Recolor(doc	As	Doc,	page	
Page)
				Dim	op	As	New	RecolorOperation()
				op.DestinationColorSpace	=	New
ColorSpace(doc.ObjectSoup,
ColorSpaceType.DeviceGray)
				op.ConvertAnnotations	=	False
				AddHandler	op.ProcessingObject,	AddressOf
Recoloring
				AddHandler	op.ProcessedObject,	AddressOf
Recolored
				op.Recolor(page)
		End	Sub	'Recolor

		Public	Shared	Sub	Recoloring(sender	As	Object,	e
As	ProcessingObjectEventArgs)
				Dim	pm	As	PixMap	=	TryCast(e.Object,	PixMap)
				If	pm	IsNot	Nothing	Then
						Dim	cs	As	ColorSpaceType	=	pm.ColorSpaceType
						If	cs	=	ColorSpaceType.DeviceCMYK	Then
								e.Cancel	=	True
						End	If
						e.Tag	=	cs
				End	If
		End	Sub	'Recoloring

		Public	Shared	Sub	Recolored(sender	As	Object,	e	As
ProcessedObjectEventArgs)
				If	e.Successful	Then
						Dim	pm	As	PixMap	=	TryCast(e.Object,	
						If	pm	IsNot	Nothing	Then
								Dim	cs	As	ColorSpaceType	=	CType(e.Tag,
ColorSpaceType)
								If	pm.Width	>	1000	Then
										pm.CompressJpx(30)
								Else
										If	cs	=	ColorSpaceType.DeviceRGB	

												pm.CompressJpeg(30)
										Else
												pm.Compress()	'	Flate
										End	If
								End	If
						End	If
				End	If
		End	Sub	'Recolored	
End	Class	'MyOp

	

	

	

	

ConvertAnnotations	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

true No

Gets	or	sets	a
value	indicating
whether
annotations	are
to	be	recolored.

	

	 	

Notes 	

Whether	annotations	should	be	recolored.

Annotations	and	fields	are	not	part	of	the	page	but
instead	float	over	the	page.	You	can	choose	whether
to	convert	the	appearance	stream	of	any	annotations
or	leave	them	in	their	native	color	space.

	

	 	

Example 	
See	the	Recolor	method.

	
	 	

	

	

DestinationColorSpace	Property 	 	

	

Type Default ReadOnly Description

[C#]ColorSpace

[Visual	Basic]
ColorSpace

null No
Gets	or	sets	the
destination
ColorSpace.

	

	 	

Notes 	
The	destination	ColorSpace	for	the	operation.

	
	 	

Example 	
See	the	Recolor	method.

	
	 	

	

	

GetApplicationFolder	Function 	

Gets	the	installation	folder	of	an	import	application.

	
	

Syntax 	

[C#]
static	string
GetApplicationFolder(ImportApplicationType
app)

[Visual	Basic]
Shared	Function	GetApplicationFolder(app
As	ImportApplicationType)	As	String

	

Params 	

Name Description
app The	import	application.
return The	installation	folder	of	the	application.

	

	

Notes
	

This	function	returns	the	installation	folder	of	an
application	that	can	be	used	by	ImportAny.

The	installation	folder	of
ImportApplicationType.ShellAssociation	is	null.	For
the	Microsoft	Office	applications,	it	will	be	the
Microsoft	Office	installation	folder.	If	this	function
returns	null	for	an	application	other	than
ShellAssociation,	it	means	that	the	application	is	not

	

installed	or	that	ABCpdf	has	failed	to	find	the
application.	If	this	is	the	case,	ImportAny	will	fail.
Before	calling	ImportAny,	you	can	use	this	function
to	make	sure	that	ABCpdf	finds	the	application.

	

Example 	
None.

	
	

	

	

XpsImportOperation
Constructor

	 	

XpsImportOperation	Constructor.

	
	 	

Syntax 	

[C#]
XpsImportOperation()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	
Create	an	XpsImportOperation.

	
	 	

Example 	
See	the	Import	method.

	
	 	

	

	

ApplicationIsRunning	Function 	

Gets	a	value	indicating	whether	an	import
application	is	running	for	this	XpsImportOperation.

	

	

Syntax 	

[C#]
bool
ApplicationIsRunning(ImportApplicationType
app)

[Visual	Basic]
Function	ApplicationIsRunning(app	As
ImportApplicationType)	As	Boolean

	

Params 	

Name Description
app The	import	application.
return Whether	the	application	is	running.

	

	

Notes 	

This	function	indicates	whether	an	application	is
running	for	this	XpsImportOperation	when	the
process	reuse	for	the	application	is	enabled	with
EnableApplicationReuse.

	

	

Example 	
None.

	
	

	

	

EnableApplicationReuse	Function 	

Enables	an	import	application	process	to	be	reused	so
that	it	is	terminated	only	manually	or	when	this
operation	is	disposed	of.

	

	

Syntax 	

[C#]
bool
EnableApplicationReuse(ImportApplicationType
app,	bool	reuse)

[Visual	Basic]
Function	EnableApplicationReuse(app	As
ImportApplicationType,	reuse	As	Boolean)	As
Boolean

	

Params 	

Name Description
app The	import	application.

reuse Whether	the	application	process	is	to	be
reused.

return Whether	the	reuse	status	of	the	application
has	been	changed.

	

	

This	function	changes	the	reuse	status	of	an
application.	Currently,	the	application	processes	of	only
Microsoft	Word,	Microsoft	Excel,	and	Microsoft

Notes 	

PowerPoint	can	be	reused.

Without	application	reuse,	each	call	to	ImportAny	starts
and	terminates	the	application	process.	To	avoid	the
overhead	of	the	application	start-up	and	exit,	enable
the	reuse	of	the	process	for	the	particular
application(s).	The	same	process	of	that	application	is
used	in	multiple	calls	to	ImportAny	of	the	same
XpsImportOperation	that	uses	the	application.

The	reuse	status	is	not	changed	if	the	process	reuse	of
the	application	is	not	supported.	If	the	process	is
running	(for	this	XpsImportOperation	object),	the
running	process	is	terminated	when	its	reuse	is
disabled.

	

	

Example 	
None.

	
	

	

	

Import	Function

Imports	a	portion	of	an	XPS	document.

	

Syntax 	

[C#]
void	Import(Doc	doc,	string	path)

[Visual	Basic]
Sub	Import(doc	As	Doc,	path	As	String)

	may	throw	Exception()

	

Params 	

Name Description
doc The	target	PDF	document.
path The	file	path	to	the	XPS	document.

	

Imports	an	XPS	or	OXPS	Document.	By	default,	the	entire	XPS	document	is	

An	exception	will	be	thrown	if	the	operation	is	not	possible.	
corrupt.

You	may	notice	that	colors	in	the	PDF	files	are	slightly	different.	
differently	from	other	file	formats.	Refer	to	SwfImportOperation.Import
blending.

This	method	generates	events	as	follows:

1.	 After	the	StartPart	FixedDocumentSequence	is	opened,	a	
ProcessingSourceType.Document	is	generated.

Name Description

ProcessingObjectEventArgs.Cancel
See
ProcessingObjectEventArgs.Info.DocNumber
below.

ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.

ProcessingObjectEventArgs.Info.DocCount The	number	of	FixedDocumentï¿½s	in	the
FixedDocumentSequence.

ProcessingObjectEventArgs.Info.DocNumber

The	one-based	document	number	of	the
FixedDocument	to	be	
this	property	for	the	first	of	such	
FixedDocumentSequence	is	one	unless
DocCount
value	returned	by	the	event	
previous	such	event	plus	one	if	the	new	
is	between	1	and	
Otherwise,	it	is	null.	The	event	handler	may
change	this	value	between	1	and	
inclusively.	Set	it	to	null	to	end	the	processing
of	all	FixedDocumentï¿½s	in	the
FixedDocumentSequence.	If	it	is	null,	
corresponding	
generated.	Otherwise,	if
ProcessingObjectEventArgs.Cancel	
true,	the	corresponding	
is	not	generated,	and	the	same	event	is
immediately	
incremented	subject	to	

2.	 After	a	previous	ProcessingObject	event	of	ProcessingSourceType.Document	returns	a	proper
DocNumber	and	the	FixedDocument	is	opened,	a	ProcessingObject
ProcessingSourceType.Page	is	generated.

Name Description

Notes

	

ProcessingObjectEventArgs.Cancel See
ProcessingObjectEventArgs.Info.PageNumber
below.

ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.

ProcessingObjectEventArgs.Info.DocCount The	number	of	FixedDocumentï¿½s	in	the
FixedDocumentSequence.

ProcessingObjectEventArgs.Info.DocNumber The	document	number	of	the	FixedDocument
being	processed.

ProcessingObjectEventArgs.Info.PageCount The	number	of	FixedPageï¿½s	in	the
FixedDocument.

ProcessingObjectEventArgs.Info.PageNumber

The	one-based	page	number	of	the
FixedPage	to	be	
property	for	the	first	of	such	
FixedDocument	is	one	unless	
zero.	Subsequent	value	is	the	value	returned
by	the	event	
event	plus	one	if	the	new	
and	PageCount
null.	The	event	handler	may	
between	1	and	
null	to	end	the	processing	of	all
FixedPageï¿½s	in	the	FixedDocument.	If	it	is
null,	the	
event	is	not	generated.	Otherwise,	if
ProcessingObjectEventArgs.Cancel	
true,	the	corresponding	
event	is	not	generated,	and	the	same	event	is
immediately	
incremented	subject	to	

3.	 After	a	previous	ProcessingObject	event	of	ProcessingSourceType.Page	returns	a	proper
PageNumber	and	the	FixedPage	is	opened,	a	ProcessingObject
ProcessingSourceType.PageContent	is	generated.

Name Description
If	this	property	is	set	to	true,	the	page	content

ProcessingObjectEventArgs.Cancel is	not	rendered	and	the	corresponding
ProcessedObject

ProcessingObjectEventArgs.Info.Handled

The	value	of	this	property	is	false	when	the
event	is	
handler	returns,	a	new	
the	target	PDF	document.	The	media	
crop	box,	and	art	box	of	the	new	page	are	set
according	
and	the	page	content	is	
entire	page.	Set	this	value	to	true	to	
the	page	content	on	to	
page	using	

ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.

ProcessingObjectEventArgs.Info.DocCount The	number	of	FixedDocumentï¿½s	in	the
FixedDocumentSequence.

ProcessingObjectEventArgs.Info.DocNumber The	document	number	of	the	FixedDocument
being	processed.

ProcessingObjectEventArgs.Info.PageCount The	number	of	FixedPageï¿½s	in	the
FixedDocument.

ProcessingObjectEventArgs.Info.PageNumber The	page	number	of	the	FixedPage	beingprocessed.

ProcessingObjectEventArgs.Info.Width
The	width	of	the	FixedPage	(as	specified	on
the	FixedPage	element,	not	the	one	on	the
PageContent	element)	

ProcessingObjectEventArgs.Info.Height
The	height	of	the	FixedPage	(as	specified	on
the	FixedPage	element,	not	the	one	on	the
PageContent	element)	

4.	 While	processing	page	content,	a	ProcessingObject	event	of	ProcessingSourceType.Image	is
generated	when	an	image	is	imported.

Name Description
ProcessingObjectEventArgs.Cancel Ignored.
ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.

ProcessingObjectEventArgs.Info.DocCount The	number	of	FixedDocumentï¿½s	in	the
FixedDocumentSequence.

ProcessingObjectEventArgs.Info.DocNumber The	document	number	of	the	FixedDocument
being	processed.

ProcessingObjectEventArgs.Info.PageCount The	number	of	FixedPageï¿½s	in	the
FixedDocument.

ProcessingObjectEventArgs.Info.PageNumber The	page	number	of	the	FixedPage	beingprocessed.
ProcessingObjectEventArgs.Info.Width The	pixel	width	of	the	image.
ProcessingObjectEventArgs.Info.Height The	pixel	height	of	the	

Unless	stated	otherwise,	a	ProcessedObject	event	corresponding	to	each	
is	generated	with	an	object	as	follows:

ProcessingObjectEventArgs.Info.SourceType ProcessedObjectEventArgs.Object
successful

ProcessingSourceType.Document null
ProcessingSourceType.Page GraphicLayer
ProcessingSourceType.PageContent null
ProcessingSourceType.Image PixMap

Imported	images	are	not	compressed.	You	may	wish	to	analyse	and	
objects	by	pre	and	post	processing	them	during	the	ProcessingObject

	

Here	we	import	the	pages	with	odd	page	numbers	of	an	XPS	document	
pages	per	sheet	in	landscape.	The	aspect	ratio	is	preserved	and	a	border	is	also	drawn.

[C#]
Doc	doc	=	new	Doc();
MyImportOperation	importOp	=	new	MyImportOperation(doc);
importOp.Import(Server.MapPath("AdvancedGraphicsExamples.xps"));
doc.Save(Server.MapPath("xps.pdf"));

doc.Clear();

public	class	MyImportOperation	{
		private	Doc	_doc	=	null;
		private	double	_margin	=	10;
		private	int	_pagesAdded	=	0;

		public	MyImportOperation(Doc	doc)	{
				_doc	=	doc;

				_doc.Transform.Rotate(90,	_doc.MediaBox.Left,
_doc.MediaBox.Bottom);
				_doc.Transform.Translate(_doc.MediaBox.Width,	

				int	theID	=	_doc.GetInfoInt(_doc.Root,	
				_doc.SetInfo(theID,	"/Rotate",	"90");
		}

		public	void	Import(string	inPath)	{
				using(XpsImportOperation	op	=	new	XpsImportOperation())	
						op.ProcessingObject	+=	Processing;
						op.ProcessedObject	+=	Processed;
						op.Import(_doc,	inPath);
				}
		}

		public	void	Processing(object	sender,	ProcessingObjectEventArgs
e)	{
				if	(e.Info.SourceType	==	ProcessingSourceType.Page	&&
e.Info.PageNumber	!=	null)	{
						if	((e.Info.PageNumber	%	2)	==	0)
								e.Info.PageNumber++;

						if	(e.Info.PageNumber	>=	8)
								e.Info.PageNumber	=	null;

						e.Tag	=	e.Info.PageNumber;

				}	else	if	(e.Info.SourceType	==
ProcessingSourceType.PageContent)	{
						if	((_pagesAdded	%	2)	==	0)
								_doc.Page	=	_doc.AddPage();

						double	width	=	_doc.MediaBox.Height;
						double	height	=	_doc.MediaBox.Width;
						double	scale	=	Math.Min((width	-	4	*	_margin)	/	(2	*
e.Info.Width.Value),
								(height	-	2	*	_margin)	/	e.Info.Height.Value);

						double	rectWidth	=	scale	*	e.Info.Width.Value;
						double	rectHeight	=	scale	*	e.Info.Height.Value;

						double	distanceX	=	(width	-	2	*	rectWidth)	/	
						double	distanceY	=	(height	-	rectHeight)	/	

						_doc.Rect.SetRect(distanceX	+	(_pagesAdded	%	2)	*	(distanceX
+	rectWidth),
								distanceY,	rectWidth,	rectHeight);

						e.Info.Handled	=	true;
						_pagesAdded++;
				}
		}

		public	void	Processed(object	sender,	ProcessedObjectEventArgs	e)
{
				if	(e.Successful)	{
						PixMap	pixmap	=	e.Object	as	PixMap;
						if	(pixmap	!=	null)
								pixmap.Compress();

						GraphicLayer	graphic	=	e.Object	as	GraphicLayer;
						if	(graphic	!=	null)	{
								_doc.FrameRect();

Example

	

								int	pageNumber	=	(int)e.Tag;
								_doc.FontSize	=	16;
								_doc.TextStyle.HPos	=	0.5;
								_doc.Rect.Top	=	_doc.Rect.Bottom	-	
								_doc.Rect.Bottom	=	_doc.MediaBox.Bottom;
								_doc.AddText(string.Format("Page	{0}",	
						}
				}
		}
}

[Visual	Basic]
Dim	doc	As	New	Doc()
Dim	importOp	As	MyImportOperation	=	New	MyImportOperation(doc)
importOp.Import(Server.MapPath("AdvancedGraphicsExamples.xps"))
doc.Save(Server.MapPath("xps.pdf"))
doc.Clear();

Public	Class	MyImportOperation
		Private	_doc	As	Doc	=	Nothing
		Private	_margin	As	Double	=	10
		Private	_pagesAdded	As	Integer	=	0

		Public	Sub	New(doc	As	Doc)
				_doc	=	doc

				_doc.Transform.Rotate(90,	_doc.MediaBox.Left,
_doc.MediaBox.Bottom)
				_doc.Transform.Translate(_doc.MediaBox.Width,	

				Dim	theID	As	Integer	=	_doc.GetInfoInt(_doc.Root,	
				_doc.SetInfo(theID,	"/Rotate",	"90")
		End	Sub

		Public	Sub	Import(inPath	As	String)
				Using	op	As	New	XpsImportOperation()

						AddHandler	op.ProcessingObject,	AddressOf	
						AddHandler	op.ProcessedObject,	AddressOf	
						op.Import(_doc,	inPath)
				End	Using
		End	Sub

		Public	Sub	Processing(sender	As	Object,	e	As
ProcessingObjectEventArgs)
				If	e.Info.SourceType	=	ProcessingSourceType.Page	And
e.Info.PageNumber	IsNot	Nothing	Then
						If	(e.Info.PageNumber	Mod	2)	=	0	Then
								e.Info.PageNumber	+=	1
						End	If

						If	e.Info.PageNumber	>=	8	Then
								e.Info.PageNumber	=	Nothing
						End	If

						e.Tag	=	e.Info.PageNumber
				ElseIf	e.Info.SourceType	=	ProcessingSourceType.PageContent
Then
						If	(_pagesAdded	Mod	2)	=	0	Then
								_doc.Page	=	_doc.AddPage()
						End	If

						Dim	width	As	Double	=	_doc.MediaBox.Height
						Dim	height	As	Double	=	_doc.MediaBox.Width
						Dim	scale	As	Double	=	Math.Min((width	-	4	*	_margin)	/	(2	*
e.Info.Width.Value),	_
								(height	-	2	*	_margin)	/	e.Info.Height.Value)

						Dim	rectWidth	As	Double	=	scale	*	e.Info.Width.Value
						Dim	rectHeight	As	Double	=	scale	*	e.Info.Height.Value

						Dim	distanceX	As	Double	=	(width	-	2	*	rectWidth)	/	
						Dim	distanceY	As	Double	=	(height	-	rectHeight)	/	

						_doc.Rect.SetRect(distanceX	+	(_pagesAdded	Mod	2)	*
(distanceX	+	rectWidth),	_
								distanceY,	rectWidth,	rectHeight)

						e.Info.Handled	=	True
						_pagesAdded	+=	1
				End	If
		End	Sub

		Public	Sub	Processed(sender	As	Object,	e	As
ProcessedObjectEventArgs)
				If	e.Successful	Then
						Dim	pixmap	As	PixMap	=	TryCast(e.Object,	PixMap)
						If	pixmap	IsNot	Nothing	Then
								pixmap.Compress()
						End	If

						Dim	graphic	As	GraphicLayer	=	TryCast(e.Object,	
						If	graphic	IsNot	Nothing	Then
								_doc.FrameRect()

								Dim	pageNumber	As	Integer	=	CInt(e.Tag)
								_doc.FontSize	=	16
								_doc.TextStyle.HPos	=	0.5
								_doc.Rect.Top	=	_doc.Rect.Bottom	-	
								_doc.Rect.Bottom	=	_doc.MediaBox.Bottom
								_doc.AddText(String.Format("Page	{0}",	pageNumber))
						End	If
				End	If
		End	Sub
End	Class

	

	

	

	

	

ImportAny	Function 	 	

Imports	a	portion	of	a	document	via	an
intermediate	XPS	print-out.

	

	 	

Syntax 	

[C#]
void	ImportAny(Doc	doc,	string
path)
void	ImportAny(Doc	doc,	string
path,	int	timeout

[Visual	Basic]
Sub	ImportAny(doc	As	Doc,	path	As
String)	
Sub	ImportAny(doc	As	Doc,	path	As
String,	timeout	As	Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description
doc The	target	PDF	document.
path The	file	path	to	the	source	document.

timeout
The	timeout	in	milliseconds	for	the
XPS	printer	driver.	The	default	is
15500	milliseconds.

	

	 	

Notes 	

Imports	several	types	of	documents,	by
converting	them	to	XPS	first	using	the	Microsoft
XPS	Document	Writer	(MXDW).	An	attempt	is
made	to	silently	print	the	document	to	a
temporary	XPS	file.	An	application	which	will
print	the	document	is	launched.	This	application
is	intercepted	and,	assuming	that	only	the
default	Print	dialogs	are	used,	the	XPS	print
output	is	silently	captured.	This	output	is	then
imported	into	PDF	just	like	any	other	XPS	file.

You	can	refer	to	Application	for	a	list	of
supported	applications.	This	property	also
determines	which	application	will	be	used	to
print	the	document	to	XPS.

By	default	the	shell	default	program	will	be
used.	To	set	the	shell	default	program	for	a	file,
in	Windows	Explorer,	right-click	on	the	file,
select	"Open	With"	and	then	"Choose	Default
Program".	When	the	shell	default	program	is
used,	there	must	be	a	"Print"	option	when	right-
clicking	on	the	document	in	Windows	Explorer.
If	this	is	not	the	case,	ImportAny	will	fail	except
for	the	following	applications:	MS	Word,	MS
Excel,	MS	PowerPoint,	MS	InfoPath	and	MS
Project.

If	you	prefer	not	to	rely	on	the	shell	default
program,	set	Application	to	any	of	the
applications	defined	in
ImportAnyApplicationType.	These	applications
are	officially	supported	by	ImportAny.	You	may
try	your	luck	with	other	applications,	but	in	this
case	you	must	associate	your	application	via
the	shell	default	program.	We	officially	support
Microsoft	Office	2007,	older	versions	may	work
for	some	applications	but	there	is	no	guarantee.

	 	

The	Microsoft	XPS	Document	Writer	(MXDW)
must	also	be	available.	This	is	the	default	on
Windows	Vista.	For	Windows	XP,	you	can
download	MXDW	at	this	address:
http://msdn.microsoft.com/en-
us/library/dd183313(VS.85).aspx.

When	ImportAny	fails,	the	associated
application	will	likely	hang,	normally	waiting	for
a	"Print"	dialog	of	some	sort	to	be	closed,	but
this	dialog	is	hidden	by	ImportAny	so	you	will
not	see	it.	If	this	is	the	case,	ImportAny	will	wait
for	the	specified	timeout	before	killing	the
associated	application	and	reporting	an	error.
The	default	timeout	is	15.5	seconds.	You	can
reduce	or	increase	this	value	depending	on	your
requirements,	by	using	the	overload	that
accepts	a	timeout	as	a	parameter.

When	using	ImportAny	from	either	a
Windows	Service	or	an	IIS	process,	it	is
recommended	that	you	wrap	ABCpdf	into	a
COM+	application.	Refer	to	the
PdfEnterpriseServices	example	in	order	to
do	this.

You	may	debug	ImportAny	problems	using	the
PrintHookShow	and	PrintHookLog	registry	keys.
For	further	details	see	the	Registry	Keys	section
in	Concepts.

	

Example 	

The	usage	of	ImportAny	is	identical	to	Import
except	that	it	takes	any	file	format	whose
associated	application	supports	the	"Print"
option. 	 	

http://msdn.microsoft.com/en-us/library/dd183313(VS.85).aspx

	

	

	

KillApplication	Function 	 	

Terminates	a	running	import	application.

	
	 	

Syntax 	

[C#]
bool
KillApplication(ImportApplicationType
app)

[Visual	Basic]
Function	KillApplication(app	As
ImportApplicationType)	As	Boolean

	

	 	

Params 	

Name Description
app The	import	application.

return Whether	the	application	has	been
running	and	killed.

	

	 	

Notes 	

This	function	terminates	an	application	running
for	this	XpsImportOperation	when	the	process
reuse	for	the	application	is	enabled	with
EnableApplicationReuse.

	

	 	

Example 	
None.

	
	 	

	

	

ReusesApplication	Function 	 	

Gets	a	value	indicating	whether	an	import
application	process	is	to	be	kept	running	and
reused.

	

	 	

Syntax 	

[C#]
bool
ReusesApplication(ApplicationType
app)

[Visual	Basic]
Function	ReusesApplication(app	As
ImportApplicationType)	As	Boolean

	

	 	

Params 	

Name Description
app The	import	application.

return Whether	the	application	process	is	to
be	kept	running	and	reused.

	

	 	

Notes 	

This	function	returns	the	reuse	status	of	an
application.

The	reuse	status	can	be	changed	with
EnableApplicationReuse.

	 	

	

Example 	
None.

	
	 	

	

	

Application	Property

	

Type Default Read
Only Description

[C#]ImportApplicationType

[Visual	Basic]
ImportApplicationType

ShellAssociation No

The
application
used	by
ImportAny.

	

The	application	used	by	the	import-any	operation,	see	ImportAny

This	property	can	have	one	of	the	following	values:

ShellAssociation	ï¿½	This	is	the	default	value.	The	Shell	will
decide	which	application	to	use	based	on	file	association.	The
application	that	starts	up	when	opening	a	file	from	the
Windows	explorer	will	also	be	used	to	do	the	conversion.
MicrosoftWord	ï¿½	Microsoft	Word	will	be	used.	If	it	is	not
installed	an	exception	will	be	thrown.
MicrosoftExcel	ï¿½	Microsoft	Excel	will	be	used.	If	it	is	not
installed	an	exception	will	be	thrown.
MicrosoftPowerPoint	ï¿½	Microsoft	PowerPoint	will	be	used.
If	it	is	not	installed	an	exception	will	be	thrown.
MicrosoftInfoPath	ï¿½	Microsoft	InfoPath	will	be	used.	If	it	is
not	installed	an	exception	will	be	thrown.	Because	only	one
process	exists	at	any	one	time	per	user,	the	interactive	user
cannot	use	InfoPath	if	ABCpdf	is	importing	InfoPath
documents	from	an	application	running	interactively.	If	the
ABCpdf	application	runs	from	within	a	Windows	service	this
limitation	does	not	apply	because	a	separate	instance	of
InfoPath	is	created.	However	you	cannot	have	multiple

Notes 	 ABCpdf	processes	using	InfoPath	at	the	same	time.	A	mutex
has	been	implemented	to	prevent	this.	So	only	one	InfoPath
document	at	a	time	can	be	imported.
MicrosoftOneNote	ï¿½	Microsoft	OneNote	will	be	used.	If	it	is
not	installed	an	exception	will	be	thrown.	Because	only	one
process	instance	exists	at	any	one	time	per	user,	the	same
limitations	apply,	as	described	for	InfoPath.
MicrosoftPublisher	ï¿½	Microsoft	Publisher	will	be	used.	If	it	
not	installed	an	exception	will	be	thrown.
MicrosoftProject	ï¿½	Microsoft	Project	will	be	used.	If	it	is	not
installed	an	exception	will	be	thrown.	Because	only	one
process	instance	exists	at	any	one	time	per	user,	the	same
limitations	apply,	as	described	for	InfoPath.
MicrosoftVisio	-	Microsoft	Visio	will	be	used.	If	it	is	not
installed	an	exception	will	be	thrown.
MicrosoftOutlook	-	Microsoft	Outlook	will	be	used.	If	it	is	not
installed	an	exception	will	be	thrown.	Importing	Outlook	files
will	not	work	if	Outlook	is	already	running.	This	is	because
when	Outlook	is	already	running,	it	is	the	existing	process	that
will	perform	the	printing,	not	the	new	process	created	for
printing.

	

Example None.

	

ApplicationFolder	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

null No
The	folder	of	the
application	used
by	ImportAny.

	

	 	

Notes 	

The	folder	of	the	application	used	by	the	import-any
operation,	see	ImportAny.

If	this	property	is	null,	the	application	path	will	be
determined	automatically	by	looking	at	the	registry.
Set	this	property	only	if	the	automatic	mechanism	is
failing.

	

	 	

Example None. 	 	

	

DocNumber	Property 	 	

	

Type Default ReadOnly Description

[C#]int

[Visual	Basic]
Integer

0 No

The	one-based
document
number	used	by
ImportAny.

	

	 	

Notes 	

This	property	can	be	used	to	select	which	document
will	be	imported	when	calling	ImportAny.	In	most
cases	only	a	single	document	is	available	in	any	file
and	this	property	is	ignored.	However	in	some	cases,
such	as	Microsoft	Excel,	a	single	workbook	contains
multiple	worksheets.	This	property	will	select	which
Excel	worksheet	will	be	imported.

When	it	is	set	to	zero	or	a	negative	value,	the	entire
Excel	workbook	will	be	imported.	This	is	the	default
case.	When	it	is	set	to	any	positive	value	the
corresponding	worksheet	will	be	imported.	Indexing
is	one-based	so	set	it	to	one	to	print	the	first
worksheet	and	so	on.	It	is	up	to	you	to	make	sure
that	you	set	it	to	a	valid	value,	less	than	or	equal	to
the	total	number	of	worksheets	in	the	workbook.

For	applications	other	than	Microsoft	Excel	this
property	is	currently	ignored.

	

	 	

Example 	 None. 	 	

	

EnableMSOfficeMacros	Property 	 	

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

false No

Whether	to
enable	macros
when	opening
MS	Office
documents.

	

	 	

Notes 	

This	property	specifies	whether	to	enable	macros
when	opening	MS	Office	documents.	It	is	supported
only	for	MS	Word,	Excel	and	PowerPoint.	It	is
ignored	in	all	other	cases.

By	default,	macros	are	disabled.

	

	 	

Example None. 	 	

	

Password	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

null No
The	password
needed	to	read
the	source.

	

	 	

Notes 	

Specify	with	this	property	the	password	for	accessing
the	source.	It	is	supported	only	for	MS	Word	and	MS
Excel	documents.

	

	 	

Example None. 	 	

	

SwfImportOperation
Constructor

	 	

SwfImportOperation	Constructor.

	
	 	

Syntax 	

[C#]
SwfImportOperation()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Create	a	SwfImportOperation.

You	must	specify	a	Doc	before	the
ProcessingObject	event	of
ProcessingSourceType.ImageFrame	returns/is
handled.

	

	 	

Example 	

See	the	Import	method.
	 	

	

	

	

Import	Function

Imports	selected	frames	of	a	Flash	movie.

	

Syntax 	

[C#]
void	Import(string	path)
void	Import(Stream	stream,	string	url)

[Visual	Basic]
Sub	Import(path	As	String)
Sub	Import(stream	As	Stream,	url	As	String)

	may	throw	Exception()

	

Params 	

Name Description
path The	file	path	to	the	Flash	movie.
stream The	stream	containing	the	Flash	movie.
url The	value	of	the	MovieClip._url	ActionScript	property.

	

Imports	selected	frames	of	a	Flash	movie.	By	default,	only	one	
below	is	supported.	ActionScript	3	is	not	supported.

Alpha	Blending.	PDF	supports	using	different	color	spaces	

a	transparent	object	on	a	page,	the	blending	color	space	will	be	used.	By	default,	it	uses
DeviceCMYK.	You	will	likely	see	some	color	shifts	even	for	opaque	objects	because	
converted	to	the	alpha	blending	color	space	and	then	to	
more	noticeable	for	objects	using	component-wise	alpha	blending.

To	use	RGB	as	it	is	used	in	SWF	for	alpha	blending,	set	the	default	
the	page	to	DeviceRGB:

doc.SetInfo(doc.Page,	"/Group*/Type:Name",	
doc.SetInfo(doc.Page,	"/Group*/S:Name",	
doc.SetInfo(doc.Page,	"/Group*/CS:Name",	

You	must	specify	a	Doc	before	the	ProcessingObject	event	of	ProcessingSourceType.ImageFrame
returns/is	handled.

An	exception	will	be	thrown	if	the	operation	is	not	possible.	
corrupt.

This	method	generates	events	as	follows:
1.	 Before	the	Flash	engine	advances,	a	ProcessingObject

ProcessingSourceType.MultiFrameImage	is	generated.	If	
BackgroundRegion	and	ClipRegion	are	reset	to	the	frame	bounds/stage	size	of	the	Flash	movie
when	the	event	is	generated.	The	regions	are	set	as	if	XRect.SetRect
Width,	and	Height	properties	of	the	ProcessingInfo.	You	can	provide	parameters	in	
initializing	the	SWF	machine	before	the	first	time	a	proper	

Name Description

ProcessingObjectEventArgs.Cancel
See
ProcessingObjectEventArgs.Info.FrameNumber
below.

ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.
ProcessingObjectEventArgs.Info.FrameCount The	number	of	frames	in	the	Flash	movie.

The	positive	number	of	frames	from	the	start	of
the	movie	to	elapse	before	rendering.	This

Notes

	

ProcessingObjectEventArgs.Info.FrameNumber

value	is	not	bounded	
value	of	this	property	for	the	first	of	such	events
is	one.	Subsequent	value	is	null.	The	event
handler	may	set	
or	greater	than	the	value	
event.	If	the	value	is	set	smaller,	
corresponding	
indicating	failure	is	generated.	Set	it	to	null	to
end	the	
null,	the	
is	not	generated.	Otherwise,	if
ProcessingObjectEventArgs.Cancel	
true,	the	corresponding	
is	not	generated,	and	the	same	event	is
immediately	
to	null.

ProcessingObjectEventArgs.Info.FrameRate The	number	of	frames	per	second	of	the	Flash
movie.

ProcessingObjectEventArgs.Info.X The	x-coordinate	(in	twips)	of	the	frame	bounds
of	the	

ProcessingObjectEventArgs.Info.Y The	y-coordinate	(in	twips)	of	the	frame	bounds
of	the	

ProcessingObjectEventArgs.Info.Width The	width	(in	twips)	of	the	stage	of	the	Flash
movie.

ProcessingObjectEventArgs.Info.Height The	height	(in	twips)	of	the	stage	of	the	Flash
movie.

2.	 After	a	proper	FrameNumber	is	returned	in	a	previous	ProcessingObject
ProcessingSourceType.MultiFrameImage	and	the	Flash	engine	advances	to	the	frame,	a
ProcessingObject	event	of	ProcessingSourceType.ImageFrame	is	generated.	If	
true,	BackgroundRegion	and	ClipRegion	are	reset	to	the	frame	bounds/stage	size	of	the	Flash
movie	when	the	event	is	generated	because	the	frame	actions	may	have	changed	the	
mode.	You	must	specify	a	Doc	before	this	event	returns/is	handled.	The	frame	is	rendered	on	to
Doc.Rect	of	the	current	page	using	Doc.Transform.

Name Description
If	this	property	is	set	to	true,	the	frame	is	not

ProcessingObjectEventArgs.Cancel rendered	and	the	corresponding
ProcessedObject

ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.
ProcessingObjectEventArgs.Info.FrameCount The	number	of	frames	in	the	Flash	movie.

ProcessingObjectEventArgs.Info.FrameNumber The	number	of	frames	elapsed	from	the	start
of	the	

ProcessingObjectEventArgs.Info.FrameRate The	number	of	frames	per	second	of	the
Flash	

ProcessingObjectEventArgs.Info.X The	x-coordinate	(in	twips)	of	the	frame
bounds	of	the	

ProcessingObjectEventArgs.Info.Y The	y-coordinate	(in	twips)	of	the	frame
bounds	of	the	

ProcessingObjectEventArgs.Info.Width The	width	(in	twips)	of	the	stage	of	the	Flash
movie.

ProcessingObjectEventArgs.Info.Height The	height	(in	twips)	of	the	stage	of	the
Flash	

ProcessingObjectEventArgs.Info.BackgroundColor The	background	color	of	the	frame.

3.	 While	rendering	a	frame,	a	ProcessingObject	event	of	ProcessingSourceType.Image	is	generated
when	an	image	is	imported.

Name Description
ProcessingObjectEventArgs.Cancel Ignored.
ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.
ProcessingObjectEventArgs.Info.FrameCount The	number	of	frames	in	the	Flash	movie.

ProcessingObjectEventArgs.Info.FrameNumber The	number	of	frames	elapsed	from	the	start	ofthe	movie.

ProcessingObjectEventArgs.Info.FrameRate The	number	of	frames	per	second	of	the	Flash
movie.

ProcessingObjectEventArgs.Info.Width The	pixel	width	of	the	image.
ProcessingObjectEventArgs.Info.Height The	pixel	height	of	the	image.

4.	 While	rendering	a	frame,	a	ProcessingObject	event	of	ProcessingSourceType.ImageMask	is
generated	when	an	image	used	as	a	mask	is	imported.

Name Description
ProcessingObjectEventArgs.Cancel Ignored.
ProcessingObjectEventArgs.Info.Handled Ignored.
ProcessingObjectEventArgs.Info.SourceType ProcessingSourceType.
ProcessingObjectEventArgs.Info.FrameCount The	number	of	frames	in	the	Flash	movie.

ProcessingObjectEventArgs.Info.FrameNumber The	number	of	frames	elapsed	from	the	start	ofthe	movie.

ProcessingObjectEventArgs.Info.FrameRate The	number	of	frames	per	second	of	the	Flash
movie.

ProcessingObjectEventArgs.Info.Width The	pixel	width	of	the	image.
ProcessingObjectEventArgs.Info.Height The	pixel	height	of	the	

Unless	stated	otherwise,	a	ProcessedObject	event	corresponding	to	each	
generated.

ProcessingObjectEventArgs.Info.SourceType ProcessedObjectEventArgs.Object
successful

ProcessingSourceType.MultiFrameImage GraphicLayer
ProcessingSourceType.ImageFrame null
ProcessingSourceType.Image PixMap
ProcessingSourceType.ImageMask PixMap

Imported	images	are	not	compressed.	You	may	wish	to	analyse	and	
by	pre	and	post	processing	them	during	the	ProcessingObject

	

See	the	SwfParameters.FlashVars	property	or	the	ProcessingInfo.FrameNumber
simple	examples.

	

Here	we	import	24	frames	from	a	Flash	movie	alternately	into	two	
are	0.2	seconds	apart.	Doc.Rect	is	set	so	that	the	outputs	are	6-up	and	preserve	the	aspect
ratio.	For	the	fifth	to	the	eighth	imported	frames	in	each	document,	the	
suppressed	and	a	transparent	oval	in	the	same	color	is	drawn	instead.

[C#]
Doc	doc1	=	new	Doc();
Doc	doc2	=	new	Doc();
using(SwfImportOperation	operation	=	new	SwfImportOperation())	{
		const	int	fontSize	=	20;
		int	k	=	0;
		bool	failed	=	false;
		operation.ProcessingObject	+=	delegate(object	sender,
ProcessingObjectEventArgs	e)	{
				switch(e.Info.SourceType)	{
				case	ProcessingSourceType.MultiFrameImage:
						if(failed	||	k>=24)
								e.Info.FrameNumber	=	null;
						else
								e.Info.FrameNumber	=
1+Convert.ToInt64(0.2*k*e.Info.FrameRate.Value);
						e.Tag	=	ProcessingSourceType.MultiFrameImage;
						break;
				case	ProcessingSourceType.ImageFrame:	{
						SwfImportOperation	op	=	(SwfImportOperation)sender;
						op.Doc	=	op.Doc==doc1?	doc2:	doc1;
						const	int	distance	=	20;
						const	int	margin	=	30;
						double	width	=	op.Doc.MediaBox.Width-2*margin;
						double	height	=	op.Doc.MediaBox.Height-2*margin;
						double	scale	=	Math.Min((width-
distance)/(2*e.Info.Width.Value),
								(height-2*distance-3*fontSize)/(3*e.Info.Height.Value));

						int	p	=	k/2;
						double	rectWidth	=	scale*e.Info.Width.Value;
						double	rectHeight	=	scale*e.Info.Height.Value;

						op.Doc.Rect.SetRect(margin+(width+distance)*(p%2)/2,
								margin+height-rectHeight-(height+2*distance)*(p/2%3)/3,
								rectWidth,	rectHeight);
						if(p%6==0)
								op.Doc.Page	=	op.Doc.AddPage();
						if(p>=4	&&	p<8	&&	e.Info.BackgroundColor!=null)	
								op.BackgroundRegion	=	null;
								op.Doc.Color.String	=	e.Info.BackgroundColor.String;
								op.Doc.Color.Alpha	=	127;
								op.Doc.AddOval(true);
						}
				}	break;
				}
		};
		operation.ProcessedObject	+=	delegate(object	sender,
ProcessedObjectEventArgs	e)	{
				if(!e.Successful)	{
						failed	=	true;
						return;
				}
				if(e.Tag	is	ProcessingSourceType
						&&
(ProcessingSourceType)e.Tag==ProcessingSourceType.MultiFrameImage)
				{
						SwfImportOperation	op	=	(SwfImportOperation)sender;
						op.Doc.Color.Gray	=	0;
						op.Doc.Color.Alpha	=	255;
						op.Doc.FontSize	=	fontSize;
						op.Doc.TextStyle.HPos	=	0.5;
						op.Doc.Rect.Top	=	op.Doc.Rect.Bottom;
						op.Doc.Rect.Bottom	=	op.Doc.MediaBox.Bottom;
						op.Doc.AddText(string.Format("{0}	secs",	
						++k;
				}
				PixMap	pixmap	=	e.Object	as	PixMap;
				if(pixmap!=null)
						pixmap.Compress();

		};
		operation.Import(Server.MapPath("ABCpdf.swf"));
}
doc1.Save(Server.MapPath("swf1.pdf"));
doc1.Clear();
doc2.Save(Server.MapPath("swf2.pdf"));
doc2.Clear();

[Visual	Basic]
Dim	theMyOp	As	MyOp
Using	theOperation	As	New	SwfImportOperation
		theMyOp	=	New	MyOp(theOperation)
		theOperation.Import(Server.MapPath("ABCpdf.swf"))
End	Using
theMyOp.Save(Server.MapPath("swf1.pdf"),	Server.MapPath("swf2.pdf"))
theMyOp.Clear()

Private	NotInheritable	Class	MyOp
		Private	Const	theFontSize	As	Integer	=	20
		Private	theDoc1	As	Doc
		Private	theDoc2	As	Doc
		Private	k	As	Integer
		Private	theFailed	As	Boolean

		Public	Sub	New(theOperation	As	SwfImportOperation)
				theDoc1	=	New	Doc()
				theDoc2	=	New	Doc()
				k	=	0
				theFailed	=	False
				AddHandler	theOperation.ProcessingObject,	AddressOf	
				AddHandler	theOperation.ProcessedObject,	AddressOf	Processed
		End	Sub

		Public	Sub	Save(path1	As	String,	path2	As	
				theDoc1.Save(Server.MapPath(path1))
				theDoc2.Save(Server.MapPath(path2))

Example

	 		End	Sub

		Public	Sub	Clear()
				theDoc1.Clear()
				theDoc2.Clear()
		End	Sub

		Private	Sub	Processing(sender	As	Object,	e	As
ProcessingObjectEventArgs)
				Select	Case	e.Info.SourceType
				Case	ProcessingSourceType.MultiFrameImage
						If	theFailed	Or	k	>=	24	Then
								e.Info.FrameNumber	=	Nothing
						Else
								e.Info.FrameNumber	=	1	+	Convert.ToInt64(0.2	*	k	*
e.Info.FrameRate.Value)
						End	If
						e.Tag	=	ProcessingSourceType.MultiFrameImage
				Case	ProcessingSourceType.ImageFrame
						Dim	op	As	SwfImportOperation	=	CType(sender,
SwfImportOperation)
						If	op.Doc	Is	theDoc1	Then
								op.Doc	=	theDoc2
						Else
								op.Doc	=	theDoc1
						End	If
						Const	distance	As	Integer	=	20
						Const	margin	As	Integer	=	30
						Dim	width	As	Double	=	op.Doc.MediaBox.Width	-	2	*	
						Dim	height	As	Double	=	op.Doc.MediaBox.Height	-	2	*	
						Dim	scale	As	Double	=	Math.Min((width	-	distance)	/	(2	*
e.Info.Width.Value),	_
								(height	-	2	*	distance	-	3	*	theFontSize)	/	(3	*
e.Info.Height.Value))

						Dim	p	As	Integer	=	k	\	2
						Dim	rectWidth	As	Double	=	scale	*	e.Info.Width.Value

						Dim	rectHeight	As	Double	=	scale	*	e.Info.Height.Value
						op.Doc.Rect.SetRect(margin	+	(width	+	distance)	*	(p	Mod	2)	/
2,	_
								margin	+	height	-	rectHeight	-	(height	+	2	*	distance)	*	(p	/
2	Mod	3)	/	3,	_
								rectWidth,	rectHeight)
						If	p	Mod	6	=	0	Then
								op.Doc.Page	=	op.Doc.AddPage()
						End	If
						If	p	>=	4	And	p	<	8	And	e.Info.BackgroundColor	IsNot	Nothing
Then
								op.BackgroundRegion	=	Nothing
								op.Doc.Color.String	=	e.Info.BackgroundColor.String
								op.Doc.Color.Alpha	=	127
								op.Doc.AddOval(True)
						End	If
				End	Select
		End	Sub

		Private	Sub	Processed(sender	As	Object,	e	As
ProcessedObjectEventArgs)
				If	Not	e.Successful	Then
						theFailed	=	True
						Return
				End	If
				If	TypeOf	e.Tag	Is	ProcessingSourceType	
							If	CType(e.Tag,	ProcessingSourceType)	=
ProcessingSourceType.MultiFrameImage	Then
									Dim	op	As	SwfImportOperation	=	CType(sender,
SwfImportOperation)
									op.Doc.Color.Gray	=	0
									op.Doc.Color.Alpha	=	255
									op.Doc.FontSize	=	theFontSize
									op.Doc.TextStyle.HPos	=	0.5
									op.Doc.Rect.Top	=	op.Doc.Rect.Bottom
									op.Doc.Rect.Bottom	=	op.Doc.MediaBox.Bottom
									op.Doc.AddText(String.Format("{0}	

									k	+=	1
							End	If
				End	If
				Dim	thePixMap	As	PixMap	=	TryCast(e.Object,	
				If	thePixMap	IsNot	Nothing	Then
							thePixMap.Compress()
				End	If
		End	Sub
End	Class

swf1.pdf
	

swf2.pdf

	

	

	

Doc	Property 	 	

	

Type Default ReadOnly Description

[C#]Doc

[Visual	Basic]
Doc

null No The	target	PDF
document.

	

	 	

Notes 	

The	document	used	by	the	import	operation.	This	is
where	the	flash	movie	frames	are	imported	into.

This	property	must	not	be	null	before	the
ProcessingObject	event	of
ProcessingSourceType.ImageFrame	returns/is
handled.

	

	 	

Example 	
See	the	Import	method.

	
	 	

	

	

BackgroundRegion	Property 	 	

	

Type Default ReadOnly Description

[C#]XRect

[Visual	Basic]
XRect

null No
Gets	or	sets	the
backgound
rectangle.

	

	 	

Notes 	

The	background	region	(in	twips)	is	where	the	frame
background	is	drawn.	Set	this	property	to	change	the
extent	or	location	of	the	background.	The
background	region	is	set	to	the	frame	bounds/stage
size	if	ResetRegions	is	true.	If	it	is	null	(and	not	set	to
non-null	because	of	ResetRegions),	no	background
is	drawn.

	

	 	

Example 	
See	the	Import	method.

	
	 	

	

	

ClipRegion	Property 	 	

	

Type Default ReadOnly Description

[C#]XRect

[Visual	Basic]
XRect

null No Gets	or	sets	the
clip	rectangle.

	

	 	

Notes 	

The	clip	region	(in	twips)	is	where	the	frame
foreground	is	drawn.	Set	this	property	to	change	the
extent	or	location	of	the	frame	foreground.	If	the
foreground	extends	outside	of	this	region,	it	will	be
clipped.	The	clip	region	is	set	to	the	frame
bounds/stage	size	if	ResetRegions	is	true.	If	it	is	null
(and	not	set	to	non-null	because	of	ResetRegions),
the	content	is	not	clipped.

	

	 	

Example 	
None.

	
	 	

	

	

ResetRegions	Property

	

Type Default ReadOnly Description

[C#]bool

[Visual	Basic]
Boolean

true No

Gets	or	sets	a	value	that	indicates
whether	BackgroundRegion	and
ClipRegion	are	reset	when	the
Operation.ProcessingObject	
ProcessingSourceType.MultiFrameImage
or	of
ProcessingSourceType.ImageFrame	is
generated.

	

Notes 	

Indicates	whether	the	background	and	clip	regions	should	be	reset	
the	frame	bounds	each	time	a	new	frame	is	about	to	be	imported.	
regions	are	set	as	if	XRect.SetRect	is	called	with	the	X,	Y,	Width
Height	properties	of	the	ProcessingInfo.	Set	this	property	to	false	when
you	want	the	regions	not	to	be	reset	when	the
Operation.ProcessingObject	event	of
ProcessingSourceType.MultiFrameImage	or	of
ProcessingSourceType.ImageFrame	is	generated.

	

Example 	
None.

	

	

	

Timeout	Property 	 	

	

Type Default ReadOnly Description

[C#]TimeSpan?

[Visual	Basic]
Nullable(Of	TimeSpan)

null No

Gets	or	sets
the	time-out
for	script
execution.

	

	 	

Notes 	

This	property	specifies	for	each	advancement	of	the
Flash	engine	the	period	within	which	scripts	are
executed	while	the	Flash	engine	advances	to	the
specified	frame.	It	enables	the	termination	of	infinite
loops	in	the	scripts.

	

	 	

Example 	
None.

	
	 	

	

	

ContentAlign	Property

	

Type Default ReadOnly Description

[C#]ContentAlign?

[Visual	Basic]
Nullable(Of	ContentAlign)

null No
Gets	or	sets
the	content
alignment.

	

Notes 	

This	property	specifies	the	alignment	of	the	content	in	the
target	rectangle.

It	can	take	a	combination	of	the	following	values:

Center
Left
Right
Top
Bottom

If	it	is	null,	the	value	of	the	ActionScript	property
Stage.align	is	used.

	

	

Example 	
See	the	ProcessingInfo.FrameNumber	property.

	
	

	

	

ContentScaleMode	Property

	

Type Default Read
Only Description

[C#]ContentScaleMode?

[Visual	Basic]
Nullable(Of	ContentScaleMode)

ExactFit No
Gets	or	sets
the	content
scale	mode.

	

Notes 	

This	property	specifies	the	scale	mode	of	the	content	in	the
target	rectangle.

It	can	take	any	of	the	following	values:

ShowAll	–	make	the	content	the	biggest	and	completely
within	the	area	while	keeping	the	aspect	ratio.
NoBorder	–	make	the	content	the	smallest	and	covering
the	entire	area	while	keeping	the	aspect	ratio.
ExactFit	–	scale	the	content	possibly	with	distortion	to	fit
the	entire	area.
NoScale	–	no	scaling.

If	it	is	null,	the	value	of	the	ActionScript	property
Stage.scaleMode	is	used.

	

	

Example 	
See	the	ProcessingInfo.FrameNumber	property.

	
	

	

	

Parameters	Property 	 	

	

Type Default ReadOnly Description

[C#]SwfParameters

[Visual	Basic]
SwfParameters

null No

The
parameters
for
initializing
the	SWF
machine.

	

	 	

Notes 	

This	property	specifies	the	parameters	for	initializing
the	SWF	machine.

If	it	is	set,	it	should	be	set	before	the	first	time	a
proper	FrameNumber	is	returned	in	a
ProcessingObject	event	of
ProcessingSourceType.MultiFrameImage.	It	is	not
used	after	the	machine	is	initialized.

	

	 	

Example 	
See	the	SwfParameters.FlashVars	property.

	
	 	

	

	

FlashVars	Property

	

Type Default ReadOnly
[C#]
IEnumerable<KeyValuePair<string,
object>>

[Visual	Basic]
IEnumerable(Of	KeyValuePair(Of	String,
Object))

null No

	

Notes
	

This	property	specifies	the	Flash	variables.	The	object	values	can	be	any	of	the
following:

SwfActionValue.Undefined	–	the	undefined	value.
SwfActionValue.Null	–	the	null	value.
A	Boolean	–	a	primitive	Boolean.
A	Char	–	a	primitive	string	consisting	of	one	character.
A	SByte,	Byte,	Int16,	UInt16,	or	Int32	–	a	primitive	number	(32-bit	integer).
A	UInt32,	Int64,	or	UInt64	–	a	primitive	number	(32-bit	integer	if	it	
the	range	of	32-bit	integer;	double-precision	floating-point	number,
otherwise).
A	Single	–	a	primitive	number	(single-precision	floating-point	number).
A	Double	–	a	primitive	number	(double-precision	floating-point	number).
A	Decimal	–	a	primitive	number	(32-bit	integer	if	it	is	an	integer	
range	of	32-bit	integer;	double-precision	floating-point	number,	otherwise).
A	String	–	a	primitive	string.
IEnumerable<KeyValuePair<string,	object>>	–	an	object	with
KeyValuePair<string,	object>.Key	as	the	property	names	and

KeyValuePair<string,	object>.Value	after	this	conversion	as	the	property
values.
IEnumerable<object>	–	an	array	with	the	objects	after	this	conversion	as
the	element	values.

Reference	semantics	of	objects	is	supported.	When	the	same
IEnumerable<KeyValuePair<string,	object>>	or	the	same	IEnumerable<object>
is	in	different	parts	of	this	property	value,	the	same	object	is	used.	In	particular,
you	can	create	objects	and	properties/element	values	that	form	circular
references.

	

Here,	we	import	the	chart	in	the	frame	at	two	seconds	into	a	Flash	movie.

[C#]
Doc	doc	=	new	Doc();
using(SwfImportOperation	operation	=	new	SwfImportOperation())
{
		operation.Doc	=	doc;
		operation.ContentAlign	=	ContentAlign.Top;
		operation.ContentScaleMode	=	ContentScaleMode.ShowAll;
		operation.ProcessingObject	+=	delegate(object	sender,
ProcessingObjectEventArgs	e)	{
				if(e.Info.SourceType==ProcessingSourceType.MultiFrameImage
&&	e.Info.FrameNumber.HasValue)
						e.Info.FrameNumber	=	1+(long)(e.Info.FrameRate.Value*2);
		};

		const	int	chartWidth	=	400;
		const	int	chartHeight	=	300;
		SwfParameters	parameters	=	new	SwfParameters();
		parameters.StageWidth	=	chartWidth*20;
		parameters.StageHeight	=	chartHeight*20;

		Dictionary<string,	object>	flashVars	=	new

Example

	

Dictionary<string,	object>();
		flashVars.Add("chartWidth",	chartWidth);
		flashVars.Add("chartHeight",	chartHeight);
		flashVars.Add("dataXML",	
				"<chart	caption='Weekly	Sales	Summary'	xAxisName='Week'"
				+"	yAxisName='Amount'	numberPrefix='$'>"
				+"<set	label='Week	1'	value='14400'	/>"
				+"<set	label='Week	2'	value='19600'	/>"
				+"<set	label='Week	3'	value='24000'	/>"
				+"<set	label='Week	4'	value='15700'	/>"
				+"</chart>");
		parameters.FlashVars	=	flashVars;
		operation.Parameters	=	parameters;
		operation.Import(Server.MapPath("Column3D.swf"));	
}
doc.Save(Server.MapPath("chart.pdf"));
doc.Clear();

[Visual	Basic]
Dim	theDoc	As	Doc	=	New	Doc()
Using	theOperation	As	New	SwfImportOperation
		theOperation.Doc	=	theDoc
		theOperation.ContentAlign	=	ContentAlign.Top
		theOperation.ContentScaleMode	=	ContentScaleMode.ShowAll
		AddHandler	theOperation.ProcessingObject,	AddressOf
Processing

		Const	theChartWidth	As	Integer	=	400
		Const	theChartHeight	As	Integer	=	300
		Dim	theParameters	As	SwfParameters	=	New	SwfParameters()
		theParameters.StageWidth	=	theChartWidth	*	20
		theParameters.StageHeight	=	theChartHeight	*	20

		Dim	theFlashVars	As	Dictionary(Of	String,	Object)	=	New
Dictionary(Of	String,	Object)()
		theFlashVars.Add("chartWidth",	theChartWidth)

		theFlashVars.Add("chartHeight",	theChartHeight)
		theFlashVars.Add("dataXML",	_	
				"<chart	caption='Weekly	Sales	Summary'	xAxisName='Week'"	_
				&	"	yAxisName='Amount'	numberPrefix='$'>"	_
				&	"<set	label='Week	1'	value='14400'	/>"	_
				&	"<set	label='Week	2'	value='19600'	/>"	_
				&	"<set	label='Week	3'	value='24000'	/>"	_
				&	"<set	label='Week	4'	value='15700'	/>"	_
				&	"</chart>")
		theParameters.FlashVars	=	theFlashVars
		theOperation.Parameters	=	theParameters
		theOperation.Import(Server.MapPath("Column3D.swf"))
End	Using
theDoc.Save(Server.MapPath("chart.pdf"))
theDoc.Clear()

Private	Shared	Sub	Processing(sender	As	Object,	e	As
ProcessingObjectEventArgs)
		If	e.Info.SourceType	=	ProcessingSourceType.MultiFrameImage
_
				AndAlso	e.Info.FrameNumber.HasValue	Then
				e.Info.FrameNumber	=	1	+	CLng(e.Info.FrameRate.Value	*
2)		End	If
End	Sub

	

	

	

StageAlign	Property

	

Type Default ReadOnly Description

[C#]ContentAlign?

[Visual	Basic]
Nullable(Of	ContentAlign)

null No The	stage
alignment.

	

Notes 	

This	property	specifies	the	value	of	the	ActionScript
property	Stage.align.	If	it	is	not	null,	Stage.align	is	set	to
(the	string	representation	of)	this	value.

It	can	take	a	combination	of	the	following	values:

Center
Left
Right
Top
Bottom

	

	

Example 	
None.

	
	

	

	

StageHeight	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

null No

The	stage
height	when
the	scale
mode	is
NoScale.

	

	 	

Notes 	

This	property	specifies	20	times	the	value	of	the
ActionScript	property	Stage.height.	If	it	is	not	null,
Stage.height	holds	1/20	of	this	value	when
Stage.scaleMode	is	"noScale".

	

	 	

Example 	
See	the	FlashVars	property.

	
	 	

	

	

StageScaleMode	Property

	

Type Default ReadOnly Description

[C#]ContentScaleMode?

[Visual	Basic]
Nullable(Of	ContentScaleMode)

null No The	stage
scale	mode.

	

Notes 	

This	property	specifies	the	value	of	the	ActionScript	property
Stage.scaleMode.	If	it	is	not	null,	Stage.scaleMode	is	set	to
(the	string	representation	of)	this	value.

It	can	take	any	of	the	following	values:

ShowAll	–	make	the	content	the	biggest	and	completely
within	the	area	while	keeping	the	aspect	ratio.
NoBorder	–	make	the	content	the	smallest	and	covering
the	entire	area	while	keeping	the	aspect	ratio.
ExactFit	–	scale	the	content	possibly	with	distortion	to	fit
the	entire	area.
NoScale	–	no	scaling.

	

	

Example 	
None.

	
	

	

	

StageWidth	Property 	 	

	

Type Default ReadOnly Description

[C#]double?

[Visual	Basic]
Nullable(Of	Double)

null No

The	stage
width	when
the	scale
mode	is
NoScale.

	

	 	

Notes 	

This	property	specifies	20	times	the	value	of	the
ActionScript	property	Stage.width.	If	it	is	not	null,
Stage.width	holds	1/20	of	this	value	when
Stage.scaleMode	is	"noScale".

	

	 	

Example 	
See	the	FlashVars	property.

	
	 	

	

	

RenderOperation	Constructor 	 	

RenderOperation	Constructor.

	
	 	

Syntax 	

[C#]
RenderOperation(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	

	 	

Params 	

Name Description
doc The	PDF	Document

	

	 	

Notes 	

Create	a	RenderOperation	to	allow	rendering	of
multiple	pages	from	different	threads.

You	can	use	Doc.Rendering	to	set	rendering
options	before	creating	a	RenderOperation.
When	a	RenderOperation	is	created,	relevant
doc	properties	are	copied,	so	modifying
properties	of	Doc.Rendering	after	creating	the
operation	does	not	affect	the	RenderOperation.
Likewise,	setting	the	current	page	to	another
page	after	creating	the	operation	has	no	effect.

	

	 	

Example 	
See	the	Save	method.

	
	 	

	

	

Save	Function 	 	

Renders	a	page	into	a	file.

	
	 	

Syntax 	

[C#]
void	Save(string	path)

[Visual	Basic]
Sub	Save(path	As	String)

	may	throw	Exception()

	

	 	

Params 	

Name Description
path The	destination	file	path.

	

	 	

Renders	a	page	to	a	file.	The	current	page	at
the	time	the	operation	has	been	created	is
rendered.

This	method	is	similar	in	functionality	to
XRendering.Save(),	but	it	can	be	safely	called
on	different	instances	of	RenderOperation	from
different	threads	even	for	the	same	page	of	the
same	document	provided	the	page	is	not
modified	while	being	rendered	because	the
document	rendering	options	and	the	page	ID

are	local	to	the	operation.	In	the	example	below
we	show	how	to	render	document	pages	using
parallel	threads.

Furthermore,	this	method	generates	the
following	events,	allowing	fine	tuning	of	the
rendering	operations:

1.	 Before	rendering	begins,	a
ProcessingObject	event	of
ProcessingSourceType.PageContent	is
generated.	Set	the	event	arguments'
Cancel	property	to	true	to	skip	rendering
altogether.

2.	 When	a	PDF	path	stroking	or	filling	operator
is	found	in	the	page	content,	a
ProcessingObject	event	of
ProcessingSourceType.Path	is	generated.
Set	the	event	arguments'	Cancel	property
to	true	to	skip	this	object.	The	stream	length
and	position	can	be	retrieved	via	the
StreamPosition	and	StreamLength
properties.	Set	the	stream	position	to	null	to
skip	the	remaining	of	the	stream.

3.	 When	a	text	PDF	operator	is	found,	a
ProcessingObject	event	of
ProcessingSourceType.Text	is	generated.
The	Unicode	text	can	be	retrieved	in	the
Text	property	of	the	event	Info	property.	the
event	cancel	property	to	true	to	skip	this
object.	The	stream	length	and	position	can
be	retrieved	via	the	StreamPosition	and
StreamLength	properties.	Set	the	stream
position	to	null	to	skip	the	remaining	of	the
stream.

4.	 When	a	shading	PDF	operator	is	found,	a
ProcessingObject	event	of
ProcessingSourceType.Shading	is

Notes 	

generated.	The	same	comments	of	point	2
above	apply,	for	skipping	the	object	or
retrieving/setting	the	stream	position	and
length.

5.	 When	an	image	is	found	(inline	or	XObject),
a	ProcessingObject	event	of
ProcessingSourceType.Image	is	generated.
If	the	image	is	XObject,	the	indirect	object
can	be	retrieved	via	the	event	arguments'
Object	property.	the	event	cancel	property
to	true	to	skip	this	object.	The	stream	length
and	position	can	be	retrieved	via	the
StreamPosition	and	StreamLength
properties.	Set	the	stream	position	to	null	to
skip	the	remaining	of	the	stream.

6.	 When	a	Form	XObject	is	found,	a
ProcessingObject	event	of
ProcessingSourceType.FormXObject	is
generated.	The	indirect	object	can	be
retrieved	via	the	event	arguments'	Object
property.	Set	the	event	arguments'	Cancel
property	to	true	to	skip	this	object.	The
stream	length	and	position	can	be	retrieved
via	the	StreamPosition	and	StreamLength
properties.	Set	the	stream	position	to	null	to
skip	the	remaining	of	the	stream.	In
addition,	because	Forms	contain	streams,	a
ProcessingObject	event	of
ProcessingSourceType.Stream	will	follow.
You	can	set	the	stream	position	to	null	to
skip	the	stream	at	any	time.	That	is	events
for	the	objects	contained	in	the	Form
stream	will	be	generated,	as	described	in
points	2	to	5.	Setting	the	stream	position	to
null	for	Form	objects	will	skip	the	Form
stream,	not	the	entire	page	content.

	 	

Every	ProcessingObject	event	is	followed	by	a
corresponding	ProcessedObject,	event	with	the
same	source	type.	The	PageContent
ProcessedObject	event	will	be	the	last	event
received,	in	that	all	the	page	objects	events	are
sandwiched	between	a	PageContent	processing
and	processed	events.	Similarly	for	form
streams,	all	the	form	objects	events	are
sandwiched	between	a	Stream	processing	and
processed	events,	which	in	turn	are	sandwiched
between	the	FormXObject	processing	and
processed	events.
	
Any	event	property	or	event	Info	property	not
mentioned	here	are	ignored.
	

Here	we	render	all	the	pages	of	the	doc	using	10
threads	at	a	time.	We	alternate	rendering	format
between	jpg	and	tiff.	We	also	alternate	resolution
between	150	and	300	dpi.	Note	how	the
RenderingOperation	is	created	in	the	constructor	of
TheRenderingWorker.	This	is	because	at	this	point	a
copy	of	the	rendering	options	is	made.	Had	we	created
the	RenderingOperation	in	DoWork,	we	would	have
picked	up	only	the	last	doc.Rendering.DotsPerInch,
because	the	threads	are	started	in	the	following	loop.
Also	note	how	we	dispose	the	operation	in	DoWork,	to
release	resources	stored	on	the	native	side	(the	copy
of	the	rendering	options	basically).

[C#]
class	RenderingWorker	{
				private	string	mPath;
				private	RenderOperation	mOp;

				public	RenderingWorker(Doc	inDoc,
string	inPath)	{

								mPath	=	inPath;
								mOp	=	new
RenderOperation(inDoc);
				}

				public	void	DoWork()	{
								mOp.Save(mPath);
								mOp.Dispose();
				}
}

Doc	doc	=	new	Doc();
doc.Read(Server.MapPath("ABCpdf.pdf"));
string[]	theExts	=	{	".jpg",	".tif"	};
int[]	theDpis	=	{	150,	300	};
Thread[]	threadList	=	new	Thread[10];
int	pageNum	=	1,	pageCount	=
doc.PageCount;
while	(pageNum	<=	pageCount)	{
				int	count	=	0;
				while	(count	<	threadList.Length	&&
pageNum	<=	pageCount)	{
								doc.Rendering.DotsPerInch	=
theDpis[(pageNum	-	1)	%	2];
								doc.PageNumber	=	pageNum;
								string	path	=
Server.MapPath("ABCpdf"	+
pageNum.ToString()	+	theExts[(pageNum	-
1)	%	2]);

								threadList[count]	=	new
Thread(new	RenderingWorker(doc,
path).DoWork);
								++count;
								++pageNum;
				}
				for	(int	i	=	0;	i	<	count;	++i)

Example 	

								threadList[i].Start();
				for	(int	i	=	0;	i	<	count;	++i)
								threadList[i].Join();
}
doc.Clear();

[Visual	Basic]
Class	RenderingWorker
				Private	mPath	As	String
				Private	mOp	As	RenderOperation

				Public	Sub	New(ByVal	inDoc	As	Doc,
ByVal	inPath	As	String)
								mPath	=	inPath
								mOp	=	New
RenderOperation(inDoc)
				End	Sub

				Public	Sub	DoWork()
								mOp.Save(mPath)
								mOp.Dispose()
				End	Sub
End	Class

Dim	doc	As	Doc	=	new	Doc()
doc.Read(Server.MapPath("ABCpdf.pdf"))
Dim	theExts	As	String()	=	{".jpg",
".tif"}
Dim	theDpis	As	Integer()	=	{150,	300}
Dim	threadList(10	-	1)	As	Thread
Dim	pageNum	As	Integer	=	1,	pageCount
As	Integer	=	doc.PageCount
While	pageNum	<=	pageCount
				Dim	count	As	Integer	=	0
				While	count	<	threadList.Length
AndAlso	pageNum	<=	pageCount

	 	

								doc.Rendering.DotsPerInch	=
theDpis((pageNum	-	1)	Mod	2)
								doc.PageNumber	=	pageNum
								Dim	path	As	String	=
Server.MapPath(("ABCpdf"	&
pageNum.ToString())	+	theExts((pageNum
-	1)	Mod	2))

								threadList(count)	=	New
Thread(AddressOf	New
RenderingWorker(doc,	path).DoWork)
								count	+=	1
								pageNum	+=	1
				End	While

				For	i	As	Integer	=	0	To	count	-	1
								threadList(i).Start()
				Next
				For	i	As	Integer	=	0	To	count	-	1
								threadList(i).Join()
				Next
End	While
doc.Clear()

	

	

	

	

GetBitmap	Function 	 	

Renders	a	page	into	a	bitmap.

	
	 	

Syntax 	

[C#]
System.Drawing.Bitmap	GetBitmap()

[Visual	Basic]
Function	GetData(name	As	String)
As	Byte()

	may	throw	Exception()

	

	 	

Params 	

Name Description
return The	Bitmap	containing	the	image.

	

	 	

Notes 	

Renders	a	page	into	a	Bitmap.	The	current
page	at	the	time	the	operation	has	been	created
is	rendered.

This	method	is	similar	in	functionality	to
XRendering.GetBitmap(),	but	it	can	be	safely
called	on	different	instances	of
RenderOperation	from	different	threads	even	for
the	same	page	of	the	same	document	provided
the	page	is	not	modified	while	being	rendered

	 	

because	the	document	rendering	options	and
current	page	are	saved	when	the	operation	is
created.

	

Example 	
See	the	Save	method.

	
	 	

	

	

GetData	Function 	 	

Renders	a	page	into	an	array	of	bytes.

	
	 	

Syntax 	

[C#]
byte[]	GetData(string	name)

[Visual	Basic]
Function	GetData(name	As	String)
As	Byte()

	may	throw	Exception()

	

	 	

Params 	

Name Description

name A	dummy	file	name	used	to	determine
the	type	of	image	required.

return The	image	as	an	array	of	bytes.

	

	 	

Renders	a	page	into	an	array	of	bytes.	The
current	page	at	the	time	the	operation	has	been
created	is	rendered.

This	method	is	similar	in	functionality	to
XRendering.GetData(),	but	it	can	be	safely
called	on	different	instances	of

Notes 	 RenderOperation	from	different	threads	even	for
the	same	page	of	the	same	document	provided
the	page	is	not	modified	while	being	rendered
because	the	document	rendering	options	and
current	page	are	saved	when	the	operation	is
created.

	

	 	

Example 	 See	the	Save	method. 	 	

	

	

FromDoc	Function 	 	

Gets	the	conformance	identification	from	a
document.

	

	 	

Syntax 	

[C#]
static
PdfConformanceIdentification
FromDoc(Doc	doc,	PdfConformance
conformance)

[Visual	Basic]
Shared	Function	FromDoc(doc	As
Doc,	conformance	As
PdfConformance)	As
PdfConformanceIdentification

	

	 	

Params 	

Name Description
doc The	document.

conformance
The	conformance	specification
for	which	the	identification	is	to
be	retrieved.

return The	conformance	identification.

	

	 	

This	methods	identifies	the	conformance	a

Notes 	

document	is	marked	to	satisfy.	It	is	possible	that
a	document	conforms	to	more	than	one
specification	(e.g.	PDF/A-1	and	PDF/X-1).	The
conformance	parameter	identifies	the	desired
specification.	The	Pdf	value	for	conformance	is
not	allowed.	Both	PdfA1b	and	PdfA1a	specify
the	PDF/A-1	specification.

	

	 	

Example 	
None.

	
	 	

	

	

Part	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

"" No
The
conformance
version	identifier.

	

	 	

Notes 	

This	property	indicates	the	part	number	of	the
conformance	specification.	For	PDF/A-1,	the	value	is
"1".

	

	 	

Example 	
None.

	
	 	

	

	

Amd	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

"" No

The
conformance
amendment
identifier.

	

	 	

Notes 	

This	property	indicates	the	amendment	to	a	part	of
the	conformance	specification.	For	PDF/A,	the	value
is	the	amendment	number	and	year,	separated	by	a
colon.	There	is	currently	no	amendment	to	PDF/A-1.

	

	 	

Example 	
None.

	
	 	

	

	

Conformance	Property 	 	

	

Type Default ReadOnly Description

[C#]string

[Visual	Basic]
String

"" No
The
conformance
level.

	

	 	

Notes 	

This	property	indicates	the	conformance	level.	For
PDF/A-1a,	the	value	is	"A";	for	PDF/A-1b,	the	value	is
"B".

	

	 	

Example 	
None.

	
	 	

	

	

EffectiveConformance	Property 	 	

	

Type Default ReadOnly Description

[C#]PdfConformance

[Visual	Basic]
PdfConformance

Pdf Yes
The	effective
PdfConformance
value.

	

	 	

Notes 	

This	property	indicates	the	effective	conformance
specified	by	the	Part,	Amd,	and	Conformance
properties.

It	can	take	any	of	the	following	values:

Pdf	–	PDF.
PdfA1b	–	PDF/A-1b.
PdfA1a	–	PDF/A-1a.

	

	 	

Example 	
None.

	
	 	

	

	

GetData	Function 	 	

Get	the	conforming	document	as	raw	data.

	
	 	

Syntax 	

[C#]
byte[]	GetData(Doc	doc)

[Visual	Basic]
Function	GetData(doc	As	Doc)	As
Byte()

	may	throw	Exception()

	

	 	

Params 	

Name Description
doc The	document.

return The	PDF	document	as	an	array	of
bytes.

	

	 	

Notes 	

The	method	writes	the	document	in	a
conforming	PDF	format	according	to	the
Conformance	property.	Any	conformance	error
is	reported	in	the	Errors	property	after	the
method	finishes.

	

	 	

Example 	
None.

	
	 	

	

	

GetStream	Function 	 	

Get	the	conforming	document	as	raw	data
stream.

	

	 	

Syntax 	

[C#]
Stream	GetStream(Doc	doc)

[Visual	Basic]
Function	GetStream(doc	As	Doc)	As
Stream

	may	throw	Exception()

	

	 	

Params 	

Name Description
doc The	document.
return The	PDF	document	as	a	stream.

	

	 	

The	method	writes	the	document	in	a
conforming	PDF	format	according	to	the
Conformance	property.	Any	conformance	error
is	reported	in	the	Errors	property	after	the
method	finishes.

Because	of	the	CLR	limit	of	2	GB	per	object,	the

Notes 	 GetData	method	cannot	return	the	data	for	a
document	larger	than	2	GB.	Use	this	method	for
documents	larger	than	2	GB.	Dispose	of	the
returned	stream	as	soon	as	it	is	no	longer
needed	for	small	memory	footprint.

	

	 	

Example 	
None.

	
	 	

	

	

Save	Function

Write	the	conforming	PDF	document.

	

Syntax 	

[C#]
void	Save(Doc	doc,	string	path)
void	Save(Doc	doc,	Stream	stream)

[Visual	Basic]
Sub	Save(doc	As	Doc,	path	As	String)
Sub	Save(doc	As	Doc,	stream	As	Stream)

	may	throw	Exception()

	

Params 	

Name Description
doc The	document.
path The	destination	file	path.
stream The	destination	stream.

	

Notes 	

This	method	writes	the	document	in	a	conforming	PDF
format	according	to	the	Conformance	property.	Any
conformance	error	is	reported	in	the	Errors	property	after	the
method	finishes.

	

Example 	

Here	we	save	a	document	in	PDF/A-1b	format.

[C#]
Doc	theDoc	=	...;
string	thePath	=	Server.MapPath("pdfa.pdf");
using(PdfConformityOperation	theOperation	=	new
PdfConformityOperation())	{
		theOperation.Conformance	=
PdfConformance.PdfA1b;
		theOperation.Save(theDoc,	thePath);

		if(theOperation.Errors.Count>0)	{
				Console.WriteLine("Errors:");
				for(int	i	=	0;	i<theOperation.Errors.Count;
++i)
						Console.WriteLine(theOperation.Errors[i]);
		}
}

[Visual	Basic]
Dim	theDoc	As	Doc	=	...
Dim	thePath	As	String	=
Server.MapPath("pdfa.pdf")
Using	theOperation	As	New	PdfConformityOperation
		theOperation.Conformance	=
PdfConformance.PdfA1b
		theOperation.Save(theDoc,	thePath)

		If	theOperation.Errors.Count	>	0	Then
				Console.WriteLine("Errors:")
				For	i	As	Integer	=	0	To
theOperation.Errors.Count	-	1
						Console.WriteLine(theOperation.Errors(i))
				Next
		End	If

End	Using

	

	

	

	

Conformance	Property 	 	

	

Type Default ReadOnly Description

[C#]PdfConformance

[Visual	Basic]
PdfConformance

Pdf No The	PDF
conformance.

	

	 	

Notes 	

This	property	specifies	the	conformance	of	the	output
PDF.

It	can	take	any	of	the	following	values:

Pdf	–	PDF.
PdfA1b	–	PDF/A-1b.
PdfA1a	–	PDF/A-1a.

	

	 	

Example 	
See	the	Save	method.

	
	 	

	

	

Messages	Property 	 	

	

Type Default ReadOnly Description

[C#]IList<string>

[Visual	Basic]
IList(Of	String)

null Yes

The
messages
for	writing	in
the
conforming
PDF	format.

	

	 	

Notes 	

This	property	holds	the	messages	for	writing	in	the
conforming	PDF	format.	They	describe	changes
made	to	the	document.

	

	 	

Example 	
None.

	
	 	

	

	

Conformity	Property 	 	

	

Type Default ReadOnly Description

[C#]PdfConformity

[Visual	Basic]
PdfConformity

None No The	PDF
conformity.

	

	 	

Notes 	

This	property	specifies	the	conformity	operations	to
perform.	They	provides	more	precise	specifications
than	Conformance.

It	can	take	a	combination	of	the	following	values:

None	–	no	operation.
NoJavaScriptAction	–	removes	JavaScript
actions.	(included	in	PDF/A	conformance.)

	

	 	

Example 	
None.

	
	 	

	

	

Errors	Property 	 	

	

Type Default ReadOnly Description

[C#]IList<string>

[Visual	Basic]
IList(Of	String)

null Yes

The	errors
for	writing	in
the
conforming
PDF	format.

	

	 	

Notes 	

This	property	holds	the	errors	for	writing	in	the
conforming	PDF	format.

	

	 	

Example 	
See	the	Save	method.

	
	 	

	

	

Read	Function

Read	and	validate	an	existing	document.

	

Syntax 	

[C#]
Doc	Read(string	path,	XReadOptions	options)
Doc	Read(byte[]	data,	XReadOptions	options)
Doc	Read(Stream	stream,	XReadOptions	options)

[Visual	Basic]
Function	Read(path	As	String,	options	As
XReadOptions)	As	Doc
Function	Read(data()	As	Byte,	options	As
XReadOptions)	As	Doc
Function	Read(stream	As	Stream,	options	As
XReadOptions)	As	Doc

	may	throw	Exception()

	

Params 	

Name Description
path The	file	path	to	PDF	document.
data The	source	PDF	data.
stream The	source	PDF	stream.
options The	settings	for	the	read.	(May	be	null.)

	

Notes 	

This	method	reads	and	validates	the	document	according	to
the	Conformance	property.	Any	conformance	error	or	warning
is	reported	in	the	Errors	property	or	the	Warnings	property	after
the	method	finishes.

If	the	Doc	property	is	null,	the	document	is	read	into	a	new	Doc
object,	which	is	returned;	otherwise,	the	document	is	read	into
the	value	of	the	Doc	property,	which	is	returned.

	

Here	we	validate	a	document	against	PDF/A-1b	format.

[C#]
string	thePath	=	Server.MapPath("pdfa.pdf");
using(PdfValidationOperation	theOperation	=	new
PdfConformityOperation())	{
		theOperation.Conformance	=
PdfConformance.PdfA1b;
		Doc	theDoc	=	theOperation.Read(thePath,	null);
		theDoc.Dispose();

		if(theOperation.Errors.Count>0)	{
				Console.WriteLine("Errors:");
				for(int	i	=	0;	i<theOperation.Errors.Count;
++i)
						Console.WriteLine(theOperation.Errors[i]);
		}
		if(theOperation.Warnings.Count>0)	{
				if(theOperation.Errors.Count>0)
						Console.WriteLine();
				Console.WriteLine("Warnings:");
				for(int	i	=	0;	i<theOperation.Warnings.Count;
++i)
						Console.WriteLine(theOperation.Warnings[i]);
		}

Example
	

}

[Visual	Basic]
Dim	thePath	As	String	=	Server.MapPath("pdfa.pdf")
Using	theOperation	As	New	PdfConformityOperation
		theOperation.Conformance	=	PdfConformance.PdfA1b
		Dim	theDoc	As	Doc	=	theOperation.Read(thePath,
Nothing)
		theDoc.Dispose()

		If	theOperation.Errors.Count	>	0	Then
				Console.WriteLine("Errors:")
				For	i	As	Integer	=	0	To
theOperation.Errors.Count	-	1
						Console.WriteLine(theOperation.Errors(i))
				Next
		End	If
		If	theOperation.Warnings.Count	>	0	Then
				If	theOperation.Errors.Count	>	0	Then
						Console.WriteLine()
				End	If
				Console.WriteLine("Warnings:")
				For	i	As	Integer	=	0	To
theOperation.Warnings.Count	-	1
						Console.WriteLine(theOperation.Warnings(i))
				Next
		End	If
End	Using

	

	

	

	

Conformance	Property 	 	

	

Type Default ReadOnly Description

[C#]PdfConformance

[Visual	Basic]
PdfConformance

Pdf No The	PDF
conformance.

	

	 	

Notes 	

This	property	specifies	the	conformance	for
validation.

It	can	take	any	of	the	following	values:

Pdf	–	PDF.
PdfA1b	–	PDF/A-1b.
PdfA1a	–	PDF/A-1a.

	

	 	

Example 	
See	the	Read	method.

	
	 	

	

	

Doc	Property 	 	

	

Type Default ReadOnly Description

[C#]Doc

[Visual	Basic]
Doc

Pdf No

The	Doc	object
into	which	the
document	is
read.

	

	 	

Notes 	

This	property	specifies	the	target	Doc	object	into
which	the	document	is	read.	If	it	is	null,	the	Read
method	returns	a	new	Doc	object.

	

	 	

Example 	
None.

	
	 	

	

	

Errors	Property 	 	

	

Type Default ReadOnly Description

[C#]IList<string>

[Visual	Basic]
IList(Of	String)

null Yes
The
validation
errors.

	

	 	

Notes 	

This	property	holds	the	validation	errors.

If	any	errors	are	emitted,	then	the	document	is	not
compliant.

Each	PDF/A	error	indicates	the	problem	and	also	the
part	of	the	specification	which	is	not	being	adhered
to.

Some	errors	indicate	problem	with	the	PDF	rather
than	the	PDF/A	specification.	In	this	case,	no
specification	section	is	emitted.

For	example,	the	following	errors	might	be	emitted.

Outline	item	88's	required	Count	is
missing.
PDF/A-1	6.3.5	Font	subsets:	Type-0
font	198	is	a	font	subset	without
CIDSet.
PDF/A-1	6.3.6	Font	metrics:	TrueType
font	201's	Widths	is	inconsistent

	 	

with	the	embedded	font	program.
PDF/A-1	6.7.3	Document	information
dictionary:	Metadata	15--Document
"Producer"	and	XMP	property
pdf:Producer	are	different.

	

Example 	
See	the	Read	method.

	
	 	

	

	

Warnings	Property 	 	

	

Type Default ReadOnly Description

[C#]IList<string>

[Visual	Basic]
IList(Of	String)

null Yes
The
validation
warnings.

	

	 	

Notes 	

This	property	holds	the	validation	warnings.

Validation	warnings	indicate	unexpected
characteristics	that	neither	PDF/A	nor	PDF	regards
as	problems	but	ABCpdf	regards	as	suspect.

For	example,	if	the	PDF	header	indicates	PDF
Version	1.4	but	then	a	1.5	feature	is	referenced	in	the
PDF,	a	warning	will	be	emitted.

Warnings	are	outside	the	PDF/A	spec	and	so	a
warning	does	not	indicate	any	problem	with	PDF/A
compliance.

For	example,	the	following	warnings	might	be
emitted.

Type-2	CIDFont	descriptor	198	uses
PDF	1.5	FontFamily.
Layout	attribute	object	187	uses	PDF
1.5	BackgroundColor.
Layout	attribute	object	187	uses	PDF

	 	

1.5	BorderColor.
Layout	attribute	object	187	uses	PDF
1.5	BorderStyle.
Layout	attribute	object	187's
BorderStyle	is	PDF	1.5	border	style.

	

Example 	
See	the	Read	method.

	
	 	

	

	

PageContents	Constructor 	 	

PageContents	Constructor.

	
	 	

Syntax 	

[C#]
PageContents(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	may	throw
NullReferenceException()

	

	 	

Params 	

Name Description
doc The	PDF	Document

	

	 	

Notes 	

Create	a	PageContents	to	hold	a	set	of	pages
that	need	to	be	analysed.

If	the	doc	is	null	then	an	exception	will	be
raised.

	

	 	

None.

Example
	 	 	 	

	

	

AddLayers	Function 	 	

Add	a	particular	set	of	Layer	objects	from	a
particular	Page

	

	 	

Syntax 	

[C#]
void	AddLayers(Page	page,	Layer[]
layers)

[Visual	Basic]
Sub	AddLayers(page	As	Page,
layers()	As	Layer)

	

	 	

Params 	

Name Description

page The	page	on	which	the	provided	layers
are	located.

layers The	layers	to	be	added.

	

	 	

Notes 	

Add	a	particular	set	of	Layer	objects	from	a
particular	Page.

This	is	an	alternative	to	the	AddPages
overloads.	It	allows	specific	parts	of	a	page	to
be	added	to	the	operation	rather	than	requiring
the	operation	to	be	applied	to	the	entirety	of	a
page.

	 	

	

Example 	
None.

	
	 	

	

	

AddPages	Function 	 	

Add	pages	to	be	processed.

	
	 	

Syntax 	

[C#]
void	AddPages()
void	AddPages(int	pageNumber)
void	AddPages(int
startPageNumber,	int
endPageNumber)

[Visual	Basic]
Sub	AddPages()
Sub	AddPages(pageNumber	As
Integer)
Sub	AddPages(startPageNumber	As
Integer,	endPageNumber	As
Integer)

	may	throw	Exception()

	

	 	

Params 	

Name Description

pageNumber
The	number	of	the	page	to
be	processed.	This	is	a	one
based	index.

startPageNumber
The	number	of	the	first
page	to	be	processed.	This
is	a	one	based	index. 	 	

endPageNumber The	number	of	the	last
page	to	be	processed.	This
is	a	one	based	index.

	

Notes 	

This	method	adds	pages	that	need	to	be
processed.	If	the	provided	page	numbers	are
incorrect	then	an	exception	will	be	raised.

The	parameterless	version	of	this	function	adds
all	the	pages	in	the	document.	If	you	are	only
interested	in	a	subsection	of	the	document	you
can	specify	individual	pages	or	a	range	of
pages	using	the	overloads.	You	can	call	this
function	multiple	times	with	multiple	sets	of
pages	to	get	the	precise	selection	that	you
require.

Adding	pages	is	a	fairly	expensive	operation.
For	this	reason	if	you	are	performing	multiple
types	of	analysis	on	the	same	set	of	pages	then
you	will	probably	want	to	share	one
PageContents	object	between	them.

Note	that	the	PageContents	object	is	a	cache	of
the	current	document	content.	Thus	it	may	be
invalidated	by	a	call	that	remaps	or	replaces
existing	content	in	the	document.	For	this
reason	you	should	not	call	Doc.Save,
Doc.GetData	or	Doc.Flatten	while	using	an
operation	that	contains	a	PageContents	object.

	

	 	

	
See	TextOperation.Group.

	 	

Example 	

	

	

IncludeColor	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
include	color
information	in
the	output.

	may	throw	Exception()

	

	 	

Notes 	

Whether	to	include	color	information	in	the	output.

This	property	must	not	be	changed	after	the
AddPages	method	has	been	called.	To	do	so	will
result	in	an	exception	being	raised.

	

	 	

Example 	
None.

	
	 	

	

	

IncludeAnnotations	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
include
annotation	and
field	text	in	the
output.

	may	throw	Exception()

	

	 	

Notes 	

Whether	to	include	annotation	and	field	text	in	the
output.

This	property	must	not	be	changed	after	the
AddPages	method	has	been	called.	To	do	so	will
result	in	an	exception	being	raised.

	

	 	

Example 	
None.

	
	 	

	

	

RegenerateUnicode	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
attempt	to
regenerate
missing	Unicode
tables	from
embedded	fonts.

	may	throw	Exception()

	

	 	

Notes 	

Whether	to	attempt	to	regenerate	missing	Unicode
tables	from	embedded	fonts.

For	details	of	the	type	of	fix	that	is	attempted	on	non-
conforming	fonts	please	see	the
FontObject.RegenerateToUnicode	method.

This	property	must	not	be	changed	after	the
AddPages	method	has	been	called.	To	do	so	will
result	in	an	exception	being	raised.

	

	 	

Example 	

None.

	
	 	

	

	

TextOperation	Constructor 	 	

TextOperation	Constructor.

	
	 	

Syntax 	

[C#]
TextOperation(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	may	throw	Exception()

	

	 	

Params 	

Name Description
doc The	PDF	Document

	

	 	

Notes 	

Create	a	TextOperation	for	text	analysis.	If	the
doc	is	null	then	an	exception	will	be	raised.

	

	 	

Example 	
See	the	Group	function.

	
	 	

	

	

GetText	Function 	 	

Get	all	the	text	in	the	page	contents.

	
	 	

Syntax 	

[C#]
string	GetText()
string	GetText(XRect	rect,	int
pageNumber)
string	GetText(XRect[]	rects,
int[]	pageNumbers)

[Visual	Basic]
Function	GetText()	As	String
Function	GetText(rect	As	XRect,
pageNumber	As	Integer)	As	String
Function	GetText(rects	As
XRect(),	pageNumbers	As
Integer())	As	String

	may	throw	Exception()

	

	 	

Params 	

Name Description

rect The	rectangle	from	which	to
return	text.

rects A	set	of	rectangles	forming	a
union	from	which	to	return	text.

pageNumber
The	page	number	-	a	one	based
index.

	 	

Return The	text.

	

Notes 	

This	method	returns	the	text	of	the	content	that
has	been	assigned	via	the	PageContents.	If	the
PageContents	is	null	then	an	exception	will	be
raised.

The	overloads	of	this	function	allow	you	to
select	an	area	of	interest	in	terms	of	an	area
defined	by	single	rectangle	or	by	a	union	of
multiple	rectangles.	They	also	allow	you	to
select	a	subset	of	pages	from	which	text	should
be	returned.	This	page	array	is	a	set	of	page
numbers	-	one	based	indexes	-	for	which	order
is	not	important.	Passing	null	for	these
parameters	defaults	to	the	entire	page	and	the
entire	set	of	available	pages	respectively.

The	process	of	getting	the	text	involves
scanning	through	the	text	fragments	in	the
document	and	joining	them	up	dependent	on
their	positions	and	sizes.	The	result	is	a
standard	string	with	line	ends	where	the	line
ends	in	the	document	have	been	found.

If	there	are	parts	of	this	string	that	you	are
interested	in	you	can	use	the	offset	and	length
of	the	selections	in	conjunction	with	the	Select
method	to	identify	those	portions	within	the
document.

	

	 	

	
See	the	Group	function. 	 	

Example 	

	

	

Select	Function 	 	

Select	a	range	of	text	in	the	document.

	
	 	

Syntax 	

[C#]
IList<TextFragment>	Select(int
startIndex,	int	length)

[Visual	Basic]
Function	Select(startIndex	As
Integer,	length	As	Integer)	As
IList<TextFragment>

	may	throw	Exception()

	

	 	

Params 	

Name Description

startIndex
The	start	index	for	the	selection	as
related	to	the	string	returned	by	the
GetText	method.

length
The	length	for	the	selection	as
related	to	the	string	returned	by	the
GetText	method.

Return Returns	a	list	of	find	matches
encompassing	the	selected	text.

	

	 	

Notes 	

Select	a	range	of	text	in	the	document.	If
GetText	has	not	been	called	previously	then	an
exception	will	be	raised.

This	function	is	purposely	designed	to	be	similar
to	the	String.Substring	function.	The	concept	is
that	you	can	use	the	text	provided	via	the
GetText	method	to	identify	pieces	of	text	you
are	interested	in.	Then	using	the	offset	and
length	of	the	pieces	you	can	select	the	actual
text	in	the	document.

The	selection	specifies	the	precise	set	of	text
fragments	in	the	document.	Each	fragment	has
an	area,	some	text	and	relates	back	to	a	text
drawing	operation	within	the	content	stream	of
the	page.	Applying	the	Group	function	to	these
fragments	can	group	connected	fragments	into
connected	parts.

	

	 	

Example 	
See	the	Group	function.

	
	 	

	

	

Group	Function 	

Group	a	range	of	text	fragments	into	a	set	of	lines.

	
	

Syntax 	

[C#]
IList<TextGroup>
Group(List<TextFragment>	fragments)

[Visual	Basic]
Function	Group(fragments	As
List<TextFragment>)	As
IList<TextGroup>

	

	

Params 	

Name Description
fragments The	fragments	to	be	grouped.

Return Returns	a	list	of	groups	defining	the
words.

	

	

	

Group	a	range	of	text	fragments	into	a	set	of	lines.

Calling	Select	will	return	a	list	of	TextFragments
corresponding	to	the	section	of	text	you	are	interested
in.	However	each	TextFragment	may	only	make	up	a
small	portion	of	a	word.	Calling	this	function	allows
you	to	group	connected	fragments	into	continuous
sections	with	a	common	rectangular	area. 	

Notes Strictly	speaking	this	grouping	does	not	always
correspond	to	lines.	For	example	two	fragments	on
the	same	line,	separated	by	a	large	distance,	will	not
be	considered	contiguous.	However	for	most
purposes	the	two	broadly	correspond.

	

Here	we	highlight	a	set	of	words	in	a	source	document	by
drawing	a	rectangle	around	each	one.

[C#]
string	theSrc	=
Server.MapPath("Acrobat.pdf");
string	theDst	=
Server.MapPath("HighlightedText.pdf");
string	searchString	=	"Acrobat";
using	(Doc	theDoc	=	new	Doc())	{
		theDoc.Read(theSrc);
		TextOperation	op	=	new
TextOperation(theDoc);
		op.PageContents.AddPages();
		string	text	=	op.GetText();
		int	pos	=	0;
		while	(true)	{
				pos	=	text.IndexOf(searchString,	pos,
StringComparison.CurrentCultureIgnoreCase);
				if	(pos	<	0)
						break;
				IList<TextFragment>	theSelection	=
op.Select(pos,	searchString.Length);
				IList<TextGroup>	theGroups	=
op.Group(theSelection);
				foreach	(TextGroup	theGroup	in
theGroups)	{

Example
	

						theDoc.Rect.String	=
theGroup.Rect.String;
						theDoc.FrameRect();
				}
				pos	+=	searchString.Length;
		}
		theDoc.Save(theDst);
}

[Visual	Basic]
Dim	theSrc	As	String	=
Server.MapPath("Acrobat.pdf")
Dim	theDst	As	String	=
Server.MapPath("HighlightedText.pdf")
Dim	searchString	As	String	=	"Acrobat"
Using	theDoc	As	New	Doc()
		theDoc.Read(theSrc)
		Dim	op	As	New	TextOperation(theDoc)
		op.PageContents.AddPages()
		Dim	text	As	String	=	op.GetText()
		Dim	pos	As	Integer	=	0
		While	True
				pos	=	text.IndexOf(searchString,	pos,
StringComparison.CurrentCultureIgnoreCase)
				If	pos	<	0	Then
						Exit	While
				End	If
				Dim	theSelection	As	IList(Of
TextFragment)	=	op.[Select](pos,
searchString.Length)
				Dim	theGroups	As	IList(Of	TextGroup)	=
op.Group(theSelection)
				For	Each	theGroup	As	TextGroup	In
theGroups
						theDoc.Rect.[String]	=	theGroup.Rect.
[String]

						theDoc.FrameRect()
				Next
				pos	+=	searchString.Length
		End	While
		theDoc.Save(theDst)
End	Using

	

	

Hyphenation	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to	de-
hyphenate
words	that
appear	to	be
split	across	two
lines.

	

	 	

Notes 	

Whether	to	de-hyphenate	words	that	appear	to	be
split	across	two	lines.

If	de-hyphenation	is	enabled	then	the	hyphen	will	be
removed	and	the	second	half	of	the	hypenated	word
will	be	migrated	to	the	end	of	the	previous	line.

	

	 	

Example 	
None.

	
	 	

	

	

NativeColors	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
provide	native
colors	such	as
CMYK,
separations	and
spot	colors,	or
whether	to
convert	all	colors
to	RGB

	

	 	

Notes 	

Whether	to	provide	native	colors	such	as	CMYK,
separations	and	spot	colors,	or	whether	to	convert	all
colors	to	RGB.

	

	 	

Example 	
None.

	
	 	

	

	

PageContents	Property 	 	

	

Type Default ReadOnly Description

[C#]	
PageContents

[Visual	Basic]
PageContents

n/a No The	pages	to	be
operated	upon.

	

	 	

Notes 	

This	property	specifies	the	pages	to	be	operated
upon.

Adding	pages	to	a	PageContents	object	can	be	a
costly	procedure	taking	a	noticable	amount	of	time.

So	if	you	are	performing	a	set	of	analysis	operations
on	the	same	pages	it	can	be	more	efficient	to	assign
the	PageContents	from	one	to	another	rather	than
repeatedly	re-populate	from	the	original	document.

	

	 	

Example 	
None.

	
	 	

	

	

ShowArtifactText	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to	show
text	content	that
is	marked	as	an
artifact.

	

	 	

Notes 	

Whether	to	show	text	content	that	is	marked	as	an
artifact.

By	default	all	text	is	returned,	including	text	that	may
not	be	relevant	to	the	user	because	it	is	tagged	as	an
artifact.	In	cases	where	you	are	extracting	text	you
may	wish	to	ignore	artifacts	since,	by	definition,	they
are	irrelevant.	In	cases	where	you	are	changing	text
you	typically	want	to	include	artifacts	as,	while	they
offer	no	semantic	information,	they	still	have	an
appearance	that	may	need	updating.

Using	this	setting	you	control	whether	you	want	this
text	returned	by	GetText.

	

	 	

Example 	
None.

	
	 	

	

	

ShowClippedText	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to	show
text	which	is
invisible
because	it	is
affected	by	a	clip
path.

	

	 	

Notes 	

Whether	to	show	text	which	is	invisible	because	it	is
affected	by	a	clip	path.

By	default	all	text	is	returned.	This	includes	text	that
may	not	be	visible	to	the	user	because	it	has	been
affected	by	a	clipping	path.	Using	this	setting	you
control	whether	you	want	this	text	returned	by
GetText.

	

	 	

Example 	
None.

	
	 	

	

	

ShowObscuredText	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to	show
overlapping
repeated	text
content.

	

	 	

Notes 	

Whether	to	show	overlapping	repeated	text	content.

Overlapping	repeated	text	content	is	most	typically
used	for	a	synthetic	bold	effect.	While	the	multiple
copies	of	the	text	provide	an	appropriate	bold-like
look,	they	are	not	semantically	valid	since	they
appear	as	one	unit.	In	cases	where	you	are	looking
at	the	semantic	meaning	of	the	text,	you	typically
only	want	the	initial	text	item.	However	if	you	are
replacing	text	then	you	may	wish	to	include	all	the
text	items	so	that	when	you	change	one	you	also
change	the	others.

Using	this	setting	you	control	whether	you	want	this
text	returned	by	GetText.

	

	 	

Example 	
None.

	
	 	

	

	

Substitutions	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IDictionary<char,
string>

[Visual	Basic]
IDictionary<char,
string>

n/a No

A	set	of
character	to
string
substitutions
used	for
translating
typographic
characters
like	ligatures
into	more
normal	text.

	

	 	

Notes 	

A	set	of	character	to	string	substitutions	used	for
translating	typographic	characters	like	ligatures	into
more	normal	text.

PDF	text	often	includes	typographic	characters	that
are	uncommon	in	normal	text.	For	example	these
may	include	ligatures	such	as	'ff'	or	'fl'.	They	may
include	different	types	of	dash	such	as	n-dash	and
m-dash.	They	may	include	curly/smart	single	and
double	quote	characters.	For	the	purposes	of	text
extraction	and	searching	it	is	generally	desirable	to
replace	these	characters	with	their	more	common
equivalents.

The	default	settings	for	this	operation	include	the
substitutions	of	the	types	of	characters	detailed

	 	

above.	The	default	settings	are	liable	to	change	so	if
it	is	important	that	your	settings	remain	constant
between	different	versions	of	ABCpdf	you	should
assign	your	own	values.

	

Example 	
None.

	
	 	

	

	

TabAffinity	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

1.0 No

The	minimum
distance	at
which	two	text
fragments	will	be
assumed	to	be
part	of	separate
tab	groups

	

	 	

Notes 	

The	minimum	distance	at	which	two	text	fragments
will	be	assumed	to	be	part	of	separate	tab	groups.

This	value	is	specified	in	terms	of	a	fraction	of	the
current	font	size.

	

	 	

Example 	
None.

	
	 	

	

	

TabChar	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	char

[Visual	Basic]
Char

Space
(0x20) No

The	character
used	to	separate
out	tab	groups
when	GetText	is
called

	

	 	

Notes 	

The	character	used	to	separate	out	tab	groups	when
GetText	is	called.

	

	 	

Example 	
None.

	
	 	

	

	

TextObjects	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to	get
information	on
the	BT	and	ET
text	object
markers	used	to
contain	and
group	text
operators

	

	 	

Notes 	

Whether	to	get	information	on	the	BT	and	ET	text
object	markers	used	to	contain	and	group	text
operators.

	

	 	

Example 	
None.

	
	 	

	

	

WordAffinity	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0.15 No

The	minimum
distance	at
which	two
fragments	will	be
assumed	to	be
part	of	one
undivided	word.

	

	 	

Notes 	

The	minimum	distance	at	which	two	text	fragments
will	be	assumed	to	be	part	of	one	undivided	word.
This	value	is	specified	in	terms	of	a	fraction	of	the
font	size.

PDF	text	does	not	always	include	spaces.	It	is	not
uncommon	for	spaces	simply	to	be	indicated	by	the
positions	at	which	characters	are	drawn.	The	fact
that	two	text	fragments	are	drawn	some	distance
from	each	other	visually	indicates	that	there	is	a
space	between	them.	When	extracting	text	from	a
PDF	one	needs	to	decide	how	far	apart	text
fragments	can	be,	before	one	assumes	that	they
should	be	separated	by	a	space.

This	property	allows	you	to	control	this	spacing.
Increasing	the	property	will	tend	to	reduce	the
cohesiveness	of	fragments	resulting	in	fewer	spaces.
Decreasing	it	will	tend	to	increase	the	cohesiveness
resulting	in	more	spaces.

	 	

Broadly	speaking	the	property	is	defined	as	the
proportion	of	the	font	size	at	which	distance	a	space
will	be	assumed	to	be	present.	The	precise
mechanism	is	a	little	more	complicated	than	this	as	it
needs	to	take	account	of	vertical	distance	and	of
varying	font	sizes	between	fragments.	However	for
most	purposes	the	broad	definition	will	be
acceptable.

	

Example 	
None.

	
	 	

	

	

Font	Property 	 	

	

Type Default ReadOnly Description

[C#]	
FontObject

[Visual	Basic]
FontObject

n/a Yes

The	font	object
used	for	drawing
this	text
fragment.

	

	 	

Notes 	

The	font	object	used	for	drawing	this	text	fragment.

The	font	object	can	be	used	to	find	information	about
the	font.

	

	 	

Example 	
None.

	
	 	

	

	

FontColor	Property 	 	

	

Type Default ReadOnly Description

[C#]	XColor

[Visual	Basic]
XColor

n/a Yes
The	color	used
for	drawing	this
text	fragment.

	

	 	

Notes 	

The	color	used	for	drawing	this	text	fragment.

Note	that	the	PageContents.IncludeColor	property
must	be	set	for	this	to	be	available.	This	is	because
processing	color	information	adds	a	noticeable
overhead	that	can	be	avoided	for	many	text
operations.	If	the	property	is	not	set	then	all	text	will
be	reported	as	black.

	

	 	

Example 	
None.

	
	 	

	

	

FontSize	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	effective
font	size	used
for	drawing	this
text	fragment.

	

	 	

Notes 	

The	effective	font	size	used	for	drawing	this	text
fragment.

The	effective	size	is	the	normal	measure	that	you	will
want	to	use	as	it	describes	the	size	the	font	appears
on	the	page.	It	combines	the	effect	of	the	specified
font	size	with	any	transformation	matrices	which	may
enlarge	or	shrink	the	text.

	

	 	

Example 	
None.

	
	 	

	

	

FontObliqueAngle	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	skew	angle
of	the	font	as
used	for	oblique
styles	to
simulate	italic.

	

	 	

Notes 	

The	skew	angle	of	the	font	as	used	for	oblique	styles
to	simulate	italic.	Measured	in	degrees	clockwise
from	the	vertical.

An	italic	style	is	not	the	same	as	an	oblique	style
though	the	two	are	often	confused.	An	italic	style
contains	different	glyphs	to	a	regular	style	and	these
glyphs	often	appear	slanted.	If	a	true	italic	style	is	not
available	one	can	be	synthesized	by	applying	a	skew
to	tilt	the	characters	to	the	right.	This	is	known	as	an
oblique	style.

A	typical	skew	angle	is	between	ten	and	fifteen
degrees.	So,	while	it	is	an	arbitrary	judgment,	any
angle	above	about	eight	degrees	may	be	regarded
as	an	oblique	style.

	

	 	

	
None.

	 	

Example 	

	

	

PageID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	ID	of	the
Page	on	which
this	text
fragment	is
located.

	

	 	

Notes 	

The	ID	of	the	Page	on	which	this	text	fragment	is
located.

You	can	assign	this	ID	to	the	Doc.Page	or	you	can
use	it	with	the	ObjectSoup	to	retrieve	a	Page	object.

	

	 	

Example 	
None.

	
	 	

	

	

StreamID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	Stream	ID
of	the	content
stream	in	which
this	text
fragment	is
located.

	

	 	

Notes 	

The	Stream	ID	of	the	content	stream	in	which	this
text	fragment	is	located.

You	can	use	this	ID	with	the	ObjectSoup	to	retrieve	a
StreamObject.

	

	 	

Example 	
None.

	
	 	

	

	

StreamOffset	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	offset	within
the	content
stream	to	the
start	of	the
drawing
operation	that
contains	this
fragment.

	

	 	

Notes 	

The	offset	within	the	content	stream	to	the	start	of	the
drawing	operation	that	contains	this	fragment.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	This	property	provides	the	offset
within	the	uncompressed	stream,	to	the	start	of	that
drawing	operator.

	

	 	

Example 	
None.

	
	 	

	

	

StreamLength	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	length
within	the
content	stream
of	the	drawing
operation	that
contains	this
fragment.

	

	 	

Notes 	

The	length	within	the	content	stream	of	the	drawing
operation	that	contains	this	fragment.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	This	property	provides	the	offset
within	the	uncompressed	stream,	to	the	start	of	that
drawing	operator.

	

	 	

Example 	
None.

	
	 	

	

	

TextSpanIndex	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	zero	based
index	of	the
drawing	operator
text	array	item
that	contains	this
fragment.	For
non	text	array
operators	this
value	is	zero.

	

	 	

Notes 	

The	zero	based	index	of	the	drawing	operator	text
array	item	that	contains	this	fragment.	For	non	text
array	operators	this	value	is	zero.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	The	part	may	be	the	entire	of	the
text	drawn	by	the	operator	or	it	may	be	a	section	of
the	text	within	that	operator.

Some	text	drawing	operators	allow	multiple	items	of
text	to	be	drawn.	This	provides	a	useful	shorthand	to
allow	character	placement	to	be	adjusted	within	a
string.	For	example	the	following	command	will	draw
two	items	of	text	with	a	wide	space	(specified	by	the
number)	between	the	words.

[(Breaking)	4000	(Bad)]	TJ
	 	

Each	TextFragment	only	corresponds	to	one	of	the
strings	within	such	an	array.	This	property	is	a	zero
based	index	which	tells	you	which	one.	For	example
in	the	above	example,	if	the	TextFragment
corresponded	to	"Bad",	then	the	TextSpanIndex
would	be	equal	to	one.

For	text	drawing	operations	which	do	not	involve
arrays	this	value	will	always	be	zero.

	

Example 	
None.

	
	 	

	

	

Rect	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

n/a Yes

The	rectangle
that	contains	the
text	of	the
fragment.

	

	 	

Notes 	

The	rectangle	that	contains	the	text	of	the	fragment.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	The	part	may	be	the	entire	of	the
text	drawn	by	the	operator	or	it	may	be	a	section	of
the	text	within	that	operator.

This	property	reflects	the	area	covered	by	the
TextFragment.

This	rectangle	is	encoded	in	PDF	coordinates	rather
than	any	abstracted	coordinate	space.

	

	 	

Example 	
None.

	
	 	

	

	

Rotation	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	angle	of
rotation	of	the
fragment	in
degrees.

	

	 	

Notes 	
The	angle	of	rotation	of	the	fragment	in	degrees.

	
	 	

Example 	
None.

	
	 	

	

	

Text	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes

The	text	of	the
fragment.	A
fragment	may
span	only	a
portion	of	the
complete	text
drawing
operator.

	

	 	

Notes 	

The	text	of	the	fragment.	A	fragment	may	span	only	a
portion	of	the	complete	text	drawing	operator.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	The	part	may	be	the	entire	of	the
text	drawn	by	the	operator	or	it	may	be	a	section	of
the	text	within	that	operator.

This	property	reflects	the	text	of	the	TextFragment	-
the	selected	portion	within	the	drawing	operator.

	

	 	

Example 	
None.

	
	 	

	

	

RawText	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes

The	text
specified	in	the
drawing	operator
or	the	text	array
item	of	the
drawing
operator.

	

	 	

Notes 	

The	text	of	the	drawing	operator.

Each	TextFragment	spans	a	part	of	a	PDF	stream
drawing	operator.	The	part	may	be	the	entire	of	the
text	drawn	by	the	operator	or	it	may	be	a	section	of
the	text	within	that	operator.

This	property	reflects	the	entire	text	of	the	drawing
operator.	If	the	drawing	operator	is	a	text	array
operator	then	this	property	reflects	the	text	of	the
portion	of	the	array	referenced	by	the	TextSpanIndex
property.

	

	 	

Example 	
None.

	
	 	

	

	

FontColorSpace	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
ColorSpace

[Visual	Basic]
ColorSpace

n/a Yes

The	ColorSpace
used	for	drawing
this	text
fragment

	

	 	

Notes 	
The	ColorSpace	used	for	drawing	this	text	fragment.

	
	 	

Example 	
None.

	
	 	

	

	

PageID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	ID	of	the
Page	on	which
this	group	is
located.

	

	 	

Notes 	

The	ID	of	the	Page	on	which	this	group	is	located.

You	can	assign	this	ID	to	the	Doc.Page	or	you	can
use	it	with	the	ObjectSoup	to	retrieve	a	Page	object.

	

	 	

Example 	
None.

	
	 	

	

	

Rect	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

n/a Yes
The	rectangle
that	contains	the
group.

	

	 	

Notes 	

The	rectangle	that	contains	the	group.

This	rectangle	is	encoded	in	PDF	coordinates	rather
than	any	abstracted	coordinate	space.

	

	 	

Example 	
None.

	
	 	

	

	

Text	Property 	 	

	

Type Default ReadOnly Description

[C#]	string

[Visual	Basic]
String

n/a Yes The	text	of	the
group.

	

	 	

Notes 	

The	text	of	the	group.

The	text	of	the	group	is	not	necessarily	the	same	as
the	concatenated	text	of	the	TextFragments	as	join
characters	such	as	spaces	may	be	inserted	where
characters	are	separated	by	large	gaps.

	

	 	

Example 	
None.

	
	 	

	

	

TextFragments	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IList<TextFragment>

[Visual	Basic]
IList<TextFragment>

n/a Yes
The	text
fragments	in
the	group.

	

	 	

Notes 	
The	text	fragments	in	the	group.

.
	 	

Example 	
None.

	
	 	

	

	

ImageOperation	Constructor 	 	

ImageOperation	Constructor.

	
	 	

Syntax 	

[C#]
ImageOperation(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	

	 	

Params 	

Name Description
doc The	PDF	Document

	

	 	

Notes 	

Create	a	ImageOperation	for	text	analysis.	If	the
doc	is	null	then	an	exception	will	be	raised.

	

	 	

Example 	
None.

	
	 	

	

	

GetImageProperties	Function 	 	

Get	the	image	information	for	all	the	raster
images.

	

	 	

Syntax 	

[C#]
ICollection<ImageProperties>
GetImageProperties()

[Visual	Basic]
Function	GetImageProperties()	As
ICollection<ImageProperties>

	may	throw	Exception()

	

	 	

Params 	

Name Description
Return A	collection	of	all	the	image	properties..

	

	 	

Notes 	

Get	the	image	information	for	all	the	raster
images.	If	the	PageContents	is	null	then	an
exception	will	be	raised.

After	retrieving	image	properties	you	can	iterate
through	them	to	find	out	information	about	what
images	there	are	and	how	they	are	placed	in	the
document.	Much	like	HTML,	PDF	allows	a 	 	

divorce	between	the	image	and	the	placement	of
that	image.	So	you	may	have	one	PixMap	which
is	drawn	multiple	times	at	multiple	sizes	in
different	locations	within	the	document.

	

Example 	

Here	we	highlight	a	set	of	images	in	a	source	document
by	drawing	a	red	rectangle	around	each	one.

[C#]
string	theSrc	=
Server.MapPath("Acrobat.pdf");
string	theDst	=
Server.MapPath("HighlightedImages.pdf");
using	(Doc	theDoc	=	new	Doc())	{
		theDoc.Read(theSrc);
		theDoc.Color.SetRgb(255,	0,	0);
		theDoc.Width	=	0.1;
		ImageOperation	op	=	new
ImageOperation(theDoc);
		op.PageContents.AddPages();
		ICollection<ImageProperties>	images	=
op.GetImageProperties();
		foreach	(ImageProperties	pl	in	images)
{
				foreach	(ImageRendition	plc	in
pl.Renditions)	{
						plc.Focus();
						theDoc.FrameRect();
				}
		}
		theDoc.Save(theDst);
}

[Visual	Basic]

	 	

Dim	theSrc	As	String	=
Server.MapPath("Acrobat.pdf")
Dim	theDst	As	String	=
Server.MapPath("HighlightedImages.pdf")
Using	theDoc	As	New	Doc()
		theDoc.Read(theSrc)
		theDoc.Color.SetRgb(255,	0,	0)
		theDoc.Width	=	0.1
		Dim	op	As	New	ImageOperation(theDoc)
		op.PageContents.AddPages()
		Dim	images	As	ICollection(Of
ImageProperties)	=
op.GetImageProperties()
		For	Each	pl	As	ImageProperties	In
images
				For	Each	plc	As	ImageRendition	In
pl.Renditions
						plc.Focus()
						theDoc.FrameRect()
				Next
		Next
		theDoc.Save(theDst)
End	Using

	

	

	

IncludeAll	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
include	all
images	in	the
analysis	to	allow
the	detection	of
orphans.

	

	 	

Notes 	

Whether	to	include	all	images	in	the	analysis	to	allow
the	detection	of	orphans.

By	default	the	ImageOperation	will	go	through	the
pages	defined	in	the	PageContents	looking	at	all	the
images	that	are	used.	However	it	is	possible	to
include	an	image	in	a	document	yet	never	use	it.	This
kind	of	orphan	will	not	be	detected	using	this	method.

To	allow	the	detection	of	orphans	this	property	can
be	used	to	search	the	entire	document	and	reference
any	image	that	exists.	If	such	an	image	is	an	orphan
this	will	be	revealed	because	it	will	appear	in	the
analysis	as	an	ImageProperties	item	with	no
ImageRenditions.

	

	 	

	
None.

	 	

Example 	

	

	

PageContents	Property 	 	

	

Type Default ReadOnly Description

[C#]	
PageContents

[Visual	Basic]
PageContents

n/a No The	pages	to	be
operated	upon.

	

	 	

Notes 	

This	property	specifies	the	pages	to	be	operated
upon.

Adding	pages	to	a	PageContents	object	can	be	a
costly	procedure	taking	a	noticable	amount	of	time.

So	if	you	are	performing	a	set	of	analysis	operations
on	the	same	pages	it	can	be	more	efficient	to	assign
the	PageContents	from	one	to	another	rather	than
repeatedly	re-populate	from	the	original	document.

	

	 	

Example 	
None.

	
	 	

	

	

PixMap	Property 	 	

	

Type Default ReadOnly Description

[C#]	PixMap

[Visual	Basic]
PixMap

n/a Yes

The	PixMap
object
associated	with
the	image.

	

	 	

Notes 	
The	PixMap	object	associated	with	the	image.

	
	 	

Example 	
None.

	
	 	

	

	

Renditions	Property 	 	

	

Type Default ReadOnly Description

[C#]	
IList<ImageRendition>

[Visual	Basic]
IList<ImageRendition>

n/a Yes

The	set	of
renditions	of
the	image	at
different
locations
within	the
document.

	

	 	

Notes 	

The	set	of	renditions	of	the	image	at	different
locations	within	the	document.

Much	like	HTML,	PDF	allows	a	divorce	between	the
image	and	the	placement	of	that	image.	So	you	may
have	one	bitmap	which	is	drawn	multiple	times	at
multiple	sizes	in	different	locations	within	the
document.

	

	 	

Example 	
None.

	
	 	

	

	

Dpi	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes
The	resolution	of
the	image	in
dots	per	inch.

	

	 	

Notes 	
The	resolution	of	the	image	in	dots	per	inch.

	
	 	

Example 	
None.

	
	 	

	

	

DpiX	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	horizontal
resolution	of	the
image	in	dots
per	inch.

	

	 	

Notes 	

The	horizontal	resolution	of	the	image	in	dots	per
inch.

	

	 	

Example 	
None.

	
	 	

	

	

DpiY	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	vertical
resolution	of	the
image	in	dots
per	inch.

	

	 	

Notes 	
The	vertical	resolution	of	the	image	in	dots	per	inch.

	
	 	

Example 	
None.

	
	 	

	

	

Focus	Function 	 	

Focus	the	document	on	the	location	of	the
image	placement.

	

	 	

Syntax 	

[C#]
void	Focus()

[Visual	Basic]
Sub	Focus()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	

Focus	the	document	on	the	location	of	the
image	placement.

After	calling	this	function	you	can	add	content
overlaying	the	image	rendition.	For	example	you
might	call	Doc.FrameRect	to	frame	it.

Because	images	are	always	drawn	using	a
transformation	matrix	rather	than	a	Rect	you	will
probably	need	to	reduce	the	size	of	any	lines	or
text	to	values	smaller	than	one.

	

	 	

Example 	
None.

	
	 	

	

	

PageID	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	ID	of	the
Page	on	which
the	image	is
placed.

	

	 	

Notes 	

The	ID	of	the	Page	on	which	the	image	is	placed.

You	can	assign	this	ID	to	the	Doc.Page	or	you	can
use	it	with	the	ObjectSoup	to	retrieve	a	Page	object.

	

	 	

Example 	
None.

	
	 	

	

	

Matrix	Property 	 	

	

Type Default ReadOnly Description

[C#]	
XTransform

[Visual	Basic]
XTransform

n/a Yes

The
transformation
matrix	for	the
placement	of	the
image.

	

	 	

Notes 	

The	transformation	matrix	for	the	placement	of	the
image.

Images	in	PDFs	are	always	drawn	at	the	origin	with	a
width	and	height	of	zero.	It	is	the	transformation
matrix	which	defines	their	placement	on	the	page.

	

	 	

Example 	
None.

	
	 	

	

	

BoundingBox	Property 	 	

	

Type Default ReadOnly Description

[C#]	XRect

[Visual	Basic]
XRect

n/a Yes

The	bounding
rectangle	for	the
placement	of	the
image.

	

	 	

Notes 	

The	bounding	rectangle	for	the	placement	of	the
image.

Note	that	images	may	be	rotated	or	otherwise
transformed.	For	this	reason	consider	whether	the
Matrix	property	or	the	Focus	method	might	be	more
appropriately	used	in	place	of	the	BoundingBox
property.

	

	 	

Example 	
None.

	
	 	

	

	

Dpi	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes
The	resolution	of
the	image	in
dots	per	inch.

	

	 	

Notes 	
The	resolution	of	the	image	in	dots	per	inch.

	
	 	

Example 	
None.

	
	 	

	

	

DpiX	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	horizontal
resolution	of	the
image	in	dots
per	inch.

	

	 	

Notes 	

The	horizontal	resolution	of	the	image	in	dots	per
inch.

	

	 	

Example 	
None.

	
	 	

	

	

DpiY	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	vertical
resolution	of	the
image	in	dots
per	inch.

	

	 	

Notes 	
The	vertical	resolution	of	the	image	in	dots	per	inch.

	
	 	

Example 	
None.

	
	 	

	

	

StreamObject	Property 	 	

	

Type Default ReadOnly Description

[C#]	
StreamObject

[Visual	Basic]
StreamObject

n/a Yes

The
StreamObject	in
which	the	image
draw	operation
is	contained.

	

	 	

Notes 	

The	StreamObject	in	which	the	image	draw	operation
is	contained.

The	combination	of	the	StreamObject,	StreamOffset
and	StreamLength	allows	you	to	precisely	locate	the
image	draw	command	sequence	in	the	PDF	content
stream.	This	can	then	be	used	to	modify	or	delete
this	particular	command.

	

	 	

Example 	
None.

	
	 	

	

	

StreamOffset	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Int32

n/a Yes

The	offset	within
the
uncompressed
StreamObject	to
the	start	of	the
drawing
operation	that
contains	this
image	draw
operation.

	

	 	

Notes 	

The	offset	within	the	uncompressed	StreamObject	to
the	start	of	the	drawing	operation	that	contains	this
image	draw	operation.

The	combination	of	the	StreamObject,	StreamOffset
and	StreamLength	allows	you	to	precisely	locate	the
image	draw	command	sequence	in	the	PDF	content
stream.	This	can	then	be	used	to	modify	or	delete
this	particular	command.

	

	 	

Example 	
None.

	
	 	

	

	

StreamLength	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Int32

n/a Yes

The	length
within	the
uncompressed
StreamObject	of
the	drawing
operation	that
contains	this
image	draw
operation.

	

	 	

Notes 	

The	length	within	the	uncompressed	StreamObject	of
the	drawing	operation	that	contains	this	image	draw
operation..

The	combination	of	the	StreamObject,	StreamOffset
and	StreamLength	allows	you	to	precisely	locate	the
image	draw	command	sequence	in	the	PDF	content
stream.	This	can	then	be	used	to	modify	or	delete
this	particular	command.

	

	 	

Example 	
None.

	
	 	

	

	

StreamID	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

n/a Yes

The	ID	of	the
Stream	in	which
the	image	draw
operation	is
contained

	

	 	

Notes 	

The	ID	of	the	Stream	in	which	the	image	draw
operation	is	contained.

	

	 	

Example 	
None.

	
	 	

	

	

FlattenTransparencyOperation
Constructor

	 	

FlattenTransparencyOperation	Constructor.

	
	 	

Syntax 	

[C#]
FlattenTransparencyOperation()

[Visual	Basic]
Sub	New()

	

	 	

Params 	

Name Description
none 	

	

	 	

Notes 	 Create	a	FlattenTransparencyOperation. 	 	

Example 	

See	the	FlattenTransparency	method.

Note	that	this	feature	is	only	available	under	the
ABCpdf	Professional	License.

	

	 	

	

	

FlattenTransparency	Function

Flatten	the	transparency	of	pages	in	a	document.

	

Syntax 	

[C#]
void	FlattenTransparency(Doc	doc)
void	FlattenTransparency(Pages	pages)
void	FlattenTransparency(Page	page)

[Visual	Basic]
Sub	FlattenTransparency(doc	As	Doc)
Sub	FlattenTransparency(pages	As	Pages)
Sub	FlattenTransparency(page	As	Page)

	may	throw	Exception()

	

Params 	

Name Description
doc The	document	containing	transparency	to	be	flattened.

pages The	pages	whose	transparency	is	to	be	flattened	asreferenced	by	a	Pages	IndirectObject.

page The	page	whose	transparency	is	to	be	flattened	as
referenced	by	a	Page	IndirectObject.

	

Flattens	the	transparent	objects	on	pages	in	the	document.

Notes
	

When	transparent	objects	overlap	other	objects,	all	or	a	portion	of	the
overlapped	object	shows	through.	FlattenTransparency	will	
new	objects	that	represent	the	portion	of	the	two	objects	that	overlap.
Portions	of	transparent	objects	that	don't	overlap	other	objects	are
composited	with	the	backdrop	color	(white)	to	create	a	fully	opaque
object	that	appears	the	same.

Note	that	this	feature	is	only	available	under	the	ABCpdf	Professional
License.

	

Example 	

Here	we	flatten	all	the	transparent	objects	in	a	document.

[C#]

FlattenTransparencyOperation	transOp	=	new
FlattenTransparencyOperation();
transOp.DotsPerInch	=	144;
transOp.ColorSpace	=	XRendering.ColorSpaceType.Rgb;

Doc	theDoc	=	new	Doc();
theDoc.Read(Server.MapPath("../mypics/sample.pdf"));
transOp.Flatten(theDoc);
theDoc.Save(Server.MapPath("../Flattened/sample.pdf"));

	

	

Alpha	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

1.0 No Sets	the
backdrop	alpha

	

	 	

Notes 	

When	objects	are	compositied	with	the	backdrop,	this
alpha	value	will	be	the	minimum	alpha	of	objects
after	compositing

	

	 	

Example 	
See	the	Flatten	method.

	
	 	

	

	

AntiAliasPolygons	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to	anti-
alias	polygons
when	creating
synthetic	image
objects.

	

	 	

Notes 	

Determines	whether	polygons	will	be	rendered	with
anti-aliased	edges	when	creating	synthetic	image
objects.

Anti-aliasing	is	a	technique	for	using	gradients	of
color	to	eliminate	jagged	edges	when	objects	are
drawn.	The	object	edges	are	blurred	to	reduce
pixelation.

	

	 	

Example 	 None 	 	

	

	

AntiAliasText	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to	anti-
alias	text	when
creating	a
synthetic	image
object.

	

	 	

Notes 	

Determines	whether	text	will	be	rendered	with	anti-
aliased	edges	when	creating	a	synthetic	image
object.

Anti-aliasing	is	a	technique	for	using	gradients	of
color	to	eliminate	jagged	edges	when	objects	are
drawn.	The	object	edges	are	blurred	to	reduce
pixelation.

	

	 	

Example 	 None 	 	

	

	

ColorSpace	Property

	

Type Default	Value

[C#]	
XRendering.ColorSpaceType

[Visual	Basic]
XRendering.ColorSpaceType
	

	XRendering.ColorSpaceType.Rgb

	

Notes 	

All	the	objects	will	be	converted	to	this	colorspace.	Also,	compositing	computation
during	the	creation	of	new	objects	will	take	place	in	this	colorspace.

	

Example 	
See	the	Flatten	method.

	

	

	

ConvertAnnotations	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Gets	or	sets	a
value	indicating
whether
annotations	are
to	be	flattened

	

	 	

Notes 	

Gets	or	sets	a	value	indicating	whether	annotations
are	to	be	flattened.

	

	 	

Example 	
None.

	
	 	

	

	

DotsPerInch	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

72.0 No

Sets	the
resolution	of
generated
images.

	

	 	

Notes 	

When	two	complex	objects	overlap,	such	as	a
partially	transparent	image	with	a	backdrop	image,
an	image	representing	the	overlap	is	generated	to
this	resolution.

	

	 	

Example 	
See	the	Flatten	method.

	
	 	

	

	

IccCmyk	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
CMYK	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	CMYK	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device
CMYK	specified	in	the	PDF	file	to	the	device
independent	working	color	space.	This	may	be
necessary	when	colors	in	different	color	spaces	need
to	be	blended	together.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"standard"	or	paths	to	color
profiles.	All	color	spaces	are	assumed	to	be	device
independent	color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk,	IccGray	and	IccOutput	should	also	be	set

	 	

to	"device".	All	color	spaces	are	all	assumed	to	be
device	color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None

	
	 	

	

	

IccGray	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
Gray	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	Gray	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device
Gray	specified	in	the	PDF	file	to	the	device
independent	working	color	space.	This	may	be
necessary	when	colors	in	different	color	spaces	need
to	be	blended	together.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"standard"	or	paths	to	color
profiles.	All	color	spaces	are	assumed	to	be	device
independent	color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk,	IccGray	and	IccOutput	should	also	be	set

	 	

to	"device".	All	color	spaces	are	all	assumed	to	be
device	color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None.

	
	 	

	

	

IccRgb	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

		"standard" No

The	path	to
the	default
RGB	ICC
color	profile.

	

	 	

Notes 	

A	path	to	the	default	RGB	ICC	color	profile.

The	profile	that	will	be	used	to	convert	any	device
RGB	specified	in	the	PDF	file	to	the	device
independent	working	color	space.	This	may	be
necessary	when	colors	in	different	color	spaces	need
to	be	blended	together.

This	property	can	take	a	path	to	an	icm	file.	However
there	are	also	two	special	values	you	can	use.	If	the
property	takes	the	value	"device"	then	the	device
color	space	will	be	used.	If	the	property	takes	the
value	"standard"	then	a	built	in	default	color	profile
will	be	used.

If	this	property	is	set	to	"standard"	or	a	path	to	a	color
profile	then	IccRgb,	IccCmyk,	IccGray	and	IccOutput
should	also	be	set	to	"standard"	or	paths	to	color
profiles.	All	color	spaces	are	assumed	to	be	device
independent	color	spaces.

If	this	property	is	set	to	"device"	then	IccRgb,
IccCmyk,	IccGray	and	IccOutput	should	also	be	set

	 	

to	"device".	All	color	spaces	are	all	assumed	to	be
device	color	spaces.

If	this	property	is	set	to	a	file	name	with	no	path
information,	then	the	folder	"
<windows>\system32\spool\drivers\color"	will	be
searched	to	locate	the	file.

	

Example 	
None.

	
	 	

	

	

Log	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

None Yes

Returns	information
from	the	last
FlattenTransparency
operation.

	

	 	

Notes 	

If	for	some	reason	an	object	was	not	able	to	be
flattened,	a	reason	will	be	indicated	here.

	

	 	

Example 	
See	the	Flatten	method.

	
	 	

	

	

ReduceSizeOperation
Constructor

	 	

ReduceSizeOperation	Constructor.

	
	 	

Syntax 	

[C#]
ReduceSizeOperation(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	may	throw	Exception()

	

	 	

Params 	

Name Description
doc The	PDF	Document

	

	 	

Notes 	

Create	a	ReduceSizeOperation	to	compact	and
compress	a	PDF	document.	If	the	doc	is	null
then	an	exception	will	be	raised.

	

	 	

Example 	

See	the	Compact	function.
	 	

	

	

	

Compact	Function

Compact	and	compress	the	document.

	

Syntax 	

[C#]
void	Compact(bool	wholeDocument)

[Visual	Basic]
Function	Compact(wholeDocument	As	Boolean)

	may	throw	Exception()

	

Params 	

Name Description

wholeDocument Whether	to	compact	the	entire	document	or	only
selected	pages.

	

Compact	and	compress	the	document.

The	two	main	types	of	resources	which	take	up	file	space	are
images	and	embedded	fonts.	As	such	this	method	allows	you	to
resize	images	to	a	lower	resolution,	compress	them	using	different
methods	and	quality	settings	and	remove	embedded	fonts.	The
particular	options	appropriate	to	your	documents	can	be	set	using
the	properties	on	this	operation.

During	processing	ProcessingObject	and	ProcessedObject	events

Notes 	

will	be	fired	for	each	font	or	image	object	that	is	being	operated
upon.	Using	the	arguments	included	with	these	events	you	can	take
finer	control	over	the	application	of	this	operation.

If	you	have	previously	added	content	to	the	document	it	will	need	to
be	frozen	in	place.	This	may	result	in	changes	to	the
Doc.HtmlOptions,	Doc.Rendering	and	Doc.SaveOptions	properties.

You	may	also	wish	to	set	the	SaveOptions.CompressObects
property	to	true,	to	further	reduce	the	output	size	on	save.

This	type	of	operations	is	fairly	complex	and	can	take	some	time	on
larger	documents.

	

Example 	

The	following	example	shows	how	to	compress	a	document.

[C#]
using	(Doc	doc	=	new	Doc())	{
		doc.Read(Server.MapPath("../mypics/sample.pdf"));
		using	(ReduceSizeOperation	op	=	new
ReduceSizeOperation(doc))
				op.Compact(true);
		doc.Save(Server.MapPath("ReduceSizeOperation.pdf"));
}

[Visual	Basic]
Using	doc	As	New	Doc()
		doc.Read(Server.MapPath("../mypics/sample.pdf"))
		Using	op	As	New	ReduceSizeOperation(doc)
				op.Compact(True)
		End	Using
		doc.Save(Server.MapPath("ReduceSizeOperation.pdf"))
End	Using	

	

	

CompressImages	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
resize	and
recompress
images	where
possible.

	

	 	

Notes 	

Whether	to	resize	and	recompress	images	where
possible.

This	option	is	used	in	conjunction	with	the	image
quality,	resolution	and	compression	settings.

	

	 	

Example 	
None.

	
	 	

	

	

CompressStreams	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
compress
uncompressed
streams	where
possible.

	

	 	

Notes 	

Whether	to	compress	uncompressed	streams	where
possible.

Uncompressed	streams	are	relatively	uncommon	in
real	world	PDF	documents	but	checking	and
compressing	them	is	a	simple	and	effective	way	to
reduce	size	in	the	unusual	situations	in	which	they
are	found.

	

	 	

Example 	
None.

	
	 	

	

	

ColorImageCompression	Property 	 	

	

Type Default ReadOnly Description

[C#]	
CompressionType

[Visual	Basic]
CompressionType

Jpeg No

The	target
compression
type	for	the	re-
encoding	of
color	images.

	

	 	

Notes 	

The	target	compression	type	for	the	re-encoding	of
color	images.

When	the	CompressImages	setting	is	used	this
option	is	used	to	determine	the	type	of	compression
to	be	used	for	images	in	this	color	space.	Images	are
recompressed	if	they	are	resampled	or	if	the	target
compression	type	is	lossy.	They	are	not
recompressed	if	they	already	use	the	target
compression	and	the	compression	type	is	lossless.

	

	 	

Example 	
None.

	
	 	

	

	

ColorImageDpi	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

72.0 No

The	target
resolution	for	the
resampling	of
color	images.

	

	 	

Notes 	

The	target	resolution	for	the	resampling	of	color
images.

When	the	CompressImages	setting	is	set	this	option
is	used	to	determine	the	resolution	at	images	in	this
color	space	should	be	targeted.	Images	are	scaled
down	if	they	are	too	large	but	not	up	if	they	are	too
small.

	

	 	

Example 	
None.

	
	 	

	

	

ColorImageQuality	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

50 No

The	target
compression
quality	for	the	re-
encoding	of
color	images.

	

	 	

Notes 	

The	target	compression	quality	for	the	re-encoding	of
color	images.

When	the	CompressImages	setting	is	set	to	a	lossy
type	of	compression	such	as	JPEG,	this	option	is
used	to	determine	the	level	of	compression	to	be
used	when	images	are	recompressed.

	

	 	

Example 	
None.

	
	 	

	

	

GrayImageCompression	Property 	 	

	

Type Default ReadOnly Description

[C#]	
CompressionType

[Visual	Basic]
CompressionType

Jpeg No

The	target
compression
type	for	the	re-
encoding	of
grayscale
images.

	

	 	

Notes 	

The	target	compression	type	for	the	re-encoding	of
grayscale	images.

When	the	CompressImages	setting	is	used	this
option	is	used	to	determine	the	type	of	compression
to	be	used	for	images	in	this	color	space.	Images	are
recompressed	if	they	are	resampled	or	if	the	target
compression	type	is	lossy.	They	are	not
recompressed	if	they	already	use	the	target
compression	and	the	compression	type	is	lossless.

	

	 	

Example 	
None.

	
	 	

	

	

GrayImageDpi	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

150.0 No

The	target
resolution	for	the
resampling	of
grayscale
images.

	

	 	

Notes 	

The	target	resolution	for	the	resampling	of	grayscale
images.

When	the	CompressImages	setting	is	set	this	option
is	used	to	determine	the	resolution	at	images	in	this
color	space	should	be	targeted.	Images	are	scaled
down	if	they	are	too	large	but	not	up	if	they	are	too
small.

	

	 	

Example 	
None.

	
	 	

	

	

GrayImageQuality	Property 	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

50 No

The	target
compression
quality	for	the	re-
encoding	of
grayscale
images.

	

	 	

Notes 	

The	target	compression	quality	for	the	re-encoding	of
grayscale	images.

When	the	CompressImages	setting	is	set	to	a	lossy
type	of	compression	such	as	JPEG,	this	option	is
used	to	determine	the	level	of	compression	to	be
used	when	images	are	recompressed.

	

	 	

Example 	
None.

	
	 	

	

	

MonochromeImageCompression
Property

	 	

	

Type Default ReadOnly Description

[C#]	
CompressionType

[Visual	Basic]
CompressionType

Ccitt No

The	target
compression
type	for	the	re-
encoding	of
monochrome
images.

	

	 	

Notes 	

The	target	compression	type	for	the	re-encoding	of
monochrome	images.	Most	monochrome	images	are
black	and	white.

When	the	CompressImages	setting	is	used	this
option	is	used	to	determine	the	type	of	compression
to	be	used	for	images	in	this	color	space.	Images	are
recompressed	if	they	are	resampled	or	if	the	target
compression	type	is	lossy.	They	are	not
recompressed	if	they	already	use	the	target
compression	and	the	compression	type	is	lossless.

	

	 	

Example 	
None.

	
	 	

	

	

MonochromeImageDpi	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

150.0 No

The	target
resolution	for	the
resampling	of
monochrome
images.

	

	 	

Notes 	

The	target	resolution	for	the	resampling	of
monochrome	images.	Most	monochrome	images	are
black	and	white.

When	the	CompressImages	setting	is	set	this	option
is	used	to	determine	the	resolution	at	images	in	this
color	space	should	be	targeted.	Images	are	scaled
down	if	they	are	too	large	but	not	up	if	they	are	too
small.

	

	 	

Example 	
None.

	
	 	

	

	

MonochromeImageQuality
Property

	 	

	

Type Default ReadOnly Description

[C#]	int

[Visual	Basic]
Integer

50 No

The	target
compression
quality	for	the	re-
encoding	of
monochrome
images.

	

	 	

Notes 	

The	target	compression	quality	for	the	re-encoding	of
monochrome	images.

When	the	CompressImages	setting	is	set	to	a	lossy
type	of	compression	such	as	JPEG,	this	option	is
used	to	determine	the	level	of	compression	to	be
used	when	images	are	recompressed.

	

	 	

Example 	
None.

	
	 	

	

	

PageContents	Property 	 	

	

Type Default ReadOnly Description

[C#]	
PageContents

[Visual	Basic]
PageContents

n/a No The	pages	to	be
operated	upon.

	

	 	

Notes 	

This	property	specifies	the	pages	to	be	operated
upon.

Adding	pages	to	a	PageContents	object	can	be	a
costly	procedure	taking	a	noticable	amount	of	time.

So	if	you	are	performing	a	set	of	analysis	operations
on	the	same	pages	it	can	be	more	efficient	to	assign
the	PageContents	from	one	to	another	rather	than
repeatedly	re-populate	from	the	original	document.

Note	that	the	UnembedComplexFonts	option
normally	results	in	document-wide	changes.	If	this
happens	the	PageContents	may	be	invalidated	and
will	have	to	be	re-built	if	required	again.	While	this
happens	invisibly	it	is	a	relatively	expensive
operation	and	for	this	reason	it	is	a	good	idea	to
perform	this	type	of	operation	last	rather	than	first	if
you	are	performing	a	chain	of	operations.

	

	 	

Example 	
None.

	
	 	

	

	

PalettizationTolerance	Property 	 	

	

Type Default ReadOnly Description

[C#]	double

[Visual	Basic]
Double

0.01 No

The	amount	of
divergence	from
the	target	palette
which	will	be
allowed.

	

	 	

Notes 	

The	amount	of	divergence	from	the	target	palette
which	will	be	allowed.

Currently	the	only	palette	that	is	supported	is	RGB
black	and	white.	If	an	RGB	image	contains	only
grayscale	components,	and	those	grayscale	pixels	fit
into	the	black	and	white	palette	with	less	than	the
amount	of	divergence	specified,	then	it	will	be
converted	to	one	bit	grayscale.

The	tolerance	is	measured	in	terms	of	the	average
distance	between	the	colors	of	pixels	and	the	color
they	would	be	converted	to	in	the	palette.	Because
the	maximum	distance	varies	depending	on	the
number	of	components	in	the	color	space,	this
distance	is	then	rescaled	to	a	value	between	zero
and	one.	Zero	means	that	the	pixels	and	the	palette
need	to	match	exactly.	One	means	all	pixels	will
always	match.

	

	 	

Example 	
None.

	
	 	

	

	

RefactorImages	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
refactor	and
remove
duplicate	images
where	possible.

	

	 	

Notes 	

Whether	to	refactor	and	remove	duplicate	images
where	possible.

PDF	documents	sometimes	contain	duplicate
images.	This	method	allows	you	to	detect	such
duplicates	and	resolve	them	into	one	reference..

	

	 	

Example 	
None.

	
	 	

	

	

UnembedComplexFonts	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
unembed
complex
Unicode	based
fonts	where
possible.

	

	 	

Notes 	

Whether	to	unembed	complex	Unicode	based	fonts
fonts	where	possible.

This	option	is	relatively	complex	and	expensive	but
this	type	of	embedded	font	tends	to	be	large	so	the
size	reduction	obtained	can	be	significant.

	

	 	

Example 	
None.

	
	 	

	

	

UnembedCorruptFonts	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
unembed
embedded	fonts
that	appear	to
be	corrupt	or
non-standard

	

	 	

Notes 	

Whether	to	unembed	embedded	fonts	that	appear	to
be	corrupt	or	non-standard.

	

	 	

Example 	
None.

	
	 	

	

	

UnembedSimpleFonts	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
unembed	simple
Latin	based
fonts	where
possible.

	

	 	

Notes 	

Whether	to	unembed	simple	Latin	based	fonts	where
possible.

This	option	is	relatively	fast	and	low	impact	but
embedded	Latin	fonts	tend	not	to	be	too	large.

	

	 	

Example 	
None.

	
	 	

	

	

UnembedUnusualFonts	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

false No

Whether	to
unembed
embedded	fonts
that	do	not	have
an	obvious
substitute	on	the
local	machine.

	

	 	

Notes 	

Whether	to	unembed	embedded	fonts	that	do	not
have	an	obvious	substitute	on	the	local	machine.

The	difficulty	of	providing	an	appropriate	substitute
font	depends	greatly	on	how	unusual	the	font	is.
Subsitutes	are	typically	rather	normal	fonts	so	if	you
have	a	font	like	"Transport	Medium"	(the	font	used	for
all	UK	road	signs)	then	a	PDF	display	package
should	be	able	to	provide	a	fairly	sensible	substitute.
However	if	you	have	a	font	like	"Fire	and	Ice"	it	is
likely	that	the	substitute	will	not	be	terribly
appropriate.	The	most	extreme	example	of	this
comes	with	barcode	fonts	which	of	course	look
completely	different	from	the	characters	that	they
represent.

If	is	difficult	to	know	what	fonts	are	unusual.	However
if	the	font	does	not	appear	on	the	local	machine	then
it	is	a	reasonable	assumption	that	it	may	not
substitute	well.	As	such	this	property	allows	you	to

	 	

avoid	unembedding	such	fonts.

	

Example 	
None.

	
	 	

	

	

AccessibilityOperation	Constructor

AccessibilityOperation	Constructor.

	

Syntax 	

[C#]
AccessibilityOperation(Doc	doc)

[Visual	Basic]
Sub	New(doc	As	Doc)

	may	throw	Exception()

	

Params 	

Name Description
doc The	PDF	Document

	

Notes 	

Create	an	AccessibilityOperation	for	accessibility.	If	the	doc
is	null	then	an	exception	will	be	raised.

	

Here	we	read	an	existing	PDF	and	make	it	accessible.

We	produce	output	conformant	to	the	PDF	specification	and
compliant	with	use	within	Acrobat.	However	please	note	that
Accessibility	is	not	well	supported	outside	Acrobat.

Example 	

in	particular	some	versions	of	software	such	as	NVDAccess	do
not	necessarily	handle	all	constructs	correctly.	In	particular	they
have	problems	with	form	XObjects	and	so	one	needs	to	avoid	this
type	of	construct.

The	code	below	calls	Page.StampFormXObjects	on	all	pages	in
the	document	to	ensure	that	all	form	XObjects	are	removed
before	the	document	is	made	accessible.

The	process	of	stamping	form	XObjects	will	not	normally	make
much	difference.	However	in	some	cases	you	may	find	there	is	a
level	of	expansion	in	size	and	very	occasionally	you	may	see
subtle	differences	in	transparency	blending.	Nevertheless	if	you
want	compatibility,	there	is	no	other	choice.

[C#]
Doc	doc	=	new	Doc();
doc.Read("spaceshuttle.pdf");
Page[]	pages	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll();
foreach	(Page	page	in	pages)
		page.StampFormXObjects(true);	//	see	notes	on
NVDA	above
AccessibilityOperation	op	=	new
AccessibilityOperation(doc);
op.PageContents.AddPages();
op.MakeAccessible();
doc.Save("accessible.pdf");

[Visual	Basic]
Dim	doc	as	New	Doc
doc.Read("spaceshuttle.pdf")
Page()	pages	=
doc.ObjectSoup.Catalog.Pages.GetPageArrayAll()
foreach	(Page	page	in	pages)
		page.StampFormXObjects(true)	'	see	notes	on
NVDA	above

Dim	op	As	New	AccessibilityOperation(doc)
op.PageContents.AddPages()
op.MakeAccessible()
doc.Save("accessible.pdf")

	

	

MakeAccessible	Function 	 	

Tags	the	document	for	accessibility.

	
	 	

Syntax 	

[C#]
void	MakeAccessible()

[Visual	Basic]
Sub	MakeAccessible()

	may	throw	Exception()

	

	 	

Params 	

Name Description
Return The	text.

	

	 	

This	function	scans	the	document,	performs	a
semantic	analysis	on	it	and	tags	it	for
accessibility	purposes	using	techniques	broadly
based	around	the	PDF/UA	standard	and
Section	508	compliance.

User	accessibility	standards	like	PDF/UA	rely	on
Tagged	PDF.	This	standard	was	initially	put
forward	by	the	Association	for	Information	and
Image	Management	(AIIM)	but	was	later
adopted	via	the	ISO	in	the	form	of	ISO	14289-1

Notes 	

Document	management	applications	--
Electronic	document	file	format	enhancement
for	accessibility.

Strictly	speaking	Section	508	refers	to	the
application	rather	than	the	document	but	of
course	this	means	that	the	producers	of
applications	which	consume	documents	are	in	a
good	position	to	mandate	that	documents	must
conform	to	certain	standards	so	that	the
application	can	provide	appropriate	information.
This	is	what	people	generally	refer	to	when	they
talk	about	PDFs	as	being	Section	508
compliant.	Appropriate	tagging	achieves	that
aim.

Tagging	allows	people	who	have	disabilities	to
have	the	content	in	a	PDF	presented	to	them
via	different	mechanisms,	For	example	an
accessible	PDF	would	provide	information	on
page	structure	to	allow	a	PDF	reader	to	speak
the	content	of	the	document.	However	there	are
a	variety	of	assistive	technologies	available,
ranging	from	readers	to	magnifiers	to
navigational	aids.

Tagged	PDFs	are	the	same	as	normal	PDFs	but
they	have	been	annotated	with	metadata	in	the
form	of	PDF	tags.	This	metadata	is	required
because	PDF	documents	contain	good	layout
information	but	little	semantic	structure.	The
tags	that	are	required	supply	this	semantic
structure.	The	way	they	are	inserted	and
operate	is	defined	in	the	Adobe	PDF
Specification.	The	types	of	tags	that	are	used
and	the	way	they	are	used	are	defined	by
accessibility	standards	such	as	PDF/UA.

The	semantic	analysis	provided	by	ABCpdf	is

	 	

based	around	reading	order	and	results	in	the
the	logical	structure	of	the	PDF	being
determined.	Content	that	is	regarded	as
irrelevant	is	tagged	as	being	an	artifact	in	line
with	the	PDF/UA	standard.

Images	present	a	particular	challenge	as
automated	processes	do	not	find	it	easy	to
generate	descriptions	from	bitmaps.	However	if
you	know	what	the	different	images	represent
you	can	tag	each	PixMap	object	dictionary	with
a	"XXAlt"	entry	referring	to	a	StringAtom.	When
the	MakeAccessible	function	is	called	these
entries	will	be	picked	up	and	used	and	then
deleted.

The	MakeAccessible	function	will	result	in	any
existing	tagged	content	being	discarded.	This	is
necessary	because,	while	it	is	possible	to
determine	if	a	document	is	already	tagged,	it	is
not	possible	to	determine	if	it	has	been	correctly
tagged.	Many	PDF	consumers	do	not
understand	tags	and	will	not	update	the
metadata	appropriately	if	they	operate	on	such
documents.

To	determine	whether	a	document	has	been
tagged	you	can	find	the	"MarkInfo"	entry	in	the
Doc.Catalog	as	a	DictAtom	and	then	get	the
"Marked"	entry	of	that	as	a	BoolAtom.	The
default	is	false.

You	may	wish	to	set	the
SaveOptions.CompressObects	property	to	true,
to	reduce	output	size	on	save.

	

Example
	 See	the	AccessibilityOperation	Constructor.

	

	 	

	

	

PageContents	Property 	 	

	

Type Default ReadOnly Description

[C#]	
PageContents

[Visual	Basic]
PageContents

n/a No The	pages	to	be
operated	upon.

	

	 	

Notes 	

This	property	specifies	the	pages	to	be	operated
upon.

Adding	pages	to	a	PageContents	object	can	be	a
costly	procedure	taking	a	noticable	amount	of	time.

So	if	you	are	performing	a	set	of	analysis	operations
on	the	same	pages	it	can	be	more	efficient	to	assign
the	PageContents	from	one	to	another	rather	than
repeatedly	re-populate	from	the	original	document.

	

	 	

Example 	
None.

	
	 	

	

	

FixFonts	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a No

Whether	to
attempt	to	fix
font	settings	that
may	be	required
for	accessibility.

	

	 	

Notes 	

Whether	to	attempt	to	fix	font	settings	that	may	be
required	for	accessibility.

Specifications	like	PDF/UA	mandate	certain
requirements.	One	of	the	core	requirements	is	that
fonts	are	embedded	rather	than	referenced.

This	property	controls	whether	an	attempt	will	be
made	to	embed	any	fonts	that	are	referenced	rather
than	embedded	n	the	document.

	

	 	

Example 	
None.

	
	 	

	

	

FixMetadata	Property 	 	

	

Type Default ReadOnly Description

[C#]	bool

[Visual	Basic]
Boolean

n/a No

Whether	to
attempt	to	fix	or
add	metadata
that	may	be
required	for
accessibility.

	

	 	

Notes 	

Whether	to	attempt	to	fix	or	add	metadata	that	may
be	required	for	accessibility.

Specifications	like	PDF/UA	mandate	certain
requirements.	One	of	the	core	requirements	is	that
XMP	metadata	is	embedded	in	the	document.

This	property	controls	whether	an	attempt	will	be
made	to	add	any	such	data.	Information	for	the	XMP
section	will	be	extracted	from	the	info	section	of	the
PDF.	A	PDF/UA	tag	will	be	added	as	will	other
required	features	like	a	title.

	

	 	

Example 	
None.

	
	 	

	

	

EffectOperation	Function 	 	

EffectOperation	Constructor

	
	 	

Syntax 	

[C#]
EffectOperation(string	name)

[Visual	Basic]
New(name	As	String)

	

	 	

Params 	

Name Description
name The	name	of	the	effect	that	is	required.

	

	 	

Notes 	

Create	a	EffectOperation.

The	installed	effects	can	be	obtained	using	the
Names	static	variable.

If	the	name	is	not	one	of	the	valid	names	then
an	exception	will	be	thrown.

	

	 	

Example 	

None.

	
	 	

	

	

Apply	Function 	 	

Apply	the	effect	to	an	image.

	
	 	

Syntax 	

[C#]
void	Apply(PixMap	pixMap)

[Visual	Basic]
Sub	Apply(pixMap	As	PixMap)

	may	throw	Exception()

	

	 	

Params 	

Name Description

pixMap The	PixMap	to	which	the	image
should	be	applied.

	

	 	

Apply	the	effect	to	an	image	specified	as	a
PixMap.

Effects	normally	involve	wholesale	changes	and
so	it	may	well	be	necessary	to	change	the	color
space	and	depth	in	order	to	apply	the	effect.	If
the	AutoRestore	property	is	set	then	the	PixMap
will	be	restored	to	a	similar	color	space	after
processing	and	it	will	be	recompressed	at	an
appropriate	quality.	This	default	is	generally

Notes 	

what	is	required.

If	the	AutoRestore	property	is	not	set	then	the
final	output	may	well	have	different
characteristics	such	as	color	space	and	depth.
In	general	the	final	image	will	be	uncompressed
eight	bit	RGB	no	matter	what	type	of	PixMap
was	supplied.

If	you	are	relying	on	particular	characteristics
present	in	the	original	PixMap	then	you	should
set	the	AutoRestore	property	to	false	and	then
convert	or	recolor	it	after	the	effect	has	been
applied.	Since	the	final	image	will	be	left
uncompressed	you	will	likely	want	to
recompress	it	using	an	appropriate	schema.

	

	 	

Example 	
None.

	
	 	

	

	

Names	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
static
string[]

[Visual	Basic]
Shared
String()

See
below Yes Names	of	all	the

installed	effects

	

	 	

Notes 	

The	names	of	all	the	installed	effects.

The	default	effect	names	are:

"None"
"Median"
"Sharpen"
"Convolution"
"Gaussian	Blur"
"Laplacian"
"Unsharp	Mask"
"Despeckle"
"Brightness"
"Equalize"
"Contrast"
"Levels"
"Auto	Levels"
"Histogram"
"Twirl"

	 	

"Pinch"
"Ripple"
"Wave"

	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

n/a Yes The	name	of
the	Effect

	

	 	

Notes 	
The	unique	name	by	which	the	effect	is	known.

	
	 	

Example 	
None.

	
	 	

	

	

Description	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

n/a Yes
A	description	of
what	the	effect
does

	

	 	

Notes 	

A	description	of	what	the	effect	does.

This	human	language	description	of	the	effect	can	be
used	to	suppliement	the	Name.

	

	 	

Example 	
None.

	
	 	

	

	

Parameters	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	
IDictionary<string,
EffectParameter>

[Visual	Basic]
IDictionary<string,
EffectParameter>

n/a No

The
parameters
associated
with	the
effect

	

	 	

Notes 	

The	parameters	associated	with	the	effect.

Each	item	in	the	dictionary	is	identified	by	a	name
and	takes	a	Parameter.	So	for	a	brighness	effect
there	might	be	an	intensity	entry	with	a	Parameter
containing	the	value	25.

	

	 	

Example 	
None.

	
	 	

	

	

AutoQuality	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

75 No

The	quality	of
compression	to
use	when
automatically
compressing
after	the	effect	is
applied

	

	 	

Notes 	

The	quality	of	compression	to	use	when
automatically	compressing	after	the	effect	is	applied.

	

	 	

Example 	
None.

	
	 	

	

	

AutoRestore	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	bool

[Visual	Basic]
Boolean

true No

Whether	to
automatically
restore	the
image	color
space	and	apply
compression
after	the	effect	is
applied

	

	 	

Notes 	

Whether	to	automatically	restore	the	image	color
space	and	apply	compression	after	the	effect	is
applied.

	

	 	

Example 	
None.

	
	 	

	

	

Name	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

0? No? The	name	of
the	parameter

	

	 	

Notes 	
The	name	of	the	parameter.

	
	 	

Example 	
None.

	
	 	

	

	

Description	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	string

[Visual	Basic]
String

0? No?
A	description	of
what	the
parameter	does

	

	 	

Notes 	
A	description	of	what	the	parameter	does.

	
	 	

Example 	
None.

	
	 	

	

	

Maximum	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	maximum
recomended
value	(if
applicable)

	

	 	

Notes 	
The	maximum	recomended	value	(if	applicable).

	
	 	

Example 	
None.

	
	 	

	

	

Minimum	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

n/a Yes

The	minimum
recomended
value	(if
applicable)

	

	 	

Notes 	
The	minimum	recomended	value	(if	applicable).

	
	 	

Example 	
None.

	
	 	

	

	

Value	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double

[Visual	Basic]
Double

n/a No

The	value	of	the
parameter,	or
the	first	value	if
there	are
multiple

	

	 	

Notes 	

The	value	of	the	parameter,	or	the	first	value	if	there
are	multiple.

	

	 	

Example 	
None.

	
	 	

	

	

Values	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	double[]

[Visual	Basic]
Double()

n/a No The	values	of
the	parameter

	

	 	

Notes 	

The	values	of	the	parameter.	Most	parameters	have
one	value	only.

	

	 	

Example 	
None.

	
	 	

	

	

Introduction	to	Effects 	

Effects	are	an	operation	which	can	be	applied	to	images.
They	include	common	and	useful	functions	like	blur	and
sharpen	filters.

	

	

Basics
	

Effects	are	applied	using	the	EffectOperation	class.	To	apply	an
effect	you	can	use	code	as	simple	as	this.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img5);
				using	(ImageLayer	layer	=
AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Sharpen"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectSharpen1b.jpg");
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img5)
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img5)
						Using	effect	As	New
EffectOperation("Sharpen")
								effect.Apply(layer.PixMap)

						End	Using
				End	Using
				doc.Rendering.Save("EffectSharpen1b.jpg")
End	Sub

	

Examples
	

The	examples	make	use	of	a	function	named
AddImagePage.	This	function	simply	creates	an
appropriate	Doc	object,	adds	the	image	and	returns	the
ImageLayer	which	was	added.

[C#]
private	ImageLayer	AddImagePage(Doc	doc,
string	path)	{
		using	(XImage	img	=
XImage.FromFile(path,	null))	{
				doc.MediaBox.SetSides(0,	0,
img.Width,	img.Height);
				doc.Page	=	doc.AddPage();
				doc.Rect.String	=
doc.MediaBox.String;
				int	id	=	doc.AddImageObject(img);
				return
(ImageLayer)doc.ObjectSoup[id];
		}
}

[Visual	Basic]
Private	Function	AddImagePage(doc	As	Doc,
path	As	String)	As	ImageLayer
		Using	img	As	XImage	=
XImage.FromFile(path,	Nothing)
				doc.MediaBox.SetSides(0,	0,

	

img.Width,	img.Height)
				doc.Page	=	doc.AddPage()
				doc.Rect.[String]	=	doc.MediaBox.
[String]
				Dim	id	As	Integer	=
doc.AddImageObject(img)
				Return	DirectCast(doc.ObjectSoup(id),
ImageLayer)
		End	Using
End	Function

	

	

	

AutoLevels	Effect 	

AutoLevels	automatically	adjusts	brightness	and	contrast	to
produce	a	balanced	image	with	a	good	range	of	color
intensities.	In	doing	so	it	performs	a	function	very	much	like
the	Levels	effect,	automatically	deriving	settings	based	on	the
image	provided.

	

	

Settings 	

Name Default Description

Clip 0.5	%
The	percentage	of	extreme	color	values	to
ignore.	This	applies	to	the	top	and	the
bottom	extremes.

	

	

Workings 	

Well	defined	images	span	an	entire	range	of	color	intensities.
However	it	is	common	to	find	images	that	do	not.	If	a	photo
has	been	overexposed	it	will	be	too	bright	-	there	will	be	few
colors	at	the	low	ends	of	intensity	and	many	at	the	high	end.
Similarly	if	a	photograph	has	been	underexposed	it	will	be
very	dark	-	all	the	colors	will	be	at	the	low	end	of	the	range
and	virtually	none	at	the	high	end.

The	AutoLevels	effect	detects	and	fixes	this	kind	of
imbalance.	It	scans	through	the	levels	of	intensity	within	the
image	and	chooses	a	level	that	should	be	regarded	as	black
(low	intensity)	and	another	that	should	be	regarded	as	white
(high	intensity).	It	then	stretches	the	levels	in	the	image	so
that	all	the	intensities	present	lie	between	the	black	and	the
white	points.	This	results	in	an	image	with	a	good	span	of
color	intensities.

	

To	mitigate	the	effect	of	outliers	-	small	numbers	of	pixels	at
extreme	values	of	intensity	-	a	clipping	percentage	is	used.	By
default	the	value	is	0.5%	which	means	that	the	bottom	and
top	0.5%	of	pixels	will	be	ignored	when	determining	the	black
and	white	points.

	

The	following	example	images	show	the	effect	of	AutoLevels	at
different	clipping	levels.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img1);	//	original	image
				doc.Rendering.Save("EffectAutoLevels5.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img1))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Auto	Levels"))	{
								effect.Parameters["Clip"].Value	=	0.5;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectAutoLevels50.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img1))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Auto	Levels"))	{
								effect.Parameters["Clip"].Value	=	5.0;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectAutoLevels.jpg");
		}
}

Example

	

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img1)
				'	original	image
				doc.Rendering.Save("EffectAutoLevels5.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img1)
						Using	effect	As	New	EffectOperation("Auto
Levels")
								effect.Parameters("Clip").Value	=	0.5
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectAutoLevels50.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img1)
						Using	effect	As	New	EffectOperation("Auto
Levels")
								effect.Parameters("Clip").Value	=	5.0
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectAutoLevels.jpg")
		End	Using
End	Sub

Original	Image	before	AutoLevels

After	AutoLevels	Clip	0.5%

After	AutoLevels	Clip	5.0%

	

	

Brightness	Effect 	

The	Brightness	effect	can	be	used	to	lighten	the	image	or	to
darken	it.

	

	

Settings 	

Name Default Description

Amount 0	% Amount	to	lighten	or	darken	the	image.

	

	

Workings 	

The	value	given	is	added	to	every	pixel	in	the	image.	The
value	may	be	negative	in	which	case	the	result	is	to	darken
rather	than	lighten	the	image.

	

	

The	following	show	the	effect	of	brightening	or	darkening	an	image.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img2);	//	original	image
				doc.Rendering.Save("EffectBrightness.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Brightness"))	{
								effect.Parameters["Amount"].Value	=	20;
								effect.Apply(layer.PixMap);

	

						}
				}
				doc.Rendering.Save("EffectBrightness20.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Brightness"))	{
								effect.Parameters["Amount"].Value	=	-20;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectBrightness-
20.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Brightness"))	{
								effect.Parameters["Amount"].Value	=	60;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectBrightness60.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img2)
				'	original	image
				doc.Rendering.Save("EffectBrightness.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img2)
						Using	effect	As	New
EffectOperation("Brightness")
								effect.Parameters("Amount").Value	=	20

Example 								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectBrightness20.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img2)
						Using	effect	As	New
EffectOperation("Brightness")
								effect.Parameters("Amount").Value	=	-20
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectBrightness-20.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img2)
						Using	effect	As	New
EffectOperation("Brightness")
								effect.Parameters("Amount").Value	=	60
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectBrightness60.jpg")
		End	Using
End	Sub

Original	Image Brightness	Amount	20

Brightness	Amount	-20 Brightness	Amount	60

	

	

Contrast	Effect 	

The	Contrast	effect	can	be	used	to	increase	or	decrease
the	contrast	of	an	image.

	

	

Settings 	

Name Default Description

Amount 0	% Amount	to	increase	or	decrease
contrast	by.

	

	

Workings 	

The	value	given	is	used	to	stretch	the	contrast	within	the
image.	Values	greater	than	zero	increase	the	amount	of
contrast	while	those	less	than	zero	decrease	the	contrast.

	

	

The	following	show	the	effect	of	increasing	and	decreasing
contrast.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img2);	//	original	image
				doc.Rendering.Save("EffectContrast.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Contrast"))	{
								effect.Parameters["Amount"].Value	=	25;

								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectContrast25.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Contrast"))	{
								effect.Parameters["Amount"].Value	=	50;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectContrast50.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Contrast"))	{
								effect.Parameters["Amount"].Value	=
-50;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectContrast-
50.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img2)
				'	original	image
				doc.Rendering.Save("EffectContrast.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img2)
						Using	effect	As	New

Example

	

EffectOperation("Contrast")
								effect.Parameters("Amount").Value	=	25
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectContrast25.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img2)
						Using	effect	As	New
EffectOperation("Contrast")
								effect.Parameters("Amount").Value	=	50
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectContrast50.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img2)
						Using	effect	As	New
EffectOperation("Contrast")
								effect.Parameters("Amount").Value	=	-50
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectContrast-50.jpg")
		End	Using
End	Sub

Original	Image Contrast	Amount	25

Contrast	Amount	50 Contrast	Amount	-50

	

	

	

Convolution	Effect

The	Convolution	Effect	allows	you	to	produce	a	range	of	effects	by
specifying	a	set	of	convolution	kernels.	A	simple	explanation	is	given
here	but	you	may	wish	to	refer	to	other	sources	for	complete
descriptions	of	convolution	and	how	you	can	use	it.

	

Settings 	

Name Default Description

Width 3	pixels The	width	of	the	filter	to	be	applied.

Height 3	pixels The	height	of	the	filter	to	be	applied.

X 2	pixels The	horizontal	center	of	the	filter	in	pixels	from	topleft.

Y 2	pixels The	vertical	center	of	the	filter	in	pixels	from	topleft.
Number 2 The	number	of	kernels	to	apply.

Values See
desc.

The	values	for	the	kernels	in	a	comma	delimited
list.	The	items	in	the	list	may	be	integers	or	floating
point	numbers.

The	default	value	is:
"-1,0,1,-2,0,2,-1,0,1,1,2,1,0,0,0,-1,-2,-1"

	

Convolution	is	a	general	purpose	filter	effect	for	images.	It	works	
determining	the	value	of	a	central	pixel	by	adding	the	weighted	values
of	all	its	neighbors	together.	The	weights	applied	to	each	pixel	are
determined	by	what	is	called	a	convolution	kernel.

Workings
	

So	if	you	want	to	take	the	average	of	all	the	immediate	neighbors	
central	pixel	you	would	specify	an	equally	weighted	convolution
kernel.	Note	that	the	total	sum	of	all	the	weights	is	one	so	that	the
overall	brightness	of	the	image	is	not	affected	by	the	convolution.
Note	that	the	anchor	point	is	highlighted	to	show	which	pixel	should
be	regarded	as	central.

	
0.1111 0.1111 0.1111
0.1111 0.1112 0.1111
0.1111 0.1111 0.1111

If	you	wanted	to	take	the	average	of	the	pixels	immediately	above,
below	and	to	the	sides	of	the	central	pixel,	and	you	wanted	to	exclude
the	central	pixel	itself,	you	would	specify	the	following	kernel.

	
0.0000 0.2500 0.0000
0.2500 0.0000 0.2500
0.0000 0.2500 0.0000

Although	a	three	square	kernel	with	the	anchor	at	the	center	is	most
common,	you	can	use	other	shapes	of	kernel.	For	example	the
following	convolution	will	shift	the	entire	image	left	by	one	pixel.

	 0.0000 1.0000

When	you	specify	values	you	specify	them	from	left	to	right	and	then
from	top	to	bottom.	You	can	specify	more	than	one	filter	at	a	time	and
the	results	will	be	added	together.

The	default	kernel	is	a	standard	Sobel	edge	detector.	This	contains
two	filters	-	one	vertical,	one	horizontal	-	to	be	applied	and	then	added
together.	The	two	kernel	values	are:

	
-1 0 1
-2 0 2 	

1 2 1
0 0 0

-1 0 1 -1 -2 -1

	

The	following	examples	show	the	effect	of	the	default	kernel	-	a	Sobel	Edge
Detector.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectConvolution.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))
{
						using	(EffectOperation	effect	=	new
EffectOperation("Convolution"))	{
								//	the	default	is	a	Sobel	Edge	Detector
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectConvolutionDefault.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))
{
						using	(EffectOperation	effect	=	new
EffectOperation("Convolution"))	{
								//	the	following	is	a	high	intensity	sharpen
filter
								double[]	k	=	new	double[]	{	0,	-1,	0,	-1,	5,
-1,	0,	-1,	0	};
								effect.Parameters["Number"].Value	=	1;
								effect.Parameters["Values"].Values	=	k;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectConvolutionSharpen.jpg");
		}

Example

	

}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectConvolution.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Convolution")
								'	the	default	is	a	Sobel	Edge	Detector
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectConvolutionDefault.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Convolution")
								'	the	following	is	a	high	intensity	sharpen
filter
								Dim	k	As	Double()	=	New	Double()	{0,	-1,	0,	-1,
5,	-1,	_
										0,	-1,	0}
								effect.Parameters("Number").Value	=	1
								effect.Parameters("Values").Values	=	k
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectConvolutionSharpen.jpg")
		End	Using
End	Sub

	

Original	Image

After	Convolution	Applied

	

	

Despeckle	Effect 	

The	Despeckle	filter	removes	noise	from	images	without
blurring	edges.	It	attempts	to	detect	complex	areas	and
leave	these	intact	while	smoothing	areas	where	noise	will	be
noticeable.

	

	

Settings 	

Name Default Description

Threshold 20 Threshold	of	complexity	above	which
the	image	should	not	be	smoothed.

	

	

Workings 	

The	Despeckle	filter	smoothes	areas	in	which	noise	is
noticeable	while	leaving	complex	areas	untouched.	The
effect	is	that	grain	or	other	noise	is	reduced	without	severely
affecting	edges.

The	standard	deviation	of	each	pixel	and	its	neighbors	is
calculated	to	determine	if	the	area	is	one	of	high	complexity
or	low	complexity.	If	the	complexity	is	lower	than	the
threshold	then	the	area	is	smoothed	using	a	simple	mean
filter.

	

	

The	following	examples	show	the	effect	of	a	Despeckle	filter
applied	to	a	portion	of	detail	from	a	picture	of	the	Hubble	Space
Telescope.	The	image	is	characterized	by	a	relatively	smooth
background	but	a	complex	foreground.	The	image	is	very	grainy

but	the	grain	is	obscured	in	areas	of	high	complexity	and	is	only
really	visible	in	the	background.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img4);	//	original	image
				doc.Rendering.Save("EffectDespeckle.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img4))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Despeckle"))	{
								effect.Parameters["Threshold"].Value	=
10;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectDespeckle10.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img4))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Despeckle"))	{
								effect.Parameters["Threshold"].Value	=
20;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectDespeckle20.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img4))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Despeckle"))	{
								effect.Parameters["Threshold"].Value	=
30;
								effect.Apply(layer.PixMap);
						}
				}

Example

	

				doc.Rendering.Save("EffectDespeckle30.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img4)
				'	original	image
				doc.Rendering.Save("EffectDespeckle.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img4)
						Using	effect	As	New
EffectOperation("Despeckle")
								effect.Parameters("Threshold").Value	=
10
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectDespeckle10.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img4)
						Using	effect	As	New
EffectOperation("Despeckle")
								effect.Parameters("Threshold").Value	=
20
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectDespeckle20.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img4)
						Using	effect	As	New
EffectOperation("Despeckle")
								effect.Parameters("Threshold").Value	=
30

								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectDespeckle30.jpg")
		End	Using
End	Sub

Original	Image

The	sea	is	very	grainy
while	the	the	grain	is
obscured	in	areas	of
high	complexity	like	the
telescope.

Despeckle	Radius
10

The	sea	has	been
appreciably
degrained	while
retaining	detail	in
areas	of	complexity.

Despeckle	Radius	20

The	sea	has	been
further	degrained.

Despeckle	Radius
30

The	telescope

Although	the	telescope
remains	unblurred,	the
coastline	is	becoming	a
little	indistinct.

remains	unblurred
but	now	the
coastline	has	lost	a
lot	of	distinction.

	

	

	

Equalize	Effect

Equalize	modifies	an	image	to	ensure	that	all	levels	of
brightness	are	equally	well	represented.	This	function	is	very
similar	to	the	AutoLevels	effect	but	is	designed	to	modify
brightness	rather	than	color	levels.

	

Settings 	

Name Default Description

None 	 	

	

Workings 	

Most	images	span	an	entire	range	of	brightness	with	all	levels
well	represented.	However	sometimes	images	are	too	light	or
too	dark	and	some	levels	are	overpopulated	leaving	others
underpopulated.

The	Equalize	effect	modifies	an	image	so	that	all	levels	of
brightness	are	equally	well	represented	within	the	image.

	

The	following	example	images	show	the	effect	of	Equalize.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img2);	//	original	image
				doc.Rendering.Save("EffectEqualize1.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,

Example
	

img2))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Equalize"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectEqualizeAfter1.jpg");
				AddImagePage(doc,	img6);	//	original	image
				doc.Rendering.Save("EffectEqualize2.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img6))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Equalize"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectEqualizeAfter2.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img2)
				'	original	image
				doc.Rendering.Save("EffectEqualize1.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img2)
						Using	effect	As	New
EffectOperation("Equalize")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectEqualizeAfter1.jpg")
				AddImagePage(doc,	img6)
				'	original	image

				doc.Rendering.Save("EffectEqualize2.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img6)
						Using	effect	As	New
EffectOperation("Equalize")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectEqualizeAfter2.jpg")
		End	Using
End	Sub

Original	Image After	Equalize

Original	Image After	Equalize

	

	

	

Gaussian	Blur	Effect

A	Gaussian	Blur	is	a	general	purpose	blur	filter.	This	removes
fine	image	detail	and	noise	leaving	only	larger	scale	changes.
Gaussian	Blurs	produce	a	very	pure	smoothing	effect	without
side	effects.

	

Settings 	

Name Default Description

Radius 1.5pixels

Determines	the	scale	of	fine	detail	that	will	be
removed.	Low	values	remove	only	very	fine
detail	while	high	values	remove	larger	levels
of	detail.

This	value	represents	the	standard	deviation
of	the	Gaussian	function.

	

Workings 	

A	Gaussian	Blur	is	distinct	from	other	blurs	in	that	it	has	a	well
defined	effect	on	different	levels	of	detail	within	an	image.	As	the
level	of	detail	becomes	smaller	the	filter	lets	through	less	and
less.	With	other	types	of	blur	(e.g.	Mean	Filter)	the	amount	let
through	may	vary	considerably.

As	well	as	having	this	well	defined	and	consistent	frequency
response,	certain	characteristics	of	the	Gaussian	function	mean
that	large	blurs	can	be	applied	much	faster	than	other	similar
kinds	of	filters.

	

The	following	example	images	show	the	effect	of	Gaussian	Blur.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectGaussianBlur.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Gaussian	Blur"))	{
								effect.Parameters["Radius"].Value	=	1.2;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectGaussianBlur12.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Gaussian	Blur"))	{
								effect.Parameters["Radius"].Value	=	2.5;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectGaussianBlur25.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Gaussian	Blur"))	{
								effect.Parameters["Radius"].Value	=	5.0;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectGaussianBlur50.jpg");
		}
}

Example

	

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectGaussianBlur.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Gaussian
Blur")
								effect.Parameters("Radius").Value	=	1.2
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectGaussianBlur12.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Gaussian
Blur")
								effect.Parameters("Radius").Value	=	2.5
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectGaussianBlur25.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Gaussian
Blur")
								effect.Parameters("Radius").Value	=	5.0
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectGaussianBlur50.jpg")
		End	Using
End	Sub

Original	Image	before	Gaussian	Blur

After	Gaussian	Blur	Radius	1.2	pixels

After	Gaussian	Blur	Radius	2.5	pixels

After	Gaussian	Blur	Radius	5.0	pixels

	

	

	

Histogram	Effect

Histogram	is	a	image	diagnostic	rather	than	an	image	effect.
When	you	apply	the	Histogram	effect	color	levels	are	calculated
and	returned	via	the	settings.	The	image	is	unaffected.

	

Settings 	

Name Default Description

Red "" A	histogram	of	red	levels	as	a	comma	delimited
string.

Green "" A	histogram	of	green	levels	as	a	comma
delimited	string.

Blue "" A	histogram	of	blue	levels	as	a	comma
delimited	string.

RGB "" A	histogram	of	RGB	levels	as	a	comma
delimited	string.

	

Workings
	

Image	histograms	show	how	color	levels	are	distributed	within
an	image.	Each	color	channel	has	a	value	between	0	and	255
and	the	histogram	simply	returns	the	number	of	pixels	with	each
of	these	values.	A	light	image	will	have	many	values	at	the
higher	end	of	the	histogram	while	a	dark	one	will	have	many
values	at	the	lower	end.

After	the	Histogram	effect	has	been	applied	to	an	image	the
settings	contain	the	histograms	of	each	of	the	color	channels
and	also	of	a	combined	RGB	channel.	These	values	are	held	as
comma	delimited	strings.

	

The	following	example	images	show	the	effect	of	Histogram..

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img1);	//	original	image
				doc.Rendering.Save("EffectHistogram.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img1))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Histogram"))	{
								effect.Apply(layer.PixMap);
								var	pars	=	effect.Parameters;
								doc.Color.SetRgb(255,	0,	0);
								DrawGraph(doc,	pars["Red"].Values);
								doc.Color.SetRgb(0,	255,	0);
								DrawGraph(doc,	pars["Green"].Values);
								doc.Color.SetRgb(0,	0,	255);
								DrawGraph(doc,	pars["Blue"].Values);
						}
				}
				doc.Rendering.Save("EffectHistogramGraph.jpg");
		}
}

private	void	DrawGraph(Doc	doc,	double[]	values)	{
		double	max	=	0;
		for	(int	i	=	0;	i	<	values.Length;	i++)
				max	=	Math.Max(max,	values[i]);

		double[]	points	=	new	double[values.Length	*	2];
		for	(int	i	=	0;	i	<	values.Length;	i++)	{
				double	x	=	i	*	(doc.Rect.Width	/
values.Length);
				double	y	=	values[i]	*	(doc.Rect.Height	/	max);
				points[(i	*	2)	+	0]	=	x;
				points[(i	*	2)	+	1]	=	y;
		}
		doc.AddPoly(points,	false);
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img1)
				'	original	image
				doc.Rendering.Save("EffectHistogram.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img1)
						Using	effect	As	New
EffectOperation("Histogram")
								effect.Apply(layer.PixMap)
								Dim	pars	=	effect.Parameters
								doc.Color.SetRgb(255,	0,	0)
								DrawGraph(doc,	pars("Red").Values)
								doc.Color.SetRgb(0,	255,	0)
								DrawGraph(doc,	pars("Green").Values)
								doc.Color.SetRgb(0,	0,	255)
								DrawGraph(doc,	pars("Blue").Values)
						End	Using
				End	Using
				doc.Rendering.Save("EffectHistogramGraph.jpg")
		End	Using
End	Sub

Private	Sub	DrawGraph(doc	As	Doc,	values	As

Example

	

Double())
		Dim	max	As	Double	=	0
		For	i	As	Integer	=	0	To	values.Length	-	1
				max	=	Math.Max(max,	values(i))
		Next
		Dim	points	As	Double()	=	New	Double(values.Length
*	2	-	1)	{}
		For	i	As	Integer	=	0	To	values.Length	-	1
				Dim	x	As	Double	=	i	*	(doc.Rect.Width	/
values.Length)
				Dim	y	As	Double	=	values(i)	*	(doc.Rect.Height
/	max)
				points((i	*	2)	+	0)	=	x
				points((i	*	2)	+	1)	=	y
		Next
		doc.AddPoly(points,	False)
End	Sub

Original	Image

Histogram	of	Red	Intensities

Histogram	of	Green	Intensities

Histogram	of	Blue	Intensities

Histogram	of	RGB	Intensities

Note	that	the	photograph	is	unbalanced	with	little	color	at	the	dark	end
of	the	spectrum.

The	actual	values	held	in	each	of	the	settings	and	used	to	produce
these	graphs	are	given	below.

Red	=	"0,1,2,1,1,2,1,1,2,2,3,9,9,19,14,25,
26,32,48,47,92,101,140,190,251,372,455,580,883,1304,1442,3397,2252,3638,5184,3402,

3244,2442,2754,2177,2217,1603,1776,1258,1273,1169,1030,1071,1009,953,1005,1005,
971,1002,998,"

Green	=	"0,1,0,0,0,2,1,5,5,5,7,15,30,40,75,167,
208,794,550,1373,969,1640,2007,1857,1907,4072,2507,	1964,2528,1616,1844,1384,1111,
1027,901,1006,1013,886,812,699,736,761,804,672,753,625,689,705,626,657,783,630,780,
692,791,719,666"

Blue	=	"0,1,1,1,1,0,0,3,4,7,9,
14,23,41,57,85,126,182,257,348,905,622,1711,1013,1940,1183,1438,2258,1481,3128,1837,
2640,4221,2013,2266,1618,1941,1207,1300,932,1020,840,890,784,801,742,757,873,749,797"

RGB	=	"0,1,1,2,2,2,2,5,10,14,26,59,72,271,188,
466,332,558,687,637,671,1398,896,737,954,704,827,740,780,1078,988,2038,1426,2154,2393,
1846,2079,1561,2228,1562,1870,2149,1492,1409,1172,1255,1006,1000,907,888,878,871,807"

	

	

	

Laplacian	Effect 	

The	Laplacian	filter	is	used	for	detection	of	edges	in	an
image.	It	highlights	areas	in	which	intensity	changes	rapidly
producing	a	picture	of	all	the	edges	in	an	image.

	

	

Settings 	

Name Default Description

Radius 0.8pixels

This	value	determines	the	size	of	the
edges	that	are	detected.

This	value	represents	the	standard
deviation	of	the	Laplacian	of	Gaussian
function.

	

	

Workings 	

The	Laplacian	filter	is	a	standard	Laplacian	of	Gaussian
convolution.	This	is	a	second	derivative	function	designed	to
measure	changes	in	intensity	without	being	overly	sensitive
to	noise.	The	function	produces	a	peak	at	the	start	of	the
change	in	intensity	and	then	at	the	end	of	the	change.

Because	the	Laplacian	of	Gaussian	produces	a	fairly	wide
convolution	for	a	small	radius	this	filter	can	become	quite
computationally	expensive	as	radius	is	increased.

	

	

The	following	examples	show	the	effect	of	a	Laplacian	filter	applied
with	a	number	of	different	settings.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectLaplacian.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Laplacian"))	{
								effect.Parameters["Radius"].Value	=	0.8;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLaplacian08.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Laplacian"))	{
								effect.Parameters["Radius"].Value	=	1.6;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLaplacian16.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Laplacian"))	{
								effect.Parameters["Radius"].Value	=	3.2;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLaplacian32.jpg");
		}
}

[Visual	Basic]

Example

	

Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectLaplacian.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Laplacian")
								effect.Parameters("Radius").Value	=	0.8
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLaplacian08.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Laplacian")
								effect.Parameters("Radius").Value	=	1.6
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLaplacian16.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Laplacian")
								effect.Parameters("Radius").Value	=	3.2
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLaplacian32.jpg")
		End	Using
End	Sub

	

Original	Image	before	Laplacian	Filter

	

Laplacian	Radius	0.8	Pixels

	

Laplacian	Radius	1.6	Pixels

	

Laplacian	Radius	3.2	Pixels

	

	

	

	

Levels	Effect 	

The	Levels	effect	allows	you	fine	control	over	brightness
and	contrast.

	

	

Settings 	

Name Default Description

Black
Input 0	% The	level	in	the	current	image	that

should	be	regarded	as	black.

White
Input 100	% The	level	in	the	current	image	that

should	be	regarded	as	white.

Black
Output 0	% The	level	in	the	final	image	that	should

be	regarded	as	black.

White
Output 100	% The	level	in	the	final	image	that	should

be	regarded	as	white.

	

	

Well	defined	images	span	an	entire	range	of	color
intensities.	However	it	is	common	to	find	images	that	do
not.	If	a	photo	has	been	overexposed	it	will	be	too	bright	-
there	will	be	few	colors	at	the	low	ends	of	intensity	and
many	at	the	high	end.	Similarly	if	a	photograph	has	been
underexposed	it	will	be	very	dark	-	all	the	colors	will	be	at
the	low	end	of	the	range	and	virtually	none	at	the	high	end.

Workings
	

The	Levels	effect	allows	you	fine	control	over	brightness
and	contrast	to	let	you	correct	this	kind	of	problem.	The
basic	method	of	adjustment	is	to	set	the	black	and	white
points	on	the	input	image.	Normally	the	black	point	will	be
at	0	and	the	white	point	at	255.	This	simply	means	that
black	is	represented	by	the	value	0	and	white	is
represented	by	the	value	255.

However	if	an	image	is	too	dark	there	may	be	no	pixels	at
all	with	a	value	of	255.	In	this	case	what	was	white	on	the
original	image	might	be	represented	by	a	value	of	only	200.
By	setting	the	white	input	point	to	200	and	then	applying
the	effect,	the	levels	in	between	will	be	stretched	to	try	and
restore	balance	to	the	image.	A	similar	operation	setting
the	black	input	point	would	apply	if	an	image	was	too	light.

As	well	as	being	able	to	specify	input	points	you	can	also
specify	output	points.	This	lets	you	tell	the	effect	what	value
should	be	regarded	as	white	and	black	on	the	final	output
image.

The	levels	effect	is	often	used	in	conjunction	with	an	image
histogram	so	that	the	exact	representation	of	different	color
levels	can	be	seen	in	the	image.

	

	

The	following	example	images	show	the	effect	of	the	Levels
effect.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img6);	//	original	image
				doc.Rendering.Save("EffectLevels.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img6))	{

						using	(EffectOperation	effect	=	new
EffectOperation("Levels"))	{
								effect.Parameters["White	Input"].Value
=	80;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLevelsWI80.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img6))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Levels"))	{
								effect.Parameters["Black	Input"].Value
=	20;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLevelsBI20.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img6))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Levels"))	{
								effect.Parameters["White	Output"].Value
=	80;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectLevelsWO80.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img6)
				'	original	image

Example

	

				doc.Rendering.Save("EffectLevels.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img6)
						Using	effect	As	New
EffectOperation("Levels")
								effect.Parameters("White	Input").Value
=	80
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLevelsWI80.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img6)
						Using	effect	As	New
EffectOperation("Levels")
								effect.Parameters("Black	Input").Value
=	20
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLevelsBI20.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img6)
						Using	effect	As	New
EffectOperation("Levels")
								effect.Parameters("White	Output").Value
=	80
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectLevelsWO80.jpg")
		End	Using
End	Sub

Original	Image White	Input	=	80

Black	Input	=	20 White	Output	=	80

	

	

	

Median	Effect 	 	

The	Median	filter	smoothes	images	using	a	fast
median	algorithm.	The	median	algorithm	is	particularly
good	at	removing	"salt	and	pepper"	noise	from	images
without	removing	too	much	fine	detail.

	

	 	

Settings 	

Name Default Description

Width 3	pixels The	width	of	the	median	filter	to	beapplied.

Height 3	pixels The	height	of	the	median	filter	to	beapplied.

X 2	pixels The	horizontal	center	of	the	filter	inpixels	from	top	left.

Y 2	pixels The	vertical	center	of	the	filter	inpixels	from	top	left.

	

	 	

Workings 	

The	median	filter	replaces	each	pixel	with	the	median
of	its	neighbors.	The	Median	has	a	number	of
advantages	over	the	Mean.	Firstly	unrepresentative
pixels	do	not	unduly	influence	the	outcome	of	the	final
pixel	level	-	this	is	why	the	filter	is	good	at	removing
"salt	and	pepper"	noise.	Secondly,	because	the	final
pixel	must	actually	be	the	value	of	one	of	its	neighbors,
edges	are	preserved	more	faithfully.

The	image	below	show	the	neighboring	pixels	polled	in
a	4	by	3	Median	Filter.

	 	

	

The	following	example	images	show	the	effect	of	a	Median
filter	applied	to	a	noisy	picture	at	different	width	and	height
settings.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img5);	//	original
image
				doc.Rendering.Save("EffectMedian.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Median"))	{
								effect.Parameters["Width"].Value	=
3;
								effect.Parameters["Height"].Value	=
3;
								effect.Parameters["X"].Value	=	2;
								effect.Parameters["Y"].Value	=	2;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectMedian3.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Median"))	{

								effect.Parameters["Width"].Value	=
5;
								effect.Parameters["Height"].Value	=
5;
								effect.Parameters["X"].Value	=	3;
								effect.Parameters["Y"].Value	=	3;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectMedian5.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Median"))	{
								effect.Parameters["Width"].Value	=
9;
								effect.Parameters["Height"].Value	=
9;
								effect.Parameters["X"].Value	=	4;
								effect.Parameters["Y"].Value	=	4;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectMedian9.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img5)
				'	original	image
				doc.Rendering.Save("EffectMedian.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img5)
						Using	effect	As	New

Example

	

EffectOperation("Median")
								effect.Parameters("Width").Value	=	3
								effect.Parameters("Height").Value	=
3
								effect.Parameters("X").Value	=	2
								effect.Parameters("Y").Value	=	2
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectMedian3.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img5)
						Using	effect	As	New
EffectOperation("Median")
								effect.Parameters("Width").Value	=	5
								effect.Parameters("Height").Value	=
5
								effect.Parameters("X").Value	=	3
								effect.Parameters("Y").Value	=	3
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectMedian5.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img5)
						Using	effect	As	New
EffectOperation("Median")
								effect.Parameters("Width").Value	=	9
								effect.Parameters("Height").Value	=
9
								effect.Parameters("X").Value	=	4
								effect.Parameters("Y").Value	=	4
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectMedian9.jpg")
		End	Using

	 	

End	Sub

	

Original	Image	before	Median	Filter

Width	=	3,	Height	=	3,	X	=	2,	Y	=	2

Width	=	5,	Height	=	5,	X	=	3,	Y	=	3

Width	=	9,	Height	=	9,	X	=	4,	Y	=	4

	

	

	

Pinch	Effect

The	Pinch	effect	distorts	the	image	as	if	it	had	been	pinched.

	

Settings 	

Name Default Description

Amount 50	% The	amount	that	the	image	should	be
pinched.

Extent 50	% How	far	the	effect	should	extend.

Speed 3
There	is	a	general	speed	versus	quality
tradeoff.	Higher	values	produce	faster	results
at	the	expense	of	quality.

	

Workings 	
The	effect	distorts	the	image	as	if	it	had	been	pinched.

	

The	following	example	images	show	the	effect	of	a	Pinch	filter	applied
to	a	picture	with	different	settings.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectPinch.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new

EffectOperation("Pinch"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectPinchDefault.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Pinch"))	{
								effect.Parameters["Amount"].Value	=	75;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectPinchAmount75.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Pinch"))	{
								effect.Parameters["Extent"].Value	=	100;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectPinchExtent100.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectPinch.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Pinch")
								effect.Apply(layer.PixMap)

Example

	

						End	Using
				End	Using
				doc.Rendering.Save("EffectPinchDefault.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Pinch")
								effect.Parameters("Amount").Value	=	75
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectPinchAmount75.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Pinch")
								effect.Parameters("Extent").Value	=	100
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectPinchExtent100.jpg")
		End	Using
End	Sub

	

Original	Image	before	Pinch

After	Pinch	with	default	settings

Amount	=	75

Extent	=	100

	

	

	

Ripple	Effect

The	Pinch	effect	distorts	the	image	as	if	it	had	been	rippled.

	

Settings 	

Name Default Description

Height 10pixels

The	amplitude	of	the	wave	determines	how
high	the	ripples	are	on	the	surface	of	the
images.

Length 30
pixels

The	length	of	the	wave	determines	how	far
apart	the	ripples	are	placed.

Phase 0
degrees

The	phase	determines	if	the	center	of	the
ripple	is	a	peak	or	a	trough.

Speed 6
There	is	a	general	speed	versus	quality
tradeoff.	Higher	values	produce	faster	results
at	the	expense	of	quality.

	

Workings 	

The	effect	is	very	similar	to	a	pond	ripple.	The	image	is	distorted
as	if	it	was	projected	onto	the	surface	of	a	pond	and	then	a
stone	had	been	dropped	into	the	middle.

	

The	following	example	images	show	the	effect	of	a	Ripple	filter	applied
to	a	picture	with	different	settings.

[C#]

void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectRipple.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Ripple"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectRippleDefault.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Ripple"))	{
								effect.Parameters["Height"].Value	=	15;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectRippleHeight15.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Ripple"))	{
								effect.Parameters["Length"].Value	=	10;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectRippleLength10.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()

Example

	

				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectRipple.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Ripple")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectRippleDefault.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Ripple")
								effect.Parameters("Height").Value	=	15
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectRippleHeight15.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Ripple")
								effect.Parameters("Length").Value	=	10
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectRippleLength10.jpg")
		End	Using
End	Sub

	

Original	Image	before	Ripple

After	Ripple	with	default	settings

Height	=	15

Length	=	10

	

	

	

Sharpen	Effect 	

The	Sharpen	filter	enhances	edges	using	a	simple
algorithm.	This	is	very	fast	to	compute	but	can	produce
artificially	over-sharp	or	over-noisy	images	if	not	used
carefully.

	

	

Settings 	

Name Default Description

None 	 	

	

	

Workings 	

The	Sharpen	Filter	uses	a	simple	three	square
convolution	to	enhance	edges.

The	matrix	for	this	convolution	is:

	
-0.125 -0.125 -0.125
-0.125 +2.000 -0.125
-0.125 -0.125 -0.125

	

	

The	following	examples	show	the	effect	of	a	Sharpen	filter
applied	to	a	number	of	different	images.	Note	that	because
JPEG	compression	has	been	used	to	compress	these	images
some	of	the	fine	detail	applied	by	the	effect	is	not	visible.

[C#]

void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img5);	//	original	image
				doc.Rendering.Save("EffectSharpen1a.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Sharpen"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectSharpen1b.jpg");
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectSharpen2a.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Sharpen"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectSharpen2b.jpg");
				AddImagePage(doc,	img6);	//	original	image
				doc.Rendering.Save("EffectSharpen3a.jpg");
				using	(ImageLayer	layer	=
AddImagePage(doc,	img6))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Sharpen"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectSharpen3b.jpg");
		}
}

[Visual	Basic]

Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img5)
				'	original	image
				doc.Rendering.Save("EffectSharpen1a.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img5)
						Using	effect	As	New
EffectOperation("Sharpen")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectSharpen1b.jpg")
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectSharpen2a.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Sharpen")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectSharpen2b.jpg")
				AddImagePage(doc,	img6)
				'	original	image
				doc.Rendering.Save("EffectSharpen3a.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img6)
						Using	effect	As	New
EffectOperation("Sharpen")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectSharpen3b.jpg")
		End	Using
End	Sub

Example

	

Original	Image	before	Sharpen	Filter

After	Sharpen	Filter	Applied.

Original	Image	before	Sharpen	Filter

After	Sharpen	Filter	Applied.

Note	that	as	well	as	enhancing	edges	the	effect	has	also
enhanced	'mosquito	noise'	artifacts	from	the	JPEG	compression
used	on	the	original	image.	These	are	especially	visible	around
the	legs	of	the	astronaut.

Original	Image	before	Sharpen	Filter

After	Sharpen	Filter	Applied.

Note	that	the	main	effect	here	has	been	to	enhance	noise	rather
than	improve	quality.

	

	

	

Twirl	Effect

The	Twirl	effect	distorts	the	image	as	if	it	had	been	twirled.

	

Settings 	

Name Default Description

Angle 120
degrees The	amount	that	the	image	should	be	twirled.

Extent 50	% How	far	the	effect	should	extend.

Speed 8
There	is	a	general	speed	versus	quality
tradeoff.	Higher	values	produce	faster	results
at	the	expense	of	quality.

	

Workings 	
The	effect	distorts	the	image	as	if	it	had	been	twisted.

	

The	following	examples	show	the	effect	of	a	Twirl	applied	with	a
number	of	different	settings.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectTwirl.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{

						using	(EffectOperation	effect	=	new
EffectOperation("Twirl"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectTwirlDefault.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Twirl"))	{
								effect.Parameters["Angle"].Value	=	360;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectTwirlAngle360.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Twirl"))	{
								effect.Parameters["Extent"].Value	=	100;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectTwirlExtent100.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectTwirl.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Twirl")

Example

	

								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectTwirlDefault.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Twirl")
								effect.Parameters("Angle").Value	=	360
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectTwirlAngle360.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,
img3)
						Using	effect	As	New	EffectOperation("Twirl")
								effect.Parameters("Extent").Value	=	100
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectTwirlExtent100.jpg")
		End	Using
End	Sub

	

Original	Image	before	Twirl

After	Twirl	with	default	settings

Angle	=	360

Extent	=	100

	

	

	

Unsharp	Mask	Effect

The	Unsharp	Mask	filter	is	a	simple	method	of	sharpening	a	photo.
Areas	of	complexity	and	fine	detail	within	the	image	become	crisp	
better	defined.	An	Unsharp	Mask	takes	longer	to	perform	than	a	simple
Sharpen	but	gives	more	control	and	produces	a	more	natural
appearance.

	

Settings 	

Name Default Description

Radius 1.5
pixels

Determines	the	scale	of	fine	detail	that	will	be
enhanced.	Low	values	enhance	only	very	fine
detail	while	high	values	enhance	larger	levels	of
detail.

Amount 60	%
The	level	of	enhancement	to	be	applied	to	the	fine
detail.	Values	greater	than	100%	will	super-
enhance	any	complex	areas.

Threshold 0
If	there	is	little	fine	detail	then	you	can	choose	not
to	enhance	it	by	setting	a	threshold.	Any	detail
less	than	the	threshold	will	not	be	enhanced.

	

Workings 	

An	Unsharp	Mask	is	essentially	a	Blur	in	reverse.	A	Gaussian	Blur	
applied	to	a	copy	of	the	original	image	to	produce	an	image	with	
detail.	The	blurred	image	is	subtracted	from	the	original	to	extract	the
fine	detail.	This	fine	detail	is	then	added	to	the	original	image	to
highlight	complex	areas.

The	radius	parameter	determines	the	radius	of	the	Gaussian	Blur	
pixels	and	lets	you	choose	the	level	of	scale	of	detail	that	should	be
enhanced.	The	difference	between	color	levels	on	the	blurred	and

original	image	is	determined	at	each	point	on	the	image.	If	the
difference	is	greater	than	the	Threshold	parameter	then	the	Amount
percentage	of	the	difference	is	added	back	to	the	original	image.

	

The	following	example	shows	the	basic	effect	of	Unsharp	Mask	on	
photo	and	how	the	parameters	can	change	the	effect	produced.	Note	that
because	JPEG	compression	has	been	used	to	compress	these	images	some
of	the	fine	detail	applied	by	the	effect	is	not	visible.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img5);	//	original	image
				doc.Rendering.Save("EffectUnsharpMask1a.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img5))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Unsharp	Mask"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectUnsharpMask1b.jpg");
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectUnsharpMask2a.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Unsharp	Mask"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectUnsharpMask2b.jpg");
				AddImagePage(doc,	img6);	//	original	image
				doc.Rendering.Save("EffectUnsharpMask3a.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img6))	{
						using	(EffectOperation	effect	=	new

EffectOperation("Unsharp	Mask"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectSharpen3b.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Unsharp	Mask"))	{
								effect.Parameters["Amount"].Value	=	140;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectUnsharpMaskSetting1.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Unsharp	Mask"))	{
								effect.Parameters["Amount"].Value	=	140;
								effect.Parameters["Radius"].Value	=	6;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectUnsharpMaskSetting2.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,	img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Unsharp	Mask"))	{
								effect.Parameters["Amount"].Value	=	140;
								effect.Parameters["Radius"].Value	=	6;
								effect.Parameters["Threshold"].Value	=	40;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectUnsharpMaskSetting3.jpg");
		}
}

[Visual	Basic]

Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img5)
				'	original	image
				doc.Rendering.Save("EffectUnsharpMask1a.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img5)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectUnsharpMask1b.jpg")
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectUnsharpMask2a.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectUnsharpMask2b.jpg")
				AddImagePage(doc,	img6)
				'	original	image
				doc.Rendering.Save("EffectUnsharpMask3a.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img6)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectSharpen3b.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Parameters("Amount").Value	=	140
								effect.Apply(layer.PixMap)

						End	Using
				End	Using
				doc.Rendering.Save("EffectUnsharpMaskSetting1.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Parameters("Amount").Value	=	140
								effect.Parameters("Radius").Value	=	6
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectUnsharpMaskSetting2.jpg")
				Using	layer	As	ImageLayer	=	AddImagePage(doc,	img3)
						Using	effect	As	New	EffectOperation("Unsharp
Mask")
								effect.Parameters("Amount").Value	=	140
								effect.Parameters("Radius").Value	=	6
								effect.Parameters("Threshold").Value	=	40
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectUnsharpMaskSetting3.jpg")
		End	Using
End	Sub

Example

	

Original	Image

	

Unsharp	Mask	Default	Settings

	

Original	Image

	

Unsharp	Mask	Default	Settings

	

Original	Image

	

Unsharp	Mask	Default	Settings

	

	

The	following	examples	show	how	the	parameters	can	change	the	effect
produced.

	

Unsharp	Mask	Default	Settings

	

Unsharp	Mask	Amount	=140

	

Unsharp	Mask	Amount	=140	Radius	=	6

	

Unsharp	Mask	Amount	=140	Radius	=	6	Threshold	=	40

	

	

	

Wave	Effect 	

The	Wave	effect	distorts	the	image	as	if	it	had	been
disturbed	by	a	number	of	random	waves.

	

	

Settings 	

Name Default Description

Number 3 The	number	of	random	waves	that
should	be	generated.

LengthMin 40
pixels

The	minimum	wavelength	for	a
random	wave.

LengthMax 60pixels
The	maximum	wavelength	for	a
random	wave.

HeightMin 5	pixels The	minimum	amplitude	for	a	randomwave.

HeightMax 15
pixels

The	maximum	amplitude	for	a	random
wave.

Speed 6

There	is	a	general	speed	versus
quality	tradeoff.	Higher	values
produce	faster	results	at	the	expense
of	quality.

	

	

Workings
	

The	effect	distorts	the	image	as	if	it	had	been	disturbed	by	a
number	of	waves.	By	choosing	appropriate	values	you	can
make	images	look	like	they	are	underwater	or	are	being
seen	through	a	heat	haze.

	

	

The	following	examples	show	the	effect	of	a	Wave	applied	with	a
number	of	different	settings.

[C#]
void	function()	{
		using	(Doc	doc	=	new	Doc())	{
				AddImagePage(doc,	img3);	//	original	image
				doc.Rendering.Save("EffectWave.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Wave"))	{
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectWaveDefault.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Wave"))	{
								effect.Parameters["LengthMin"].Value	=
15;
								effect.Parameters["LengthMax"].Value	=
30;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectWaveLength.jpg");
				using	(ImageLayer	layer	=	AddImagePage(doc,
img3))	{
						using	(EffectOperation	effect	=	new
EffectOperation("Wave"))	{
								effect.Parameters["HeightMin"].Value	=
0;

Example
	

								effect.Parameters["HeightMax"].Value	=
5;
								effect.Apply(layer.PixMap);
						}
				}
				doc.Rendering.Save("EffectWaveHeight.jpg");
		}
}

[Visual	Basic]
Sub	...
		Using	doc	As	New	Doc()
				AddImagePage(doc,	img3)
				'	original	image
				doc.Rendering.Save("EffectWave.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Wave")
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectWaveDefault.jpg")
				Using	layer	As	ImageLayer	=
AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Wave")
								effect.Parameters("LengthMin").Value	=
15
								effect.Parameters("LengthMax").Value	=
30
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectWaveLength.jpg")
				Using	layer	As	ImageLayer	=

AddImagePage(doc,	img3)
						Using	effect	As	New
EffectOperation("Wave")
								effect.Parameters("HeightMin").Value	=	0
								effect.Parameters("HeightMax").Value	=	5
								effect.Apply(layer.PixMap)
						End	Using
				End	Using
				doc.Rendering.Save("EffectWaveHeight.jpg")
		End	Using
End	Sub

	

Original	Image	before	Wave

After	Wave	with	default	settings

LengthMin	=	15,	LengthMax	=	30

HeightMin	=	0,	HeightMax	=	5

	

	

	

EmbeddedFile	Class

An	EmbeddedFile	represents	a	file	stream	embedded	inside	a	PDF
document.

It	includees	a	small	amount	of	metadata	such	as,	optionally,	the	file
creation	and	modification	date.	However	it	is	primarily	related	to	file
data..

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.EmbeddedFile

	

	 	

Method Description

EmbeddedFile EmbeddedFile
Constructor.

	UpdateMetadata Update	metadata	for	theembedded	file.
inherited	methods...

	

	

Property Description

Checksum The	16	byte	checksum	for
the	embedded	file.

CreationDate The	creation	date	of	the
embedded	file.

	 	

MacCreator
The	Macintosh	file	creator	-
a	four	char	code
represented	as	an	integer.

MacResFork The	Macintosh	resource
forks	stream	for	this	file.

MacType
The	Macintosh	file	type	-	a
four	char	code	represented
as	an	integer.

ModificationDate The	modification	date	of	theembedded	file.

Size The	size	of	the	embedded
file.

Subtype The	subtype	of	the
embedded	file.
inherited	properties...

	

	 	

	

	

FileSpecification	Class

A	file	specification	represents	the	name	and	location	of	a	file	and
optionally	may	also	include	references	to	embedded	data.

The	crucial	properties	of	this	class	are	Uri	and	EmbeddedFile.	All	other
methods	and	properties	are	organized	around	backwards	compatibility
with	obsolete	entries	so	you	are	unlikely	to	need	them	when	constructing
new	documents..

If	you	have	an	old	PDF	which	contains	obsolete	entries,	the	Rationalize
method	will	attempt	to	make	the	entries	compliant.	So	again	you	should
only	need	the	Rationalize	method	and	the	Uri	and	EmbeddedFile
properties.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.FileSpecification

	

	 	

Method Description
FileSpecification FileSpecification	Constructor.

GetPath Get	the	path	to	the	file	for	the
specified	platform.

Rationalize Removes	any	obsolescent
and	redundant	entries.

SetPath Set	the	path	to	the	file	for	the
specified	platform.

	 	

Property Description

Description A	description	of	the	file	for	use
in	a	user	interface.

EmbeddedFile The	embedded	file	if	one	has
been	embedded	in	the	PDF.

EmbeddedFiles
The	set	of	embedded	files	if	a
set	has	been	embedded	in	the
PDF.

Platform The	default	platform	being
used	for	the	file	specification.

	Uri The	URI	to	the	file.

Volatile Whether	the	file	changes
frequently.

	

	

	

XColor	Class 	 	

This	object	represents	a	color.	Colors	may	be
expressed	in	RGB,	CMYK,	Grayscale	or	generic
unspecified	color	components.

When	first	created,	the	color	defaults	to	RGB	black	-
"0	0	0".

System.Object
			WebSupergoo.ABCpdf10.XColor

Implements:	IDisposable,
IEquatable<XColor>,
IComparable<XColor>

	

	 	

Method Description

S»		FromGray
Create	an	XColor
from	a	grayscale
value.

S»		FromRgb
Create	an	XColor
from	a	set	of	RGB
component	values.

S»		FromCmyk
Create	an	XColor
given	a	set	of
CMYK	component
values.
Create	an	XColor

	 	

S»	
FromComponents

from	a	set	of	PDF
components	in	the
generic	ColorSpace
color	space.

S»	
	FromArrayAtom

Create	an	XColor
from	an	ArrayAtom
of	NumAtoms
containing	PDF
color	values.

S»	
	FromOperator

Create	an	XColor
given	a	PDF	color
operator	and	a	set
of	Atoms	containing
the	arguments	for
that	operator.

SetColor Sets	the	color.

SetGray Set	the	color	to	a
grayscale	value.

SetRgb Set	the	color	to	an
RGB	value.

Equals

Test	whether	the
two	colors	are
effectively	the
same.

GetHashCode
A	hash	code	for	the
XColor.

	 	

SetCmyk Set	the	color	to	an
CMYK	value.

SetComponents
Set	the	color	to	a
set	of	ColorSpace
PDF	components.

SetRandom

Set	the	color	to	a
random	opaque
value	in	the	current
color	space.

ToArrayAtom

An	ArrayAtom
representation	of
the	components	of
the	color.

ToString
Returns	a	string
representation	of
the	object.

	

Property Description
Alpha The	alpha	opacity.
Black The	black	component.
Blue The	blue	component.

Color
The
System.Drawing.Color.

	 	

ColorSpace The	native	color	space
for	the	color.

Components
The	components	of	the
color	in	native	PDF
format.

Cyan The	cyan	component.
Gray The	gray	component.
Green The	green	component.

Magenta The	magenta
component.

Name
Any	name	that	may	be
associated	with	this
color.

Red The	red	component.
String The	color	as	a	string.
Yellow The	yellow	component.

	 	

	 	 	

	

	

OpAtom	Class 	 	

An	atom	which	represents	a	content	stream	operator.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.OpAtom

	

	 	

	 	

Method Description

OpAtom Create	an	operator
atom	for	a	string.

Equals
Test	whether	the	two
OpAtoms	are	the
same.

Find
Finds	specified	types
of	OpAtom	entries	in
an	array.

	GetParameter

Gets	the	parameter
associated	with	the
OpAtom	at	the
specified	index	and
validates	that	the
atom	is	of	the	correct
type.
Gets	the	parameters
associated	with	the

	 	

GetParameters
OpAtom	at	the
specified	index	and
validates	that	the
atoms	are	of	the
correct	type.

	 inherited	methods...

	

	 	

Property Description
Text The	text	of	the	operator.

	 inherited	properties...
	 	

	 	 	

	

	

FormXObject	Class

A	Form	XObject	is	a	self	contained	stream	of	graphics	operations
which	can	be	referenced	as	a	group.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.FormXObject

	

	 	

Method Description

AddResource Add	a	particular	type	of
resource.

GetResourceMap
Get	a	dictionary	mapping
the	names	of	a	particular
type	of	resource	to	Atoms.
inherited	methods...

	

	

	 	

Property Description

BBox The	rect	defining	the	bounding	box
of	the	graphic.

Matrix
The	transformation	matrix	used	for
mapping	the	Form	XObject	space
into	user	space.

	

inherited	properties...
	 	

	

	

PixMap	Class

A	bitmap	based	image.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.PixMap

	

Method Description

S»		FromXImage PixMap	staticconstructor.

	CompressCcitt
Compresses	the	image
using	CCITT
compression.

	CompressJbig2
Compresses	the	image
using	JBIG2
compression.

	CompressJpeg
Compresses	the	image
using	JPEG
compression.

	CompressJpx
Compresses	the	image
using	JPEG	2000
compression.

Decompress
Decompress	the	data	in
the	stream	using	on-the-

	 	

fly	resizing.

Flip Flip	the	image
horizontally	or	vertically.

	GetBitmap
Get	the	PixMap	image
as	a
System.Drawing.Bitmap.

	Realize Converts	the	image	to
component	color.

	Recolor
Converts	the	image	from
one	color	space	to
another.

	Resample
Changes	the	number	of
bits	per	color
component.

	Resize Resizes	the	image.

	Rotate Rotate	the	image
clockwise.

Save

Saves	the	PixMap	to
stream	attempting	to
preserve	resolution,
color	space	and	depth
as	far	as	the	output
format	allows.

SetAlpha
Sets	a	constant	alpha
value	(0-255)	for	this
image.
Set	the	content	of	the

	

SetBitmap object	as	a	Bitmap.

SetChromakey
Sets	a	chromakey
transparent	color	for	this
image.

ToGrayscale Converts	the	image	to
grayscale.

	

	 	

Property Description

AutoFix
Whether	to
automatically	fix
corrupt	images.

BitsPerComponent The	number	of	bits	percolor	component.

ColorSpace The	ColorSpace	for
this	image.

ColorSpaceType The	ColorSpace	for
this	image.

Components
The	number	of	color
components	for	each
pixel.

Height The	height	of	the
image	in	pixels.

ImageMask Whether	this	image	is
a	one	bit	image	mask.

	

Mask Any	one	bit	image
mask	associated	with
this	image.

Matte Any	matte	associated
with	this	soft	mask.

SMask
Any	soft	image	mask
associated	with	this
image.

Width The	width	of	the	image
in	pixels.

	 	

	

	

XPoint	Class 	 	

Represents	a	point	in	two-dimensional	space.	When
first	created	the	object	defaults	to	the	origin	"0	0"
which	is	at	the	bottom	left	of	the	space.

ABCpdf	uses	the	standard	Adobe	PDF	coordinate
space.	The	origin	of	this	space	is	at	the	bottom	left	of
the	document.	Distances	are	measured	up	and	right
in	points.	Points	are	a	traditional	measure	for	print
work	and	there	are	72	points	in	an	inch.	For	further
details	see	the	Coordinates	section	of	the
documentation.

System.Object
			WebSupergoo.ABCpdf10.XPoint

Implements:	IDisposable,
IEquatable<XPoint>,
IComparable<XPoint>

	

	 	

Method Description
XPoint XPoint	Constructor.

Copy

Copies	a	series	of	X
and	Y	coordinates
between	arrays	of
doubles	and	arrays	of
XPoints.

Equals
Test	whether	the	two
points	are	effectvely 	 	

	 	 the	same.

GetHashCode A	hash	code	for	theXPoint.
SetPoint Sets	the	point.

ToString
Returns	a	string
representation	of	the
object.

	

	 	

Property Description
Point The	System.Drawing.Point.
String The	point	as	a	string.
X The	horizontal	coordinate.
Y The	vertical	coordinate.

	 	

	 	 	

	

	

XRect	Class 	 	

Represents	a	rectangular	area	in	two-dimensional
space.	When	first	created	the	object	defaults	to	an
empty	rectangle	"0	0	0	0".

ABCpdf	uses	the	standard	Adobe	PDF	coordinate
space.	The	origin	of	this	space	is	at	the	bottom	left	of
the	document.	Distances	are	measured	up	and	right
in	points.	Points	are	a	traditional	measure	for	print
work	and	there	are	72	points	in	an	inch.	For	further
details	see	the	Coordinates	section	of	the
documentation.

You	can	change	the	coordinate	system	used	by	the
Doc.Rect	and	the	Doc.MediaBox	using	the	Doc.Units
and	Doc.TopDown	properties.

System.Object
			WebSupergoo.ABCpdf10.XRect

Implements:	IDisposable,
IEquatable<XRect>,	IComparable<XRect>

	

	 	

Method Description

S»	
FromLbwh

Creates	an	XRect	from
a	bottom	left	corner,	a
width	and	a	height.

S»		FromLtwh
Creates	an	XRect	from
a	top	left	corner,	a
width	and	a	height.

	 	

S»	
FromSides

Creates	an	XRect	from
the	coordinates	of	two
diagonally	opposite
corners.

S»	
FromPoints

Create	the	smallest
XRect	that	encloses	all
the	points	supplied.

XRect XRect	Constructor.

Contains

Determine	if	this
rectangle	contains	a
specified	point	or
rectangle.

FitIn
Fits	the	rectangle	as
content	inside	another
rectangle.

GetCorners Get	the	four	corners	of
the	rectangle.

Inset Insets	the	edges	of	the
rectangle.

Intersect
Intersects	this
rectangle	with	another
rectangle.

IntersectsWith
Determine	if	this
rectangle	intersects
with	another.

Magnify
Magnifies	the
rectangle.

	 	

Move Translate	the	rectangle.

Position Position	the	bottom	left
of	the	rectangle.

Resize Resizes	the	rectangle.

Union Union	this	rectangle
with	another	rectangle.

SetRect Sets	the	location	and
size	of	the	rectangle.

SetSides Sets	the	sides	of	the
rectangle.

ToString
Returns	a	string
representation	of	the
object.

Equals
Test	whether	the	two
rectangles	are
effectively	the	same.

GetHashCode A	hash	code	for	theXRect.

	

Property Description
Bottom The	bottom	coordinate.
Height The	height	of	the	rectangle.
Left The	left	coordinate.

	 	

Pin The	corner	of	the	rectangle
to	pin.

Rectangle TheSystem.Drawing.Rectangle.
Right The	right	coordinate.
String The	rect	as	a	string.
Top The	top	coordinate.
Width The	width	of	the	rectangle.

HasArea Whether	the	rectangle	has
area.

	 	

	 	 	

	

	

Doc	Class

This	is	the	top	level	object	that	represents	a	PDF	document.

System.Object
			WebSupergoo.ABCpdf10.Doc

Implements:	IDisposable

	

Method Description

AddArc Adds	an	arc	to	the
current	page.

AddBookmark
Adds	a	bookmark
pointing	to	the	current
page.

	AddColorSpaceFile
Adds	an	ICC	based
color	space	to	the
document.

AddColorSpaceSpot Adds	a	separation	color
space	to	the	document.

AddFont Adds	a	font	reference
to	the	document.

AddGrid Adds	a	visible	grid	to
the	current	page.

AddHtml
Adds	a	block	of	HTML
styled	text	to	the

current	page.

	AddImage Adds	an	image	to	the
current	page.

	AddImageBitmap
Adds	a
System.Drawing.Bitmap
to	the	current	page.

	AddImageCopy

Adds	a	copy	of	an
existing	image	in	the
Doc,	to	the	current
page.

	AddImageData
Extract	an	image	from
data	and	add	it	to	the
current	page.

AddImageDoc

Draw	a	page	from	one
PDF	document	onto	the
current	page	of	this
document.

AddImageFile
Extract	an	image	from	a
file	and	add	it	to	the
current	page.

	AddImageHtml Renders	a	web	page
specified	as	HTML.

	AddImageObject
Adds	an	XImage	based
image	to	the	current
page.

	AddImageToChain
Adds	a	new	page	from
a	paged	HTML	or

	 	

PostScript	render.

	AddImageUrl Renders	a	web	page
specified	by	URL.

AddLine Adds	a	line	to	the
current	page.

AddObject Adds	a	native	PDF
object	to	the	document.

AddOval Adds	an	oval	to	the
current	page.

AddPage Adds	a	page	to	the
current	document.

AddPie Adds	a	pie	slice	to	the
current	page.

AddPoly Adds	a	polygon	to	the
current	page.

AddRect Add	a	rectangle	to	the
current	page.

AddText Adds	a	block	of	text	to
the	current	page.

AddXObject
Add	a	Form	or	Image
XObject	to	the	current
page.

Append Appends	a	PDF	to	the
end	of	the	document.

Chainable Determines	if	an	object
is	chainable.

Clear Clears	the	document.

ClearCachedDecompressedStreams
Clears	the	cached,
decompressed	data	for
stream	objects.

Delete
Deletes	an	object
previously	added	to	the
document.

EmbedFont Embeds	a	font	into	the
document.

FillRect
Adds	a	painted
rectangle	to	the	current
page.

FitHtml
Fit	a	block	of	HTML
styled	text	into	the
current	rectangle.

FitText
Fit	a	block	of	text	into
the	current	rectangle	on
the	current	page.

Flatten
Flattens	and
compresses	the	current
page.

FrameRect
Adds	a	rectangular
frame	to	the	current
page.

	GetData Saves	a	document	to
memory.
Gets	string	information

GetInfo about	an	object.

GetInfoDate Gets	date	information
about	an	object.

GetInfoDouble
Gets	numeric
information	about	an
object.

GetInfoInt
Gets	numeric
information	about	an
object.

GetInfoInt64
Gets	numeric
information	about	an
object.

	GetStream Gets	a	document	as
raw	data	stream.

GetText
Extract	content	from	the
current	page	in	a
specified	format.

MeasureText
Measure	the	length	of	a
block	of	text	without
adding	it	to	the	page.

	Read Reads	an	existing
document.

RemapPages
Remaps	pages	for
reordering,	copying	and
deletion.

Save Saves	the	document	as

PDF.

SetInfo Sets	information	about
an	object.

ToString
A	string	representation
of	the	graphic	style	of
the	document.

Property Description
Bookmark The	top	level	bookmark	for	the	document.
Color The	current	drawing	and	filling	color.
ColorSpace The	current	ColorSpace	ID.
CropBox The	current	document	visible	page	size.
Encryption The	current	encryption	settings.
Font The	current	Font	ID.
FontSize The	current	text	size.
Form The	document	form	and	fields.
HtmlOptions The	HTML	and	URL	rendering	options.
Layer The	insertion	layer	for	new	content.
LayerCount The	number	of	layers	on	the	current	page.
MediaBox The	current	document	page	size.

ObjectSoup The	collection	of	obects	that	make	up	the
PDF.

Options The	state	options	for	low	level	drawing
control.

	 	 Page The	current	Page	ID.
PageCount The	number	of	pages	in	the	document.
PageNumber The	page	number	of	the	current	page.
Pos The	current	drawing	position.

Rect The	current	rectangle	used	for	drawing
operations.

Rendering The	rendering	options	and	control.
Root The	root	catalog	object.
SaveOptions The	save	options	and	control.

String A	string	representation	of	the	graphic	style
of	the	document.

TextStyle The	current	style	for	drawing	text.
TopDown The	current	position	of	the	origin.
Transform The	current	transformation	for	drawing.
Units The	current	measurement	units.
Width The	current	line	width.

	

	

	

XImage	Class 	 	

Allows	access	to	images	stored	in	files	or	in	data.
XImages	can	be	added	to	a	document	using	the
Doc.AddImageObject	method.

System.Object
			WebSupergoo.ABCpdf10.XImage

Implements:	IDisposable

	

	 	

	 	

Method Description
S»	
	FromFile

Creates	an	XImage
from	a	file	path.

S»	
	FromData

Creates	an	XImage
from	an	array	of	bytes.

S»	
	FromStream

Creates	an	XImage
from	a	Stream.

Dispose Dispose	of	the	object.
Clear Clears	the	image.

	SetData Load	an	image	from
data.

	SetFile Load	an	image	from	a
file.

	SetMask Assign	a	soft	mask	to
the	image.

	 	

	SetStream Load	an	image	from
stream.

	

	 	

Property Description

BoundingBox The	physical	bounds	of
the	image	in	points.

Frame The	currently	selected
frame.

FrameCount The	number	of	frames
in	the	image.

FrameRate The	default	frame	rate
for	a	moving	image.

HasRealRes Whether	the	image
specifies	the	resolution.

Height The	height	of	the
current	frame	(pixels).

HRes
The	horizontal
resolution	of	the	current
frame	(DPI).

Indirect
Whether	the	image	will
be	added	using	indirect
mode.

NeedsFile Whether	the	file	needs
to	exist.
Whether	the	stream

	 	

NeedsStream needs	be	kept	open.

Selection The	current	selection
rectangle.

Type The	type	of	image.

VRes
The	vertical	resolution
of	the	current	frame
(DPI).

Width The	width	of	the	current
frame	(pixels).

	 	 	

	

	

XTransform	Class 	 	

Represents	a	world	space	transform.	When	first
created	the	object	defaults	to	the	identity	-	no
transformation.

A	world	space	transform	is	not	same	an	object
transform.	You	are	changing	the	coordinate	system	-
not	the	objects	you're	inserting.

System.Object
			WebSupergoo.ABCpdf10.XTransform

Implements:	IDisposable,
IEquatable<XTransform>,
IComparable<XTransform>

	

	 	

Method Description

XTransform XTransform
Constructor.

Invert Invert	the	transform.

Equals
Determines	if	two
transforms	are
effectively	the	same.

Magnify Scale	about	a	locked
anchor	point.

PreMultiply

Pre-multiplies	this
transformation	matrix

	 	

by	the	supplied
transform.

PostMultiply

Post-multiplies	this
transformation	matrix
by	the	supplied
transform.

Reset Reset	to	the	identity.

Rotate
Rotate	about	a
locked	anchor	point
(angle	in	degrees).

Skew
Skew	horizontally
and	vertically	about	a
locked	anchor	point.

SetTransform Set	the	transform.

ToString
Returns	a	string
representation	of	the
object.

TransformPoint
Applies	this
transform	to	a
specified	point.

TransformPoints

Applies	this
transform	to	a
specified	array	of
points.

Translate Translate	horizontally
and	vertically.

	 	

GetHashCode A	hash	code	for	the
XTransform.

	

	 	

Property Description
String The	transform	as	a	string.

AngleUnit The	angle	unit,	degrees	or
radians.

Elements The	transform	as	an	array
of	floating-point	values.

Matrix
The	transform	as	a
System.Drawing.Drawing2D
Matrix.

MediaMatrix
The	transform	as	a
System.Windows.Media
Matrix.

OffsetX The	x	translation.
OffsetY The	y	translation.

	
	

	 	

	 	 	

	

	

XReadOptions	Object 	 	

Represents	settings	for	read	operations.

By	creating	a	XReadOptions	object	and	passing	it	in
during	a	read	operation	you	can	take	complete	control
of	the	way	in	which	your	content	is	imported.	There
can	be	different	read	modules	which	can	import
content	in	different	ways.	For	example	a	Microsoft
Word	Document	can	be	converted	to	PDF	either
using	OpenOffice.org	or	by	using	Microsoft	Word.	A
read	options	object	allows	you	to	precisely	target	one
or	more	modules	using	particular	settings.

System.Object
			WebSupergoo.ABCpdf10.XReadOptions

Implements:	IDisposable,
IEquatable<XReadOptions>

	

	 	

	 	

Method Description

XReadOptions XReadOptionsConstructor.

ClearCache

Clear	cached	data	and
terminate	worker
threads	and	worker
processes	for	a	read
module.

Dispose Dispose	of	the	object. 	 	

Equals Test	whether	the	two
objects	are	effectvely
the	same.

GetHashCode A	hash	code	for	the
XReadOptions.

	

Property Description

ReadModule
Gets	or	sets
the	module	to
use.

AddForms
Whether	form
fields	should
be	live.

Bookmarks
Bookmark
creation
strategy.

ContentItem

Gets	or	sets
the	content
items	to
process.

DefaultFont

The	font	to	use
for	text	that
does	not
specify	a	font.
The	default

DefaultRect document	size
for	documents
that	do	not
specify	a	size.

DotsPerInch

The	default
resolution	to
use	for	the
import.

EnableMSOfficeMacros

Whether	to
enable	macros
when	opening
MS	Office
documents.

ErrorHandling
The	error
handling
behavior.

ExtraChecks

Whether	to
apply	extra
processing	to
enable	certain
types	of
corrupt
document	to
be	read.

Frame

The	frame	to
be	read	from	a
multiple	frame

	 	

image	such	as
a	movie.

FileExtension

Gets	or	sets
the	file
extension	for
data	sources
that	do	not
have	file
names.

Log The	log	for	the
read	operation.

MakeFieldNamesUnique

Whether	field
names	should
be	changed	to
make	them
unique.

OpenOfficeParameters

OpenOffice.org
PDF
conversion
control
parameters.

Operation
Gets	or	sets
the	Operation
to	use.

Password

Gets	or	sets
the	password
needed	to	read

	 	

the	source.

PreserveTransparency

Gets	or	sets	a
value	that
indicates
whether	the
transparency
of	raster
images	should
be	preserved.

Timeout

Gets	or	sets
the	timeout	in
milliseconds
for	external
components.

SkipRevisions

Skip	back	a
number	of
revisions	when
reading	an
incrementally
saved	PDF
document.

OpenPortfolios

Whether	to
automatically
open	the
default
document
inside	a	PDF

portfolio	rather
than	the
portfolio	itself.

	 	 	

	

	

SwfImportOperation	Class

An	operation	used	to	import	Flash	movies	(SWF	files).

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.SwfImportOperation

	

	 	

Method Description
SwfImportOperation SwfImportOperation	Constructor.

	Import Imports	selected	frames	of	a	Flash
movie.

	 	

Property Description
Doc The	target	PDF	document.
BackgroundRegion Gets	or	sets	the	backgound	rectangle.
ClipRegion Gets	or	sets	the	clip	rectangle.

ResetRegions

Gets	or	sets	a	value	that	indicates
whether	BackgroundRegion	and
ClipRegion	are	reset	when	the
Operation.ProcessingObject	event	of
ProcessingSourceType.MultiFrameImage
or	of
ProcessingSourceType.ImageFrame	is

generated.

Timeout Gets	or	sets	the	time-out	for	script
execution.

ContentAlign Gets	or	sets	the	content	alignment.
ContentScaleMode Gets	or	sets	the	content	scale	mode.

Parameters The	parameters	for	initializing	the	SWF
machine.

	

	

	

GraphicLayer	Class

A	generic	graphic	layer	appearing	on	a	page	of	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.Layer	
												WebSupergoo.ABCpdf10.Objects.GraphicLayer

	

	 	

Method Description
	 inherited	methods...

	 	

Property Description
	 inherited	properties...

	

	

	

XHtmlOptions	Object 	 	

Represents	the	current	HTML	rendering	settings.

The	properties	of	this	object	may	be	used	to	control
the	way	that	the	Doc.AddImageUrl	and
Doc.AddImageHtml	methods	work.

The	methods	of	this	object	operate	on	objects	added
using	the	the	Doc.AddImageUrl	and
Doc.AddImageHtml	methods.	Some	operations
change	the	document.	Others	provide	information
about	the	content	which	has	been	added.

HTML	documents	can	be	imported	using	different
HTML	engines.	The	current	supported	ones	are	the
MSHTML	engine	(used	in	Microsoft	Internet	Explorer)
and	a	modified	version	of	Mozilla	Firefox's	Gecko
engine	tailored	to	work	with	ABCpdf.	Different	engines
interpret	HTML	documents	in	different	ways	and
support	a	different	set	of	HTML	options,	please	see
the	Engine	property	for	details.

System.Object
			WebSupergoo.ABCpdf10.XHtmlOptions

	

	 	

Method Description

EndTasks

Ends	any
HTML	Engine
worker
threads	or
processes.

	 	

GetHttpStatusCode
Retrieves	the
HTTP	status
code.

GetScriptReturn

Retrieves	the
client	side
onload	script
return	value.

GetTagIDs

Gets	an	array
of	the	HTML
IDs	of	tagged
visible	items.

GetTagRects

Gets	an	array
of	the
locations	of
tagged	visible
items.

GetTagUntransformedRects

Gets	an	array
of	the
locations	of
tagged	visible
items	before
Doc.Transform
is	applied.

LinkDestinations

Convert	a
restricted
selection	of
external	links
to	internal

	 	

links.

LinkPages

Convert
external	links
to	internal
links	wherever
possible.

PageCacheClear
Clears	the
HTML	page
cache.

PageCachePurge
Purges	the
HTML	page
cache.

SetTheme

Specify
whether	to	use
Windows
themes	or	not.

	

Property Description

Engine

The	engine	to
use	for	HTML
import
operations.
An	object	that
provides
access	to	only

ForMSHtml the	HTML
options
supported	by
the	MSHTML
engine.

ForGecko

An	object	that
provides
access	to	only
the	HTML
options
supported	by
the	Gecko
HTML	engine.

AddForms
Whether	form
fields	should
be	live.

AddLinks
Whether
hyperlinks
should	be	live.

AddMovies

Whether
active	content
such	as
movies	should
be	added.

AddTags

Whether
location	of
certain	tags
should	be

noted.

AdjustLayout

Whether
HTML	layout
is	checked
and	adjusted
for	optimal
output	to	PDF.

AutoTruncate

Whether	to
automatically
clip	redundant
content	at	the
end	of	the
page.

BreakMethod
The	page
break	logic	for
HTML.

BreakZoneSize

The
percentage	of
the	current
drawing	area
in	which
HTML	breaks
can	occur.

BrowserWidth

The	width	of
the	virtual
browser	in
pixels.

CoerceVector
The	conditions
under	which	to
coerce	a
vector	output.

ContentCount

The	minimum
number	of
content	items
required	for	a
page	to	be
valid.

DeactivateWebBrowser
Whether	to
deactivate	the
WebBrowser.

	DisableVectorCoercion

The	conditions
under	which	to
disable	vector-
output
coercion.

DoMarkup

Whether
HTML	pages
are	marked	up
before
conversion	to
PDF.

FontEmbed

Whether	fonts
should	be
embedded

rather	than
referenced.

FontProtection
Whether	fonts
should	be
protected.

FontSubset

Whether
embedded
fonts	should
be	subsetted
or	not.

FontSubstitute

Whether	font
substitution
should	be
used	to
reduce	file
size.

HideBackground

Whether	to
hide	the
background
color	of	a
page.

HostWebBrowser

Whether	to
host	a
WebBrowser
control.
The	multicast
delegate	to	be

	 	

HtmlCallback called	while
HTML
rendering	is
taking	place.

HtmlEmbedCallback

The	multicast
delegate	to	be
called	when
embedding	an
object	while
HTML
rendering	is
taking	place.

HttpAdditionalHeaders

Additional
HTTP	headers
to	send	in	the
request.

ImageQuality

The	quality	of
compression
acceptable	for
continuous
tone	images
such	as
JPEGs.

ImprovePageBreakAvoid

Whether	to
improve	the
support	for
page-break-
inside	of

	 	

avoid.

ImprovePageBreakInTable

Whether	to
improve	the
support	for
page	break	in
table	to
prevent
missing	rows.

InitialWidth

The	minimum
width	to	be
used	for	auto-
sized	pages.

LogonName
A	user	name
to	be	used	for
authentication.

LogonPassword
A	password	to
be	used	for
authentication.

MakeFieldNamesUnique

Whether	field
names	should
be	changed	to
make	them
unique.

MaxAtomicImageSize

The	maximum
size	at	which
an	image	may
be	regarded

as
unbreakable.

Media
The	CSS
media	type	to
use.

NoCookie

Whether	to
disable
automatic
cookies.

NoDefaultBackground

Whether	to
disable	the
default
background
color.

NoSnapRounding

Whether	to
disable	the
snap	rounding
of	coordinates
and	lengths.

NoTheme
Whether
themes	should
be	disabled.

OnLoadScript

A	script	to	be
run	after	the
page	is
loaded.
Whether	the

PageCacheEnabled
page	cache
should	be
searched
before
rendering	the
page.

PageCacheExpiry

The	length	of
time	that
pages	can	be
held	in	the
cache	(ms).

PageCacheSize

The	number	of
pages	that
can	be	held	in
the	cache.

Paged

Whether
content	should
be	rendered	in
multipaged
format.

PageLoadMethod
The	method
for	loading
URI/HTML.

ProcessOptions

The	options
for	new
worker
processes.

ReloadPage Whether	to
reload	page.

RequestMethod
The	request
method	for
URL.

RetryCount

The	number	of
times	a	page
should	be
retried	if
unavailable	or
invalid.

TargetLinks

Whether
hyperlinks
should	be
allowed	to
open	new
windows.

Timeout

The	maximum
amount	of
time	allowed
for	obtaining	a
page	(ms).

TransferModule

The	module
for	obtaining
URI/HTML
data.
Whether	to

UseActiveX enable
ActiveX.

UseJava Whether	to
enable	Java.

UseNoCache

Whether	any
proxy	servers
should	re-
request	items
of	content.

UseResync
Whether	to
resynchronize
pages.

UseScript

Whether	to
enable
JavaScript
and	VBScript.

UseTheme Whether	to
use	themes.

UseVideo Whether	to
enable	Video.

	 	 	

	

	

XForm	Object 	 	

Represents	the	form	and	fields	associated	with	this
document.

The	PDF	specification	makes	a	distinction	between	a
field	(in	terms	of	a	named	value)	and	the	visible
appearance	of	the	field	on	the	document.

In	general	one	field	will	have	one	visible	appearance
on	the	document.	However	it	is	possible	for	a	field	to
have	multiple	or	indeed	no	appearances	on	the
document.

For	example	a	Radio	Button	group	encapsulates	one
value	and	is	represented	by	one	field.	However	each
radio	button	has	a	separate	appearance	on	the
document.	So	one	Radio	Button	field	is	likely	to	have
many	appearances.

For	this	reason	fields	exist	within	a	hierarchy.	Each
field	may	or	may	not	have	a	visible	appearance.	Each
field	may	or	may	not	have	children.	These	children
may	be	fields	themselves	and	again	may	have	their
own	children.

Fields	are	generally	referenced	by	fully	qualified
name.	A	full	name	describes	a	path	down	through	the
field	hierarchy	-	using	periods	as	delimiters	-	to	a
specific	field	object.	For	example	the	name
'person.address.city'	would	reference	a	field	with	a
partial	field	name	called	'city'	which	has	a	parent
called	'address'	which	has	a	parent	at	the	top	level
called	'person'.	You	can	resolve	a	fully	qualified	name
using	the	Item	function.

Once	a	field	has	been	obtained	you	can	query	or
change	its	values.	If	you	wish	to	convert	the	fields	into

	 	

a	permanent	part	of	the	document	you	can	use	the
Stamp	method	to	permanently	emboss	them.

System.Object
			WebSupergoo.ABCpdf10.XForm

	

	 	

Method Description

GetFieldNames

Gets	the	full
names	of	all	the
fields	in	the
document.

MakeFieldsUnique
Makes	shared
XForm	fields
unique.

AddResource
Add	a	particular
type	of	resource	to
the	form.

Item

Returns	a
particular	field
referenced	by	full
name.

Refresh
Refresh	and	reload
the	document
fields.

Stamp Stamp	all	fields
into	the	document.

	 	

	

	 	

Property Description

DateTimeFormat

The	format
provider	for
formatting
dates	and
times.

Fields
All	top	level
fields	in	the
form.

FormatFields

Whether
values	should
be	formatted
before
insertion	into
fields.

GenerateAppearances

Whether	field
appearances
should	be	pre-
generated.

NeedAppearances

Whether	the
viewer	should
automatically
regenerate
field
appearances.

	 	

	 	 	

	

	

Bookmark	Class

A	bookmark	or	outline	item.

PDF	documents	typically	provide	a	list	of	bookmarks	for	easy
navigation	between	pages.	In	Acrobat	this	navigation	structure	is
available	under	the	Bookmarks	tab.	The	PDF	specification	refers
to	this	structure	as	the	document	outline.

The	document	outline	comprises	of	a	hierarchy	of	bookmarks.
The	bookmark	at	the	top	of	the	hierarchy	is	available	via	the
Doc.Bookmark	property.	Typically	a	bookmark	triggers
navigation	to	a	particular	page	but	in	some	cases	it	may	trigger	a
different	and	more	complex	type	of	action.

Every	bookmark	holds	a	collection	of	all	its	child	bookmarks.	As
with	all	collections	you	can	use	the	Count	property	to	determine
the	number	of	items	contained	and	you	can	iterate	through	the
collection	using	the	standard	methods	appropriate	to	the
language	you	are	coding	in.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Bookmark

Implements:	IList<Bookmark>,
ICollection<Bookmark>,	IEnumerable<Bookmark>,
IList,	ICollection,	IEnumerable

	

Method Description

CopyTo Copies	the	Bookmarks
into	an	array.

	 	

Add Adds	a	Bookmark	to	the
end	of	the	list.

Clear Removes	all	Bookmarks
from	the	list.

Contains
Determines	whether	the
list	contains	a	specific
Bookmark.

IndexOf Determines	the	index	of	a
specific	Bookmark.

	Insert
Inserts	a	Bookmark	into
the	list	at	the	specified
position.

Remove Removes	a	Bookmark
from	the	list.

RemoveAt Remove	the	Bookmark	at
the	specified	location.

GetEnumerator Gets	an	enumerator	forthe	Collection.

	Adopt Adopt	a	specified
Bookmark.

Refresh Refresh	and	reload	the
document	Bookmarks.

	 inherited	methods...

	

	

Property Description

	 	

Count The	number	of	Bookmarks	in
the	collection.

	Item Get	or	set	the	Bookmark	at	the
specified	index.

Open Whether	the	bookmark	appears
open	or	closed.

Page The	destination	Page
associated	with	this	bookmark.

PageID The	destination	Page	ID
associated	with	this	bookmark.

Parent The	parent	of	this	Bookmark.

Title The	bookmark	title	to	be
displayed	on	screen.

	 inherited	properties...

	

	 	

	

	

XEncryption	Object 	 	

Represents	the	current	encryption	settings.

By	default	encryption	is	not	applied	unless	you
explicitly	specify	it	using	the	Type	property.

System.Object
			WebSupergoo.ABCpdf10.XEncryption

	

	 	

	 	

Method Description

	SetCryptMethods

Sets	the	crypt
methods	for
encryption	levels
of	type	4	or	above.

	

	 	

Property Description

CanAssemble

Whether	a
user	can
assemble	the
document.

CanChange

Whether	a
user	can
modify	the
document.

	 	

CanCopy

Whether	a
user	can	copy
from	the
document.

CanEdit
Whether	a
user	can	edit
the	document.

CanExtract

Whether	a
user	can
extract	from
the	document.

CanFillForms

Whether	a
user	can	fill
forms	in	the
document.

CanPrint
Whether	a
user	can	print
the	document.

CanPrintHi

Whether	a
user	can	print
a	high
resolution
copy	of	the
document.

Whether	to
encrypt	the
document

	 	

EncryptMetadata metadata	for
encryption
levels	of	type
4	or	above.

OwnerPassword The	owner
password.

Password The	user
password.

StreamCryptionMethod

The	crypt
method	for
streams	for
encryption
levels	of	type
4	or	above.

StringCryptionMethod

The	crypt
method	for
strings	for
encryption
levels	of	type
4	or	above.

Type
The	level	of
encryption	to
use.

	 	 	

	

	

ObjectSoup	Class 	 	

A	non-traditional	collection	of	Indirect	Objects	making	up
the	content	of	a	PDF.

This	collection	has	some	of	the	characteristics	of	an	Array
and	some	of	a	Dictionary.	Objects	are	referred	to	by	index	-
starting	at	zero	-	like	an	Array.	However	they	do	not	move
within	the	list	because	they	are	identified	by	index	-	like	a
Dictionary	with	numeric	keys.

We	call	this	type	of	hybrid	object	a	Soup.	We	assign	it
traditional	interfaces	to	make	it	easier	to	use.

System.Object
			WebSupergoo.ABCpdf10.Objects.ObjectSoup

Implements:	IList<IndirectObject>,
ICollection<IndirectObject>,
IEnumerable<IndirectObject>,	IList,
ICollection,	IEnumerable,	IDisposable

	

	 	

Method Description
Dispose Dispose	of	the	object.

CopyTo Copies	the	objects	in
the	Soup	to	an	Array.

Add Adds	an	object	to	the
Soup.

Clear Removes	all	objects
from	the	Soup.

	 	

Contains
Determines	whether
the	Soup	contains	a
specific	object.

IndexOf Determines	the	index
of	a	specific	object.

	Insert
Inserts	an	object	into
the	Soup	at	the
specified	position.

Remove Removes	an	object
from	the	Soup.

	RemoveAt
Removes	an	object	at
a	specified	position
from	the	Soup.

GetEnumerator Gets	an	enumeratorfor	the	Soup.

	

	 	

	 	

Property Description

Count The	number	of	items	in	the
Soup.

	Item Gets	or	sets	the	object	at
the	specified	index.

Catalog The	Catalog	for	the
document.

Trailer The	Trailer	or	XRef	for	the
document.

	 	

Revisions The	number	of	incrementalupdates.
	 	 	

	

	

XRendering	Object 	 	

Provides	control	over	PDF	rendering	and	rendering
options.

Note:	rendering	is	only	available	under	the	ABCpdf
Professional	License.

Rendering	is	initiated	by	using	the	Save	method.
Properties	of	this	object	allow	finer	control	over	the
way	that	rendering	is	performed.

System.Object
			WebSupergoo.ABCpdf10.XRendering

	

	 	

	 	

Method Description

	GetBitmap
Renders	the	current	area
of	the	current	page	to	a
Bitmap.

GetData
Renders	the	current	area
of	the	current	page	to
memory.

Save
Renders	and	saves	the
current	area	of	the
current	page.

	

	 	

Property Description

AntiAliasImages
Whether	to
anti-alias
images.

AntiAliasPolygons
Whether	to
anti-alias
polygons.

AntiAliasScene

Whether	to
apply	entire
scene	anti-
aliasing.

AntiAliasText Whether	to
anti-alias	text.

AutoRotate

Whether
pages	should
be
automatically
rotated.

BitsPerChannel
The	output
bits	per	color
channel.

ColorSpace
The	name	of
the	output
color	space.

DefaultHalftone Halftone	type
and	options.
The	output
resolution	in

DotsPerInch dots	per	inch
(DPI).

DotsPerInchX

The	horizontal
output
resolution	in
dots	per	inch
(DPI).

DotsPerInchY

The	vertical
output
resolution	in
dots	per	inch
(DPI).

DrawAnnotations

Whether	to
render	fields
and
annotations.

IccCmyk

The	path	to
the	default
CMYK	ICC
color	profile.

IccGray

The	path	to
the	default
Gray	ICC
color	profile.

IccOutput
The	path	to
the	default
output	ICC

	 	

color	profile.

IccRgb

The	path	to
the	default
RGB	ICC
color	profile.

Log The	log	for	the
last	render.

Metadata

A	collection	of
TIFF	tags	that
should	be
written	to	the
output	file.

MininumLineWidth

The	minimum
stroked	line
width	for
output.

NamedSeparation Named
separations.

NumTiffStrips

Number	of
strips	to
generate
when	writing	a
tiff	file.

Overprint

Whether	to
apply
overprint.

	 	

PaletteSize

The	number
of	colors	in
the	palette	for
indexed	color
output.

ResizeImages

Whether	to
resize	images
for	vector
output.

SaveAlpha

Whether	to
save	the
alpha	channel
into	the
output.

SaveAppend

Whether	to
append	to
(rather	than
overwrite)
existing	image
files.

SaveCompression
The	preferred
compression
method.

SaveQuality

The	output	file
quality	for
lossy
compression.

UseEmbeddedHalftone

Whether	to
use
embedded
halftones.

	 	 	

	

	

XSaveOptions	Object 	 	

Represents	the	current	save	settings.

System.Object
			WebSupergoo.ABCpdf10.XSaveOptions

	

	 	

	 	

Method Description
none 	

	

	 	

Property Description

CompressObjects

Whether	to	use
object	stream
compression	to
reduce	file	size.

EmbeddedGraphics

The	format	to	be
used	for
exporting	PDF
vector	graphics.

FileExtension

Gets	or	sets	the
file	extension	for
the	target	when	it
is	not	otherwise
specified.

	 	

Folder

The	folder	where
to	save
additional	files
(images,	fonts,
etc).

FontSubstitution The	font
substitution	type.

IDConstant

Whether	to
assign	a
constant	file
version	identifier.

IDHexadecimal

Whether	to
assign	non-
ASCII	file
identifiers.

IDUpdate
Whether	to
update	the	file
version	identifier.

Incremental

Whether	to	use
incremental
update	to
preserve	an	audit
trail.

Linearize

Whether	to
linearize	the
output	for	fast
web	viewing.

	 	

Remap
Whether	to
reduce	size	by
remapping
objects.

SaveQuality
The	XPS	output
quality	for	lossy
compression.

Template The	path	to	the
template	file.

TemplateData The	template
data.

WritePageSeparator

The	delegate
called	to	write
the	page
separator	for
export.

	 	 	

	

	

XTextStyle	Class 	 	

Represents	the	style	used	when	adding	text.

All	measurements	are	specified	using	the	current
Doc.Units.

System.Object
			WebSupergoo.ABCpdf10.XTextStyle

	

	 	

	 	

Method Description

ToString Returns	a	stringrepresentation	of	the	object.

	

	 	

Property Description

Ascender

An	adjustment	to
allow	the	text
ascender	to	coincide
with	the	top	of	the	text
area.

Bold Whether	to	apply	a
synthetic	bold	effect.

CharSpacing The	inter-character
spacing.

CharUsage The	usage	of

	 	

characters.

Direction The	default	text
direction.

Font The	current	Font	ID.

HPos
The	current	horizontal
positioning	factor	(0	to
1).

Indent The	first	line	of
paragraph	indent.

Italic Whether	to	apply	a
synthetic	italic	effect.

Justification The	horizontal
justification	factor.

Kerning The	kerning	method.
LeftMargin The	paragraph	indent.
LineSpacing The	inter-line	spacing.

Outline The	width	of	character
outlining.

ParaSpacing The	inter-paragraph
spacing.

PreserveSpace

Whether	to	preserve
white	space
characters	for	plain
text.

Size The	current	text	size.

	 	

Strike Whether	to	apply	a
strikethrough	effect.

Strike2
Whether	to	apply	a
double	strikethrough
effect.

String The	text	style	as	a
string.

Underline Whether	to	underline
text.

VPos
The	current	vertical
positioning	factor	(0	to
1).

WordSpacing The	inter-word
spacing.

	 	 	

	

	

ArrayAtom	Class 	 	

An	Atom	containing	an	array	of	other	Atoms.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.ArrayAtom

Implements:	IList<Atom>,
ICollection<Atom>,	IEnumerable<Atom>,
IList,	ICollection,	IEnumerable

	

	 	

Method Description

S»		FromXRect
Create	an
ArrayAtom	from
a	XRect
representation.

S»	
FromXTransform

Create	an
ArrayAtom	from
a	XTransform
representation.

S»	
FromContentStream

Create	an	array
of	Atoms	from	a
byte	array
containing	a
sequence	of	PDF
objects.

	 	

ArrayAtom ArrayAtom
Constructor.

CopyTo
Copies	the
Atoms	into	an
array.

Add
Add	an	item	to
the	end	of	the
array.

Clear
Removes	all
Atoms	from	the
array.

Contains

Determines
whether	the
array	contains	a
specific	Atom.

IndexOf
Determines	the
index	of	a
specific	Atom.

	Insert

Inserts	an	Atom
into	the	array	at
the	specified
position.

Remove
Removes	an
Atom	from	the
array.
Removes	an
Atom	at	a

	 	

	RemoveAt specified	position
from	the	array.

	AddRange

Adds	the
elements	in	the
supplied	array	at
the	end	of	this
array.

Equals
Test	whether	the
two	ArrayAtoms
are	the	same.

GetEnumerator
Gets	an
enumerator	for
the	Collection.

	GetRange

Creates	a
shallow	copy	of	a
range	of
elements	in	the
source	array.

	InsertRange

Inserts	the
elements	in	the
supplied	array
into	this	array	at
the	specified
index.

	RemoveRange

Removes	a
range	of
elements	from

the	source	array.

	 inherited
methods...

	

	 	

Property Description

Count The	number	of	Atoms	in	the
array.

	Item Get	or	set	the	Atom	at	the
specified	index.

	 inherited	properties...

	 	

	 	 	

	

	

NumAtom	Class 	 	

An	Atom	representing	a	numeric	value.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.NumAtom

	

	 	

	 	

Method Description

S»	
Encode

Encode	a	number	into	a
PDF	string.	This	format
may	be	needed	for	direct
insertion	into	a	content
stream.

Equals Test	whether	the	two
NumAtoms	are	the	same.

NumAtom Construct	a	NumAtom.
	 inherited	methods...

	

	 	

	 	

Property Description

Num The	integer	value	of	the
number.

Num64 The	64-bit	integer	value	of
the	number. 	 	

Real The	floating	point	value	of
the	number.

	 inherited	properties...
	 	 	

	

Atom	Class 	 	

A	PDF	atomic	object	comprising	a	basic	chunk	of	PDF	data.

If	you	are	going	to	be	using	Atoms	then	you	will	want	to
download	the	Adobe	PDF	Specification.	This	document
explains	the	names	and	types	that	can	be	used	and	how
they	are	interpreted.

Common	Operations.

Get	a	named	property	from	the	dictionary	of	an
IndirectObject.	In	the	example	below	we	use	the	Type
property	which	is	typically	a	name	but	the	principles
are	similar	for	other	entries	of	other	types:

[C#]
NameAtom	type	=
io.Resolve(Atom.GetItem(io.Atom,
"Type"))	as	NameAtom;

[Visual	Basic]
Dim	type	As	NameAtom	=
io.Resolve(Atom.GetItem(io.Atom,
"Type"))

Get	an	value	out	of	an	array	atom.	In	the	the	event	that
the	atom	is	not	an	array	or	does	not	have	sufficient
entries	then	the	return	value	will	be	null.	In	the
example	below	we	are	looking	for	entry	two	-	this	is	the
third	entry	since	entries	are	zero	based:

[C#]

http://partners.adobe.com/

	

NumAtom	num	=
io.Resolve(Atom.GetItem(atom,	2))	as
NumAtom;

[Visual	Basic]
Dim	num	As	NumAtom	=
io.Resolve(Atom.GetItem(atom,	2))

Get	a	stream	referenced	from	a	property	of	an
IndirectObject.	In	the	example	below	we	use	the
FontFile2	property	(a	reference	to	an	embedded
TrueType	font):

[C#]
StreamObject	stream	=
io.ResolveObj(Atom.GetItem(io.Atom,
"FontFile2"))	as	StreamObject;

[Visual	Basic]
Dim	stream	As	StreamObject	=
io.ResolveObj(Atom.GetItem(io.Atom,
"FontFile2"))

Add	a	named	entry	to	an	IndirectObject.	In	the
example	below	we	add	a	V	entry	which	is	a	string.	We
keep	the	returned	StringAtom	so	we	can	maniplate	the
value:

[C#]
StringAtom	str	=
(StringAtom)Atom.SetItem(io.Atom,	"V",
new	StringAtom());

	 	

[Visual	Basic]
Dim	str	As	StringAtom	=
Atom.SetItem(io.Atom,	"V",	New
StringAtom())

Add	a	named	entry	to	an	IndirectObject.	In	the
example	below	we	add	an	array	entry	to	specify	a
border	array.	Rather	than	creating	an	ArrayAtom	and
specifying	the	individual	values	we	just	specify	the	raw
string	value	of	the	object:

[C#]
Atom.SetItem(io.Atom,	"Border",
Atom.FromString("[0	0	1]"));

[Visual	Basic]
Atom.SetItem(io.Atom,	"Border",
Atom.FromString("[0	0	1]"))

	

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.ArrayAtom
						WebSupergoo.ABCpdf10.Atoms.BoolAtom
						WebSupergoo.ABCpdf10.Atoms.DictAtom
						WebSupergoo.ABCpdf10.Atoms.NameAtom
						WebSupergoo.ABCpdf10.Atoms.NullAtom
						WebSupergoo.ABCpdf10.Atoms.NumAtom
						WebSupergoo.ABCpdf10.Atoms.RefAtom

						WebSupergoo.ABCpdf10.Atoms.OpAtom
						WebSupergoo.ABCpdf10.Atoms.StringAtom

Implements:	ICloneable,	IDisposable,
IEquatable<Atom>,	IComparable<Atom>

	

Method Description

S»	
FromString

Create	an	appropriate
type	of	Atom	from	a
raw	PDF	string
representation.

S»		GetBool
Gets	the	Boolean	value
from	the	Atom	if	it	is	a
BoolAtom.

S»	
GetDouble

Gets	the	double	value
from	the	Atom	if	it	is	a
NumAtom.

S»		GetID
Gets	the	Object	ID
value	from	the	Atom	if	it
is	a	RefAtom.

S»		GetInt
Gets	the	integer	value
from	the	Atom	if	it	is	a
NumAtom.

S»		GetItem
Gets	the	specified	item
from	the	Atom	if	it	is	of
a	type	which	contains
other	Atoms.

	 	

S»		GetName
Gets	the	Name	value
from	the	Atom	if	it	is	a
NameAtom.

S»		GetText
Gets	the	Text	value
from	the	Atom	if	it	is	a
StringAtom.

S»	
RemoveItem

Removes	the	named
entry	from	the	Atom	if	it
is	a	DictAtom.

S»		SetItem
Adds	a	specified	item
to	the	Atom	if	it	is	of	a
type	which	contains
other	Atoms.

GetData

The	byte	array
representation	of	the
Atom	as	it	would
appear	in	a	PDF.

Clone Creates	a	deep	copy	of
the	current	Atom.

Dispose Dispose	of	the	object.

Equals Test	whether	the	two
Atoms	are	the	same.

GetHashCode A	hash	code	for	theAtom.

ToString

The	string
representation	of	the
Atom	as	it	would

	 	

appear	in	a	PDF.

	

	 	

Property Description
none 	

	 	

	 	 	

	

	

XFont	Class 	 	

Provides	information	about	the	fonts	available	to
ABCpdf.

System.Object
			WebSupergoo.ABCpdf10.XFont

	 	

	 	

Method Description

S»		FindAll
Find	all	the	fonts
currently	installed
on	the	system.

S»		FindFamily
Find	all	the	fonts
belonging	to	a
particular	family.

S»	
FindFamilyNames

Find	the	names	of
all	font	families.

S»		FindByName Find	all	the	fonts
with	a	given	name.

S»		FindByStyle
Find	a	font	from	a
specific	family,	with
a	given	style.

TextWidth Calculate	the	width
of	a	string	of	text.

Unload
Unloads	a	font	so
that	it	is	no	longer
available.

	 	

	

	 	

Property Description

FamilyName
The	name	of	the
family	to	which	the
font	belongs.

FixedPitch Whether	the	font	is	in
a	fixed	pitch	style.

Italic Whether	the	font	is	in
an	italic	style.

Name
The	complete	human
readable	name	of	the
font.

Names
The	complete	set	of
names	by	which	this
font	is	known.

PostScriptName
The	name	the	font
will	be	known	by	on	a
PostScript	printer.

Script Whether	the	font	is	in
a	script	style.

Serif Whether	the	font	is	in
a	serif	style.

Weight The	weight	of	the
font.
The	baseline	of	the

	 	

Baseline font	in	thousandths	of
a	unit.

Widths The	widths	of	the
characters	in	the	font.

	 	 	

	

	

Field	Class

Represents	a	field	in	a	document.

The	PDF	specification	makes	a	distinction	between	a	field	(in
terms	of	a	named	value)	and	the	visible	appearance	of	the	field
on	the	document.

So	not	every	field	has	a	visible	appearance.	Those	that	do	can
be	located	using	the	Page	and	Rect	properties.	The	value	of	the
field	can	be	modified	using	the	Value	property.

Fields	exist	within	a	hierarchy.	Fields	have	children	and	their
children	can	have	children	in	turn.	You	can	drill	down	through
the	hierarchy	using	the	Kids	property.

Alternatively	-	given	a	fully	qualified	name	-	you	can	use	the
XForm	level	methods	to	obtain	references	directly.

Note	that	the	Field	object	is	an	abstraction	of	the	underlying
objects	defined	in	the	document.	As	such	the	Object	ID	may
refer	to	an	Annotation	Widget	or	it	may	refer	to	a	Field	or	it	may
refer	to	a	hybrid	Widget	Field	as	defined	in	the	PDF
specification.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Field

	

Method Description

Focus
Prepare	document
for	drawing	at	the
field	location.

	 	

GetAnnotations
Gets	all	the
Annotations
referenced	by	this
field	or	its	children.

GetKids
Gets	a	set	of	Fields
that	are	descendents
of	this	one.

SetFont
Sets	the	font	and	font
size	to	be	used	for
text.

Stamp Stamp	this	field	into
the	document.

UpdateAppearance

Update	the
appearance	of	all	the
Annotations
associated	with	this
field.

	 inherited	methods...

	

	

Property Description

DefaultAppearance
The	default
appearance	(DA)
used	for	the	text.

FieldType The	field	type.

Flags The	Field	Flags	(Ff)

	 	

entry.
Format The	field	format.

Kids All	the	immediate
children	of	this	field.

MultiSelect
Whether	the	field
supports	multiple
selections.

Name The	fully	qualified
field	name.

Options The	field	options.

Page The	Page	on	which
the	field	appears.

PageID
The	ID	of	the	page	on
which	the	field
appears.

Parent The	parent	of	this
field.

PartialName The	partial	field
name.

	Rect The	location	and	size
of	the	field.

TextAlignment The	alignment	for	the
text.

TextColor The	color	used	for
the	text.

TextFont The	font	used	for	the

	

text.

TextSize The	font	size	used	for
the	text.

Value The	field	value.
	 inherited	properties...

	 	

	

	

Fields	Class 	 	

A	class	encapsulating	a	collection	of	Fields.

System.Object
			WebSupergoo.ABCpdf10.Objects.Fields

Implements:	IList<Field>,
ICollection<Field>,
IEnumerable<Field>,	IList,
ICollection,	IEnumerable

	

	 	

	 	

Method Description

CopyTo Copies	the	items	into
a	collection.

	Add Add	an	item	to	the
end	of	the	collection.

	Clear Removes	all	items
from	the	collection.

Contains
Determines	whether
the	collection	contains
a	specific	item.

IndexOf Determines	the	index
of	a	specific	item.

	Insert
Inserts	an	item	into
the	collection	at	the
specified	position.

	 	

	Remove Removes	an	item
from	the	collection.

	RemoveAt
Removes	an	item	at	a
specified	position	from
the	collection.

GetEnumerator Gets	an	enumeratorfor	the	Collection.

	

	 	

Property Description

Count The	number	of	items	in	the
collection.

	Item Get	or	set	the	item	at	the
specified	index.

	 	

	 	 	

	

	

XHtmlProcessOptions	Class 	 	

Represents	the	options	for	new	HTML	worker	processes.

System.Object
			WebSupergoo.ABCpdf10.XHtmlProcessOptions

	

	 	

	 	

Method Description

StartPool Start	the	process	pool	forthe	HTML	Engine.

	

	 	

	 	

Property Description

PoolHasStarted
Whether	the	process
pool	for	the	HTML
Engine	has	started.

ProcessCount
The	number	of
existing	processes	for
the	HTML	Engine.

Domain The	domain	or	server
containing	the	user.

IdleTimeout

The	maximum	time	a
process	can	be	idle
before	being
terminated	(ms).

	 	

LoadUserProfile Whether	to	load	the
user	profile.

Password The	password	for	the
user.

RetryCount

The	number	of	times
an	operation	should
be	retried	if	there	is	a
problem	with	the
process.

UserName The	user	name.
	 	 	

	

	

XpsImportOperation	Class

An	operation	used	to	import	XPS	and	OXPS	documents.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.XpsImportOperation

	

	 	

Method Description
S»	
GetApplicationFolder

Gets	the	installation	folder
of	an	import	application.

XpsImportOperation XpsImportOperation
Constructor.

ApplicationIsRunning

Gets	a	value	indicating
whether	an	import
application	is	running	for
this	XpsImportOperation.

EnableApplicationReuse

Enables	an	import
application	process	to	be
reused	so	that	it	is
terminated	only	manually
or	when	this	operation	is
disposed	of.

	Import Imports	a	portion	of	an
XPS	document.
Imports	a	portion	of	a

ImportAny document	via	an
intermediate	XPS	print-
out.

KillApplication Terminates	a	running
import	application.

ReusesApplication

Gets	a	value	indicating
whether	an	import
application	process	is	to
be	kept	running	and
reused.

	 	

Property Description

Application The	application	used	by
ImportAny.

ApplicationFolder
The	folder	of	the
application	used	by
ImportAny.

DocNumber The	one-based	document
number	used	by	ImportAny.

EnableMSOfficeMacros
Whether	to	enable	macros
when	opening	MS	Office
documents.

Password The	password	needed	to
read	the	source.

	

	

	

Operation	Class

An	operation	to	be	performed	on	a	document.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.AccessibilityOperation
						WebSupergoo.ABCpdf10.Operations.EffectOperation
						WebSupergoo.ABCpdf10.Operations.FlattenTransparencyOperation
						WebSupergoo.ABCpdf10.Operations.ImageOperation
						WebSupergoo.ABCpdf10.Operations.PdfConformityOperation
						WebSupergoo.ABCpdf10.Operations.PdfValidationOperation
						WebSupergoo.ABCpdf10.Operations.RecolorOperation
						WebSupergoo.ABCpdf10.Operations.ReduceSizerOperation
						WebSupergoo.ABCpdf10.Operations.RenderOperation
						WebSupergoo.ABCpdf10.Operations.SwfImportOperation
						WebSupergoo.ABCpdf10.Operations.TextOperation
						WebSupergoo.ABCpdf10.Operations.XpsImportOperation

Implements:	IDisposable

	

	 	

Method Description
none 	

	 	

Property Description
none 	
	

	 	

Event Description

ProcessingObject Occurs	before	an	IndirectObject	is	operatedon.

ProcessedObject Occurs	after	an	IndirectObject	has	beenoperated	on.
	

	

	

XSaveTemplateData	Class 	 	

Represents	some	format-specific	data	not	obtained	from
a	template	file.

System.Object
			WebSupergoo.ABCpdf10.XSaveTemplateData

	

	 	

	 	

Method Description

SetMeasureResolution
Sets	the
measurement
resolutions.

	

	 	

	 	

Property Description

ImageDisplaySmoothing

The
smoothing	for
displaying
images.

JpegQuality The	JPEG
quality	level.

MeasureDpiX

The
horizontal
measurement
resolution. 	 	

MeasureDpiY The	vertical
measurement
resolution.

ReencodeJpeg

Whether
JPEG	images
are	re-
encoded	in
JPEG.

	
	

	 	 	

	

	

IndirectObject	Class

A	PDF	indirect	object.

PDF	supports	a	number	of	basic	types	of	object.	Objects	may	be	
so	that	they	can	be	referred	to	by	other	objects.	This	type	of	object	is
called	an	indirect	object.

ABCpdf	uses	a	slightly	different	terminology	to	avoid	clashes	with	other
namespaces.	Objects	without	labels	contain	basic	data	elements	and
are	referred	to	as	Atoms.

The	term	'indirect	object'	is	often	shortened	to	'PDF	object'	or	sometime
simply	'object'.	There	are	a	variety	of	types	of	PDF	objects	from	content
layers	to	fonts	to	annotations.	Every	object	contains	an	Atom	which
represents	the	data	held	by	that	object.

Indirect	objects	are	held	in	an	ObjectSoup.	This	is	a	non-traditional
collection	with	some	of	the	characteristics	of	an	Array	and	some	of	a
Dictionary.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Annotation
						WebSupergoo.ABCpdf10.Objects.Bookmark
						WebSupergoo.ABCpdf10.Objects.Catalog
						WebSupergoo.ABCpdf10.Objects.ColorSpace
						WebSupergoo.ABCpdf10.Objects.Field
						WebSupergoo.ABCpdf10.Objects.FileSpecification
						WebSupergoo.ABCpdf10.Objects.FontObject
						WebSupergoo.ABCpdf10.Objects.Outline
						WebSupergoo.ABCpdf10.Objects.Page
						WebSupergoo.ABCpdf10.Objects.Pages
						WebSupergoo.ABCpdf10.Objects.StreamObject

Implements:	ICloneable,	IDisposable,
IEquatable<IndirectObject>

	

	 	

Method Description

S»	
FromString

Construct	an	appropriate	type	of
IndirectObject	given	a	string
value.

IndirectObject IndirectObject	Constructor.
Dispose Dispose	of	the	object.

Clone Create	a	deep	copy	of	the
current	IndirectObject.

Equals Test	whether	the	two
IndirectObjects	are	the	same.

GetHashCode A	hash	code	for	theIndirectObject.

Resolve Resolves	any	indirect	references
and	returns	the	Atom.

ResolveRef Resolves	any	indirect	references
and	returns	the	final	RefAtom.

ResolveObj
Resolves	any	indirect	references
and	returns	the	final
IndirectObject.

ToString The	string	representation	of	the
IndirectObject.

Transcode Transcodes	and	reloads	the
IndirectObject.

	 	

Property Description
ID The	ID	of	the	PDF	object.

Gen The	Generation	of	the	PDF
object.

Atom The	Atom	contained	by	the
IndirectObject.

Version
The	minimum	version	of	the	PDF
specification	required	to	support
this	object.

Revision The	revision	of	the	document	in
which	this	object	is	stored.

Alive Whether	the	IndirectObject	is
currently	alive.

Doc The	Doc	containing	this
IndirectObject.

Soup The	ObjectSoup	containing	this
IndirectObject.

AdbeExtLevel

The	minimum	extension	level	of
Adobe	Supplement	to	the	PDF
specification	required	to	support
this	object.

	

	

	

NullAtom	Class 	 	

A	null	Atom.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.NullAtom

	

	 	

	 	

Method Description

Equals Test	whether	the	two
NullAtoms	are	the	same.

NullAtom Construct	a	NullAtom.
	 inherited	methods...

	

	 	

	 	

Property Description
none 	
	 inherited	properties...

	 	

	 	 	

	

	

NameAtom	Class 	 	

An	Atom	representing	a	name.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.NameAtom

	

	 	

	 	

Method Description

Equals
Test	whether	the	two
NameAtoms	are	the
same.

NameAtom Construct	a	NameAtom.
	 inherited	methods...

	

	 	

	 	

Property Description
Text The	text	of	the	name.

	 inherited	properties...
	 	

	 	 	

	

	

RefAtom	Class 	 	

An	Atom	which	references	an	IndirectObject.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.RefAtom

	

	 	

	 	

Method Description
RefAtom Construct	a	RefAtom.

Assign Set	the	IndirectObject	that
the	reference	should	point	to.

Equals Test	whether	the	two
RefAtoms	are	the	same.

Resolve Get	the	IndirectObject	that
the	reference	is	pointing	to.

	 inherited	methods...

	

	 	

	 	

Property Description

ID The	ID	of	the	referenced
IndirectObject.

Gen The	generation	of	the
referenced	IndirectObject.

	 inherited	properties...

	 	

	 	 	

	

	

Catalog	Class

The	Catalog	for	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Catalog

	

	 	

Method Description

AnalyzeContent
Perform	whole
document	analysis	of
page	contents.

GetEmbeddedFiles
Gets	all	the
embedded	files	in	this
document.

GetFieldNames
The	names	of	all	the
eForm	fields	in	the
document.

GetFields
Get	all	the	eForm
fields	in	the
document.

GetFonts Gets	all	the	fonts	in
this	document.

	 inherited	methods...

	

	

	 	

Property Description
Outline The	root	Outline	object.
Pages The	root	Pages	object.

	 inherited	properties...

	

	 	

	

	

Pages	Class

A	Pages	node	within	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Pages

	

	 	

Method Description

GetPage

Performs	a	fast	lookup
to	retrieve	a	particular
Page	from	this	node
tree.

GetPageArray
Gets	all	the	Page
objects	immediately
under	this	node.

GetPageArrayAll

Gets	all	the	Page
objects	under	this	node
and	descendents	of	this
node.

	Recolor
Converts	the	pages
from	one	color	space	to
another.

	 inherited	methods...

	

	

	 	

Property Description

Count The	number	of	visible	pages
under	this	node.

Parent The	parent	of	this	node.
	 inherited	properties...

	

	 	

	

	

Outline	Class

The	top	level	outline	item.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Bookmark
									WebSupergoo.ABCpdf10.Objects.Outline

	

	 	

Method Description
	 inherited	methods...

	

	

	 	

Property Description
	 inherited	properties...

	

	 	

	

	

StreamObject	Class

A	PDF	data	stream.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.EmbeddedFile
									WebSupergoo.ABCpdf10.Objects.FormXObject
									WebSupergoo.ABCpdf10.Objects.IccProfile
									WebSupergoo.ABCpdf10.Objects.Layer
									WebSupergoo.ABCpdf10.Objects.PixMap

	

Method Description

	StreamObject StreamObject
Constructor.

ClearData

Clear	the	data
and
compression
settings	for	the
stream.

ClearCachedDecompressed

Clear	the
cached,
decompressed
data	for	the
stream.
Compress	the

	 	

Compress data	in	the
stream.

CompressAscii85

Compress	the
data	in	the
stream	using
ASCII	85
encoding.

CompressAsciiHex

Compress	the
data	in	the
stream	using	the
ASCII	Hex
encoding.

CompressFlate

Compress	the
data	in	the
stream	using
Flate
compression.

CompressRunLength

Compress	the
data	in	the
stream	using	run
length	encoding.

Decompress
Decompress	the
data	in	the
stream.

GetData
Get	the	raw
binary	content	of
the	stream.

	

GetText Get	the	content
of	the	stream	as
a	string.

SetData
Set	the	raw
binary	content	of
the	stream.

	SetFile

Set	the	raw
binary	content	of
the	stream	using
data	from	a	file.

SetText
Set	the	content
of	the	stream	as
a	string.
inherited
methods...

	

	 	

Property Description

Compressed
Whether	the	stream	data	is
compressed	or	otherwise
encoded.

Compression The	primary	compression
type.

Compressions All	the	compression	typesapplied	to	the	stream.

Length The	number	of	bytes	of

	

encoded	stream	data.
inherited	properties...

	 	

	

	

DictAtom	Class 	 	

An	Atom	containing	a	dictionary	of	other	Atoms	indexed
by	name.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.DictAtom

Implements:	IDictionary<string,	Atom>,
ICollection<KeyValuePair<string,	Atom>>,
IEnumerable<KeyValuePair<string,	Atom>>,
IDictionary,	ICollection,	IEnumerable

	

	 	

Method Description
DictAtom Construct	a	DictAtom.

CopyTo Copies	the	Atoms	into
an	array.

	Add Add	an	item	to	the
dictionary.

Clear Removes	all	elements
from	the	dictionary.

Contains

Determines	whether
the	dictionary	contains
an	element	with	a
specific	name.

Remove Remove	an	element

	 	 from	the	dictionary.

GetKeys
Get	an	array	of	all	the
names	in	the
dictionary.

GetValues
Get	an	array	of	all	the
Atoms	in	the
dictionary.

GetEnumerator Get	an	enumerator	forthe	dictionary.

Equals
Test	whether	the	two
DictAtoms	are	the
same.

	 inherited	methods...

	

	 	

	 	

Property Description

Count Get	the	number	of	elements
in	the	dictionary.

	Item Get	or	set	the	entry	with	the
specified	name.

Keys Get	the	collection	of	the
keys	in	the	dictionary.

Values Get	the	collection	of	the
Atoms	in	the	dictionary.

	 inherited	properties...

	 	

	 	 	

	

	

Page	Class

A	visible	page	within	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Page

	

Method Description

	DeInline
Makes	any	inline
images	into
external	images.

Detach
Detaches	a
content	stream
from	the	page.

Flatten

Flatten	and
compress	the
page	content
stream.

GetAnnotations
Gets	all	the
Annotations	on
the	page.

GetLayers
Gets	all	the
content	Layers	for
the	page.
Gets	all	the

	 	

GetNamedSeparations
named
separations
referenced	by	the
page.

GetResourcesByType

Get	all	the
resources	of	a
named	type,
optionally
including	any
used	by
referenced
objects.

GetResourceMap

Get	a	dictionary
mapping	the
names	of	a
particular	type	of
resource	to
Atoms.

GetText

Extract	content
from	the	current
page	in	a
specified	format.

	Recolor

Converts	the
page	from	one
color	space	to
another.

	VectorizeText
Replaces	the	text
on	the	page	with

	

glyph	outlines.

AddLayer
Add	a	content
layer	at	the	front
of	the	page.

AddResource
Add	a	particular
type	of	resource
to	the	page.

	GetBitmap
Render	one	or
more	layers	on
the	current	page.

MakeFormXObject
Makes	a
FormXObject	out
of	the	page.

StampFormXObjects

Removes	all	Form
XObjects	from	the
page	by
embedding	them
into	the	page
content.

	

Property Description
ArtBox The	ArtBox	for	the	page.
BleedBox The	BleedBox	for	the	page.
	CropBox The	CropBox	for	the	page.
	MediaBox The	MediaBox	for	the	page.

	 	

PageNumber The	number	of	the	page	in
the	document.

Parent The	parent	of	this	page.

Rotation
The	number	of	degrees	to
rotate	the	page	before
display.

Thumbnail The	Thumbnail	for	the
page.

TrimBox The	TrimBox	for	the	page.

	

	 	

	

	

Annotation	Class

An	Annotation	such	as	a	text	note	or	hyperlink.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.Annotation

	

	 	

Method Description

Focus
Prepare	document
for	drawing	at	the
annotation	location.

GetFieldOptions

The	field	options	for
any	form	field
associated	with	this
annotation.

Stamp
Stamp	this
annotation	into	the
page.

UpdateAppearance
Update	the
Appearance	Stream
for	this	annotation.

	 inherited	methods...

	

	

	 	

Property Description

Border The	border
appearance.

Contents The	visible	text	of
the	annotation.

FieldBackgroundColor The	backgroundcolor	of	the	field.

FieldBorderColor The	border	color
of	the	field.

FieldRotation

The	rotation	of	the
annotation	in
degrees
counterclockwise
to	the	page.

FieldType

The	field	type	for
any	form	field
associated	with
this	annotation.

FieldValue

The	field	value	for
any	form	field
associated	with
this	annotation.

Flags The	Annotation
Flags	entry.

FullName

The	full	name	of
any	form	field
associated	with

	

this	annotation.

Page

The	Page	on
which	this
annotation	is
located.

	Rect

The	rectangle
which	defines	the
position	and	area
of	the	annotation
on	the	page.

SubType The	sub-type	of
Annotation.

TextDirection The	default	text
direction.

	 inherited
properties...

	 	

	

	

FontObject	Class

A	specific	font	as	used	in	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.FontObject

	

	 	

Method Description

S»		 	GetEncoding

Obtain	a	standard
encoding
dictionary	for	use
with	PDF	text
operators.

EmbedFont

Search	for	and
embed	a	font	file
into	this	font
object.

	EncodeText
Encode	text	for
use	with	PDF	text
operators.

RegenerateToUnicode
Attempt	to
regenerate	a
ToUnicode	map.

Subset
Subset	a
previously

	

embedded	font.

UnembedSimpleFont
Unembed	the	font
if	this	is	a	simple
operation.

	

Property Description

BaseFont The	PostScript	name
of	the	font.

EmbeddedFont The	embedded	font
file.

IsComposite
Whether	the	font	is	a
complex	composite
font.

IsIdentity
Whether	the	font	is	a
composite	glyph
encoded	identity	font.

IsSubset
Whether	the	font
contains	an	embedded
subset.

IsVertical Whether	the	font	is	for
vertical	writing.

WritingMode Gets	the	font	writing
mode.

Widths The	widths	of	the
characters	in	the	font.

	 	

CharToEncoding
The	Unicode	to	glyph
mapping	table	for	all
the	characters	in	the
font.

CheckGlyphs
Whether	to	exclude
invalid	glyphs	from	our
lookup	tables.

EncodingToChar

The	glyph	to	Unicode
mapping	table	for	all
the	characters	in	the
font.

EncodingToString The	glyph	to	Unicodestring	mapping	table.

Flags The	Font	Descriptor
Flags	entry.

FontAscender The	ascender	for	the
glyphs	in	this	font.

FontAscent The	ascent	for	the
glyphs	in	this	font.

FontBBox The	bounding	box	for
the	glyphs	in	this	font.

FontDescender The	descender	for	the
glyphs	in	this	font.

FontDescent The	descent	for	the
glyphs	in	this	font.

FontLineGap The	line	gap	for	the
glyphs	in	this	font.

	

FontLineSpacing The	line	spacing	for	the
glyphs	in	this	font.

	 	

	

	

IccProfile	Class

An	ICC	Color	Profile	for	a	particular	ColorSpace.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.IccProfile

	

	 	

Method Description
	IccProfile IccProfile	Constructor.

	SetData Set	the	raw	binary	content	of
the	stream.

UpdateProfile

Updates	this	object	to	reflect
the	values	contained	within
the	embedded	ICC	color
profile	data.

	 inherited	methods...

	

	

	 	

Property Description

AlternateColorSpaceType

The	alternate
color	space	for
this	ICC	color
profile.

	

	 inherited
properties...

	 	

	

	

ReduceSizeOperation	Class

Operation	to	reduce	the	size	of	a	document.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.ReduceSizeOperation

	

	 	

Method Description

	ReduceSizeOperation ReduceSizeOperationConstructor.

	Compact Compact	and	compress	the
document.

Property Description

CompressImages

Whether	to	resize
and	recompress
images	where
possible.

CompressStreams

Whether	to
compress
uncompressed
streams	where
possible.

ColorImageCompression
The	target
compression	type
for	the	re-encoding
of	color	images.

ColorImageDpi

The	target
resolution	for	the
resampling	of	color
images.

ColorImageQuality

The	target
compression
quality	for	the	re-
encoding	of	color
images.

GrayImageCompression

The	target
compression	type
for	the	re-encoding
of	grayscale
images.

GrayImageDpi

The	target
resolution	for	the
resampling	of
grayscale	images.

GrayImageQuality

The	target
compression
quality	for	the	re-
encoding	of
grayscale	images.

	 	

MonochromeImageCompression
The	target
compression	type
for	the	re-encoding
of	monochrome
images.

MonochromeImageDpi

The	target
resolution	for	the
resampling	of
monochrome
images.

MonochromeImageQuality

The	target
compression
quality	for	the	re-
encoding	of
monochrome
images.

PageContents The	pages	to	be
operated	upon.

PalettizationTolerance

The	amount	of
divergence	from
the	target	palette
which	will	be
allowed.

RefactorImages

Whether	to	refactor
and	remove
duplicate	images
where	possible.

UnembedComplexFonts
Whether	to
unembed	complex
Unicode	based
fonts	where
possible.

UnembedCorruptFonts

Whether	to
unembed
embedded	fonts
that	appear	to	be
corrupt	or	non-
standard.

UnembedSimpleFonts

Whether	to
unembed	simple
Latin	based	fonts
where	possible.

UnembedUnusualFonts

Whether	to
unembed
embedded	fonts
that	do	not	have	an
obvious	substitute
on	the	local
machine.

	

	

	

Layer	Class

A	layer	of	visible	content	on	a	page.

Each	time	content	is	added	to	a	page	a	new	layer	is	created.	Different
kinds	of	layers	are	created	for	different	types	of	content.	For	example	the
AddText	method	will	result	in	the	creation	of	a	TextLayer	and	the
AddImage	one	will	produce	an	ImageLayer.

A	layer	corresponds	to	a	stream	object	referenced	from	the	Page
Contents	array.	The	Page.Flatten	method	concatenates	all	the	stream	and
then	compresses	them	to	save	space.

Note	that	this	type	of	layer	is	an	ABCpdf	construct	that	you	cannot	detect
using	Acrobat.	Acrobat	layers	are	something	completely	different	and	are
more	precisely	known	as	Optional	Content	Groups	(OCGs).	See	the
Doc.Layer	property	for	details	of	how	to	construct	and	manipulate	this
type	of	optional	layer.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.Layer	
												WebSupergoo.ABCpdf10.Objects.GraphicLayer
												WebSupergoo.ABCpdf10.Objects.ImageLayer
												WebSupergoo.ABCpdf10.Objects.TextLayer
												WebSupergoo.ABCpdf10.Objects.ViewLayer

	

	 	

Method Description
	 inherited	methods...

	 	

Property Description

BaseRect
The	untransformed	rect	defining	the
bounds	of	the	visible	content	on	the
page.

Page The	Page	on	which	the	Layer	is
located.

Rect The	transformed	rect	defining	the
bounds	of	the	visible	content.

Transform The	transform	which	has	been
applied	to	the	visible	content.

	 inherited	properties...
	

	

	

ColorSpace	Class

A	color	space	for	an	object	such	as	a	PixMap.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.ColorSpace

	

	 	

Method Description
ColorSpace Construct	a	ColorSpace.

	 inherited	methods...

	

	

Property Description

ColorSpaceType The	type	of	color
space.

Components
The	number	of
color	components
in	the	color	space.

IccProfile

Any	ICC	Color
Profile	associated
with	this	color
space.

BaseColorSpaceType

The	base	color
space	of	an

	 	

Indexed	color
space.

Name
Any	name
associated	with	the
color	space.

Gamma
The	gamma
correction	for	the
color	space.

BlackPoint

The	black	point	for
the	color	space
specified	in	CIE
1931	XYZ	space.

WhitePoint

The	white	point	for
the	color	space
specified	in	CIE
1931	XYZ	space.

	 inherited
properties...

	

	 	

	

	

TextLayer	Class

A	multistyled	text	layer	appearing	on	a	page	of	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.Layer	
												WebSupergoo.ABCpdf10.Objects.TextLayer

	

	 	

Method Description

ClearTextOperation

Removes	any	cached
TextOperation	and
TextFragments
associated	with	this
object.

	 inherited	methods...

	

	

Property Description

Characters The	number	of	characters
appearing	on	the	page.

EndPos The	point	defining	the	end
position	of	the	text.

Lines The	number	of	lines
appearing	on	the	page.

	 	

Previous The	previous	text	object	in	the
text	chain.

Truncated Whether	the	text	had	to	be
truncated.

FullText
The	full	text	provided	in	the
initial	call	to	AddHtml	or
AddText.

TextStart
The	offset	to	the	first
character	drawn	onto	this
layer.

TextEnd
The	offset	to	the	last
character	drawn	onto	this
layer.

TextEnd
The	offset	to	the	character
which	will	be	drawn	at	the
start	of	next	item	in	the	chain.

TextFragments
The	TextFragments
describing	the	precise	layout
of	this	text	layer.

TextOperation
A	TextOperation	describing
the	precise	layout	of	this	text
layer.

	 inherited	properties...

	

	 	

	

	

TextFragment	Class

A	fragment	of	text	as	it	appears	in	a	document.

Each	TextFragment	spans	a	part	of	a	PDF	stream	drawing
operator.	The	part	may	be	the	entire	of	the	text	drawn	by	the
operator	or	it	may	be	a	section	of	the	text	within	that	operator.

For	example	the	PDF	text	drawing	operator	"(Once	upon	a	time)
Tj"	draws	that	text.	If	you	search	for	the	word	"upon"	the
TextFragment	which	is	returned	will	reference	the	complete
operator	via	the	StreamOffset	and	StreamLength	properties	but
properties	like	the	Text	and	Rect	will	span	only	the	word	"upon"
within	that	operator.

System.Object
			WebSupergoo.ABCpdf10.Operations.TextFragment

	

	 	

Method Description
none 	

	

	

Property Description

Font
The	font	object	used	for
drawing	this	text
fragment.

FontColor
The	color	used	for
drawing	this	text

	 	

fragment.

FontSize
The	effective	font	size
used	for	drawing	this
text	fragment.

FontObliqueAngle
The	skew	angle	of	the
font	as	used	for	oblique
styles	to	simulate	italic.

PageID
The	ID	of	the	Page	on
which	this	text	fragment
is	located.

StreamID

The	Stream	ID	of	the
content	stream	in	which
this	text	fragment	is
located.

StreamOffset

The	offset	within	the
content	stream	to	the
start	of	the	drawing
operation	that	contains
this	fragment.

StreamLength

The	length	within	the
content	stream	of	the
drawing	operation	that
contains	this	fragment.

TextSpanIndex

The	zero	based	index
of	the	drawing	operator
text	array	item	that
contains	this	fragment.

	

For	non	text	array
operators	this	value	is
zero.

Rect
The	rectangle	that
contains	the	text	of	the
fragment.

Rotation
The	angle	of	rotation	of
the	fragment	in
degrees.

Text

The	text	of	the
fragment.	A	fragment
may	span	only	a	portion
of	the	complete	text
drawing	operator.

RawText

The	text	specified	in	the
drawing	operator	or	the
text	array	item	of	the
drawing	operator.

FontColorSpace
The	ColorSpace	used
for	drawing	this	text
fragment.

	 	

	

	

TextOperation	Class

Operation	to	analyse	and	manipulate	the	text	in	a	set	of	pages.

System.Object
			WebSupergoo.ABCpdf10.Operations.TextOperation

	

	 	

Method Description
	TextOperation TextOperation	Constructor.

	GetText Get	all	the	text	in	the	page
contents.

	Select Select	a	range	of	text	in	the
document.

Group
Group	a	range	of	text
fragments	into	a	set	of
lines.

	

	

Property Description

Hyphenation

Whether	to	de-
hyphenate	words	that
appear	to	be	split
across	two	lines.
Whether	to	provide
native	colors	such	as

	 	

NativeColors CMYK,	separations
and	spot	colors,	or
whether	to	convert	all
colors	to	RGB.

PageContents The	pages	to	be
operated	upon.

ShowArtifactText
Whether	to	show	text
content	that	is	marked
as	an	artifact.

ShowClippedText

Whether	to	show	text
which	is	invisible
because	it	is	affected
by	a	clip	path.

ShowObscuredText
Whether	to	show
overlapping	repeated
text	content.

Substitutions

A	set	of	character	to
string	substitutions
used	for	translating
typographic	characters
like	ligatures	into	more
normal	text.

TabAffinity

The	minimum	distance
at	which	two	text
fragments	will	be
assumed	to	be	part	of
separate	tab	groups.

	

TabChar
The	character	used	to
separate	out	tab
groups	when	GetText	is
called.

TextObjects

Whether	to	get
information	on	the	BT
and	ET	text	object
markers	used	to
contain	and	group	text
operators.

WordAffinity

The	minimum	distance
at	which	two	fragments
will	be	assumed	to	be
part	of	one	undivided
word.

	 	

	

	

StringAtom	Class 	 	

An	Atom	representing	a	text	value.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.StringAtom

	

	 	

	 	

Method Description

S»		Encode

Encode	a	string
into	a	format	for
use	in	a	content
stream	using	a
normal	or	simple
font.

S»	
EncodeDoubleByte

Encode	a	string
into	a	format	for
use	in	a	content
stream	using	a
composite	font
with	a	double	byte
CMap.

StringAtom Construct	a
StringAtom.

Decode

Decode	a	PDF
encoded	string

	 	

into	a	plain	string
format.

DecodeDoubleByte

Decode	a	double
byte	PDF	encoded
string	into	a	plain
string	format.

Equals
Test	whether	the
two	StringAtoms
are	the	same.

	 inherited
methods...

	

	 	

Property Description
Text The	text	of	the	string.

	 inherited	properties...
	 	

	 	 	

	

	

BoolAtom	Class 	 	

An	Atom	containing	a	Boolean	value.

System.Object
			WebSupergoo.ABCpdf10.Atoms.Atom
						WebSupergoo.ABCpdf10.Atoms.BoolAtom

	

	 	

	 	

Method Description
BoolAtom Construct	a	BoolAtom.

Equals Test	whether	the	two
BoolAtoms	are	the	same.

	 inherited	methods...

	

	 	

	 	

Property Description

Truth Whether	the	Boolean	is	true
or	false.

	 inherited	properties...

	 	

	 	 	

	

	

ProcessingObjectEventArgs	Class

Provides	data	for	the	ProcessingObject	event.

This	class	inherits	from	the	CancelEventArgs	class	to	allow	processing	of	the	operation	to
be	cancelled.

System.Object
			System.EventArgs
						System.ComponentModel.CancelEventArgs
									WebSupergoo.ABCpdf10.Operations.ProcessingObjectEventArgs

	

	 	

Method Description

ProcessingObjectEventArgs ProcessingObjectEventArgsConstructor.

	 	

Property Description
Object Gets	the	IndirectObject	to	be	processed.

Tag Gets	or	sets	an	object	which	can	be	used	to	save
data	about	the	event.

Info Gets	the	ProcessingInfo	containing	related
information.

	

	

	

ProcessedObjectEventArgs	Class

Provides	data	for	the	ProcessedObject	event.

System.Object
			System.EventArgs
						WebSupergoo.ABCpdf10.Operations.ProcessedObjectEventArgs

	

	 	

Method Description

ProcessedObjectEventArgs ProcessedObjectEventArgsConstructor.

	 	

Property Description

Object Gets	the	IndirectObject	which	has	just	been
processed.

Successful Gets	a	value	indicating	whether	theprocessing	was	successful.

Tag Gets	or	sets	an	object	which	can	be	used	to
save	data	about	the	event.

	

	

	

ProcessingInfo	Class

Provides	generic	information	relating	to	the
Operation.ProcessingObject	event.	The	information	about	the
source	of	the	operation	is	available	here	when
ProcessingObjectEventArgs.Object	is	null	if	the	source	is	in	a	non-
PDF	format.

System.Object
			WebSupergoo.ABCpdf10.Operations.ProcessingInfo

	

	 	

Method Description
ProcessingInfo ProcessingInfo	Constructor.

	

	

Property Description

SourceType

Gets	the	type	of	the
source	object	to	be
processed	and	the	stage
of	operation.

Handled

Gets	or	sets	a	value	that
indicates	whether	the
event	handler	has	handled
the	event	so	that	the
operation	skips	the	default
processing.

	 	

X Gets	the	x-coordinate	of
the	location	of	the	source
object.

Y
Gets	the	y-coordinate	of
the	location	of	the	source
object.

Width Gets	the	width	of	the
source	object.

Height Gets	the	height	of	the
source	object.

DocNumber

Gets	or	sets	the	document
number	of	the	source
document	being/to	be
processed.

DocCount
Gets	the	number	of
documents	in	the	source
object.

PageNumber

Gets	or	sets	the	page
number	of	the	source
page	being/to	be
processed.

PageCount Gets	the	number	of	pages
in	the	source	object.

FrameNumber

Gets	or	sets	the	frame
number	of	the	source
frame	being/to	be
processed.

	

FrameCount
Gets	the	number	of
frames	in	the	source
object.

FrameRate
Gets	the	number	of
frames	per	second	for	the
source	object.

BackgroundColor Gets	the	background	colorof	the	source	object.

StreamPosition
Gets	or	Sets	the	stream
position	of	the	source
object,	if	applicable.

StreamLength
Gets	the	stream	length	of
the	source	object,	if
applicable.

Text
Gets	the	unicode	Text	of
the	Source	Event,	if
applicable.

	 	

	

	

RecolorOperation	Class

An	operation	used	to	recolor	PDF	documents.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.RecolorOperation

	

	 	

Method Description
RecolorOperation RecolorOperation	Constructor.
	Recolor Recolor	pages	in	a	document.

	 inherited	methods...

	 	

Property Description

ConvertAnnotations

Gets	or	sets	a	value
indicating	whether
annotations	are	to	be
recolored.

DestinationColorSpace Gets	or	sets	thedestination	ColorSpace.
	 inherited	properties...

	

	

	

SwfParameters	Class

Parameters	to	initialize	the	SWF	machine.

System.Object
			WebSupergoo.ABCpdf10.Operations.SwfParameters

	

	 	

Property Description
FlashVars The	Flash	variables.
StageAlign The	stage	alignment.

StageHeight
The	stage	height	when
the	scale	mode	is
NoScale.

StageScaleMode The	stage	scale	mode.

StageWidth The	stage	width	when	the
scale	mode	is	NoScale.

	

	 	

	

	

PageContents	Class

Operation	to	analyse	and	manipulate	the	text	in	a	set	of	pages.

System.Object
			WebSupergoo.ABCpdf10.Operations.PageContents

	

	 	

Method Description

	PageContents PageContentsConstructor.

AddLayers
Add	a	particular	set	of
Layer	objects	from	a
particular	Page.

	AddPages Add	pages	to	be
processed.

	

	

	 	

Property Description

	IncludeColor
Whether	to	include
color	information	in
the	output.

	IncludeAnnotations
Whether	to	include
annotation	and	field
text	in	the	output.
Whether	to	attempt

	

	RegenerateUnicode
to	regenerate
missing	Unicode
tables	from
embedded	fonts.

	 	

	

	

TextGroup	Class 	 	

A	group	of	text	fragments	that	belong	together.

The	essence	of	a	TextFragment	is	that	it	spans	only	a	small
section	of	text.	As	such	it	may	be	necessary	to	group
fragments	together.	For	example	take	the	following	PDF
drawing	instruction	sequence:

[(There)	400	(was)	400	(Eru,)	300	(the	One)
]	TJ

This	sequence	wiill	write	out	the	text	"There	was	Eru,	the
One".	There	are	no	space	characters	here	and	the	spacing	is
indicated	by	character	placement	(the	numbers)	instead.

Selecting	the	phrase	"was	Eru"	will	result	in	two
TextFragments	the	first	of	which	will	correspond	to	"was"	and
the	second	to	"Eru".	The	two	TextFragment.Rect	properties
are	not	connected	because	there	is	a	400	wide	gap	between
them.	Also	there	is	no	space	character	so	simply
concatenating	the	text	in	the	fragments	would	result	in
"wasEru".

Using	the	TextOperation.Group	method	will	group	them	into
one	TextGroup	with	the	Text	"was	Eru"	(space	inserted)	and	a
Rect	corresponding	to	the	complete	selected	phrase.

System.Object
			WebSupergoo.ABCpdf10.Operations.TextGroup

	

	 	

	 	

Method Description
none 	

	
	 	

	 	

Property Description

PageID
The	ID	of	the	Page	on
which	this	group	is
located.

Rect The	rectangle	that
contains	the	group.

Text The	text	of	the	group.

TextFragments The	text	fragments	inthe	group.

	 	

	 	 	

	

	

ImageOperation	Class

Operation	to	analyze	the	placement	of	raster	images	(bitmaps)	in	a
document.

System.Object
			WebSupergoo.ABCpdf10.Operations.ImageOperation

	

	 	

Method Description

ImageOperation ImageOperation
Constructor.

	GetImageProperties
Get	the	image
information	for	all	the
raster	images.

	

	

	 	

Property Description

IncludeAll
Whether	to	include	all	images
in	the	analysis	to	allow	the
detection	of	orphans.

PageContents The	pages	to	be	operatedupon.

	

	 	

	

	

ImageProperties	Class

A	class	that	represents	one	raster	image	(bitmap)	in	a	document.

System.Object
			WebSupergoo.ABCpdf10.Operations.ImageProperties

	

	 	

Method Description
none 	

	

	

	 	

Property Description

PixMap The	PixMap	object	associated
with	the	image.

Renditions
The	set	of	renditions	of	the	image
at	different	locations	within	the
document.

Dpi The	resolution	of	the	image	in
dots	per	inch.

DpiX The	horizontal	resolution	of	the
image	in	dots	per	inch.

DpiY The	vertical	resolution	of	the
image	in	dots	per	inch.

	

	 	

	

	

ImageRendition	Class

A	class	that	represents	one	image	placement	in	a	document.

System.Object
			WebSupergoo.ABCpdf10.Operations.ImageRendition

	

	 	

Method Description

Focus Focus	the	document	on	the	location
of	the	image	placement.

	

	

Property Description

PageID The	ID	of	the	Page	on	which
the	image	is	placed.

Matrix The	transformation	matrix	for
the	placement	of	the	image.

BoundingBox The	bounding	rectangle	for
the	placement	of	the	image.

Dpi The	resolution	of	the	image	in
dots	per	inch.

DpiX The	horizontal	resolution	of
the	image	in	dots	per	inch.

DpiY The	vertical	resolution	of	the
image	in	dots	per	inch.

	 	 StreamObject
The	StreamObject	in	which
the	image	draw	operation	is
contained.

StreamOffset

The	offset	within	the
uncompressed	StreamObject
to	the	start	of	the	drawing
operation	that	contains	this
image	draw	operation.

StreamLength

The	length	within	the
uncompressed	StreamObject
of	the	drawing	operation	that
contains	this	image	draw
operation.

StreamID
The	ID	of	the	Stream	in	which
the	image	draw	operation	is
contained.

	

	 	

	

	

FlattenTransparencyOperation	Class

An	operation	used	to	flatten	the	transparency	in	PDF	documents.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.FlattenTransparencyOperation

	

	 	

Method Description

FlattenTransparencyOperation FlattenTransparencyOperationConstructor.

	FlattenTransparency Flatten	the	transparency	of
pages	in	a	document.

	 inherited	methods...

Property Description
Alpha Sets	the	backdrop	alpha.

AntiAliasPolygons Whether	to	anti-alias	polygons	when
creating	synthetic	image	objects.

AntiAliasText Whether	to	anti-alias	text	when	creating	a
synthetic	image	object.

ColorSpace Sets	the	target	and	compositing
colorspace	for	objects	being	flattened..
Gets	or	sets	a	value	indicating	whether

	 	

ConvertAnnotations annotations	are	to	be	flattened.

DotsPerInch Sets	the	resolution	of	generated	images.

IccCmyk The	path	to	the	default	CMYK	ICC	color
profile.

IccGray The	path	to	the	default	Gray	ICC	color
profile.

IccRgb The	path	to	the	default	RGB	ICC	color
profile.

Log Returns	information	from	the	last
FlattenTransparency	operation.

	 inherited	properties...
	

	

	

AccessibilityOperation	Class

Operation	to	make	a	document	accessible.

Accessible	or	Tagged	PDFs	are	the	same	as	normal	PDFs	but	have	been
annotated	with	metadata	in	the	form	of	PDF	tags.	This	metadata	is	required
because	PDF	documents	contain	good	layout	information	but	little	semantic
structure.	The	tags	that	are	required	supply	this	semantic	structure.	The	way
they	are	inserted	and	operate	is	defined	in	the	Adobe	PDF	Specification.

See	the	MakeAccessible	function	for	further	information	on	accessibility
standards	and	tagged	PDF.

System.Object
			WebSupergoo.ABCpdf10.Operations.AccessibilityOperation

	

	 	

Method Description

	AccessibilityOperation AccessibilityOperationConstructor.

	MakeAccessible Tags	the	document	for
accessibility.

	 	

Property Description
PageContents The	pages	to	be	operated	upon.

FixFonts Whether	to	attempt	to	fix	font	settings
that	may	be	required	for	accessibility.

FixMetadata Whether	to	attempt	to	fix	or	add
metadata	that	may	be	required	for
accessibility

	

	

	

EffectOperation	Class

Operation	to	apply	a	visual	effect.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.EffectOperation

	

	 	

Method Description
EffectOperation EffectOperation	Constructor.
	Apply Apply	the	effect	to	an	image.

	 inherited	methods...

	 	

Property Description
S»		Names Names	of	all	the	installed	effects.
Name The	name	of	the	Effect.

Description A	description	of	what	the	effect
does.

Parameters The	parameters	associated	with
the	effect.

AutoQuality
The	quality	of	compression	to	use
when	automatically	compressing
after	the	effect	is	applied.

AutoRestore
Whether	to	automatically	restore
the	image	color	space	and	apply
compression	after	the	effect	is
applied.

	

	

	

EffectParameter	Class

A	named	parameter	to	be	applied	to	an	effect.

System.Object
			WebSupergoo.ABCpdf10.Operations.EffectParameter

	

	 	

Method Description
	 None

	

	

	 	

Property Description
Name The	name	of	the	parameter.

Description A	description	of	what	theparameter	does.

Maximum The	maximum	recomended	value
(if	applicable).

Minimum The	minimum	recomended	value
(if	applicable).

Value The	value	of	the	parameter,	or	the
first	value	if	there	are	multiple.

Values The	values	of	the	parameter.

	

	 	

	

	

IdleTimeout	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	long?

[Visual	Basic]
Nullable(Of	Long)

600,000
(10
minutes)

No

The
maximum
time	a
process	can
be	idle
before
being
terminated
(ms).

	

	 	

Notes 	

Set	this	property	to	null	to	specify	infinity.

After	a	process	has	been	idle	continuously	for	the
specified	time,	the	process	shall	be	terminated.

	

	 	

Example 	
None.

	
	 	

	

	

RetryCount	Property 	 	

	

Type Default
Value

Read
Only Description

[C#]	int

[Visual	Basic]
Integer

3 No

The	number	of
times	an
operation	should
be	retried	if	there
is	a	problem	with
the	process.

	

	 	

Notes 	

The	problems	concerned	are	not	related	to	a	page's
content.

The	process	pool	manages	the	communication	with
the	processes.	If	the	communication	is	problematic	or
a	process	becomes	unstable,	the	process	is
terminated	and	a	retry	may	take	place.

	

	 	

Example 	
None.

	
	 	

	

	

PdfConformityOperation	Class

Operation	to	produce	conforming	PDF	files.

Note	that	this	feature	is	only	available	under	the	ABCpdf	Professional	License.

System.Object
			WebSupergoo.ABCpdf10.Operations.PdfConformityOperation

Implements:	IDisposable

	

	 	

Method Description

	GetData Get	the	conforming	document	as	raw
data.

	GetStream Get	the	conforming	document	as	raw
data	stream.

	Save Write	the	conforming	PDF	document.

	 	

Property Description
Conformance The	PDF	conformance.

Messages The	messages	for	writing	in	the
conforming	PDF	format.

Conformity The	PDF	conformity.

Errors The	errors	for	writing	in	the
conforming	PDF	format.

	

	

	

PdfValidationOperation	Class

Operation	to	produce	conforming	PDF	files.

Note	that	this	feature	is	only	available	under	the	ABCpdf	Professional	License.

System.Object
			WebSupergoo.ABCpdf10.Operations.PdfValidationOperation

Implements:	IDisposable

	

	 	

Method Description
	Read Read	and	validate	an	existing	document.

	 	

Property Description
Conformance The	PDF	conformance.

Doc The	Doc	object	into	which	the
document	is	read.

Errors The	validation	errors.
Warnings The	validation	warnings.
	

	

	

RenderOperation	Class

An	operation	used	to	render	pages	of	PDF	documents.

System.Object
			WebSupergoo.ABCpdf10.Operations.Operation
						WebSupergoo.ABCpdf10.Operations.RenderOperation

	

	 	

Method Description
RenderOperation RenderOperation	Constructor.
	Save Renders	a	page	into	a	file.
	GetBitmap Renders	a	page	into	a	bitmap.

	GetData Renders	a	page	into	an	array
of	bytes.

	

	

ImageLayer	Class

A	generic	bitmap	layer	appearing	on	a	page	of	the	document.

The	actual	bitmap	data	is	held	separately	in	a	PixMap	object.	The
ImageLayer	merely	references	the	bitmap	and	describes	where	and
how	it	should	be	drawn.	This	is	analogous	to	the	way	that	images	
embedded	in	HTML.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.Layer	
												WebSupergoo.ABCpdf10.Objects.ImageLayer

	

	 	

Method Description
	 inherited	methods...

	

	 	

Property Description

ImageName The	name	used	to	identify	thePixMap	in	the	Page	resources.

PixMap The	PixMap	containing	the	image
data.

	 inherited	properties...
	

	

	

ViewLayer	Class

A	view	onto	a	larger	underlying	graphic	a	portion	of	which	is
appearing	on	a	page	of	the	document.

System.Object
			WebSupergoo.ABCpdf10.Objects.IndirectObject
						WebSupergoo.ABCpdf10.Objects.StreamObject
									WebSupergoo.ABCpdf10.Objects.Layer	
												WebSupergoo.ABCpdf10.Objects.ViewLayer

	

	 	

Method Description
	 inherited	methods...

	

	

	 	

Property Description

ContentHeight The	content	height	of	theimage	in	pixels.

ContentWidth The	content	width	of	the
image	in	pixels.

PageHeight The	height	of	the	content	on
the	current	page	in	pixels.

PageOffset The	offset	to	the	top	of	the
current	page	in	pixels.

PageWidth The	width	of	the	content	on
the	current	page	in	pixels.

	

ScrollHeight The	scroll	height	of	the	image
in	pixels.

ScrollWidth The	scroll	width	of	the	image
in	pixels.

Truncated Whether	the	image	is
truncated.

	 inherited	properties...
	 	

	

	Introduction
	What is ABCpdf?
	Who is this document for?
	What do I need to use it?
	How does it work?
	What's Cool?
	What's New?
	Acknowledgements
	Legal Requirements
	.NET Essentials
	Simple Example
	Coordinate Spaces
	Examples
	Upgrading
	Object Paths
	XML to PDF
	Manual Installation
	Fonts and Languages
	Fields and Forms
	Image Handling
	HTML Styled Text
	Other Coordinate Spaces
	Registry Keys
	Troubleshooting
	Corrupt Documents
	HTML / CSS Rendering
	SVG to PDF Import
	PDF to SVG Export
	Common Tasks
	Text Flow Example
	Text Flow Round Image Example
	Multistyle Example
	Image Example
	Deletion Example
	Headers and Footers Example
	Landscape Example
	Small Table Example
	Large Table Example
	Unicode Example
	Paged HTML Example
	Doc Properties Example
	eForm Fields Example
	eForm Placeholder Example
	eForm Stamp Example
	eForm FDF Example
	Advanced Graphics Example
	Fields, Markup and Movies Example
	PDF Rendering Example
	System.Drawing Example
	WPF Tables Example
	Doc
	AddArc
	AddBookmark
	AddColorSpaceFile
	AddColorSpaceSpot
	AddFont
	AddGrid
	AddHtml
	AddImage
	AddImageBitmap
	AddImageCopy
	AddImageData
	AddImageDoc
	AddImageFile
	AddImageHtml
	AddImageObject
	AddImageToChain
	AddImageUrl
	AddLine
	AddObject
	AddOval
	AddPage
	AddPie
	AddPoly
	AddRect
	AddText
	AddXObject
	Append
	Chainable
	Clear
	ClearCachedDecompressedStreams
	Delete
	EmbedFont
	FillRect
	FitHtml
	FitText
	Flatten
	FrameRect
	GetData
	GetInfo
	GetInfoDate
	GetInfoDouble
	GetInfoInt
	GetInfoInt64
	GetStream
	GetText
	MeasureText
	Read
	RemapPages
	Save
	SetInfo
	ToString
	Bookmark
	Color
	ColorSpace
	CropBox
	Encryption
	Font
	FontSize
	Form
	HtmlOptions
	Layer
	LayerCount
	MediaBox
	ObjectSoup
	Options
	Page
	PageCount
	PageNumber
	Pos
	Rect
	Rendering
	Root
	SaveOptions
	String
	TextStyle
	TopDown
	Transform
	Units
	Width
	XColor
	FromGray
	FromRgb
	FromCmyk
	FromComponents
	FromArrayAtom
	FromOperator
	SetColor
	SetGray
	SetRgb
	Equals
	GetHashCode
	SetCmyk
	SetComponents
	SetRandom
	ToArrayAtom
	ToString
	Alpha
	Black
	Blue
	Color
	ColorSpace
	Components
	Cyan
	Gray
	Green
	Magenta
	Name
	Red
	String
	Yellow
	XEncryption
	SetCryptMethods
	ToString
	CanAssemble
	CanChange
	CanCopy
	CanEdit
	CanExtract
	CanFillForms
	CanPrint
	CanPrintHi
	EncryptMetadata
	OwnerPassword
	Password
	StreamCryptionMethod
	String
	StringCryptionMethod
	Type
	XFont
	FindAll
	FindFamily
	FindFamilyNames
	FindByName
	FindByStyle
	TextWidth
	Unload
	FamilyName
	FixedPitch
	Italic
	Name
	Names
	PostScriptName
	Script
	Serif
	Weight
	Baseline
	Widths
	XForm
	GetFieldNames
	MakeFieldsUnique
	AddResource
	Item
	Refresh
	Stamp
	DateTimeFormat
	Fields
	FormatFields
	GenerateAppearances
	NeedAppearances
	XHtmlOptions
	EndTasks
	GetHttpStatusCode
	GetScriptReturn
	GetTagIDs
	GetTagRects
	GetTagUntransformedRects
	LinkDestinations
	LinkPages
	PageCacheClear
	PageCachePurge
	SetTheme
	Engine
	ForMSHtml
	ForGecko
	AddForms
	AddLinks
	AddMovies
	AddTags
	AdjustLayout
	AutoTruncate
	BreakMethod
	BreakZoneSize
	BrowserWidth
	CoerceVector
	ContentCount
	DeactivateWebBrowser
	DisableVectorCoercion
	DoMarkup
	FontEmbed
	FontProtection
	FontSubset
	FontSubstitute
	HideBackground
	HostWebBrowser
	HtmlCallback
	HtmlEmbedCallback
	HttpAdditionalHeaders
	ImageQuality
	ImprovePageBreakAvoid
	ImprovePageBreakInTable
	InitialWidth
	LogonName
	LogonPassword
	MakeFieldNamesUnique
	MaxAtomicImageSize
	Media
	NoCookie
	NoDefaultBackground
	NoSnapRounding
	NoTheme
	OnLoadScript
	PageCacheEnabled
	PageCacheExpiry
	PageCacheSize
	Paged
	PageLoadMethod
	ProcessOptions
	ReloadPage
	RequestMethod
	RetryCount
	TargetLinks
	Timeout
	TransferModule
	UseActiveX
	UseJava
	UseNoCache
	UseResync
	UseScript
	UseTheme
	UseVideo
	XHtmlProcessOptions
	XImage
	FromFile
	FromData
	FromStream
	Dispose
	Clear
	SetData
	SetFile
	SetMask
	SetStream
	BoundingBox
	Frame
	FrameCount
	FrameRate
	HasRealRes
	Height
	HRes
	Indirect
	NeedsFile
	NeedsStream
	Selection
	Type
	VRes
	Width
	XPoint
	XPoint
	Copy
	Equals
	GetHashCode
	SetPoint
	ToString
	Point
	String
	X
	Y
	XReadOptions
	XReadOptions
	ClearCache
	Dispose
	Equals
	GetHashCode
	ReadModule
	AddForms
	Bookmarks
	ContentItem
	DefaultFont
	DefaultRect
	DotsPerInch
	EnableMSOfficeMacros
	ErrorHandling
	ExtraChecks
	Frame
	FileExtension
	Log
	MakeFieldNamesUnique
	OpenOfficeParameters
	Operation
	Password
	PreserveTransparency
	Timeout
	SkipRevisions
	OpenPortfolios
	XRect
	FromLbwh
	FromLtwh
	FromSides
	FromPoints
	XRect
	Contains
	FitIn
	GetCorners
	Inset
	Intersect
	IntersectsWith
	Magnify
	Move
	Position
	Resize
	Union
	SetRect
	SetSides
	ToString
	Equals
	GetHashCode
	Bottom
	Height
	Left
	Pin
	Rectangle
	Right
	String
	Top
	Width
	HasArea
	XRendering
	GetBitmap
	GetData
	Save
	AntiAliasImages
	AntiAliasPolygons
	AntiAliasScene
	AntiAliasText
	AutoRotate
	BitsPerChannel
	ColorSpace
	DefaultHalftone
	DotsPerInch
	DotsPerInchX
	DotsPerInchY
	DrawAnnotations
	IccCmyk
	IccGray
	IccOutput
	IccRgb
	Log
	Metadata
	MininumLineWidth
	NamedSeparation
	NumTiffStrips
	Overprint
	PaletteSize
	ResizeImages
	SaveAlpha
	SaveAppend
	SaveCompression
	SaveQuality
	UseEmbeddedHalftone
	XSaveOptions
	CompressObjects
	EmbeddedGraphics
	FileExtension
	Folder
	FontSubstitution
	IDConstant
	IDHexadecimal
	IDUpdate
	Incremental
	Linearize
	Remap
	SaveQuality
	Template
	TemplateData
	WritePageSeparator
	XSaveTemplateData
	SetMeasureResolution
	ImageDisplaySmoothing
	JpegQuality
	MeasureDpiX
	MeasureDpiY
	ReencodeJpeg
	XSettings
	InstallLicense
	InstallRedistributionLicense
	InstallSystemLicense
	InstallTrialLicense
	Register
	SetConfigSection
	Key
	LicenseDescription
	Licensee
	LicenseType
	LicenseValid
	LogErrors
	Version
	XTextStyle
	ToString
	Ascender
	Bold
	CharSpacing
	CharUsage
	Direction
	Font
	HPos
	Indent
	Italic
	Justification
	Kerning
	LeftMargin
	LineSpacing
	Outline
	ParaSpacing
	PreserveSpace
	Size
	Strike
	Strike2
	String
	Underline
	VPos
	WordSpacing
	XTransform
	XTransform
	Invert
	Equals
	Magnify
	PreMultiply
	PostMultiply
	Reset
	Rotate
	Skew
	SetTransform
	ToString
	TransformPoint
	TransformPoints
	Translate
	GetHashCode
	String
	AngleUnit
	Elements
	Matrix
	MediaMatrix
	OffsetX
	OffsetY
	IndirectObject
	FromString
	IndirectObject
	Dispose
	Clone
	Equals
	GetHashCode
	Resolve
	ResolveRef
	ResolveObj
	ToString
	Transcode
	ID
	Gen
	Atom
	Version
	Revision
	Alive
	Doc
	Soup
	AdbeExtLevel
	ObjectSoup
	Dispose
	CopyTo
	Add
	Clear
	Contains
	IndexOf
	Insert
	Remove
	RemoveAt
	GetEnumerator
	Count
	Item
	Catalog
	Trailer
	Revisions
	ObjectSoupSubset
	ObjectSoupSubset
	CopyTo
	AddFamily
	AddOnlyOne
	Objects
	RemapIDs
	RemapTypes
	Annotation
	Focus
	GetFieldOptions
	Stamp
	UpdateAppearance
	Border
	Contents
	FieldBackgroundColor
	FieldBorderColor
	FieldRotation
	FieldType
	FieldValue
	Flags
	FullName
	Page
	Rect
	SubType
	TextDirection
	Bookmark
	CopyTo
	Add
	Clear
	Contains
	IndexOf
	Insert
	Remove
	RemoveAt
	GetEnumerator
	Adopt
	Refresh
	Count
	Item
	Open
	Page
	PageID
	Parent
	Title
	Catalog
	AnalyzeContent
	GetEmbeddedFiles
	GetFieldNames
	GetFields
	GetFonts
	Outline
	Pages
	ColorSpace
	ColorSpace
	ColorSpaceType
	Components
	IccProfile
	BaseColorSpaceType
	Name
	Gamma
	BlackPoint
	WhitePoint
	EmbeddedFile
	EmbeddedFile
	UpdateMetadata
	Checksum
	CreationDate
	MacCreator
	MacResFork
	MacType
	ModificationDate
	Size
	Subtype
	Field
	Focus
	GetAnnotations
	GetKids
	SetFont
	Stamp
	UpdateAppearance
	DefaultAppearance
	FieldType
	Flags
	Format
	Kids
	MultiSelect
	Name
	Options
	Page
	PageID
	Parent
	PartialName
	Rect
	TextAlignment
	TextColor
	TextFont
	TextSize
	Value
	Fields
	CopyTo
	Add
	Clear
	Contains
	IndexOf
	Insert
	Remove
	RemoveAt
	GetEnumerator
	Count
	Item
	FileSpecification
	FileSpecification
	GetPath
	Rationalize
	SetPath
	Description
	EmbeddedFile
	EmbeddedFiles
	Platform
	Uri
	Volatile
	FontObject
	GetEncoding
	EmbedFont
	EncodeText
	RegenerateToUnicode
	Subset
	UnembedSimpleFont
	BaseFont
	EmbeddedFont
	IsComposite
	IsIdentity
	IsSubset
	IsVertical
	WritingMode
	Widths
	CharToEncoding
	CheckGlyphs
	EncodingToChar
	EncodingToString
	Flags
	FontAscender
	FontAscent
	FontBBox
	FontDescender
	FontDescent
	FontLineGap
	FontLineSpacing
	FormXObject
	AddResource
	GetResourceMap
	BBox
	Matrix
	GraphicLayer
	GraphicsState
	IccProfile
	IccProfile
	SetData
	UpdateProfile
	AlternateColorSpaceType
	ImageLayer
	ImageName
	PixMap
	Layer
	BaseRect
	Page
	Rect
	Transform
	Outline
	Page
	DeInline
	Detach
	Flatten
	GetAnnotations
	GetLayers
	GetNamedSeparations
	GetResourcesByType
	GetResourceMap
	GetText
	Recolor
	VectorizeText
	AddLayer
	AddResource
	GetBitmap
	MakeFormXObject
	StampFormXObjects
	ArtBox
	BleedBox
	CropBox
	MediaBox
	PageNumber
	Parent
	Rotation
	Thumbnail
	TrimBox
	Pages
	GetPage
	GetPageArray
	GetPageArrayAll
	Recolor
	Count
	Parent
	PixMap
	FromXImage
	CompressCcitt
	CompressJbig2
	CompressJpeg
	CompressJpx
	Decompress
	Flip
	GetBitmap
	Realize
	Recolor
	Resample
	Resize
	Rotate
	Save
	SetAlpha
	SetBitmap
	SetChromakey
	ToGrayscale
	AutoFix
	BitsPerComponent
	ColorSpace
	ColorSpaceType
	Components
	Height
	ImageMask
	Mask
	Matte
	SMask
	Width
	Signature
	Commit
	GetCertificates
	Sign
	Validate
	IsModified
	IsSecure
	IsTrusted
	IsTimeValid
	Location
	Reason
	Signer
	SigningUtcTime
	TimestampServiceUrl
	ValidationPolicy
	StreamObject
	StreamObject
	ClearData
	ClearCachedDecompressed
	Compress
	CompressAscii85
	CompressAsciiHex
	CompressFlate
	CompressRunLength
	Decompress
	GetData
	GetText
	SetData
	SetFile
	SetText
	Compressed
	Compression
	Compressions
	Length
	TextLayer
	ClearTextOperation
	Characters
	EndPos
	Lines
	Previous
	Truncated
	FullText
	TextStart
	TextEnd
	TextEnd
	TextFragments
	TextOperation
	ViewLayer
	ContentHeight
	ContentWidth
	PageHeight
	PageOffset
	PageWidth
	ScrollHeight
	ScrollWidth
	Truncated
	Atom
	FromString
	GetBool
	GetDouble
	GetID
	GetInt
	GetItem
	GetName
	GetText
	RemoveItem
	SetItem
	GetData
	Clone
	Dispose
	Equals
	GetHashCode
	ToString
	ArrayAtom
	FromXRect
	FromXTransform
	FromContentStream
	ArrayAtom
	CopyTo
	Add
	Clear
	Contains
	IndexOf
	Insert
	Remove
	RemoveAt
	AddRange
	Equals
	GetEnumerator
	GetRange
	InsertRange
	RemoveRange
	Count
	Item
	BoolAtom
	BoolAtom
	Equals
	Truth
	DictAtom
	DictAtom
	CopyTo
	Add
	Clear
	Contains
	Remove
	GetKeys
	GetValues
	GetEnumerator
	Equals
	Count
	Item
	Keys
	Values
	NameAtom
	Equals
	NameAtom
	Text
	NullAtom
	Equals
	NullAtom
	NumAtom
	Encode
	Equals
	NumAtom
	Num
	Num64
	Real
	OpAtom
	OpAtom
	Equals
	Find
	GetParameter
	GetParameters
	Text
	RefAtom
	RefAtom
	Assign
	Equals
	Resolve
	ID
	Gen
	StringAtom
	Encode
	EncodeDoubleByte
	StringAtom
	Decode
	DecodeDoubleByte
	Equals
	Text
	Operation
	ProcessingObject Event
	ProcessedObject Event
	ProcessedObjectEventArgs
	ProcessedObjectEventArgs
	Object
	Successful
	Tag
	ProcessingObjectEventArgs
	ProcessingObjectEventArgs
	Object
	Tag
	Info
	ProcessingInfo
	ProcessingInfo
	SourceType
	Handled
	X
	Y
	Width
	Height
	DocNumber
	DocCount
	PageNumber
	PageCount
	FrameNumber
	FrameCount
	FrameRate
	BackgroundColor
	StreamPosition
	StreamLength
	Text
	RecolorOperation
	RecolorOperation
	Recolor
	ConvertAnnotations
	DestinationColorSpace
	XpsImportOperation
	GetApplicationFolder
	XpsImportOperation
	ApplicationIsRunning
	EnableApplicationReuse
	Import
	ImportAny
	KillApplication
	ReusesApplication
	Application
	ApplicationFolder
	DocNumber
	EnableMSOfficeMacros
	Password
	SwfImportOperation
	SwfImportOperation
	Import
	Doc
	BackgroundRegion
	ClipRegion
	ResetRegions
	Timeout
	ContentAlign
	ContentScaleMode
	Parameters
	SwfParameters
	FlashVars
	StageAlign
	StageHeight
	StageScaleMode
	StageWidth
	RenderOperation
	RenderOperation
	Save
	GetBitmap
	GetData
	PdfConformanceIdentification
	FromDoc
	Part
	Amd
	Conformance
	EffectiveConformance
	PdfConformityOperation
	GetData
	GetStream
	Save
	Conformance
	Messages
	Conformity
	Errors
	PdfValidationOperation
	Read
	Conformance
	Doc
	Errors
	Warnings
	PageContents
	PageContents
	AddLayers
	AddPages
	IncludeColor
	IncludeAnnotations
	RegenerateUnicode
	TextOperation
	TextOperation
	GetText
	Select
	Group
	Hyphenation
	NativeColors
	PageContents
	ShowArtifactText
	ShowClippedText
	ShowObscuredText
	Substitutions
	TabAffinity
	TabChar
	TextObjects
	WordAffinity
	TextFragment
	Font
	FontColor
	FontSize
	FontObliqueAngle
	PageID
	StreamID
	StreamOffset
	StreamLength
	TextSpanIndex
	Rect
	Rotation
	Text
	RawText
	FontColorSpace
	TextGroup
	PageID
	Rect
	Text
	TextFragments
	ImageOperation
	ImageOperation
	GetImageProperties
	IncludeAll
	PageContents
	ImageProperties
	PixMap
	Renditions
	Dpi
	DpiX
	DpiY
	ImageRendition
	Focus
	PageID
	Matrix
	BoundingBox
	Dpi
	DpiX
	DpiY
	StreamObject
	StreamOffset
	StreamLength
	StreamID
	FlattenTransparencyOperation
	FlattenTransparencyOperation
	FlattenTransparency
	Alpha
	AntiAliasPolygons
	AntiAliasText
	ColorSpace
	ConvertAnnotations
	DotsPerInch
	IccCmyk
	IccGray
	IccRgb
	Log
	ReduceSizeOperation
	ReduceSizeOperation
	Compact
	CompressImages
	CompressStreams
	ColorImageCompression
	ColorImageDpi
	ColorImageQuality
	GrayImageCompression
	GrayImageDpi
	GrayImageQuality
	MonochromeImageCompression
	MonochromeImageDpi
	MonochromeImageQuality
	PageContents
	PalettizationTolerance
	RefactorImages
	UnembedComplexFonts
	UnembedCorruptFonts
	UnembedSimpleFonts
	UnembedUnusualFonts
	AccessibilityOperation
	AccessibilityOperation
	MakeAccessible
	PageContents
	FixFonts
	FixMetadata
	EffectOperation
	EffectOperation
	Apply
	Names
	Name
	Description
	Parameters
	AutoQuality
	AutoRestore
	EffectParameter
	Name
	Description
	Maximum
	Minimum
	Value
	Values
	Introduction to Effects
	AutoLevels Effect
	Brightness Effect
	Contrast Effect
	Convolution Effect
	Despeckle Effect
	Equalize Effect
	Gaussian Blur Effect
	Histogram Effect
	Laplacian Effect
	Levels Effect
	Median Effect
	Pinch Effect
	RippleEffect
	Sharpen Effect
	Twirl Effect
	Unsharp Mask Effect
	Wave Effect

